
Finding critical edges in schedules for re-entrant manufacturing machines

Amir Shimoni - van Delft
Supervisor(s): Eghonghon Eigbe, dr. Neil Yorke-Smith

EEMCS, Delft University of Technology, The Netherlands
20-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
Critical constraints in re-entrant flexible manufac-
turing systems(FMSs) schedules are those con-
straints that for some change to their weight (and
only the weight), could make the sequence of op-
eration in the schedule infeasible. This paper de-
scribes how to find critical constraints by repre-
senting the benchmark as a graph and finding its
strongly connected components and by exploiting
the properties of FMSs. We also find we can force
the schedule to have non-participating constraints
at some points in the sequence. Finally, we see two
possible relationships between critical constraints
and describe how these can be found. We conclude
that the points in the sequence where non-critical
edges lay, have infinite temporal flexibility.

1 Introduction
Many different measures of flexibility exist for Flexible Man-
ufacturing Systems(FMSs) [1]. In this paper, rather than com-
ing up with another flexibility measure, we will try to assess
the flexibility of constraints over a schedule themselves by
their potential to break the schedule’s sequence. We will dis-
tinguish between those constraints with the potential to break
a schedule (participating/ critical constraints) to those that do
not. By this division, we learn about points of infinite tem-
poral flexibility in the schedule, how these can be found, and
how we can force them into a schedule. These points of in-
finite flexibility should help schedules be more resilient to
unexpected occurrences in the schedule and the production
process.

In this paper we try to answer the following questions:

• How can we use and alter known algorithms to isolate
what constraints could possibly cause a schedule to be-
come infeasible and which do not participate at all

• How can we find relationships between constraints that
might have an accumulating contribution to making a
schedule infeasible

• How can we force certain constraints to be non-
participating

The main contribution found in this paper is the methods
to find critical and non-participating constraints. We describe
under what conditions such constraints are formed and what
measures can be taken to force them into a schedule. We also
describe a measure for strong dependency of constraints and
present an algorithm to find such dependency.

This paper is structured into eight parts. Section 2 elabo-
rates on the problem and describes it in more detail. Section 3
discusses related work done by others. In section 4 we present
and explain the methodology and the solution approach for
solving the problem presented in the paper. Section 5 goes
over the results produced in this paper and analyses them.
Section 6 goes into responsible research aspects of our work.
Section 7 will go over opportunities for future work. Finally,
section 8 highlights the conclusions we came up with during
our research.

2 Problem description
Potential to break a schedule has to do with the pair of opera-
tions a constraint is applied to. We are looking for constraints
that can break a schedule by changing their weight, but the
participating operation must remain the same. Our goal is to
come up with an algorithm to find those constraints quickly
and efficiently. Moreover, we are looking for ways to create a
schedule sequence such that we force some non-participating
constraints in chosen points in the sequence. Finally, we want
to find relationships between critical constraints that indicate
how a couple of constraints are tightly bound or if their rela-
tionship is unlikely to have a joined contribution to breaking
a schedule.

In this paper, we represent a schedule in the form of a graph
as described in [2] or in figure 1, where every node is an op-
eration and an edge from nodes a to b with weight w implies
b takes place at least w units of time after a. This represen-
tation makes some algorithms accessible in order to solve the
problem, as we are going to see in chapter 4.

Figure 1: An example of a schedule. Edges represent time constraint between pairs of opera-
tion(positive edges - upper bound constraint, dashed/negative edges - minimum bound constraints).
Blue edges represent the sequence of operations. A larger picture of this figure can found in appendix
B

3 Related work
Work has been already been done to define different types of
flexibility for FMSs, one of those is temporal flexibility[1],
which is especially relevant to us as we show how infinite
temporal flexibility in schedules can be achieved in this pa-
per. The way schedules are represented as graphs in this
paper follows the representation described in [2] with due
edges(dashed) always having a negative value and not being
flipped in direction.

It has also been shown already that following this graph
representation, a benchmark only has a valid assignment if
no positive cycle exists[2; 3], which comes in handy for deter-
mining whether a schedule is valid and how it might become
infeasible.

In this paper, several solution approaches are presented
that involve graph algorithms suggested by earlier papers.
The first one attempts to find all cycles in a graph. While
we use the algorithm by Johnson to do that [4] other algo-
rithm for the same goal exist [5; 6]. Another approach uses
the Bellman-Ford algorithm to detect positive/negative cy-
cles [3]. Finally, we consider algorithms for finding strongly



connected components(SCCs) such as those mentioned in [7;
8]

4 Solution approach
In order to solve the problem at hand, we are going to first use
and adapt existing graph algorithms to get a solution. The rea-
son we chose this approach is that while the problem can be
completely described as a graph, without ignoring any given
information or creating ambiguity [2], there exist many algo-
rithms to analyze graphs that we suspected could be useful for
this problem. More specifically for representing a schedule as
a graph, we can show that for a schedule to be infeasible, it
must have a positive cycle [2]. Critical constraints are thus
depicted as cyclic edges, acyclic edges are not able to cause
the schedule to become infeasible. We are going to show that
it is possible to come up with an algorithm to find cyclic and
acyclic edges, and thus use this algorithm to isolate critical
constraints. We will then try to find those critical constraints
by exploiting the properties of FMSs, consider how we can
manipulate a schedule to have non-critical constraints, and
examine the relationships between critical constraints

4.1 Finding critical edges using graph algorithms
Looking back at my research question “How can we use and
alter known algorithms to isolate what constraints could pos-
sibly cause a schedule to become infeasible and which do not
participate at all?”, it is now clear that we should be looking
for algorithms for finding cyclic and acyclic edges or algo-
rithms that can be altered to return those edges. To do this,
we are going to attempt three different approaches.

Finding all cycles
The first method we used for finding cyclic edges is to find
all cycles in the graph. For this, we used the algorithm by
Johnson [4] (although other algorithms for this purpose exist).
A nice advantage of this approach is that it also reports the
cycles themselves, and not only the edges participating in any
cycle. While it is not required for the research question, it is
useful for some things beyond our research such as assessing
schedule slack.

The problem with this approach is that it is quite complex.
Running this has a complexity of O((V +E)∗(C+1)), where
V is the number of nodes, E is the number of edges, and C is
the number of cycles. Since C is exponential in terms of E [9]
we get a non-polynomial complexity.

Multi Bellman-Ford
Another way to find cyclic edges utilizes the Bellman-Ford al-
gorithm. While by itself, the Bellman-Ford algorithm can not
detect (a)cyclic edges, it can be used to detect positive or neg-
ative cycles [3]. We used this property and changed each edge
individually, setting its value to infinity(in practice this was a
very high value), then we ran Bellman-Ford on the adapted
graph. Since the edge is set to positive infinity, if it is part of
a cycle, the cycle must have a positive value, otherwise, that
would mean the edge does not participate in any cycle at all.
Bellman-Ford has a worst-case complexity of O(V ∗ E) [3],
running it for every edge gives us a worst-case complexity of

O(V ∗ E2). One advantage of this approach is that it can be
parallelized as each execution of the Bellman-Ford algorithm
is independent of the others. With this approach, we showed
that our problem is solvable in polynomial time. Pseudo-code
for this algorithm can be found in A.2.

Using an algorithm for finding strongly connected
components
Finally, to come up with the most time-efficient algo-
rithm presented in this subsection, we consider the relation-
ship between (a)cyclic edges to strongly connected compo-
nents(SCCs). We tried to solve the problems we faced using
DFS combined with all sorts of approaches. One of them was
searching the graph while keeping track of the search tree,
but it failed in the case where one cycle “cuts” another(by cut
we mean, one cycle is a result of removing nodes from the
other. See 2 for illustration). We suspected we had to reduce
cycles to single components to overcome this. What we then
tried is as such: upon finding a cycle we remove the nodes of
the cycle and the edges that participate in the cycle, replacing
them with one node and keeping the edges going in and out
of the cycle. This approach would eventually leave us with
the acyclic edges connecting the remaining nodes. We then
also came to realize that each node left represents a strongly
connected component(SCC) in the graph and that this is es-
sentially what our algorithm does. Fortunately, algorithms for
finding SCCs already exist.

Figure 2: cycle a-b-c “cuts” cycle a-b-d-c

We will now clarify what (a)cyclic edges have to do with
SCCs. Inside an SCC, every node is reachable from every
other node. For any edge we take going from a to b (where a
and b are part of the same SCC) there will be a path from b
to a that completes a cycle. Since a and b are arbitrary nodes,
we conclude all edges connecting two nodes of the same SCC
are cyclic. On the contrary, if there exists an edge going from
node a1 in one SCC to a2 in another SCC it implies that every
node in the second SCC is reachable from any node in the
first SCC(as we can get from any node in the first SCC to a1,
then onto a2, and from a2 to any node in the second SCC).
For this edge to be cyclic there must be a path going back
from the second component to the first (so we can go back
from a2 to a1). If such a path exists, we can use the same
process as before to conclude that any node in the first SCC
should be reachable from any node in the second one, just
going the other way around. We would then get that every
node in both SCCs is reachable from any node in any of the
two SCCs, which means there would only be one SCC. This
is a contradiction, and therefore edges connecting different



SCCs are acyclic.
Realizing this relationship between cyclic edges and SCCs,

we can now use an algorithm for finding SCCs to divide the
graph into its strongly connected components, and then ex-
tract the cyclic edges.

Theorem 1
1. When modeled as a graph, critical FMS constraints will

be represented as cyclic edges, while those that are non-
participating will be represented as acyclic.

2. Edges interconnecting different strongly connected com-
ponents(SCCs) are acyclic, while those that connect
nodes within the same SCC are cyclic

From 1 and 2 we conclude that critical constraints in FMS
can be found by running an algorithm for finding SCCs and
then comparing for each constraint(edge) the SCCs of the
nodes they are connecting.

Some of these algorithms, such as the Kosaraju-Sharir al-
gorithm, have a worst-case time complexity of O(V +E) [7].
Separating the edges into cyclic and acyclic after finding the
SCCs is just a matter of comparing the SCC of the source of
the edge to the SCC of its destination. We thus conclude that
this approach dominates the other solutions presented here so
far in terms of time complexity. For finding SCCs we used
the Kosaraju’s-Sharir algorithm implementation given by the
NetworkX library [10] and the algorithm in A.1 to extract the
edges given the SCCs.

4.2 Detecting non-participating constraints by
their characteristics in FMSs.

Having looked at the results for the previously mentioned al-
gorithms, we came to realise that a non-participating con-
strain will always be one that is applied from the last oper-
ation on the re-entrant machine on some job J to the first op-
eration on the re-entrant machine for the following job J+1
or a constraint that is applied to the same pair of jobs as the
described constraint(this is explained later in 4.3). So far we
tried to apply graph algorithms to find (a)cyclic edges. In this
subsection, we use the previously mentioned property to find
(non)critical constraints.

Iterating all edges
The first most obvious solution is to iterate all edges, mark-
ing edges as described before as non-critical as well as any
edges connecting the same two jobs. Iterating all edges can
be done in linear time complexity. let p be the number of
operations per job in our benchmark, for each edge where we
find a checkpoint we need to add additional p edges. Since we
can have at most J checkpoints and J ∗ p < E the complexity
for this approach is O(E). Pseudocode for this approach can
be found in A.4

Iterating sequence edges
Since the defining factor for (non)critical constraints are the
sequence edges, we can use the same approach as before,
looping only over the sequence constraints. That is of course
under the condition that we have a list of the sequence edges.

The number of sequence edges is as big as the number of op-
erations we have on the re-entrant machine over all jobs, thus
we have J ∗ r sequence edges where r is the number of oper-
ations per job on the re-entrant machine. Following the same
reasoning with the complexity analysis as for the previous
method, the complexity for this method is O(ch ∗ p+ J ∗ r)
where ch is the number of checkpoints.

Retrieving relevant edge
For determining whether a specific constraint is critical, we
can look up the necessary sequence constraint as described
before. Not finding one implies the constrain considered is
critical. Time complexity, in this case, depends on the im-
plementation of the graph, and can be O(1) for some data
structures like an adjacency matrix by using the appropriate
nodes as indexes and directly finding the constraint, if one
exists.

Iterating operation sequence
We do not have to represent the problem as a graph to solve
our problem. If we have the order of operations(or we are
willing to sort them) we can simply follow every pair of adja-
cent operations and check if they follow the properties men-
tioned before. If so, the constraint involving those opera-
tions and any constraint involving operations from the same
two jobs will be non-critical. The process is similar to the
one for iterating sequence edges and so the complexity is
O(ch ∗ p + J ∗ r) as well. Pseudocode for this approach
can be found in A.5

4.3 Forcing non-participating constraints on
schedules

To create schedules with non-participating constraints we
need to consider how to create different SCCs in the graph
representing the schedule. Taking the example of the graph
in B we see that the operations of the same job, represented
by the same column, will always be in a cycle with one an-
other. Edges directing to the right towards a later job, exist
from every node in the graph(except for the last job). We thus
observe that a lack of edges going left would mean there is no
way to move back(towards earlier jobs) in the graph, which
forces the graph to break down into many different SCCs. If
there are no left-going edges at all - one for each job. Since
we have to visit all nodes, the only way to avoid getting back
is to finish all operations on the re-entrant machine of all jobs
up to some job k, before starting any operation in job k+1.
This is also visualized in the graph as a sequence edge going
from the last operation of job k in the re-entrant machine to
the first operation of job k+1 on the same machine.

In fact, any time we have a non-cyclic edge all parallel
edges(parallel being connecting operation of the same two
adjacent jobs) are ought to be non-cyclic too, all representing
non-critical constraints. The point in time between two jobs
connected by acyclic edges has infinite temporal slack, we
call such point a ”checkpoint” as the process can be halted
at this point, assessed, and altered with no time constraints
applied. With the realization presented in the last two para-
graphs, it is simple to see how we can come up with schedules
that contain such checkpoints. To do that we need to run the



solver on a subset of the jobs up to the point where we want
to have non-participating edges, and then run it for the set of
jobs following that, adjusting the start time to match the end
time of the first set of jobs(plus whatever time is required by
the constraints).

Criteria for forcing checkpoints
When considering where to put these checkpoints, and how
many of them to force, we observe three criteria: First is the
desired level of flexibility. The more flexible we want the
schedule to be, the more points of infinite temporal flexibil-
ity we should use. Second is the desired productivity level.
When breaking up the benchmark into several components to
force checkpoints, we force the solver to come up with a new
schedule. The more checkpoints we force the less freedom
we give to the scheduler when looking for a schedule that is
as productive as possible. We thus need to keep in mind that
forcing many checkpoints comes with a potential cost in pro-
ductivity, and we need to consider, depending on the case,
whether this cost is worth the added checkpoints and to what
extent. Third, we look into the usability of these checkpoints
per use case. These checkpoints can be used to halt the pro-
cess in order to compute a new schedule completely, have a
human intervene, pause the process for an indefinite period,
or do any other action that has to not be constrained by time,
depending on the context of the industry and the production
process.

4.4 Finding relationships between critical
constraints

First, we need to describe the kinds of relationships criti-
cal constraints might have. Since all edges in an SCC must
be participating in a cycle together(as you can always reach
their source node) we understand that manipulating any pair
of constraints in the same SCC might have an accumulating
effect that can break the schedule. We do observe, however,
that some of these cycles are not simple cycles, which implies
they are built of smaller cycles, at least one of which has to
be positive(and thus break the schedule) for the non-simple
cycle to be positive. We, therefore, distinguish between pairs
that are tightly bound by being in the same simple cycle and
thus being able to both contribute to its value and break it, to
those that are loosely bound, not sharing a simple cycle and
thus not being able to both contribute to making a cycle pos-
itive without any of them individually making a simple cycle
positive.

We now want, given a critical constraint, to find what other
constraints are tightly bound with it, or in other words: In a
graph representation, what other edges participate in the same
simple cycle. To do that we apply a depth-first search from
the destination of the edge to its source following the algo-
rithm in A.3. We mark nodes with no outgoing edges ”dead”
and the source node, ”cycled”. We then traverse the graph,
keeping track of the visited nodes in our path. In line 10 we
check if we revisit a visited node, which is not allowed in a
simple cycle, if so we step back. If we do not reach an edge
case, in lines 16-18 we do a recursive call with every node di-
rectly reachable from the current node, setting the node value
to ”cycled” if any of the recursive calls lead to a cycled node.

Otherwise, setting it to ”dead” if any node of the recursive
call was marked dead, otherwise, unvisited. In lines 12-13
we have an edge case where we reach the source or an edge
labeled cycled, which will result in other nodes in the path
leading there being set to cycled. Similarly, in lines 14-15, if
we reach a dead-end or a node that is already marked ”dead”,
we will return dead. After the recursive call, we set the edge
that lead us to the node to the same value the node has.

Figure 3: A chosen critical constraint(in blue) and its tightly bound
constraints (in red)

5 Experimental Setup and Results
In this section, we will discuss the setup we used for assessing
the results in terms of running time, validity, and the number
of checkpoints to appear in a schedule organically. We will
also reflect on the results and provide a brief explanation to
them.

5.1 Validity
While we provide a logical explanation in the previous chap-
ter of how the algorithms work and why they are applicable
to the task at hand, we decided to validify that they all indeed
return the correct value. This was done by assessing the re-
sults of one of the algorithms by inspection and then running
some code to confirm that the results for selected schedules
are identical among different algorithms. For finding tightly
bound constraints, this was done by inspection as well.

5.2 Running time
Running the script that uses Kosaraju’s algorithm, the running
time averaged 55.7278 ms on the set of the biggest schedules
(with 500 jobs each) and averaged 3.3024 ms on a smaller
set of test schedules. Multi Bellman-Ford averaged 9.963 s
on the smaller set. On the subset of the small set of sched-
ules containing only 10 jobs, Multi Bellman-Ford averaged
184.1068 ms. This method was not tested on the larger set
of larger jobs as execution time would be too high. We then
examine the run time for the approach finding all the cycles.
We ran this only on the schedules containing 10 jobs as the
complexity of this algorithm is significantly higher and found
an average run time of 26.9177 s. For finding the cycles we
used again the implementation by NetworkX [10]. We ran
the methods described in section 4.2 on the set of the biggest



schedules. First, we ran the script that implements the ap-
proach iterating over all edges and we found an average run-
time of 2.5688 ms. For the approach iterating only sequence
edges, we got runtime of 0.298 ms. Iterating the operation
sequence itself yielded an even faster runtime of 0.1541 ms.
Finally, we ran the script implementing the approach for only
determining whether a specific edge is critical for all edges
of one big schedule(500 jobs) and got an average runtime of
1.3316µs. Note that these running times are descriptive of the
algorithm execution itself, not including any prior data pro-
cessing applied before any of these algorithms such as read-
ing the file and constructing the graph. All scripts ran on an
”HP ZBook Studio G5” laptop. These results clarify the supe-
riority of the solution that uses an algorithm for finding SCCs
over the other approaches running graph algorithms, as well
as the superiority of the methods described in 4.2 in terms of
running time.

Minimal set (10 jobs) Test set 500 jobs set
Johnson 26.9176923s N/A N/A

Multi B-F 0.1841068s 9.9639568s N/A
Kosaraju’s N/A 0.0033024s 0.0557278s
All edges N/A N/A 0.0025688s

Sequence edges N/A N/A 0.000298s
Operation
sequence N/A N/A 0.0001541s

Table 1: Runtime results for the different critical constraints finding
algorithm over 3 sets of jobs.

5.3 Number of checkpoints in industry schedules

We also examined the number of checkpoints that naturally
appears in real industry scheduling problems with schedules
generated by the scheduler described in [2; 11]. We ran our
algorithms on three groups of 150 schedules, each consist-
ing of 500 jobs and 3 machines with one of them having one
re-entry. The three groups are the results for the same set of
150 benchmarks with different parameters given to the solver.
The first one (A) is a result of the solver favoring productivity
over flexibility, in set B flexibility and productivity were bal-
anced, and in set C flexibility was favored over productivity.
However, the parameters for sets B and C ended up yielding
the same results, making sets B and C identical.

We first examine the number of checkpoints for set A. We
found 109 of the schedules (∼72.7%) to not have any check-
points at all. 37 of them (∼24.3%) had one checkpoint and
only 4 of them (∼2.7%) had two checkpoints. We then run
it for sets B and C. Here we find much greater variability.
While 26 of the schedules (∼17.3%) have no checkpoints at
all, 13 schedules had as many as 71 checkpoints (∼8.6%),
being the highest number of checkpoints we found. The rest
of the schedules had some number of checkpoints in between
as shown in 5.

We thus observe that schedules that are designed to be flex-
ible, will be more likely to have a high number of checkpoints
in them, while those designed for maximizing productivity,
will only have a few.

Figure 4: Number of checkpoints (x) and the number of schedules
with this amount of checkpoints (y) in set B

Figure 5: Number of checkpoints (x) and the number of schedules
with this amount of checkpoints (y) in set A

6 Responsible Research
In this section, we will discuss the ethical aspects of the study,
how it can affect people and how our results can be repro-
duced.

First, we think about whether this research can harm some-
one or discriminate against some group. Since we only deal
with efficiency and flexibility of schedules, it is unlikely any
harm can be done by using the findings of this paper.

We then look at the reproducibility parts of the research.
Since all processes described here are deterministic, they
can be reproduced exactly. Implementing the algorithms de-
scribed in the paper will yield the same results we got for a
given schedule. The only variation we expect is in running
time, which is highly dependent on the machine. We, there-
fore, mention the hardware we used for our experiments

7 Future Work
In this section, we are going to discuss potential future work
to be done on the subject, and how this research can be ex-
tended. While we believe there is not much to improve from
our solutions for deterministically finding critical constraints
in terms of time complexity, we do think more research can



be done as to how this can be used for improving the func-
tioning of and the process executed by FMSs. We believe
working with real-life examples of FMSs could reveal inter-
esting ways to use these previously described checkpoints. In
the paper, we describe how to find checkpoints in the pro-
cess that are the result of the sequence picked by the solver,
as well as how we can force the solver for specific check-
points. In reality, a more balanced approach might be viable.
One that does not deviate much from the ideal schedule but
also roughly adheres to desired checkpoints. Finally, the pa-
per suggests two different relationship types between critical
constraints, and while it seems like they give us important in-
formation about how different constraints interact with each
other, we did not have the chance to dive into possible ways
to exploit these relationships for better performing or more
flexible schedule.

8 Conclusions
We have shown that we can isolate all constraints of a sched-
ule to critical and non-critical quickly enough to be run on-
line. We also describe what type of constraints could be
critical, and how finding a group of non-critical constraints
creates a point of infinite temporal flexibility in the sched-
ule. Points of infinite temporal flexibility can be forced into a
schedule by altering its sequence and used to create check-
points where any measure can be applied to the scheduler
or the process without being subjected to time constraints.
Pairs of constraints can be classified together to be tightly
or loosely bound, describing whether they can have an accu-
mulating contribution to breaking a schedule(without any of
them individually breaking a schedule).

References
[1] J. P. Shewchuk and C. L. Moodie, “Definition and clas-

sification of manufacturing flexibility types and mea-
sures,” The International Journal of Flexible Manufac-
turing Systems, pp. 325–349, 1998.

[2] J. V. Pinxten, U. Waqas, M. Geilen, T. Basten, and
L. Somers, “Online scheduling of 2-re-entrant flexible
manufacturing systems.” ACM Transactions on Embed-
ded Computing Systems, 2017.

[3] E. D. Demaine and C. E. Leiserson, Introduction to Al-
gorithms, 2015.

[4] D. B. Johnson, “Finding all the elementary circuits
of a directed graph,” SIAM Journal on Computing,
vol. 4, no. 1, pp. 77–84, 1975. [Online]. Available:
https://doi.org/10.1137/0204007

[5] J. L. Szwarcfiter and P. E. Lauer, “A search strategy for
the elementary cycles of a directed graph,” BIT, vol. 16,
no. 2, pp. 192–204, 1976.

[6] G. Loizou and P. Thanisch, “Enumerating the cycles of
a digraph: A new preprocessing strategy,” Information
Sciences, vol. 27, no. 3, pp. 163–182, 1982.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/0020025582900238

[7] M. Sharir, “A strong-connectivity algorithm and
its applications in data flow analysis,” Computers
Mathematics with Applications, vol. 7, no. 1, pp. 67–72,
1981. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0898122181900080

[8] R. Tarjan, “Depth-first search and linear graph
algorithms,” SIAM Journal on Computing, vol. 1,
no. 2, pp. 146–160, 1972. [Online]. Available:
https://doi.org/10.1137/0201010

[9] A. Arman and S. Tsaturian, “The maximum number
of cycles in a graph with fixed number of edges,”
The Electronic Journal of Combinatorics, vol. 26,
no. 4, 2019. [Online]. Available: https://doi.org/10.
1137/0204007

[10] NetworkX developers, “Networkx analysis in python,”
last accessed 1 June 2022. [Online]. Available:
https://networkx.org/

[11] R. van der Tempel, J. van Pinxten, M. Geilen, and
U. Waqas, “A heuristic for variable re-entrant schedul-
ing problems.” ES reports, vol. 2018, no. 2, pp. 336–
341, 2018.

https://doi.org/10.1137/0204007
https://www.sciencedirect.com/science/article/pii/0020025582900238
https://www.sciencedirect.com/science/article/pii/0020025582900238
https://www.sciencedirect.com/science/article/pii/0898122181900080
https://www.sciencedirect.com/science/article/pii/0898122181900080
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0204007
https://doi.org/10.1137/0204007
https://networkx.org/


A results
A.1 Kosaraju’s Algorithm

Algorithm 1 extract critical edges from SCCs

1: for every edge in the graph do
2: source = Source node of the edge
3: destination = Destination node of the edge
4: if SCC of source = SCC of destination then
5: Add edge to list of critical edges
6: return critical edges

A.2 Multi Bellman-Ford

Algorithm 2 Multi Bellman-Ford

1: procedure GETBIGNUMBER
2: bigNumber ← 0
3: for every edge in the graph do
4: bigNumber ← bigNumber+ Absolute value of

edge weight
5: return bigNumber + 1

6: procedure SINGLE BELLMAN-FORD VARIATION
7: distances = bigNumber, bigNumber, . . .
8: for every edge in the graph do
9: destination = Destination node of the edge

10: if SCC of source = SCC of destination then
11: Add edge to list of critical edges
12: return critical edges

A.3 Connected edges

Algorithm 3 Connected edges

1: procedure FIND CONNECTED EDGES
2: unvisited = 0 & dead = 1 & cycled = 2
3: nodeStatus← unvisited, unvisited, . . .
4: visited← False, False, . . .
5: edges←Empty Set
6: s←source of edge
7: d←destination of edge
8: return FINDCONNECTEDEDGESHELPER(dest =

s, prev = s, current = d)
9: procedure FIND CONNECTED EDGES HELPER

10: if visited[current] == False then
11: return unvisited
12: visited[current]← True
13: if nodeStatus[current] == cycled ∨ current ==

destination then
14: nodeStatus[current]← cycled
15: else if nodeStatus[current] == dead ∨

#outgoingEdges(current) == 0 then
16: nodeStatus[current]← dead
17: else MAX(
18: for every outgoing edge of current do
19: call function recursively with the nodes of the

edge being the new prev and current
)

20: visited[current]← unvisited
21: if nodeStatus[current] == cycled then
22: add the edge going from prev to current to set of

edges
23: return nodeStatus[current]



A.4 Iterate all edges

Algorithm 4 Iterate all edges

1: procedure ITERATE ALL EDGES
2: for every edge e in the graph do
3: if the operation a of the source of e is the last one

on the re-entrant machine AND the operation b of the
destination of e is the first one on the re-entrant machine
AND the job k of b is one bigger than the job j of a then

4: Add edge e to list of critical edges
5: for every operation in job j do
6: Add the edge going from (j, op) to (j +

1, op) to critical edges
7: return criticalEdges

A.5 Iterate sequence

Algorithm 5 Iterate sequence

1: procedure ITERATE SEQUENCE
2: for every operation op in the sequence do
3: if this is the first operation then
4: skip to next iteration
5: if the previous operation a is the last operation on

the re-entrant machine AND the current operation b is the
first one on the re-entrant machine AND the job k of b is
one bigger than the job j of a then

6: Add the edge from the previous operation to
the current operation to list of critical edges

7: for every operation in job j do
8: Add the edge going from (j, op) to (j +

1, op) to critical edges
9: return criticalEdges



B schedule example


	Introduction
	Problem description
	Related work
	Solution approach
	Finding critical edges using graph algorithms
	Detecting non-participating constraints by their characteristics in FMSs.
	Forcing non-participating constraints on schedules
	Finding relationships between critical constraints

	Experimental Setup and Results
	Validity
	Running time
	Number of checkpoints in industry schedules

	Responsible Research
	Future Work
	Conclusions
	results
	Kosaraju's Algorithm
	Multi Bellman-Ford
	Connected edges
	Iterate all edges
	Iterate sequence

	schedule example

