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On the Sensitivity to Height and Motion of Bistatic
SAR Interferometry: A Spectral View

Andreas Theodosiou and Paco López-Dekker , Senior Member, IEEE

Abstract— Assessing the performance of interferometers and
processing interferograms require accurate knowledge of the tem-
poral lag, sensitivity, and spectral shift. While these parameters
are well-defined for conventional interferometric configurations,
their definition becomes opaque for complex configurations, such
as bistatic systems with formation-flying satellites. According to
the principle of diffraction tomography, each instrument samples
a distinct region of the scattering surface’s Fourier domain.
Using this principle, we introduce a wavenumber-domain method
for calculating the temporal lag, spectral shift, and sensitivity
to height of synthetic-aperture radar (SAR) interferometers.
The method calculates interferometric parameters by aligning
the ground-projected wavenumber support of the SAR images
forming the interferogram. Although the wavenumber-support
method agrees with the conventional geometric formulations
of the temporal lag and sensitivity in geometrically simple
cases, the two methods diverge in more complex geome-
tries. We show that when the two SAR satellites fly in
a close-formation or have lines of sight that are squinted
with respect to the zero-Doppler direction, then the geomet-
ric formulations are inadequate and the wavenumber-support
method is needed to accurately estimate the interferometric
parameters.

Index Terms— Bistatic synthetic-aperture radar (SAR), bistatic
SAR interferometry, diffraction tomography, formation flying,
InSAR, interferometry, line of sight, multistatic SAR, SAR,
spectral support, squint, squinted geometry.

I. INTRODUCTION

WHAT is the temporal lag and the height sensitivity of a
synthetic-aperture radar (SAR) interferometer? Scien-

tists familiar with the instrument would consider the answer
obvious. When the instrument’s look direction is perpendicular
to the flight direction, these two parameters are proportional
to the projections of the antennas’ physical separation in the
relevant directions. For example, an along-track interferometer
(ATI) with two antennas on a single platform has a temporal
lag directly proportional to the along-track separation [1],
[2], [3]. Similarly, a cross-track interferometer (XTI) with
sensors that are only separated in the plane normal to the
flight direction has a sensitivity proportional to the baseline of
the two antennas perpendicular to the line of sight [4], [5].
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The link between interferometric parameters, namely height
sensitivity and temporal lag, and geometric parameters stems
from a geometric approach to interferometry. The geometric
approach relates the phase of an interferogram to, in the case
of XTI, the elevation of the surface, and the case of ATI to
the radial motion of the surface. This approach hinges on the
assumption that the SAR signal is monochromatic. In other
words, it assumes that the signal bandwidth in range and
azimuth is small enough to be considered negligible. The
monochromatic assumption hides the role that the ground
reflectivity spectrum plays in interferometry. Gatelli explained
the implications of considering the ground-range wavenumber
shift for a conventional XTI [6]. One that has separation
only perpendicular to the line of sight. This has led to the
introduction of spectral shift filtering in the processing of
interferograms [6], [7], [8].

Nevertheless, the monochromatic approach remains the pri-
mary view of interferometry, if for no other reason than that
it is intuitive. The approach and consequently the geomet-
ric methods of calculating interferometric parameters, while
intuitive, break down in more complex geometries. Consider
an interferometer operating bistatically with a squinted line
of sight, for example, a system similar to TanDEM-X [9] or
Harmony [10]. The time taken for the lagging phase center
to see a given point on the surface with the same viewing
geometry as the leading phase center is not a the function of
the along-track separation alone. Hence, the temporal lag is
not equal to half the tangential separation of the phase centers,
as is the case for bistatic interferometers with a line of sight
perpendicular to the flight direction.

Likewise, since the bistatic lines of sight do not share a
common radial–normal plane, they first need to be aligned
before calculating the perpendicular baseline, which drives the
geometric expression of the sensitivity. However, the lines of
sight of the two sensors do not necessarily align during the illu-
mination time of a given point, since the transmitter–receiver
pairs have a bistatic line of sight with a common ending point
but different starting points and different directions. Thus,
applying the geometric method is not possible.

Employing the monostatic equivalent (ME) of each
transmitter–receiver pair [11] provides a workaround to this
problem and allows one to geometrically compute the inter-
ferometric baselines. Nevertheless, the location of the ME
of a system that has a 3-D separation and squinted line of
sight becomes complicated. A different ME exists for each
combination of slow time and look angle, as Fig. 1 shows.

In this article, we present a more accurate method for
solving this problem. The fundamental relation of diffraction
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Fig. 1. Locations of the MEs for a given slow time and two different look
angles. As the look angle increases, the location of the ME shifts along the
line segment connecting the transmitter to the receiver. Thus, the ME system
does not have a single location for a given slow time, as a true monostatic
system would.

tomography states that the field scattered by an object is
directly proportional to the object function’s Fourier transform
at the wavenumbers that correspond to the incident and scat-
tered wave vectors. Building on this idea, we propose using
the wavenumber support of the two SAR images to calculate
these interferometric parameters. In Sections II–IV, we show
that by finding the temporal and spectral shifts that align the
wavenumber supports of the two sensors, we can calculate the
temporal lag and the interferometer sensitivity. Our technique
applies to all interferometers, monostatic and bistatic, with
temporally varying or fixed separations, regardless of squint.

II. SPECTRAL APPROACH TO SAR INTERFEROMETRY

A. Fundamental Relation of Diffraction Tomography
Before delving into interferometry, we will first motivate

our wavenumber-domain approach by linking the fundamental
principle of diffraction tomography to the region of support,
that is, the subset of the image domain that maps to nonzero
values, of a SAR image. Consider an instrument illuminating
an object, with complex reflectivity o(rs) where rs represents
the position vector, with a monochromatic electromagnetic
wave. A second the instrument, receives the scattered elec-
tromagnetic wave. Assuming that the object is homogeneous,
that the Born approximation is valid, and neglecting geometric
attenuation, the received field is [12]

u(rT , rR) =

∫∫∫
V

o
(
r ′

s
)
e− jk0(RT (rT ,r ′

s)+RR(rR,r ′
s)) dr ′

s (1)

where rT , rR are the positions of the transmitter and the
receiver, respectively, RT , RR are the distances to the object
from the transmitter and the receiver, respectively, and the
integration is taken over the volume of the object.

We now consider a small neighborhood around the object
at r0 and carry out the first-order Taylor expansion of the
distances for a given position of the transmitter and the
receiver. The expansion yields the well-known plane wave
approximation of spherical waves

Rn(rn, rs) ≈ Rn(r0)+ ∇ Rn(r0) · (rs − r0) (2)

where the subscript n can be either T or R. ∇ Rn is the
gradient of the slant range and since Rn represents the distance
along a spherical wave, the gradient points in the line of
sight direction. For a typical SAR satellite in a low-Earth
orbit, such as Sentinel-1, with altitude 693 km, a look angle
of 26◦, assuming a rectilinear geometry, and setting rs =

(10 m, 2.5 m, 0 m)T to correspond to half a resolution cell, the
relative error between the expansion in (2) and the true slant
range is 8.8×10−9 %. Hence, from this point on, we proceed
with our analysis using the plane wave approximation.

Substituting (2) into (1), and moving the constant phase
terms out of the integral, we note that the volume inte-
gral becomes the 3-D Fourier transform of the scattering
density õ [13]

u(rT , rR) ≈ õ(kT + kR) (3)

where kT = k0∇ RT (r0) and kR = k0∇ RR(r0) are the
transmitter and receiver wave vectors, respectively, and we
have neglected the leading phase term. This is the fundamental
principle of diffraction tomography [13], [14]. Equation (3)
states that the received field is proportional to the Fourier
transform of the illuminated object at the components of
the total wave vector, kT + kR. The result demonstrates
that the instrument samples the Fourier space of the object’s
reflectivity at one point in the spatial frequency domain [15].
The line of sight of the instrument and the carrier wavelength
determine the point in the spatial frequency domain at which
the object is sampled. By varying the viewing geometry, for
example, moving the location of the transmitter and receiver,
or changing the look and squint angles of the antennas, the
instrument can sample different points of the Fourier domain.

A SAR samples the scattered electromagnetic field with a
certain impulse response. Thus, the signal of the SAR image
becomes [4]

u(x, η) = e− jk0 R0( f ∗ χ)(x, η) (4)

where ∗ denotes the linear 2-D convolution, R0 = RT (r0) +

RR(r0), and we have used the range coordinate, η, and the
azimuth coordinate, x , as the image coordinates, and the
elevation, ζ , which is perpendicular to both as the third axis.
In this expression, we have assumed that setting the azimuth
position sets the positions of the receiver and the transmitter.
χ(x, η) is the system impulse response, and we have defined
the following symbol for brevity:

f (x, η) = e− j k·rs

∫
Z

o(rs) dζ. (5)

The plane wave exponential has been moved out of the
integral because any component of rs along the elevation
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direction will, by definition, be perpendicular to the wave
vector. Additionally, the system impulse response does not
depend on the elevation, since it is perpendicular to the plane
of the SAR image. Consequently, the integral with respect to
elevation only contains the object’s reflectivity. It represents
the projection of the scattering object onto the range and
azimuth axes. Thus, each sample in a SAR image is a single
tomographic projection of the scattering object, shifted by
the plane wave exponential and filtered by the instrument’s
impulse response [4].

SARs do not transmit and receive monochromatic waves.
On the contrary, they use chirp waveforms that have a certain
bandwidth. Therefore, with each pulse, the radar samples the
Fourier domain of the object along the line k0( fr )(∇ RT (r0)+

∇ RR(r0)), where k0( fr ) is the instantaneous wavenumber that
corresponds to the frequency fr of the chirp signal. Acquiring
a second SAR image, from a different position, produces
a different tomographic projection of the scattering object.
Cross-track interferometry uses these two different projections
of the scattering object to infer the relative height of the
scatterer.

B. Mathematical Derivation of the Spectral Shift in Two
Dimensions

The fundamental principle of the method discussed in this
article is that only the energy that comes from the wavenum-
bers that coincide between the two images contributes to the
interferometric signal. In cases where the wavenumber sup-
ports of the two images are disjoint, the interferometric signal
drops to zero. Therefore, forming an interferogram aligns the
wavenumber supports of the two images, and the temporal
lag and wavenumber shifts correspond to the moment where
the wavenumber supports of the two images are aligned. Prati
and Rocca [8] first proved this for the range wavenumbers and
for an interferometer that has only a perpendicular separation.
Gatelli et al. [6] expanded on the spectral shift due to different
look angles and on its exploitation for the improvement of
interferometric techniques. The idea that only the overlapping
parts of the spectra in two dimensions, in range and azimuth,
contribute to interferometric information has also been used
in [16] to correct for the large angle between acquisitions
coming from satellites that followed crossing orbits. In this
section, we provide a derivation of this principle in two dimen-
sions, range, and azimuth, for a bistatic interferometer with an
arbitrary separation between the two SARs that compose it.

Consider an XTI where two bistatic SARs illuminate a
region on the surface as shown in Fig. 2. The first pair of
instruments illuminate the surface with look angles θ1T , θ1R

and squints ψ1T , ψ1R , while the second pair has look angles
θ2T , θ2R and squints ψ2T , ψ2R , where subscripts T and R
refer to the transmitter and the receiver, respectively. The
azimuth direction is x and the ground range direction is y; the
two-way slant range to the center of the resolution cell is R0.
The signal representing the processed image of the ith SAR
for i ∈ {1, 2} is

ui (x, y) = e− jk0 R0( fi ∗ χ)(x, y) (6)

where χ(x, y) denotes the system impulse response in terms
of azimuth and ground range. We introduce the following

symbols in the interest of brevity:

fi (x, y) = s(x, y)e− j ki ·rs (7)

rs = (x, y, z(x, y))T (8)

kiT = k0(sinψiT , cosψiT sin θiT ,− cosψiT cos θiT )
T

(9)

kiR = k0(sinψiR , cosψiR sin θiR ,− cosψiR cos θiR )
T

(10)
ki = kiT + kiR (11)

where ki is the ith bistatic wave vector, and we have assumed
that the surface scattering described by the reflectivity s(x, y)
is coming from the surface described by z(x, y). The carrier
wavenumber, k0 = 2π/λ0, depends on the carrier wavelength
λ0 of the instrument, which we assume is common between
the two sensors. The wave vectors kiT and kiR are equivalent
to those in Section II-A, but here we have defined them in
terms of the look and squint angles of the instruments instead
of the gradients of the slant ranges. In monostatic operation,
the wave vector ki reduces to 2kiT , and the modulus is two
times the carrier wavenumber. The modulus of the bistatic
wave vector is smaller than 2k0.

We express a single realization of an interferogram as

V (x, y) = u1(x, y)u2(x, y)∗. (12)

The Fourier transform of the interferogram is

Ṽ (k ′

x , k ′

y) = F{u1(x, y)u2(x, y)∗}(kx , ky)

= (ũ1 ⋆ ũ2)(kx , ky)

=

∫ ∫
ũ1(kx , ky)

∗
ũ2(kx + k ′

x , ky + k ′

y) dkx dky

(13)

where ⋆ denotes the cross correlation operation and the Fourier
transform of the image (6) is given by

ũi (kx , ky) = f̃ i (kx , ky)χ̃(kx , ky). (14)

Assuming that the vertical component of rs is constant with x
and y allow us to express the Fourier transform of the image
as the shifted reflectivity filtered by the instrument frequency
response in the wavenumber domain

ũi (kx , ky) = s̃(kx + ki x , ky + ki y)e
− j ki z zχ̃(kx , ky) (15)

where the notation ki j denotes the jth component of wave
vector ki and j ∈ {x, y, z}. Equation (15) states that each
sensor samples the surface reflectivity across a band of range
and azimuth wavenumbers. Since the surface reflectivity is not
bandlimited, the bandwidth of the image is determined by the
system frequency response. Each ground-range and azimuth
wavenumber at which the sensor samples the reflectivity is
shifted by ki y and ki x , respectively. Thus, each instrument
captures a different wavenumber band of the surface reflec-
tivity. The band that each instrument captures depends on the
wave vector of the instrument.

Substituting (15) into (13) yields the linear cross correlation
of the two image spectra

Ṽ (kx , ky) =

∫ ∫
s̃(k ′

x + k1x , k ′

y + k1 y)
∗

· s̃(k ′

x + k2x + kx , k ′

y + k2 y + ky)
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Fig. 2. Illustration of the two SAR instruments sampling ground-projected range and azimuth wavenumbers of a given resolution cell. ki is the surface-projected
wavenumber vector that the i th instrument samples. (a) Beginning of an acquisition. (b) End of an acquisition.

· e j1kz zχ̃
(
k ′

x , k ′

y

)∗

· χ̃
(
k ′

x + kx , k ′

y + ky
)

dk ′

x dk ′

y (16)

where 1kz = k1z − k2z is the z component of the wave vector
difference.

We assume that the surface reflectivity, s(x, y), is a circular
complex stochastic process. Thus, as shown in the Appendix,
the Fourier transform of the surface reflectivity, s̃(kx , ky),
is uncorrelated

E{s̃(kx , ky)s̃(κx , κy)
∗
} = R̃s(kx , ky)δ(kx − κx , ky − κy) (17)

where R̃s(kx , ky) is the Fourier transform of the surface
reflectivity’s spatial correlation. For a wide-sense stationary
process R̃s(kx , ky) is the power spectral density of the surface
reflectivity, according to the Wiener–Khinchin theorem. The
Dirac delta function in (17) represents an idealized case, which
follows from the assumption that at the scales of interest,
the autocorrelation length of the surface roughness is short.
A practical surface can be modeled by replacing the Dirac
delta with a finite-bandwidth function, such as a Gaussian
kernel, to model the distribution of the power spectral density
over a band of wavenumbers.

We are interested in the expected interferogram, so we
take the expectation over the surface ensemble of (16) and
apply (17)

Ĩ (kx , ky) =

∫ ∫
R̃s

(
k ′

x + k1x , k ′

y + k1 y
)

· δ(kx +1kx , ky +1ky)

· e j1kz zχ̃
(
k ′

x , ky
′
)∗

· χ̃
(
k ′

x + kx , k ′

y + ky
)

dk ′

x dk ′

y (18)

where 1kx = k1x − k2x , and 1ky = k1 y − k2 y . The Dirac
delta function is not a function of the integration variables,
so we can move it out of the integral. We describe Ĩ as the
product of the delta function and the cross correlation of the
frequency response with itself filtered by the power spectral
density of the surface reflectivity

Ĩ (kx , ky) = δ(kx +1kx , ky +1ky)e j1kz z

×
(

R̃′

s X ⋆ X
)
(kx , ky) (19)

where R̃′
s is the shifted Fourier transform of the spatial

correlation of the surface reflectivity R̃′
s(kx , ky) = R̃s(kx +

k1x , ky + k1 y). Taking the inverse Fourier transform of (19)
yields

I (x, y) = F−1
{ Ĩ (kx , ky)}(x, y)

= e j1kz z K̃ (1kx ,1ky)e j (1kx x+1ky y) (20)

where K̃ (kx , ky) = (R̃′
s χ̃ ⋆ χ̃)(kx , ky). We can readily inter-

pret (20). The expected interferogram is a complex sinusoid
in the spatial domain, with phase proportional to the height of
the surface. The amplitude is the wavenumber-domain cross
correlation of the product R̃′

s χ̃ with the system frequency
response, evaluated at the shift between the two images. The
product R̃′

s χ̃ is the frequency response of the system filtered
by the shifted power spectral density of the reflectivity.
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Fig. 3. Time–frequency and the corresponding wavenumber region of support of a resolution cell for (a) monostatic and (b) bistatic interferometers. We note
that the modulus of the bistatic wave vectors is smaller than that of the monostatic wave vectors for the same range frequency. We illustrate the modulus of
the bistatic wave vector at the minimum range frequency in both support diagrams. The difference in the moduli is exaggerated in the diagram for illustration.
Furthermore, the aperture time that we consider for these diagrams is larger than what is typically used in real-world systems to illustrate the shape of the
region of support. In a real-world radar, the wavenumber region of support in (a) would look rectangular, and that in (b) trapezoidal, as they would only be
a slice of illustrated regions.

C. Wavenumber Support
We express the wavenumber support of a SAR image as

a function of slow time, t , and range frequency fr . The
wavenumbers forming the support of a resolution cell located
at the transmitter look angle θl satisfy

ki (t, fr ; θl) = k0( fr )(l̂Ti (t)+ l̂ Ri (t)) (21)

where k0( fr ) = 2π fr/c0 is the wavenumber magnitude, l̂Ti is
the unit vector in the direction of the transmitter’s line of sight,
and l̂ Ri is the unit vector in the direction of the receiver’s line
of sight. The line of sight of the ith sensor is

l̂ Si (t) =
rSi (t)− r p

∥rSi (t)− r p∥
(22)

where S is either T for the transmitter line of sight, or R for
the receiver line of sight, and r p is the position vector of the
resolution cell. The time variable for a given resolution cell
varies from τc − τl/2 to τc + τl/2, where τc is the beam center
time and τl is the illumination duration. The range frequency
is centered around the carrier frequency, fc, and its bounds
are given by the bandwidth of the transmitted pulse.

Equation (21) provides insights into the relationship
between the signal space and the observation space. For a
given resolution cell, slow time and range frequency parame-
terize the signal space, while in the observation space range
and azimuth wavenumbers are the parameters. Assume the
conventional viewing geometry of a monostatic SAR that is
looking perpendicular to the azimuth direction. For a given
slow time, the instrument samples the resolution cell with a
band of frequencies determined by the transmitted pulse. The
sampling of the resolution cell repeats every pulse repetition
interval during the illumination time. The locus of slow time
and range frequency that make up the samples of the resolution
cell are shown on the left panel of Fig. 3(a). The vertical extent
of the region is the illumination time of the instrument, and
the width is the pulse bandwidth.

The support of the signal in terms of slow time and
range frequency maps to wavenumbers projected on the plane

tangent to the surface at the resolution cell according to (21).
The region of support of a resolution cell in terms of wavenum-
bers is shown in the right panel of Fig. 3(a). The diagram
has been produced by exaggerating the illumination time to
highlight the curvature of the region of support as time moves
away from the beam center time.

We now move on to a bistatic case with a common transmit-
ter. Assume that the transmitter maintains the same viewing
geometry and transmits the same pulse as in the previous case.
The receiver lags the transmitter along the same orbital plane.
As a result, l̂ R is squinted forward with respect to l̂T . Since the
transmitted pulse and the illumination time have not changed,
the time-frequency support of the signal is the same as before.
However, the different viewing geometry changes the mapping
to the wavenumber domain. The squint of the bistatic line of
sight means that for a fixed slow time, as the range frequency
is sweeping, both the range and the azimuth wavenumbers
are changing, as Fig. 3(b) shows. Additionally, for a fixed
range frequency the line of sight of the instrument is always
squinted, which breaks the symmetry of the wavenumber
support about kx . The coupling of the range and azimuth
wavenumbers means that there are no longer separable in
terms of time and range frequency. The isolines in the left
panel of Fig. 3(b) show that a fixed value of range or azimuth
wavenumbers traverses both time and frequency.

D. Temporal Lag and Spectral Shift
We are interested in the difference between the supports of

two SAR images acquired by two instruments with a physical
separation 1r(t). We express the wavenumbers in the support
of the first sensor by setting i = 1 in (21), and define the
support of the second sensor as

k2(t, fr ; θl) = k0( fr )
(
l̂T1(t)+ l̂ R1(t)

+1lT (t)+1lR(t)
)

(23)

where

1lS(t) =
rS1(t)+1rS(t)− r p

∥rS1(t)+1rS(t)− r p∥
− l̂ S1(t) (24)
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is the difference between the line of sight vectors due to the
relative position of the second instrument with respect to the
first. The first-order Taylor expansion of (23) about (τc, fc) is

k2(t, fr ; θl) ≈ (k0 +1k)(l̂T1(τc)+ l̂ R1(τc)+1lT (τc)

+1lR(τc))+ k0
∂

∂t
(l̂T1 + l̂ R1

+1lT +1lR)(τc)1t (25)
= k1(t, fr ; θl)+ (k0 +1k)1l(τc)

+ k0
∂1l
∂t

(τc)1t (26)

where we have used k0 = k0( fc), 1k = (∂k0/∂ fr )( fc)( fr −

fc), 1t = t − τc, 1l = 1lT (τc) + 1lR(τc) for brevity, and
we have neglected 1 f1t cross terms.

To align the two images we fix the support of the first image
at the beam crossing time and at the center frequency and solve
for the (1t,1k) where the second support intersects the first

k1(τc, fc; θl) = k2(t, fr ; θl). (27)

Simplifying (27) leads to

1k(l +1l)+ k0
∂(l +1l)

∂t
(τc)1t = −k01l(τc) (28)

where l = l̂T1(τc)+ l̂ R1(τc).
Until now, no assumption has been made on the reference

frame of vectors k1 and k2. Recalling Section II-B, the infor-
mation in the interferogram comes from the surface-projected
wavenumbers where the regions of support of the two images
coincide. Thus, to relate the difference in the support to the
temporal lag and spectral shift, we need to solve (27) in a
reference frame where two of the basis vectors are aligned with
the ground range and azimuth directions. Equation (28) is an
overdetermined system of three equations and two unknowns.
However, we can remove one equation from the system
by projecting the wavenumbers on the plane tangent to the
surface. After coordinate transformation and projection, (27)
becomes

k1x y(τc, fc; θl) = k2x y(t, fr ; θl) (29)

where k1x y(τc, fc; θl) = 0k1(τc, fc; θl) and k2x y(t, fr ; θl) =

0k2(t, fr ; θl) and 0 is a matrix representing the surface
projection to the tangent plane of the resolution cell. Fig. 4
shows the tangent plane for a given point on the surface, the
two basis vectors along the plane and the basis vector normal
to the plane, and the wave vectors of two instruments and their
projections at the temporal lag and spectral shift where they
align.

We model the surface projection by

0 = QX x

(
I − n̂n̂T

)
(30)

where QX x is the direction cosine matrix from the reference
frame that the vectors are expressed into the local tangent
frame, and n̂ is the unit vector normal to the surface expressed
in the reference frame of the wavenumber vectors. We define
the local tangent plane with two basis vectors that lie within
the the plane, one aligned with the interferogram’s ground
range direction and one with the azimuth direction, and
complete it with n̂. The second term of (30) projects the vector
on the tangent plane, while the first term transforms the vector

Fig. 4. Plane tangent to a given point on the surface and the basis vectors
of the reference frame used to align the wavenumber support of the two
SAR systems. Two SAR satellites with different look angles and squints are
shown. The wave vectors of the first and second systems are shown in orange
and blue colors, respectively. For ease of illustration, the figure omits the
transmitting satellites and instead displays two monostatic satellites; thus the
bistatic wave vector reduces to ki = 2kiT . The concept remains the same for
bistatic systems. The surface-projected wave vectors of the two instruments,
k1x y and k2x y , at the moment of alignment, are shown on the tangent plane.
The circle at the midpoint of k1x y represents the point at which we fix the
support of the first acquisition when solving (29). The figure also illustrates
the component of the difference of the aligned wave vectors in the elevation
direction, 1kζ (1t,1 f ). The difference of these vectors drives the sensitivity
to the surface height.

to the local tangent frame. Hence, a vector multiplied by 0

defined in (30) will have a third component equal to zero.
Multiplying both sides of (28) by 0 yieldsk0(

∂(l +1l)
∂t

(τc))
x

(l +1l)x

k0(
∂(l +1l)

∂t
(τc))

y
(l +1l)y

(
1t
1k

)
= −k01l. (31)

Equation (31) provides an analytic solution to 1t and 1k,
and it is valid if 1t and 1k are sufficiently small for second-
and higher-order terms to be neglected. In cases where the
first-order expansion is invalid, we can compute the solution
to (27) numerically using an optimization method.

E. Height Sensitivity
After solving for the temporal and spectral shift according

to (31), the sensitivity can be computed from the difference of
the aligned wavenumber supports. The interferometric phase
of a resolution cell is

φ(1t,1 f ) = 1k(1t,1 f ) · ζ (32)

where ζ is the elevation vector and 1k(1t,1 f ) is the
difference of the aligned supports

1k(1t,1 f ) = k2(τ +1t, fc +1 f ; θl)− k1(τ, fc; θl).

(33)

Fig. 4 illustrates the supports of the aligned surface-projected
wavenumber supports. The orange line on the tangent plane
represents the surface projection of the first support k1x y at the
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beam crossing time τc. Examining the definition of the wave
vector in (21) reveals that by not fixing the range frequency
of the wave vector, k1x y becomes a line that is parallel to the
surface projection of the line of sight and passes through the
origin. At the solution of (29), the surface-projected support
of the second wave vector coincides in the Fourier space with
the surface-projected support of the first acquisition at the
beam crossing time and center frequency. While the surface
projections of the supports are equal to each other, their
components in the normal direction to the surface are different.
The dot product of this difference with the elevation gives rise
to the interferometric phase and drives the sensitivity.

In a SAR image, a scatterer is placed at the intersection of
the iso-range and iso-Doppler surfaces. In the monostatic case,
these reduce to the known iso-range sphere and iso-Doppler
cone. Generally, the range and Doppler surfaces are

R ellipsoid: R = ∥lT (t)∥ + ∥lR(t)∥ (34)

fD surface: fD =
1
λc

(
l̂T (t) · vT (t)+ l̂ R(t) · vR(t)

)
= ν̃c

(
l̂T0(t) · vT (t)+ l̂ R0(t) · vR(t)

+
r

∥lT0(t)+ r∥
· vt(t)

+
r

∥lR0(t)+ r∥
· vR(t)

)
≈ fD(r0)+ ν̃c r ·

(
vT (t)
∥lT0∥

+
vR(t)
∥lR0∥

)
(35)

where in the equation of the Doppler shift we have expressed
the scatterer location as the sum of a reference position and a
relative position r p = r0 + r and approximated ∥lT0(t) + r∥
and ∥lR0(t) + r∥ as ∥lT0∥ and ∥lR0∥ respectively. The locus
of points that satisfy conditions (34) and (35) is a line.
Conventionally, SAR images are focused at the zero-Doppler
location, that is, fD = 0. Thus, the solution lies on a line on
the surface of the range ellipsoid. All scatterers at the same
range and with the same zero-Doppler location are positioned
along this line, regardless of the incidence angle of their
location.

Cross-track interferometry (XTI) solves for the missing
third dimension by positioning a scatterer at a look angle on
the line of constant range and Doppler. After applying the
plane-wave approximation at the vicinity of the scatterer, the
curve along which the solution lies becomes a straight line.
XTI locates the scatterer along the fronts of the plane wave.
Hence, an interferometer is sensitive to the elevation along this
line, normal to the range and Doppler directions. The height
normal to the surface is related to the elevation

z(t) = ζ(t)ζ̂ · ẑ (36)

where ζ is orthogonal to both the iso-range lines and the iso-
Doppler lines

ζ = (l̂T + l̂ R)×

(
vT

∥lT ∥
+

vR

∥lR∥

)
(37)

and ζ̂ = ζ/∥ζ∥.
Taking the derivative of the interferometric phase (32)

with respect to height yields the sensitivity of the

TABLE I
PARAMETERS OF THE INTERFEROMETER USED IN

DIFFERENT SIMULATION SCENARIOS

interferometer to height

∂φ

∂z
= 1kζ (1t,1 f )

∂ζ

∂z
(38)

where 1kζ (1t,1 f ) is the ζ component of the aligned support
difference and from (36), we can express the derivative of the
elevation with respect to height as 1/ζ̂ · ẑ. Thus, the sensitivity
is the difference between the aligned supports, in the elevation
direction, inverted to the vertical direction.

III. SIMULATIONS AND RESULTS

A. Simulations

We simulate three different interferometers. In all three, the
receiving SAR satellites are flying in a Helix formation [17].
The first has a tangential and radial separation between the
two sensors, and we simulate both monostatic and bistatic
operations with a common transmitter. The two antennas point
in the zero-Doppler direction. The second also looks in the
zero-Doppler direction, but only has a normal separation and
operates monostatically. Thus, the effective temporal lag is 0 s.
The third is a system inspired by Harmony and consists of
three SAR satellites: an illuminator and two formation-flying
receivers, that lag the illuminator by 350 km [18]. The Helix
formation combines radial, normal, and tangential separations
that vary sinusoidally along the orbit. Due to the bistatic
operation, the two receivers are looking forward, that is, they
have a squint, with respect to the zero-Doppler direction.
Table I lists the parameters of the three simulation scenarios,
where a1e and a1� are the magnitudes of the relative
eccentricity and relative inclination vectors of the formation,
as defined in [17], and both vectors have a phase of −π/2.
Fig. 5 illustrates the satellite configurations of the three cases.

The first two scenarios use a formation that models a pure
ATI and a pure XTI, respectively. In the first case, we expect
the temporal lag calculated using the wavenumber method to
match the along-track physical separation between the two
formation satellites. Similarly, we expect the sensitivity of the
XTI to match the sensitivity calculated from the conventional
equation in the second case. We simulate the second case in a
flat-Earth frame to eliminate the effect of the Earth’s rotation
and curvature. In the other cases, we carry out the simulations
in an Earth-centered The earth-fixed frame before transforming
to a local-tangent local-normal frame as discussed in (30).

The last scenario poses challenges, as it cannot be accu-
rately modeled with conventional geometric approaches. The
combination of bistatic operation and a squinted line of sight
results in under or overestimating the temporal lag if only
the physical separation is used. Locating the shift needed for
the lines of sight of the two receivers to align yields a more
accurate estimate, but the bistatic operation means that the two
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Fig. 5. Illustration of the three different satellite configurations used for the simulation experiments. (a) First case, with a tangential and radial component
that varies with time. (b) Second case, with only a normal component that varies with time. (c) Third case, with separations in all three directions varying
with time.

receivers do not have a single line of sight between them and
the surface.

Using the ME can offer a way out, but the questions of
where to place the equivalent system and how to convert the
along-track and perpendicular baselines of the formation to
those of the equivalent system is not trivial. Our numerical
experiments have shown that using the geometric method of
aligning the monostatically equivalent lines of sight of the
two systems approach the results of the wavenumber method
when the ME system is placed at the intersection of the bistatic
line of sight and the line segment between the transmitter and
the receiver. Hence, a unique ME exists for each combination
of incidence angle and slow time, as Fig. 1 illustrates. The
geometric method is explained in detail in the appendix.

B. Results
In this section, we present the temporal lag and sensitivity to

height of three different interferometric configurations based
on computational simulations. Fig. 6 shows the temporal lag of
a Helix interferometer with only an a1e component (case 1).
This means that the along-track separation of the interferom-
eter varies sinusoidally along the orbit with an amplitude of
2a1e [17]. The temporal lag of a monostatic interferome-
ter that looks perpendicular to the flight direction is equal
to the along-track separation divided by the flight velocity.
If the interferometer operates bistatically, then the along-track
baseline halves. The along-track baseline, calculated using the
wavenumber method of (31), matches the expected result.

Fig. 7 illustrates the sensitivity to height of a Helix forma-
tion that has a separation only in the normal direction (case 2).
The sensitivity is calculated as follows.

1) Find the temporal lag and a frequency shift given
by (31).

2) Compute the spectral support of the first sensor at the
beam crossing time and the center frequency. Compute
the spectral support of the second sensor at the shifts
found in the previous step.

3) Calculate the sensitivity using (38).
The sensitivity of a monostatic XTI with an unsquinted line
of sight is described by the well-known expression in the
literature [4], [5]. The right panel in Fig. 7 shows the relative
error between the sensitivity calculated using the method

Fig. 6. Temporal lag of case number 1 in Table I. The left panel shows
the temporal lag of a monostatic interferometer and the right panel that of a
bistatic interferometer.

proposed in this article and the classical expression of the
interferometric sensitivity.

Moving on to a more complex geometry, Fig. 8 shows the
temporal lag of Helix interferometer with a1e = 125 m and
a1� = 650 m (case 3). In this case, two factors complicate
the geometry.

1) The bistatic operation of the receivers with an illumina-
tor that is significantly ahead of the Helix formation.

2) The significant line-of-sight squint of the receiving
instruments that is needed to follow the transmitter’s
beam.

We compare the temporal lag obtained using the wavenumber
method to the temporal lag calculated using the geometric
method of finding the along-track shift that aligns the lines of
sight of the monostatic equivalents. The absolute error between
the two methods peaks at 0.40 ms.

The sensitivity to height of the configuration is shown
in the left panel of Fig. 9. The right panel displays the
relative difference between the spectrally derived sensitivity
and the sensitivity calculated using the ME method explained
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Fig. 7. Formation with a 650 m ascending node difference. Left panel:
The sensitivity to height. Right panel: The relative error of the sensitivity
calculated using the wavenumber method with respect to the conventional
sensitivity expression.

Fig. 8. Formation with a 650 m ascending node difference and a 125 m radial
difference. Left panel: The temporal lag using the wavenumber method. Right
panel: The absolute error between the temporal lag calculated spectrally and
the temporal lag calculated using the geometric method.

in the Appendix. We used the angle between the monostatic
equivalent’s line of sight and the normal to the surface as
the incidence angle when computing the sensitivity with the
geometric method. A different result, which is closer to the
sensitivity obtained with the spectral method, is obtained when
the complementary angle to the angle between the elevation
direction ζ̂ and the normal to the surface is used as the
incidence angle. We have defined this angle mathematically
in (47). Fig. 10 shows the relative difference between the
spectrally derived sensitivity and the sensitivity based on the
geometric method, with the latter definition of the incidence
angle.

Fig. 9. Formation with a 650 m ascending node difference and a 125 m radial
difference. Left panel: The sensitivity to height. Right panel: The relative error
of the sensitivity calculated using the wavenumber method with respect to the
conventional sensitivity expression.

Fig. 10. Relative difference between the height sensitivity obtained with
the proposed wavenumber-domain method and the range-dependent adjusted
geometric approach discussed in the Appendix.

IV. DISCUSSION

The first two simulation scenarios act as tests to validate
that the proposed wavenumber method for calculating the
temporal lag and sensitivity produces sensible results. In the
first scenario, we are testing the calculation of the temporal
lag. Hence, we set up a Helix formation whose separation
vector has a dominant along-track component, and a smaller
radial component. In the baseline case, which is shown in the
left panel of Fig. 6, we model both instruments as monostatic
SARs with no squint. In this case, we expect to see the
along-track baseline closely match the along-track separation
of the formation and to have a small dependence on the
range. If the second receiver operates bistatically, using the
first instrument as a transmitter, then the along-track baseline
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should be half the along-track separation. The results in Fig. 6
match these results.

In the second simulation scenario, we set up a Helix
formation with a significant normal separation. Like the first
scenario, we assume that the instruments operate monostati-
cally and look in the zero-Doppler direction. Hence, we expect
the spectrally derived sensitivity to agree with the expression
for the sensitivity found in the literature. Fig. 7 shows that the
results are in agreement with the conventional expression for
the sensitivity.

We have verified that the wavenumber method agrees with
the conventional expressions of along-track baseline and sen-
sitivity for geometrically simple cases. We now move on to
the more interesting case of a bistatic interferometer with an
illuminator that leads the receivers by 350 km. The receivers
are flying in a Helix formation with both an ascending node
difference and an eccentricity difference. Thus, the separation
of the receiving satellites varies in all three directions, the
radial, the normal, and the tangential, sinusoidally with time.

Fig. 8 shows the temporal lag estimated using (31) on
the left, and the geometric approximation on the right. Here,
we are starting to see the two methods diverging. While a peak
absolute difference of 0.40 ms might sound small, it is con-
siderable when two SAR images need to be precisely aligned
before processing is carried out to produce interferometric
estimates. Furthermore, considerable effort was spent to have
the geometrically calculated temporal lag approach the spectral
temporal lag. Each satellite position and each incidence angle
produce a unique ME system, for each of the two pairs of
transmitter and the receiver.

The computationally cheaper and conceptually simpler
approach of positioning the ME at the midpoint of the trans-
mitter and the receiver, thus having a common ME position
for all incidence angles at a given instance of time performs
worse compared to the results presented in Fig. 8. The simpler
geometric method overestimates the extremes of the temporal
lag by 7 ms and misses its distribution with respect to time
and range. In contrast to both variants of the geometric
approach, the wavenumber method works for both monostatic
and bistatic systems without requiring the calculation of virtual
equivalent systems.

Fig. 9 illustrates the sensitivity to height of the same Helix
formation in the left panel. The distribution of the values and
the variation with time and incidence angle are in agreement
between the two methods. There is a small but not insignificant
difference in the magnitude of the sensitivity. The relative
difference in the sensitivity estimated with the two methods is
plotted in the right panel. The largest difference, which tends
to 7% is in the near range and over the equator, which is
where the normal separation of the formation also reaches its
maximum.

During our experiments, we have found that changing the
incidence angle used for the computation of the geometric
sensitivity to the one defined by complementary angle to the
angle between the elevation and the normal directions reduces
the relative error between the spectral sensitivity and geometric
sensitivity in scenarios that involve a complex formation,
such as in the third scenario of Table I. Fig. 10 illustrates
the improvement in the relative error, with a reduction of
the maximum relative difference from 7% to 0.12% in the

near range at equatorial latitudes, and a marked improvement
throughout the domain. The latter definition of θi accounts
for the fact that the line of sight and the elevation direction
are not coplanar when the line of sight is squinted. The
spectral method accounts for this directly by computing the
wavenumber support difference along ζ̂ . Thus, making this
adjustment to the geometric method brings the results closer
to those obtained with the spectral method.

Furthermore, for both sensitivity calculations of scenario 3,
we have scaled the expression of the sensitivity by the modulus
of the bistatic line of sight. Whereas in a true monostatic
system, the scaling factor would be equal to 2, in a bistatic
system, the modulus of the line of sight is less than 2. The
divergence of the modulus from 2 increases as the bistatic
angle increases. Thus, in the ME of such an interferometer, the
true modulus of the line of sight should be used. We discuss
the line of sight modulus scaling factor and its effect on the
results further in the Appendix.

We note to the reader that we were able to arrive at these
modifications to the conventional expression of the sensitivity
by iteratively experimenting with different adjustments and
scaling factors. In light of this, the result of Fig. 10 serves
as a cross-check of the geometric method against the spectral
method. In configurations with larger bistatic angles or larger
separations, the two methods diverge further.

The divergence stems from the fact that no monostatic
system can capture the radiometric and interferometric prop-
erties of a bistatic system with sufficiently large baselines
over different look angles and slow-time instants. As Fig. 1
shows, different look angles have different ME positions. Yet
the difference between these positions is significantly larger
than the distance that the satellite would travel in the time
taken for the echoes of adjacent resolution cells to reach
the instrument. Thus, the spectral method of calculating the
temporal lag, spectral shift, and sensitivity to height is superior
as it works regardless of the complexity of the separation
between the two SARs or whether the system operates mono-
or bistatically without the need for computing virtual systems
and introducing scaling factors.

V. CONCLUSION

We have presented a method that uses the wavenumber
support to compute the temporal lag and sensitivity of single-
pass interferometers. Our method solves the problems that
arise due to the difficulty of applying the ME approximation
to interferometers with complex geometries. The proposed
method accommodates both monostatic and bistatic interfer-
ometers without requiring adjustments to switch between the
two. Furthermore, using the first-order linear expansion of the
spectral support provides a simple system of equations that
can be efficiently solved computationally.

Results from simulations show that for a Helix formation,
the geometric method overestimates the temporal lag. Further-
more, the sensitivity estimated using the geometric method has
a relative difference of up to 7% compared to the sensitivity
estimated using the wavenumber method. Accurate knowledge
of these parameters is necessary when designing XTIs to
estimate the relative topography of dynamic surfaces, such as
the ocean. Additionally, accurate knowledge of the temporal
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lag and wavenumber shift between SAR surveys will benefit
the processing of interferograms from future SAR missions
that will feature squinted lines of sight and bistatic operation.
The method is also useful for repeat-pass interferometry, as it
allows the accurate computation of the reference orbits for
processing. In the future, we aim to expand on this work by
validating the method with an end-to-end simulation of SAR
observables from a dynamic surface.

APPENDIX

A. Circular Complex Wide-Sense Stationary Processes and
Their Frequency Components

To prove (17), we need to assume that the complex stochas-
tic process s(x) has a mean of zero, E{s(x) = 0}, and that it
is circular, that is, E{s(x)s(u)} = 0. Thus, the second-order
statistics of the process are encapsulated by the autocorrelation
function

E{s(x)s(u)∗} = Rs(x, u). (39)

The following proof is an extension of [19, Th. 4] to continu-
ous processes. The correlation of the Fourier transform of the
stochastic process, s̃(kx ), is

E{s̃(k)s̃(κ)
∗
} = E

{∫
s(x)e− jkx dx

(∫
s(u)e− jκu du

)∗}
=

∫ ∫
E{s(x)s(u)∗}e− jkx dxe jκu du

=

∫ ∫
Rs(x − u)e− jkx dxe jκu du

= R̃s(k)
∫

e j (κ−k)u du

= R̃s(k)δ(k − κ) (40)

where the last equality follows from the definition of the
delta function. Furthermore, since s(x) is a circular complex
process, then by Fourier inversion theorem s̃(kx ) is also a
circular complex process. Thus, the wavenumber components
of s̃(kx ) are uncorrelated.

B. Geometric Method for Calculating the Sensitivity
In the case of bistatic SAR where the transmitter has a

position vector rt and the receiver has position vector rr , the
line of sight to a point on the surface r p is

le =
rt − r p

∥rt − r p∥
+

rr − r p

∥rr − r p∥
. (41)

We define the ME as the system that would observe a given
point with the same line of sight as the bistatic SAR. Thus, the
line of sight of the ME is parallel to le. We position the ME at
the intersection of the line that starts at r p and follows le, and
the line segment that connects the transmitter and the receiver.
Thus, we can find the position of the monostatic equivalent by
solving the following system of equations

r p + sle = rt + q(rr − rt) (42)

where s and q are the unknowns to solve for.
r p varies with look angle and time, while the positions of

the transmitter and the receiver vary with time only. Thus, (42)

Fig. 11. Relative error of the sensitivity calculated using the wavenumber
method with respect to the conventional sensitivity expression. For the
expression of the sensitivity, the incidence angle is computed according to (47)
and the scaling of the wavelength described in (46) is omitted. A scaling factor
of 2, corresponding to a monostatic system, is used instead.

has a unique solution for each combination of look angle and
time. Consequently, each resolution cell in the SAR signal will
have a corresponding pair of monostatic equivalents, one for
each receiver.

Once the two MEs for a given resolution cell are found, the
relative position vector of the two equivalent systems is vector
of the two equivalent systems is

1re = re2 − re1 (43)

where re2 is the position of the equivalent system of the
transmitter with the second receiver, and re1 that of the
transmitter with the first receiver. We use the relative position
of the equivalent systems to calculate the effective along-track
baseline [18]

B∥ = −1reT +1re N

leT

le N

(44)

where the subscripts T and N denote the tangential and the
normal component of the vector, respectively. The temporal
lag between acquisitions is equal to the effective along-track
baseline divided by the flight speed of the satellite.

The perpendicular baseline of the interferometer is

B⊥ = 1rc · ζ̂ (45)

where 1rc = (1re N leT /le N ,1re N ,1re R)
T is the relative

position after shifting the two equivalent systems to align
their lines of sight. We use the perpendicular baseline to
calculate the sensitivity to height of the interferometer using
the conventional relation [4], [5]

∂φ

∂h
=

2π∥le∥B⊥

λ0 Rs sin θi
(46)

where in this case the slant range Rs is equal to the slant
range from the position of the ME to the resolution cell and
the incidence angle θi is the angle formed by the bistatic line
of sight and the normal to the surface.
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The careful reader would have noticed that the sensitivity is
scaled by the modulus of the bistatic line of sight. It effectively
scales the wavelength by the inverse of the modulus of the
bistatic line of sight. The scaling arises because the modulus
of the bistatic line of sight is smaller than the modulus of the
monostatic line of sight. While the monostatic, two-way line
of sight has a modulus of 2, the bistatic line of sight is smaller
than that by the cosine of half the bistatic angle. The smaller
modulus scales the wave vector. Hence, where the monostatic
wave vector would have a modulus of 2 k0, the bistatic wave
vector would have a modulus of ∥l̂Ti + l̂ Ri ∥k0, effectively
scaling the wavenumber, thus the wavelength.

An alternative choice for the incidence angle is to calculate
it based on the elevation vector and the normal to the surface

θi = arcsin (ζ̂ · n̂). (47)

The two definitions of θi are congruent for a monostatic system
with a line of sight in the zero-Doppler direction.

Fig. 11 shows the relative difference between the spectrally
derived sensitivity and the sensitivity obtained with the geo-
metric method according to (46). For this result, we replaced
∥le∥ by 2 and used (47) for θi . Comparing the results with
Fig. 10 shows that ignoring the scaling due to the bistatic
wave vector, and instead modeling the system as a monostatic
interferometer, produces a markedly less accurate result.
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