
Using a Time Dependency Graph to find
the most widely used Debian package

Teodor Dobrev
Supervisor(s): Georgios Gousios, Diomidis Spinellis

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

23-6-2022

Abstract
The main principle of Open Source development
is that developers can reuse different libraries over
and over again to make their lives easier. That is
why this practice has gained a lot of popularity.
However, libraries usually depend on other already
existing pieces of code. This means that whenever
some small piece of code fails, the whole applica-
tion may crash due to its dependencies. Since De-
bian is considered as one of the largest community
run distributions, it is important to have a good tool
to analyse these dependencies to help in avoiding
such crashes. That is why this research will focus
on building a dependency graph for Debian’s pack-
age manager and finding out which are the most
widely used packages. What separates this research
from previous related works, is the addition of a
time component to the graph. This will be in the
form of a timestamp of the release date for each
version of a package. This allows for extensive
traversal of the graph, which can also be based on
time periods. By doing so, no transitive dependen-
cies should be missed. The paper concludes with
defining most widely used as the packages which
achieve the highest PageRank score when put into
the graph. The top 3 ones are "libc6", "libgcc1"
and "multiarch-support".

1 Introduction

Often times engineers reuse already existing pieces of code
to save time and to avoid doing work that is redundant [17].
However, the dependencies that these packages usually carry
with them are often neglected. This can lead to problems
since those libraries and packages themselves depend on
other third-party software [1]. Those transitive dependencies
may lead to failures that are very hard to detect and can go
unnoticed for a long time [8]. Furthermore, Soto-Valero et
al. have shown in reference [18] that these transitive depen-
dencies make up for a huge part of the so called "bloated" de-
pendencies which are not actually needed during the building
or the running of the application. Prana et al. take a look
at the effects that vulnerable dependencies have on Open-
Source projects in reference [12]. They highlight that pop-
ularity of the project, activity or developer experience do not
have an impact on the handling of the dependency vulnera-
bilities. This is already a point of concern since it shows the
need of further analysis and the development of tools to limit
those problems.

While according to Prana et al. in reference [12] the "De-
nial of Service" and "Information Disclosure" were the most
commonly encountered problems, there are many examples
of more severe vulnerabilities. One recent example of a vul-
nerability caused by overlooking the dependencies of the ap-
plications is the log4j vulnerability [16]. There, a vulner-
ability in a logging library which is very widely used, al-

lowed malicious attackers to execute code remotely on the
computers that used it. Some other famous examples are
the "left-pad" incident [24] and the "SolarWinds" hack [3].
What is more, "Using vulnerable or outdated components"
was ranked sixth on The Open Web Application Security
Project (OWASP) top ten list of vulnerabilities for 20211.

As Kikas et al. mention in reference [7]: "dependency
management practices have received little attention despite
being a crucial part of almost all software projects". That is
why this research is focused on creating an extensive package
dependency graph to continue the work in the field. Current
analysis often overlooks the evolution of the transitive depen-
dencies over time. The main topic of this paper is introduc-
ing this time component by adding the timestamps of release
dates to each version and following the transitive dependen-
cies for the current period. This work will focus on applying
this graph to the Debian Package Manager since it is consid-
ered as one of the largest community run distributions. The
end goal is to see how does the introduction of time in the
graph affect the Package Dependency Network and to find
the most widely used package.

Therefore, to achieve this it is first needed to reformat the
data about the existing package dependencies so that the re-
lease date of the package version can be taken into account.
The reason for this is, that usually packages depend on the lat-
est release version of the dependency. Looking at the depen-
dency graph in Figure 1 provides a more intuitive description
to the problem.

Figure 1: Representation of the dependencies of projects A,B and C
in time

• Package A with version 1.0 is released at time T0.

• Package B with Version 1.0 is released at time T1 and
it is depending on the latest version of Package A (cur-
rently A.1.0).

• Package A releases version 1.1 at time T3 > T2.

• Package C with version 1.0 is released at time T4 >
T3 and it is depending on the latest version of Package
B(currently B.1.0).

This particular scenario, shows that Package C should tran-
sitively depend on Package A’s latest version. However, the
latest version of A known to B which is the direct dependency

1https://owasp.org/Top10/

https://owasp.org/Top10/

of C, is actually not the latest one. The main point of this re-
search is to take this time effect into account and see how it
will influence the already existing dependency graphs. This
paper will focus on applying a time dependency graph struc-
ture for the Debian package manager and finding out "What
are the most widely used Debian packages?". To answer
this question, it would have to be broken down into three sub-
questions:

• Research Question 1: How to design efficiently a de-
pendency graph data structure?

• Research Question 2: How does time influence a de-
pendency graph data structure?

• Research Question 3: What measures of criticality
could be used to evaluate this graph data structure?

Answering these questions would help us in analyzing all
the dependencies between the Debian packages. Taking the
time component into account will make sure that none of the
transitive dependencies are missed. This would build upon
the existing work in the field and help us in knowing which
are the most used packages and most critical ones.
Structure: The Following sections will provide more details
about why answering each of the questions is important and
what methodology was used in the process. The paper will
provide details about collecting the data and finding the opti-
mal measures for criticality and will end with a discussion of
the results and the possible future work on the topic.

2 Background

This section will provide some basic terminology about the
concepts used during this research. Furthermore, it will pro-
vide some more background on the related work in the field.

2.1 Terminology

A package is defined as an already existing piece of code that
the a developer can reuse to avoid repeating work that has
already been done. It helps with modulating the code and
maintaining it. Therefore these packages can sometimes be
referenced as modules or libraries. When a dependency be-
tween two packages exists that means that in order to run the
dependant piece of code, the user needs to have installed also
the dependency. A transitive dependency then, is an indi-
rect dependency between two packages. This terminology is
combined to define the two main structures that are going to
be created and used for the analysis of the Debian Package
Manager, namely:

• Dependency graph(also referred to as Dependency Net-
work) - A directed graph structure which is used to illus-
trate the dependencies between the different packages in
the package manager. Each node represents a package
and two nodes are connected with a directed edge if one
of them depends on the other.

• Time Dependency graph - A dependency graph structure
where a time component is also introduced. Each node

now has a timestamp with its release date version and the
traversal of the graph is done based on a time interval.

The main point of this research is to build upon the pre-
vious work done on the topic by introducing the time com-
ponent in the dependency graph. This would lead to a better
representation of all the dependencies in the graph, revealing
some transitive dependencies that are lost without it.

2.2 Related Work

The reason why this paper focuses on Debian is that, as al-
ready mentioned, it is one of the most popularly used open
source distributions. It has gained much popularity over the
last two decades and is a topic of many research papers. Gon-
zalez et al. "take it as a proxy to analyse large open source
software compilation" in reference [6]. Their research is out-
dated since it focuses on the versions of Debian between 2.0
and 4.0. An interesting insight is that the number of packages
for Debian in this period is growing by an order of magnitude.
This means that also the number of dependencies is growing
quickly. This is to be expected since newer applications must
adapt new functionality. It can be deduced that the number of
packages between the time this research was conducted and
nowadays is continuing its rapid growth(as it can be seen in
Figure 2). This means that the dependency network is ex-
panding as well. One example is the difference between the
dependency trees of the package mozilla that Gonzalez et al
analyse in reference [6]. In Debian 2.2 the dependencies are
13 packages. In Debian 4.0 this number rises to 72. Now in
the latest Debian version there 389 dependencies for the pack-
age firefox2. This number of growing dependencies combined
with the vulnerabilities of using outdated versions is the rea-
son this paper wants to take the dependency analysis one step
further and introduce the timestamps of the release dates of
the package versions.

There are already several analysis on dependency manage-
ment and why it is important. De Sousa et al. in reference [5]
perform an analysis of the Package Dependencies on Debian
in 2009. They look at 18 000 packages in the stable, unstable
and testing branches and try to find "communities" of pack-
ages to help the Debian community by providing "criteria for
creation of packaging teams". Pashchenko et al. in reference
[11] look at the problem from a different perspective and try
to understand the decisions that developers take when includ-
ing dependencies in their projects.

Stringer et al. in reference [19] take a deeper look into the
"technical lag" of dependencies. They define technical lag as
the time that an outdated version is used in the dependencies
of an application and therefore the application is vulnerable.
They conclude that technical lag varies per package manager
but it is always there. Usually the time period of this lag is
in the range of 0.5-1.5 years. One way to fight it according
to their results is to introduce the use of semantic version-

2The name of mozilla was changed to firefox in later versions of
Debian

ing.3This is a convention that aims to give actual meaning to
version naming. According to Stringer et al.’s results in refer-
ence [19], introducing the semantic versioning would reduce
lagging by one third. This paper already shows that software
developers do not keep their dependencies always up to date
and lag behind leaving their applications vulnerable. The re-
search carried out throughout this paper would build upon the
work done by Stringer et al. since their work focuses mainly
on the lagging of the direct dependencies. This paper will try
to eliminate the problem of lagging by connecting each ver-
sion to every possible dependency at the given time period.
What is more the Debian package manager was not analysed
in the mentioned paper.

The idea of introducing time as a component in graph
structures has also been a topic of research [21],[2]. There
have been different suggestions as to how to represent it. One
way would be as a metadata on the edge, another would be
to include it in the information contained in the Node. How-
ever, the main idea boils down to filtering out of the graph the
edges and the nodes that do not satisfy a given time period.

One important resource that some of the mentioned works
above use is Libraries.io.4 It allows to overview the depen-
dencies in a software project and alerts for new versions of
existing packages. Furthermore, it provides useful data for
some package managers and could be used to check the va-
lidity of a dependency graph without timestamps. Unfortu-
nately, there is not much information about the Debian Pack-
age Manager on Libraries.io.

Summarizing the related work, there have been many re-
searches on why managing package dependencies in a soft-
ware project is important. Most of them focus particularly on
the problem of old versions lagging behind, exposing the ap-
plications to vulnerabilities. The graph model that is going to
be constructed for this paper is heavily influenced by Kikas
et al.[7]. In addition to the graph structure that is described
there, a time component is going to be added to the structure
in the form of addition of a timestamp to the node containing
the release date of each version.

3 Research Questions

The main focus in this section would be providing the moti-
vation behind each of the research questions that were formu-
lated in the beginning of the paper. It is going to show why
they are important and how answering them would lead to the
answer of the main research question which is "What is the
most widely used Debian package?"

3.1 How to design efficiently a timed dependency
graph data structure?

Influenced by previous existing work [7][5],[6], this paper is
also going to map the dependency data onto a graph structure.
This way it would be easier to compare the results to previous

3https://semver.org/
4https://libraries.io/

findings and to put them into a broader context. What will
set this work apart is the addition of the time component.
However, introducing this time component, means that there
would be an increase in the overall complexity of the struc-
ture and the traversing algorithms. Essentially, the idea for
this Graph structure, and the traversal of it, is to be scalable
and applicable to different package managers. In Figure 2 we
can see the growth of the Debian distribution over the years
with the amount of packages increasing drastically. Taking
this into account and that other package managers such as
NPM5 and Maven6 also should be able to use this graph, the
solution proposed here should be as efficient as possible.

Figure 2: Growth of the number of Debian packages throughout the
years

3.2 How does time influence a dependency graph
data structure?

The main reason to introduce time into the dependency graph
structure is to be as extensive as possible while building the
dependency tree of a package. Existing papers [19], [23]
show the effect that technical lag has on the major package
managers. Until now, this technical lag was discussed in the
context of introducing vulnerabilities. However, developers
should be able to trace that lag throughout their development
and to make an informed decision on which versions they
want their application to run on and update their dependen-
cies accordingly. That is why by introducing the timed com-
ponent in the data structure, would help in modelling all the
possible options for developers to choose their dependencies.
Furthermore this would provide a basis for deeper analysis in
the lagging of transitive dependencies(As defined in Figure
1).

3.3 What measures of criticality could be used to
evaluate this graph data structure?

Raw data or just the Graph structure do not provide any
useful insights. That is why a measure by which the packages
would be ranked needs to be defined. Debian has a project

5https://www.npmjs.com/
6https://maven.apache.org/

https://semver.org/
https://libraries.io/
https://www.npmjs.com/
https://maven.apache.org/

called Debian Popularity Contest7. The main idea is for
users to install the popularity-contest package and to let it
collect data regarding their package usage. However, since
this package does not come into the default installation of the
Debian distribution and has to be installed manually, the re-
sults contain the so called Selection Bias [10]. Nevertheless,
the data collection is done anonymously and presents data
such as installation counts, number of users who currently
use the package, number of users who do not use the package
but have it installed and number of users who upgraded the
package recently. This presents some useful information,
however poses a few questions. Taken into the context
of this paper, what would the number of installations tell
about a certain package? Does it make it the most widely
used and does it have anything to do with its dependencies?
Most importantly, how to define "most widely used" in a
meaningful way?

Answering these questions in combination with the data
that we get from our Graph structure, would provide us with
the information on what actually does a widely used package
mean. Furthermore, it would provide us with some interesting
statistics about the most widely used packages according to
our graph.

4 Method

This section will go in depth behind the process of answer-
ing the main research questions, namely "Which is the most
widely used Debian package?". It will start with the context
of the work, describe the data acquisition process, the cre-
ation of the timed graph structure and end with the processing
of the results.

4.1 Context

This work will study the Debian distribution. Debian is an
open-source operating system that dates back to September
1993. Since then, it has become one of the largest and most
popular community run distributions. To this day there are
17 major release versions. The latest one called "Bullseye"
was released on 14 August 2021 and contained 59,551 binary
packages and 31,387 source packages. The Debian-Wiki8

provides the following definitions about Binary and Source
packages: "The programs inside Binary packages are ready
to run on the system", "Source packages contain all the nec-
essary files to build the desired software."910. Furthermore,
there are always at least three releases in active maintenance11

- "stable", "testing" and "unstable". The stable distribution
is the production release of Debian. This is the distribution
that is recommended to use by the Debian team since all the
packages there are tested and ready to use. The testing branch

7https://popcon.debian.org/
8https://wiki.debian.org/
9https://wiki.debian.org/Packaging/SourcePackage

10https://wiki.debian.org/Packaging/BinaryPackage
11https://wiki.debian.org/DebianReleases

contains packages that are in the queue to be accepted into the
stable one. The unstable is the distribution where new pack-
ages are introduced and developed. This work will focus on
analysing the stable distributions of Debian and will consider
both source and binary packages. They will be referred to
simply as packages in the rest of this paper. The time period
that is going to be analysed will be from 2015 until 2022. This
means that only the active stable versions are chosen - Debian
8, 9, 10 and 11, with Debian 8 being an archived released but
still under extended support from the Debian team.

4.2 Data Acquisition

The data that was needed to conduct this research was down-
loaded directly from the Debian Snapshot Archive.12 This is
an archive maintained by the Debian community which con-
tains Snapshots of the different distributions. Usually, the
snapshots are taken every 5-8 hours and date back as far as
2008. The database consists of all past and current packages
in Debian and all of their versions. For each snapshot there is
a link pointing to the stable distribution at the time. The pack-
ages files were scraped from the Debian Snapshot Archive
with the help of a web crawler.

The data is then stored in a MongoDB database13 which
helps with formatting it into a JSON file. A JSON file would
be suited best to represent the data and would be easiest to
map to the Graph. The file structure is represented in Figure
3. The fields that are wanted are the Package Name, Pack-
age Version and each versions would have two fields with its
Timestamp, which are defined as the time that the package
was first encountered in the Snapshot Archive, and the ver-
sions that the current package depends. This structure was
chosen, so that it would be universal and it would be easier to
map data from any package manager. The fields that are cho-
sen can be found in most if not any modern package manager.

1 {
2 "name": "libc6",
3 "versions": {
4 "7.38.0-4": {
5 "timestamp": "2015-06-01T04:17:39",
6 "dependencies": {
7 "libc6": ">= 2.17",
8 "libcurl3": "= 7.38.0-4",
9 "zlib1g": ">= 1:1.1.4"

10 }
11 }
12 ...
13 }
14 }

Figure 3: JSON structure. Representation of a Pacakge

12https://snapshot.debian.org/
13https://mongodb.com/

https://popcon.debian.org/
https://wiki.debian.org/
https://wiki.debian.org/Packaging/SourcePackage
https://wiki.debian.org/Packaging/BinaryPackage
https://wiki.debian.org/DebianReleases
https://snapshot.debian.org/
https://mongodb.com/

There is a specific Debian constraint here that should be
mentioned. Debian introduces a package naming conven-
tion which also allows developers to include major version
updates of a package in the package name. Those updates
are entered as a separate entity(i.e package) in the Debian
Archive with its own intermediate versions. Figure 4 shows
how this works with the gcc packages. As it can be seen there
package gcc with version 4:6.3.0-4 is released at the same
time as gcc-6 version 6.3.0-18. To avoid failures, gcc-6 is
added as a dependency in gcc. This however influences the
PageRank which will be run on the Graph and is a point of
discussion for future work.

Package Version Release Date
gcc 4:4.7.2-1 2015-01-01
gcc 4:4.9.2-2 2015-06-01
gcc 4:6.3.0-4 2017-06-18
gcc-6 6.3.0-18 2017-06-18
gcc-6 6.3.0-

18+deb9u1
2018-06-01

Figure 4: Sample of GCC package versions through time

4.3 Graph Creation

The data that was collected in the previous section is now
mapped onto a Graph. The Graph is created by parsing the
JSON file and constructing a new node for each unique Pack-
age Name and Version. For the rest of the report I will refer
to the combination of an unique Package Name and Version
as PackageID. For each node of the graph that represents a
PackageID there would be a number of edges representing
the dependencies. To reduce the amount of information that
is stored in the nodes and to make the graph as efficient as
possible, a map is built taking each node id an connecting it
to the corresponding package information collected from the
previous step.

To introduce the time component to the graph, all the possi-
ble dependencies should be mapped. That is why each unique
PackageID’s is taken and mapped to every possible depen-
dency according to the dependencies field in the JSON file
and their timestamps. To make the work as universal as pos-
sible and as scalable as possible, each of the Versions were
translated to use Semantic Versioning. This makes it much
easier to compare the versions and to follow them trough
time.

One thing worth noting is that different package man-
agers use different versioning. The Masterminds library14

from Go is used for the general case of version parsing.
However, Debian follows a different standard than the one
implemented in the library. Unlike semver, which follows
the MAJOR.MINOR.PATCH standard, Debian’s format is
[epoch:]upstream_version[-debian_revision]. That is why
a separate parser was implemented which was inspired by the
work in [15].

14https://pkg.go.dev/github.com/Masterminds/semver/v3

The graph is implemented using Go15. This program-
ming language was chosen due to its simplicity and efficiency
[22],[20] and the fact that it should be able to handle the huge
amount of data that we want to map. To make the work eas-
ier, the graph was implemented with the help of a Go libray
named GoNum16 which provides a simple framework for a
basic directed graph. For the sake of reproducibility, a simple
Command Line Interface was implemented to run the code
and navigate the options.

To asses the timed graph performance(i.e to answer the sec-
ond sub-question), a comparison is done between the Debian
Package Manager and the results of querying the graph. For
a sample of random packages, the command apt-rdepends is
executed and the results are compared to the resolving of the
transitive dependencies using the graph structure.

4.4 Measures of package criticality

To answer the third and last sub-question, it is need to under-
stand how to interpret the data that can be obtained from the
graph. The aim is to find the most widely used package but
what does "widely used" mean? The idea is to find the pack-
ages that have the most dependants and then to rank the im-
portance of these dependencies. This would make future de-
velopers more careful when incorporating a package in their
application that is "widely" used. Furthermore, it can actually
raise awareness towards the critical packages, and persuade
the Debian community to monitor them more closely. To find
the most important node in the Graph structure, a PageRank
algorithm is run. This is a popular metric when it comes to
evaluating graph structures. It aims to introduce a metric of
importance of a Node and its Edges. The main idea is count-
ing the edges pointing to a node, and the edges pointing out
from the node.

Running this algorithm would be done by making use of
the existing implementation in the GoNum library. For fur-
ther reference on the algorithm, one can check the work done
by London, Nemeth et al. in reference [9]. They present an
interesting use of PageRank for ranking scientific articles.

The PageRank version that is ran on the graph first filters
out the nodes outside of the given time period, then the re-
sults can be aggregated for better overview of the most used
packages. To get a grasp on the PageRank per versions of a
package one can run the PageRank algorithm without group-
ing by package name. This provides insights to which is the
most popular version of a package at a given time.

5 Results and Validation

5.1 Results

The analysis of the Timed Dependency Graph that has been
implemented, will begin by looking at some basic graph
statistics which are usually used when evaluating graphs.

15https://go.dev/
16https://www.gonum.org/

https://pkg.go.dev/github.com/Masterminds/semver/v3
https://go.dev/
https://www.gonum.org/

A quick overview can be done by looking at the number of
Nodes and Edges. For our Graph G = (V,E) it can be seen
that the V = 244289 and E = 6318031. Here the Vertices
represent each Package with its unique version and an Edge
represents the dependencies between two packages. Thus, on
average there are around 25 dependencies per version. Most
of them are concentrated in the main central cluster(as seen in
Figure 5). The original input was 86 410 packages. It can be
noted that the number of nodes with possible dependencies
already increase by almost 3 times. To get a better feeling of
this network a Graph visualisation software was used named
Graphia17. This was one of the few tools that were able to
visualize a graph of this size. It can be seen in Figure 5 that
there is one huge cluster of dependencies in the middle which
is hard to visualize from a closer point of view. There are
some other small clusters around the main one. There is a
significant part of nodes which are currently not of interest to
us, since they have no dependencies.

Figure 5: General visualization of the timed graph

To validate the precision of the timed graph structure,
one can take a look into the Debian Package Manager.
Executing the "apt-rdepends" command recursively con-
structs the dependency tree of a given package. The
results of that command can be compared to the the
resolving of the graph for 10 arbitrary packages. To
formalize this the following method which was formu-
lated in the work of a peer in reference [13] is used:
Let:

• A be the set of transitive dependencies resolved by apt-
rdepends

• B be the set of transitive dependencies resolved using
the implemented algorithm

• E be the number of dependencies that have a correct
name but incorrect version

We calculate the accuracy of the algorithm by this formula:

Acc =

{
1− |A|−|(B∩A)|+0.5∗E

|A| , if A ̸= 0

1, otherwise
(1)

According to this formula, the resolved dependencies using
the graph structure, are always at least as accurate as the

17https://graphia.app/

dependencies from the package manager since on average
of 10 random packages, the result is always 1. This is
considered when the dataset is not missing any information.
This experiment was ran 5 times.

To be able to answer the third Research Question and thus
to make a conclusion on which is the most widely used pack-
age one can take a look at the results from running the Page
Rank algorithm. The data that that the algorithm is ran on is
collected between 2015 and 2022.

Firstly, the PageRank was ran for the whole time period.
In this experiment, are shown only the unique results, so
the packages are aggregated by names. PageRank is non-
deterministic algorithm so the results shown in Figure 1 are
an average of 10 runs of the algorithm. There may be small
deviations when reproducing the experiment but the general
trends are always the same.

Package PageRank
libc6 0.2811
libgcc1 0.1906
multiarch-support 0.0387
libgcc-s1 0.0210
libcrypt1 0.0206
libjs-jquery 0.0132
gcc-6-base 0.0087
perl 0.0072
dpkg 0.0070
libuima-core-java 0.0069

Table 1: Top 10 Debian packages ranked by PageRank for 2015-
2022
(Average of 10 runs)

One thing that is noticeable right away is that 6 out of the
top 10 ranked packages are library packages. The number one
package is libc6. By going to the Debian package manager
this can be found as the description of that package: "Con-
tains the standard libraries that are used by nearly all pro-
grams on the system.". The fact that this is mentioned as
"used by nearly all programs on the system" serves as vali-
dation for the graph and the results provided by the PageRank
algorithm. The margin between the PageRank score for libc6
and the other packages is significantly larger than the differ-
ence between the rest of the packages. The package includes
basic functionality so it is reasonable that it is so widely used.
The multiarch-support package ensures compatibility for dif-
ferent architectures so it is also reasonable for it to be ranked
so high. It is also worth noting that the package libgcc1 pro-
vides GCC18 support. It also depends on certain versions of
libc6, while libc6 also depends on it. That is why these two
packages are co-related as it can be seen in Figure 6 which
shows their development through time. What is more their
correlation may be due to the fact that virtual packages are
not handled well enough in this version of the work.

18https://gcc.gnu.org/

https://graphia.app/
https://gcc.gnu.org/

This second experiment runs the same PageRank algorithm
on the same dataset, however this time each version is consid-
ered as a separate entity in the graph so the resulting packages
are not unique. The results in Table 2 can be used to analyze
the most popular versions of the most popular packages.

Package Version PageRank Release Date
libgcc1 1:8.3.0-6 0.042894 2020-01-01
libgcc1 1:6.3.0-18+deb9u1 0.042891 2018-06-01
libgcc1 1:6.3.0-18 0.042891 2017-06-18
libgcc1 1:4.9.2-10 0.042885 2015-06-01
libgcc1 1:4.7.2-5 0.042885 2015-01-01
libc6 2.31-13+deb11u3 0.026273 2022-06-01
libc6 2.31-13+deb11u2 0.026273 2022-01-01
libc6 2.28-10 0.025670 2020-01-01
libgcc-s1 10.2.1-6 0.024291 2022-01-01
libcrypt1 1:4.4.18-4 0.023923 2022-01-01

Table 2: PageRank results, without grouping the versions.
(Average of 10 runs)

These results should be interpreted carefully since the
number of versions influences the overall PageRank scores.
That is why libgcc1 which is ranked second in Table 1 here is
ranked first. The timestamps confirm that the graph is ac-
tually keeping all the possible dependencies of a package,
rather than just a constraint in the form of "<=" or ">="
for the latest version’s dependencies. It is also interesting to
notice that, although libgcc-s1 is a new package with only one
version, it has similar PageRank score to libgcc1.

In Figure 6 is taken a look at the evolution of the top ranked
packages throughout the years. Here, the time component has
the most influence. The PageRank is ran on each year and fil-
ters the packages that are not included in the time period. To
be able to get more meaningful results, the data builds upon
the results from each previous year i.e the algorithm is first
ran on the period between 2015 and 2016, then on 2015 until
2017 and so on, until the whole data set is traversed. This
is done in order to avoid losing dependencies on packages
which have not released a new version during the last year.

Figure 6: Most popular packages throughout the years 2015-2022,
based on PageRank
(Average of 10 runs)

Several remarks should be made about Figure6. Firstly,
as mentioned before libc6 and libgcc1 are co-related. They
tend to change with the same rate with the period between
2021 and 2022 being the only exception. This is due to the
fact of the introduction of another version of libgcc1 called
libgcc1-s1. While a lot of the projects seem to keep their
dependencies on the old version, some migrate to the new one
and this results in a drop of the PageRank of libgcc1. Similar
remarks can be said about the gcc packages. The versions
there range from 4.x to 10.x which results in a relatively low
PageRank score when the versions are looked at individually.

To summarize the results of this paper, a time dependent
graph structure has been created by constructing a new node
for each version of a package and including the time it was
first encountered in the Debian Archive as its timestamp. It
has been shown that the a time dependency graph structure is
accurate when compared to the ground truth provided by the
Debian Package Manager. The term "most widely used" was
defined as packages with the highest PageRank result in the
graph structure that was built. The results of that algorithm
show the most widely used packages in Debian are "libc6",
"libgcc1" and "multiarch-support".

5.2 Validation and Reproducibility

The data that has been analysed here is downloaded directly
from the Debian Archive. This means that it is verified and
easily accessible. The timed graph that is constructed for this
paper relies on extending the basic GoNum library code for
simple graphs. This means that the setup of this research
could easily be reproduced. All the code that was used to
acquire the data and to construct the graph can be found in
the repository of this research. The project is open-source
and available on GitHub19 where a Read Me file is included

19https://github.com/teodordob/SoftwareThatMatters

https://github.com/teodordob/SoftwareThatMatters

with step by step instructions on how to run the code. Ad-
ditionally, the data file is uploaded to Zenodo20 and can be
downloaded and referenced [4].

To Validate the results of the PageRank algorithm, one can
look into how does the package manager define the packages
that are shown as most widely used. As discussed in the re-
sults section, the highest ranked package according to our
graph, is also described by "used by nearly all programs in
the system" and it is co-related with the second one.

6 Responsible Research

This section includes a quick remark about the ethics that
were taken into account when conducting this research. As
Quinn and Malgieri discuss in reference [14] it is hard to
define what sensitive data is. The data that was used dur-
ing this research is publicly available on the Debian Snap-
shot Archive. The information about each package can be
accessed easily and does not contain any fields that can be
considered as private. Following the instructions in the Re-
producibility subsection, the results from this research can be
reproduced on any machine. What is more, no data regarding
humans was collected during this research. Thus, it can be
argued that the research conducted as part of this paper is as
ethically neutral as possible.

However, the results can still be interpreted in a somewhat
ethical context. From an ethical point of view one can say that
this paper can influence the future development and use of
the "most widely used Debian packages". Users may choose
to avoid using these packages due to the vulnerability issues
that they may present. On the other hand, this paper may
actually increase the awareness of future users, and they may
start maintaining their dependencies more carefully.

7 Discussion

To gain a better understanding of the contributions of this re-
search, one can take a look at the results in the context of the
Debian Popularity Contest. There, can be seen what is the
number of installations of the most widely used packages, the
number of users currently using the package and the number
of users who have recently upgraded the package. In 3 aggre-
gation of the data with the one from the Popularity contest is
shown.

These results are gathered on 18/06/2022. One can clearly
see by the ranks of number of installations that it is difficult
to find a relation between the most installed packages and the
most widely used. It can be observed that on average for ev-
ery recent update there have been around 8 installations of a
package. This could mean that only one in every eight pack-
ages is up to date. One thing to notice here is that the Debian
Popularity Contest represents a subset of users that can be
considered as "conscious". This is because they have volun-
tarily installed the popularity contest package. That can be

20https://zenodo.org/

Package PageRank Installations(Rank) In Use Upgraded

libc6 0.2811 205553(40) 192337 12377
libgcc1 0.1906 133156(389) 16036 70481
multiarch-
support 0.0387 75228(1135) - 75228
libgcc-s1 0.0210 96693(739) 86614 4
libcrypt1 0.0206 96587(742) 81386 10876
libjs-jquery 0.0132 107404(584) 22997 2149
gcc-6-base 0.0087 49719(1649) - -
perl 0.0072 203887(94) 128005 23389
dpkg 0.0071 205594(14) 190136 14261

Table 3: Package metrics from Debian Popularity Contest with
Number of Installations Rank

interpreted as that they are interested in knowing these statis-
tics. That is why they can be considered as users with above
average level of knowledge in this field. An everyday user
of Debian would most probably update his software less fre-
quently then the people participating in the Popularity Con-
test Project.

8 Conclusions and Future Work

The main research questions that this paper aimed to answer
was "Which is the most widely used Debian Package?" The
motivation behind this questions was that it is advised not to
use packages with many dependencies. This is due to the fact
that whenever a vulnerability occurs somewhere along the de-
pendency tree, the whole system may be affected. Previous
work in the field, did not take into account the fact that the
time at which a given package was released can also influ-
ence its dependency tree. Thus in this paper was provided the
concept of a new dependency graph structure that takes into
account also the time when a package is released. Further-
more the graph was analyzed to find out which is the package
with the most dependencies. This was done by splitting the
main question into three sub-tasks: Constructing the Depen-
dency Graph Structure, Introducing the time component and,
lastly, analysing how to define "most widely used" and what
measures to use.

In the end the construction of the graph was done by rep-
resenting each package as a node and each dependency as a
directed edge. To take the time factor into account, a times-
tamp with the release date of each package was included to
each node. The graph can then be filtered according to a time
period and traversed. The data that was used was collected
from Debian 8,9,10 and 11. The introduction of individual
nodes per each unique version resulted in a graph which was
almost triple the size of the one which included only the regu-
lar packages. In this paper "most widely used" was defined as
the package that had the most important dependencies. To
evaluate this, a PageRank algorithm was run on the timed
graph. This resulted in showing that the top 3 most widely
used packages for the time period of 2015-2022 were "libc6",
"libgcc-s1", "multiarch-support".

https://zenodo.org/

Future work on this topic may include optimisations on
creating the graph structure. Currently it handles the dataset
but operations like filtering according to the timestamps take
too much time. What is more, there are package managers
which include much bigger datasets which may be hard to
handle. An idea would be to switch the programming lan-
guage to one that can better allocate memory use.

More importantly, Debian contains virtual packages which
should be studied more in depth. A virtual package, is de-
fined when a package can combine the functionalities of sev-
eral others. Virtual packages are defined only logically. If
there are dependencies that are mapped to a set of packages
that are contained in a virtual package, one can ignore them
and just point the dependency to the virtual one. Currently,
virtual packages are ignored and the dependencies are looked
at individually.

Lastly, the benefit of the precision of the timed graph
should be analysed further. Currently, this paper does not
mention how in particularly the achieved results can be used
to improve the Debian ecosystem. In addition to this, to en-
hance the PageRank results, a new formula based on the pri-
ority Tag field in the Packages file can be taken into account.

References

[1] Marcelo Cataldo, Audris Mockus, Jeffrey Roberts, and
James Herbsleb. Software dependencies, work depen-
dencies, and their impact on failures. IEEE Trans. Soft-
ware Eng., 35:864–878, 11 2009.

[2] Farah Chanchary and Anil Maheshwari. Time win-
dowed data structures for graphs. Journal of Graph Al-
gorithms and Applications, 23(2):191–226, 2019.

[3] Pratim Datta. Hannibal at the gates : Cyberwarfare &
the solarwinds sunburst hack. Journal of Information
Technology Teaching Cases, page 204388692199312,
03 2021.

[4] Teodor Dobrev. Debian data for bachelorsthesis "soft-
ware that matters".

[5] Orahcio Felício de Sousa, Marcio Argollo, and Thadeu
Penna. Analysis of the package dependency on debian
gnu/linux. 01 2009.

[6] Jesus Gonzalez-Barahona, Gregorio Robles, Martin
Michlmayr, Juan Amor, and Daniel Germán. Macro-
level software evolution: A case study of a large soft-
ware compilation. Empirical Software Engineering -
ESE, 14:262–285, 06 2009.

[7] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Di-
etmar Pfahl. Structure and evolution of package depen-
dency networks. In Proceedings of the 14th Working
Conference on Mining Software Repositories, MSR ’17,
pages 102–112. IEEE press, May 2017.

[8] Jannik Laval. Package dependencies analysis and reme-
diation in object-oriented systems. Université des Sci-
ences et Technologie de Lille, 2011.

[9] András London, Tamas Nemeth, András Pluhár, and Ti-
bor Csendes. A local pagerank algorithm for evaluating
the importance of scientific articles. Annales Mathemat-
icae et Informaticae, 44:131–140, 01 2015.

[10] Aronson JK Nunan D, Bankhead C. Selection bias.,
2017.

[11] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. A
qualitative study of dependency management and its
security implications (to appear in acm ccs 2020), 08
2020.

[12] Gede Prana, Abhishek Sharma, Lwin Khin Shar, Darius
Foo, Andrew Santosa, Asankhaya Sharma, and David
Lo. Out of sight, out of mind? how vulnerable depen-
dencies affect open-source projects. Empirical Software
Engineering, 26, 07 2021.

[13] Andrei Purcaru. Analyzing the effect of introducing
time as a component in python dependency graphs,
2022.

[14] Paul Quinn and Gianclaudio Malgieri. The difficulty of
defining sensitive data – the concept of sensitive data

in the eu data protection framework. SSRN Electronic
Journal, 01 2020.

[15] Romlok. Romlok/python-debian: Python modules to
work with debian-related data formats.

[16] Sasindu Shehan. Log4j vulnerability/log4shell vulnera-
bility (cve-2021- 44228). 05 2022.

[17] S. Shiva and Lubna Shala. Software reuse: Research
and practice. pages 603–609, 04 2007.

[18] César Soto-Valero, Nicolas Harrand, Martin Monperrus,
and Benoit Baudry. A comprehensive study of bloated
dependencies in the maven ecosystem. Empirical Soft-
ware Engineering, 26, 05 2021.

[19] Jacob Stringer, Amjed Tahir, Kelly Blincoe, and Jens
Dietrich. Technical lag of dependencies in major pack-
age managers. 10 2020.

[20] Naohiro Togashi and Vitaly Klyuev. Concurrency in
go and java: Performance analysis. pages 213–216, 04
2014.

[21] Yishu Wang, Ye Yuan, Yuliang Ma, and Guoren Wang.
Time-dependent graphs: Definitions, applications, and
algorithms. Data Science and Engineering, 4:1–15, 12
2019.

[22] Erik Westrup and Fredrik Pettersson. Using the Go Pro-
gramming Language in Practice. PhD thesis, 06 2014.

[23] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gre-
gorio Robles, and Jesus Gonzalez-Barahona. An empir-
ical analysis of technical lag in npm package dependen-
cies. 04 2018.

[24] Markus Zimmermann, Cristian-Alexandru Staicu, Cam
Tenny, and Michael Pradel. Smallworld with high risks:
A study of security threats in the npm ecosystem. In
Proceedings of the 28th USENIX Conference on Secu-
rity Symposium, SEC’19, page 995–1010, USA, 2019.
USENIX Association.

	Introduction
	Background
	Terminology
	Related Work

	Research Questions
	How to design efficiently a timed dependency graph data structure?
	How does time influence a dependency graph data structure?
	What measures of criticality could be used to evaluate this graph data structure?

	Method
	Context
	Data Acquisition
	Graph Creation
	Measures of package criticality

	Results and Validation
	Results
	Validation and Reproducibility

	Responsible Research
	Discussion
	Conclusions and Future Work

