
On-Mesh Bilateral Filtering
Bridging the Gap Between Texture and Object Space

Mihnea Bernevig1

Supervisors: Prof. Dr. Elmar Eisemann1, Mathijs Molenaar1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Mihnea Bernevig
Final project course: CSE3000 Research Project
Thesis committee: Prof. Dr. Elmar Eisemann, Mathijs Molenaar, Jing Sun

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Traditional bilateral filters, effective in 2D image
processing, often fail to account for the 3D struc-
ture of meshes, leading to artifacts in texture fil-
tering. This thesis introduces On-Mesh Bilateral
Filtering, a novel method that adapts the bilateral
filter to work with non-contiguous texture map-
pings by incorporating 3D spatial distances and
face adjacency information into the filtering pro-
cess. The On-Mesh Bilateral Filter combines mesh
surface sampling techniques with heat geodesic
distance calculations to create a geometry-aware
kernel that achieves more accurate and context-
sensitive smoothing operations, respecting both the
mesh topology and texture space properties. This
paper hopes to encourage further research in the
area of geometry-aware texture filters.

1 Introduction
Textures are crucial in digital graphics, particularly for 3D
models used in gaming, film, and virtual reality. They are
essentially images or patterns applied to the surface of a 3D
model to give it color, detail, and a sense of material. Tex-
tures enhance the visual realism and detail of 3D objects,
making them appear more lifelike and engaging by simulat-
ing complex surface qualities such as roughness, glossiness,
and transparency. Unlike simple surface texturing, 3D mod-
els require textures to be mapped through a dedicated texture
space. This non-contiguous texture mapping presents signif-
icant challenges, where adjacent points on the mesh can cor-
respond to distant points in the texture space, and points that
are close in the texture image might map to distant parts on
the mesh.

Traditional bilateral filters, which are designed for 2D im-
age processing, focus solely on signal intensity and spatial
proximity. When these traditional methods are applied to tex-
ture images, the result can often be artifacts or uneven texture
filtering due to the disregard of the mesh’s 3D structure.

This paper introduces On-Mesh Bilateral Filtering, a novel
method that adapts the bilateral filter for use with non-
contiguous texture mappings and accounts for texture warp-
ing. Our approach modifies the traditional bilateral filter to
incorporate 3D spatial distances, crafting a geometry-aware
kernel.

This geometry-aware kernel facilitates more accurate and
context-sensitive smoothing operations, effectively respect-
ing both the topological layout of the mesh and the inherent
properties of the texture space. Current texturing techniques
enable artists to paint directly onto a 3D model. In this sce-
nario, an artist may wish to apply effects, such as a blur filter,
to the painted content. However, existing methods usually
overlook the 3D mesh structure, resulting in inaccurate out-
comes. The On-Mesh Filtering method presented in this pa-
per addresses this issue, ensuring proper application of filters.

The implementation of On-Mesh Bilateral Filtering could
support texture application by enabling a more intuitive and
direct workflow, thereby reducing the time and complexity
involved in preparing 3D models for use.

This paper is structured as follows: The Background sec-
tion summarizes the necessary prior knowledge, including
explanations of the bilateral filter, 3D mesh components,
and texture mapping. The Problem Description section out-
lines the challenges in developing the On-Mesh Bilateral Fil-
ter. The Methodology section details the algorithm and im-
plementation of the On-Mesh Bilateral Filtering. The Re-
sults section presents the findings from applying the filter-
ing method, comparing it with traditional methods, and dis-
cussing performance. Finally, the Responsible Research and
Conclusions and Future Work sections address the trans-
parency of the research process and potential areas for future
investigation.

2 Background
The following section will provide a summary of the prior
knowledge necessary for grasping the content of this paper.
The purpose and workings of the bilateral filter will be ex-
plained, followed by an outline of the components of a 3D
mesh, as well as a brief description of texture mapping of 3D
meshes.

2.1 The Bilateral Filter
The bilateral filter is a type of edge-preserving, non-linear,
noise-reducing filter [1]. It achieves its edge-preserving qual-
ity by considering both the distance between pixels as well
as the difference in their intensity. This filtering method was
originally developed by Tomasi and Manduchi, in 1998, for
denoising images while retaining the sharpness of features
[2]. The bilateral filter can be described by the following for-
mula:

Ifiltered(x) =
1

Wp

∑
xi∈Ω

I(xi)·fr(∥I(xi)−I(x)∥)·gs(∥xi−x∥)

where:

• Ifiltered(x) is the intensity of the filtered image at location
x.

• Ω represents the neighborhood around x.

• I(xi) is the intensity of the input image at the location
xi.

• fr is the range kernel for smoothing differences in in-
tensities. This is typically a Gaussian function which
depends on the intensity difference.

• gs is the spatial kernel for smoothing differences in co-
ordinates, also typically a Gaussian function.

• Wp is a normalization factor defined as Wp =∑
xi∈Ω fr(∥I(xi) − I(x)∥) · gs(∥xi − x∥), which en-

sures the filter weights sum to one.

The Gaussian function, often referred to as a normal dis-
tribution when used in probability theory, is defined by the
formula:

G(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2

where:

1



• µ is the mean or expectation of the distribution (and also
its peak).

• σ is the standard deviation, which determines the width
of the bell curve.

• σ2 is the variance.

The inclusion of pixel intensity into the weight calculation
allows for the blurring of areas with similar intensity while
preserving the sharp boundaries where there are significant
intensity differences. This feature is particularly valuable in
maintaining the distinct edges and textures of the subject, pre-
venting the blending of distinct features into the background.

2.2 3D Meshes
A 3D mesh is a geometric data structure used in computer
graphics to represent the surface of a 3D object as a collection
of vertices, edges, and faces. In a mesh:

• A vertex is a point in 3D space, characterized by its co-
ordinates (x, y, z).

• An edge is a line segment connecting two vertices.

• A face is a flat surface bounded by edges, typically tri-
angles or quadrilaterals in most meshes.

Meshes are central to the field of computer graphics and are
crucial for the simulation of realistic 3D environments and
objects in virtual and augmented reality, video games, and
CGI in films.

2.3 Texture Mapping of 3D Meshes
Texture mapping is the process of applying a 2D image, or
texture, to the surface of a 3D mesh. This technique enhances
the visual detail of a 3D model without increasing its geo-
metric complexity. The key to effective texture mapping is
the creation of a UV map, which is a flat representation of the
surface of the 3D model:

• A UV map assigns each vertex in the faces of a mesh a
coordinate in the 2D texture space (u, v), which corre-
sponds to a position in the texture image. This will then
create a mapping of the faces onto the texture space.

• These UV coordinates ensure that the texture aligns cor-
rectly with the model, allowing models to appear more
detailed and realistic.

• The shape of the face on the 3D model and the shape
of the face mapping onto the texture do not necessarily
correspond.

The proposed On-Mesh Bilateral Filtering method ad-
dresses the gap between texture and object space by integrat-
ing mesh geometry and texture information into a cohesive
filter.

3 Problem description
In this section, we delve into the specific challenges involved
in developing the On-Mesh Bilateral Filter. As explained in
the previous sections, the bilateral filter functions by comput-
ing a weighted average over the neighbors of a pixel. This
weight then depends on the spatial distance between the pixel

and its neighbor, as well as on the difference in intensity be-
tween the two. Therefore, to create the On-Mesh Bilateral
Filter, we need to answer three questions:

1. How can we determine the neighbors of a texel?
2. How can we calculate the spatial distance between a

texel and its neighbor?
3. How can we calculate the intensity difference between a

texel and its neighbor?
Answering question 3 is trivial; we can simply take the

intensity values directly from the texture image and apply the
same weight function.

Question 2, concerning the calculation of spatial distance,
initially seems as though it might be resolved using simple
Euclidean distance. However, upon closer examination, it be-
comes evident that a more complex distance calculation is
required, as we need to consider the distance traveled on the
surface of the mesh. The exact reasoning behind this is best
described with an example:

Think of marking two points on a piece of paper, one at the
header of the paper and one in its footer, the distance between
these two points is the length of a straight line drawn between
them. Now, imagine folding this piece of paper at the halfway
mark between the two points, bringing them closer together in
Euclidean space. From an image processing perspective, this
shift should not have any effect on the influence the two points
would have on one another, but using Euclidean distance for
this calculation would misrepresent this. The true distance
between these two points should still be considered as the
length of the line drawn between them when the paper is flat.

This kind of distance calculation is referred to as geodesic
distance. Several methods to compute this distance exist,
such as Fast Marching [3] or the algorithm by Mitchell et al.
for computing exact polyhedral distance [4]. This project will
use Crane’s Heat Geodesic Distance algorithm [5]. This algo-
rithm was chosen for its ability to compute geodesic distances
rapidly, maintaining comparable accuracy to other methods.
It is important to note that this algorithm is significantly faster
only if the input mesh or structure remains unchanged, as it
performs a set of precalculations that then allow it to quickly
compute geodesic distances from any source point to all other
points.

Question 1 can seemingly be addressed by mapping the
centers of all texels to corresponding points on the surface
of the mesh. The neighbors of a texel are then defined as
those whose centers fall within a specified kernel, meaning
that the points are geodesically closer than a predefined max-
imum distance. Figures 1 and 2 show a texture image with
UV mapping and the mesh the texture is mapped to respec-
tively. In Figure 2, texel centers have been marked in red.
These figures show the inherent issue with this approach: it
does not account for the change in texel density.

A better sampling method would generate sample points
uniformly across the entire surface of the mesh. To take ad-
vantage of the speed-up provided by the Heat Geodesic Dis-
tance algorithm, these samples should be generated once for
the whole mesh, rather than for each texel center. The al-
gorithm for Bridson’s algorithm for Fast Poisson Disk Sam-
pling in Arbitrary Dimensions [6] provides such a sampling

2



method, with the caveat that the number of samples on any
face should be greater or equal to the texel density of the face.
In short, each texel should be sampled at least once, with texel
density being kept constant across the entire mesh. Figure 3
shows the mesh along with the samples generated by the Pois-
son Disk Sampling algorithm. Although the sample count is
higher in this instance, it is important to see that sample den-
sity remains consistent across the entire mesh, although the
underlying texture may have been stretched.

Figure 4 shows an example of a dense point cloud gener-
ated with Fast Poisson Disk Sampling along with a visualiza-
tion of geodesic distance from a source point.

Figure 1: 4px by 4px image with UV mapping of a 2 face planar
mesh.

Figure 2: Top-down view of a 2 face planar mesh, with stretched
texture. Texel centers are marked in red.

Figure 3: Top-down view of a 2 face planar mesh. Samples gener-
ated by Poisson Disk Sampling algorithm marked in yellow. Mini-
mum distance between samples set to 0.1 units.

4 Methodology
The following section will describe the algorithm and im-
plementation of On-Mesh Bilateral Filtering. The section
is divided into three main parts: an overview of the algo-
rithm, a detailed description of the implementation, and an

overview of the testing data utilized to evaluate the efficacy
of the method.

4.1 Algorithm Overview
The algorithm can be split into three main parts, namely:

1. Mesh sampling: Generating uniform samples across the
surface of the mesh, with sample density being kept con-
stant across all mesh faces.

2. Texel position mapping: For each texel, map its center
to the surface of the mesh. These will be used as sources
in the following step.

3. Application of the Bilateral Filter: For each of the previ-
ously generated sources, calculate geodesic distances to
sample points, calculate intensity differences, and apply
the bilateral filter.

4.2 Implementation Details
The implementation of the On-Mesh Bilateral Filtering was
carried out using C++ with the Geometry-Central [7] li-
brary for mesh sampling and geodesic distance calculation,
Polyscope [8] for UI and rendering, and the OpenCV [9] li-
brary for image processing operations. The current imple-
mentation only works with manifold meshes, as it is a require-
ment of Geometry-Central’s Poisson disk sampling algorithm
implementation.

(a) Point Cloud generated from
Cube mesh. 98065 sample
points, minimum distance be-
tween samples of 0.006 units

(b) Geodesic Distance visual-
ization on Point Cloud. Points
beyond 0.28 units are marked in
deep red

Figure 4: Comparison of Point Cloud visualizations. (a) shows the
Point Cloud generated from a Cube mesh with detailed sample in-
formation, and (b) shows the Geodesic Distance visualization with
points beyond 0.28 units marked in deep red.

Mesh Sample Generation
The Poisson Disk Sampling1 algorithm, implemented in
Geometry-Central, generates samples on the surface of a
mesh with a minimum geodesic distance specified by the
user. This algorithm ensures that the samples are evenly dis-
tributed, avoiding clusters and gaps.

After generating the samples, the UV coordinates for each
sample point are determined based on the UV mapping of the

1https://geometry-central.net/surface/algorithms/surface sampling/

3

https://geometry-central.net/surface/algorithms/surface_sampling/


mesh face where each sample landed. This results in a point
cloud with each sample point tied to its corresponding UV
coordinates.

To ensure that enough sample points are generated to sam-
ple each texel at least once, the user should provide a min-
imum distance small enough that the minimum density of
sample points on a face is greater or equal to the maximum
density of texels on any face of the mesh.

Subfigure 4a shows the point cloud generated after sam-
pling a simple cube mesh, with extreme vertices at (−1,−1)
and (1, 1). Using a minimum distance between samples of
0.006 units creates around 98 thousand sample points, with a
consistent sample density on all faces of the mesh.

Texel Position Mapping
As mentioned in Section 2, mesh faces are mapped to a tex-
ture image using UV coordinates to ensure accurate corre-
spondence between the 3D mesh and the 2D texture. The
texels that will appear on the mesh can then be found by cal-
culating bounding boxes from the UV coordinates of each
face.

Bounding boxes are generated by examining the UV coor-
dinates of each mesh face. For each face, the minimum and
maximum UV coordinates are determined, forming a rectan-
gle (bounding box) that encompasses the face. This rectangle
ensures that all texels within the face’s area are considered
during processing.

Within each bounding box, the algorithm iterates over the
texels and checks if they lie within the triangle formed by the
UV coordinates of the mesh face. If a texel is within a trian-
gle, the corresponding 3D position on the mesh is calculated.
This 3D position will then be used as a source point in the
following step of the algorithm.

The fact that all texels can be processed independently
can be leveraged to increase performance by utilizing multi-
threading. Each bounding box can be handed to a thread to
be processed, and then all results combined to form the final
texture image.

In cases where bounding boxes have a very large area, or
there are not enough bounding boxes to occupy all threads,
the bounding boxes are subdivided to ensure work is fairly
split. When dividing a bounding box, the algorithm splits it
either vertically or horizontally, depending on which dimen-
sion is larger. This process ensures that no thread does a dis-
proportionate amount of work while the others are idling.

Application of the Bilateral Filter
For each of the source points computed in the previous step,
the closest point in the point cloud is identified. Next, the
geodesic distance from this closest point to all other sam-
ple points on the mesh is calculated. This is done using
Geometry-Central’s implementation of the Heat Geodesic
Distance calculation for Point Clouds.2

For each sample point, the intensity is retrieved from the
texture image using the UV coordinates computed earlier.
The weights for both spatial proximity and color similarity
are calculated. The spatial weight is based on the geodesic

2https://geometry-central.net/pointcloud/algorithms/heat solver/

distance, while the range weight is determined by the color
difference between the texel and the current pixel.

These weights are used to apply the intensity change. The
pixel color is weighted by both spatial and color weights and
added to an accumulated color value. The total weight is also
updated to reflect the contribution of this pixel.

Finally, after considering all relevant points, the accumu-
lated color is divided by the total weight to compute the final
color for the texel. The resulting color values are clamped
to ensure they fall within valid limits, preventing any out-of-
range values.

This process is repeated for each source point until all tex-
els mapped to the mesh have been filtered.

Subfigure 4b shows a visualization of the geodesic distance
calculation from a source point. Points marked in red are
beyond the maximum distance specified by the user and will
not be considered for the filtering process.

5 Results and Discussion
As part of this project, both Bilateral and Gaussian filters have
been implemented, with the Gaussian filter being a compo-
nent of the Bilateral filter. This section will present and dis-
cuss the results of applying both Bilateral and Gaussian fil-
tering using the algorithm described in Section 4. Some of
the results that will be discussed will feature the output of the
Gaussian filter, as those results much more clearly show the
benefits of using the On-Mesh Filtering technique, rather than
simply applying traditional filtering.

5.1 Testing Data
As previously mentioned, the amount of mesh samples gen-
erated needs to increase along with texture image resolution.
An increase in mesh sample count translates to an increase in
the time required to compute the geodesic distances required
for the filtering process.

This has made it impractical, especially in the short time
frame of the project, to use high-resolution textures for test-
ing. Test data, therefore, consisted of low-resolution textures,
with images of at most 300 x 300 px resolution, and various
meshes found on the Sketchfab repository [10], as well as
meshes and textures created by the researcher.

All authors of both the meshes and textures can be found
credited in the references section and wherever their assets
were used.

5.2 Filtering Output
In this section, we explore the results of applying various
filtering techniques to 3D meshes. The primary focus is
on demonstrating the differences in performance and visual
quality between traditional Gaussian blur, On-Mesh Gaus-
sian Filtering, and On-Mesh Bilateral Filtering. The tradi-
tional Gaussian filter implementation used for the comparison
images is the one available in the GNU Image Manipulation
Program (GIMP) [11].

Filtering a Planar Mesh
Applying On-Mesh Gaussian or Bilateral Filtering to a tex-
ture mapped onto a planar mesh with the same width-to-
height ratio as the texture image yields results similar to tra-

4

https://geometry-central.net/pointcloud/algorithms/heat_solver/


ditional filtering methods. This is because a planar mesh that
preserves the texture image’s aspect ratio does not introduce
any new features that the filter needs to account for. An ex-
ample of such a mesh can be seen in Figure 5a. However,
if, as in Figure 5b, the mesh is stretched or compressed, dis-
torting the texture, the On-Mesh filter will produce a different
output.

(a) Square mesh that
preserves the texture
image aspect ratio.

(b) Stretched mesh that
distorts the texture im-
age.

Figure 5: Comparison of square and stretched meshes in relation to
texture image preservation. The square mesh maintains the original
aspect ratio of the texture image, while the stretched mesh distorts
it.

Figure 6 demonstrates the output differences when using
different meshes as input, as well as a comparison of output
between traditional Gaussian filtering and On-Mesh Gaussian
filtering. Differences between Figure 6a and Figure 6b, tradi-
tional Gaussian and On-Mesh Gaussian respectively, are min-
imal, aside from a slight color difference that the traditional
Gaussian filter introduced. Figure 6c demonstrates the output
difference when a mesh stretches the applied texture, such as
in Figure 5b. More detail is preserved where the texel area
was increased, while the level of detail drops towards the top
left corner, where texels were instead squished and distorted.

Filtering a Cube Mesh
When applying Gaussian blur over an image, one can observe
a bleeding effect across the edges defined by the image colors.
On a cube mesh with differently colored faces, it would be
natural to observe this effect of color seeping over all edges
of the face. Applying a Bilateral blur would then remove this
color bleeding across the edges.

As a first example, the texture shown in Figure 7 has been
mapped to a cube mesh. Larger versions of the images dis-
cussed in this example can be found in Appendix A.2, along
with the parameters used for generating the output images.
The de-noising capability of both the On-Mesh Gaussian and
Bilateral filters appears to be on par with that of the traditional
Gaussian filter on this particular image.

Figure 8 shows a comparison of the results of applying dif-
ferent filtering techniques. Figure 8a shows the mesh with the
original noisy texture. Figure 8b shows the mesh and texture
after a traditional Gaussian filter has been applied. Expected
color bleeding can be seen between the orange and blue faces,
but it can also be noticed that the white background is bleed-
ing between the blue and green faces. Since traditional Gaus-
sian filtering ignores the geometry of the model, the blue and

(a) Texture image
blurred with traditional
Gaussian Blur.

(b) Texture mapped to
square mesh, blurred
with On-Mesh Gaus-
sian Filter.

(c) Texture mapped to a
stretched mesh, blurred
with On-Mesh Gaus-
sian Filter.

Figure 6: Comparison of traditional Gaussian blur and On-Mesh
Gaussian Filter applied to a planar mesh and a stretched mesh.

green faces do not influence one another. In contrast, Figure
8c shows the expected filtering behavior, with color bleeding
between all faces of the cube. Applying On-Mesh Bilateral
Filtering would remove this color bleeding and produce a de-
noised texture, as in Figure 8d.

Figure 7: Noisy texture of cube mesh. 144 x 192 px.

Filtering a Complex Mesh
The output of filtering on a more complex mesh can be seen
in Figure 9. This mesh and texture were created by Onekro,
with the model being titled Chest Pixelart [12].

Meshes can be composed of multiple disconnected sub-
structures, as in the case of the Chest Pixelart. Since this

5



(a) Cube mesh with
noisy texture image

(b) Texture blurred with
traditional Gaussian
Blur

(c) Texture blurred with
On-Mesh Gaussian Fil-
ter

(d) Texture blurred with
On-Mesh Bilateral Fil-
ter

Figure 8: Comparison of different filtering techniques applied to a
noisy texture image mapped to a cube mesh.

algorithm stores generated samples in a Point Cloud without
considering the surface from which they were sampled, it may
treat two disconnected substructures as connected if they are
very close to each other, even if they do not touch. This can
also happen in cases where two faces of the same structure sit
very close to each other, without actually being connected.

In the case of the Chest Pixelart mesh, seen with its orig-
inal texture image in Figure 9a, the lid of the chest and the
actual chest body are such disconnected structures. Figure
9b demonstrates that although the source point for geodesic
distance calculation is on the bottom structure, points on the
top structure are not perceived as a separate cluster. This is
beneficial in this example, as it would be expected that the
blurring effect is continuous across the outer side of the chest
since they represent the same material. Based on the partic-
ular mesh used as input, however, this might produce unin-
tended results, such as when the arms of a 3D character sit
very close to their body. This can easily be fixed by distanc-
ing the affected areas from one another.

Nevertheless, the filtering method described in this paper
produces the expected output for this mesh, with the output
of Gaussian filtering seen in Figure 9c and that of the Bilat-
eral filter in Figure 9d. A particular feature of this mesh is
that its bottom structure is bucket-shaped, as the chest has an
inner volume where objects might be stored. The Point Cloud
Heat Geodesics algorithm handles this feature well, with the
shortest path to the inside volume from the outside being over
the lip of the chest, rather than simply jumping through the
chest’s side.

(a) Chest mesh with un-
filtered texture image.

(b) Geodesic distance
visualization.

(c) Texture blurred with
On-Mesh Gaussian Fil-
ter

(d) Texture blurred with
On-Mesh Bilateral Fil-
ter

Figure 9: Visualization of filtering output and geodesic distance
calculation on Chest Pixelart mesh. Mesh and textures created by
Onekro.

5.3 Observations
The On-Mesh Gaussian and Bilateral Filter implementations
perform as expected and have similar de-noising capabilities
as their traditional counterparts, provided a sufficient number
of mesh samples are generated. The sampling approach cor-
rectly adapts to the mesh geometry, and the geodesic distance
calculation ensures accurate spatial weights are used in the
filtering process. The On-Mesh Gaussian filter exhibits the
behavior that is expected, with color bleeding across edges of
differently colored mesh faces. The On-Mesh Bilateral filter
correctly removes this artifact, preserving hard edges across
the texture image.

The performance of the filter implementation is limited,
however, as, to ensure accurate filtering behavior, a large
number of mesh samples have to be generated. This num-
ber of mesh samples required grows considerably as texture
resolution increases, making it impractical for this implemen-
tation to be used for meshes that use a high-resolution tex-
ture. This limitation is not present in the aforementioned tra-
ditional 2D image filters, as each of their kernel’s samples
has the same size. On-Mesh filtering presented this challenge
in that texels, although having the same sizes on the original
texture image, could have greatly varying sizes after being
mapped on the mesh, with users expecting that texels with
greater surface area on the mesh would be less blurred or have
a greater influence on the rest of the texture image. The ap-
proach discussed in this paper trades performance to ensure
an accurate and expected filtering output.

6 Responsible Research
The source code used in this research is publicly available
and can be accessed by navigating to the author’s GitHub.
[13] The repository includes all scripts, libraries, and depen-
dencies required to replicate the results presented in this pa-
per. For ease of access, the code is organized into directo-

6



ries based on functionality and accompanied by a detailed
README file that provides instructions for both installation
and usage.

The author believes that transparent code is essential for the
reproducibility and verification of research findings. There-
fore, the source code used to generate results for this research
contains clear and understandable comments on all relevant
methods. Furthermore, all test data has been collected from
publicly available repositories, and the exact parameters used
when generating results seen in this paper can be found in Ap-
pendix A. This approach ensures that the research process is
fully transparent and that others can accurately replicate and
verify the findings.

7 Conclusions and Future Work
The research presented in this paper explores the develop-
ment and implementation of On-Mesh Bilateral Filtering, a
novel approach designed to bridge the gap between texture
and object space. Traditional filtering methods, while effec-
tive in 2D image processing, fall short when applied to tex-
tures mapped onto 3D meshes due to their disregard for the
underlying geometric structure of the mesh. By incorporat-
ing both 3D spatial distances and face adjacency information,
the On-Mesh Bilateral Filter offers a geometry-aware solu-
tion that enhances the accuracy and visual quality of texture
filtering on 3D models.

The On-Mesh Bilateral Filtering method presented in this
research provides a robust framework for improving texture
filtering on 3D meshes. While challenges remain, particu-
larly in optimizing performance for high-resolution textures,
the findings of this study lay a solid foundation for future ad-
vancements in this field. Continued research and develop-
ment will be essential to fully realize the potential of On-
Mesh filtering techniques and their applications in digital
graphics.

7.1 Limitations
One of the main limitations of this research project was the
great computational power required for testing the filter im-
plementation on textures with high texel resolutions. Even
with the performance improvements achieved by Crane [5]
through his Heat Geodesic Distance algorithm, computing
geodesic distances on a dense point cloud for each texel in
images with over 3 million pixels is currently unfeasible with
the existing filter implementation.

To the author’s knowledge, there is a notable lack of pre-
vious research in the area of model geometry-aware texture
filters. This absence of prior work meant there were no estab-
lished guidelines or methods to follow for developing an ef-
fective sampling strategy. Consequently, a significant portion
of the research time was spent exploring sampling methods
that ultimately proved to be unproductive.

The short time frame for completing the project further
compounded these limitations, as CSE3000 imposed a strict
ten-week deadline for project completion. This constrained
timeframe limited the scope of the research and the extent to
which potential solutions could be explored and refined.

7.2 Further Research
Future research on this particular topic can focus on improv-
ing the performance of the On-Mesh Bilateral Filter. The
main performance limitations come from the high number of
samples that need to be generated, as well as from the fact
that the entire sample set must be taken into account when
calculating geodesic distance

A possible approach that may achieve this would be to
only compute the geodesic distance calculation for a subset
of all the samples generated, and instead interpolating the dis-
tance to all other samples using triangulation techniques. This
could allow for an increase in sample density while simulta-
neously reducing computation time, leading to a both more
accurate and faster method.

Another method that could increase performance could in-
volve creating smaller point clouds out of the entire sampled
set. One could, for each face of the mesh, gather all the points
in the cloud that are interesting for the entire face, then com-
pute the geodesic distance calculation for the subset of sam-
ples that were gathered. This subset could be generated by
taking random samples on the edges of each face, calculating
the Euclidean distance from these samples to all other faces,
and including all mesh sample points that fall within a certain
distance. While this method could improve performance, it
will also increase the number of precomputations required for
the heat geodesic distance calculation, meaning that whether
this will increase overall performance is uncertain.

In conclusion, while the project made strides in exploring
On-Mesh Texture Filtering methods, future research should
focus on optimizing performance, particularly in handling
high-resolution textures. Additionally, developing more ef-
ficient sampling methods and leveraging advancements in
computational techniques could address the current limita-
tions and pave the way for more practical implementations.

References
[1] F. Banterle, M. Corsini, P. Cignoni, and R. Scopigno,

“A low-memory, straightforward and fast bilat-
eral filter through subsampling in spatial do-
main,” Computer Graphics Forum, vol. 31, no. 1,
pp. 19–32, February 2012. [Online]. Available:
http://vcg.isti.cnr.it/Publications/2012/BCCS12

[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray
and color images,” in Sixth International Conference
on Computer Vision (IEEE Cat. No.98CH36271), 1998,
pp. 839–846.

[3] R. Kimmel, “Fast Marching Methods for Comput-
ing Distance Maps and Shortest Paths,” Lawrence
Berkeley National Laboratory, 2 1996. [On-
line]. Available: https://escholarship.org/content/
qt7kx079v5/qt7kx079v5.pdf?t=p21n7l

[4] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou,
“The discrete geodesic problem,” SIAM journal on
computing, vol. 16, no. 4, pp. 647–668, 8 1987.
[Online]. Available: https://doi.org/10.1137/0216045

[5] K. Crane, C. Weischedel, and M. Wardetzky, “The heat
method for distance computation,” Commun. ACM,

7

http://vcg.isti.cnr.it/Publications/2012/BCCS12
https://escholarship.org/content/qt7kx079v5/qt7kx079v5.pdf?t=p21n7l
https://escholarship.org/content/qt7kx079v5/qt7kx079v5.pdf?t=p21n7l
https://doi.org/10.1137/0216045


vol. 60, no. 11, pp. 90–99, Oct. 2017. [Online].
Available: http://doi.acm.org/10.1145/3131280

[6] R. Bridson, “Fast Poisson disk sampling in arbitrary
dimensions,” University of British Columbia, 8 2007.
[Online]. Available: https://doi.org/10.1145/1278780.
1278807

[7] N. Sharp, K. Crane et al., “Geometrycentral: A modern
c++ library of data structures and algorithms for geom-
etry processing,” https://geometry-central.net/, 2019.

[8] N. Sharp et al., “Polyscope,” 2019, www.polyscope.run.
[9] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal

of Software Tools, 2000.
[10] Sketchfab, “Sketchfab - The best 3D viewer on the

web.” [Online]. Available: https://sketchfab.com/
[11] “GIMP.” [Online]. Available: https://www.gimp.org/
[12] Onekro, “Chest pixelart,” 2021, licensed un-

der Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/). [On-
line]. Available: https://skfb.ly/onK9F

[13] M. Bernevig, “On-mesh bilateral filter,” https://github.
com/MBernevig/On-Mesh-Bilateral-Filter, 2024.

A Example Images and Parameters
The following subsections contain larger images of the exam-
ples discussed in the paper, along with the parameters used to
generate each output.

A.1 Example 1: Planar Meshes
This subsection presents the parameters used for generating
the images seen in the example featuring planar meshes.

1. Figure 6a, texture processed using GIMP’s Gaussian
Blur:

• Size X = 7
• Size Y = 7
• Filter mode = Auto
• Abyss Policy = Clamp

2. Figure 6b, texture blurred using an On-Mesh Gaussian
Filter with parameters:

• rCoef = 0.006
• Spatial Sigma = 0.2
• Maximum Distance = 0.5

3. Figure 6c, texture blurred using an On-Mesh Gaussian
Filter with parameters:

• rCoef = 0.004
• Spatial Sigma = 0.2
• Maximum Distance = 0.5

A.2 Example 2: Cube Mesh
This appendix presents high-resolution images of cube
meshes processed with various textures and filters. Below is
a detailed enumeration of the parameters used for generating
each output:

1. Figure 10: Application of a noisy texture on the cube
mesh.

2. Figure 11: Cube mesh texture processed using GIMP’s
Gaussian Blur filter with parameters:

• Size X = 1.53
• Size Y = 1.53
• Filter mode = Auto
• Abyss Policy = Clamp

3. Figure 12: Cube mesh texture blurred using an On-Mesh
Gaussian Filter with parameters:

• rCoef = 0.01
• Spatial Sigma = 0.2
• Maximum Distance = 0.5

4. Figure 13: Cube mesh texture blurred using an On-Mesh
Bilateral Filter with parameters:

• rCoef = 0.01
• Spatial Sigma = 0.2
• Maximum Distance = 0.5
• Color Sigma = 50

A.3 Example 3: Chest Pixelart
This subsection presents the parameters used when creating
the images shown in the third example discussed, Chest Pixe-
lart. This mesh and its textures were created by Onekro. [12]

1. Figure 14: Chest mesh with original texture image.
2. Figure 15: Chest mesh with texture blurred using an On-

Mesh Gaussian Filter with parameters:
• rCoef = 0.01
• Spatial Sigma = 0.3
• Maximum Distance = 0.6

3. Figure 16: Chest mesh texture blurred using an On-
Mesh Bilateral Filter with parameters:

• rCoef = 0.01
• Spatial Sigma = 0.3
• Maximum Distance = 0.6
• Color Sigma = 20

8

http://doi.acm.org/10.1145/3131280
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1145/1278780.1278807
https://geometry-central.net/
https://sketchfab.com/
https://www.gimp.org/
https://skfb.ly/onK9F
https://github.com/MBernevig/On-Mesh-Bilateral-Filter
https://github.com/MBernevig/On-Mesh-Bilateral-Filter


Figure 10: Cube mesh with noisy texture.

Figure 11: Cube mesh blurred using GIMP’s Gaussian Blur filter.

Figure 12: Cube mesh blurred using On-Mesh Gaussian Filter.

Figure 13: Cube mesh blurred using On-Mesh Bilateral Filter.

9



Figure 14: Chest mesh with unfiltered texture image.

Figure 15: Texture blurred with On-Mesh Gaussian Filter

Figure 16: Texture blurred with On-Mesh Bilateral Filter

10


	Introduction
	Background
	The Bilateral Filter
	3D Meshes
	Texture Mapping of 3D Meshes

	Problem description
	Methodology
	Algorithm Overview
	Implementation Details
	Mesh Sample Generation
	Texel Position Mapping
	Application of the Bilateral Filter


	Results and Discussion
	Testing Data
	Filtering Output
	Filtering a Planar Mesh
	Filtering a Cube Mesh
	Filtering a Complex Mesh

	Observations

	Responsible Research
	Conclusions and Future Work
	Limitations
	Further Research

	Example Images and Parameters
	Example 1: Planar Meshes
	Example 2: Cube Mesh
	Example 3: Chest Pixelart


