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Quid Pro Quo in Streaming Services: Algorithms
for Cooperative Recommendations

Dimitra Tsigkari , George Iosifidis , and Thrasyvoulos Spyropoulos

Abstract—Recommendations are employed by Content
Providers (CPs) of streaming services in order to boost user
engagement and their revenues. Recent works suggest that
nudging recommendations towards cached items can reduce
operational costs in the caching networks, e.g., Content Delivery
Networks (CDNs) or edge cache providers in future wireless
networks. However, cache-friendly recommendations could
deviate from users’ tastes, and potentially affect the CP’s revenues.
Motivated by real-world business models, this work identifies the
misalignment of the financial goals of the CP and the caching
network provider, and presents a network-economic framework
for recommendations. We propose a cooperation mechanism
leveraging the Nash bargaining solution that allows the two
entities to jointly design the recommendation policy. We consider
different problem instances that vary on the extent these entities
are willing to share their cost and revenue models, and propose
two cooperative policies, CCR and DCR, that allow them to
make decisions in a centralized or distributed way. In both
cases, our solution guarantees reaching a fair and Pareto optimal
allocation of the cooperation gains. Moreover, we discuss the
extension of our framework towards caching decisions. A wealth
of numerical experiments in realistic scenarios show the policies
lead to significant gains for both entities.

Index Terms—Recommendations, caching, on-demand
streaming services, network economics.

I. INTRODUCTION

A. Background and Motivation

R ECOMMENDER systems (RSs) permeate today’s on-
demand streaming services such as Netflix, Disney+, etc.;

and are affecting substantially the content requests issued by
their subscribers. In Netflix, for example, it is estimated that
80% of the requests stem from the recommendations that are
offered to its users [2]. Indeed, by proposing contents that are

Manuscript received 22 February 2022; revised 15 January 2023; accepted
23 January 2023. Date of publication 26 January 2023; date of current version 8
January 2024. Part of this work appeared in the proceedings of the IEEE Global
Communications Conference (GLOBECOM) 2021 [DOI: 10.1109/GLOBE-
COM46510.2021.9685088]. This work was conducted while Dimitra Tsigkari
and Thrasyvoulos Spyropoulos were with Eurecom, Biot, France and it was
supported in part by French National Research Agency with the “5C-for-5G”
JCJC project under Grant ANR-17-CE25-0001 and in part by H2020 MonB5G
project under Grant 871780. This publication also emanated from research
conducted with the financial support of the European Commission under Grant
101017109 (DAEMON). (Corresponding author: Dimitra Tsigkari.)

Dimitra Tsigkari and George Iosifidis are with the Delft University of
Technology, 2628 CD Delft, The Netherlands (e-mail: d.tsigkari@tudelft.nl;
g.iosifidis@tudelft.nl).

Thrasyvoulos Spyropoulos is with the Technical University of Crete, 731 00
Chania, Greece (e-mail: spyropoulos@tuc.gr).

Digital Object Identifier 10.1109/TMC.2023.3240006

relevant to their users’ interests, Content Providers (CPs) can
increase the viewing activity in their platforms, reduce the user
churn, and eventually boost their revenues [2]. Therefore, it is
not surprising that CPs comprehend the business value of these
systems and invest research and financial resources to improve
their accuracy.

At the same time, recommendations can be leveraged by
content caching networks to steer user requests towards nearby-
cached contents. These caching networks are either today’s
traditional Content Delivery Networks (CDNs) or edge cache
providers in future wireless architectures (we will use, hereafter,
the term CDN to imply any such caching network provider). The
recently-coined terms of cache/network-friendly recommenda-
tions capture exactly this idea: recommendations aiming to re-
duce the CDNs’ routing expenses without deviating irreparably
from the users’ viewing preferences. This is a promising area
of research with recent works proposing cache-aware recom-
mendation policies, e.g., [3], [4], and the joint optimization of
caching and recommendation decisions, e.g., [5], [6], [7]. This
idea not only can reduce the operating and retrieval costs of
CDNs but also can improve the service quality for the users by
achieving smaller viewing start-up delays and/or higher bitrates
of the streamed content [6].

Clearly, RSs have already become a powerful tool affect-
ing all key stakeholders in the content distribution ecosystem.
And, as their influence increases further, it is imperative to
ensure they will foster synergies instead of creating misaligned
incentives. Specifically, a hitherto unexplored aspect in this
context is the tension between CPs and CDNs when it comes
to recommendations: the cache-friendly recommendations of
CDNs may deviate from the users’ interests and thus affect
negatively the CPs’ revenues; while the CPs’ recommendations
might induce costly data transfers for the CDNs. This problem
is more pronounced in the case where Over-The-Top (OTT) CPs
lease CDN infrastructure to deliver their services, but appears
also in content streaming platforms with self-owned caching
infrastructure.

The goal of this work is to investigate this new problem by:
1) understanding and modeling the root causes of the CP’s and
CDN’s potential conflicts when it comes to recommendations;
2) proposing a cooperation framework to enable their agree-
ment; and 3) designing algorithms for realizing this coordination
based on the information the two entities want to disclose.
The core of our proposal is the following simple and practical
idea: the CDN charges lower content delivery fees to the CP
when the latter agrees to tune its recommendations towards
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See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 30,2024 at 09:05:33 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8729-4475
https://orcid.org/0000-0003-1001-2323
mailto:d.tsigkari@tudelft.nl
mailto:g.iosifidis@tudelft.nl
mailto:spyropoulos@tuc.gr


1754 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 2, FEBRUARY 2024

Fig. 1. The CP and CDN cooperate by agreeing on the recommendations the
users receive. The incentives of the cooperation are provided by the reduced
price the CP is charged for the content delivery and the resulting increase in the
number of cache hits that leads to lower retrieval costs for the CDN.

cached contents. This discount will balance the CP’s expected
viewing gains with the CDN’s induced savings on retrieval
costs. Devising these cooperative recommendations is a new and
highly non-trivial problem whose nature and complexity cannot
be properly handled by existing approaches for cache-friendly
recommendations. Such incentive-compatible recommendation
policies have the potential to revolutionize streaming platforms,
in the same way that the collaboration of ISPs and CDNs changed
the scenery of content distribution, see [8] and references cited
therein.

B. Methodology and Contributions

Our proposal relies on a rigorous game-theoretic framework
where we model the CP-CDN cooperation as a bargaining
problem [9]. Our starting point and baseline will be a scenario
where the CP recommends contents based on its expected rev-
enue (and/or the users’ interests) and the CDN makes caching
decisions without any prior knowledge of the recommendations
and how they shape content requests. On this basis, the CDN
proposes to the CP a price discount for delivering its contents,
in exchange for tweaking the recommendations towards already-
cached items (see Fig. 1). In contrast to state-of-the-art cache-
friendly recommendations or joint caching-recommendation
schemes, this price discount provides a concrete incentive for
the CP to adjust the recommendations the users receive. This
bargaining problem is formulated in a way that it leads to a
Pareto optimal and proportionally fair split of the cooperation
gains, which is also incentive-compatible based on the Nash
bargaining axioms.

To the best of our knowledge, this is the first work proposing
the cooperation of the CP and CDN on the grounds of recom-
mendations. In summary, the contributions of this work are the
following:

� It identifies and models the new problem of mis-
aligned incentives among the CP and CDN regarding the
recommendations offered to users. The employed system
model is motivated by real-world business cases regarding
the two entities’ decision mechanisms and revenue models.

� It formulates a rigorous bargaining problem for addressing
the trade-off between recommendation-induced revenues
for the CP and retrieval costs for CDN in streaming ser-
vices. The problem solution will allow them to devise
the cooperative recommendations while splitting fairly the
gains.

� It proposes the Centralized Cooperative Recommenda-
tions (CCR) algorithm for the scenario where the two
entities share the necessary information regarding their
cost/revenue functions with a third party that solves the
bargaining problem in a centralized fashion.

� It proposes the Distributed Cooperative Recommenda-
tions (DCR) algorithm for the scenario where the CP and
CDN have undisclosed private information. This leads to
a distributed bargaining solution where the CP and CDN
solve their own problem instances while being oblivious
to each other’s private information. The two entities co-
ordinate through lightweight signaling that drives them
eventually to the bargaining equilibrium.

� It discusses how the presented framework can be extended
to cooperative caching policies and it analyses its difficulty.
This problem of cooperative recommendations and caching
turns out to be hard to solve but has the potential to further
increase the cooperation gains.

� Through a number of numerical evaluations using a real
dataset and realistic system parameters, it verifies the
efficacy and operation of the bargaining framework and
explores the impact of key system parameters on the
equilibrium properties. This provides rich insights on the
potential economic benefits of our proposal and market
design guidelines.

II. PROBLEM SETUP

A. Recommendations, Content Requests and Caching

In this work, we present a cooperation scheme between the
CP and CDN on the basis of the recommendations the former
offers to its users. Following the current business models for the
two entities, we model their utility functions that represent their
profit from the OTT market.

Content Recommendation Model: The CP owns a content
catalog K that is accessible to a set U of users through the CP’s
OTT service. In this work, we focus on catalogs of contents
that are static, and thus cacheable. We will use the terms OTT
or streaming services interchangeably to describe on-demand
streaming services. A (personalized) list of Nu items are rec-
ommended to each user u ∈ U . The recommendations are based
on the predicted relevance of each content to the user’s tastes,
viewing history, context, etc. These relevances (sometimes also
called “scores” or “rankings”) are calculated by today’s state-
of-the-art RSs (that are employed by the CP) using techniques
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such as collaborative filtering, deep neural networks, reinforce-
ment learning, etc. [2], [10]. We denote by rui ∈ [0, 1] these
relevances. Typically, the CP would select the Nu items with
the highest rui or the highest expected revenue to feature the
recommendations list of user u [2], [11]. In this work, the
recommendation decisions (i.e., deciding which contents will
appear in the user’s recommendations list) are made not only
based on the utilities rui but also on the cooperation terms. Our
problem considers two sets of recommendations:
� (Input) Baseline Recommendations: Y b = (ybui ∈
{0, 1}, u ∈ U , i ∈ K), where ybui = 1 if content i is
recommended to user u. These are decided by the CP
before any cooperation and are input parameters for our
problem. For example, these could be the top Nu most
relevant contents (to each user), as mentioned above.

� Cooperative Recommendation Variables: Y = (yui ∈
[0, 1], u ∈ U , i ∈ K), which are the probabilistic recom-
mendation variables optimized jointly by the CP and CDN.
These are the control variables of our problem.

Using continuous variables for the cooperative recommenda-
tions allows the CP to provide some variety to the recommen-
dations it offers to the same user from session to session.

Content Request Model: Each user u makes content requests
according to the following model [5], [6]:
� follows the recommendations with probability αu; where,

w.l.o.g. each of the Nu items is considered equally likely
to be requested.1 Hence, each recommended content is
requested by the user with probability αu/Nu.

� with probability (1− αu), the user ignores the recommen-
dations and requests a content i ∈ K of the catalog with
probability2 pi.

Content Caching Model: A CP subscribes to a CDN provider
through a Service Level Agreement (SLA) for the delivery of the
contents to the users. The CDN manages a set of C caches with
capacity Cj , j = 1, . . . , C. Moreover, there is a root cache C0

that stores all the contents. We denote byσi the size (in Gb) of the
content i and we assume that Cj �

∑
i∈K σi, as is common in

most caching setups, e.g., [12]. The CDN optimizes the caching
decisions based on performance (e.g., latency, cache hits) and
cost criteria (routing costs). These decisions are described as
follows:

(Input) Baseline Caching: Xb = (xbi ∈ {0, 1}, i ∈ K, j =
1, . . . , C) where xbij = 1 if content i is fully stored in cache
j. These are determined by the CDN before any cooperation
and are input parameters.

To better focus on the mechanics of the cooperation, we will
develop our framework in the context of cache-friendly recom-
mendations, i.e., assuming that the caching policy is decided at a
different timescale than the recommendations and is fixed during
the cooperation. We revisit caching variables, and how these
could potentially also be designed jointly with recommendations
later, in Section IV.

1The quantity αu captures the percentage of time the user u tends to follow
the recommendations and can be based on user’s past behavior.

2The value of pi captures the probability that any user would request the
content i outside of recommendations (e.g., through the search bar), and could
relate to the aggregate interest in this content by users.

B. Revenue/Cost Model and Utility Functions

We will now consider the various sources of revenues and
costs for the CP and CDN in order to define their utility functions.
While these sources can, of course, be highly nuanced from
scenario to scenario, we propose a model that tries to capture
key elements while staying tractable.

CP Revenues: When a user u requests a content i, this content
is associated with an expected revenue Rui that depends on the
CP’s revenue model (ad-based, subscription-based, transaction-
based, etc. [13]) and the associated costs related to the purchase
of contents (through licensing or production). This information
is estimated by the CP in order to decide its pricing strategy
and is used as input for our model . For example, in the case of
an ad-based revenue model, Rui can be estimated as a result of
ad impressions that appear during content i. Furthermore, this
expected revenue depends on the content relevances rui in a
non-trivial way. For this reason, we capture this relation by a
fairly generic model

Rui = φui(rui), (1)

where φui can be any nondecreasing function of rui that de-
scribes the impact of user’s (predicted) interest in a content
on the CP’s revenues.3 For example, φui could be related to
the probability of a user abandoning the viewing session as a
function of rui.

CP Costs/CDN Revenues: The delivery of a requested content
is made by the CDN that charges the CP on a basis of the amount
of transferred data (as is the case in today’s CDNs [14]). We
remind the reader that these charges apply to CPs without an
in-house CDN, which is still the case for a large number of CPs,
e.g., Disney+, Hulu. We assume that the CP has to pay λ currency
units per Gb requested.4

CDN Costs: The main source of expenditures for the CDN is
the cost related to the delivery of a requested content to the user.
We let C(u) be the subset of caches that a user u has access to
including the root cache (which is accessible by every user). A
request for content i by user u may be served by at least one of
the small caches in C(u) where i is stored. If the content is not
cached, it will be served by the root cache C0.

We assume that every link between user u and the caches in
the set C(u) is characterized by a delivery (retrieval) cost (for
the CDN). We let kuj denote this cost per Gb for user u by
the cache j. The value of kuj can be estimated as a result of
transit fees the CDN pays to transit networks or Internet Service
Providers (ISPs) to retrieve the content from the origin servers
of the CPs and make it available to the users. Moreover, they
can include maintenance-related costs, e.g., related to storage
capacity, hardware, estate, energy, etc [15]. The delivery cost
from the root cache C0 to user u is ku0 (per Gb), where
ku0 > kuj for all j = 1, . . . , C. The CDN serves each request
through the lowest-cost cache that has the requested item, as

3These functions are built by the CPs using historical data; and are typically
concave capturing diminishing returns on the relevances rui.

4In order to capture different pricing schemes where the CDN charges the CP
per Gb delivered (and not only requested), the price λ could be multiplied by
the probability of abandonment by the user.
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TABLE I
IMPORTANT NOTATION

is common in most caching setups [12], [16]. Adopting the
notation in [12], we denote the sequence of increasing user-cache
costs by ku(1), ku(2), . . . , k|C(u)|. Then, based on the caching
decisions Xb, the delivery cost for content i by user u is

Kui(X
b) =

|C(u)|∑
j=1

[
σiku(j)x

b
i(j)

j−1∏
l=1

(
1− xbi(l)

)]
. (2)

According to the formula above, xbi(j)
∏j−1

l=1(1− xbi(l)) will be
equal to 1 when the requested content i is retrieved by the cache
(j), i.e., the cache with the j-th lowest user-cache cost, at cost
ku(j), for lack of any other cache with lower cost (xbi(l) = 0, l <
j). If i is not cached in any cache, it will be retrieved from the
root cache C0, which is ranked last, resulting in high cost.

CP’s and CDN’s Utilities Before Cooperation: Based on the
above problem setup and revenue models, we can now derive
the total utility (revenues minus costs) each of the two parties
enjoys before cooperating. We define the baseline (initial) utility
of the CP before any cooperation as the expected revenue minus
the expected price it has to pay to the CDN

U b =
∑
u∈U

∑
i∈K

αu

Nu
ybui(Rui − λσi). (3)

We do not account for the revenue that comes from the con-
tent requests that are not a result of recommendations, i.e.,
when, with probability 1− αu, the user does not follow any
of the recommendations. It is easy to see that these requests
do not affect the cooperation (whose control variables are the
recommendations). Moreover, note that the definition of U b is
generic and does not depend on how the CP devises the standard
recommendations (i.e., the values ybui).

Given the caching and recommendation decisions before the
CP-CDN cooperation, the baseline utility of the CDN is ex-
pressed as the expected revenue (from the delivery contract)

minus the expected delivery (or retrieval) costs

Ũ b =
∑
u∈U

∑
i∈K

αu

Nu
ybui (λσi −Kui) . (4)

C. Towards Cooperative Decisions

The goal of our cooperative framework is to improve the afore-
mentioned utilities of both parties. We are specifically interested
to maximize the gains and ensure they are “fairly” shared.5 As
explained earlier, such gains can result by motivating the CP
to modify some of its original recommendations towards lower
cost items (e.g., cached ones). To ensure that the CP will not lose
revenue from these modifications (we remind the reader that this
revenue relates to how related the recommended contents are
for users, see (1)) we assume the CDN offers a discount on the
content delivery fees of such “lower cost” content. In particular,
we let ρ denote this normalized discount factor6 on the price
λ, where 0 < ρ < 1. The value of ρ is either set by the CDN
or by a regulatory authority (who acts as a mediator for their
cooperation). We will discuss in Section V how the value of ρ
could be chosen in practice. Then, the new price the CP would
have to pay to the CDN is

Λui = λ
[
1 + ρ

(
ybui − 1

)]
. (5)

Specifically, if a content i is recommended now but it was not
before the cooperation (i.e., yui > 0 and ybui = 0), then the
discount ρ applies. If, on the contrary, the content continues
to be recommended (even partially) as before (i.e., yui > 0
and ybui = 1), no discount applies. Our problem formulation,
to follow, is applicable to either scenario, so w.l.o.g. we will
focus on the former. We note that the requests that do not come
through recommendations are not subject to any discount. Then,
the new utility functions for the CP and CDN are

U =
∑
u∈U

∑
i∈K

αu

Nu
yui (Rui − Λuiσi) , (6)

Ũ =
∑
u∈U

∑
i∈K

αu

Nu
yui (Λuiσi −Kui) . (7)

Remark 1: In line with related work on caching and rec-
ommendations policies, the proposed cooperation framework
makes proactive decisions (on the recommendation variables).
Although the presented framework deals with contents and not
chunks of various qualities/bitrates, under small modifications,
it can also treat files that correspond to pairs (content chunk,
quality). Since online Adaptive Bitrate (ABR) policies operate at
a different timescale, i.e., during playback, we assume that they
act in a complementary way on top of the proactive cooperation
decisions.

5For now, we use the words “fair” and “unfair” in an intuitive way: an entity
that considers a solution (i.e., the allocation of the gains) unfair believes that this
solution was achieved at the cost of this entity’s own benefit. We will formally
define and elaborate on the fairness framework in Section III-A.

6This ρ can be alternatively seen as a percentage discount on the price λ. So,
for example, when ρ = 0.5 or 50%, the CP would pay half the delivery price to
the CDN for any modified recommendation.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 30,2024 at 09:05:33 UTC from IEEE Xplore.  Restrictions apply. 



TSIGKARI et al.: QUID PRO QUO IN STREAMING SERVICES: ALGORITHMS FOR COOPERATIVE RECOMMENDATIONS 1757

Fig. 2. Toy example presented in Section II-D. In this example, the CP-CDN
cooperation leads to financial gains of 20% and 21% respectively. These
gains derive from the discount on the delivery fees (for the CP) and the
fetching/retrieval savings (for the CDN). In contrast, a typical cache-friendly
recommendations approach (without any discount on the delivery fees) would
lead to a loss in profit for the CP, and a gain in profit for the CDN (that might
be perceived as “unfair” by the CP).

D. Toy Example

To better understand the cooperation model and the tradeoffs
involved, we present a toy example depicted in Fig. 2. We con-
sider a scenario with two users, a catalog of four equal-sized con-
tents (of 1Gb size) and a single cache with capacity 2Gb. Upon
request, a content is served by the cache, if it is cached there.
Otherwise, it will be served by the root cache. For simplicity, we
assume that the users will receive a single recommendation that
will follow with probability 1. The CP pays to the CDN $0.5
per Gb (outside of any cooperation) while the CDN offers to the
CP a discount of 30% on the delivery fees if they cooperate and
the CP modifies its recommendations. The CP’s revenues per
requested content and the CDN’s costs related to the delivery
of the contents are depicted in the table on the top right of the
figure. The revenues Rui could be calculated, for example, as a
result of ad impressions appearing during playback. We assume
here that these revenues reflect how relevant a content is to a
user (accounting for predicted abandonment rates), e.g., Movie
A is the most relevant content to User 1, while Movies C and D
are a bit less relevant for this user.

On the bottom of Fig. 2, we see the recommendation de-
cisions made in different scenarios, as well as the resulting
utilities (profits) of the two entities. In particular, outside of any
cooperation (baseline scheme), the CP would recommend the
contents that will bring the highest revenue, i.e., Movie A to
User 1 and Movie B to User 2, while the CDN would cache
some contents without knowledge of the recommendations and
how they shape the requests. We assume that Movies C and
D are cached based on the aggregate popularity observed in a
period of time prior to the cooperation. Therefore, the requests
for the recommended contents will lead to cache misses and
extra retrieval costs (for the CDN).

On one hand, a typical cache-friendly or cache-aware recom-
mendations policy, such as the ones in [3], [4], would recom-
mend cached items that are still relevant to the users’ tastes
aiming for more cache hits. In our example, that would be
recommending Movie C to both users. However, this would
lead to a loss in profit for the CP (−10% when compared to

the baseline scheme) and a large gain for the CDN (+75%).
Hence, the CP does not have concrete incentives in adjusting
the recommendation towards cached items. Moreover, issues of
trust, privacy, and coordination between the two entities could
arise. We remind the reader that related works on the co-design
of caching and recommendations [3], [4], [5], [6], [7] trivially
assume that both decisions are made by the same entity (as
is the case for only a small number of OTT services, such as
Netflix) and they do not explore the financial aspects of the
recommendations.

On the other hand, if the two entities cooperate, incentives are
provided to the CP (under the form of a discount on the delivery
fees) and the resulting gains are split in a way that is not perceived
as “unfair” by any party. The cooperative recommendations
would suggest Movie C to both users, as it was the case with the
cache-friendly recommendations. However, here, the CP will
pay reduced delivery fees that will compensate for the loss in its
profit. At the same time, this cooperation is still profitable for
the CDN who will avoid the extra delivery costs when compared
to the baseline scheme. We see that, already in this toy example,
the cooperation leads to gains of at least 20% for each entity.
Note that any other solution, e.g., recommending Movie D to
both users, would result in worse gains for at least one entity,
and thus in an “unfair” allocation of the cooperation gains.

In this example, it is easy to guess how to find the cooperative
recommendation policy that boosts both entities’ profits. How-
ever, this task becomes significantly harder for bigger scenarios
(large content catalogs, multiple recommendations per user,
etc.). Moreover, one might wonder: would the CP and CDN be
willing to exchange information on their utility functions in order
to find the solution (since these functions constitute sensitive
business information)? And how the cooperative recommenda-
tions can impact the users? To this end, in the next section,
we formulate a cooperation mechanism while addressing these
concerns.

III. PROBLEM FORMULATION AND ALGORITHMS

The toy example above illustrated that the CP-CDN coopera-
tion should provide incentives for both entities. This means that
the cooperative recommendation policy should satisfy: U ≥ U b

and Ũ ≥ Ũ b. As explained earlier, the CDN will propose a
discount on the delivery fees in order to incentivize the CP to
tune its recommendations towards cached contents. Given this
discount, the two parties (or players, in game theory parlance)
will try to benefit as follows:
� CDN: it increases cache hits (through cache-friendly rec-

ommendations) and thus it reduces the delivery costs (term
Kui in (7)). These cost savings will compensate the lower
delivery fees (term Λui in (7)).

� CP: it modifies the recommendations only if the coopera-
tive ones lead to minor loses in expected revenueRui, that
can be amortized by the applied fee reduction.

Moreover, both parties have the following concrete goals:
1) benefit as much as possible (hence the need for an optimization
framework), and 2) reach an agreement that is perceived as fair
by both parties.
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A. Modeling the CP-CDN Cooperation as a Nash Bargaining
Solution

Having these desired properties as guideline, we model the
cooperative recommendations problem as a Nash Bargaining
Solution (NBS) [9], [17] from the cooperative game theory.
The NBS is defined as the maximization of the product of pay-
offs (i.e., the utility gains) of the two entities subject to individual
rationality constraints, or equivalently the maximization of the
logarithm of this product where the constraints are implicit in
the domain of the logarithms [17]. Therefore, the NBS would
be

max
Y

[
log(U(Y )− U b) + log

(
Ũ(Y )− Ũ b

)]
, (8)

whereU(Y )− U b and Ũ(Y )− Ũ b represent the gains in utility
of the CP and the CDN from a potential cooperation.

By formulating our problem in this way, the solution uniquely
satisfies the Nash’s axioms [9], [17]. First, the solution is Pareto
optimal, that is, there is no other solution that would benefit one
party more without deteriorating the other party’s gains. We also
provide the formal definition of Pareto optimality below. For this,
we use the following notation: for two vectors (a1, a2) ∈ R2

and (b1, b2) ∈ R2, the notation (a1, a2) ≥ (b1, b2) implies that
ai ≥ bi for i = 1, 2.

Definition 1 (Pareto optimality, from [18]): A point A in
the feasible set F (of recommendation policies) is Pareto
optimal (or strongly Pareto efficient) if there is no other
point B in F such that (U(B), Ũ(B)) ≥ (U(A), Ũ(A)) and
(U(B), Ũ(B)) �= (U(A), Ũ(A)).

Imagine, for example, that there are only two feasible recom-
mendation policies A and B where A leads to gains of 25% for
the CP and 30% for the CDN, while B leads to gains of of 10%
and 30% respectively. Then, for this problem instance, the NBS
would yield as solution the policy A, which is Pareto optimal.

Another property that is guaranteed by the NBS is propor-
tional fairness. In other words, the solution of the NBS is such
that, when compared to any other feasible allocation of gains,
the aggregate proportional change in utilities is less than or equal
to zero. We provide below the formal definition:

Definition 2 (Proportional Fairness, from [18]): A pointA in
the feasible set F (of recommendation policies) is proportional
fair if for any other point B in F the following is true

U(B)− U(A)

U(A)
+
Ũ(B)− Ũ(A)

Ũ(A)
≤ 0.

In our setting, a (cooperative) recommendation policy is con-
sidered proportional fair if any other policy would lead to a
percentage decrease in utility of one entity that is larger than the
percentage increase of the other entity. Imagine, for example,
that the CP-CDN cooperation would yield only two possible
recommendation policies A and B where A leads to gains of
25% for the CP and 30% for the CDN, whileB leads to gains of
of 50% and 25% respectively. Then, for this problem instance,
policy B is the proportional fair solution. We refer the reader
to [18] for a broad discussion on fairness.

Furthermore, due to the implicit domain constraints deriving
from (8), i.e.,U − U b ≥ 0 and Ũ − Ũ b ≥ 0, the payoff of every
entity is no worse than the payoff it would get outside of any
cooperation, i.e., (U b, Ũ b). In fact, (U b, Ũ b) is the “disagree-
ment point” of the cooperation [9]: if U < U b or Ũ < Ũ b, there
will be no feasible solution and, thus, no agreement on coop-
eration. Therefore, both parties have an incentive to cooperate.
Moreover, if the positions of the two entities (in terms of utility
functions and the disagreement point) are symmetric, then the
solution treats them symmetrically.

In Section III-B, we formulate in detail the problem that
would allow the CP and the CDN to devise the cooperative
recommendations policy in a centralized way, where the two
entities share all the necessary information for its solution. In
Section III-C, we formulate the problem where the two entities
exchange minimal information and we propose a decentralized
algorithm that allows them to decide on the cooperative recom-
mendations.

B. Centralized Cooperative Recommendations

We will first formulate and study the centralized problem
where the two entities share their cost/revenue functions.

CCR: Centralized Cooperative Recommendations

min
Y

⎡⎣− log

⎛⎝∑
u,i

αu

Nu
yui (Rui − Λuiσi)− U b

⎞⎠
− log

⎛⎝∑
u,i

αu

Nu
yui (Λuiσi −Kui)− Ũ b

⎞⎠⎤⎦ (9)

s.t.
∑
i∈K

yui = Nu, ∀u ∈ U , (10)

yui ∈ [0, 1], ∀u ∈ U , i ∈ K, (11)

where the baseline utilities U b and Ũ b are defined in (3) and (4).
The constraints in (10) suggest that each user receives Nu

recommendations.7

Moreover, we note that the inequalities U − U b =
∑

u,i
αu

Nu
yui(Rui − Λui)− U b ≥ 0 and Ũ − Ũ b =

∑
u,i

αu

Nu
yui

(Λui −Kui)− Ũ b ≥ 0 are implicit constraints as the domain
of the logarithms must be non-negative. Since (U b, Ũ b) is the
disagreement point, if U < U b or Ũ < Ũ b, there will be no
agreement on cooperation, by definition. Then the CP will
keep its baseline recommendations Y b while the CDN will not
provide a price discount. The next lemma shows that the CCR
problem is tractable.

Lemma 1: The CCR Problem is (strictly) convex.
Proof: The objective function is (strictly) convex since the

logarithm is a concave function and the arguments of the log-
arithms are linear functions of Y . Moreover, the problem’s
constraints are linear. �

7If the solution Y ∗ contains more than Nu positive values (due to the
probabilistic model) we can easily select exactly Nu following the technique
in [19] and being compatible with Y ∗ on expectation.
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As a result of Lemma 1, standard interior-point or dual
methods would efficiently give the unique optimal solution.
We summarize below the algorithm to devise the cooperative
recommendations in a centralized manner.

The CCR Algorithm: The CP communicates the values αu,
Nu, Y b, U b and its utility function U . The CDN communicates
the discount ρ, the value of Ũ b, and its utility function Ũ .
Then, the CCR Problem is solved through standard dual or
interior-point methods. It returns Y ∗, the optimal cooperative
recommendation policy.

The process described above could be managed either by
a trusted third party (cooperation mediator) that collects the
necessary information or by the two entities together. Given
that today’s major CDNs update/fill their caches during off-peak
hours, as is the case with Netflix’s CDN [20], the algorithm
could run at any time after the fill window, and it could concern
the expected requests in the period of time until the next cache
update or in a period of a few hours.

Remark 2: The proliferation of encrypted user-cache com-
munication through HTTPS/TLS requests is considered an ob-
stacle for efficient content caching (and, thus, cache-friendly
recommendations) within the OTT services. However, there are
protocols proposed in literature that can ensure that the CDN’s
caches are blind to the cached contents (e.g., [21]). Similar
protocols could be embedded in our framework since the CDN
needs only to estimate the retrieval cost of the cached items (that
could be encrypted). Designing such a protocol is an interesting
direction for future work but it goes beyond the scope of this
manuscript.

C. Distributed Cooperative Recommendations With Minimal
Information Sharing

As explained earlier, in order to solve the CCR Problem the
two entities need to share their utility functions. However, in
the highly competitive ecosystem of streaming services and
content distribution, these functions constitute sensitive infor-
mation. Withholding such information might prevent the two
parties from cooperating. Therefore, there is need for a coop-
eration mechanism that can assure privacy. Establishing such
a mechanism is not trivial since fairness (along with the other
properties of NBS) needs to be guaranteed, as in the centralized
solution. We remind the reader that the NBS framework requires
that both utility functions are taken into account in the same
objective (see (8)).

We overcome this challenge by applying the Alternating
Direction Method of Multipliers (ADMM) [22] to solve the
problem in a distributed way. The idea behind ADMM is to
split the problem into two subproblems, where each subproblem
contains only one entity’s utility function. Then, the cooperative
recommendation problem is solved iteratively: each entity solves
the subproblem that contains only its utility function and finds
its local solution. Through coordination and after a sufficient
number of iterations, the subproblems’ solutions coincide. The
coordination preserves the entities’ private information and is
carried out by a cooperation mediator, which is either a trusted
third party or the two entities together. In order to define this

distributed algorithm, in what follows: 1) we reformulate the
CCR Problem into an equivalent problem (DCR Problem) that
can be split into two subproblems, 2) based on the theory on
ADMM, we propose the distributed DCR algorithm, and 3) we
prove that the resulting cooperation gains converge to the ones
of the centralized problem.

Instead of the recommendation variables Y , we introduce
here the local recommendation variablesΨ = (ψui ∈ [0, 1]) and
Ψ̃ = (ψ̃ui ∈ [0, 1]) that are the variables in the CP’s and CDN’s
subproblems respectively. We reformulate the CCR Problem
into the following equivalent problem:

DCR: Distributed Cooperative Recommendations

min
Ψ,˜Ψ

⎡⎣− log

⎛⎝∑
u,i

αu

Nu
ψui (Rui − Λuiσi)− U b

⎞⎠
− log

⎛⎝∑
u,i

αu

Nu
ψ̃ui (Λuiσi −Kui)− Ũ b

⎞⎠⎤⎦ (12)

s.t. ψui = ψ̃ui, ∀u ∈ U , i ∈ K, (13)∑
i∈K

ψui = Nu, ∀u ∈ U , (14)

∑
i∈K

ψ̃ui = Nu, ∀u ∈ U , (15)

ψui, ψ̃ui ∈ [0, 1], ∀u ∈ U , i ∈ K, (16)

where ψui and ψ̃ui are the local recommendation variables as
decided by the CP and the CDN respectively. The constraints
in (13) are the consistency constraints that require all local
recommendation variables to agree.

The augmented Lagrangian for the DCR problem is

Lq(Ψ, Ψ̃, Z) = − log
(
U(Ψ)− U b

)− log
(
Ũ(Ψ̃)− Ũ

)
+
∑
u,i

zui

(
ψui−ψ̃ui

)
+
q

2

∣∣∣∣∣∣Ψ− Ψ̃
∣∣∣∣∣∣2
F
, (17)

where Z = (zui) are the dual variables, q is the penalty param-
eter, and || · ||F the Frobenius norm. We remind the reader that
the Frobenious norm of a matrix is defined as the square root
of the sum of the squares of the matrix’s entries. Moreover, the
dual function is

d(Z) = inf
(Ψ,˜Ψ)

s.t. (14)-(16)

Lq(Ψ, Ψ̃, Z) (18)

The ADMM for the DCR Problem is described below (see
also Fig. 3):

The DCR algorithm: The CP communicates αu,Nu , Y b and
the value of U b. The CDN communicates ρ and the value of Ũ b.
Then, at every iteration k + 1:
� The CP solves its subproblem and communicates its local

solution

Ψ(k+1) := argmin
Ψ

s.t. (14), (16)

Lq

(
Ψ, Ψ̃(k), Z(k)

)
. (19)
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Fig. 3. Illustration of the DCR algorithm’s steps. Each entity solves its sub-
problem (without sharing its utility function) based on the other’s local solution
and the dual variables. They communicate their local solutions to the cooperation
mediator that updates and communicates the dual variables.

� The CDN solves its subproblem and communicates its local
solution

Ψ̃(k+1) := argmin
˜Ψ

s.t. (15),(16)

Lq

(
Ψ(k+1), Ψ̃, Z(k)

)
. (20)

� The cooperation mediator updates and communicates the
dual variables

Z(k+1) := Z(k) + q
(
Ψ(k+1) − Ψ̃(k+1)

)
. (21)

We highlight here that each entity keeps private its utility
function from the other entity and the mediator. The two entities
reveal only their local solutions (Ψ(k+1) and Ψ̃(k+1)) at every
iteration. These matrices are often sparse leading to a low com-
munication overhead at every iteration. This coordination until
convergence (that could involve only a few iterations) will occur
at the beginning of the cooperation window. Concerning the
practicalities of the DCR algorithm, its iterations will terminate
according to standard residual criteria (see [22]). We note that
ADMM tolerates inexact minimization for the subproblems
under the condition that the relative errors are summable [23].
Moreover, when the subproblems are solved in an iterative way,
the warm-start technique can speed up the process. The follow-
ing lemma guarantees that the DCR algorithm converges (after
a sufficient number of iterations) to the centralized objective
function value and solution.

Lemma 2: If p∗ is the optimal value of the CCR Problem, and
DO(k) is the DCR Problem’s objective function value at iteration
k, i.e., DO(k) = − log(U(Ψ(k))− U b)− log(Ũ(Ψ̃(k))− Ũ b),
then DO(k) → p∗, as k → ∞. Moreover, if Y ∗ is the (unique)
solution of the CCR Problem, thenΨ(k), Ψ̃(k) → Y ∗, ask → ∞.

Proof: According to the results in [22], we need to
prove two conditions: 1) the extended-real-valued functions
− log(U(Ψ)− U b) and − log(Ũ(Ψ̃)− Ũ b) are closed, proper,
and convex, and 2) the unaugmented LagrangianL0 has a saddle
point. The two functions are indeed convex (in fact strictly
convex) and closed. The corresponding extended-real-valued
functions are proper since they are not identically equal to +∞.
We will now prove that strong duality holds. When a feasible
primal solution Ψ∗ = Ψ̃∗ exists such that U(Ψ∗)− U b > 0 and
Ũ(Ψ∗)− U b > 0, then strong duality holds by Slater’s condi-
tion (which reduces to feasibility when the problem constraints
are linear). Therefore, by feasibility and by strong duality,

it follows that the unaugmented Lagrangian L0 has a saddle
point [24].

Since we proved objective convergence, then the local solu-
tions will converge to the unique centralized solution Y ∗ since
the DCR’s objective function is strictly convex. This means that
there is at most one global minimizer. �

Essentially, Lemma 2 implies that the properties of the central-
ized solution inherited by the NBS framework (Nash axioms, see
Section III-B) hold also for the DCR’s solution. This is important
since it guarantees that the cooperation gains and the fair split of
these gains will not be compromised when the two entities apply
the DCR algorithm (instead of the CCR). Finally, in Section V,
we will see in practice how the convergence to the solution of
the CCR problem is achieved as a function of the number of
iterations, and how the two entities’ gains are affected from
iteration to iteration.

D. Recommendations of High Quality for the Users

One might argue that the cooperative recommendations could
have potentially an impact on the users by degrading the rec-
ommendations they receive. Note that the user’s interest in the
content is one of the factors that determine the user’s overall
experience in OTT services, as shown in experiments [25]. How-
ever, the CP can limit a potential recommendation degradation
by adding extra constraints in the problem. For example, adding
in the CCR Problem the constraints∑

i

yuirui
Nu

≥ Tu, for every user u, (22)

forces the average relevance of the cooperative recommenda-
tions to the user u to be at least equal to a threshold Tu ∈ (0, 1].
Adding these constraints does not have an impact on the problem
analysis (since they are linear with respect to the variables Y ).
In the (distributed) DCR Problem, the same constraints (with
the local variables ψui instead of yui) can be applied when the
CP solves its subproblem (with no need of communicating these
constraints to the CDN).

There is a common misconception that cache-friendly rec-
ommendations concern only a few (very) popular contents.
Although it has been shown that there exist a popularity bias in
the core of RSs (see [26], [27]), related work on cache-friendly
recommendations imposes constraints similar to (22) in order
to better match the users’ tastes beyond the universally popular
contents. Going one step further, joint caching and recommenda-
tion policies have been shown to outperform naive policies that
would cache and recommend the most popular contents (con-
tents with highest aggregate popularity) [6]. In fact, the joint
approach yields a more efficient caching allocation and higher
quality of recommendations since it makes decisions based on
the diverse users’ tastes and similarity between contents (in
terms of relevance to the users). For this reason, in the next
section, we extend the cooperation to the caching decisions.

IV. EXTENSION TO CACHING DECISIONS

So far, we have focused our framework on scenarios where the
recommendations are the only variables that can be re-designed
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by the CP and CDN, in the timescale of interest. A natural ques-
tion that arises is whether also modifying the caching decisions
in parallel, could yield even better profits: recommendations
could concern contents that are cached in the cache that is closest
to the user while they still bring high revenue to the CP. This is
particularly useful in today’s and future wireless architectures
where caches are small while the CP’s catalog is constantly
growing. This is also in line with recent works proposing the
joint optimization of caching and recommendation decisions,
e.g., [5], [6]. Nevertheless, none of these works either explores
the financial aspects of the caching-recommendation interplay,
nor is it straightforward how to include these into our problem
formulation and solution methodology.

A complete treatment of this topic goes beyond the scope of
this manuscript, due to the additional complexity it introduces in
the solution methodology, and is subject to future work. Never-
theless, we will show here how to include such variables into our
model, and provide some preliminary analysis and a heuristic
for this extended problem. We complement this analysis with
related validation results in Section V that already show the
proposed method can further increase the cooperation gains for
both parties.

Caching Setup and Variables: In this section, we consider, for
simplicity, a scenario where the CDN manages only one small
cache whose capacity is C1. Moreover, there is a root cache C0

that stores all the contents. We employ the prevalent contin-
uous caching model that is valid either when coded caching is
used [12] or when the files can be divided in equally-sized chunks
and stored independently [19], [28]. Therefore, for simplicity, in
this section, we assume that the contents are equal-sized (divided
in chunks).8 In addition to the variables and input values that
were introduced in Section II, we define the cooperative caching
variables:

Cooperative Caching Variables: X = (xi ∈ [0, 1], i ∈ K),
where xi is the portion of content i that is stored at the cache or
the probability that the content i is cached. These (together with
the recommendation variables yui) constitute control variables.

We optimize proactive caching decisions, which constitute
a key element of CDN’s operations today, as explained before.
Therefore, as is common in related work [12], we assume that the
CDN proactively stores contents in its caches and this allocation
stays fixed during the period between two updates/fills and
between two CP-CDN cooperation instances.

Similar to (2), the retrieval cost for the CDN in a single
cache (and the root cache C0) is

Kui(X) = ku0 + xi(ku1 − ku0), (23)

i.e., the cost will be ku1 if the content i is entirely cached in the
(small) cache (xi = 1), ku0 if it is not cached (xi = 0), and a
sum of the portions of these two costs otherwise. In contrast to
the definition of the utility functions in Section II, we redefine
here the CDN’s utility function in order to include the profit that

8This assumption could be removed while our analysis and solution method
could still be applied. However, in the case where contents are of heteroge-
neous sizes and xi is interpreted as caching probability, the cache capacity
constraint (that we will formulate in what follows) will be satisfied in expectation.

comes from requests out of recommendations (note that now
this term contains the control variables xi). The CDN’s baseline
utility (before cooperation) and the utility for cooperation are
defined as

V b = Ũ b +
∑
u,i

(1− αu)pi
(
λ − ku0 − xbi (ku1 − ku0)

)
(24)

V =
∑
u,i

[
αu

Nu
yui (Λui − ku0 − xi(ku1 − ku0))

+(1− αu)pi(λ − ku0 − xi (ku1 − ku0))

]
. (25)

In the second summand of V , the delivery fees are λ since the
discount does not apply to requests out of recommendations.
We stress here that, for the CP, the corresponding term does
not contain any of the control variables and it cancels out in
the difference U − U b. We can now formulate the optimization
problem that can allow us to devise cooperative recommendation
and caching policies in a centralized9 manner (with information
sharing between the two entities).

CCRCache: Centralized Cooperative Recommendations
& Caching

min
X,Y

[− log
(
U(Y )− U b

)− log
(
V (X,Y )− V b

)]
(26)

s.t.
∑
i∈K

yui = Nu, ∀u ∈ U , (27)

∑
i∈K

xi ≤ C, (28)

xi, yui ∈ [0, 1], ∀u ∈ U , i ∈ K, (29)

whereU b andV b are in defined in (3) and (24). According to (24)
and (25), the CDN’s gain in utility is:

V (X,Y )− V b =
∑
u,i

[
αu

Nu
yui (Λui − ku0 − xi(ku1 − ku0))

− (1−αu)pi
(
xi−xbi

)
(ku1−ku0)

]
−Ũ b.

(30)

The inequality in (28) is the cache capacity constraint and, as
expressed in (29), the control variables are continuous. Finally,
the inequalities U(Y )− U b ≥ 0 and V (Y,X)− V b ≥ 0 are
implicit domain constraints.

Lemma 3: The CCRCache Problem is bi-convex.
Proof: The objective function is bi-convex, i.e., convex with

respect to Y for every fixed X and convex with respect to X
for every fixed Y , since the logarithm is a concave function, the
utility function U is linear with respect to Y , and the function
V is bilinear in X and Y (since it contains the products yuixi,
see (30)). Furthermore, all the problem’s constraints are linear.�

An approach to tackle a bi-convex optimization problem
would be to transform it into an equivalent problem that is instead

9Due to space constraints, we only present the centralized problem here. In
fact, the presented framework could be also implemented in a distributed way.
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convex in (X,Y ). However, such transformations leading to
convex equivalent problems are the exception, rather the rule.
Standard transformation “tricks” include replacing the products
yuixi by new variables or discretizing one of the variables
involved in the product [29]. The former option is not possible in
our problem (since the variables yui and xi appear also outside
of this product), and the latter could lead to a problem with
a large number of new variables. Another approach includes
the GOP (global optimization) algorithm that guarantees con-
vergence to the global optimum [30], [31]. Unfortunately, this
algorithm comes at the cost of high complexity that could be
prohibitive in real-world systems with vast catalogs and multiple
users.

Moving away from “exact” methods that attempt to find
global optima, Alternate Convex Search [32], and more recently
ADMM methods [22], have been popular heuristics for bi-
convex problems. Although there are problem instances whose
structure permits such algorithms to (provably) converge to
global optima (e.g., the well-known matrix factorization prob-
lem), they (at best) guarantee convergence to stationary points.
We saw in Section III-C how ADMM can be applied in order to
provide a distributed solution. The same method can be applied
for bi-convex problems since its core idea consists of splitting the
main problem into subproblems. Here, the CCRCache Problem
can be broken into a subproblem that contains the recommenda-
tion variables and another that contains the caching variables. In
order to apply ADMM, we reformulate the CCRCache Problem
into an equivalent problem by introducing new variables and
adding bilinear constraints:

CCRCache′ Problem

min
X,Y,Z

[− log
(
U(Y )− U b

)− log
(
G(X,Y, Z)− V b

)]
(31)

s.t. (27), (28),

zui = xiyui, ∀u ∈ U , i ∈ K, (32)

xi, yui, zui ∈ [0, 1], (33)

where the Z = (zui ∈ [0, 1]) are auxiliary variables that replace
the products xiyui and G(X,Y, Z) is defined as follows:

G(X,Y, Z) =
∑
u,i

[
αu

Nu
(yui(Λui − ku0)− zui(ku1 − ku0))

+ (1− αu)pi (λ − ku0 − xi(ku1 − ku0))

]
.

(34)

It is important to note that the objective of the CCRCache′

Problem is convex in (X,Y, Z) while the bi-linear constraints
in (32) couple all variables together. We describe below how
ADMM [22, Sec. 9.2] can be applied in the CCRCache′ Problem.
Even though ADMM for bi-convex problems has no guarantee
of convergence, it is expected to have better convergence prop-
erties (faster convergence to a local or global optimum or better
objective function value) than other local heuristics [22].

The CCRCache algorithm: The CP and the CDN exchange
the following information: αu, Nu, Y b, U , U b, ρ, G, and V b.

Then, the two entities together (or through a mediator) solve
iteratively the CCRCache′ problem. At every iteration k + 1
and for penalty parameter q, the following steps take place:
� Solving the (Y, Z)-subproblem

(
Y (k+1), Z(k+1)

)
= argmin

s.t. (27),(33)

[
− log

(
U(Y )− U b

)
− log

(
G(X(k), Y, Z)− V b

)
+
q

2

∣∣∣∣∣∣∣∣Z −
(
diag(X(k))Y

)T

+H(k)

∣∣∣∣∣∣∣∣2
F

]
. (35)

� Solving the X-subproblem

X(k+1)= argmin
s.t. (28),(33)

[
−log

(
G(X,Y (k+1), Z(k+1))−V b

)

+
q

2

∣∣∣∣∣∣∣∣Z(k+1) −
(
diag(X)Y (k+1)

)T

+H(k)

∣∣∣∣∣∣∣∣2
F

]
.

(36)

� Updating the dual variables denoted by H

H(k+1) = H(k)

+

(
Z(k+1)−

(
diag(X(k+1))Y (k+1)

)T
)
.

(37)

Essentially, the CCRCache algorithm splits the CCRCache′

problem into (Y, Z)- and X-subproblems that do not contain
any coupling constraints. Both subproblems are convex (in fact
strongly convex) and can be solved efficiently through standard
interior-point or dual methods. The last terms of (35) and (36)
ensure that the coupling constraints in (32) are not violated.
Such violations are further controlled through the updates of
the dual variables (during the third step). The iterations can
terminate according to standard residual criteria, i.e., when the
differences zui − xiyyi are sufficiently small. As a final remark,
we stress here that we do not claim that this is necessarily the
best method for this problem, and other techniques could further
enhance the method’s performance [33]. Our sole goal is to apply
a reasonably tested method for such problems, and evaluate
if the control over the caching variables can reap additional
benefits (see Section V).

V. PERFORMANCE EVALUATION

In this section, we evaluate numerically the payoffs that can
be achieved through the proposed cooperation scheme. We will
study two scenarios: Scenario I will focus on the evaluatation of
the CCR and DCR algorithms in terms of cooperative gains and
their impact on the quality of recommendations, while investi-
gating the role of key problem parameters; Scenario II will focus
on exploring the benefits of the CCRCache algorithm. First, we
present the default input parameters that, unless otherwise stated,
will be used across the simulations.
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Catalog and Recommendations: Our scenario consists of 100
users who have access to a catalog of 6000 contents,10 e.g.,
movies. Without loss of generality, we consider equal-sized con-
tents of 1Gb.11 Every user receives Nu = 5 recommendations
and the probability of following the recommendations varies in
[0.6, 1), as in Netflix, where the average is equal to 0.8 [2]. For
the matrix of content relevances rui, a subset of the Movielens
dataset [35] containing 5-star ratings of movies was used. The
ratings were mapped in the interval [0,1] and we performed
matrix completion to obtain the missing ratings (as in [6]).
Finally, the baseline recommendations (before any cooperation)
for a user u, i.e., ybui, are the Nu contents that bring the highest
revenue (Rui) to the CP.

Caching Topology: We consider a network of 9 caches
whose capacity will be specified in what follows and a root
cache containing all contents. Every user has access to 2 of the
caches (chosen randomly) and to the root cache. We assume
that the (baseline) caching allocation, i.e., Xb, as decided by
the CDN, is based on a popularity distribution over the catalog
as observed by every cache in a time period that precedes the
cooperation. For this, we set the content popularities observed
by cache j to be the normalized content utilities rui aggregated
over the connected users, i.e., rui/

∑
u∈Cj

rui, where Cj is the
set of connected users to the cache j.

Revenues and Costs: Based on the subscription prices of a
major streaming platform in U.S.A. [36], the average time a
user spends on the platform [37], and the average length of
movies [38], we estimate that a user pays an approximate price
of $0.36 per movie. Taking into account licensing or produc-
tion costs, we estimate that Rui (CP’s revenue per content)
varies from $0.15 to $0.24 per movie.12 The values of Rui

were derived through an equation that depends on the content
relevances (see Section II-B), and, unless otherwise stated, this
equation will be: Rui = 0.15 + 0.09rui (in $). This could, for
example, capture an ad-based revenue model where rui can
be interpreted as the user retention rate and, thus, the quantity
0.09rui is the portion of ad-based revenue. Alternatively, this
could also reflect a subscription-based revenue model where the
licensing costs depend on the watched portion of the movie.
Therefore, the baseline recommendations Y b are the ones with
the highest relevances rui per user. Finally, it is worth noting
that, in [1], our numerical evaluations were performed for Rui

being a concave function of rui that could similarly capture an
ad-based, subscription-based, or hybrid revenue model. Under
this assumption, we obtained similar performance results as the
ones presented here.

The CDN charges the CP $0.11 per Gb (according to [14] for
the delivery). Concerning the CDN’s retrieval costs, they have

10According to [34], in 2019, the total number of titles (movies and TV shows)
available on Netflix in the USA was equal to 5848.

11Our performance evaluation results are similar in case of contents of
heterogeneous sizes since the CP’s revenues and the CDN’s costs related to
each content vary in a wide range.

12The licensing and production costs we considered are realistic and are based
on estimations for a movie of Netflix production. In particular, according to
publicly available data on views count [39] and on production budget [40], the
Netflix’s film “Bird Box” had an approximate production cost of $0.2 per view,
as per 2020.

Fig. 4. Scenario I: Relative increase in utility for the CP and the CDN,
total cooperative gains, cache hit rate for recommendations, and quality of
recommendations achieved through the proposed cooperation scheme (CCR
algorithm) for different values of the discount ρ ∈ [0.05, 0.5].

been chosen randomly from the range [0.0005, 0.02]($) for the
connected caches, while the cost for the root cache is fixed at
$0.055. These values are in line with the simulation parameters
used in related work on CDN’s economics [15], where retrieval
costs (from caches nearby or origin server) vary in a wide range
between 0.1% and 50% of the delivery fees the CDN charges.

A. Scenario I

For the default parameters that were described above, for
cache sizes varying (randomly) from 1− 4% of the content
catalog, and for different values of the discount ρ, we evaluate
the proposed cooperation in Fig. 4.

The first subplot (top) depicts the relative gains in utility
for the two entities, i.e., the quantities 100 · (U − U b)/U b and
100 · (Ũ − Ũ b)/Ũ b, as given by the CCR algorithm. We observe
that, for low discount, the CDN benefits from the cooperation
more than the CP. This is because the CDN saves on routing
costs without its revenue from the delivery fees decreasing
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significantly. On the other hand, we see that the CP benefits the
most for high discount as its savings on the delivery fees become
important. However, for very high discount, close to 50%, the
cooperation becomes unprofitable for the CDN and, therefore,
the cooperation would cease, and the recommendations would
revert back to the baseline ones. It is important to highlight
here that these points are Pareto optimal points. As explained
in Section III, this means there is no other solution that is better
than the solution for one entity and not worse than the solution
for the other entity. In the second subplot (of Fig. 4), we plot
the total relative gains achieved from the cooperation, i.e., the
quantity (U − U b + Ũ − Ũ b)/(U b + Ũ b).

Observation 1: The proposed cooperation can lead to signif-
icant gains, up to 32% for the CDN and up to 20% for the CP in
our scenario. The total cooperative gains can reach up to 15%
when compared to the total baseline utilities.

It is worth noting that even gains of 3% or 6% (i.e., CP’s
gains for ρ = 5% and 10% respectively) already correspond to
very large absolute monetary sums saved (if one extrapolates
to a much larger pool of users and requests, as in practice).
Especially when referring to large CPs, like Netflix, that report
annual profits of more than 2 billion US dollars [41].

Even though each pair of points in the top subplot correspond-
ing to a value of ρ is Pareto optimal, we see that ρ affects the
gains of each entity. Obviously, the CDN would rather offer
only a small discount, while the CP would prefer the largest
discount possible. One could argue that the “best” ρ is between
25% and 30%, i.e., where the two lines meet, since it does not
give advantage to any entity. Defining what is the “best” ρ and
devising a method to find it is an interesting direction for future
work. For example, one could model it as a game with alternating
offers, or simply determineρ through exhaustive search from this
plot. Besides, this plot reveals the effect of possible regulatory
interventions that, e.g., could set bounds on such discounts in
order to foster new business models, protect users’ interests and
so on.

In the third subplot (of Fig. 4), we depict the cache hit rate
for the small caches generated by the cooperative recommenda-
tions, i.e., the quantity

∑
u,i

∑
j∈C(u)\C0

αu/Nuyuixij , where
C(u) \ C0 is the set of small caches that user u is connected
to. Note that αu/Nu is the probability the user will click on a
specific recommendation. We also plot the cache hit rate of the
baseline recommendations Y b. We see that, before cooperation,
only 42% of the recommendations were generating a cache
hit at the CDN’s caches while this percentage can go up to
100% for the cooperative recommendations. We remind the
reader that, in our scenario, every user is connected to two
small caches, and, therefore, we count a cache hit when the
content in question is cached in at least one of the two caches.
In fact, the cache hit rate could be smaller in scenarios where
every user is connected to a single cache, or where the baseline
caching allocation contains less popular/relevant contents. More
importantly, even if the CDN can serve from its small caches a
big portion of the requests that come from recommendations,
there is still room for improvement: these cache hits are not
necessarily at the caches closest to each user. We will elaborate

Fig. 5. Scenario I: Relative increase in utility for different discount values ρ
and for different relative cache sizes (1− 30%).

on that in Section V-B (Scenario II). We stress here that high
cache hit rate is also beneficial for the user since it implies small
start-up delays.

In the forth subplot (of Fig. 4), we investigate the impact of
cooperative recommendations on the users’ perception of the
recommender. For that, we measure the quality of recommen-
dations (QoR) as defined in [6]. In particular, QoR for user u
measures the sum of relevance of the received recommendations:∑

i ruiyui. The forth subplot shows the aggregate QoR (summed
over the users) achieved by the cooperative and the baseline
recommendations. The y-axis is regularized with respect to the
highest existing relevances. The errorbars show the minimum
and maximum QoR observed for individual users for every
instance.

Observation 2: As the cooperative recommendations favor
cached items and significantly increase the cache hit rate, the
users’ aggregate QoR is barely compromised (≥ 96%) in our
scenario. The user’s QoR is at least 83%, where 100% stands
for the most relevant recommendations and the baseline here.

Next, we perform a sensitivity analysis with respect to two
key problem parameters: the capacity of CDN’s caches and the
CP’s revenuesRui. For the default simulation parameters, Fig. 5
depicts the relative increases in utility, as obtained by the CCR
algorithm, for different relative cache sizes and different values
of discount ρ.

Observation 3: As the relative cache size decreases, we no-
tice the highest utility gains for both the CP and the CDN.

The observation above is particularly promising for to-
day’s and future wireless architectures where base stations are
equipped with caches of small capacity. As the cache size
increases (10− 30% of the catalog), the utility gains decrease.
Note that when the cache capacity is large, the baseline rec-
ommendations (Y b) are likely to be already cached. Therefore,
fewer (when compared to the case of small cache capacity)
recommendations need to be adjusted to favor cached items.
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Fig. 6. Scenario I: Relative increase in utility for different ranges ofRui (CP’s
revenues per content) as obtained by the CCR algorithm.

Fig. 7. Convergence of DCR algorithm in Scenario I: Primal residual, i.e.,
||Ψ(k) − Ψ̃(k)||F , and suboptimality gap, i.e., |DO(k) − p∗|/|p∗|, versus num-
ber of iterations for two different values of the penalty parameter q.

Next, we fix the discount at 30% and the cache size at 1− 4%.
In Fig. 6, we see how the CP’s revenue values Rui affect the
payoffs of the cooperation. We have plotted the relative increase
in utility for both entities for 5 different revenue ranges from
[0.1, 0.2) to [0.1, 1)($). We observe that, for the range [0.1, 0.2),
the CP could have an increase of 22% of its utility. Then, as the
range widens, the payoff for the CP decreases. In fact, when the
CP’s average revenue Rui is much larger than the delivery fee,
a reduction on the fee will not have a significant impact on the
CP’s utility. On the other hand, the CDN’s payoff is not affected
as much as the range changes since its utility function does not
contain the parameters Rui.

Observation 4: When the range ofRui is narrow, the CP can
enjoy an increase in its utility of 22%, for discount ρ = 30%. As
the range widens, the CP would need a higher discount in order
to keep the gains at the same level.

In the remainder of this subsection, we will focus on the
proposed distributed algorithm (DCR). For the same problem
parameters as in Fig. 4 and the discount fixed at 30%, we will
evaluate the convergence of the DCR algorithm and its impact
on the cooperation payoffs. The top subplot of Fig. 7 depicts the

TABLE II
RELATIVE GAINS OBTAINED BY DCR∗ AND CCR

primal residual obtained within 50 iterations for two different
values of the penalty parameter q (see (21) in Section III-C). Note
that the primal residual at iteration k is equal to ||Ψ(k) − Ψ̃(k)||F
and it measures how different the CP’s and CDN’s local solutions
are. In the bottom subplot, we plot the suboptimality gap in
percentage, i.e., |DO(k) − p∗|/|p∗|, at iteration k, where p∗ is
the optimal objective function value that is obtained by the CCR
algorithm. This gap measures how far the distributed objective
value is from the centralized one and, according to Lemma 2,
tends to zero for a sufficiently large number of iterations. Note
that, as p∗ is in principle unknown, only the primal and dual
residuals are used as stopping criteria.

As we know from the theory on ADMM [22], the higher
the penalty parameter is, the lower the primal residuals are. In
fact, for q = 0.01, we observe a residual’s value of less than
4 · 10−3 and suboptimality gap of 0.14%. On the other hand,
when q = 0.003, the residual and the suboptimality gap are equal
to 6 · 10−3 and 0.03% respectively. These numbers show a rather
fast convergence for the size of our scenario. However, this
performance can be further enhanced by applying techniques
that, although do not guarantee faster convergence, can work
well in practice (see [22] for a review on such techniques).

Observation 5: Within only 3 iterations, the (distributed)
DCR algorithm can reach a suboptimality gap of less than 1%
when compared to the optimal objective function value achieved
by the (centralized) CCR algorithm. Within 20 iterations, the
suboptimality gap is less than 0.1%.

Finally, Table II shows the CP’s and CDN’s relative gains that
result from the DCR algorithm (with q = 0.003) for different
number of iterations and from the CCR algorithm.

Observation 6: Within only a few iterations, the relative
increases in utility obtained by the the DCR algorithm approach
the Pareto optimal points obtained by the CCR algorithm.

B. Scenario II

As we saw in Fig. 4, the cooperative recommendations can
lead to a high cache hit rate at the CDN’s caches. Although this
rate implies significant savings for the CDN, the cache hits do
not necessarily happen at the cache that generates the lowest
retrieval cost (when delivered to each user). What is more, if
the CDN could cache another content, that is potentially more
related to the ones in the baseline recommendations, then the CP
could further increase its benefits, without actually increasing the
cache hit rate, per se. For this reason, we will evaluate now the
potential benefits of extending the cooperation towards caching
decisions, as we discussed in Section IV, where we proposed
the CCRCache algorithm.
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Fig. 8. Scenario II: Relative gains in utility (for the two entities) and optimal
objective function values achieved by the CCRCache and the CCR algorithm
for different values of discount ρ ∈ [0.05, 0.4].

For the default parameters that were described in the begin-
ning of Section V, for capacity of caches equal to 5% of the
content catalog, and for different values of the discount ρ, we
compare the CCR and CCRCache algorithms in Fig. 8. More
specifically, we apply the CCR algorithm for every problem
instance where only the recommendations are the cooperation
variables and we apply the CCRCache algorithm for the same
instance where caching is also a cooperation variable. The top
subplot depicts the relative gains in utility for the two entities,
while the bottom subplot shows the objective function values
obtained. We notice that CCRCache leads to larger gains (for at
least the CDN) and smaller (better) objective functions values
than the ones obtained by the CCR algorithm.

Observation 7: When caching becomes a cooperation vari-
able, the CP-CDN cooperation, through the CCRCache algo-
rithm, can boost CDN’s utility up to 42%. At the same time, the
CP’s utility gains are at least as high as when recommendations
are the only cooperation variables (through the CCR algorithm).

Finally, we compare the CCRCache scheme with the related
work on the joint optimization of caching and recommenda-
tions, e.g., [5], [6], [7]. In contrast to our network-economical
approach, the aforementioned works focus on maximizing
network-related measures, such as cache hit rate. For this reason,
we adapt these schemes towards profit maximization. Therefore,
the state-of-the-art schemes could be formulated as the problem
of maximizing the aggregate profit, i.e.,

max
Y,X

U(Y ) + V (X,Y )

s.t. (27), (28), and (29), (38)

where U(Y ) + V (X,Y ) =
∑

u,i[
αu

Nu
yui(Rui −Kui(X)) +

(1− αu)pi(λ −Kui(X))]. We stress here that this
formulation (different to the NBS formulation we employed
in the CCR and CCRCache problems) does not contain the
baseline utilities. Furthermore, for the requests coming for
recommendations, the term of the CP’s costs and the term

TABLE III
PROPOSED COOPERATION VERSUS RELATED WORK: RELATIVE GAINS/LOSSES

IN UTILITY

of the CDN’s revenues are canceled out in the sum of the
two entities’ utility functions and, for the requests outside of
recommendations, the term Λui in CDN’s revenues is replaced
by λ since no discount on the delivery fees applies for the CP,
as is the case in related work.

Table III shows the relative gains/losses in utility when solving
the problem in (38) (which represents a profit-oriented joint
caching and recommendation schemes like the ones in the lit-
erature) and when applying the proposed CCRCache algorithm
for ρ = 20%. We see that the former leads to a loss in profit
for the CP (−2%) and a gain in profit for the CDN (+53%),
as it was also the case in the toy example in Section II-D. The
CP’s loss in profit is a result of recommending cached contents
whose aggregate popularity is high, but they are not necessarily
the most relevant to each user. We remind the reader that no
discount on the delivery fees applies in the problem in (38).
On the other hand, our scheme provides incentives to the CP, it
leads to gains in profit for both stakeholders (+12% and +28%
respectively), and a proportional fair allocation of the gains (as
guaranteed by the NBS formulation).

Observation 8: In contrast to the state-of-the-art schemes for
joint caching and recommendation, the proposed cooperation
scheme (CCRCache) provides concrete incentives to the CP to
cooperate with the CDN so that they design together the caching
and recommendation decisions.

VI. RELATED WORK

Several works in literature focus on the cache-friendly rec-
ommendations or the joint caching-recommendation paradigm.
In [3], the authors propose a reordering of the videos appear-
ing in YouTube’s related videos section by “pushing” on top
of the list the cached items. Similar in spirit, [4] presents
a method of replacing or reordering contents in the related
videos section taking into account network-related costs or QoS
metrics. A decomposition algorithm for the joint caching and
recommendation problem is proposed in [5]. Targeting cache
hit rate maximization, their policy first decides on caching,
accounting for the impact of recommendations, and then adjusts
the recommendations in order to favor cached items. In [6],
the authors formulate the joint problem as a maximization of
a user-centric metric consisting of expected QoS and quality
of recommendations. The authors propose an algorithm with
approximation guarantees for this joint problem. Finally, in
[42], the authors employ machine learning techniques to devise
caching and recommendation policies taking into account the
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fetching cost of the content requests. Since most of the works
above assume that the same entity decides on caching and
recommendations, they do not explore the financial aspects of
the recommendations from the point of view of both the CP and
the CDN. More importantly, none of the existing algorithms
guarantee a fair split of the financial gains that come from
cache-friendly recommendations.

The theoretical framework of the NBS that we employ in this
work was introduced by John Nash in 1950 in [9]. The NBS is a
cooperation mechanism that has been employed, among others,
in problems of spectrum access coordination [43], bandwidth
allocation [44], and content caching [45]. More specifically,
in [45], caches that belong to a network collaborate with each
other in order to decide on the caching allocation. Moreover,
in [46], the authors model a CDN-ISP collaboration as a NBS
problem.

Game theory has also been employed by works that study
the dynamics between CPs and edge caching providers and
propose cooperations or coalitions. For example, [47] and [48]
model a coalitional game between a last-mile ISP and CPs.
The authors in [49] suggest that the caching network providers
should give incentives to the CP in a form of a subsidy (that
is paid in proportion to the savings that come from caching).
Nevertheless, these works focus on the caching allocation or
deployment without exploiting the impact of recommendations
on content requests.

This paper extends our earlier work [1] by providing in-depth
insights on the proposed cooperation scheme, extending the co-
operation mechanism to a distributed algorithm and presenting
a comprehensive evaluation of the proposed algorithms in a
variety of scenarios and for different input parameters. Finally,
the current work discusses a possible extension of the presented
problem towards the CDN’s caching decisions.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel cooperation framework in
which the CP and the CDN jointly decide on the recommenda-
tions in order to favor cached contents. The optimization prob-
lem of the cooperation was formulated in such a way that the co-
operative recommendations lead to a fair and efficient allocation
of financial gains between the two entities. We also developed
a distributed algorithm when the two entities are not willing to
share private information on their revenue/cost functions. Fur-
thermore, we explored how this cooperation framework could be
extended towards the CDN’s caching decisions. Although this
problem is harder to solve, it has the potential to further increase
the cooperation gains. Our numerical evaluations show that, in
realistic scenarios, the two entities can benefit of an increase in
their expected net revenue of up to 37% and up to 42% when
caching is a cooperation variable.

The cooperation model presented in this work could be
extended in several directions. For example, as we discussed
in Section V, one could add the discount parameter ρ as a
control variable in the cooperation problem. Another direction
would be to include the users as players that could potentially
enjoy lower subscription fees when they receive cooperative

recommendations that diverge from their tastes. Finally, it would
be interesting to design a mechanism (on top of the proposed
cooperation) that can address trust/security issues that could
occur, e.g., misreported gains or misinformation between the
stakeholders.

REFERENCES

[1] D. Tsigkari, G. Iosifidis, and T. Spyropoulos, “Split the cash from cache-
friendly recommendations,” in Proc. IEEE Glob. Commun. Conf., 2021,
pp. 1–6.

[2] C. A. Gomez-Uribe and N. Hunt, “The Netflix recommender system:
Algorithms, business value, and innovation,” Proc. ACM Trans. Manage.
Inf. Syst., vol. 6, no. 4, 2016, Art. no. 13.

[3] D. K. Krishnappa, M. Zink, C. Griwodz, and P. Halvorsen, “Cache-centric
video recommendation: An approach to improve the efficiency of YouTube
caches,” ACM Trans. Multimedia Comput., Comm., Appl., vol. 11, no. 4,
2015, Art. no. 48.

[4] S. Kastanakis, P. Sermpezis, V. Kotronis, D. S. Menasche, and T. Spy-
ropoulos, “Network-aware recommendations in the wild: Methodology,
realistic evaluations, experiments,” IEEE Trans. Mobile Comput., vol. 21,
no. 7, pp. 2466–2479, Jul. 2022.

[5] L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos, “Jointly
optimizing content caching and recommendations in small cell net-
works,” IEEE Trans. Mobile Comput., vol. 18, no. 1, pp. 125–138,
Jan. 2019.

[6] D. Tsigkari and T. Spyropoulos, “An approximation algorithm for joint
caching and recommendations in cache networks,” IEEE Trans. Netw.
Service Manage., vol. 19, no. 2, pp. 1826–1841, Jun. 2022.

[7] K. Qi, B. Chen, C. Yang, and S. Han, “Optimizing caching and recommen-
dation towards user satisfaction,” in Proc. IEEE 10th Int. Conf. Wireless
Commun. Signal Process., 2018, pp. 1–7.

[8] I. Poese, F. Benjamin, A. Bernhard, G. Smaragdakis, S. Uhlig, and A. Feld-
mann, “Improving content delivery with PaDIS,” IEEE Internet Comput.,
vol. 16, no. 3, pp. 46–52, May/Jun. 2012.

[9] J. F. Nash Jr., “The bargaining problem,” Econometrica: J. Econometric
Soc., vol. 18, no. 2, pp. 155–162, 1950.

[10] J. Davidson et al., “The YouTube video recommendation system,” in Proc.
4th ACM Conf. Recommender Syst., 2010, pp. 293–296.

[11] Z. Tufekci, “Youtube, the great radicalizer,” New York Times, 2018. [On-
line]. Available: https://www.nytimes.com/2018/03/10/opinion/sunday/
youtube-politics-radical.html

[12] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G.
Caire, “FemtoCaching: Wireless content delivery through distributed
caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–8413,
Dec. 2013.

[13] Maz Systems, OTT business models, 2020. [Online]. Available: https:
//www.mazsystems.com/types-of-ott-business-models/

[14] Amazon CloudFront, Pricing, 2020. [Online]. Available: https://aws.
amazon.com/cloudfront/pricing/

[15] E. Gourdin, P. Maillé, G. Simon, and B. Tuffin, “The economics of CDNs
and their impact on service fairness,” IEEE Trans. Netw. Service Manag.,
vol. 14, no. 1, pp. 22–33, Mar. 2017.

[16] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM, 2010, pp. 1–9.

[17] R. B. Myerson, Game Theory. Cambridge, MA, USA: Harvard Univ. Press,
2013.

[18] D. Bertsimas, V. F. Farias, and N. Trichakis, “The price of fairness,”
Operations Res., vol. 59, no. 1, pp. 17–31, 2011.

[19] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” in Proc. IEEE ICC, 2015, pp. 3358–3363.

[20] Netflix Tech Blog, Netflix and Fill, 2016. [Online]. Available: https://
netflixtechblog.com/netflix-and-fill-c43a32b490c0

[21] G. Eriksson, J. Mattsson, N. Mitra, and Z. Sarker, “Blind cache: A solution
to content delivery challenges in an all-encrypted web,” Ericsson Rev.,
vol. 94, no. 1, pp. 8–19, 2017.

[22] S. Boyd, N. Parikh, and E. Chu, Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers. Boston,
MA, USA: Now, 2011.

[23] J. Eckstein and D. P. Bertsekas, “On the Douglas—Rachford splitting
method and the proximal point algorithm for maximal monotone opera-
tors,” Math. Program., vol. 55, no. 1, pp. 293–318, 1992.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 30,2024 at 09:05:33 UTC from IEEE Xplore.  Restrictions apply. 

https://www.nytimes.com/2018/03/10/opinion/sunday/youtube-politics-radical.html
https://www.nytimes.com/2018/03/10/opinion/sunday/youtube-politics-radical.html
https://www.mazsystems.com/types-of-ott-business-models/
https://www.mazsystems.com/types-of-ott-business-models/
https://aws.amazon.com/cloudfront/pricing/
https://aws.amazon.com/cloudfront/pricing/
https://netflixtechblog.com/netflix-and-fill-c43a32b490c0
https://netflixtechblog.com/netflix-and-fill-c43a32b490c0


1768 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 2, FEBRUARY 2024

[24] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. press, 2004.

[25] W. Li, P. Spachos, M. Chignell, A. Leon-Garcia, L. Zucherman, and J.
Jiang, “Impact of technical and content quality on overall experience of
OTT video,” in Proc. IEEE Annu. Consum. Commun. Netw. Conf., 2016,
pp. 930–935.

[26] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender
algorithms on top-n recommendation tasks,” in Proc. ACM Conf. Recom-
mender Syst., 2010, pp. 39–46.

[27] H. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher, “The un-
fairness of popularity bias in recommendation,” 2019, arXiv:1907.13286.

[28] M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and S.
Chouvardas, “Placing dynamic content in caches with small population,”
in Proc. IEEE 35th Annu. Int. Conf. Comput. Commun., 2016, pp. 1–9.

[29] W. Wei, “Tutorials on advanced optimization methods,” 2020,
arXiv:2007.13545.

[30] C. A. Floudas and V. Visweswaran, “A global optimization algorithm
(GOP) for certain classes of nonconvex NLPs—i. theory,” Comput. Chem.
Eng., vol. 14, no. 12, pp. 1397–1417, 1990.

[31] C. A. Floudas, Deterministic Global Optimization: Theory, Methods and
Applications, vol. 37. Berlin, Germany: Springer Science & Business
Media, 2013.

[32] R. E. Wendell and A. P. Hurter Jr., “Minimization of a non-separable
objective function subject to disjoint constraints,” Operations Res., vol. 24,
no. 4, pp. 643–657, 1976.

[33] S. Diamond, R. Takapoui, and S. Boyd, “A general system for heuristic
minimization of convex functions over non-convex sets,” Optim. Methods
Softw., vol. 33, no. 1, pp. 165–193, 2018.

[34] Flixable, “Netflix Museum,” 2019. [Online]. Available: https://flixable.
com/netflix-museum/

[35] F. M. Harper and J. A. Konstan, “The movielens datasets: History and con-
text,” ACM Trans. Interactive Intell. Syst., vol. 5, no. 4, 2016, Art. no. 19.

[36] Netflix Help Center, “Plans and pricing,” 2022. [Online]. Available: https:
//help.netflix.com/en/node/24926/us

[37] E. Keslassy, “Netflix’s cindy holland says subscribers watch an average of
two hours a day,” Variery, 2019. [Online]. Available: https://variety.com

[38] Statista, “Average length of the top 10 highest-grossing movies in the
U.S. and Canada from 1980 to 2021,” 2022, [Online]. Available: https:
//www.statista.com/statistics/1292523/lenght-top-movies-us/

[39] Variety, “Netflix reveals 10 most popular movies,” 2020. [Online]. Avail-
able: https://variety.com/2020/film/news/netflix-most-popular-movies-
irishman-extraction-bird-box-1234708250/

[40] Wikipedia, “Bird Box (film),” 2022. [Online]. Available: https://en.
wikipedia.org/wiki/Bird_Box_(film)

[41] Fortune, “Netflix company profile,” 2021. [Online]. Available: https:
//fortune.com/company/netflix/fortune500/

[42] D. Liu and C. Yang, “A deep reinforcement learning approach to proactive
content pushing and recommendation for mobile users,” IEEE Access,
vol. 7, pp. 83120–83136, 2019.

[43] Y. Wu and W.-Z. Song, “Cooperative resource sharing and pricing for
proactive dynamic spectrum access via Nash bargaining solution,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 11, pp. 2804–2817, 2013.

[44] H. Yuan, X. Wei, F. Yang, J. Xiao, and S. Kwong, “Cooperative bar-
gaining game-based multiuser bandwidth allocation for dynamic adaptive
streaming over http,” IEEE Trans. Multimedia, vol. 20, no. 1, pp. 183–197,
Jan. 2018.

[45] L. Wang, G. Tyson, J. Kangasharju, and J. Crowcroft, “Milking the cache
cow with fairness in mind,” IEEE/ACM Trans. Netw., vol. 25, no. 5,
pp. 2686–2700, Oct. 2017.

[46] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang, “Cooperative content
distribution and traffic engineering in an ISP network,” in Proc. Conf.
Meas. Model. Comput. Syst., 2009, pp. 239–250.

[47] V. G. Douros, S. E. Elayoubi, E. Altman, and Y. Hayel, “Caching games
between content providers and internet service providers,” Perform. Eval.,
vol. 113, pp. 13–25, 2017.

[48] D. Mitra and A. Sridhar, “Consortiums of ISP-content providers formed
by nash bargaining for internet content delivery,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 631–639.

[49] M. Ahmadi, J. Roberts, E. Leonardi, and A. Movaghar, “Cache subsidies
for an optimal memory for bandwidth tradeoff in the access network,”
IEEE J. Sel. Areas Commun., vol. 38, no. 4, pp. 736–749, Apr. 2020.

Dimitra Tsigkari received the degree in mathematics
from Aristotle University of Thessaloniki, Greece, the
master’s degree in mathematics and applications from
Pierre-et-Marie-Curie University (Paris 6), France,
and the PhD degree in computer science, telecom-
munications and electronics from EURECOM and
Sorbonne University, France. She is currently a post-
doctoral researcher with the Delft University of Tech-
nology, Netherlands. Her research interests include
caching and network optimization.

George Iosifidis received the Diploma degree in elec-
tronics and telecommunications engineering from the
Greek Air Force Academy in 2000, and the PhD
degree from the University of Thessaly, Greece, in
2012. He was a post-doctoral researcher with CERTH
(Greece, 2012-14), Yale University (USA, 2014-
2016) and an assistant professor with Trinity College
Dublin (2016-2020). He is currently an Assistant
Professor with the Delft University of Technology. He
serves as an editor for IEEE Transactions on Commu-
nications, IEEE/ACM Transactions on Networking

and IEEE Transactions on Network Science and Engineering. His research
interests lie in the broad area of network optimization and economics, with
a recent focus on edge computing, data caching systems, and sharing economy
platforms.

Thrasyvoulos Spyropoulos received the Diploma in
electrical and computer engineering from the Na-
tional Technical University of Athens, Greece, and
the PhD degree in electrical engineering from the Uni-
versity of Southern California. He was a post-doctoral
researcher with INRIA and then, a senior researcher
with the Swiss Federal Institute of Technology (ETH)
Zurich. From 2010 to 2022, he was a professor with
EURECOM, France. He is currently a professor with
the Technical University of Crete, Greece. He was a
co-recipient of the Best Paper Award in IEEE SECON

2008, and IEEE WoWMoM 2012, as well as the Runner-Up for ACM MobiHoc
2011, IEEE WoWMoM 2015, and IEEE WoWMoM 2021.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 30,2024 at 09:05:33 UTC from IEEE Xplore.  Restrictions apply. 

https://flixable.com/netflix-museum/
https://flixable.com/netflix-museum/
https://help.netflix.com/en/node/24926/us
https://help.netflix.com/en/node/24926/us
https://variety.com
https://www.statista.com/statistics/1292523/lenght-top-movies-us/
https://www.statista.com/statistics/1292523/lenght-top-movies-us/
https://variety.com/2020/film/news/netflix-most-popular-movies-irishman-extraction-bird-box-1234708250/
https://variety.com/2020/film/news/netflix-most-popular-movies-irishman-extraction-bird-box-1234708250/
https://en.wikipedia.org/wiki/Bird_Box_(film)
https://en.wikipedia.org/wiki/Bird_Box_(film)
https://fortune.com/company/netflix/fortune500/
https://fortune.com/company/netflix/fortune500/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


