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1
Introduction

Erasmus University Medical Centre (Erasmus MC), founded in 2002, is an organisation
that provides a full spectrum of clinical services, including those supplied by Erasmus MC
Sophia Children’s Hospital and Erasmus MC Cancer Institute, which fall under the Erasmus
MC umbrella. In addition, the core tasks Erasmus MC focuses on are: providing patient
care, teaching, training, and conducting research.

Furthermore, Erasmus MC is affiliated with Erasmus University and is the home of
its faculty of medicine. It ranks number one in the top European institutions in clinical
medicine and it is the largest scientific University Medical Centre in Europe.
Like most hospitals, Erasmus MC faced an evident nursing personnel shortage in the Inten-
sive Care Unit (ICU) when the first wave of COVID-19 arrived. However, even though the
pandemic made this workforce shortage problem evident, said problem has been present
even before the current pandemic.

Moreover, currently in Erasmus MC, there is sub optimal lines of communication be-
tween the rostering departments, which are in charge of nursing scheduling, and there is
no view on the needed training between departments, which results in a problem when
there is a shortage of personnel in one or more departments. These factors make it harder
to have a more efficient scheduling of nurses and a more flexible workforce. Hence, this
work is a way to link the hospital’s departments and to create a possible bridge of commu-
nication in the future for better planning.

The management team of Erasmus MC would like for wards to work together by imple-
menting cross-training and transferring nurses between wards, so in the future the hospi-
tal would be better prepared for fluctuating and irregular demand. The motivation for this
project is to show that it is possible to provide the required health care while preparing a
more flexible workforce. The overall objectives for this thesis are:

→ To propose an efficient use of nursing personnel.

→ To implement cross-training in an intelligent way for a more flexible workforce.

1



2 1. Introduction

→ To provide the required health care patients need.

→ To encourage priority training.

→ To minimize overall costs; these costs include hiring external nurses and the time
nurses spent training on the job.

In order to apply this project to Erasmus MC, it is important to have a clear under-
standing of the nursing personnel’s structure within the hospital. It is required to under-
stand how training works in each department, to know the structural cooperation that takes
place within Erasmus MC, and other technical aspects. Examples of these features within
the hospital are:

• There are two types of training; advanced training, which takes place outside the
workplace and the dates of this training are fixed. And on the other hand, there is
training on the job, which takes place within the hospital and there are no restric-
tions on the dates when this training take place.

• The type of advanced training each nurse can take. For example, nurses from the
Dijkzigt Movement ward can take the Traumatology specialty advanced training, but
do not take the Oncology specialty one.

• The duration of training on the job among wards; for example, in the Oncology ward,
it takes up to six months to train a nurse to provide full-time health care in said ward,
while in the Gynecology ward it takes up to one month.

• The type of contract nurses have, which states how many hours a nurse works per
year, and provides the number of shifts nurses can work per week.

To fulfil the project’s objectives, a model is created such that: it takes into account avail-
able nurses and their respective skill levels, possible advanced training each nurse can take
to upgrade her/his skills along with the cost and duration of each training, the possibility
of cross-training within departments, the hospital’s demand, seen as the amount of health
care patients need (in hours) during the fixed time horizon, and the skills for which priority
training is aimed to be maximized during said time horizon. The patients are categorized
based on the set of skills they need from nurses, so instead of referring to each patient
specifically, they will be referred to as patient types.

The model will provide schedules on a daily basis, showing what each nurse does along
the time horizon and in which ward; each nurse either works or has a rest day, and if a
nurse works, he/she either attends advanced training, provides full-time health care, or is
training on the job. In addition, the model gives the hours each nurse will spend with each
type of patient for each day in the time horizon. All of these assignments are done while
ensuring all patients are getting the required health care and the capacity each nurse has
available is respected.

This thesis is composed as follows: Chapter 2 displays the relevant literature for this
project, showing with a brief summary the work that has been done in related projects and
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the relevance this thesis has. In Chapter 3, the model is introduced in a general way, and the
mathematical model is presented afterwards. Chapter 4 explains the solution method that
was implemented to solve the model. Next, Chapter 5 discusses the parameters provided
by the hospital in order to implement the model previously defined. This chapter also con-
tains the required data pre-processing that is done (if applicable). Chapter 6 displays and
discusses the results of these implementations, and Chapter 7 reflects on the whole project
and provides further recommendations. Finally, conclusions can be found in Chapter 8.





2
Literature Review

This chapter discusses the relevant literature for this project. For each paper, a brief sum-
mary is given pointing out key factors for this thesis.
Firstly, the work of De Bruecker et al. [2015] was the main source of literature for this thesis.
The authors of this article provide a rigorous classification of the literature that deals with
workforce planning incorporating skills. Some of the categories used are the following;

• Literature using hierarchical and categorical skill types.

• Allowing substitution or not when dealing with hierarchical skills.

• Literature that implements training.

• Projects that manage learning and forgetting skills.

• Application areas.

This article provided most of the literature that was used for this project, and the pre-
ceding reviewed papers that are not stated otherwise, were provided by this article. Section
2.1 provides the literature used as a background to build the mathematical model of the
thesis, and Section 2.2 contains papers that provided potential approaches to solve it.

2.1. Mathematical Modelling
This section displays relevant literature related to the problem this thesis aims to solve.
Subsection 2.1.1 shows literature that only considers workers’ skills, and Subsection 2.1.2
presents papers that incorporate the possibility of training to gain and/or upgrade skills.

2.1.1. Literature focused only on Skills
First of all, Li and Li [2000] present a multiple objective goal programming (GP) method
for a multi-skilled personnel planning problem. This problem aims to determine the staff
needed for the planning period within budgetary constraints. The authors apply this model
to real data from an AIDS prevention clinic in China. It takes into consideration task sub-
stitution, regular demand and irregular demand (non-scheduled patients), overtime, and

5



6 2. Literature Review

hiring and firing staff.

Next, Cai and Li [2000] consider the staff scheduling problem with mixed skills. The
problem considers two types of skills and a workforce where each employee has at least
one of these skills. The model aims to assign each worker to a weekly schedule fulfilling
each task’s demanded skill. In this paper, each job requires either skill 1 or skill 2 to be
completed, so there are no jobs that require both skills. The authors consider three differ-
ent objective functions ranked by priority: minimize overall cost, maximize staff surplus,
and minimize the variation of staff surplus. They propose a new Genetic Algorithm for
working with these three different criteria.

Furthermore, Wallace and Whitt [2005] implement a local search algorithm to help im-
prove management decisions in call centers. Usually, call centers handle different types
of calls where an agent requires a certain skill to handle each type of call. This work aims
to find the optimal number of agents and the optimal number of skills said agents should
have in order to efficiently cover the expected calls.

Another paper within the health care category is provided by Bard and Purnomo [2005].
The authors work with the nurse scheduling problem taking into account nurses’ prefer-
ences and nurses’ skills. In this paper, hierarchical skills are considered and they are used
to implement downgrading among nurses; in other words, a high skill level nurse can be
assigned assigned to a shift that requires a low skill level nurse. The authors perform a col-
umn generation approach along with heuristics to recognize good rosters. Even though the
presented model considers nurses’ skills, it does not consider training to upgrade nurses’
skills.

Sayin and Karabati [2007] aim to assign cross-trained workers to different departments.
The authors do this by applying a two phase approach where the first phase consists of
maximizing departmental utility and the second part consists of maximizing skill improve-
ment among the workforce. The paper considers each worker’s skill level at each depart-
ment, and a hyperbolic learning curve is used to asses the benefits of each assignment tak-
ing into account the time a worker has been in each department. It is a general approach
since the model is not applied to a specific real case.

Furthermore, the work of Tiwari et al. [2009] is based on the multi-mode, resource-
constrained, project scheduling problem (MRCPSP). This problem works with similar skill
level resources to perform the required jobs aiming to minimize the total project makespan.
However, the authors implement a variant of this problem allowing to work with different
levels of skills. The article states that with this approach, there is the possibility for a low-
level worker starting a project (or a part of it) and a high-level worker can then complete
the project to attain the expected quality level. From the results of the implementation of
this problem, further analysis is made to identify cross-training opportunities.

2.1.2. Literature that incorporates Training
The work provided by DePuy et al. [2006] is not in the literature considered by De Bruecker
et al. [2015], the former deals with the problem of assigning workers to tasks in a com-
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pany based on the worker’s skill level. The authors develop two models; the first one is
intended to be applied if there is a lack of time for workers to raise their skill level, and the
aim is to make the assignment between workers and tasks, while minimizing the gap of
each worker’s skill level with the skill level the task requires. The second model is called the
skills management problem and introduces the possibility for workers to receive training
in order to raise their skill level. This model decides the workers that will go under training,
and makes the assignment of the tasks with the workers taking into account the worker’s
updated skill level. The objective function of this model is to minimize the overall training
costs. To the best of our knowledge, this is the first paper that addresses the skills manage-
ment problem, which suited this project the best.

Moreover, Fowler et al. [2008] aim to make different staff decisions like firing, cross-
training or hiring employees, while minimizing the overall costs of these decisions and ful-
filling the demanded work. The authors implement the use of skills and the general cog-
nitive ability (GCA) of their employees to make these staff decisions. GCA is defined as the
ability to learn or process information. The model of this paper allows skills not being sat-
isfied. They implement two linear programming based heuristics, and a genetic algorithm
to compare the performance of the heuristics.

Projects related with the one of DePuy et al. [2006] are the ones by Grieshaber [2009] and
Jackson [2009]; these are theses that were supervised by G. Depuy. Grieshaber [2009] aims
to improve existing algorithms to upgrade efficiency in large data sets for the skills man-
agement problem. The author makes use of Genetic Algorithms incorporating preexisting
Greedy Algorithms to compare results, running time, and overall efficiency of the different
algorithms implemented. On the other hand, Jackson [2009] implements three different
heuristic techniques to the skills management problem and aims to compare these by ex-
ecuting them with randomly generated data sets. The heuristic techniques used are: a
greedy assignment algorithm, Meta-RaPS greedy heuristic, and Meta-RaPS shortest aug-
menting path.

The work of Huang et al. [2009] presents a simulator called SimMan that assesses differ-
ent managerial decisions that affect overall workforce planning; such as whether to allow
cross-training or not, and if a delay in the starting time of a task can be permitted or not.
This evaluation then is used to compare these managerial decisions and their effects in the
solutions provided. They present one planning model that considers skill-based demand
and cross-training of the workforce to fulfill the fluctuating demand of a company. It is im-
portant to notice that the skills used are not hierarchical. This model deals also with hiring
personnel, firing personnel, and outsourcing when the demand cannot be met. Some re-
sults of the implementation of the simulator SimMan showed that when a company allows
cross-training, there are significant savings since less personnel is needed, and outsourcing
decreases when the start of a task can be delayed.

Additionally, Smet et al. [2014] propose a generic model to the nurse rostering problem.
This work addresses the complexity of real-world nurse rostering problems and the lack of
practicability in the available academic models for these. Consequently, the authors intro-
duce basic concepts that are usually used in real-world nurse rostering problems and the
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different scenarios that can be presented in such concepts. For example, when nurses’ skill
types are introduced, it is stated that there can be three different scenarios; either all em-
ployees have the same skill type (which is unusual in real-world problems), each employee
has at most one skill type, or employees can have more than one skill type. This paper
implements a hyper-heuristic approach to solve the nurse rostering problem applied to
real-case scenarios from Belgian hospitals, comparing its performance to the approach of
an adaptive large neighbourhood search.

2.1.3. Conclusion
Even though some work has been done in the workforce planning area, the body of litera-
ture considered does not support approaches for the proposed problem in this project. As
already shown, most papers that deal with multi-skilled workforce do not consider training
to upgrade a worker’s skill level, and the ones that do, do not have a breakdown of how the
training will be implemented in the future; they just decide whether a worker will receive
training in a certain skill or not.

Furthermore, papers that are in the health care category mostly focus on the nurse ros-
tering problem; one of the exceptions is the work of Li and Li [2000]. However, this article
considers staff skills only for possible substitution among the workforce and it does not
consider training. The work that was the closest to this project is the one by DePuy et al.
[2006], specifically the model for the skills management problem. Nevertheless, this is not
exactly what the model of this project aims for; this thesis aims to provide the exact periods
when nurses will receive training throughout the time horizon, while DePuy et al. [2006]
do not work with a time horizon, nor a schedule for the planned trainings. However, this
paper is used as the base for building the mathematical model of this thesis.

2.2. Solution Methods
In this section, literature that implements possible solution methods for the model imple-
mented in this thesis is displayed. This section will mainly focus on the techniques used
to solve different workforce planning problems and at the end it will be discussed which
method will be applied in this thesis.

Authors Cai and Li [2000] solve a scheduling problem that considers two types of jobs
and workers with at most two different skills; and the type of job a worker is able to do
depends on the skill(s) he/she has. They solve this problem using a Genetic Algorithm
(GA); the proposed GA implements a ranking scheme in the parent selection phase of the
algorithm. It executes the uniform crossover operator, and it uses a heuristic to solve infea-
sibility after crossover operators.

Moreover, Bard and Purnomo [2005] work with the nurse rostering problem taking into
account nursing personnel’s preferences. The authors not only focus on getting efficient
schedules, they aim to provide quality rosters for nurses taking into account nurses’ skills.
The problem presented considers the employment of outside nurses and the excess num-
ber of nurses used for each period.
This work solves the proposed problem with two different approaches using a column
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generation-based technique; the approaches differ on how the algorithm meets the de-
mand of nurses for each skill.

Research by Fowler et al. [2008] implements two linear programming (LP) based heuris-
tics and a genetic algorithm (GA) approach to a workforce planning problem. The problem
tackled in this paper considers periods throughout a time horizon, and for each period, de-
cisions like hiring, training, and firing are made.
The LP based heuristics solve the relaxation of the problem, then they either round up or
down the variables that are meant to be integer. The difference between these two LP based
heuristics is that one solves the relaxation of a problem for each period, and the other only
solves the relaxation of the problem once. At the end, the authors implement the GA only
to evaluate the performance of these two heuristics; it is important to notice that the im-
plemented GA outperformed the LP based heuristics.

The work done by Grieshaber [2009] and Jackson [2009] are theses that were done un-
der the supervision of G. Depuy. Both papers implemented heuristics to solve the skills
management problem introduced by DePuy et al. [2006].
Grieshaber [2009] implements a genetic algorithm approach while Jackson [2009] used a
Shortest Augmenting Path (SAP) algorithm. The skills management problem is a special
case of the generalized assignment problem, and since both of these approaches are com-
monly used to solve assignment problems, it makes sense for the authors to have imple-
mented them.

Furthermore, Bai et al. [2010] implement a Genetic Algorithm (GA) combined with a
Simulated Annealing Hyper-Heuristic (SAHH) approach to solve a nurse rostering problem.
The authors state that genetic algorithms can be improved by combining them with lo-
cal search procedures, specifically, combining the GA with the SAHH approach has shown
stunning results for difficult problems.
Hyper-heuristics are high-level techniques that deal with a pool of heuristics in order to
widen the solution space. Particularly for this paper, the SAHH approach uniformly chooses
one among nine neighbourhoods to get a new solution for each individual of the popula-
tion, and then apply the crossover and mutation operators to the obtained population.

Additionally, Ho and Leung [2010] use a manpower scheduling problem to model airline
catering operations. The model used in this research considers time windows and job-skills
constraints; it contemplates workers with at most two different skills, and it aims to form
assignments between teams of two persons with flights seen as jobs.
Authors in this paper approach the problem with two heuristics: Tabu Search and Simu-
lated Annealing, showing that the Tabu Search approach outperformed the Simulated An-
nealing one.

Smet et al. [2014] implement a hyper-heuristic approach to solve a nurse rostering prob-
lem. This approach considers two main features; a selection phase and an acceptance cri-
terion. It selects one low level perturbation heuristic at a time, a neighbour from the current
solution is obtained and then it is assessed if the new solution is accepted or not.
Working with several neighbourhoods enables a broader search in the solution space. Ex-
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amples of the neighbourhoods used in this paper are: assigning a shift to a nurse, deleting
an existing shift from a nurse, and general assignment of shifts change.

Wang et al. [2021] present two mixed-integer programming formulations that model
single and multiple period operations (like hiring and cross-training), motivated by how
seasonal businesses work. Seasonal businesses, like agricultural businesses, hire workers
depending on external factors like environmental conditions and market prices.
This paper solves these two models through a Tabu Search algorithm using k-OPT strate-
gies, and to compare the solution quality of this approach, they solve several instances for
both models with Gurobi solver and with this technique. An k-OPT algorithm is a local
search heuristic widely used for the Traveling Salesman Problem.

The literature included in this section shows possible solution methods that can be im-
plemented in this thesis. Most papers were provided by De Bruecker et al. [2015], which
gives a classification on the literature that deals with workforce planning based on the so-
lution methods they implemented.
De Bruecker et al. [2015] showed that among the heuristics used to solve a workforce plan-
ning problem, the Genetic Algorithm (GA) approach is widely used and has shown to per-
form quite well to solve assignment problems and workforce planning problems. The dis-
played papers that used a GA either improved the approach by combining it with other
techniques, or used it as a baseline to compare other heuristics.



3
Problem Formulation

In this chapter, the model is thoroughly explained. A general description is discussed first
and the mathematical model is introduced after. In addition, the parts that were similarly
taken from the work done by DePuy et al. [2006] will be pointed out throughout the expla-
nation of the mathematical model.

3.1. Problem Description
The model considers three main factors: nursing personnel, nurse’s skills, and the hospi-
tal’s demand to fulfill. Given a set of nurses and a set of skills, each nurse has a subset
of skills (as graphically exemplified in Figure 3.1). The nurse’s acquired skills can depend
on several factors, such as prior education, work experience and/or certifications obtained.

Figure 3.1: Graphical example of a set of nurses, a set of skills, and how each nurse has a specific subset of
skills.

Furthermore, the model considers the possibility for nurses to learn and/or upgrade
their skills. In other words, it is possible for nurses to receive training in order to acquire
new skills, as illustrated in Figure 3.2.

11



12 3. Problem Formulation

Figure 3.2: Graphical example of how nurses can acquire new skills.

Specifically for this thesis, there are two types of training. One kind of training is train-
ing on the job; the aim of this type of training is to prepare nurses so they are able to provide
health care in a specific ward. It is given within the hospital and there are no fixed dates for
this training.

However, this training begins when a nurse starts working in a ward, and the duration
of the training depends on the prior experience of each nurse. For example, in the Gynecol-
ogy ward, nurses with no work experience take up to twelve months to fully provide health
care in said ward, whereas experienced nurses may take four weeks to do so.

Moreover, when a nurse is training on the job there are two components to be consid-
ered: the amount of supervision he/she requires and the quantity of health care he/she
can provide on his/her own. When training on the job starts, nurses need full-time super-
vision, hence they cannot provide any health care by their own. Throughout the training,
the amount of supervision nurses need is considered to be decreasing linearly until no su-
pervision is necessary. Therefore, the quantity of health care nurses can provide by their
own is increasing linearly, until they can provide full-time health care in their ward.

A graphical example of these two factors during training on the job can be seen in Fig-
ure 3.3.

Figure 3.3: Graphical example of the amount of supervision needed from nurses versus the quantity of health
care they can provide by their own throughout training on the job.

On the other hand, there is advanced training; this training takes place outside the hos-
pital and it has fixed dates. The hospital decides which nurses are ready to take this training,
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and the objective of this training is for nurses to gain specialized skills, so that they are able
to provide specific health care in their own ward or to get the skills they lack to be able to
provide health care in another ward.
Nurses that have the skills to provide health care on multiple wards are considered to be
flexible. Having a flexible workforce in the hospital gives the possibility to fulfill irregular
demand without any personnel shortage.

The hospital’s demand that is aimed to fulfill is seen as the amount of health care provi-
sion (in hours) patients require, where a patient is represented as a time interval that starts
the moment the patient is admitted to the hospital and ends at the moment the patient gets
discharged. During their stay, patients require nurses with specific skills to provide them
the adequate health care, as graphically shown in Figure 3.4.
It is important to notice that for this project specifically, the model will work with historical
data of the patients. This means that the wards where patients get treated are fixed.

Figure 3.4: Graphical example of a set of patients, a set of skills, and how each patient has specific skill needs.

The model works with periods (days) throughout a fixed time horizon, and certain de-
cisions must be made, such as:

• The nurses that should receive training, which training they should get and when

• If there is need to hire external nurses to fulfill the hospital’s demand

• If a nurse works/receives training/rests in a specific day

• The nurses that will be included in the flexible workforce

• For the nurses in the flexible workforce, which ward they should work in for each
period

• For each week in the time horizon, how many days each nurse works; this decision
must be made taking into account the contractual obligations nurses have with the
hospital.
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Given the features discussed above, what the model aims to provide is a way to fulfill
the hospital’s demand while building flexible nursing personnel by implementing training
among nurses, doing it in an efficient way so the overall training costs are minimized and
priority training for specific skills is applied.
A graphical example of the problem can be seen in Figure 3.5.

Figure 3.5: Graphical example of the decisions that the model will make for each period in the time horizon.
For nurses that are flexible, it is decided which ward they work in to fulfill the required health care by patients
in said ward, or if they take advanced training to gain new skills. For non-flexible workforce, it is decided
whether they work to meet the needed health care in their own ward, or if they take advance training to gain
new skills.

3.2. Mathematical Model
To bring this problem into a mathematical model, there are several things that need to be
taken into account and quantified; first of all, the set of skills and nurses are given by sets K
and N , respectively, the time horizon for which the model is applied to is given in days by
the set T , and let I be the set of weeks the model takes into account. Also, Snk is introduced
to keep track of the skill level each nurse n ∈ N currently has in skill k ∈ K , and let ak be the
highest level a nurse can have in skill k ∈ K .

Connected to this, let Nk be the set of nurses that have skill k ∈ K at its highest level (i.e.
Nk = {n ∈ N |Snk = ak }), in other words, Nk contains the nurses that do not need further
training in skill k ∈ K . In addition, let Dn be the number of days nurse n ∈ N must have
worked at the end of the time horizon T , and let δmi n

n , δmax
n be the minimum and maxi-

mum number of days nurse n ∈ N can work weekly, respectively.

Now, to introduce the parameters linked to the hospital’s demand, which is seen as pa-
tients, it is important to notice that a set of patients is not considered per se; instead, each
patient is categorized based on the health care he/she needs in terms of nurses’ skills, so
each patient is labeled as a patient type, and set J contains all patient types the model con-
siders. Moreover, H j t gives the hours each patient type j ∈ J needs health care from a nurse
on day t ∈ T , and R j k gives the required level of skill k ∈ K a nurse must have to provide
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health care to patient type j ∈ J .

Moreover, let W be the set of wards in the hospital, let wn ∈ W be the ward of nurse
n ∈ N , and let w j be the ward where patient type j ∈ J belongs to.

Since this project considers the possibility for nurses to get new skills and/or to up-
grade their current skills, parameters linked to training are needed. Regarding the advanced
training, i.e. the training that is fixed, let Θkm ⊆ T contain the days on which advanced
training takes place to improve skill k to level m, and let θkm be the last day of advanced
training to improve skill k ∈ K to level m. If this day is out of the time horizon T , θkm is set
to be the last day of the time horizon T . Furthermore, the binary parameter τnkm is intro-
duced, which is 1 if nurse n ∈ N is a prospect to take the advanced training to upgrade skill
k ∈ K from level Snk to level m, and 0 otherwise.

On the other hand, for the training on the job: let enw be the number of days it takes
nurse n ∈ N to complete training in ward w ∈W . It is important to notice that a nurse can
take a training only once, in other words: advanced training to improve skill k ∈ K can be
taken only once, and training on the job to be able to provide health care in ward w ∈ W
can be taken only once.

The parameter enw can depend in both the nurse’s experience and the ward the nurse
comes from. In addition, training on the job requires the supervision of an experienced
nurse; the nurse that receives the training starts needing full-time supervision from an ex-
perienced nurse, and as the training progresses, the needed supervision decreases until
there is no supervision needed at all and the trained nurse can provide full health care in
the respective ward. This means that while a nurse is under supervision he/she is unable
to provide full-time health care in the ward where he/she is training, hence the parameter
fnwβ gives the hours of health care nurse n ∈ N can provide daily in ward w ∈ W after β
days of training on the job in said ward.

Finally, Erasmus MC aims to have more flexible nursing personnel, and to achieve this,
the hospital wants to encourage training in certain skills. Therefore, P ⊆ K is defined as the
set of skills for which priority training will be implemented, and let Bnkm be the benefit of
training nurse n ∈ N to upgrade skill k ∈ K from level Snk to level m. In addition, since the
aim is to minimize the costs of hiring external nurses and the costs spent on training on the
job, let E j be the hourly cost for hiring an external nurse to provide health care for patient
type j ∈ J and let Cnw be the daily cost it takes for nurse n ∈ N to train on the job in ward
w ∈W .
It is important to notice that the definition for parameters Snk and R j k is similar to the one
provided by DePuy et al. [2006].
All the parameters introduced above are displayed in Table 3.1.

Variables
For each nurse n ∈ N , for each skill k ∈ K , and for each skill level m with Snk < m ≤ ak ,
the binary variables Vnkm are defined. These variables take value 1 if nurse n ∈ N takes ad-
vanced training to upgrade skill k ∈ K from level Snk to level m, and 0 otherwise. Variables
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Vnkm are similarly defined as in the skills management problem provided by DePuy et al.
[2006].

In addition, for each nurse n ∈ N , for each ward w ∈ W , and for each day t ∈ T , the bi-
nary variables Ynw t take value 1 if nurse n ∈ N works and is able to provide full-time health
care in ward w ∈W on day t ∈ T , and 0 otherwise.

Variables Xn j t give the number of hours nurse n ∈ N provides health care for patient
type j ∈ J on day t ∈ T .

Furthermore, variables U j t represent the hours of health care that the nursing person-
nel from the hospital is not able to fulfill for patient type j ∈ J at day t ∈ T . These vari-
ables provide the daily number of hours of health care the hospital must fulfill with external
workforce, like temporary nurses, for example.

Moreover, binary variables Znw t take value 1 if nurse n ∈ N works and receives training
on the job in ward w ∈W on day t ∈ T , and 0 otherwise.

Also, binary variables Qnwβt take value of 1 if nurse n ∈ N has trained in ward w ∈W for
β days by day t ∈ T , and 0 otherwise.

Lastly, binary variables On take value of 1 if nurse n ∈ N is flexible and 0 otherwise.
All the variables introduced above are shown in Table 3.2

Auxiliary Variables
Binary auxiliary variables Wn j t are defined so they take the value of 1 if nurse n ∈ N pro-
vides health care to patient type j ∈ J on day t ∈ T , and 0 otherwise. In other words, Wn j t

equals 1 if Xn j t > 0, and 0 otherwise.

In addition, binary auxiliary variables λ1
nw t , λ2

nw t are introduced for every nurse n ∈ N ,
for every ward w ∈W , and for every day t ∈ T . These are defined so that they both take the
value of 1 if nurse n ∈ N has started training on the job in ward w ∈W , but has not finished
it by day t ∈ T . In other words, λ1

nw t takes value of 1 if
∑t

u=1 Znwu ≥ 1, and 0 otherwise. And
λ2

nw t takes value of 1 if
∑t

u=1 Znwu < enw , and 0 otherwise.
All the auxiliary variables introduced above are shown in Table 3.3

Constraints
Constraints (3.1) state the relation between the hours of health care nurse n ∈ N provides
for patient type j ∈ J in ward w ∈ W on day t ∈ T and the variables that define whether
nurse n ∈ N works in ward w ∈W on day t ∈ T , or not.

Xn j t ≤ 8Ynw t , ∀w ∈W,∀ j ∈ J such that w j = w,∀n ∈ N ,∀t ∈ T. (3.1)
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Moreover, Constraints (3.2) make sure that on day t ∈ T nurse n ∈ N either works, re-
ceives training, or neither.

∑
w∈W

Ynw t +
∑

w∈W
Znw t +

∑
k∈K

ak∑
m>Snk

χΘkm (t )Vnkm ≤ 1, ∀t ∈ T,∀n ∈ N . (3.2)

Where χΘkSnk m is the indicator function for set ΘkSnk m . Additionally, Constraints (3.3)
respect the number of days nurse n ∈ N works or trains, throughout the time horizon, ac-
cording to the nurse’s contract with the hospital.

∑
t∈T

∑
w∈W

Ynw t +
∑
t∈T

∑
w∈W

Znw t +
∑

k∈K

ak∑
m>Snk

Vnkm |Θkm | = Dn , ∀n ∈ N . (3.3)

Moreover, Constraints (3.4) and (3.5) make sure that the minimum and maximum num-
ber of days nurse n ∈ N works or trains weekly is respected, respectively. These constraints
take into account the seven days for each week the model considers, and for each day, the
constraints track whether a nurse worked or took training.

Constraints (3.4) and (3.5) follow the same idea as DePuy et al. [2006], when the skills
management problem is introduced and the constraints of capacity for each worker are
defined.

δmi n
n ≤ ∑

w∈W

7∑
j=1

Ynw(7(i−1)+ j ) +
∑

w∈W

7∑
j=1

Znw(7(i−1)+ j )

+ ∑
k∈K

ak∑
m>Snk

7∑
j=1

χΘkm (7(i −1)+ j )Vnkm , ∀i ∈ I ,∀n ∈ N . (3.4)

∑
w∈W

7∑
j=1

Ynw(7(i−1)+ j ) +
∑

w∈W

7∑
j=1

Znw(7(i−1)+ j )

+ ∑
k∈K

ak∑
m>Snk

7∑
j=1

χΘkm (7(i −1)+ j )Vnkm ≤ δmax
n , ∀i ∈ I ,∀n ∈ N . (3.5)

Furthermore, Constraints (3.6) put an upper bound on training on the job. These con-
straints make training on the job for ward w ∈W take place once for nurse n ∈ N through-
out the time horizon. ∑

t∈T
Znw t ≤ enw , ∀n ∈ N ,∀w ∈W. (3.6)

Constraints (3.7) condition the relation between variables Qnwβt and Znw t for every
nurse n ∈ N , ward w ∈W , and day t ∈ T .

min{t ,enw }∑
β=1

βQnwβt =
t∑

u=1
Znwu , ∀n ∈ N ,∀w ∈W,∀t ∈ T. (3.7)

In addition, Constraints (3.8) put an upper bound on the variables Qnwβt for every nurse
n ∈ N , ward w ∈W , and day t ∈ T .
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min{t ,enw }∑
β=1

Qnwβt ≤ 1, ∀n ∈ N ,∀w ∈W,∀t ∈ T. (3.8)

Constraints (3.9) ensure that nurse n ∈ N works full-time in ward w ∈W \{wn} only after
finishing training on the job in said ward. For these constraints, a value M1 is chosen big
enough such that M1 ≥ ∑

u≤t Znwu +1−enw , for every nurse n ∈ N , every ward w ∈W , and
every day t ∈ T .

enw −
t∑

u=1
Znwu ≤ M1

(
1−Ynw t

)
, ∀n ∈ N ,∀t ∈ T,∀w ∈W \ {wn}. (3.9)

Furthermore, Constraints (3.10) force the definition of auxiliary variables λ1
nw t , Con-

straints (3.11) force the definition of λ2
nw t , and Constraints (3.12) guarantee that training

on a job goes uninterrupted, i.e., once nurse n ∈ N starts training on the job in ward w ∈W ,
then said nurse cannot provide any health care in any other ward until he/she finishes
his/her current training on the job. For these constraints, a value M2 is chosen such that
M2 > enw for every nurse n ∈ N , and every ward w ∈W .

t∑
u=1

Znwu < 1+M2λ
1
nw t , ∀n ∈ N ,∀t ∈ T,∀w ∈W. (3.10)

t∑
u=1

Znwu ≥ enw −M2λ
2
nw t , ∀n ∈ N ,∀t ∈ T,∀w ∈W. (3.11)

∑
w ′∈W

Ynw ′t ≤ 2−λ1
nw t −λ2

nw t , ∀n ∈ N ,∀t ∈ T,∀w ∈W. (3.12)

Constraints (3.13) ensure that nurse n ∈ N can do advanced training for skill k ∈ K at
most once throughout the time horizon.

ak∑
m>Snk

Vnkm ≤ 1, ∀k ∈ K ,∀n ∈ N . (3.13)

Also, Constraints (3.14) ensure only the prospects for advanced training can take the
advanced training.

Vnkm ≤ τnkm , ∀n ∈ N ,∀k ∈ K ,∀m > Snk . (3.14)

Constraints (3.15) make sure each patient type j ∈ J receives the respective hours of
health care needed on day t ∈ T .

∑
n∈N

min{t ,enw }∑
β=1

fnw jβQnw jβt +
∑

n∈N
Xn j t +U j t = H j t , ∀ j ∈ J ,∀t ∈ T. (3.15)

Moreover, Constraints (3.16) force the definition of auxiliary variables Wn j t ; they will
take value of 1 if nurse n ∈ N provides health care to patient type j ∈ J on day t ∈ T , and 0
otherwise.
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Xn j t ≤ 8Wn j t , ∀ j ∈ J ,∀n ∈ N ,∀t ∈ T. (3.16)

In addition, Constraints (3.17) and (3.18) make sure that patient type j ∈ J gets the re-
quired level of health care in each skill k ∈ K . Constraints (3.17) consider the periods of the
time horizon when advanced training has not ended yet, and (3.18) consider the periods
when advanced training has ended. Constraints (3.17) and (3.18) follow the same idea as
DePuy et al. [2006], when the skills management problem is introduced and the constraints
that ensure each task gets performed by a worker with certain skill levels are defined.

Snk ≥ R j kWn j t , ∀ j ∈ J ,∀k ∈ K ,∀n ∈ N \ Nk ,∀w ∈W,∀t ≤ θkm . (3.17)

Snk

(
1−

ak∑
m>Snk

Vnkm

)
+

ak∑
m>Snk

mVnkm ≥ R j kWn j t ,

∀ j ∈ J ,∀k ∈ K ,∀n ∈ N \ Nk ,∀w ∈W,∀t > θkm . (3.18)

Lastly, Constraints (3.19) keep track of the nurses that are flexible. In other words, if a
nurse is able to provide full-time health care in at least two wards (including his/her own
ward), then said nurse is considered flexible.

t∑
u=1

Znwu −enw +1 ≤On , ∀n ∈ N ,∀t ∈ T,∀w ∈W \ {wn}. (3.19)

Objective Function
To finalize the mathematical formulation, the Objective Function (3.20) is set to minimize
the overall costs of training on the job, to minimize the costs of hiring temporary nurses
needed to fulfill the demand that the hospital’s workforce cannot fulfill, to minimize the
number of flexible nurses, and to maximize the benefit of implementing priority training.

min
∑

n∈N

∑
w∈W

Cnw
∑
t∈T

Znw t +
∑
j∈J

E j
∑
t∈T

U j t +
∑

n∈N
On − ∑

n∈N

∑
k∈P

ak∑
m>Snk

BnkmVnkm (3.20)
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K Set of skills
N Set of nurses
T Set of days in time horizon
I Set of weeks in time horizon
Snk Skill level of nurse n ∈ N for skill k ∈ K
ak Maximum level a nurse can have in skill k ∈ K
Nk Set of nurses that have skill k ∈ K at the highest possible level,

Nk ⊆ N
Dn Number of days nurse n ∈ N must work throughout the time

horizon T
δmi n

n Minimum number of days nurse n ∈ N can work in a week
δmax

n Maximum number of days nurse n ∈ N can work in a week
J Set of patient types
H j t Hours of health care patient type j ∈ J needs on day t ∈ T
R j k Required level of skill k ∈ K for patient type j ∈ J
W Set of wards within the hospital
wn Ward where nurse n ∈ N belongs to
w j Ward where patient type j ∈ J belongs to
Θkm Set of days when advanced training takes place to improve skill

k to level m
θkm Last day of advanced training to improve skill k to level m, if

advanced training does not finish within the time horizon, this
parameter is set to be the last day in the time horizon T

τnkm Binary parameter that is 1 if nurse n ∈ N is a prospect to take
the advanced training to upgrade skill k ∈ K to level m, and 0
otherwise.

enw Number of days it takes nurse n ∈ N to complete training to
provide full-time health care in ward w ∈W

fnwβ Hours of health care nurse n ∈ N can provide daily in ward w ∈
W after β days of training on the job in ward w ∈W

P Set of skills for which priority training will be applied, P ⊆ K
Cnw Daily cost it takes for nurse n ∈ N to train on the job in ward

w ∈W
E j Hourly cost for hiring an external nurse to provide health care

for patient type j ∈ J
Bnkm Benefit of training nurse n ∈ N , to upgrade skill k ∈ K , from level

Snk to level m

Table 3.1: Parameters needed for the mathematical model.
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Vnkm =


1, if nurse n ∈ N receives advanced training to improve skill k ∈ K

from level Snk to level m,

0, otherwise.

Ynw t =
{

1, if nurse n ∈ N works in ward w ∈W on day t ∈ T ,

0, otherwise.

Xn j t = Hours of health care nurse n ∈ N provides to patient type j ∈ J
on day t ∈ T .

U j t = Hours of health care the hospital must fulfill for patient type j ∈ J
at day t ∈ T with external workforce.

Znw t =
{

1, if nurse n ∈ N receives training on the job in ward w ∈W on day t ∈ T ,

0, otherwise.

Qnwβt =
{

1, if nurse n ∈ N has trained in ward w ∈W , for β days by day t ∈ T ,

0, otherwise.

On =
{

1, if nurse n ∈ N is a flexible nurse,

0, otherwise.

Table 3.2: Variables needed for the mathematical model.

Wn j t =
{

1, if Xn j t > 0

0, otherwise.

λ1
nw t =

{
1, if

∑t
u=1 Znwu ≥ 1

0, otherwise.

λ2
nw t =

{
1, if

∑t
u=1 Znwu < enw

0, otherwise.

Table 3.3: Auxiliary variables needed for the mathematical model.





4
Genetic Algorithm

The Genetic Algorithm (GA) is an abstraction of biological evolution based on Darwin’s the-
ory of natural selection and was developed in the 1960s and 1970s by John Holland and his
colleagues. Since then, plenty of variants of the GA have been developed in order to solve a
wide range of optimization problems; according to Xin-She [2021], genetic algorithms are
known for their ability to deal with complex problems and for outperforming traditional
optimization algorithms. The principal definitions of Genetic Algorithms are; a fixed-size
set of solutions called a population, each solution in the population is called an individual
or chromosome, the components of each individual are called genes, and one iteration of
creating a new population is called a generation.
De Jong [1988] states that Genetic Algorithms consist of three main elements:

• A Darwinian notion of fitness, which determines how good a solution is and conse-
quently how much an individual can influence future generations.

• A reproduction phase, where the selection of parents for the offspring of the next gen-
eration takes place.

• Genetic operators that decide how genes will be inherited from the chosen parents.
These are known as the crossover and mutation operators.

The Genetic Algorithm starts with a population of a fixed size. Usually, the size of
the population that works for most problems ranges from 40 ∼ 200, according to Xin-She
[2021].
For each iteration of the Genetic Algorithm, the individuals that are in charge of generat-
ing the offspring of the current population are selected. These individuals are called the
parents of the generation. Afterwards, the children of the population are generated, which
is done by iteratively taking a pair of parents and applying the crossover operator to them
with probability Pc ; this parameter is the main operator of the algorithm and is usually
set as nearly equal to 1, as stated by Swayamsiddha [2020]. After, each child is mutated
with probability Pm ; the mutation operator changes a gene of the child and is used for ex-
ploration of new solutions. The mutation probability Pm is usually set to be in the range
0.001 ∼ 0.05, as claimed by Xin-She [2021].

23
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Subsequently, based on its fitness, it is assessed if a child is part of the next generation or
not. Only if a child has a better fitness than the individual with the worst fitness value of the
population, the child replaces said individual. This is done for each child and the resulted
population is the new generation. The steps above are repeated until a stopping criteria is
met. Some common examples of termination conditions are: when the fitness value of the
best solution has not improved for a fixed number of generations or when the number of
generations is equal to a fixed number. The pseudo code of a GA can be seen in Algorithm 1.

Algorithm 1 Genetic Algorithm

popul ati on ← Initial Population
while termination condition is not met do

par ent s ← Selection(popul ati on)
o f f spr i ng ← Crossover(par ent s,Pc )
mut ated_o f f spr i ng ← Mutation(o f f spr i ng ,Pm)
for i in mut ated_o f f spr i ng do

z ← individual in popul ati on with worst fitness value
if Fitness(i ) is better than Fitness(z) then

popul ati on ← popul ati on \ {z}
popul ati on ← popul ati on ∪ {i }

end if
end for

end while

A disadvantage of GA is that several crucial parameters need to be set; the population
size, the reproduction method, the probability of crossover and of mutation, and the stop-
ping criteria, as maintained by Swayamsiddha [2020]. The decisions involved to define
these parameters should be taken carefully, since any inappropriate choice of these vari-
ables can make a relevant difference in the quality of the solutions obtained.

4.1. Implementation of GA
In this section, it is thoroughly discussed how the GA was adapted to the problem of this
thesis in order to solve it. The representation of an individual is defined, the main operators
used in the algorithm are presented, as well as the parameters required to implement it.

4.1.1. Representation
The algorithm works with individuals that have two components; assuring nurses have
feasible schedules and making sure the health care nurses provide is consistent with their
skills. For the first component, the algorithm works with matrices S of size |N |× |T |, where
N is the set of nurses and T is the set of days considered in the time horizon. A gene of an
individual is seen as a row in the matrix, where row n ∈ N will show the schedule of nurse
n ∈ N throughout the time horizon T . In other words, it is a vector with |T | entries showing
for each day t ∈ T whether a nurse works or not; if said nurse works on day t ∈ T , it states
if the nurse is providing full-time health care and in which ward, or if the nurse is training
on the job and in which ward, or if the nurse is attending advanced training and on which
specialty.
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In addition, to differentiate whether a nurse is working or training, and whether the train-
ing is on the job or if it is advanced training, it is proposed to assign a color to each entry.
An entry will have color Red if the nurse is attending advanced training on the respective
day, it will have color Green if the nurse is training on the job on the respective day, and it
will have color Blue it the nurse is providing full-time health care on the respective day.
The following array gives an example of how a schedule of a nurse would look throughout
the time horizon.

Time Horizon T︷ ︸︸ ︷(
0 ONC ONC · · · 0 GY N

)

This array states that with this schedule, a nurse would rest on the first day of the time
horizon, he/she will attend advanced training for the Oncology specialty on the second day,
on the third day, the nurse will provide full-time health care in the Oncology ward, and on
the last day of the time horizon he/she will train on the job in the Gynecology ward.
The idea is to do this for each nurse, so that a schedule for all nurses would look like the
following matrix:

S =

Time Horizon T︷ ︸︸ ︷
0 ONC ONC · · · 0 GY N

GY N GY N 0 · · · ICU ICU
...

...
...

. . .
...

...
0 0 ONC · · · ONC ONC


→ Schedule for nurse 1
→ Schedule for nurse 2

...
→ Schedule for nurse |N |

Furthermore, what makes a matrix feasible regarding the constraints for the nursing
personnel depends on the schedules throughout the time horizon for each nurse. In other
words, a matrix is feasible if the schedule for each nurse respects the number of days that
said nurse must have worked at the end of the time horizon, if the minimum and maximum
number of days each nurse should have worked each week is respected, if training on the
job goes uninterrupted, if advanced training is taken only by authorized nurses, if nurses
work on wards that are not their own only after finishing training on the job on the respec-
tive wards, and all the contractual constraints that nurses have.

The second component of a solution has to make sure the health care provided by
nurses is consistent with their skills and with their schedules from the first component of
the solution. For this second component, a matrix χn of dimension |J |× |T | is introduced
for each nurse n ∈ N , where the entry

(
χn

)
j t gives the hours of health care nurse n ∈ N

provides to patient type j ∈ J on day t ∈ T . Hence, what makes a solution
(
S,

{
χn |n ∈ N

})
feasible is if the matrix with schedules for all nurses S is feasible regarding the constraints
for the nursing personnel, and it is consistent with the matrices χn for each n ∈ N .
In other words, if the matrix S states that nurse n ∈ N is attending advanced training on day
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t ∈ T , then
(
χn

)
j t must be zero for all j ∈ J . If the matrix S states that nurse n ∈ N is working

in ward w ∈W on day t ∈ T , then
(
χn

)
j t must be zero for all patient types j ∈ J that are not

in ward w ∈W , it must be zero for all patient types j ∈ J that require skills nurse n ∈ N does
not have, and the hours of health care nurse n ∈ N provides on day t ∈ T cannot be greater
than eight hours, i.e.

∑
j∈J

(
χn

)
j t ≤ 8. Finally, if the matrix S states that nurse n ∈ N is not

working on day t ∈ T , then
(
χn

)
j t must be zero for all patient types j ∈ J .

If a solution
(
S,

{
χn |n ∈ N

})
meets the described criteria, it is said it is a feasible solution.

4.1.2. Initial Population
The initial population used for the GA is generated randomly yet feasible: the matrices
that describe the schedules for the nurses throughout the time horizon are generated first,
and the distribution of health care among nurses to patients is deduced after, taking into
account the already existing schedule.
For nurse n ∈ N , a schedule throughout the time horizon T is generated as follows:

1. The schedule for nurse n ∈ N starts empty, i.e. not working on any day throughout
the time horizon T .

Time Horizon T︷ ︸︸ ︷(
0 0 0 · · · 0 0

)→ Schedule for nurse n

2. With probability 1/2, it is decided whether nurse n ∈ N takes advance training or not.
If so, from the set of advanced trainings nurse n ∈ N is eligible to take, one of them
is randomly chosen and the days when said advance training take place are allocated
into the schedule of nurse n ∈ N . If nurse n ∈ N is not eligible to take any advance
training, then the schedule continues to be empty.(

0 Ad vTr ai n 0 · · · Ad vTr ai n 0
)

3. For each week i ∈ I , an integer di that states how many days nurse n ∈ N works in
week i ∈ I is randomly chosen. The number di has to respect the minimum and
maximum number of days nurse n ∈ N has to work weekly by contract, and it con-
siders as well the scheduled days for the advanced training nurse n ∈ N undertakes
(if applicable).
Then, di available days are randomly chosen in week i ∈ I , which will be the ones
when nurse n ∈ N will work. If by the end of the time horizon the total number of
days nurse n ∈ N works throughout the time horizon is greater than the number of
days she is contractually obliged to work, a week where nurse n ∈ N works more than
the minimum weekly number of days is randomly selected. Afterwards, a day from
this week where nurse n ∈ N is scheduled to work is randomly selected and it is set to
0, i.e. this day is set to be a rest day for nurse n ∈ N . This is done until nurse n ∈ N has
reached the total number of days he/she is contractually obliged to work throughout
the time horizon.
The case where the total number of days nurse n ∈ N works throughout the time hori-
zon is smaller than the number of days she is contractually obliged to work is solved
similarly. In the exemplification below, the gray squares represent the days where
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nurse n ∈ N is working.

(
0 0 · · · 0 0 0 · · · 0 0 0

)
4. The set of days where nurse n ∈ N works throughout the time horizon T is chrono-

logically sorted and while said set is not empty, the following steps are done; the day
t ∈ T that chronologically follows that has not been scheduled yet is taken, and for
this day t ∈ T it is decided with probability p1 if nurse n ∈ N will provide full-time
health care and with probability p2 if nurse n ∈ N will start training on the job in a
ward where he/she has not already done so. Values p1 and p2 are chosen in a way so
that p1 +p2 = 1, but p1 > p2; since the problem aims to minimize the size of flexible
personnel, the probability for each nurse to become a flexible nurse is aimed to be
small. Specifically for this thesis, p1 = 0.9 and p2 = 0.1.
If it is chosen that nurse n ∈ N is providing full-time health care on the fixed day t ∈ T ,
then it is taken into account the wards where said nurse can provide full-time health
care. This is done by considering the ward wn ∈W where nurse n ∈ N belongs to, and
the training nurse n ∈ N has done on the previous days of the time horizon in other
wards, and a ward w ∈ W among these is randomly chosen. Then, the schedule of
nurse n ∈ N is updated so it shows that on day t ∈ T nurse n ∈ N provides full-time
health care in ward w ∈W .

(· · · Ward w 0 · · · 0 0 0
)

If on the other hand it is decided that nurse n ∈ N starts training on the job on day
t ∈ T , it is decided in which ward w ∈ W the training can take place. This is done
by considering the wards where nurse n ∈ N has not done training on the job, and a
ward w ∈ W among these is randomly chosen. Let t∗n be the number of days nurse
n ∈ N is working after day t ∈ T . Afterwards, the schedule of nurse n ∈ N is updated
so it shows that on day t ∈ T nurse n ∈ N starts training on the job in ward w ∈W , and
this training is also scheduled for the following mi n(enw , t∗n ) days of the time horizon
when nurse n ∈ N is working; enw is the number of days it takes nurse n ∈ N to be
able to provide full-time health care in ward w ∈W .

(· · · Ward w 0 Ward w · · · 0 Ward w Ward w 0 0
)

This way, the schedules for all nurses are randomly generated yet feasible. Now, for
a complete feasible solution, a distribution of the health care available that is consistent
with the generated schedules is provided. To assure this, the following points are taken into
account:

• If a nurse has a rest day or is attending advanced training, then he/she cannot provide
any health care

• Patient types that require higher/more skills are assigned to be covered first

• A nurse can only provide health care to patients that are in the same ward the nurse
is working in
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• A nurse cannot provide health care to patients that require higher/different skills
he/she has

Below are the steps on how this assignment is done.

1. For each day t ∈ T , the nurses that are working on day t ∈ T and the amount of health
care in hours they can provide are retrieved. Since the nurses attending advanced
training cannot provide any health care, only the nurses that either are providing full-
time health care or training on the job are considered.

2. Patient types are sorted so that the ones that require more/higher skills are assigned
to be covered first, let Ĵ be the set of sorted patient types.

3. For each patient type j ∈ Ĵ , the nurses that are working in the ward w j ∈ W where
patient type j ∈ Ĵ belongs to are retrieved, and for each nurse n ∈ N it is assessed if
he/she has the required skills to provide health care to patient type j ∈ Ĵ or not (for
this, it is taken into account if nurse n ∈ N has acquired new skills with advanced
training); if he/she can provide health care to said patient type, said nurse is set to
provide the maximum amount of health care possible to this patient type. Every
time, the available health care nurse n ∈ N has and the health care patient type j ∈ Ĵ
requires on day t ∈ T is being updated.

4. By the end, the health care not met by the existing nursing personnel is assumed to
be fulfilled by hiring external nurses.

This way, given a schedule for all nursing personnel, the available health care is dis-
tributed in a viable way and the demand not met by the existing nursing personnel is sat-
isfied by external nurses. However, since the schedules are generated randomly, it is prob-
able that the solutions generated in the initial population has plenty of idle nurses. Hence,
the schedule for each individual of the initial population is modified in order to decrease
idle nurses; these modifications aim to put the working days of each nurse where they are
needed the most, while making sure the resulting schedules are still feasible and the sched-
uled trainings are respected.
Given a feasible solution, the following steps are done in order to possibly improve it:

1. For each week i ∈ I , and each nurse n ∈ N , the days on week i ∈ I where the nurse
does not provide any amount of health care (without considering days where the
nurse attends advanced training), and the days of week i ∈ I where the nurse does
not work are retrieved.

2. For each patient type j ∈ Ĵ , the days of week i ∈ I where the needed health care of
patient type j ∈ Ĵ is met by external nurses are retrieved.

3. For each day s ∈ T when nurse n ∈ N is idle, and for each day t ∈ T where nurse n ∈ N
is not working and there is demand not met by the existing nursing personnel, it is
first checked if nurse n ∈ N has the required skills to provide health care to patient
type j ∈ Ĵ . If so, then the schedule nurse n ∈ N has on days s ∈ T and t ∈ T may be
rescheduled.
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4. It is important to notice that this change depends on what nurse n ∈ N is doing on
day s ∈ T ; if the nurse is training on the job on the same ward where patient type j ∈ Ĵ
is, then the training on the job nurse n ∈ N takes in said ward is rescheduled so that
the nurse works on day t ∈ T and covers some amount of health care patient type
j ∈ Ĵ needs. If on the contrary, on day s ∈ T nurse n ∈ N is training on the job in a
different ward than the one patient type j ∈ Ĵ is, then the schedule for said nurse on
day s ∈ T does not change since training on the job has to be uninterrupted.
If nurse n ∈ N is providing full-time health care on day s ∈ T , nurse n ∈ N will work
on day t ∈ T instead of day s ∈ T in the ward w j ∈W where patient type j ∈ Ĵ is, if said
nurse either belongs to ward w j or has finished training on the job in ward w j ∈ W
by day t ∈ T , and if training on the job does not get interrupted by providing full-time
health care on day t ∈ T .

This procedure takes the schedules randomly generated and aims to accommodate the
working days of each nurse where they are needed the most, as long as the resulting sched-
ule still respects the contractual constraints nurses have and the trainings already sched-
uled for nurses.

4.1.3. Fitness Evaluation
To compute the fitness for each solution in the population, the objective function pre-
sented in Chapter 3 is used. This function considers the amount of time spent in training
on the job, the number of flexible nurses, the hours of health care that the hospital must
provide by external nurses, and the training on the skills for which priority training is ap-
plied. Given a feasible solution, all of the previous factors are computed and each solution
gets a fitness value.

4.1.4. Reproduction/Selection Operator
This operator selects the solutions of the population that will be the parents of the current
generation’s offspring. Two approaches are implemented for this operator: a rank based
selection and a roulette wheel selection. To exemplify these, integer parameters a and b
are given.
For the rank based selection, the individuals of the population are ordered by their rank;
best, second best, third best, etc. And they are weighted based on their rank, so the best
individual is chosen with probability 1/2, the second best with probability 1/3, and the i th

best solution is chosen with probability 1/(i +1). With these probabilities, b solutions are
chosen.
For the roulette wheel selection, a sample of individuals of size a is randomly selected from
the population and the solution with the best fitness score is selected to be a parent. This
procedure is done until the number of parents is b.
These two selection operators are combined by implementing the rank based operator with
probability PRB , and applying the roulette wheel operator with probability 1−PRB .

4.1.5. Crossover Operator
Once the parents have been selected, the uniform crossover operator is used with proba-
bility Pc . This operator generates an offspring by copying genes from parents.
Parents are matrices that describe schedules for all nurses, and the genes that are being
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inherited are seen as nurses’ schedules. The parent from which each gene is copied is de-
termined by a crossover mask. A crossover mask is a {0,1}|N | vector, and if in the nth entry
there is a 1, the respective gene (in this case the schedule for the nurse n ∈ N ), is copied
from the first parent, and if there is a 0, said gene is copied from the second parent. An
example of the crossover operator implemented is shown in Figure 4.1.

Figure 4.1: Graphical example of how the crossover operator works.

4.1.6. Mutation Operator
Once a child is generated, one of its genes can be changed with probability Pm . This is done
with the purpose of keeping diversity in the population. The mutation operator proposed
is a bottleneck heuristic that aims to create a whole new schedule for the gene (nurse) cho-
sen. If a solution is decided to be mutated, the operator chooses randomly either the nurse
that has the most idle time, or any other nurse; and the schedule of the chosen nurse is
the one that will be changed; say it is nurse n. The schedules of the rest of the nurses are
fixed and the ILP formulation that considers the health care that has not been met and only
nurse n is solved using the solver Gurobi and the new schedule for nurse n is retrieved from
the solution.

Since the mutation operator uses Gurobi, it is possible that for some instances applying
this operator is no longer feasible since Gurobi may take an impractical amount of time to
solve the restricted instance. For these instances, a time limit within Gurobi can be used,
so if Gurobi exceeds said time limit while solving an instance, the solve is interrupted and
the mutation operator does not take place. However, a modified mutation operator is pro-
posed for these instances; for a fixed nurse n ∈ N , the operator described above is applied
for the first t days in the time horizon, and for the remaining |T |− t days, the schedule for
nurse n ∈ N is randomly built in the same way the initial solutions were generated, taking
into account the optimal schedule for the first t days provided by Gurobi. The generated
schedule for the last |T | − t days is then improved following the same algorithm used to
improve the initial solutions.

This modified mutation operator was defined like this since the ILP formulation of the
model does not consider the unfinished training on the job that has started before the time
horizon, hence, the small instance aimed to solve with Gurobi is taken considering the be-
ginning of the time horizon.

It is important to notice that given the structure of the solutions, and the definition
of the operators used, the proposed GA will work with feasible solutions throughout the
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implementation of the algorithm.

4.1.7. Stopping Criteria
To determine when to stop the algorithm, two termination conditions are considered so
that the algorithm stops whenever one the two stopping criteria is met first.
Let l and m be integer values. The Genetic Algorithm will stop if the population has not
improved for the previous l generations, or if the number of generations that have been
generated is equal to m. Combining these two stopping criteria helps to stop the algorithm
once the population has converged, saving execution time of the algorithm.





5
Instance based on Erasmus MC

This chapter presents the data that is used to test the model presented in Chapter 3 and
the solution method described in Chapter 4. The instance presented below is based on real
data provided by the hospital Erasmus MC.
Overall, 141 nurses, 4 wards, 10 patient types, and 3 different types of advanced training are
considered. The following sections provide a description of every part of information that
was required from the hospital.

5.1. Contractual Obligations
On average nurses work 32 hours per week (4 shifts per week). Since the hospital works
with annual hours, it may be possible for a nurse to work 24 hours in one week and up to 40
hours in another week. This means that on average a nurse can work between 3 to 5 shifts
per week, taking care that the nurse meets the annual average of 4 shifts per week.
Furthermore, on average, the cost of hiring an external nurse per hour is 55 euros.

5.2. Hospital’s Demand
The hospital’s demand that must be fulfilled is seen as the amount of health care (in hours)
that each patient type requires per day. A patient type is defined by two components: the
ward the patient belongs to, and the specialty said patient enters to.
Erasmus MC provided the data of all patients that the hospital admitted through the year
2020; from this, only data from the considered wards was extracted. For each day, the
amount of time each patient spent in the hospital was retrieved and it was added to the
respective patient type’s total amount of health care (in hours) required.

5.3. Advanced and Priority Training
Three types of advanced training are considered:

• Oncology specialty. This training lasts 13 months, nurses undertaking this training
go to school 3 days each month, and for these days nurses cannot provide any health
care.

• Traumatology specialty. This training lasts 3 months, nurses undertaking this train-
ing go to school 3 days each month, and for these days nurses cannot provide any
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health care.

• BS (Acute health care) specialty. This training lasts 3 months, nurses undertaking
this training go to school 2 days each month, and for these days nurses cannot pro-
vide any health care.

It is important to notice that these trainings may not be mandatory for nurses to be able to
provide health care to patients in this specialization. Nurses in the hospital’s Gynecology -
Urology ward that do not have the BS specialty, for example, are able to provide health care
to emergency patients. However, nurses with this advanced training are able to provide a
more efficiently health care to these type of patients. Furthermore, due to the COVID-19
pandemic, the BS specialty training is encouraged by the hospital for nurses to take, so it
will be the specialty considered as priority training.

5.4. Time Horizon
The time horizon considered is of 364 days (52 weeks), starting from Monday, January 6,
2020, until Sunday, January 2, 2021.

5.5. Wards
This section provides the required data for each ward, such as: the total number of nurses
the ward has, the number of nurses that have advanced training, the type of advanced train-
ing nurses can take in each ward, the patient types each ward treats, and the amount of
time a nurse from another ward has to train on the job until said nurse can provide full-
time health care in the ward.

5.5.1. Sophia URO - GYN
This ward is structured as follows:

• The ward consists of 30 nurses, from which 6 of them have advanced training in the
Oncology specialty.

• Nurses from this ward can take the Oncology specialty training and the BS specialty
training.

• There are two patient types: patients admitted in the Gynecology specialization and
the ones admitted in the Urology specialization.

• On average, nurses from another ward take one month of training on the job until
they are able to provide full-time health care in this ward.

5.5.2. Dijkzigt Beweging
This ward is structured as follows:

• The ward consists of 42 nurses, from which 15 of them have advanced training in the
Traumatology specialty.

• Nurses from this ward can take the Traumatology specialty training.
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• There are three patient types: patients admitted in the Traumatology specialization,
the ones admitted in the Plastic Surgery specialization, and the ones admitted in the
Orthopedics specialization.

• On average, nurses from another ward take one month of training on the job until
they are able to provide full-time health care in this ward.

5.5.3. Daniel Oncologie
This ward is structured as follows:

• The ward consists of 39 nurses, from which 8 of them have advanced training in the
Oncology specialty.

• Nurses from this ward can take the Oncology specialty training.

• There is one patient type: patients admitted in the Oncology specialization.

• On average, nurses from another ward take five months of training on the job until
they are able to provide full-time health care in this ward.

5.5.4. Daniel Hoofd Hals
This ward is structured as follows:

• The ward consists of 30 nurses.

• The ward does not provide advanced training.

• There are four patient types: patients admitted in the Oral, Maxillofacial and Facial
Surgery specialization, the ones admitted in the Ear-Nose-Throat Surgery specializa-
tion, the ones admitted in the Ophthalmology specialization, and the ones admitted
in the Radiotherapy specialization.

• On average, nurses from another ward take five months of training on the job until
they are able to provide full-time health care in this ward.





6
Results

This chapter displays the results of solving different instances based on the data discussed
in Chapter 5. These instances are solved by two approaches; with the Integer Linear Pro-
gramming (ILP) formulation shown in Chapter 3 using Gurobi, and the Genetic Algorithm
introduced in Chapter 4; the performance of each approach is assessed and a comparison
between both approaches is done. Experiments were run on a computer with a 2.20GHz
Intel Core i7-8750H processor running with 16 GB of RAM.

Table 6.1 displays the instances that were contemplated. The differences between the
instances shown are the number of wards considered and the time horizon. The num-
ber of nurses and the number of patient types is given by the wards contemplated in each
instance. The first three instances have the same time horizon of 28 days (∼ 1 month), in-
stance 1 considers wards Sophia URO - GYN and Daniel Oncologie, instance 2 adds ward
Dijkzigt Beweging to instance 1, and finally instance 3 considers all four wards. Instance 4
considers all four wards and a time horizon of 84 days (∼ 3 months), and instances 5 and 6
consider all four wards, but instance 5 takes a time horizon of 182 days (∼ 6 months), and
instance 6 takes a time horizon of 364 days (1 year).

Instance ID # Wards # Nurses # Patient types Days in time horizon

1 2 69 3 28
2 3 111 6 28
3 4 141 10 28
4 4 141 10 84
5 4 141 10 182
6 4 141 10 364

Table 6.1: Instances considered for testing Gurobi and the GA.

Table 6.2 shows the result of each instance using Gurobi. It can be seen that Gurobi
could solve in a reasonable time instance 1 to optimality. For the remaining instances, ei-
ther Gurobi was taking impractical running time so it had to be manually interrupted, or
the Branch & Bound tree implemented by Gurobi exhausted all available main memory.
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For instances 2−4, Gurobi provides upper and lower bounds for the value of an optimal so-
lution in the objective function, for instance 5, Gurobi could only provide an upper bound
(best integer/feasible solution found by Gurobi), and for instance 6, Gurobi could not pro-
vide any bound.

Instance ID Optimal Solution Found Running Time Comments

1 YES 8min 31secs -
2 NO 4h 39min 20sec Manually Interrupted
3 NO 10h 0min 0sec Manually Interrupted
4 NO 13h 0min 0sec Manually Interrupted
5 NO 23min 13sec Gurobi Error: Out of memory
6 NO 20min 30sec Gurobi Error: Out of memory

Table 6.2: Results using Gurobi.

Tables A.1 - A.6 show the results of implementing the Genetic Algorithm to instances
1−5. For each of these, the Genetic Algorithm was implemented several times, each with
different parameters; the parameters used as a reference are the following:

• Population size (n) of 40

• Probability of mutation (Pm) of 0.05

• Probability of applying the rank based selection operator (PRB ) of 0.5

• Probability of crossover (Pc ) of 0.9

Every run of the Genetic Algorithm to an instance would take the parameters used as ref-
erence and slightly change one of them; the parameters and the changes done to them in
each run were based on what the literature suggested. For example, Xin-She [2021] states
that the probability of applying the crossover operator should be close to 1, and the proba-
bility of applying the mutation operator should not be bigger than 0.05.

Figure 6.1 visually represents the results from implementing the GA to instance 3. Fig-
ure 6.1a displays the fitness value of the best solutions from the last generations of each ex-
periment. The fitness value of the solution obtained from using the GA with the reference
parameters is shown with a horizontal black line. The upper and lower bounds provided
by Gurobi are displayed as horizontal red lines. It can be seen that the experiment with the
best fitness value was the one obtained by increasing PRB to 0.7 from the reference param-
eters.

Figure 6.1b shows, for each experiment, the number of iterations performed in each one
and the computation time in minutes it took to do so. For the experiment where parameter
PRB was increased to 0.7, it took the longest to implement the GA than the rest of the other
runs.
Figures A.1, A.2, and A.3 display similar visual representations of the obtained results for
instance 1, instance 2, and instance 5, respectively.
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(a) Fitness of final solution (b) Number of generations versus computing time

Figure 6.1: Visual results of applying the GA to instance 3.

For instances 1−3 Gurobi outperformed the proposed GA since it provided a better fea-
sible solution. For these instances, the Genetic Algorithm stopped when the population did
not improve during 10 consecutive generations, or when the number of generations gener-
ated was equal to 500. It can be seen that only one implementation of the GA to instances
1−3 reached the 500 generations; the one that yield the best solution obtained for instance
3, for the rest the respective population converged before reaching the 500 generations.

Furthermore, while testing the GA for instance 4, it was noticed that the implemen-
tation of Gurobi (without any time limit) within the mutation operator started to take too
much time, hence for this instance the GA was implemented with both the mutation opera-
tor having a time limit for Gurobi of 120 seconds, and with the modified Mutation operator
proposed in Section 4.1.6 with parameter t set to 56 (∼ 2 months). This was done with the
purpose to compare the results of the GA with a time limit on Gurobi within the mutation
operator and by implementing the modified mutation operator.

For instance 4 Gurobi outperformed the proposed GA since it provided a better feasible
solution. For this instance, the Genetic Algorithm stopped when the population did not
improve during 10 consecutive generations, or when the number of generations generated
was equal to 300. Figure 6.2 shows a comparison of the results obtained by the GA with
a time limit on Gurobi within the mutation operator and by implementing the modified
mutation operator. It shows that there is not one approach that performed better for all
experiments. However, Tables A.4 and A.5 show that the GA when applying a time limit on
Gurobi, most of the times the population converges faster and there are less generations
done; which makes sense since less mutations are done to the offspring generated due to
the time limit within Gurobi, and the population had less chance of maintaining variety
(which is the purpose of the mutation operator within the GA).
Consequently, for instances 5 and 6, the GA with the modified mutation operator is imple-
mented.

Moreover, Gurobi started to have problems when trying to solve instance 5; Gurobi in-
terrupted itself due to memory issues and it only provided an upper bound for the optimal
solution of the instance. However, said bound was quite easy to improve since the fitness
of the best solution of the initial population for each experiment was already better than
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Figure 6.2: Visual comparison between the implementation of the GA with the modified mutation operator
and the GA with the mutation operator with time limit, both applied to instance 4.

the bound provided by Gurobi.

Since instance 5 considers twice the amount of days in the time horizon as instance 4,
it was decided to implement the Genetic Algorithm with the modified mutation operator
with parameter t set to 56 (∼ 2 months) for instances 5 and 6.
For instance 5, the GA stopped when the population did not improve during 10 consecutive
generations, or when the number of generations generated was equal to 120. It can be seen
in Table A.6 that five out of the nine experiments done for this instance performed 120 gen-
erations, hence for these experiments the GA could have kept improving the population if
more generations were allowed; however, this would have taken more computation time.

For the results that were obtained by implementing the GA for instances 1−5, it is evi-
dent that parameters like the population size, the probability of crossover and of mutation,
play a crucial part in the solutions obtained, and the choice of these parameters should be
chosen carefully.

To solve instance 6 by implementing the GA, some experiments were implemented con-
sidering a small population size and a small number of generations for the stopping crite-
ria. It was noticed that with a population size of 10 and performing 15 generations, the
following test solution was obtained: 53 nurses take the priority training BS (Acute health
care advanced training), and all 141 nurses take at least one training on the job in another
ward, hence all the nursing personnel is flexible at the end of the time horizon.
Even though this is a feasible scenario, it is not realistic and it is quite expensive; since the
implementation of the GA is expected to take a considerable computation time to run, it
is proposed to start with a better solution; as stated in Section 4.1.2, when it is decided if
a nurse provides full-time health care or if he/she starts training on the job, the nurse will
start training on the job with probability of 10%. Once it is decided said nurse will start
training on the job, a ward where he/she can do this is randomly selected and the nurse
starts training on the job in the chosen ward.
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(a) Comparison on external health care needed throughout
the time horizon

(b) Comparison on number of nurses training on the job
throughout the time horizon

Figure 6.3: Comparison of the test solution and the test solution with new probability of training in another
ward.

What is proposed is to assign a probability to start training on the job in each ward: once
it is decided nurse n ∈ N can start training on the job, a ward w ∈ W where he/she can do
this is randomly selected and said nurse will start training on the job in ward w ∈ W with
probability 1

enw
, where enw is the number of days it takes nurse n ∈ N to finish training on

the job in ward w ∈W .

With this new probability added, another test solution was generated with the same pa-
rameters as the one before and this was the result: 46 nurses take the priority training BS
(Acute health care advanced training), and 59 nurses take at least one training on the job in
another ward, hence the hospital will have 59 flexible nurses at the end of the time horizon.
Figure 6.3 shows further comparison between both solutions. Figure 6.3a shows the exter-
nal health care in hours needed to fulfil the hospital’s demand throughout the time horizon
in both solutions; it can be seen that the solution obtained with the changed probability re-
quires less hours of external workforce.
In addition, Figure 6.3b shows the number of nurses that are taking training on the job on
each day in the time horizon, and as expected, the number of nurses training on the job
throughout the time horizon in the solution with the changed probability is smaller.

Instance 6 is solved by using the genetic algorithm with this changed probability on tak-
ing training on the job, and with the modified mutation operator. The following parameters
are chosen:

• Population size (n) of 30

• Probability of mutation (Pm) of 0.05

• Probability of applying the rank based selection operator (PRB ) of 0.5

• Probability of crossover (Pc ) of 0.99

The GA stopped when the population did not improve during 10 consecutive genera-
tions, or when the number of generations generated was equal to 20. The computation
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(a) Days when nurses took training on the job (green) and
days when nurses provided full-time health care (blue) in
ward Sophia URO - GYN

(b) Days when nurses took training on the job (green) and
days when nurses provided full-time health care (blue) in
ward Dijkzigt Beweging

(c) Days when nurses took training on the job (green) and
days when nurses provided full-time health care (blue) in
ward Daniel Oncologie

(d) Days when nurses took training on the job (green) and
days when nurses provided full-time health care (blue) in
ward Daniel Hoofd Hals

Figure 6.4: Schedules of nurses for each ward throughout the time horizon.

time it took to run was 8 hours, 25 minutes and 52 seconds, it performed 20 generations in
total, and the population had not converged yet. The fitness value of the best solution of the
initial population is 21.225.321, and the fitness value of the best solution in the last genera-
tion is 20.982.083; the genetic algorithm improved the best initial solution by 1%. With the
obtained solution, 38 nurses take priority training, and 51 nurses take training on the job in
another ward at least once, hence there are 51 flexible nurses at the end of the time horizon.

Figure 6.4 shows a graphical representation of the solution: for each ward, it shows the
days of the time horizon when nurses took training on the job or provided full-time health
care in said ward. It can be seen that the nurses belonging to the ward represented do not
take training on the job, and nurses from a different ward provide full-time health care only
after finishing training on the job.



7
Discussion & Recommendations

This thesis aimed to create a mathematical model that could help Erasmus MC in the work-
force planning process for a fixed time horizon in order to generate a flexible workforce as
small as possible, and encouraging priority training while minimizing the costs to fulfill the
hospital’s demand; these costs include hiring external nurses and the time nurses spent on
training on the job.
This chapter discusses the decisions that were made during this project, the limitations this
thesis has and further recommendations to follow up on the research and implementation
done.

7.1. Mathematical Formulation
The first part of the thesis was to model the problem as an Integer Linear Programming
(ILP) problem. For this, the model for the management skills problem provided by DePuy
et al. [2006] was taken as the starting point since it was the work found that was the closest
to this thesis’ objectives. However, several things needed to be changed and/or added for
the model presented by DePuy et al. [2006] to be exactly what this thesis aimed to accom-
plish.

First of all, the model shown by DePuy et al. [2006] does not have a breakdown on how or
when training should be implemented among the workforce. A time horizon was needed,
and at first a weekly time horizon was considered. However, with a weekly time horizon
there would still be further decisions to be made, like which days of the week should the
nurse work and/or train. For this reason, it was decided to have a daily time horizon; by
considering a daily time horizon further constraints had to be taken into account. These
constraints were linked to the contractual obligations of nurses with the hospital, such as
the number of days each nurse can work in a week and how many days a nurse must have
worked at the end of the time horizon.
With this arrangement of the time horizon, there are still further decisions to be made; for
example, which shift should a nurse work on a day he/she is scheduled to work. Neverthe-
less, by considering shifts into the problem, further constraints must be added. However,
the problem would become a rostering problem, which was not the problem aimed to solve
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in this thesis.

Secondly, the model for this thesis had to consider the two types of training there are in
Erasmus MC: advanced training and training on the job. Advanced training has fixed dates
and the only decision to be made is whether a nurse takes this training or not (this training
is the type of training considered by DePuy et al. [2006]), and training on the job is taken
within the hospital and it does not have fixed dates; hence there are several decisions to
be made for this type of training: if a nurse takes it or not, when does the nurse start said
training, which ward does the training take place, and which days should he/she take the
training. The latter was not considered in the literature found for this project, so decision
variables and constraints were developed to model this type of training; these assure train-
ing on the job goes uninterrupted, they make sure a nurse must finish training on the job
in another ward before being able to provide full-time health care in said ward, and they
consider the fraction of health care a nurse can provide while training on the job.

Finally, variables had to be introduced in the model to keep track of the flexible nurses
and the external personnel needed in order to fulfill the hospital’s demand.
The resulting model presented in Chapter 3 has the following limitations:

• The parameter enw that states the time it takes for a nurse n ∈ N to finish training
on the job in ward w ∈W , does not change during the time horizon; because of this,
the model overestimates this measure of time. Once a nurse has completed training
on the job in a ward, the time needed for the nurse to train on the job differs among
wards. Hence, an option to fix this overestimation is to introduce constraints to the
model that update the parameter enw depending on the training nurse n ∈ N takes
throughout the time horizon.

• The model does not consider the unfinished training on the job that has started be-
fore the time horizon. Because of this, there is an overestimation of the amount of
health care available from the hospital’s nursing personnel. This can be fixed by en-
suring these nurses finish their training on the job before providing full-time health
care, and to keep track how many days of training nurses have left, so the fraction of
health care said nurses can provide is computed accordingly.

First, the ILP formulation of the model was tested using the mathematical optimization
solver Gurobi with a small instance to assure the model was working as expected. After-
wards, the model was tested with bigger instances considering the real data provided by
the hospital, and Gurobi started to struggle to solve some instances. Either the running
time Gurobi was taking to solve the instance started to become impractical, or Gurobi itself
would interrupt the solve with error code 10001; which means that the Branch & Bound
tree has exhausted all available main memory.

Since the aim of this thesis was to solve the problem considering all the data provided
by the hospital described in Chapter 5, a different solution method was needed in order to
accomplish this.
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7.2. Solution Method
The second part of this thesis was to develop a different solution method to solve the prob-
lem presented, which was needed since Gurobi was not able to solve it. Among all the
different solution methods that were found in the literature, a Genetic Algorithm approach
was chosen since it has shown to perform quite well in solving assignment and workforce
planning problems according to De Bruecker et al. [2015]. The values of the parameters
considered in the Genetic Algorithm were chosen by following the work of Xin-She [2021],
Swayamsiddha [2020], and De Jong [1988].

The hardest challenge to implement a Genetic Algorithm approach was to figure out
how a solution should be structured in order for it to be a feasible solution and to be able
to apply the different operators the GA considers.
Furthermore, since the initial population is generated randomly, it was observed that the
fitness of the resulting solutions in this initial population was not as good as expected. For
this reason, it was decided to improve the randomly generated solutions by distributing
the nurses where they were needed the most, as long as the changes resulted in a feasible
solution and the trainings taken throughout the time horizon were respected.

Moreover, the mutation operator considered is a bottleneck heuristic that implements
Gurobi to a smaller instance than the one aimed to solve. However, when solving instances
that considered all four wards and a time horizon bigger than or equal to 84 days (∼ 3
months), the mutation operator started to take impractical running time to finish. To solve
this, the mutation operator was modified for these bigger instances (as explained in Section
4.1.6).

This modified mutation operator was defined this way since the ILP formulation of the
model does not consider the unfinished training on the job that has started before the time
horizon. Hence, the small instance aimed to solve with Gurobi is taken considering the be-
ginning of the time horizon.
By having an ILP that does take into account unfinished training on the job, the modi-
fied mutation operator could then choose critical weeks/months from the time horizon
and use Gurobi to provide the optimal schedule for the respective nurse in the chosen
weeks/months.

Furthermore, while testing the GA to the bigger instances (specifically, instances 4 and
5), the running time needed was more than expected; so it was decided that the number of
generations allowed decreased for each one of the instances. Since the stopping criteria on
the maximum number of generations allowed decreased from instance 4 onwards, some
implementations of the GA for these instances were stopped before the population could
converge. This means that by allowing to run the GA for more generations, the solution
obtained from the GA could have been improved.
In addition, comparisons between the performance of Gurobi and the GA were not always
fair since the running time of both approaches were not the same. For example, for instance
3 Gurobi ran for 10 hours, while the GA ran for at most 6 hours. This can overestimate the
error of the solutions of the GA when compared with the solution obtained by Gurobi; by
letting the GA run for more time, the solution by the GA would have kept improving.
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Moreover, several runs of the GA were implemented to instance 6 considering small pa-
rameters for the population size and for the maximum number of generations allowed, it
was noticed that some solutions were implementing training on the job to all nurses in all
the wards (except their own ward). So at the end all the nurses were flexible nurses. This is
probably due to the way the initial population is generated, and the way the initial popula-
tion is aimed to be improved.

Since improvement in the initial population respects the training done throughout the
time horizon, training on the job that a nurse was assigned to do when generating ran-
dom schedules was not changed when solutions were aimed to be improved. However,
since the mutation operator used Gurobi, the trainings assigned to nurses were changed
if they were not convenient; but Gurobi was only implemented for the entire time horizon
in small instances. For the big instances, specifically for the instance aimed to be solved,
Gurobi would only modify the first two months of nurses’ schedules, and for the rest of the
time horizon the schedule was generated randomly and improved in the same way as it is
done when generating the initial population. This could be the reason most nurses were
assigned to take training on the job in at least one other ward.

To prevent this, the probability a nurse could start training on the job in a ward when
generating the initial population was changed. With this new probability, the number of
flexible nurses at the end of the time horizon decreased when some runs were done, and
the hours of external nurses needed decreased as well. This modification was done with
the purpose of improving the initial population generated.

However, only the instance considering all data provided by the hospital was solved us-
ing this new approach, hence further research and testing should be done to the rest of the
instances using the GA with this change.

The quality of the solutions obtained with the Genetic Algorithm could be improved by
testing different parameters than the ones proposed; it may be that different parameters
would yield better solutions. Moreover, solutions can also be improved by implementing
further heuristics to the solution given by the GA. Also, a different way to generate the ini-
tial population can be implemented, so nurses are scheduled to work when they are most
needed to start the GA with a stronger population. Nevertheless, the Genetic Algorithm
implemented in this thesis outperformed Gurobi for the two biggest instances considered
in this thesis.

As stated in Section 7.1, the mathematical formulation of the problem did not consider
breaking the time horizon into shifts since a considerable amount of constraints should
have been added and it would have become a rostering problem. However, breaking the
time horizon into shifts with the presented Genetic Algorithm approach would have only
implied one more feasibility check when generating feasible schedules for nurses. Hence,
solving a rostering problem with the GA proposed is left as future research.



8
Conclusion

This thesis aimed to aid Erasmus MC in the workforce planning process of deciding how to
implement training among the nursing personnel in order to build a more flexible work-
force, so the hospital can be prepared for fluctuating and unexpected demand, while min-
imizing the costs of doing so.

To accomplish this, a mathematical model was developed taking into account the struc-
ture of the nursing personnel within the hospital, and the structure of how training among
nurses is implemented. Since the planning was aimed to be done on a daily basis, the con-
tractual obligations between nurses and the hospital had to be respected as well; like the
number of hours a nurse can work in one week, for example.

The resulted model was tested using real data provided by Erasmus MC, and with the
mathematical optimization solver Gurobi. However, for some instances, the implemen-
tation of the solver was not feasible anymore, since the running time Gurobi was taking
to solve the instance started to become impractical, or Gurobi itself would interrupt the
solve due to main memory issues. Consequently, a Genetic Algorithm (GA) approach was
proposed; this heuristic accomplished to outperform Gurobi when applied to the biggest 2
instances considered in this project. Furthermore, the GA was tested for different instances
using distinct parameters and comparing different operators.

The mathematical model and the Genetic Algorithm proposed in this thesis aim to pro-
vide, if not an optimal, a feasible schedule of the nursing personnel in a fixed time hori-
zon in order to implement training in an efficient way to build a more flexible workforce;
which would help Erasmus MC to be more prepared towards fluctuating and unexpected
demand.
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Appendix

Results of implementing the Genetic Algorithm for each of the instances shown in Table 6.1
are displayed below.
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(a) Fitness of final solutions (b) Number of generations versus computing time

Figure A.1: Visual results of applying the GA to instance 1.

(a) Fitness of final solutions (b) Number of generations versus computing time

Figure A.2: Visual results of applying the GA to instance 2.

(a) Fitness of final solutions (b) Number of generations versus computing time

Figure A.3: Visual results of applying the GA to instance 5.
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