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Abstract 

In recent years a real-time resource model updating concept has proven to increase the 
material quality control and process efficiency in geostatistics. The real-time resource 
model updating concept integrates online-sensor data, measured from the production 
line, into the resource model. This integration quickly improves the accuracy of the 
resource model. The aim of this contribution is to adapt this concept into coal production 
and to apply the developed framework on an industrial case. The result of this study will 
provide an additional improvement to coal quality management, by mainly focusing on 
the ash content in the deposit. This includes high ash values in coal seams, which are 
caused by sand intrusions and are greatly affecting the operational process. A tailored 
Ensemble Kalman Filter approach, specifically applicable in coal production, is presented 
after a detailed literature review. For validation, a 2D case study is performed in a fully 
controllable environment. Further, the approach is benchmarked against an alternative 
proven approach. To demonstrate the value added a full scale industrial application is 
performed focusing on improving the lignite quality control in the production process. The 
results of integrating online measurement data into the resource model indicate a 
significant improvement (in the order of 70%) in coal quality production. 
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1 Introduction 

In mining, modelling of the deposit geology is the basis for many actions to be taken in the 
future, such as predictions of quality attributes, mineral resources and ore reserves, as well 
as mine design and long-term production planning. The essential knowledge about the raw 
material product is based on this prediction, which comes with some degree of uncertainty. 
This uncertainty causes one of the most common problems in the mining industry, 
predictions on a small scale such as a train load or daily production are exhibiting strong 
deviations from reality. 

Some of the most important challenges faced by the lignite mining industry are marine and 
fluvial sand intrusions located in the lignite deposit. These intrusions are translated in the 
coal seams as the high ash values (e.g. more than 15% ash). Most of the times, these high 
ash values cannot be captured completely by exploration data and in the predicted deposit 
models. This lack of information affects the operational process significantly. 

The current way of predicting the coal quality attributes is using geostatistical interpolation or 
simulation to create resource models based on exploration data, which are very precise but 
separated by large distances. Mining companies have lately started to benefit from the recent 
developments in information technology, including online-sensor technologies for the 
characterization of materials, measuring the equipment efficiencies or defining the location of 
the equipment. KOLA (an abbreviation for Kohle OnLine Analytics) and RGI (radiometric 
measuring system) online-sensor measurements are two different sensor measurement 
systems that are recently used for assessing the components of the produced lignite. The 
precision of the data is lower than exploration data, which are analysed in laboratories. 
However, these data are much more dense than exploration data and provide additional 
information about the coal seam. 

To benefit from this available dense data, a close loop concept for mining has recently been 
introduced (Benndorf et al., 2015). A new algorithmic approach was created because of the 
necessity to interpret online sensor data fast and near-real time in contrary to traditional 
methods. In lignite mining, reconciliation exercises are done regularly, however due to the 
nature of laboratory analysis, the exercises take days or weeks. The concept offers to 
combine the measured sensor data into the resource model by using sequential resource 
model updating methods that originate from data assimilation. 

Simple geostatiscal re-modelling will often not be sufficient, because of the four reasons. The 
first reason is that the online sensors might be measuring blended material originating from 
different benches/blocks. In this case, tracking the material quality with geostatiscal re-
modelling might not be possible. The second reason is that the quality of the online sensor 
data might require co-simulation procedures, however these procedures create additional 
work. The third reason is the change of support, due to measuring a small amount of  
material the representativeness of the entire block needs to be calculated. The fourth and 
most important reason is that linking the measurement with the location of the production 
block is very difficult, because the measurement location varies. The reasons mentioned 
above indicate that using geostatiscal methods to integrate the real-time online 
measurements back into the resource model will be insufficient and difficult. Therefor it was 
decided to use data assimilation in the developed framework. 

 

 



Data assimilation methods offer the tools for fast incorporation of observations in order to 
improve predictions. The definition of data assimilation translates in mining as the process of 
combining the sensor measurement data with a prior estimation of the resource model, in 
order to produce a more accurate estimate. Methods of data assimilation have found many 
successful applications in various fields. With the aim of improved numerical weather 
forecast, (Bengtsson, Ghil, & Källén, 1981; Daley, 1993; Ghil, Cohn, Tavantzis, Bube, & 
Isaacson, 1981; Houtekamer & Mitchell, 1998, 2001; Houtekamer et al., 2005) examined and 
applied different data assimilation methods on dynamic atmospheric models. Applications to 
oceanographic problems, such as estimation and prediction of ocean eddy fields, wave 
propagation etc., (Barbieri & Schopf, 1982; Budgell, 1986; Ghil & Malanotte-Rizzoli, 1991; 
Heemink & Kloosterhuis, 1990; Miller, 1986; Tuan Pham, Verron, & Christine Roubaud, 
1998; Verlaan & Heemink, 1997; Webb, 1989) deepened and broadened the understanding 
of ocean circulation on regional, basin and global scales. Similar to this research, (Bertino, 
Evensen, & Wackernagel, 2002) successfully combined geostatistics and data assimilation 
methods and applied it in a estuarine system. More recently in reservoir engineering 
(Brouwer, Naevdal, Jansen, Vefring, & Van Kruijsdijk, 2004; Nævdal, Johnsen, Aanonsen, & 
Vefring, 2005; Nævdal, Mannseth, & Vefring, 2002; Sebacher, Hanea, & Heemink, 2013) 
applied a similar framework of resource model updating approach. The mentioned 
applications are all performed on nonstationary, dynamical models due the nature of their 
research fields. The initial difference in application of the resource model updating concept 
among others comes from the requirement of the stationary, non-dynamic models. 

(Benndorf, 2015) has proven the approach to work well within a synthetic case study under a 
variation of several control parameters (number of excavators, precision of the sensor, 
update interval, measurement interval, extraction mode/production rate). An extended 
version of the developed framework includes a Gaussian anamorphosis of grid nodes, 
sensor-based measurements and model-based predictions; to deal with suboptimal 
conditions, an integrated parallel updating sequence; to reduce the statistical sampling error 
without the need of increasing the number of realizations and a neighbourhood search 
strategy; to constrain computation time and to avoid the spurious correlations, is introduced 
by (Wambeke & Benndorf, 2015). Yet, so far, the amount of literature is little, particularly 
when considering the industrial application of the developed concept.  

The purpose of this paper is to provide a tailored method, which was adapted to update coal 
quality attributes in a continuous mining environment, in order to improve the resource model 
accuracy. Providing more accurate deposit models will lead to an improvement in the 
detection of sand intrusions in future production areas. As a result, this approach will allow 
quicker reactions to gained knowledge, which in turn allows quick changes in mine planning 
and operational decisions.  

The research questions driving this study are as follows: 

• Is it possible to update the coal quality attributes, namely the ash contents, by using 
data assimilation methods, which have so far mainly been applied other contents, in 
order to improve the resource model accuracy and mine planning? 

• Is the defined updating framework applicable for a full scale lignite production 
environment? 

The findings of this research are expected to assist the operational decision making in lignite 
production and improve the future applications of the resource model updating concept.  

The remainder of the article is structured as follows: First, the geological formation of the 
lignite seams and the development of the sand intrusions in Garzweiler mine are provided in 



order to explain the intrusions from a geological perspective. Thereafter, current online-
sensor measurement technology information is given. Next, the principles behind the 
resource model updating framework developed for a specific application in continuous mining 
and the mathematical formulation, are presented. For verification, a 2D case study in a fully 
controllable environment and it’s validation study are illustrated. Findings of the study are 
then presented. This is followed by an industrial application in Garzweiler mine, Germany. 
Results are discussed and summarised. The article concludes with a summary of the 
research contributions and directions for the future research. 

2 Geology and the Available Sensor Data 

This chapter explains the geological formation of the lignite seams and introduces the 
development of the main problem caused by the sand intrusions in Garzweiler mine. Next, 
the available sensor data are presented in order to guide the reader towards the solution. 

2.1 Geological Formation of the Lignite Seams 

In Tertiary (Oligocene) times, the subsidence of the Central Graben in the North Sea created 
the Lower Rhine Embayment (LRE) as southernmost extension of the Central Graben 
(Klostermann, 1991). A new sedimentary basin was created. The LRE contains up to 
1,600 m of these Oligocene to Pleistocene siliciclastic sediments with intercalated lignite 
attaining a thickness of up to 100 m (Hager, 1986). The lignite is of considerable economic 
importance and has been exploited in open cast mines and near-surface operations since 
the 18th century, at locations where the seams were easily accessible (Schäfer, Utescher, 
Klett, & Valdivia-Manchego, 2005). Since then, the exploitation of the coal by RWE 
Generation SE - formerly Rheinbraun AG – is forming a vital basis of German power supply.  

Sedimentation in the LRE was mainly influenced by fault block tectonics and variations in sea 
level. In Upper Oligocene, a 70 Ma long phase of high sea levels came to an end. Short term 
sea level fluctuations became typical (Haq, Hardenbol, & Vail, 1987). As a consequence, 
sequences of marine sands (representing a sea level high) intercalated with terrestrial silts, 
clays and lignite seams (sea level low) were sedimented. 18 Ma ago, in lower Miocene times 
(Burdigalian) the uplift of the surrounding highlands named “Rhenish Schiefergebirge” 
relative to its foreland slowed down. This decreased the sedimentary flows being 
accumulated in the LRE. At the same time, the climate warmed up. The temperature of North 
Sea shallow waters rose to 16 °C (Buchardt, 1978). Higher precipitation led to a subtropical 
climate and rising groundwater tables (Zagwijn & Hager, 1987). Vegetation could gain 
ground extensively and left behind peat, which gradually was converted into lignite.  

The place of this research area, the mine Garzweiler, was part of the Venlo block. During two 
marine regressions, 17 and 15 Ma ago, the deposition of the later lignite seams Morken 
(named 6A after (Schneider & Thiele, 1965)) and Frimmersdorf (named 6C) took place. They 
were separated by the marine Frimmersdorf sands (named 6B). Additionally, as the area of 
the mine Garzweiler was close to the shore line during that period, the seam Frimmersdorf 
(6C) faced numerous marine sand intrusions. These irregular sand partings within 6C and 
their predictability are part of this research project described here. On top of the seam 6C, 
the marine Neurath sands (named 6D) were sedimented similar to today’s Wadden Sea 
sedimentation. On top, the seam Garzweiler (6E) was formed during a period of marine 
regression. In upper Miocene times, the climate cooled down gradually and the LRE 
underwent a faster downlift. This enhanced the downward gradient and enforced the 
competence of rivers from the South. Thick fluvial and limnic sediments were deposited, 



named horizons 7 and 8 after (Schneider & Thiele, 1965). Their clastic burden led to an easy 
consolidation of the peat to form lignite.  

2.2 Development of Sand Intrusions in Seam 6C, Mine Garzweiler 

The Garzweiler open cast mine is located west of Grevenbroich and is moving westward in 
the direction of Erkelenz. The mine mainly touches Rhein county Neuss, Rhein-Erft county 
and Heinsberg county. The lignite is deposited in three seams which together are 40 m thick 
on average. The coal lays some 40 to max 210 m below the earth's surface. 

The Frimmersdorf lignite seam 6C contains multiple sand intrusions. The shape and size of 
these sand partings are irregular and both characteristics are showing a large variability. 
However, there is not a common idea about the origin of the sand partings. Several possible 
scenarios for their origin are shortly described below. The first three scenarios are describing 
a syn-sedimentary process, as opposed to the fourth scenario, which describes a post-
sedimentary process:  

1. An environment of marine transgression  

A rising sea level led to relatively homogeneous sand bodies in the peat. This marine 
environment arose slowly. Hence, sand partings developed over a longer period of 
time.  

2. Accidental injection of heterogeneous sand bodies 

Rough weather and wild sea conditions could accidentally inject a volume of sand 
within the peat. These events can happen quickly; a daily or hourly event may suffice. 
Currently, these kinds of events are seen at the German coast near Wilhelmshaven.  

3. An environment of marine regression and increasing fluvial impact 

A decreasing sea level could strengthen the impact of fluvial conditions. "Crevasse 
splay" - a situation of a broken embankment causing flooding in the adjacent swampy 
area - could lead to sand partings within the lignite. 

4. Coalification 

The geochemical process of coalification can be simplified by the following equation: 
peat + water + CO2 = lignite  
Here, incidental CO2 release could be accompanied by large volume relocation. This 
event could remobilize 6C sand or cause an intrusion of 6D sand into the 6C lignite. 

To better predict the quality of lignite to be produced, the genesis of sand partings is rather of 
second importance. For an improved coal quality control, more important is the combination 
of data of the existing geological model with production data, GPS data of the excavator’s 
position at one time and data of analytical results of the coal composition. The theoretical 
formulization of the mentioned data fusion is provided in Chapter 3. Application of this fusion 
in the Frimmersdorf lignite seam will be provided in Chapter 4. 

2.3 Available Sensor Data 

There are two different online-sensor measurement systems that are available in RWE to 
characterize the lignite produced from the Frimmersdorf seam.  

The KOLA - an abbreviation for Kohle OnLine Analytics - system is the first data type 
available for a more extensive modeling of the sand parting in the 6C Frimmersdorf lignite 
seam. It applies X-Ray diffraction in order to accurately assess the components of the 
produced lignite. The analyzed components are inter alia iron, sulfur, potassium, calcium and 
- of importance in the context of this research - the ash content of the produced lignite. The 



Garzweiler opencast mine operates multiple KOLA measuring stations, of which two are 
analyzing the coal from the Frimmersdorf lignite seam. 

The second available source is the radiometric measuring system of RGI data. This system 
allows an online determination of the ash content of the mass flow directly on the conveyor 
belt, without requiring any sampling or sample processing. It is installed directly on the 
excavator that produces lignite from the Frimmersdorf seam and, consequently, the ash 
content of the produced lignite can be provided by online values during the process of 
monitoring and controlling the production process. However, calibration of this system is 
strongly dependent on the composition of the coal.  

The presented full case study in Chapter 4 only used the KOLA measurement data as the 
representative measurement of the produced lignite due to the calibration problems of the 
RGI measurements. 

3 A Method for Updating Coal Attributes in a Short-Term Model 
Based on Online-Sensor Data 

This chapter provides the theoretical background of the adopted algorithmic approach in 
order to fully utilise available online data to improve prediction of (sand intrusion related) ash 
content. A formal description of the updating algorithm is provided in section 3.1. Thereafter 
a 2D case study in a fully known environment is illustrated in section 3.2. To conclude this 
chapter, section 3.3 presents a benchmark of the method against an alternative proven 
approach.  

In lignite mining, similar to other branches of mining, the initial step, prior to mining activities, 
is creating a resource model based on exploration data, such as drill hole data. Traditionally 
in order to produce a valuable representation of the coal seam geometry and quality 
attributes of the seam, such as ash content, the geostatistical interpolation methods are 
used. Based on this resource model, a short-term production plan is created and mining 
activities will be executed according to this plan. In case of discovering unexpected waste 
intrusions in the coal seam during production, the short-term model has to be renewed. 
Currently, by using off-line analysis and modelling techniques, this may take days or 
sometimes even weeks. Using online-sensor techniques for coal quality characterisation in 
combination with rapid resource model updating, a faster reaction to the unexpected 
deviations can be implemented during operations, leading to increased production efficiency. 
This concept was initially proposed by (Benndorf et al., 2015) as a closed loop framework. 
Figure 1 illustrates this conceptual workflow that basically integrates the online-sensor data 
into the resource model, as soon as they are obtained.  

 

Figure 1 An overview of the EnKF based resource model updating concept  



Predicting the initial resource model, so-called prior model, is traditionally done by Kriging. 
Kriging provides the best estimate which is close to reality, yet it is much smoother and 
doesn’t represent the in-situ variability fully. For this reason, it is essential to model the 
spatial uncertainty by generating multiple realizations of the joint distribution of the ash 
values in seam using stochastic simulation. Sequential Gaussian simulation (SGS) is a very 
efficient method for risk assessment applications in the mining industry. 

The method compares the predicted measurement values based on the prior prediction 
(realizations) and the actual online-sensor measurement values per produced block. Once 
prior models are available, predicted measurement values are required to be calculated 
according to the production sequence, based on prior predictions. The difference between 
this predicted measurement value and the actual online-sensor measured value per 
produced block will be fed back to the resource model, in order to create the updated 
resource model, the so-called posterior model (Figure 1). It is important to mention that in 
general, sensor measurements will have an error component. 

For rapid updating of the resource model, sequentially observed data have to be integrated 
with prediction models in an efficient way. In related fields, methods of data assimilation 
found many successful applications. 

Data assimilation can be defined as the fusion of observations into the prior knowledge (e.g. 
estimation, simulations) in order to improve the predictions. Thus, this definition translates in 
mining as the process of combining online-sensor measurement data with the prior model to 
produce a more accurate prediction of the resource model, the so-called posterior model.  

Sequential data assimilation methods use a probabilistic framework and give estimates of the 
whole system state sequentially, by propagating information only forward in time (Bertino, 
Evensen, & Wackernagel, 2003). The main sequential methods are the Kalman Filter (KF) 
(Kalman, 1960) (Kalman and Bucy, 1961) and the various filters that have been derived from 
the basis of the KF, such as; the extended Kalman filter (EKF), the ensemble Kalman filter 
(EnKF) (Burgers, Jan van Leeuwen, & Evensen, 1998; Evensen, 1994, 1997a, 1997b; 
Evensen & Van Leeuwen, 1996, 2000), the ensemble transform Kalman filter (ETKF) 
(Bishop, Etherton, & Majumdar, 2001) and the ensemble square root filter (EnSRF) 
(Whitaker and Hamill, 2002).  

The (KF) is an optimal recursive data assimilation method that combines all available data, 
such as prior knowledge about the system and measurements, in order to produce an 
estimate of the desired variables in such a manner that the error rate is minimized 
statistically. The KF works in two stages. The first stage solves forecast equations, where the 
prior knowledge is represented by a model to the time of an observation. In our case, it is not 
necessary to use this part of the filter since the prior model is created through estimation and 
simulation. The second stage is the “sequential updating” stage, where the online-sensor 
measurements are assimilated into the prior model. This is done according to a ratio of errors 
in the prior model and in the observations. The difference between the sensor measurements 
and the predicted measurements is multiplied by a weighting factor (based on the mentioned 
ratio of errors) and this weighted difference is added to the prior model. An updated resource 
model is then produced. A detailed explanation on Kalman Filter is given in (Maybeck, 1979), 
(Stengel, 1994) and (Cohn, 1997), the following will focus on the application of the Kalman 
filter in geosciences.  

A framework with a similar aim has been recently proposed by (Chevalier, Emery, & 
Ginsbourger, 2014) to update the conditional simulations at minimal cost. The formulae 
offers significant computational savings when the number of conditioning observations is 



large, and quantifies the effect of the newly assimilated observations on already simulated 
sample paths. Yet, the application of this method in resource model updating using online 
data case would not be as efficient since the change of support technique is not taken 
account. In coal production, the obtained quality measurements represent only a small ratio 
of the entire production block. For this reason, it is essential to apply change of support 
methods in order to correct the online-sensor measurements in a way to represent a whole 
production block.  

3.1 A Formal Description of the Updating Algorithm 

The developed framework based on KF is initially validated on the estimated prior model 
then it is extended to use the SGS method for creating realizations of the prior model.  

Let ���� be the state of a stochastic process modelling the spatial distribution, where � refers 
the local ash content at excavation locations �, then the updated resource model, �∗���, is 
calculated by the following equation: 

�∗��� = ����� + 	�
 − �������        (1) 

where ����� is the prior resource model, 
 is sensor based measurements, � represents the 
production sequence matrix, so the term ������ represents the predicted measurements 
based on the prior block model. Matrix � describes the contribution of each of the mining 
blocks at � to the total production at a certain time interval ��, with j = 1, … , m 

� =	 ���,� ⋯ ��,�⋮ ⋱ ⋮��,� ⋯ ��,��.         (2) 

The elements ��,�, can be interpreted as contributions of each mining block i to the produced 

material being on the conveyor belt, which will be eventually observed at some sensor 
station at time j. Matrix � is herein called production matrix and can be interpreted as an 
observation model, which links the block model ���� with sensor observations. 

The Kalman gain, 	, calculates a weighting factor based on the prediction and measurement 
error covariances. The Kalman gain matrix indicates the reliability of the measurements, this 
is done in order to decide “how much to change the prior model by a given measurement” 
and can be derived from a minimum variance estimate, which leads to the KF providing an 
optimal solution by minimising the cost function.  

	 = �������+ �

� ������ .         (3) 

Kalman gain can be calculated as in Equation (3). As mentioned above, it contains two 
different error sources, ���, the model prediction error and �

, the measurement error. The 
model prediction error is basically the covariance matrix of the prior resource model, which is 
propagated through the lignite mining by the production sequence matrix �. The 
measurement error is the covariance matrix of the sensor-based measurement. The term ����� in Equation (3) denotes the model-based prediction, as previously defined. 

���∗ = �! − 	�����          (4) 

The improvement in model prediction can be determined as the updated model error 
covariance, ���∗, which is provided in Equation (4). Clearly, this leads to a decrease in the 
uncertainty of the resource model blocks, not only for the currently excavated ones but also 
for the adjacent blocks which are spatially correlated. Figure 2 illustrates an overview of the 
KF based resource model updating concept.  



 

Figure 2 An overview of the KF based resource model updating concept  

It is obvious that the KF offers large potential in improving resource recovery by combining 
online data with the resource model and consequently decreasing its uncertainty. However, 
there are different challenges to solve in order to comprehend the source of the difference 
between sensor measurement and the resource model, and feed the gained knowledge back 
to the resource model. The main challenges to solve are the size of the estimated resource 
model (in the order of multiple millions of grid nodes), non-Gaussian behaviour of data, the 
different support of observations and resource model blocks and a possible non-linear 
relationship between the observations and model attributes. 

The (EnKF) provides a comprehensive solution for large-scale applications when explicit 
storage and manipulation of the covariance matrix is impossible or not feasible (Sakov & 
Bertino, 2011). Moreover, EnKF is able to deal with the non-linear systems. The developed 
framework with ENKF uses SGS in order to create the ensemble of realizations, also called 
prior ensemble �����", where # = 1,… ,& is the number of realizations/ensembles. Next, the 
algorithm continues recursively, using the following recurrence relations; 

�∗���" = �����" +	"�
" − ������"� .        (5) 

	" = ������"�+ �

"� ������"        (6) 

���∗" = �����" − ����"''''''''������" − ����"''''''''��''''''''''''''''''''''''''''''''''''''''''''       (7) 

where ����" and 
" respectively consist of an ensemble of block models and the 

measurements. In Equation (7) ���∗" refers to the updated error covariance of the resource 
model, where the overbar denotes the expected values of the ensembles. The covariance 
matrices represent the whole ensemble and the Kalman gain 	" is derived from these.  

Two measures are implemented to reduce computational time of Kalman gain (Wambeke & 
Benndorf, 2015). The first measure is related to the neighbourhood. The size of the ��� 
matrix is in the order of the size of the blocks that are in the defined updating neighbourhood. 
The second measure is a Cholesky decomposition which is implemented to avoid an explicit 
computation of the inverse in Equation 6. This results significant computational speed ups.  

To deal with the non-gaussianity of the data, a new approach NS-EnKF is proposed by Zhou 
(Zhou, Gómez-Hernández, Hendricks Franssen, & Li, 2011) which transforms the original 



state vector into a new vector that is univariate Gaussian at all times. Gaussianity is achieved 
by applying a normal-score transformation to each variable for all locations and all time 
steps, prior to performing the updating step in EnKF.  

 

Figure 3 Real-time updating algorithm based on NS-EnKF approach, modified from (Zhou et al., 
2011) 

The NS-EnKF approach follows the same steps as the standard EnKF, except the NS-EnKF 
has additional pre and post processing steps. Local grades at grid nodes will be normal 
score transformed before application of the EnKF, and once the update is complete, the 
normal score transformed data will be transformed back (Figure 3). Readers are referred to 
(Goovaerts, 1997) for information about the normal score transformation.  

With the goal of a continuously updatable coal quality attributes in a resource model, a 
framework based on the NS-EnKF approach was tailored for large scaled mining 
applications. It is based on an implementation from (Wambeke & Benndorf, 2016). Figure 4 
gives general overview of the operations which are performed to real-time resource model 
updating for improving the coal quality control using online data. The concept initially starts 
with resource modelling by using a geostatistical simulation technique, namely sequential 
Gaussian simulation (SGS). This is the first required data set. The second data set consists 
of a collection of actual and predicted sensor measurements. The actual online-sensor 
measurement values are collected during the lignite production and the predicted 
measurements are obtained by applying the production sequence on the prior resource 
model realizations. Once both of the input data are provided into the NS-EnKF approach 
based real-time updating framework, the updated posterior resource model will be obtained. 
This process will continue as long as the online-sensor measurement data is received.  



 

Figure 4 Configuration of the real-time resource model updating concept, modified from (Wambeke & 
Benndorf, 2016) 

3.2 A 2D Case Study 

The aim of this 2D case study is to investigate the capability of the introduced concept in 
real-time update on a resource model and to obtain more accurate resource models for 
future processes. This section will describe the set-up of the experiments, explain some 
details about performance measures and finally, provide the results of the case studies. 

3.2.1 Experiment Set-Up 

All of the experiments presented in this section are performed in a completely known and 
fully controllable environment; a well-known geostatistical dataset, called Walker Lake 
dataset (Isaaks & Srivastava, 1989). The dataset originally contained digital elevation data 
from the Walker Lake area (California-Nevada border), in our case those will be interpreted 
as the concentration values.  

Realizations of the block model are created by conditional simulation. The blocks were 
defined with a dimension of 16m x 16m x 10m. The density is assumed 2 t/m3 , which leads a 
tonnage of 5120t for one mining block.  

No availability of sensor data require generation of new virtual sensor data. The artificial 
sensor data are composed of three components. Component one is the true block grade 
taken from the exhaustively known data set. Component two captures the volume variance 
relationship and corrects the block value support to a smaller measured support by adding 
the corresponding dispersion variance (Isaaks & Srivastava, 1989; Krige, 1951, 1981). The 
third component represents the precision of the sensor and, for this case study, varies 
between 1, 5 and 10%.  

It is assumed that the excavated material is discharged on a non-stationary conveyor belt 
positioned on the benches in the mining area. The conveyor belts then combine the material 
flow at the central mass distribution point. The combined material flow is scanned by a 
sensor positioned above the conveyor belt.  

The mining system consists out of, either one, two, three or four bucket-wheel excavators 
positioned at different benches with different digging rates. In the case of one excavator, the 



mine design assumes that the excavation starts from the south-west corner of the block 
model and continues through the east direction until the entire row is mined (Figure 5). When 
the excavation of the first row is completed, the excavator moves to the northern row and 
continues to excavating in a western direction. In case of two excavators, the second 
excavator starts at the south-eastern corner of the northern half of the field. In the case of 
three and four excavators, the field is divided in three and four parts respectively.  

 

Figure 5 Mining sequence 

3.2.2 Results and Discussion 

A series of experiments is performed in order to analyse the performance of the updating 
concept. This section provides some representative results from the performed experiments. 
Three different performance measures are used in order to present results of the performed 
experiments.  

The first measure is an empirical error measure so called mean square difference, or mean 
square error (MSE). MSE compares the difference between estimated block value �∗��� and 
real block value (��� from the exhaustive data set and it can be calculated as follows: 

)*+ = �
,∑ ��∗��� − �����.,�/�         (8) 

The second measure is the theoretical block variance (BV), which can be approximated by 
the EnKF Equation (7) or: 

01 ≅ �
,∑ �3���� − 4���''''''534��� − 4���''''''5��,�/�        (9) 

Both of the mean square error and block variance bar plots are illustrated relative to the prior 
model in order to make a good comparison. Each plot contains four bars, from left to right; 
prior model, mined blocks, adjacent blocks and indirect blocks (two blocks away).  

Table 1 MSE and BV plots – 2D Case Study  

 Mined Blocks Adjacent Blocks Indirect Blocks 

MSE 

   



BV 

   

 

Table 1 gives the MSE and BV plots. The graphs are obtained under the following conditions: 
one excavator was operating, undergoing measurements every 10 minutes and updating the 
resource model every hour. The following observations can be made based on the graphs 
given in Table 1: 

• For mined blocks, the uncertainty almost vanishes while the sensor error 
decreases. This is expected because in case of one excavator the sensor 
measurements can be clearly tracked back to the source block. Residual 
uncertainties can be caused by the sensor precision and also interpreted as the 
limit of the filter for this special application. 

• Adjacent blocks are updated resulting in a significant improvement compared to 
the prior model. This improvement is due to the positive covariance between two 
adjacent blocks. In addition, the sensor precision effect can be observed from the 
results. 

• Blocks in the second next row are still updated. As expected, the error in 
prediction increases when moving further away from the point of measurement 
(from mined block, to adjacent and indirect blocks). 

Finally, the third measure is a representative map of the study area which indicates the 
differences between the real value and updated values of the area (Figure 6). 

 

Figure 6 Difference map between the real data and updated model on 50th simulation. 

The experiment was designed to update only the blocks in the first row, by integrating their 
relative measurements. Figure 6 indicates almost no difference between reality and the 
updated model. In the second row, it is still possible to observe the updates by investigating 
the small differences between reality and the updated models. Once again, the difference 
maps prove that the developed framework is suitable for this specific application. 

Results show the validity of the real-time resource model updating concept in a 2D scale. 
The consistency gets reduced when the update moves from mined blocks to indirect blocks, 
as is expected.  

3.3 Validation of the Developed Framework  

Results in the previous section indicated a significant level of improvement in the resource 
models by incorporating sensor data. A reduction of uncertainty is observed after the data 
assimilation. In order to continue, the method is benchmarked against a proven and well-
studied, however computationally expensive method of rejection sampling. 



 The rejection sampling method is chosen for validation purposes due to its simplicity. Similar 
applications of this method can also be found in reservoir engineering (Barker, Cuypers, & 
Holden, 2000; Hegstad & Henning, 2001; Liu, Betancourt, & Oliver, 2001; Liu & Oliver, 
2003). Rejection sampling is a Monte Carlo method that proposes a sample from some 
relatively simple distribution, after which a test is applied to decide whether or not to accept 
it. It is based on the fact that the posterior is a subset of the prior distribution, and therefore it 
can be evaluated by sub-sampling the prior (Jeong, Mukerji, & Mariethoz, 2011). All 
accepted samples are truly independent since the accept/reject criteria do not depend on the 
most recent sample. 

To implement this method, 1000 realizations were created by using a Sequential Gaussian 
Simulation method, the so called prior models. The developed updating framework was 
applied to the 1000 prior models in order to generate 1000 updated realizations (updated 
posterior models). As the rejection sampling proposes that the posterior is a subset of the 
prior distribution, it is expected that one can obtain the updated posterior distributions by 
applying rejection sampling to our prior models.  

To generate realizations from the target probability density	6�7�, we let ℎ�7� be a probability 
density of one single realization and suppose that there is some constant c such as 6�7� ≤:ℎ�7� for all 7. 

To obtain random realizations from 6�7�: 
1. Select a candidate realization (from 1000 prior models) 7 ∗ from pdf ℎ�. �, 
2. Generate a decision variable < from =�0, :ℎ�7 ∗��, 
3. If < ≤ 6�7 ∗� then accept the proposed model, return 7 = 7 ∗. Else, reject the 

proposed model 7 ∗ and stay at the current model.  
4. Return to step 1 for the next realization.  

The conditional probability density 6�7� is provided by Bayes rule and can be calculated as 
follows, 

6�?|A���|BCDE� = 6�A|?��BCDE|��6?�7� F6�A|?��BCDE|��6?�7�G7H     (10) 

∝ exp M− �
. �����N� − 
���OO ������N� − 
�P N exp M− �

. ����N� − Q���RR �����N� − Q�P  (11) 

where ����N� is the predicted observation and ���N� is the prior model and Q is the mean 
value of the prior model. �

 and ��� are the measurement error covariance and the prior 
model covariance respectively. 

Figure 7 illustrates the performed experimental scheme. The given algorithm is applied to 
both 1000 prior models and 1000 updated posterior models. Around 290 of 1000 prior 
models were accepted, while 950 of 1000 updated posterior models were accepted. The fact 
that almost all of the updated posterior models are accepted shows a significant 
improvement over the prior models (from 29% to a 95% acceptance rate). This indicates that 
the updated posterior models are closer to reality than the prior models. 



 

Figure 7 Validation experiment scheme 

The 290 accepted posterior models and 1000 updated posterior models are compared to 
each other in order to investigate the similarities. Therefore, the average of mean and 
variance of the distributions are compared. 

Figure 8 and Figure 9 show the average of mean and variance of the posterior models 
obtained from rejection sampling and updating framework, respectively. It is clearly seen that 
the average mean and variance of accepted prior models (290) and updated prior models 
(1000) are very similar to each other. Figure 10 is provided for a better comparison between 
the accepted posterior realizations from rejection sampling (290) and updated posterior 
realizations from the real-time update framework (1000). The deviations between two models 
are very small. One can conclude that the updated posterior realizations from the real-time 
update framework are reproduced through rejection sampling. 

 

Figure 8 Average mean (left) and variance (right) maps of 290 posterior realizations accepted 
according to rejection sampling method 

 

Figure 9 Average mean (left) and variance (right) maps of 1000 posterior realizations updated with 
real-time update framework 

 



Figure 10 Difference map between the accepted posterior realizations from rejection sampling and 
updated posterior realizations from real-time update framework 

In addition, MSE and BV graphs of mined, adjacent and indirect blocks from the accepted 
posterior models by rejection sampling (290) are given to provide the empirical and 
theoretical measures (Table 2). As mentioned in the previous section, both of the plots are 
prepared relative to the prior model in order to provide a good comparison. Again, each plot 
includes four bars, from left to right; prior model, mined blocks, adjacent blocks and indirect 
blocks. 

Table 2 MSE and BV plots – Rejection Sampling 

 Mined Blocks Adjacent Blocks Indirect Blocks 

MSE 

   

BV 

   

 

When BV values in Table 2 (MSE and BV plots of the accepted posterior models from 
rejection sampling) are compared to the ones in Table 1 (MSE and BV plots of the updated 
posterior realizations), similar trends are observed except relatively higher values in Table 2. 
The general behaviour of both tables is the increase of the block variance moving from 
mined blocks to indirect blocks, and the decrease of it when the sensor error is smaller. For 
the MSE values, an increase in the error rate is observable when moving from mined blocks 
to indirect blocks, yet the increase is not very significant. This is because the nature of 
rejection sampling does not take into account the weight of distances.  

The mentioned similarities in the comparison of empirical error and theoretical variance of 
the accepted posterior realizations from rejection sampling and updated posterior realizations 
from real-time update framework, once again, indicate that the accepted models through 
rejection sampling are truly reflecting the updated models. This section concludes that the 
presented results validate the developed real-time updating framework and that it is a 
successful method for reaching the targets aimed for. 

4 Application to a Full Scale Study 

The aim of the case study which is presented here is to demonstrate the applicability of the 
developed framework in an industrial application.  

As explained in Chapter 2, the defined study area is the Frimmersdorf lignite seam in 
Garzweiler mine, which is operated by RWE Power AG. The necessary data related to this 
research is provided by them. The following experiment is a benchmark in historical mined 
out area. The extraction sequence is reconstructed based on historical production data while 
KOLA data, which is assumed to represent the reality, is used for the evaluation of results.  



4.1 Experiment Set-Up 

First, the geological model (Figure 11) of the defined coal seam is created in a 32x32x1 m 
dimensioned block model based on the roof and floor information of the seam. Second, a 
32x32x1 m dimensioned quality model that indicates the wet ash content in percentages is 
represented with 24 simulation and an estimation, based on the provided drill hole data. The 
simulated and estimated ash values are imported into previously defined coal seam. These 
are the first input file, the prior quality (ash) model. 

 

Figure 11 Geological model 

Predicted measurements are obtained by averaging the simulated ash values from each 
simulation set, which falls into the defined production block boundaries. The online RGI 
sensor measurement data and KOLA data are provided for the time correspond to extracting. 
In order to determine the location of the received RGI and KOLA data, in other words to track 
back where the measured material comes from, the GPS data is matched with the 
measurement data based on the given timecodes. The located measurements in coal seams 
are then imported into the previously defined block model. 

The second input file for the algorithm is written to a file containing the following information: 
the block ID, central block location (X, Y, Z coordinates), a series of real and predicted 
measurements.  

A study bench produced for 15 days is defined by considering all the available data 
(topography, RGI, GPS and production data). Later, the study bench is divided into so-called 
“production blocks”. This was necessary to reproduce the excavated production blocks. The 
horizontal divisions (or production slices) are based on the movements of the excavator 
during production, which is based on GPS data. The vertical divisions are based on the 
changes in the Z coordinates in the GPS data. In the end, the defined production bench is 
divided into 28 blocks and 5 slices, which gives 140 production blocks. Once the study bench 
is divided both in vertical and horizontal, the production blocks are now ready to be updated.  

The defined study bench is divided into blocks and their respective related block ID numbers 
are given in Figure 12. As a start the 2nd slice of the block number 1 is chosen to be updated, 
based on the KOLA measurements taken from that block. The series of updating 
experiments will continue until the 10th block. The update range is defined based on the 
variogram of the data as 450m in X and Y direction and 2.5m in Z direction. The expected 
improvements are marked as the circled neighbourhood area. 



 

Figure 12 Production blocks 

4.2 Results and Discussion 

This section presents the results of the previously defined experiment. The added value of 
this application will also be discussed. 

The first experiment uses the KOLA measurement, received from the 1st block’s production, 
in order to update the neighbourhood blocks of the 1st block. Figure 13 illustrates the first 
experiment, where prior, posterior and measurement values are given. The averaged ash 
values from the prior simulation are represented with round dots and the related KOLA 
measurement values are given square marks. The light grey cloud of updated simulations 
covers the model uncertainty, while the long dashed line represents the average of the 
simulations.  

Figure 14 to Figure 16 presents results of similar experiments, except the base of the update 
is moving forward from 1st block till the 9th block, as if the production moves. In each graph, 
the mined out area is indicated with an arrow. Among results of 7 experiments, only four of 
them (1st, 2nd, 4th and 7th) are presented here since they adequately represent the rest. 

It is clearly seen from the Figure 13 that the average of the prior simulations dramatically 
underestimates the actual KOLA measurements. This happens because the prior simulations 
are created based on the coal samples in the drill holes, while the KOLA measurements 
measure higher ash values due to the sand intrusions in the coal seam. Integrating the KOLA 
measurement of the 1st block updates the first nine blocks to some higher values. As 
expected, the update effect decreases while moving away from Block 1.  

Already from the second experiment (updating the ash values based on the measurement of 
the Block 2), the KOLA data is well covered by the range of uncertainty in the updated 
neighbourhood. While the integrated measurement number increases (experiment 2, 3, …, 
7) it is observed that the uncertainty in the near neighbourhood gets slightly smaller and 
more of the actual KOLA measurements are captured by this uncertainty range.  

The improvements from the very initial averaged prior simulation to the most recent updated 
simulations are clearly observable 



 

Figure 13 Experiment 1 - Updating: 2nd slice of the 1st block 

 

Figure 14 Experiment 2 - Updating: 2nd slice of the 2nd block 

 

Figure 15 Experiment 4 - Updating: 2nd slice of the 4th block 

 

Figure 16 Experiment 7 - Updating: 2nd slice of the 9th block 



The presented experiment demonstrated a resource model updating case study in a large 
open pit mining operation using the actual measurements, the so called KOLA data. The 
results have shown that the developed updating algorithm works well in a real-3D case.  

Figure 17 gives the calculated MSE values for each performed experiment. Since this is a 
real case, the real block values are unknown. For this reason, the MSE compares the 
difference between estimated block value �∗��� and measured KOLA value (S). Once more, 
they are calculated relative to the prior averaged simulation. Figure 17 clearly indicates the 
improvements. The biggest improvement is observed on the first experiment, where the MSE 
value drops to 0.33 from 0.64. For the next experiments, the update is slightly smaller, yet 
observable. MSE values drop from 0.33 to 0.27 during the experiments between 2 and 7. 
This indicates in order of 70% improvement while integrating online measurement data into 
the resource model.  

 

Figure 17 MSE Graph for performed experiments 

5 Conclusions and Future Work 

This study provides a tailored method for updating coal quality attributes in real-time and 
applying it in a real coal production environment.  

This research allows for an improvement in predictions, leading to a potential increase of 
coal recovery and process efficiency by controlling the decisions continuously in a mining 
operation. The results from the full scale application validated the applicability of the method 
in a continuous mine environment and presented significant prediction improvements in the 
resource model.  

Some limitations might be interpreting the results. A first potential limitation could be the 
quality of the provided data from RWE. For example, the accuracy and the 
representativeness of the received measurement data can highly effect the improvement of 
the results.  

Future work will investigate the performance of the resource model updating framework by 
performing sensitivity analyses on main parameters, including the ensemble size, the 
neighbourhood size, localization strategies and the sensor precision.  

The current research was limited to a case where only one excavator is operating. Another 
future project should apply a case study where two, three or four excavator are operating. 
This will require updating the coal quality parameters in different production benches based 
on one combined material measurement.  
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