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Abstract — Recent advancements in automotive technologies, 
most notably autonomous driving, demand electronic systems 
much more complex than realized in the past.  The automotive 
industry has been forced to adopt advanced consumer 
electronics to satisfy the demand, and thus it becomes more 
challenging to assess system reliability while adopting the new 
technologies.  The system level reliability can be enforced by 
implementing a process called condition monitoring.  In this 
paper, a piezoresistive silicon based stress sensor is 
implemented to detect physical damages in outer molded 
electronic control units (ECU) subjected to reliability testing 
conditions.  The test vehicle consists of six DPAK power 
packages and three stress sensors mounted on a Printed 
Circuit Board (PCB).  A unique algorithm is proposed and 
implemented to handle the data obtained from the 
piezoresistive stress sensing cells.  The accuracy of measured 
data is examined by Finite Element method (FEM), and the 
physical changes are validated with Scanning Acoustic 
Microscope (SAM).    

Keywords - Condition Monitoring, Stress Sensor, Electronic 
Control Units, Fault Detection 

I. INTRODUCTION 
Condition Monitoring (CM) is a process to monitor 

parameters of system conditions, which is a critical 
component in predictive maintenance. Condition 
monitoring techniques have been used extensively for large-
scale machineries and structures. More recently, condition 
monitoring has been adopted for advanced electronic 
systems, most notably, automotive electronics including 
batteries. 

Conventional sensors (e.g., sensors for temperature, 
humidity, vibration, etc.) are not most adequate for the 
condition monitoring of complex electronic system as they 

only measure the loading conditions.  The piezoresistive 
stress sensors were developed to cope with the problem.  
The sensor measures directly the stresses of a silicon chip, 
and it was utilized in several electronic packaging 
applications [1][2][3][4][5][6][7][8][11]. It was also 
implemented successfully to monitor the stresses in 
advanced electronic control unit (ECU) subjected to 
reliability testing conditions [9][10]. 

In order to extend its applicability into the Prognostics 
and Health Management (PHM) domain, it is required to 
link the measured stress to the damage or fault of the ECU, 
as illustrated in Figure 1.  The objective of this paper is, thus, 
to propose special algorithms to handle the stress sensor 
data obtained from the ECU.  The proposed algorithms are 
presented after briefly describing the sensor. The 
implementation results are followed using the data obtained 
from a test vehicle.   

 
Figure 1.  Stress Failure relationship. Various type of loads are causing 
ECU failures. The proposed algorithm is linking the measured stress with 
the failure. 
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II. IFORCE SENSOR 
The working principle of the piezoresistive silicon based 

stress sensor can be found in Refs. [1] and [12].  A land grid 
array (LGA) package used in this study is shown in Figure 
2. It is a standard sensor package, which contains a pair of 
symmetrically located sensor with 12 sensing cells.  Every 
cell is capable of measuring the in-plane shear stress, σxy, 
and the difference of in-plane normal stress components, 
D(σ) = σxx - σyy. 

 
Figure 2.   Sensor cell numbering position and the acquired data. 

The relationship between the measured currents and the 
stresses are: 

௫௫ߪ − ௬௬ߪ =
1
ସସߨ
௣
ை௎்ܫ − ூேܫ
ை௎்ܫ + ூேܫ

 (1) 

௫௬ߪ =
1

ଵଵ௡ߨ − ଵଶ௡ߨ
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ை௎்ܫ + ூேܫ

 (2) 

 
where π11, π12, π44 are the piezoresistive coefficients of 
silicon; and IIN, IOUT are the currents measured at the input 
and output of the sensor, respectively. 

The stresses can be used to produce the maximum shear 
stress and the angle of principal stresses as: 

 

߬௠௔௫ =
ଵߪ − ଶߪ

2 = ඨቀ
௫௫ߪ − ௬௬ߪ

2
ቁ
ଶ

+ ߬௫௬ଶ  (3) 

tan2ߠ௣ =
2߬௫௬

௫௫ߪ − ௬௬ߪ
 (4) 

 
Figure 3.   Raw data example at room temperature during 
delamination. 

Representative raw data, two measured parameters and 
two calculated parameters are shown in Figure 3. The data 
was collected from one cell during failure propagation.  

The parameter relationship it is captured in a 2D Mohr 
Circle as depicted in Figure 4. Also, this description can 
capture all the parameters in one circle. 
 

 
Figure 4.   2D Mohr Cicle. Describes the relationship between 

parameters.  

III. PROPOSED ALGORITHM 
A typical health dataset, X, contains m rows and p 

columns, where m is the total number of observations before 
observing any anomalies and p the total number of the 
performance parameters. Each sensor output having 12 cells 
and 4 parameters can have up to 48 performance 
parameters. 

The first part of the algorithm starts with extracting and 
creating an initial healthy baseline, and subsequently 
assessing the health at every measurement step.  If no 
deviations are detected at that particular data point in time, 
the healthy baseline is updated as shown in Figure 5.  

Figure 5.   Algorithm flowchart. 

In this study, Mahalanobis Distance (MD) [9][13] is 
employed to assess the health or to detect any anomalies.  It 
is also called quadratic distance as it can measure the 
difference between two sets of data as well as the distance 
between a point and a set of data.  Although effective, it 
could detect false signals (e.g., outliers, changes not 
associated with damage, etc.).  An additional step that 
quantifies the damage is added to avoid false detection.  
Let’s assume that an anomaly is detected at the nth 
observation. To assure that this detection point is not an 
outlier, another set of measurement should be conducted at 
n + h, where h depends on the number of performance 
parameters. A new dataset, Y, is created, containing h rows 
and p columns. On this newly created dataset h by p, a 
correlation matrix is constructed. This correlation matrix is 
assumed to be the failure correlation matrix, and it is 
compared with the healthy baseline correlation matrix used 
in MD method. This is possible with Fisher r-to-z 

 

 

 

 



transformation [14], which assess the significance of the 
difference between two correlation coefficients.  

In case that the significance of the difference is close to 
zero it means that the probability of two sets to be similar is 
very high. If the z value is around one the probability that 
these datasets to be similar is less than 0.05. This additional 
step is checking if the data points are outliers and it can 
quantify the damage by estimating the z-scores of the 
performance parameters. 

As last step PCA is used for the data reduction to 
facilitate cheaper and faster transmission [15]. This last step 
is performed only if MD detects any anomaly and if the 
significance of the difference between two correlation 
coefficients is at least equal to one. In this way it is certain 
that the detection point is not an outlier, but an entire dataset 
different from the healthy baseline.   

IV. IMPLEMENTATION 

A. Test vehicle 
The test vehicle used in the study is shown in Figure 6. 

It consists of six DPAK’s and three stress sensors mounted 
on the top and bottom sides of a PCB.  This assembly was 
molded by an injection molding process.  The location of 
the sensors was chosen to capture the maximum stress.  
Every sensor package contains 2 symmetrical sensors.  
Their locations and their arbitrary numbering is presented in 
Figure 6.   

 
Figure 6.   The position of each sensor on the Outer molded electronic 
control unit. 

The study was performed on 10 samples, but the results 
are shown from the most significant 2 samples considering 
the large amount of data. 

a) 

b) 

Figure 7.   a) Sample 1 SAM images of the initial delamination and 
the delamination propagation after 150 cycles. The red and green 
circles represent the area where there are changes in the delamination 
area. b) Sample 2 SAM images of the initial delamination and the 
delamination propagation after 150 cycles. The magenta circles 
represent the area where there are changes in the delamination area. 

Some initial delamination was created on the samples 
before the injection molding process. The delamination 
areas are visible in the initial SAM images as shown in 
Figure 7. The locations of delamination are randomly 
distributed. It is observed that the delamination is present in 
the vicinity of sensor 3 in both sides of the PCB of Sample 
2. Thus, it is expected that the most damage should be 
recorded by sensor 3a, 3b of Sample 2. 

The delamination is represented by the area in lighter 
color and the lack of visibility of the circuit board footprint, 
as shown in Figure 7.  

B. Initial Data 
Data was recorded through an acquisition system during 

the experiments. The samples were placed in a temperature 
chamber, and they were exposed to a passive cycling 
loading condition of -40° C to 125° C with a dwelling time 
of 15 minutes.  The dwelling time was predetermined to 
provide a condition where all components reach the uniform 
distribution at target temperatures.  SAM images of the 
samples were recorded before and after each 150 cycle. 

The sensor signal was investigated by a predictive FEM 
model.  The geometry and the loading conditions are 
identical to the experiment.  The process to validate the 
model can be found in Ref. [16].   

 

 

 

  



 

 

 
Figure 8.   FEM examination of the test vehicle. 

The modelling predictions are compared with the 
experimental data in Figure 8.  The results show very good 
agreement.  The small deviations are attributed to the 
uncertainties of the stress sensor [17] and the material 
properties used in the simulation.  

The repeatability of measurements is known to be 0.3 
MPa, and sample-to-sample variations are 2 – 6 MPa. From 
these graphs it is identified the sensitivity of each cell in the 
healthy stress state. It is clear that from all the parameters, 
cell 1, 2, 11 and 12 have the highest deviation between 
different loading conditions. This means that the higher 
stress state is located at the outer areas of the chip. This 
observation is important for further development of the 
stress sensor and also for data reduction strategies.  

The simulation data is used to examine the 
measurements.  It also provides better understanding about 
the mechanical processes and ultimately help develop a 

prognostics physical model.  It can be further used for 
model-based fault detection by considering the residuals, 
which can be utilized to classify different failure modes 
behavior. 

C. Data from Thermal Cycling Data 

 
Figure 9.   Comparison between measured stress difference for healthy 
and delaminated sample. The stress state represent the absolute values of 
stress, hence it contains also the residual stresses from manufacturing. 

Between the first and the 50th cycle, changes in the 
stress difference and shear stress were observed.  Some of 
these changes are recorded around 50th cycle, and the 
results are depicted in Figure 9. There are changes in stress 
difference in both sensors 3a and 3b from Sample 1. The 
sample and the red circle corresponding to the delamination 
propagation can be visualized in Figure 7.  

 
Figure 10.  Comparison between measured stress difference for healthy 
and delaminated samples. On the blue line representing the Sample 2 
Sensor 2b it is noticed an increasing in stress difference during 
temperature cycling corresponding to the delamination of the magenta 
circle in Figure 7. a). 

From the same interval of cycles it can also be observed 
a change in difference of stress for sensor 2b from Sample 
2 as depicted in Figure 10. The sample and the magenta 
circle representing the delamination propagation can be 
visualized in Figure 7.    

The corresponding shear stress from the interval of 
cycles described above it can also be observed a change for 
sensor 3b and 3a from Sample 1 as depicted in Figure 10. 
The sample and the red circle representing the delamination 
propagation can be visualized in Figure 7.    

 

 

 

 

 



 
Figure 11.   Comparison between measured shear stress for healthy and 
delaminated samples. On the blue line representing the Sample 1 Sensor 
3b it is noticed a decreasing in shear stress during temperature cycling 
corresponding to the delamination of the red circle in Figure 7. a). 

Due to the complexity of the structure and the big 
amount of data, it is challenging to interpret the data 
quantitatively.  Several algorithms such as statistical pattern 
recognition methods and machine learning are considered to 
interpret the data. 

Figure 12.  Comparison between measured shear stress for healthy and 
delaminated samples. 

The corresponding shear stress of the Sample 2 is 
depicted in Figure 12. In the case of Sample 1 there were 
changes on both components of stress, but in this case there 
are changes only in the stress difference component. 

 
Figure 13.   This is a representation of the 2D Mohr`s Circle of the data 
acquired during the experiments at cell 2 Sensor 3b Sample 1 during 
delamination. 

In order to capture both parameters in one graph, Mohr’s 
circles were plotted during the delamination.  The results are 
shown in Figure 13, where the radius and the diameter 
represent the maximum shear stress and the difference of the 
principal stresses, respectively. 

It is clear from Figure 13 that the diameter increases first 
and decreases rapidly after approximately 30 cycles. It is 
speculated that energy release associated with crack 
propagation may be attributed to the diameter reduction.    

At low temperatures, the stress state is higher because of 
the large ΔT from the stress free point temperature.  
Therefore, any change in stress state can be more visible.  In 
addition, the brittle behavior at low temperatures can 
accelerate the delamination. 

D. Failure Analysis by SAM 
As shown in Figure 7, changes in the delamination area 

were observed after 150 cycles. The pictures shown reveals 
two important properties which should be found in the data 
as well. The first property is represented by the fact that the 
samples contain an a priori delamination and the second 
property by the change in the delamination area due to the 
damage progress.  

These properties have correspondence in the data by the 
stress value differences from the healthy samples and by the 
ongoing stress change after the cycle 35-50.   

E. Data Analysis by the Proposed Algorithm 
1) Health Assessment 

For computing MD, the sets of compared data do not 
need to have the same amount of rows. In this study rows 
refers to the number of observations and creates the 
possibility to compare the healthy dataset with just one 
failure measurement point. This is convenient in health 
monitoring, considering that many other methods require a 
certain amount of observation points. 

In this approach a healthy baseline and a threshold are 
needed to classify the product states (healthy or unhealthy).  
Several steps are required to calculate MD as follows: 

 Step 1. Calculate the average of each column: 
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 Step 2. Calculate the standard deviation  
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 Step 3. Normalize the values 
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 Step 4. Correlation matrix 
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 Step 5. Mahalanobis Distance 
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The next step is to add the normalized values of the next 
measurement and to compute the MD keeping the same 
correlation matrix from the healthy baseline.  If the 
measurement point does not exceed the threshold, it is added 
to the healthy correlation matrix.  

 

 

 



 
Figure 14.   Mahalanobis Distance calculated over the 12 cells of the 
Sample 1 S3b. The healthy base is established on the first measurements 
and every point in measurement is calculated. In this graph there is 
changes due to the delamination showed in Figure 7.a).  

For threshold determination, a probabilistic approach is 
used.  Since the MD are not normally distributed, a Box-
Cox transformation [18] is used to convert the data into a 
normal distribution.  A warning limit threshold is defined as 
(μ+2σ) and a fault alarm threshold as (μ+3σ), based on the 
normal distribution parameters. 

The healthy baseline should have more rows than 
columns, considering that the rows represents the number of 
measurements and columns the number of parameters.  For 
assuring good results, it is recommended that the ratio m/p 
should be as high as possible, otherwise the outliers can shift 
the sample mean and inflate the correlation matrix [19].  

A representative MD for both stress components is 
shown in Figure 14. The healthy baseline is created on the 
first 35 measurement points. The data points exceeding the 
failure limit are clearly seen in the MD results. The incidents 
are expected from the raw data (Figure 11), but the MD 
results provide a more definitive health state of the 
specimen through the multi-variate to uni-variate 
conversion.   

 
Figure 15.   Threshold Evaluation performed at all temperatures.  

The threshold at different temperatures is computed 
from the healthy data (i.e., no initial delamination), and the 
result is plotted in Figure 15.  It is evident that the threshold 
does not change with the temperature, which implies that 
the healthy baseline can be created at any temperature. 

MD method is preferred for fault/anomaly detection 
because of its advantages related to the requirements in 

health monitoring; they include fast calculation, no failure 
data requires, single measurement point required and 
temperature independent threshold. 

2) Damage Quantification 
This step is necessary to overcome the possibility of 

detecting outliers or changes in stress values which are not 
associated with any damage. 

In this subsection, the correlation matrix of the healthy 
baseline without initial delamination is compared with the 
correlation matrix of a potential failure dataset. As 
previously mentioned, a new correlation matrix is 
calculated based on the measurement points after the 
threshold is exceeded.  

The sampling distribution of the healthy and faulty 
correlation coefficient matrices does not follow a normal 
distribution. Fisher r-to-z transformation is used to convert 
these data sets into a normally distributed variable z. This 
transformation is made as follows: 

௥ݖ =
1
2 ݃݋݈

൬
1 + ݎ
1	 − ݎ	

൰ (10) 

 
Figure 16.   Fisher Correlation Coefficient Difference. This difference is 
performed by using Fisher method of comparing two correlation 
coefficients. In this case all the sensors correlation coefficient data have 
been compared with the correlation coefficient as healthy state. The values 
from the graph represents the z-score values.  

This transformation is performed at a confidence value 
interval of 0.95. Each correlation coefficient parameter in 
the data is compared with the correspondent one and then a 
mean is performed on the stress difference and shear stress 
performance parameters.  

Plotting them against each other is depicted in Figure 16. 
From this graph it is concluded that some sensor data is 
more damaged than the others. The most damaged one is 
showed in yellow representing the Sample 3 sensor 3a. 
From Figure 7 it is observed that the outer molding 
compound is delaminated from the package of sensor 3a. 

3) Feature Extraction  
PCA is used to identify patterns in data and to express 

the data to highlight their similarities and differences [15]. 
Also, this last step is performed to reduce the data as much 
as possible, to understand the data much better and to make 
the classification much easier to be performed. 

 

 

 

 



 
Figure 17.   Explained variance. 

 
The PCA analysis is performed on the data matrix and 

the explained variance is extract as shown in Figure 17. 
Only the principal components exceeding 97% of the 
variance are kept. Therefore only 6 principal components 
are left to perform PCA analysis and the extracted results of 
each performance parameter influence on the principal 
components is shown in TABLE I.  It is observed that the 
weight of each parameter reveals that the first component 
takes the most influence from stress difference performance 
parameters and the second component takes the effect from 
shear stress performance parameters. Plotting first and 
second component as in Figure 18 it is observed the 
influence of stress difference and shear stress in the 
delamination process. Again as previously observed, the 
yellow markers representing sensor 3 from Sample 2 is 
situated as the most damaged one. 

The sensor symmetry is identified from Figure 18 and 
Figure 19. The behavior of the sensors in both figures is 
quite similar, but with opposite sign. Considering this 
property, a classification strategy can be implemented, 
considering the data from one sensor as training data and the 
data from the other sensor as validation. 

Briefly a PCA is performed as follows: 
 Step 1. Subtract the mean 
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 Step 2. Calculate the covariance matrix 
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 Step 3. Calculate the eigenvectors and eigenvalues 

of the covariance matrix 
 Step 4. Choosing the eigenvectors with the highest 

eigenvalue 
 Step 5. Reconstructing the data matrix with the new 

set of parameters 

TABLE I.  PCA REDUCED PARAMETERS 

 PCA reduced parameters 
1 2 3 4 5 6 

D(σ) 

0.203 0.032 0.039 0.085 -0.045 -0.203 

0.209 -0.019 -0.086 0.070 -0.064 -0.065 

0.174 -0.110 -0.160 0.001 0.057 0.163 

0.213 -0.010 -0.093 0.029 -0.039 0.026 

0.213 0.051 0.014 -0.021 -0.016 -0.049 

0.189 0.092 0.136 -0.094 -0.036 -0.090 

0.173 0.125 0.154 -0.130 0.038 -0.034 

0.209 0.059 0.061 -0.083 0.008 0.009 

0.212 -0.039 -0.031 0.072 -0.004 0.087 

0.191 -0.090 -0.074 -0.009 0.030 0.220 

0.208 -0.037 -0.066 -0.050 0.011 0.097 

0.200 0.065 0.079 -0.107 0.049 0.058 

σxy 

-0.039 0.247 0.128 -0.107 0.054 0.088 

-0.031 0.257 0.102 0.041 0.023 -0.088 

-0.009 0.259 0.085 0.095 -0.006 -0.039 

-0.039 0.245 0.117 -0.027 0.145 -0.127 

-0.021 0.257 0.123 0.003 -0.053 0.089 

-0.022 0.256 0.019 -0.162 -0.039 0.054 

0.069 0.179 0.110 0.270 -0.230 0.164 

-0.043 0.249 -0.134 0.013 0.015 0.045 

-0.006 0.252 -0.080 -0.150 0.084 0.014 

-0.117 0.198 -0.180 -0.003 0.087 -0.001 

-0.153 0.008 -0.203 0.183 0.255 -0.111 

0.043 0.154 -0.319 -0.096 0.066 -0.139 

With the data reduced to 6 performance parameters, it 
can be furthered used for transmitting the data. The 
transmitted data can be reconstructed in the initial number 
of parameters or it can be used as it is. The classification 
methods can use both datasets.  

 
Figure 18.   Principal components influence over the delamination areas. 

In Figure 18 the most dominant principal components 
are depicted, reducing the high dimension of the data to 
these 2 components makes it easier to understand the global 
influence of different delamination areas on the stress 
difference and shear stress components. 

As expected the sensor 3a and 3b data from Sample 2 
shows the biggest distance from the healthy baseline at least 
in the first component axis, which is represented in most 
part by stress difference component. 

 

 



 
Figure 19.   Hoteling T2 statistics in the reduced space at room 
temperature during delamination. The red line corresponding to the same 
sensor but mirrored can identify a similar behavior, but opposite sign.  

Based on the reduced space Hoteling T2 statistics is 
performed and is depicted in Figure 19. In this graph is 
observed as well that the stresses reach a high peak and then 
there is a drop, which confirms our previous observations 
that before the delamination there is an increase in the stress 
state followed by a drop representing the physical 
delamination.  

V. CONCLUSIONS AND FUTURE WORK 
It has been demonstrated that the piezoresistive silicon 

based stress sensor is capable of detecting and quantifying 
delamination. Also, the resulting data shows the symmetry 
of the sensors. The algorithms applied to the sensor data 
revealed valuable information that can be furthered studied.  

Further research studies will be performed on the 
importance of the new parameters and their connection to 
the failure, the slope registered at the temperature cycling 
during delamination, classification methods applied to 
principal components and the possibility to build a 
prognostic model based on the damage quantification 
parameter. 

The ultimate goal is to develop and implement PHM for 
various application requirements.  Usually these 
requirements are projected into a PHM Framework.  There 
are many PHM frameworks proposed in the literature for 
different applications [18][20].  The principles are in 
general the same for most of them, but for each particular 
application PHM frameworks must be modified and 
optimized for specific requirements.  

In the present case of ECU application, it is desired to 
have certain calculations and data processing inside the 
acquisition system as depicted in Figure 20.  In this paper 
the first part of this framework was presented, which is the 
data acquisition, data manipulation, health assessment and 
damage quantification.  The second part of the frame work 
will be reported in the future publication. 

 

 

Figure 20.   Prognostics and Health Monitoring framework. In this paper it 
is presented the process of acquiring, processing and asses the stress data 
as being Part I. Offline evaluation in this context means that the process is 
performed inside the acquisition unit. 
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