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A B S T R A C T

Geothermal energy extraction through deep mine systems offers the potential to reduce the cost of geothermal
systems while meeting the cooling needs of deep mines. However, the injection of cold water into the
subsurface triggers strongly coupled thermo-hydro-mechanical (THM) processes that can affect the stability of
underground excavations. This study evaluates the impact of geothermal energy extraction on the temperature
and stability of a deep mine. By quantifying the sensitivity of the mine temperature and stability to various
parameters, we propose a scheme to optimize geothermal energy production, while achieving rapid mine
cooling and maintaining stability. We first evaluate the impact of geothermal operations on mine temperature
and stability through THM numerical modeling. The simulations show that poro-elastic stress quickly affects
mine stability, while thermal stress has a more significant impact on the long-term stability. We then
use Distance-based Generalized Sensitivity Analysis (DGSA) to quantify parameter sensitivity. The analysis
identifies the distance between the mine system and the geothermal system as the most influential factor. Other
important parameters include the injection rate, injection temperature, well spacing, coefficient of thermal
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expansion, permeability, Young’s modulus, and heat capacity. Finally, we propose a DGSA-based optimization
framework that accounts for subsurface uncertainty and validate the optimized results. Our results indicate that,
with favorable geological conditions, a rational selection of system design parameters can enhance geothermal
energy production while ensuring rapid mine cooling and stability. This study provides essential insights for
the optimization of deep mine geothermal systems and supports effective decision-making.
1. Introduction

The increasing demand for alternative energy and mineral re-
sources, coupled with the depletion of shallow resources, is driving
resource extraction to larger depth. Geothermal energy, abundant
beneath the Earth’s surface, plays a significant role in providing green,
clean, and sustainable energy supplies [1,2]. However, exploiting deep
geothermal energy poses challenges due to insufficient subsurface
knowledge and substantial upfront exploration costs. Operational mines
at depths exceeding 1 km often have temperatures suitable for mean-
ingful heat production and relatively well-characterized geological
settings [3]. Therefore, utilizing the existing infrastructure of deep
mines for geothermal energy in a safe and efficient manner is criti-
cal [4]. Information from subsurface characterization in existing mines
can serve as a reference for geothermal extraction, and existing shafts
and drifts in mine systems can significantly reduce geothermal drilling
costs. Additionally, injecting cold water during geothermal operations
cools mining areas through heat exchange, aiding in heat hazard
management [5].

Geothermal energy in deep mines is currently pursued through two
main approaches: utilizing abandoned mines and the co-extraction of
geothermal and mineral resources [6]. In the first approach, abandoned
mines, typically flooded after closure, can use the floodwater as an
energy medium for geothermal power. Success stories of this method
include projects in Germany, the Netherlands, Norway, Spain, the
UK, and the USA, where geothermal systems generally operate below
200 m depth with reservoir water temperatures between 10 and 25 ◦C,
providing heat to nearby buildings [7–12]. The second approach, co-
extraction, is less common but has seen significant progress in China,
where coal mines such as Jiahe, Sanhejian, and Zhangshuanglou, with
temperatures exceeding 30 ◦C, have successfully integrated geothermal
extraction. Geothermal energy extraction has proven to be able to
reduce the temperature of drifts by 4–6 ◦C, thereby mitigating heat
hazards [13,14]. However, the primary goal of these projects remains
mineral extraction, with geothermal production mainly aimed at heat
hazard management, resulting in limited use of geothermal energy.

Direct extraction of geothermal energy from bedrock in deep mines,
although not yet practiced, is a promising approach. Conceptual models
for direct geothermal extraction within deep mines have been proposed
and serve as a basis for investigating the system’s cooling and heat-
ing effects via numerical simulations [15,16]. However, research gaps
remain regarding the system stability. Deep mine environments and
geothermal systems at depths of several kilometers experience elevated
temperatures (typically over 40 ◦C), high water pressure (typically over
10 MPa), and high geostress (typically over 30 MPa). Injecting cold
fluids can significantly disrupt the original stress field, compromising
structural safety and stability [17–19]. Stress disturbances in reser-
voir rocks arise from thermal stress due to temperature changes and
poroelastic stress from pore pressure fluctuations. Effective stress re-
duction due to these factors can jeopardize the stability of surrounding
rock [20]. Therefore, coupled thermal–hydraulic–mechanical (THM)
studies are essential to ensure efficient geothermal production and
cooling while maintaining the mine system safety and stability.

The development of a reliable THM model requires the considera-
tion of various hydraulic, thermal, and mechanical properties. Complex
interactions between physical processes, influenced by numerous pa-
rameters, make this a time-intensive endeavor. Despite advances in
numerical modeling and high-performance computing, the develop-
ment of reliable THM models remains challenging [21]. Uncertainties
2 
arise from incomplete parameter knowledge and the complexity of
the subsurface structure [22]. Two main technical aspects contribute
to this uncertainty, namely subsurface characterization and develop-
ment options [23]. Understanding the target reservoir, based on data
interpretation and empirical correlations, may not fully capture the
subsurface properties, leaving uncertainties [24]. Geothermal system
design also influences reservoir responses, with factors like well spac-
ing, injection rate, and temperature being critical considerations [25].
This study also examines the proximity between the geothermal and
mine systems in deep mine geothermal models.

Improving the reliability of geothermal systems requires rational
parameter selection based on uncertainty analysis. As complex dy-
namic systems, geothermal systems should be characterized in both
space and time [26]. Some studies use local sensitivity analysis to
explore how different parameters affect production temperature and
stability under THM conditions. Parameters such as Young’s modulus,
thermal conductivity, heat capacity, and permeability, along with de-
sign elements such as injection rate, temperature, and well spacing,
significantly influence the system response [27–30]. However, local
sensitivity analysis methods, which use partial derivatives or sensitivity
coefficients, have limitations. For example, the one-at-a-time sensitivity
analysis approach involves changing one parameter at a time while
holding other parameters constant to determine their effects. This
method provides valuable insights near a baseline point but may not
capture the full range of interactions between parameters or model
behavior across the entire input space [31]. Global sensitivity analysis,
which encompasses the full range of input parameters, is better suited
to explore nonlinearities and interactions between parameters [32].
Therefore, the use of global sensitivity analysis is preferable for opti-
mizing complex deep geothermal systems [33]. This method involves
generating numerous samples within the probability distribution of
the model parameters, simulating system responses, and evaluating
their effects. Global sensitivity analysis in geothermal systems has been
used to evaluate production temperature, operational efficiency, and
system lifespan [34–36]. However, studies on the mechanical stability
of co-mining systems are lacking.

This work aims to assess the temperature and stability of deep
mine geothermal systems and optimize their design by quantifying the
sensitivity of various parameters. Our first contribution is to evaluate
the effects of geothermal system operation on mine temperature and
stability through numerical simulations. Our second contribution is
to quantify parameter sensitivity using DGSA, outlining a framework
for system optimization under subsurface uncertainty, and guiding
effective decision-making for enhanced geothermal energy production,
mine cooling, and stability. The paper is structured as follows: Section 2
outlines the methodology, detailing the THM modeling approach and
DGSA used. Section 3 presents the results of THM modeling and uncer-
tainty quantification, highlighting parameter sensitivity and providing
recommendations for system optimization. Section 4 discusses study
limitations and future research recommendations. Finally, Section 5
concludes by summarizing the main findings.

2. Methodology

A 2D thermo-hydro-mechanical finite element model of a synthetic
geothermal system situated directly beneath an existing mine is de-
veloped (Fig. 1), implemented in COMSOL Multiphysics. During the
operation of the geothermal system, we analyze the evolution of the
temperature and stability of the mine system drifts, as well as the
evolution of the production temperature of the geothermal system.
Subsequently, the responses of temperature and stability generated
from 1000 stochastic simulations are used as inputs for DGSA.
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Nomenclature

𝛼𝑇 Coefficient of thermal expansion ([1∕K])
𝜺 Strain tensor
𝜺th Thermal strain tensor
𝝈 Total stress tensor
𝝈′ Effective stress tensor
𝜆eq Equivalent thermal conductivity of porous

media ([W∕(m K)])
𝜆f Thermal conductivity of fluid phase

([W∕(m K)])
𝜆s Thermal conductivity of solid phase

([W∕(m K)])
𝜇 Fluid dynamic viscosity ([Pa s])
𝜈 Poisson’s ratio
𝜌 Density of porous material ([kg∕m3])
𝜌f Density of pore fluid ([kg∕m3])
𝜌s Density of solid phase ([kg∕m3])
𝜙𝑚𝑜𝑏 Mobilized friction angle
𝜒f Fluid compressibility ([1∕Pa])
𝐶f Heat capacity of fluid phase ([J∕(kg K)])
𝐶s Heat capacity of solid phase ([J∕(kg K)])
𝐸 Young’s modulus ([Pa])
𝐹 (𝑋) Cumulative distribution function of the

entire dataset
𝐹 (𝑋|𝑐) Cumulative distribution function of the

dataset conditioned on cluster 𝑐
𝑘 Permeability ([m2])
𝑝 Pressure ([Pa])
𝑄𝑓 External source or sink of fluid ([kg∕(m3 s)])
𝑄𝑇 Heat source term ([W∕m3])
𝑆(𝑋) Sensitivity
𝑆(𝑋𝑖|𝑋𝑗 ) Second-order conditional effect
𝑡 Time ([s])
𝑇 Temperature ([K])
𝑇ref Reference temperature ([K])
𝐂 Material’s elastic matrix
𝐠 Gravity vector ([m∕s2])
𝐈 Unit tensor
𝐪 Heat flux ([W∕m2])
𝐮 Advective fluid flux ([m∕s])
𝜑 Porosity
𝜏 Shear stress ([Pa])
𝜎′𝑛 Effective normal stress ([Pa])
BEL Bayesian Evidential Learning
CDF Cumulative Distribution Function
DGSA Distance-based Generalized Sensitivity

Analysis
LHS Latin Hypercube Sampling
PDF Probability Density Function
THM Thermo-Hydro-Mechanical
VL Vertical Line between the Injection Well

and the Drift Lower Edge

2.1. Governing equations

The theoretical framework is composed of three balance equations,
namely the liquid mass balance, the energy balance, and the balance
of momentum (or stress equilibrium) equations.
 𝐶

3 
The fluid mass balance equation is written as [37]:

𝜌f

(

𝜑𝜒f +
𝜕𝜑
𝜕𝑝

)

𝜕𝑝
𝜕𝑡

+ ∇ ⋅ (𝜌f𝐮) = 𝑄𝑓 (1)

where 𝜌f [kg∕m3] is the density of the pore fluid, 𝜑 is the porosity, 𝜒f
[1∕Pa] is the fluid compressibility, 𝑝 [Pa] is the fluid pressure, 𝑡 [s] is
ime, 𝐮 [m∕s] is the advective fluid flux, and 𝑄f [kg∕m3 s] represents

an external source or sink.
The fluid flux is given by Darcy’s law [38]:

𝐮 = − 𝑘
𝜇
(∇𝑝 + 𝜌𝐠) (2)

where 𝑘 [m2] is the permeability, 𝜇 [Pa s] is the fluid dynamic viscosity,
nd 𝐠 [m∕s2] is the gravity vector.

The energy balance equation is given by [38]:

(1 − 𝜑)𝜌s𝐶s + 𝜑𝜌f𝐶f
] 𝜕𝑇
𝜕𝑡

+ 𝜌f𝐶f𝐮 ⋅ ∇𝑇 + ∇ ⋅ 𝐪 = 𝑄𝑇 (3)

where 𝜌s [kg∕m3] and 𝐶s [J∕(kg K)] are the density and heat capacity
f the solid phase, and 𝜌f [kg∕m3] and 𝐶f [J∕(kg K)] are the density and
eat capacity of the fluid phase, respectively, 𝑇 [K] is temperature, and
𝑇 [W∕m3] is the heat source term. 𝐪 [W∕m2] is the heat flux given by
ourier’s law [38]:

= −𝜆eq∇𝑇 (4)

here 𝜆eq [W∕m K] is the equivalent thermal conductivity of the porous
edia material, calculated as [38]:

eq = (1 − 𝜑)𝜆s + 𝜑𝜆f (5)

here 𝜆s [W∕m K] and 𝜆f [W∕m K] are the thermal conductivities of
he solid and fluid phases.

The stress equilibrium equation is given by [38]:

⋅ 𝝈 + 𝜌𝐠 = 𝟎 (6)

here 𝝈 is the total stress tensor and 𝜌 [kg∕m3] is the density of the
orous material. The constitutive behavior of the continuum porous
edium is formulated in terms of the effective stress tensor 𝝈′ = 𝝈−𝑝𝑰

nd its conjugate strain tensor 𝜺. The material is assumed isotropic and
inear elastic. A general form of the mechanical law is given by [38]:

= 𝐂(𝜺 − 𝜺th) + 𝑝𝐈 (7)

here 𝐂 represents the material’s elastic matrix (with Young’s modulus
[Pa] and Poisson’s ratio 𝜈 as parameters), and 𝐈 is a unit tensor. The

hermal strain 𝜀th is expressed as [38]:

𝒕𝒉 = 𝛼𝑇 (𝑇 − 𝑇𝑟𝑒𝑓 )𝐈 (8)

here 𝛼𝑇 [1∕K] is the coefficient of thermal expansion and 𝑇ref [𝐾] is a
eference temperature.

Finally, water properties are assumed to vary with temperature.
he impact of temperature on the dynamic viscosity 𝜇 [Pa s], thermal
onductivity 𝜆f [W∕(m K)], density 𝜌f [kg∕m3], and heat capacity 𝐶f
J∕(kg K)] is expressed through the following empirical relations [38]:

= 1.38 − 0.028𝑇 + 1.36 × 10−4𝑇 2 − 4.64 × 10−7𝑇 3 + 8.9 × 10−10𝑇 4 (9)

f = −0.869 + 0.0097𝑇 − 1.58 × 10−5𝑇 2 + 7.98 × 10−9𝑇 3 (10)

f = 838.47 + 1.47𝑇 − 0.0037𝑇 2 + 3.72 × 10−7𝑇 3 (11)

2 −4 3 −7 4

f = 12010.15 − 80.41𝑇 + 0.317𝑇 − 5.38 × 10 𝑇 + 3.62 × 10 𝑇 (12)
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Fig. 1. Conceptual representation of geothermal extraction in a deep mine. Top left: fluid flow around the injection well. Bottom left: heat transfer around the injection well.
Upper right: the stability evolution of the mining drifts, represented by Mohr–Coulomb circles (a) indicating failure, (b) indicating stability. Lower right: heterogeneity of the
permeability field.
Fig. 2. Schematic of heterogeneous 2-D numerical model including initial and boundary conditions (not to scale). In the isothermal injection scenario in Section 2 and model
scenarios in Section 3, the initial condition of temperature is set to 30 ◦C, with both the top and bottom temperatures at 30 ◦C, disregarding the temperature gradient.
2.2. Geometry, initial and boundary conditions and model parameters

We develop a 2-dimensional conceptual model of a geothermal
system, as depicted in Fig. 2. The model includes two mine drifts, each
with a radius of 3 m, located at a depth of 1100 m and spaced 500 m
apart. The geothermal injection and production wells are located below
the two drifts, at vertical distances of 120 m and 220 m, respectively,
from the mine drifts. The model domain is 3000 m wide, centered on
the midpoint between the two drifts, with a depth range from 300 m
to 2300 m.

The surface temperature is set to 10 ◦C and the geothermal gradient
to 30 ◦C/km. The sides of the domain are considered as thermally
4 
insulated. The pressure boundary condition represents an initial hy-
drostatic gradient of 10 MPa/km, with the top boundary set at 3
MPa and the bottom one at 23 MPa. No-flow boundary conditions are
considered on the sides. Vertical self-weight stress is applied to the
top, and roller support conditions are employed on the remaining three
sides. Gravity influences both pressure and effective stress within the
model, and stress equilibrium is established prior to the operation of
the geothermal system.

Comparing isothermal and non-isothermal injection is a typical ap-
proach for analyzing thermal stress effects in THM models [39]. In this
work, to accurately study the impact of thermal stress and poroelastic
stress on the system, we establish two scenarios: (i) isothermal injection
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Table 1
Geological and design parameters and material properties used in the numerical model.

Type Parameters Unit Iso/Non-Iso simulations Stochastic simulations Abbreviation

Heterogeneity parameters Range [33,40] m 100 U[20 200] Range
Orientation [35] ◦ 60 U[60 120] Angle

Design parameters Well spacing [41] m 500 U[200 800] Dist_h
Vertical distance from the drift to the well m 120 U[50 200] Dist_v
Temperature of injected water [29] ◦C 10, 30 U[10 30] T_inj
Pumping rate [41] kg/s 50 U[20 70] P_rate

Material properties Mean of log10 𝑘 [42] m2 −13 U[−14 −12] K_mean
Variance of log10 𝑘 [35] m2 0.5 U[0.1 1] K_var
Porosity [24] 1 0.125 U[0.05 0.2] Porosity
Young’s modulus [42] GPa 15 U[10 20] Y_modu
Density [30] kg/m3 2500 U[2300 2700] Dens
Thermal expansion [29] 1/K 5e−6 U[1e−6 1e−5] T_expa
Heat capacity [29] J/kg K 1050 U[800 1300] H_capa
Thermal conductivity [30] W/m K 1.85 U[1.2 2.5] T_cond
Poisson’s ratio [37] 1 0.25 0.25 /
Biot’s coefficient [37] 1 1 1 /
w
o
w
b
a
c
n
a

(
i
g
o
p

(with both domain and injected water temperature of 30 ◦C and (ii)
non-isothermal injection (with an injected water temperature of 10 ◦C
nd domain temperature following the geothermal gradient).

To consider spatial heterogeneity, we generate permeability, poros-
ty, and Young’s modulus fields through sequential Gaussian simula-
ion, with a range of 100 m for the variogram in the flow direction and a
rimary direction set at 60◦ from the horizontal [35,40]. The triangular
esh used in this study contains about 24,000 elements in each model.
he parameters of the system and material properties utilized in the
imulation are summarized in Table 1.

.3. Mine stability assessment

The mobilized friction angle 𝜙𝑚𝑜𝑏 is used to assess the stability of the
ock mass. Assuming a Mohr–Coulomb failure criterion, the mobilized
riction angle is given by [39]:

𝑚𝑜𝑏 = tan−1
(

𝜏
𝜎′𝑛

)

(13)

where 𝜏 [Pa] is the shear stress and 𝜎′𝑛 [Pa] is the effective normal stress.
Assuming a friction angle of 30◦, a point of the rock mass is deemed
table when 𝜙𝑚𝑜𝑏 is lower than 30◦.

.4. Stochastic analysis

Uncertainties in our THM model development stem from subsurface
eterogeneity and design parameters. The spatial variability of geo-
ogical formations and limited data introduces significant uncertainty
ffecting the material parameters. On the other hand, operational and
esign parameters, such as injection rates, temperatures, and well
pacing, are adjustable parameters.

To address these uncertainties, we employ the Latin Hypercube
ampling (LHS) method. LHS is a statistical technique used to generate
distribution of plausible collections of parameter values from a multi-
imensional distribution [43]. This method is chosen for its efficiency
n sampling the parameter space, ensuring systematic exploration of
ach parameter’s entire range. Except for the fixed Poisson’s ratio of 0.2
nd Biot’s coefficient of 1, we assign uniform distributions to 14 crit-
cal parameters, including 4 design parameters, 8 material properties,
nd 2 heterogeneity parameters, as detailed in Table 1. The uniform
istribution assumption reflects our limited prior knowledge, providing
n unbiased approach to exploring the parameter space. The range of
hese parameters is derived from existing literature, with some ranges
roadened to encompass extreme scenarios. Using LHS, we generate
000 realizations of the model parameters. This sample size balances
omputational feasibility with the need for comprehensive uncertainty
xploration, as further detailed in the discussion section. Each real-

zation represents a potential scenario of subsurface and operational

5 
conditions. The generated parameter sets are used to conduct a series
of parallel forward simulations. These simulations capture a wide range
of potential outcomes under different uncertainty scenarios.

2.5. Distance-based generalized sensitivity analysis

This work employs Distance-based Generalized Sensitivity Analysis
(DGSA) to analyze the sensitivity of the selected model parameters to
the reservoir response simulated by the stochastic simulation [32,33].
DGSA is capable of handling single outputs, as well as more complex
time-dependent or spatio-temporal outputs [44]. A distinctive feature
of DGSA is its use of clustering algorithms to categorize output vari-
ables into different groups based on their mutual distances, thereby
facilitating the assessment of uncertainty.

Initially, this method divides outputs into several clusters using
a distance-based clustering approach, examining the cumulative dis-
tribution function (CDF) of a specific parameter in each cluster and
comparing it to the original distribution. This process yields the normal-
ized sensitivity index by considering the average differences between
the CDFs in each cluster. DGSA employs a resampling technique to
quantify variations among samples redistributed within clusters. Sen-
sitivity 𝑆 is represented by the average of the mean differences across
all categories:

𝑆(𝑋) = 1
𝐶

𝐶
∑

𝑐=1
𝑑𝑐,𝑠, with

𝑑𝑐
𝑑𝑐𝑎

(14)

𝑑𝑐,𝑖 = 𝑑𝐿1𝐹 (𝑋), 𝐹 (𝑋|𝑐), 𝑐 = 1,… , 𝐶 (15)

here 𝑑𝑐,𝑠 is the normalized distance within a cluster, 𝑑𝑐 is the average
f the distances for cluster 𝑐, and 𝑑𝑐𝑎 is the 𝑎𝑡ℎ quartile of the distances
ithin cluster 𝑐, with 𝑎 being set to 0.95, and 𝑑𝑐,𝑖 is the 𝐿1 distance
etween the cumulative distribution function of the entire dataset 𝐹 (𝑋)
nd the cumulative distribution function of the dataset conditioned on
luster 𝑐, 𝐹 (𝑋|𝑐). If distributions within various categories differ sig-
ificantly, the parameter is deemed sensitive. In this study, parameters
re defined as sensitive if their sensitivity value exceeds 1 [45].

In similar context, it is possible to determine a conditional effect
i.e. interaction between parameters). This approach delineates the
mpact of one parameter when it is conditioned upon the level (or
rouping) of a different parameter. The method for deriving the second-
rder conditional effect adheres to a methodology comparable to the
revious one, expressed as follows [45]:

𝑆(𝑋𝑖|𝑋𝑗 ) =
1
𝐶

1
𝐿

𝐶
∑

𝑐=1

𝐿
∑

𝑙=1
𝑑𝑐,𝑖|𝑗 , 𝑙

𝑆 with 𝑑𝑐,𝑖|𝑗 , 𝑙
𝑆 =

𝑑𝑐,𝑖|𝑗,𝑙
̂̂𝑑𝑐,𝑖|𝑗,𝑙(𝑎)

,

𝑖, 𝑗 = 1,… , 𝑘; 𝑙 = 1,… , 𝐿; 𝑐 = 1,… , 𝐶

(16)
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Fig. 3. Spatiotemporal evolution of 𝛥T and 𝛥p on the measurement line VL during isothermal injection: (a) 𝛥T, (b) 𝛥p.
Here, the term 𝑑𝑐,𝑖|𝑗,𝑙 is the normalized 𝐿1 norm distance that
accounts for the disparity between the distribution of 𝑋𝑖 in class 𝐶 and
the distribution where 𝑋𝑗 is at a specific level 𝑙.

In this study, the number of clusters is preset to 3, categorizing
responses into ‘‘good’’, ‘‘moderate’’, and ‘‘poor’’ to assess the model’s
performance. As an unsupervised method, the clustering approach
involves defining response labels based on a subjective interpretation
of the expected response. Smaller changes in stability are considered
‘‘good’’ when evaluating the stability of drifts, while faster cooling is
considered ‘‘good’’ for the temperature of drifts. The DGSA method
contributes to parameter optimization in the model in two ways. First,
by analyzing the distribution of the CDFs of the sensitive parameters
across the 3 groups to inform model design, aiming to align sensitive
parameters’ probabilities with the ‘‘good’’ label. Second, by fixing val-
ues of insensitive parameters at the average of the initial value range,
which reduces the uncertainty of the system responses and assists in
model calibration and optimization.

3. Results

3.1. Thermo-hydro-mechanical modeling

Simulations of 30-years geothermal operation and associated ge-
omechanical reservoir response are conducted for both isothermal in-
jection (30 ◦C) and non-isothermal injection (10 ◦C), with the latter
temperature being below the initial in-situ temperature. This study
focuses on the effects of the injection well on the left drift, particularly
along the vertical line (VL) between the injection well and the drift’s
lower edge.

3.1.1. Coupling between fluid pressure and temperature
Figs. 3 and 4 present the evolutions of the change in temperature

and pore pressure between the drift edge and injection well with time
for the isothermal and non-isothermal simulations. As illustrated in
Fig. 3, under isothermal injection conditions, the temperature along the
VL remains constant, and the pressure change stabilizes within a very
short time (0.1 years), with greater pressure values closer to the in-
jection well. In the thermo-hydro-mechanical model, pressure changes
migrate rapidly, with more pronounced pressure changes around the
injection well that gradually diffuse towards the drift edge (Fig. 4).
Conversely, the area of temperature disturbance expands more slowly.
The maximum temperature drop (−20 ◦C) is controlled by the injection
temperature. The decrease in temperature caused by the propaga-
tion of the cold front leads to a notable increase in pressure. After
30 years of operation the change in pressure 𝛥p near the injection well
caused by isothermal injection approximates 0.22 MPa, while after non-
isothermal injection, it reaches 0.75 MPa. In the region near the drift,
the pressure change rises from 0.16 MPa to 0.21 MPa, marking a 31%
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increase. This occurs because in areas affected by temperature drop, the
decrease in fluid temperature leads to an increase in dynamic viscosity,
which impedes fluid flow and leads to increased pressure in that area,
thus potentially increasing the risk of instability. In non-isothermal
injection, the mechanical response is not solely the result of pressure
or temperature acting independently, but rather a combined effect.
Initially, a rapidly developing pressure front is observed, followed by
the thermal effect on cooling areas, and the pressure changes in these
cooling areas during the process.

3.1.2. Evolution of the poroelastic and thermal stress fields
The response characteristics of poroelastic stress and thermal stress

reflect those of pressure and temperature migration, both adversely
affecting the stability of the rock. An increase in pore pressure reduces
the effective stress in the rock, leading to an increase in the mobilized
friction angle, denoted as an increase in 𝜙, and a heightened likelihood
of rock failure. Injection of cold water decreases thermal stress in
the rock, increasing the risk of failure in the surrounding rock and
weakening the stability of the mine drifts [20].

Due to the excavation, a pronounced stress concentration is ob-
served within approximately 5 radius (15 m) of the drift [46]. At the
drift’s edge, initial 𝜙 can reach 80◦, with certain areas exhibiting low
𝜙 due to changes in the maximum and minimum principal stresses
(Fig. 5a). A comparison of the impacts of isothermal and non-isothermal
injection on 𝜙 demonstrates that temperature significantly influences
system stability more than pressure does and the variation in 𝜙 values
mirrors the characteristics of temperature propagation, as shown in
Fig. 5. In the area distant from the drift, as indicated by the dashed
line on the right side of Fig. 5(b), 𝜙 typically ranges from 21◦ to 26◦.
However, at the dashed line’s left, the initial 𝜙 values are significantly
affected by the excavation. Considering this study is conducted on the
foundation of an existing mine system for geothermal operation, we
posit that stability on the left side of the dashed line is controlled
by excavation, assuming the stress concentration area around the drift
remains safe due to support. Conversely, the right side is affected by
geothermal operation, and if the 𝜙 on this side exceeds 30◦ during
geothermal operation, failure is reached. We designate the position 5
radius (15 m) below the drift as a potential risk point for monitoring
the mechanical response during system operation. Specifically, in the
area between the drift and the injection well, a pattern of 𝜙 initially
decreasing and then increasing suggests that while the surrounding
rock’s stability is finally weakened, there is an improvement in stability
at the early stage.

3.1.3. Evolution of the mine stability at the potential risk points
During simulation of the 30-year geothermal operations, we exam-

ine the changes in principal stresses (𝛥𝜎1, 𝛥𝜎3), pressure (𝛥𝑝), mobilized
friction angle (𝜙 ), and temperature (𝑇 ) at the potential risk point (5
mob



L. Zhang et al. Applied Energy 377 (2025) 124531 
Fig. 4. Spatiotemporal evolution of 𝛥T and 𝛥p on the measurement line VL during non-isothermal injection: (a) 𝛥T, (b) 𝛥p.
Fig. 5. Spatio-temporal evolution of 𝜙 on the measurement line VL stability: (a) isothermal injection, (b) non-isothermal injection.
Fig. 6. Effective stress, pressure, mobilized friction angle, and temperature changes at potential risk points: (a) 5-day injection, (b) 30-year injection.
radius (15 m) below the drift) to evaluate the evolution of stability. The
changes in stability at the risk point can be divided into four distinct
stages (Fig. 6):

1. Slight reduction (0–5 days): Fig. 6(a) reveals that 5 days post-
injection, both 𝜎1 and 𝜎3 decrease as a result of the rapid
migration of injection-induced pressure and an increase in pore
pressure. This leads to an increase in the mobilized friction
angle, hence a decrease of stability, which is however limited.

2. Minor enhancement (0–6 years): In this phase, the temperature
remains relatively constant. Due to the increase in thermal stress
around the injection well, the major principal stress 𝜎1 at the po-
tential risk point decreases, but 𝜎 experiences a slight increase
3
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due to stress arching. Therefore 𝜙mob decreases by about 0.6◦,
indicating an improvement in stability.

3. Transition (6–19 years): As the temperature of this point be-
gins to decrease, influenced by thermal stress, both 𝜎1 and 𝜎3
decrease, indicating significant reduction in the stability.

4. Deterioration (19–30 years): The temperature and mobilized
friction angle stabilize, as the area becomes completely encom-
passed by the spread of the cold plume.

Although the observed behavior provides valuable insights into the
processes taking place and can be generalized, it remains characteristic
of one set of subsurface properties and design parameters, especially in
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Fig. 7. Clustering results of response: (a) stability of the drift, (b) temperature at the drift, (c) temperature at the production well.
Fig. 8. CDF distribution of top 5 parameters with greatest variance in responses across 3 clustering groups: (a) stability of the drift, (b) temperature at the drift, (c) temperature
at the production well.
Fig. 9. Sensitivity analysis results of responses, with parameters having a sensitivity value over 1 classified as sensitive (including all sensitive parameters and the top 5 insensitive
parameters): (a) stability of the drift, (b) temperature at the drift, (c) temperature at the production well.
terms of absolute values. Therefore, it is crucial to consider all potential
risks more systematically and quantitatively.

3.2. Uncertainty quantification and design optimization

3.2.1. Sensitivity analysis
As previously mentioned, 3 clusters were defined in this study,

categorizing responses into ‘good’, ‘moderate’, and ‘poor’ clusters using
the K-medoids clustering [33]. Fig. 7 displays the clustering results
of the 1000 realizations. For the drift stability, the group with small
𝜙 values is categorized as ‘‘good’’ (blue). For the temperature at the
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drift, the group exhibiting fast temperature drop is deemed ‘‘good’’.
Whereas for the production well temperature, the group with slow
temperature decrease is classified as ‘‘good’’. Fig. 8 illustrates the CDF
distributions of the 5 parameters showing the most significant distri-
bution differences across the responses. Based on Fig. 8, the sensitivity
of each parameter across the 3 groups is quantified, Specifically, DGSA
employs a resampling technique to quantify variations among samples
redistributed within clusters. Sensitivity is represented by the average
of the mean differences across all categories, if distributions within var-
ious categories differ significantly, the parameter is deemed sensitive,
defining parameters with a sensitivity value over 1 as sensitive [33].



L. Zhang et al. Applied Energy 377 (2025) 124531 
Fig. 10. Outcomes of inter-parameter sensitivity values: (a) stability of the drift, (b) temperature at the drift, (c) temperature at the production well.
Fig. 9(a) identifies the vertical distance between the injection well
and the drift as the most sensitive parameter to the stability of drift,
followed by the thermal expansion coefficient, pumping rate, per-
meability, and injection temperature. An increased vertical distance
correlates with enhanced safety of the drift, as shown in Fig. 8(a). This
is because a greater vertical distance reduces the thermal and mechani-
cal impact of the injected cold water on the drift, thereby enhancing its
stability. In the ‘‘poor’’ category, about 78% of the realizations feature a
vertical distance of less than 100 m. The remaining 22% are located at
100–150 m, whereas in the ‘‘good’’ category, 83% of the realizations
have a vertical distance exceeding 100 m. Notably, when the dis-
tance exceeds 150 m, samples categorized as ‘‘poor’’ no longer appear.
The higher sensitivity of the thermal expansion coefficient compared
to permeability and injection rate indicates that thermal stress more
significantly impacts the stability of the drift than poroelastic stress.
Fig. 8(a) shows that a higher thermal expansion coefficient is associated
with an increased risk. In the ‘‘poor’’ category, most realizations display
high 𝜙 values towards the end of the simulation. However, the influence
of poroelastic stress cannot be ignored. A higher thermal expansion
coefficient increases the risk of instability by amplifying the stress
changes induced by temperature variations. Similarly, higher injection
rates and lower injection temperatures lead to larger pressure and
temperature gradients, adversely affecting stability.

For the drift temperature as shown in Fig. 9(b), the vertical distance
between the drift and the well is the primary parameter affecting
cooling efficiency. A smaller vertical distance results in more effective
cooling as the drift is closer to the cold source. Additionally, permeabil-
ity and injection rate are key parameters influencing heat transfer, with
higher permeability and injection rates leading to more rapid cooling.
This suggests that optimizing these design parameters can significantly
enhance the cooling efficiency of the geothermal system.

In Fig. 9(c), the sensitivity analysis for the production well temper-
ature identifies permeability as the most sensitive parameter, higher
permeability facilitates quicker thermal breakthrough, reducing pro-
duction temperature, which can be defined as a 10% decrease in the
difference between the initial production temperature and the injection
temperature. Additionally, both the vertical distance between the well
and the drift and the well spacing are sensitive, particularly the vertical
distance. In this model, a greater vertical distance indicates increased
depth, consistent with the conventional notion that deeper geothermal
systems are more efficient [47]. Smaller well spacing increases the
likelihood of thermal breakthrough, but this effect was not pronounced
within the 30-year simulation period. It is anticipated that with ex-
tended extraction duration or high rates, the sensitivity of well spacing
to production temperature will increase.

Fig. 10 delves into the inter-parameter sensitivity, revealing com-
plex interactions among the system’s parameters. For drift stability,
the interaction between vertical distance and thermal expansion is
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particularly significant, reinforcing the importance of thermal stress
management. The temperature responses at the drift and production
well show notable interactions between permeability, injection rate,
and well spacing, indicating their combined influence on thermal prop-
agation and system performance. These interactions emphasize the
need for a holistic approach in parameter optimization, considering
combined effects rather than isolated impacts.

In summary, vertical distance and permeability emerge as the most
sensitive parameters among the three responses, each showing diverse
distribution trends in the ‘‘good’’ category. Crucial design parameters
of the model, including pumping rate, injection temperature, and well
spacing, as well as some material properties, such as permeability,
thermal expansion coefficient, Young’s modulus, and heat capacity,
prove particularly sensitive. Other material properties, such as porosity,
thermal conductivity, density, range, and angle, do not show significant
sensitivity in the responses or interactions. Therefore, maintaining
these five parameters at the average of their prior value ranges is
reasonable. By reducing the model’s complexity and uncertainty via the
DGSA method, we can utilize the results to refine and limit the range
of sensitive parameters, enhancing the probability of achieving desired
performance of the system.

3.2.2. Suggestions to decision-making
This section introduces a DGSA-based optimization framework,

which involves determining a parameter range by evaluating the prob-
ability density functions (PDF) of sensitive parameters, thereby enhanc-
ing the likelihood of achieving responses categorized as ‘‘good’’ during
the DGSA clustering in forward simulations.

For parameters that appear only once across the sensitivity analyses,
a single probability density is evaluated. For parameters appearing mul-
tiple times, a statistical overlap analysis method is employed, identify-
ing common areas between different groups by analyzing the overlap
of probability densities, akin to the concept of Pareto optimality. A
range is defined that effectively balances the probability distributions
among each group. By setting a threshold of 90% of the peak value on
the overlap probability density, the optimal parameter value range is
calculated. A range exceeding this threshold indicates a high likelihood
of the parameter satisfying the criteria in one or all groups, thus
representing the optimal parameter distribution range.

Using the vertical distance as an example (see Fig. 11), this pa-
rameter shows varying distribution trends in the ‘‘good’’ category for
different responses. For stability of the drift and temperature at the
production well, larger values are favored, with the most concentrated
distribution observed at 180 m. Conversely, for cooling of the drift,
smaller values are desirable, with approximately 70 m identified as
the optimal range for cooling. According to this method, the peak of
the probability distribution across the three categories occurs around
112 m, establishing the optimized range as 109 m to 117 m. While this
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Fig. 11. Parameter optimization process: Red, blue, and green represent the probability density functions for parameters of samples labeled as ‘‘good’’ for stability of the drift
(Response1), temperature at the drift (Response2), and temperature at the production well (Response3), respectively.
Fig. 12. P10, P90 ranges on dataset1 (before optimization) and P10, P50, P90 curves on dataset2 (after optimization): (a) stability of the drift, (b) temperature at the drift, (c)
temperature at the production well.
Table 2
Prior model parameters and optimal value used for verification.
Type Parameters Prior values Suggested values

Design parameters Well spacing (m) U[200 800] U[345 745]
Vertical distance from the drift to the well (m) U[50 200] U[109 117]
Temperature of injected water (◦C) U[10 30] U[17 22]
Pumping rate (kg/s) U[20 70] U[38 47]

Material properties Mean of 𝑙𝑜𝑔10𝑘 (m2) U[−14 −12] U[−13.1 −12.8]
Variance of 𝑙𝑜𝑔10𝑘 (m2) U[0.1 1] U[0.16 0.6]
Young’s modulus (GPa) U[10 20] U[11.4 16.7]
Thermal expansion (1/K) U[1e−6 10e−6] U[1.5e−6 2.9e−6]
Heat capacity (J/kg K) U[800 1300] U[1015 1235]
method may not always yield the optimal expected response when op-
timizing parameters with diverse distributions, it effectively mitigates
the likelihood of poor-case scenarios in the system response.

The recommendations for optimized sensitive design parameters
and favorable material parameters are provided in Table 2. These
results demonstrate that the suggested design parameter ranges can
significantly enhance the performance of geothermal systems beneath
deep mines. This applies particularly to geological layers where the
10 
material properties, specifically permeability, Young’s modulus, ther-
mal expansion coefficient, and heat capacity, align with those listed in
Table 2.

3.2.3. Verification of the suggestions
In the preceding section, we determined the optimal design parame-

ters and ranges of material properties for optimal system performance.
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Fig. 13. Impact of sample size on DGSA result analysis: (a) stability of the drift, (b) temperature at the drift, (c) temperature at the production well.
Building on this, we generated 200 new realizations using LHS, sam-
pling from the optimal parameter ranges to validate the feasibility
of this approach. For each group of responses, both before and after
optimization, we computed the P10, P50, and P90 curves and compared
the distribution ranges to validate the optimal parameter selection.

The post-optimization results demonstrate a significant reduction
in uncertainty regarding the stability of the drift compared to the
initial range. In Fig. 12(a), the maximum 𝜙 in the P90 curve is 22.8◦,
compared to 29.6◦ in the initial range, indicating a considerable im-
provement in stability and no failure occurring in any realization. The
cooling effect of the drift is also optimized, resulting in a more focused
distribution. Within approximately 15 years, half of the realizations
achieve at least a 13 ◦C temperature reduction. Although it is not
possible to achieve the best outcomes simultaneously for responses with
divergent distribution trends, the optimized parameter range effectively
avoids poor scenarios where the drift either suffers damage or fails to
cool down, making the optimization highly effective.

The temperature at the production well also exhibits a highly desir-
able distribution. None of the 200 realizations show signs of thermal
breakthrough after 30 years of system operation. These observations
suggest that the optimization of model parameters is both feasible and
effective. Note that since the optimal design parameters were selected
based on the full parameter range, we expect to avoid ‘‘poor’’ behavior
even for less favorable subsurface parameter combinations, although
the risk would increase in such cases.

3.2.4. Sample size of the distance-based generalized sensitivity analysis
The sample size significantly influences the results of the DGSA

[35]. To ensure optimal results using the smallest possible sample size,
we utilized a 5-fold cross-verification technique, assessing the DGSA
results in multiple scenarios with sample sizes ranging from 400 to
2000 (see Fig. 13). Our analysis indicates that for the stability of the
drift, when the sample size reaches 600, the least sensitive parameter,
Young’s modulus, becomes sensitive. With smaller sample sizes, the
influence of Young’s modulus on the mechanical response might be
neglected. Similarly, the heat capacity appears non-sensitive for the
temperature of the production well until the sample size increases to
800. This shift further highlights the critical role of sample size in iden-
tifying key sensitive parameters. The sensitivity of other parameters
remains unchanged across all sample sizes. Furthermore, the hierarchy
of parameter sensitivity remains consistent with the outcomes observed
in large samples, underscoring the DGSA method’s effectiveness even
with limited sample sizes. This approach proves adequate for discerning
the sensitivity of crucial parameters, as evidenced by our temperature
analysis of the drift, wherein all sensitive parameters display sensitivity
from the smallest sample size evaluated.

Considering these findings, we recommend an approach for deter-
mining the sample size for DGSA analysis. Begin with an initial sample
size, increasing in batches of 200 samples, and stop when the sensitivity
results stabilize. For this study, this method led us to recommend a
sample size of 800, ensuring accurate sensitivity evaluation and reliable
analysis outcomes in a computationally efficient manner.
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4. Discussion

This study aims to assess the temperature and stability of deep
mine geothermal systems and optimize their design by quantifying
the sensitivity of various parameters to enhance geothermal energy
production, achieve rapid mine cooling, and maintain stability.

In the data generation phase, the selection of sample size is cru-
cial to ensure the reliability and robustness of the datasets. We use
Latin Hypercube Sampling (LHS) to generate a dataset that spans
the parameter space and verify the reasonableness of the 1000 prior
samples from two perspectives. First, it is essential to ensure that
the number of samples fully covers the prior uncertainty range and
provides a robust uncertainty boundary. We employ LHS to achieve
an even distribution of samples across the prior space, thus avoiding
duplicate or very similar samples. The uncertainty boundary curves
(P10 and P90) do not change significantly between 800 and 1000
samples, indicating that a sample size of 1000 is sufficient to capture
the essential uncertainty in the model output (see Fig. 14). Second,
the sample size must also be adequate to support reliable sensitivity
analysis. We assess the impact of sample size on sensitivity results,
as detailed in Section 3.2.4, confirming that the sample size of 1000
is sufficient to derive realistic, stable and reliable sensitivity analysis
results for the involved parameters.

After ensuring the samples provide a reliable and comprehensive
dataset, we optimize the model design using a DGSA-based optimiza-
tion method, which is more suitable for our research goals compared
to heuristic algorithms such as Genetic Algorithms [48]. While Ge-
netic Algorithms can find a single optimal solution, they are not ideal
for broad exploration, especially when model parameters’ values and
spatial distribution are uncertain. Optimization methods that include
uncertainty, as demonstrated in other studies [40,49], are more ap-
propriate for our research. Our focus is on determining the overall
behavior and performance range of the geothermal system under dif-
ferent parameter combinations rather than finding a single optimal
solution. Given the inherent uncertainty in subsurface parameters in
geothermal system design, decision-makers need to understand a range
of acceptable parameter values. This broader understanding allows
for more informed decision-making, ensuring the system robustness
and adaptability. Genetic Algorithms requiring continuous iterative
optimization to find the optimal solution significantly increase com-
putational burden, as each iteration requires running a new forward
model, limiting the possibility of parallel computation. This is particu-
larly significant in complex geothermal modeling, where computational
resource consumption can be enormous. Our DGSA-based optimization
requires only 1000 forward model runs, each independent, allowing for
complete parallelization if needed. The optimized results are success-
fully validated with 200 samples generated using the LHS method, with
the sample size determined based on the coverage of prior uncertainty,
as shown in Fig. 15.

The main limitations of our study are threefold. Firstly, our study
utilizes a 2D model, which is not as accurate as a 3D model. A 3D
model would provide a more comprehensive and realistic represen-
tation of the geothermal system, capturing the complex interactions
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Fig. 14. The uncertainty boundary curves (P10 and P90) of 800 and 1000 samples from prior: (a) stability of the drift, (b) temperature at the drift, (c) temperature at the
production well.
Fig. 15. The uncertainty boundary curves (P10 and P90) of 150 and 200 samples from the optimization: (a) stability of the drift, (b) temperature at the drift, (c) temperature at
the production well.
between thermal, hydraulic, and mechanical processes in three dimen-
sions. However, the computation time for a 3D model is significantly
larger, particularly for large-scale simulations. Although our computa-
tion method allows for parallel processing of samples, the time con-
sumption remains considerable. Considering computational resource
limitations, we chose to use a 2D model to reduce computational cost,
justified by similar sensitivity patterns expected in both 2D and 3D
models. Nevertheless, incorporating more detailed 3D models should
be part of future research when computational resources are sufficient.

Secondly, a common limitation in conceptual geothermal system
simulation studies is the lack of experimental data and field validation.
This means our findings are based solely on numerical simulations,
which can affect the accuracy of model predictions in practical sce-
narios. However, our primary objective is to contribute to the design
of systems before actual production data are available, providing pre-
liminary insights and guiding principles for system optimization. This
approach lays the groundwork for subsequent experimental validation
and field studies, which can refine and improve the model based on
real data.

Thirdly, the use of an elastic model in our study cannot adequately
represent rock failure and the damage zone. Elastic models assume
linear and reversible behavior, failing to capture the yielding and
permanent deformation characteristics of rocks over the long-term
operation of geothermal systems. However, for the purpose of this
study, which focuses on assessing the risk of failure, the elastic model
is sufficient. Incorporating plastic models, which account for both
elastic and plastic deformations, would provide better predictions of
stress distribution and material response over long-term geothermal
operations [50,51].

For future research, we plan to validate our findings by obtaining
field data for further validation and calibration of our model. Incorpo-
rating real-world data will make our research findings more accurate
and practically applicable. Additionally, DGSA allows the identification
of optimal parameter ranges before performing costly field investiga-
tions or investments. The next logical step is to update uncertainty
quantification once additional data become available, either from field
experiments to better characterize subsurface parameters, effectively
reducing the prior range of uncertainty of some subsurface parameters
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such as permeability and thermal expansion, or from early production
data. Bayesian Evidential Learning (BEL) is an effective strategy in
such contexts [35]. BEL bypasses complex model inversion or data
assimilation by directly predicting target variables from data through
machine learning, which is extremely effective for resource-intensive
multiphysical coupling response predictions. BEL would therefore be
well-suited for application in deep mine stability, as demonstrated in
previous research [34,40].

5. Conclusions

This work investigates the potential of geothermal energy produc-
tion beneath existing deep mines, providing insights for enhancing
geothermal project design. Utilizing thermo-hydro-mechanical model-
ing, we assess the effects of cold water injection on the geothermal
system long-term mechanical stability and the temperature distribution
within the mine drifts. Additionally, the Distance-based Global Sensitiv-
ity Analysis (DGSA) method is implemented to evaluate the sensitivity
of model parameters, offering direction for model optimization. The
results of our analysis are summarized as follows:

1. Thermal stress significantly impacts the stability of drifts during
cold water injection, with poroelastic stress being predominant
at the onset of geothermal operation. These stresses lead to a
decrease in stability, despite a temporary increase in stability at
the base of the drift at the initial stages of the operation.

2. The relative location of the geothermal and mine systems is
crucial for achieving satisfactory performance of the systems. In-
jection rate and temperature, along with rock properties such as
thermal expansion coefficient, permeability, Young’s modulus,
and heat capacity, are critical in dictating the system behavior.

3. DGSA-based optimization approach proves to be effective in
significantly enhancing system performance.

4. For the DGSA analysis involving 14 parameters, a sample size of
800 is identified as optimal, balancing comprehensive parameter
sensitivity identification and computational efficiency.

The insights gained from this study significantly enhance the design
and optimization of subsurface models, particularly for geothermal
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energy applications. Our findings could lead to safer, more sustainable
subsurface renewable energy operations.
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