

Delft University of Technology

An Accelerator for Posit Arithmetic Targeting Posit Level 1 BLAS Routines and Pair-HMM

van Dam, Laurens ; Peltenburg, Johan; Al-Ars, Zaid; Hofstee, H. Peter

DOI
10.1145/3316279.3316284
Publication date
2019
Document Version
Final published version
Published in
CoNGA'19 Proceedings of the Conference for Next Generation Arithmetic 2019

Citation (APA)
van Dam, L., Peltenburg, J., Al-Ars, Z., & Hofstee, H. P. (2019). An Accelerator for Posit Arithmetic
Targeting Posit Level 1 BLAS Routines and Pair-HMM. In CoNGA'19 Proceedings of the Conference for
Next Generation Arithmetic 2019 (pp. 5:1--5:10). Article 5 Association for Computing Machinery (ACM).
https://doi.org/10.1145/3316279.3316284
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3316279.3316284
https://doi.org/10.1145/3316279.3316284

An Accelerator for Posit Arithmetic Targeting Posit Level 1 BLAS
Routines and Pair-HMM

Laurens van Dam
Delft University of Technology

Delft, Netherlands
laurens@vand.am

Johan Peltenburg
Delft University of Technology

Delft, Netherlands
j.w.peltenburg@tudelft.nl

Zaid Al-Ars
Delft University of Technology

Delft, Netherlands
z.al-ars@tudelft.nl

H. Peter Hofstee
IBM Austin Research Laboratory

Austin, TX, USA
hofstee@us.ibm.com

ABSTRACT
The newly proposed posit number format uses a significantly dif-
ferent approach to represent floating point numbers. This paper
introduces a framework for posit arithmetic in reconfigurable logic
that maintains full precision in intermediate results. We present the
design and implementation of a L1 BLAS arithmetic accelerator on
posit vectors leveraging Apache Arrow. For a vector dot product
with an input vector length of 106 elements, a hardware speedup
of approximately 104 is achieved as compared to posit software
emulation. For 32-bit numbers, the decimal accuracy of the posit
dot product results improve by one decimal of accuracy on average
compared to a software implementation, and two extra decimals
compared to the IEEE754 format. We also present a posit-based
implementation of pair-HMM. In this case, the hardware speedup
vs. a posit-based software implementation ranges from 105 to 106.
With appropriate initial scaling constants, accuracy improves on
an implementation based on IEEE 754.

KEYWORDS
posit, unum, unum-III, BLAS, arithmetic, pair-HMM, decimal accu-
racy, FPGA, accelerator
ACM Reference format:
Laurens van Dam, Johan Peltenburg, Zaid Al-Ars, and H. Peter Hofstee. 2019.
An Accelerator for Posit Arithmetic Targeting Posit Level 1 BLAS Routines
and Pair-HMM. In Proceedings of Conference for Next Generation Arithmetic
2019, Singapore, Singapore, March 13–14, 2019 (CoNGA’19), 10 pages.
https://doi.org/10.1145/3316279.3316284

1 INTRODUCTION
The IEEE 754 floating point standard has been the de facto standard
for representing floating point numbers since hardware-supported
floating point arithmetic was introduced. However, due to the con-
stantly evolving set of requirements in terms of performance and
accuracy, alternative number representations are proposed that

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNGA’19, March 13–14, 2019, Singapore, Singapore
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7139-1/19/03.
https://doi.org/10.1145/3316279.3316284

claim to be a better alternative to the IEEE 754 floating point stan-
dard. One of the recent and most promising alternatives is the posit
number format, as presented by John L. Gustafson [6].

In this work, we present a framework that can be used to perform
posit arithmetic in hardware without intermediate normalization
of computation results, resulting in more accurate final answers.
The posit adder and multiplier units presented in this work take the
characteristic fields that represent a posit number as input, instead
of a serialized posit word. A posit normalization unit can convert
the unrounded regime and fraction fields to a traditional posit word
whenever desired, while applying a rounding scheme in order to
take into account bits that are truncated in the process.

We present the design, implementation and evaluation of two
hardware accelerators in reconfigurable logic that utilize the posit
units mentioned above. The first accelerator implements level 1
BLAS operations on variable-length posit vector pairs. The second
accelerator calculates the solution to a type of Hidden Markov
Model (HMM) used in pairwise alignment of DNA sequences, called
pair-HMM.

Both designs are based on the Fletcher framework [11], allowing
easy and efficient integration with a variety of high-level software
languages supported by the Apache Arrow in-memory format. Both
accelerators are implemented on top of the CAPI SNAP [14] hard-
ware platform in order to obtain coherent host-accelerator access
and avoid unnecessary copy operations from host to device mem-
ory.

The work presented in this paper and the work it depends on is
available in open source. We list the projects here:

• https://github.com/open-power/snap
• https://github.com/johanpel/fletcher
• https://github.com/lvandam/posit_blas_hdl
• https://github.com/lvandam/pairhmm_posit_hdl_arrow

2 MODULAR FRAMEWORK FOR POSIT
ARITHMETIC

This section introduces a modular approach to building circuits to
compute with posit numbers while maintaining the full accuracy in
intermediate results. Conceptually this extends prior work [2] that
presented a dot-product unit leveraging a (full-precision) "quire"
register introduced by [7] to an arbitrary network of operations.

https://doi.org/10.1145/3316279.3316284
https://doi.org/10.1145/3316279.3316284
https://github.com/open-power/snap
https://github.com/johanpel/fletcher
https://github.com/lvandam/posit_blas_hdl
https://github.com/lvandam/pairhmm_posit_hdl_arrow

CoNGA’19, March 13–14, 2019, Singapore, Singapore L. van Dam et al.

Posit
ExtractInput word

Posit fields

Absolute

Figure 1: Schematic overview of the in- and output products for the
proposed posit extraction unit.

2.1 Overall Dataflow
The posit arithmetic framework presented in this work is built
around the following three steps:

(1) Extraction: extract the posit characteristics (sign, regime,
exponent, fraction, infinity/zero) from an N-bit input word

(2) Operation: perform an operation on the extracted posit fields
(3) Normalization: normalize the output posit fields back into

an N-bit posit word
The advantage of having the extraction, operation and normal-

ization steps separated becomes apparent when performing mul-
tiple arithmetic operations on a posit number, without having to
normalize the result after every operation. Therefore, any loss of
precision is averted. In this section, we therefore discuss a posit
adder, accumulator and multiplier that take extracted posit fields as
an input, instead of an N-bit posit word that needs to be extracted
first. This allows us to feed in results from a previous addition or
multiplication without having to normalize back and extract again
the intermediate results.

In the next parts of this section, we discuss the individual steps
of the data flow described above, along with the behavior of the
possible posit operations that are implemented.

2.2 Posit Extraction
The posit extraction unit converts an N-bit posit value to a data
structure containing the characteristic fields of the posit operand.
For both input operands, the sign, scale and fraction bits are ex-
tracted. The scale is calculated based on the regime and the expo-
nent of the input operands. As the regime accounts to a factor of
(22

es
)regime (where es denotes the number of exponent bits) and the

exponent value adds a factor of 2exponent, combining these factors
results in the following scale factor:

scale = (22
es
)regime × 2exponent = 22

es×regime+exponent (1)

The output of the posit extraction unit is therefore an internal
structure containing the following fields:

• sign
• scale
• fraction
• inf/zero status flags

Thewidths of the individual fields depend on the posit configuration
of the value represented (i.e. the number of exponent bits of the
represented posit). Furthermore, an addition or multiplication result
requires more scale and fraction bits to be stored in order to avoid
truncation of any information.

Posit
Normalize

Result word

Infinite

Zero

Posit fields

Truncated

Figure 2: Schematic overview of the in- and output products for the
proposed posit normalization unit.

2.3 Posit Normalization
In order to convert back the internal structure of posit fields (includ-
ing the unrounded fraction) into a regular posit word, normalization
needs to be performed.

Normalization of an addition, accumulation or multiplication
result induces a loss in decimal accuracy as a part of the fraction
field is truncated: since the fraction of an N-bit posit number can be
up to (N − es − 2) bits wide (including hidden bit), integer addition
or multiplication of the two operand fractions results in a larger
fraction. Therefore, this number will be truncated when included in
the final N-bit product posit. The number of bits that are truncated
depends on the number of bits taken to represent the regime and
the exponent in the final posit number. The decimal accuracy can
be improved by implementing a rounding scheme. The rounding
scheme implemented for the proposed arithmetic units is round
to nearest, tie to even. This rounding scheme is chosen as being
the only rounding mode available for the posit scheme [5], and
is chosen as default rounding scheme for the IEEE float format.
Rounding is therefore performed to the nearest value. Therefore,
all fraction bits that are discarded (in order to fit the final result to
an N-bit value) are used to determine whether a value has to be
rounded. For a tie (midway value), the value is rounded to an even
number (i.e. with a zero LSB). The posit adder and accumulator
units, described later in this section, are able to assert a truncated
flag whenever bits need to be truncated in order to match the scales
of both input operands. This flag is also taken into account by the
rounding scheme implemented in the posit normalization unit.

The scale field of the input posit structure is used to determine
the regime and exponent for the resulting N-bit posit number. The
regime is calculated as scale/2es, while the exponent is determined
by the remainder (scale mod 2es). The combination of exponent and
fraction is shifted right by the amount of bits needed to represent
the final regime. After the packed regime, exponent and fraction
have been obtained, rounding is performed when needed by adding
1 LSB to this result. Finally, in case the sign of the final posit number
is negative, the 2’s complement of the regime, exponent and fraction
are determined.

2.4 Posit Adder
The posit adder is designed with a 4 or 8-stage pipeline structure,
which is controlled by an input clock signal. A summary of the
posit adder operations per pipeline stage is as follows:

(1) Clock in inputs, determine largest and smallest operand,
calculate scale difference

(2) Match smallest operand fraction by right-shifting, add / sub-
tract fractions

(3) Shift out hidden bit of addition result (and adjust scale)

An Accelerator for Posit Arithmetic Targeting Posit Level 1 BLAS and Pair-HMM CoNGA’19, March 13–14, 2019, Singapore, Singapore

Posit
Adder/Multiplier

Result fields

Done

Truncated

Clock

Start

Posit 1 fields

Posit 2 fields

Figure 3: Schematic overview of the in- and output products for the
proposed posit adder and multiplier.

(4) Set output signals (result fields, inf, zero, done)
After normalization of any N-bit input operands, the extracted

posit fields are passed to the posit adder, along with a start signal
(which validates the output results as they are propagated through
the adder).

As a preparation before performing the actual posit addition,
the hidden bit is prepended to the input fraction fields. In order to
match the scale (as defined in eq. (1)) of both operands, the smallest
operand needs to be shifted right in order to match the scale of the
largest operand. Therefore, the largest and smallest operands are
determined. The smallest operand fraction is shifted right by the
difference between both operand scales. In this process, the fraction
field of the smallest operand might lose bits due to the shifting
performed in order to match both operand scales. A truncated flag
is asserted by the adder, which can be used by the normalization
unit when performing the rounding of the truncated sum fraction
(described in section 2.3) whenever a result has to be normalized.

After matching both fractions with the same scale, the fractions
are added or subtracted (for unequal operand signs) using an un-
signed integer adder. After detecting the location of the hidden bit,
the fraction sum is normalized by shifting left until the normalized
form 1.xxx is reached. The sum scale, which is set at the scale of
the largest input operand, is updated accordingly.

The resulting posit sum, consisting of a structure of, among
others, the unrounded scale and fraction fields, can then be used as
an input operand for next operation(s) or can be normalized back
into a regular N-bit posit number through the posit normalization
unit described in section 2.3.

2.5 Posit Multiplier
Similar to the posit adder, the posit multiplier is implemented with
4-stage pipelining. A summary of the operations per pipeline stage
for the posit multiplier are as follows:

(1) Clock in inputs
(2) Multiply operand fractions
(3) Add operand scales, shift out hidden bit of product (and

adjust scale)
(4) Set output signals (result fields, inf, zero, done)
The fraction field of the input posit operands are multiplied using

an unsigned integer multiplier. The scale of the output product, as
defined in eq. (1), is determined by adding the scales of both input
operands. This scale is increased by 1 in case of an overflow in
the fraction multiplication. The resulting fraction product can then

Posit
Accumulate

Result fields

Done

Truncated

Clock

Reset

Start
Posit fields

Figure 4: Schematic overview of the in- and output products for the
proposed posit accumulator unit.

be put back into the normalized form 1.xxxx. Similar to the posit
adder described in section 2.4, the product of two 28-bit fractions
(including hidden bit) is 56 bits wide. Therefore, the fraction bits
that are discarded in the final result (by shifting in the regime
and discarding leftover bits) are used to determine if the truncated
fraction needs to be rounded. After truncating the product fraction
bits to fit in the result posit, the exponent, regime and fraction
are packed into a single N-bit posit number. This is similar to the
way the final result is constructed for the posit adder described in
section 2.4.

2.6 Posit Accumulator
The posit adder described in section 2.4 is designed to calculate
the sum of two N-bit input posit numbers, returning an N-bit posit.
Recall that the fraction of the smaller input operand is shifted in
order to match the scale of both input operands. Therefore it is
possible that one or multiple fraction bits of the smaller operand are
discarded before the fraction addition step is being performed. This
is undesirable when designing an implementation that is optimized
in terms of decimal accuracy.

In order to avoid any input information to be discarded, the posit
wide accumulator is proposed. The wide accumulator consists of a
posit adder that is similar to the design proposed in section 2.4. The
main difference is that this adder only takes one input that could,
for example, be the unrounded set of sign, scale and fraction fields
of a previous calculation. The second input consists of the sign,
scale and fraction of the accumulated number so far. Note that the
accumulated fraction is not normalized and therefore contains all
bits resulting from the sumwith the input posit operand, preserving
the input information. The output of the wide accumulator consists
of the posit fields of the accumulated number, which can be fed to
a normalization unit (refer to section 2.3) to obtain a regular N-bit
posit number.

3 POSIT BLAS ARITHMETIC ACCELERATOR
The proposed posit arithmetic accelerator is designed with modu-
larity, usability and ease of integration in mind. As different vector
operations are supported, the number of input vectors is variable,
as well as the type of output, being either a scalar value or a vec-
tor. The different vector operations can be combined in order to
implement a specific algorithm.

To allow a multitude of software languages to make use of the
accelerator, the hardware interface to the in-memory data set of
vectors is generated through the Fletcher framework [11]. This

CoNGA’19, March 13–14, 2019, Singapore, Singapore L. van Dam et al.

Multiply

Add

Operation

Extract

Extract

Accumulate

Result

AggregateColumn Reader
(vector 1)

Column Reader
(vector 2)

Column Writer
(result vector)

A
pa

ch
e

A
rr

ow
 (C

A
PI

 S
N

A
P)

Dot product / Vector sum(Scalar)
Multiplication

(Scalar) Addition

Figure 5: Schematic overview of the data flow for the posit vector
arithmetic accelerator, starting from the input vector representa-
tions in Apache Arrow. Each component is annotated with the op-
erations the component is used for.

framework allows for efficient interoperability between FPGA ac-
celerators and software languages through the use of the Apache
Arrow in-memory format [15]. Additionally, the Arrow project
itself provides libraries for (at the time of writing) eleven high-
level software languages to construct and consume data sets in this
format. We use these two frameworks to ease the design of the
hardware/software interface and prevent (de)serialization overhead
when working with boxed numerical types that are common in
many high-level languages (such as Python and R) and variable-
length data types (such as vectors). Through this combination, it
becomes easy to support high-performance Posit BLAS operations
using the proposed accelerator in any of the languages supported
by Apache Arrow.

A schematic overview of the accelerator structure is depicted
in fig. 5, along with annotations of which components are used
for each supported vector operation. The general behavior of the
accelerator during the process of performing a vector operation can
be described as follows. For each input vector, Fletcher instantiates
a Column Reader to read vector elements. A Column Reader enables
reading from a column of an Arrow tabular data set (that in our case
is filled with variable-length vectors). As the accelerator is designed
to accept two input vectors, one Column Reader is instantiated per
posit input vector.

On the software side, the Arrow data set containing the input vec-
tors is initialized and passed to Fletcher that automatically makes
the data set available to the Column Readers. After passing a de-
scription of the desired operation, the accelerator can now start
processing the BLAS operation. The Column Readers start provid-
ing the posit vector elements to the extraction units.

Depending on the desired operation, the extracted posit fields
of both vector elements serve as operands to a posit multiplier
or adder. For a vector addition/subtraction or multiplication, the
resulting sum or product directly serves as one of the elements
in the final result vector (refer to fig. 5). In case of a posit dot
product calculation, the unrounded multiplication result is passed
to an accumulator unit that is able to accumulate unrounded posit
products [16]. This process is repeated until all elements of both
vectors have been processed. If this is the case, the final aggregation
of accumulated posit products will start. This step is necessary, as
the posit accumulator used in this design is pipelined with 16 stages.
Thus, 16 individual accumulations are maintained, accepting new
input posits every cycle. These 16 accumulations are aggregated by

another posit accumulator serving as aggregation unit. This process
of calculating the dot product of two input vectors can also be used
to calculate the sum of a single vector. In this case, the second input
vector is set to a column vector of ones.

Note that the resulting values coming from the adder, multiplier
or accumulator consist of an unrounded set of posit fields. These
values are normalized to a regular N -bit posit in the final stage of
the accelerator. The elements of the resulting posit vector (or single
value for a dot product or vector sum calculation) are written back
to host memory, represented by an Apache Arrow buffer using a
column writer.

As discussed in the beginning of this section, the accelerator
has been designed with modularity taken into account. Therefore,
a software library (C++) is developed in order to easily interface
with the proposed accelerator. This library provides the following
functions to the programmer in order to perform a specific vector
operation.

• vector_add: Element-wise vector addition
• vector_sub: Element-wise vector subtraction
• vector_mult: Element-wise vector multiplication
• vector_dot: Vector dot product
• vector_sum: Vector sum

The provided library serves as a drop-in replacement for existing
software routines for performing (posit) vector arithmetic. The de-
scribed functions prepare any input data that is not yet represented
in the Apache Arrow columnar memory format by transforming
it into this format. Furthermore, the desired vector operation to
be executed will be communicated to the accelerator, after which
the addresses to the Arrow buffers containing the input vectors
is transmitted. The library will handle the buffering of the final
result vector (or scalar) and provides it to the user for any further
processing.

3.1 Implementation
For the accelerator design as discussed in section 3, an implementa-
tion has been generated and tested for a posit(32,2) and posit(32,3)
configuration. The target FPGA for this implementation is the Xil-
inx Kintex® UltraScale™ XCKU060 FPGA.

Table 1 shows the area utilization statistics for the posit dot
product accelerator implementation as well as the estimated power
consumption. The area usage of both the accelerator core only as
well as for the total design is displayed. The overall design includes
the implementation of the Power Service Layer (PSL), required for
interfacing with the host using CAPI. Overall, approximately 40%
of the available FPGA resources are used for this design.

3.2 Results
For the implementation as described in section 3.1, we evaluate
the performance of the implementation in terms of performance
and decimal accuracy of the accelerator calculation results. In or-
der to quantify the performance of the proposed accelerator, we
compare the execution time of the hardware accelerator versus
the same calculation in software, using the most popular library
used for emulating the posit number format [13]. Note that the
execution time of the benchmark calculations performed in soft-
ware are highly dependent on the specifications of the machine

An Accelerator for Posit Arithmetic Targeting Posit Level 1 BLAS and Pair-HMM CoNGA’19, March 13–14, 2019, Singapore, Singapore

Configuration Available Used (core) Used (total)

posit(32,2)

LUT 331680 52265 (15.76%) 131189 (39.55%)
Register 663360 64969 (8.64%) 156747 (23.63%)
BRAM 1080 91 (9.79%) 417 (37.18%)
DSP 2760 4 (0.14%) 23 (0.83%)
Power 2.495W 9.543W

posit(32,3)

LUT 331680 52262 (15.76%) 131179 (39.55%)
Register 663360 65033 (8.29%) 156827 (23.64%)
BRAM 1080 91 (8.43%) 417 (38.61%)
DSP 2760 4 (0.14%) 23 (0.83%)
Power 2.294W 9.358W

Table 1: FPGA resource utilization and power consumption estima-
tion of the posit dot product accelerator implementation, both for
the accelerator core only and for the total implementation includ-
ing the Power Service Layer.

10 0 10 1 10 2 10 3 10 4 10 5 10 6

Vector length

10 -5

10 0

Ex
ec

ut
io

n
tim

e
(s

)

posit (hw) posit (sw) �oat (sw)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Vector length

0

5000

10000

15000

Sp
ee

du
p

(h
w

 v
s.

sw
)

Figure 6: Execution time for a posit dot product calculation using
the proposed hardware accelerator compared to dot product calcu-
lation in software for different input vector lengths. The curve illus-
trates the speedup of the hardware posit implementation compared
to software posit emulation.

used. The machine used in this experiment is the IBM® Power Sys-
tems™ S822LC featuring two 10-core POWER8 CPUs running at
2.92GHz.

3.2.1 Vector Operations. As multiple vector operations are sup-
ported by the proposed accelerator, each operation is benchmarked
based on its performance and speedup compared to software cal-
culation. Furthermore, in order to illustrate the average accuracy
achieved by the discussed accelerator, will evaluate the decimal
accuracy of the posit dot product operation performed by the ac-
celerator.

3.2.2 Performance. Figure 6 shows the execution times for both
hardware and (single thread) software implementations for the
calculation of the dot product of two input posit vectors, for an
increasing number of input vector lengths. The measured hardware

execution time includes the overhead caused by the initialization
of the hardware device and the reading and writing of the in- and
output data respectively. The right axis shows the speedup of the
hardware implementation compared to software. As can be seen,
the speedup of the hardware implementation compared to the soft-
ware implementation is dependent on the input vector lengths. For
an input vector length of 106 posit elements, a speedup of approxi-
mately 15000× is achieved. The speedup for smaller input vector
sizes is absent or relatively low for small input vector sizes. This can
be explained by the accelerator overhead. The accelerator overhead
can be seen at the execution time for an input vector length of
1 element, which effectively reduces the dot product calculation
to a single multiplication operation. For larger input vector sizes,
starting around 105, the slope of the speedup curve is reduced.
This can be explained by hardware saturation: the bandwidth of
the accelerator becomes limited by the input buffer FIFOs of the
accelerator design.

Figure 7 shows the speedup compared to software calculation of
the other vector operations supported by the proposed accelerator.
The accelerator throughput in Mega Posit Operations Per Second
(MPOPS) is depicted on the right axis (bold line). As can be seen,
especially the element-wise vector multiplication operations benefit
from hardware acceleration with around 800× speedup for a vector
length of 103 elements. For this input vector length, other operations
benefit from acceleration as well by achieving a speedup of over
100×.

When comparing the proposed vector arithmetic accelerator to
related work, such as the posit vector dot product accelerator pre-
sented by Chen et al. [2]. , several observations can be made. The
implementation presented in that work has a working frequency
of 200MHz, supporting vector lengths up to 1024 to 32K elements,
depending on the target platform. While the working frequency of
the implementation presented in our work is set at a lower 125MHz,
this implementation is able to continuously read posit column vec-
tor elements represented in the Apache Arrow format without a
fixed limit on the maximum supported input vector length.

3.2.3 Decimal Accuracy. In order to compare the accuracy of
calculation results for different number representations with a ref-
erence, the concept of decimal accuracy is used as proposed by John
Gustafson [4]. Suppose we have the true value X and the calculated
value X̃ , which can for example be the result of a calculation using
posit arithmetic. The decimal accuracy can then be defined as a
measure of the number of decimals of accuracy. This measure is cal-
culated as the log base 10 of the inverse of the decimal error, which
is the absolute log base 10 ratio between the exact and computed
value:

decimal accuracy = − log10(decimal error)

= − log10

����log10 (X̃X)���� (2)

As described in section 3.1, implementations of the posit vector
arithmetic accelerator have been generated for the posit(32,2) and
posit(32,3) configurations. fig. 8 shows the decimal accuracy of the
posit dot product calculation results produced by the accelerator
for both posit configurations. The decimal accuracy is compared

CoNGA’19, March 13–14, 2019, Singapore, Singapore L. van Dam et al.

10
1

10
2

10
3

10
4

10
5

Vector length

0

2000

4000

6000

8000

10000

12000

Sp
ee

du
p

(h
w

 v
s.

sw
)

0

10

20

30

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (M

PO
PS

)

Vector sum
Vector add
Vector add (scalar)
Vector subtract
Vector subtract (scalar)
Vector multiply
Vector multiply (scalar)
Throughput

Figure 7: Speedup of the posit vector arithmetic accelerator for different vector operations and vector input lengths, compared to the execution
time for posit emulation in software. The hardware throughput (in MPOPS) is depicted on the right axis.

10
1

10
2

10
3

10
4

10
5

Vector length

6

7

8

9

10

11

D
ec

im
al

 a
cc

ur
ac

y

posit (hw)
posit (sw)
float

(a) posit(32,2)

10
1

10
2

10
3

10
4

10
5

Vector length

6

7

8

9

10

11

D
ec

im
al

 a
cc

ur
ac

y

posit (hw)
posit (sw)
float

(b) posit(32,3)

Figure 8: Decimal accuracy of calculation results of the posit dot
product operation performed by the proposed posit vector arith-
metic accelerator and compared to software calculation results
through software emulation, for different input vector lengths.

to software calculation in the posit and IEEE 754 float format for a
range of input vector lengths. In order to obtain a fair benchmark
between the float, posit(32,2) and posit(32,3) number formats, the
input vectors for this test case consist of randomly generated values.
These values are generated in such a way that the exact represen-
tation of each number is equal for all three number formats. The
benchmark can be considered fair in the sense that different number
representations should not have a head start during a decimal accu-
racy measurement for a specific application. Any head start could
potentially be caused by the fact that one representation might be
better at representing a specific random number compared to other
representations. By ensuring that the randomly generated number

Figure 9: A pair-HMM with 3 states.

can be exactly represented in every candidate number format, accu-
racy loss caused by the representation of initially random numbers
is omitted.

As can be seen, for both posit configurations, the decimal accu-
racy of the hardware results are improved by approximately one
decimal of accuracy compared to calculation results by software
(through emulation of the posit number format). Furthermore, an
increase of approximately two decimals of accuracy is achieved
compared to calculation using the traditional IEEE 754 floating
point format.

4 PAIR-HMM POSIT ACCELERATOR
A pair Hidden Markov Model (pair-HMM) is a model that can be
used for the generation of probability distributions for sequences
of pairs of observations. This type of HMM is particularly useful
for finding the most probable alignment(s) between sequences, for
example in DNA analysis when matching multiple candidate DNA
reads with a specific haplotype sequence [3].

To match two strings using this method we assume that strings
can be matched by either extending both strings with the same base,
or extending only one or the other (corresponding to a deletion
in the other string). Figure 9 shows an example Pair-HMM with
three states where state Ix can emit a symbol into string X and Iy

An Accelerator for Posit Arithmetic Targeting Posit Level 1 BLAS and Pair-HMM CoNGA’19, March 13–14, 2019, Singapore, Singapore

Table 2: Example sequence observations x and y and their underly-
ing sequence of hidden states z for the pair-HMMmodel.

Figure 10: Recurrence relation and dependencies among thematrix-
based calculations of the pair-HMM forward algorithm (arrows),
and the progression of the calculations each cycle in a systolic ar-
ray (diagonal lines).

can submit a symbol into string Y and where stateM can emit the
same symbol into both strings. Table 2 shows a possible sequence
of states required to achieve an alignment between the two strings
shown.

The computation is most easily visualized as a systolic array, with
the two strings to be compared, say string X of lengthM and string
Y of length N , along the two axes. Computing the overall probabil-
ity of matching two strings with the Markov model described leads
to the recurrence relation shown in fig. 10 [3] with initial conditions
M(i,−1) = M(−1, j) = Ix (i,−1) = Ix (−1, j) = Iy (i,−1) = Iy (−1, j),
M(0, 0) = 1, Ix (0, 0) = Iy (0, 0) = 0. Transition and emission proba-
bilities are as indicated in fig. 9.

4.1 Accelerator Design
Our design follows the architecture of the streaming-based pair-
HMM accelerator described in [12] that is based on a widely-used
software implementation in [9], but with data being read from
and written to Arrow tabular data sets, again leveraging interfaces
generated through Fletcher. However, we implement the arithmetic
of the design using the presented posit units rather than IEEE
floating-point arithmetic. By using posit arithmetic and by avoiding
intermediate rounding, the precision of the final results is improved.

The input to the accelerator consists of a set of haplotype base
pairs, read base pairs and the emission and transmission probabili-
ties related to these reads.

Haplotypes Reads
haplo (8-bit) read (8-bit) probabilities (256-bit)

0
base pair

0
base pair αdiff αsimi β γ δ ϵ η ζ

.
base pair base pair αdiff αsimi β γ δ ϵ η ζ

1
base pair

1
base pair αdiff αsimi β γ δ ϵ η ζ

.
base pair base pair αdiff αsimi β γ δ ϵ η ζ

... . . .
...

Table 3: Schematic overview of the Arrow schema for the Arrow
pair-HMM Accelerator implementation, consisting of the columns
used to feed the pair-HMM accelerator.

Systolic
Array

Posit Extract

Posit Normalize

Column Reader
(reads)

Column Reader
(haplotypes)

Column Writer
(results)

A
pa

ch
e

A
rr

ow
 (C

A
PI

 S
N

A
P)

Probabilities

Base pairs

Base pairs

Result

Figure 11: Schematic overview of the high-level components inside
the pair-HMM accelerator core design, interfacing with Apache Ar-
row.

The Arrow data set designed for this implementation is depicted
in table 3. As can be seen, the data set consists of two separate tables
used to represent the haplotypes as well as the reads for a specific
batch. The haplotype and read base pairs are represented by an
8-bit wide field, being able to represent any ASCII character. For
each read, the emission and transmission probabilities for this read
are located in the second column of this table. The probability α can
contain a penalty if the read and haplotype base pairs are not equal
during the pair-HMM forward algorithm evaluation. Hence, two
values for this probability are stored. As there are eight emission
and transmission probabilities in total, the width of this column is
equal to 256 bits, as each probability is represented by a 32-bit posit
number.

The entry index indicated in the diagram represents the batch
to be processed by the accelerator. The accelerator is able to access
specific batches based on this index, as will be illustrated later. As
the amount of base pairs inside one batch is variable, the length of
each entry is also variable. When an entry is read by the accelerator,
it also receives the length of this entry.

A schematic overview of the high-level components of this pair-
HMM accelerator design is depicted in fig. 11. For the input basepair
reads, a Column Reader is used in order to read the base pairs and
emission/transmission probabilities from the data set. A second
Column Reader is instantiated to read the basepairs from the haplo-
type data set. The data output of the Column Readers are fed into
FIFOs. The FIFOs are controlled by a scheduler that makes sure the
input data is fed into the systolic array in the correct cycle. The
posit fields of the input probabilities, represented as 32-bit posit

CoNGA’19, March 13–14, 2019, Singapore, Singapore L. van Dam et al.

β

γ

γ

δ

ε

ζ

η

Mi-1,j-1

Ixi-1,j-1

Iyi-1,j-1

Mi-1,j

Ixi-1,j

Mi,j-1

Iyi,j-1

α
Mi,j

θ
Ixi,j

υ
Iyi,j

(4)

(4)
+
(4)

+
(4) (4)

(4)
+
(8)

(4)

(4)

(4)

(4)

(4)
+
(8) (4)

(4)

Figure 12: Schematic overview of a Processing Element. The latency
(in clock cycles) of each unit is indicated between parentheses.

Accumulator

First data HaplotypesRead

Score Ready

PE0 PE1 PE14 PE15

Systolic Array

Figure 13: Overall overview of the pair-HMM accelerator core de-
sign.

numbers, are extracted using the posit extraction unit as discussed
in section 2.2.

The outgoing calculation results from the systolic array, being
raw posit values with unrounded fraction fields (as described in
section 2.3), are then normalized. The normalized 32-bit posit words
are fed into a Column Writer in order to write the results into an
Arrow data set in host memory.

4.2 Accelerator Microarchitecture
The architecture proposed for this implementation is based on
a fixed-size systolic array design that is optimized for maximum
pipeline utilization [12]. fig. 13 shows an overview of the pair-HMM
accelerator core design. As can be seen, the input data of the first
Processing Element (PE) is fed from the PairHMM controller. This
data consists of control signals (enable/valid signals), the input test
case reads and the transmission/emission probabilities correspond-
ing to these reads. Furthermore, the initial constant used in the
forward algorithm calculation is provided.

The number of PEs in the systolic array, alternatively called the
depth, determines the number of matrix elements, or cell updates,
that can be calculated in parallel. The implemented pair-HMM
accelerator core consists of 16 PEs, each calculating one element of
the three pair-HMM matrices (M , Ix , Iy)

A schematic overview of the various arithmetic operations per-
formed per PE is shown in fig. 12. As each PE in the systolic array

Posit Wide
Accumulator

(16-cycle)

Posit Wide
Accumulator

(16-cycle)

Posit Adder
(8-cycle)

Last PE
result bus

Reset

M

Ix
Accumulated

result

Figure 14: Schematic overview of the pair-HMMaccumulation stage
using posit wide accumulator units.

is connected in series, each PE receives calculation dependencies
from the previous PE. These dependencies consist of the top-left,
top and left elements of theM , Ix and Iy pair-HMM matrices.

The PE then calculates the matrix elements for the current (i, j)-
position. Together with the previously calculated matrix elements,
the corresponding emission and transmission probabilities are re-
ceived from the previous PE.

As can be seen in the schematic overview of the PE, the PE design
contains both 4-cycle and 8-cycle arithmetic units in order to match
the total latency of all data paths such that all newly computed
matrix elements arrive at the proper clock cycle. Therefore, both 4-
stage and 8-stage pipelined posit arithmetic units are implemented.

For this design, intermediate results of calculations performed
inside a Processing Element (PE) as depicted in fig. 12 are kept
unrounded whenever possible. The purpose is to improve the over-
all decimal accuracy of the final likelihood computation results
produced by the pair-HMM accelerator by means of the forward
algorithm.

The elements of the last row in the M and I matrix are added and
accumulated for each column. These matrix elements are calculated
by the last PE in the systolic array design.

In order to maintain as much accuracy as possible, our design
uses wide accumulators. For each matrix of the pair-HMM forward
algorithm a separate wide accumulator sums every column of its
last row. The latency of a posit accumulator unit in terms of number
of cycles is equal to the depth of the systolic array (16 PEs) because
each matrix element is calculated per pair, thus allowing up to 16
pairs to be computed per pass through the systolic array. Therefore,
the accumulated value for a given pair is updated every 16 cycles
when new matrix elements for this pair are computed.

The advantage of using wide accumulators is that more informa-
tion is kept while accumulating the matrix elements of the forward
algorithm. Implementing this design in the pair-HMM accelerator
will result in a longer critical path in the internal circuit. Since more
logic is needed in order to process the wider fractions of accumu-
lated values, this affects either the clock frequency or latency of
the design. Therefore, the decision whether to integrate the wide
accumulator design into an overall accelerator design depends on a
trade-off between performance and precision.

An Accelerator for Posit Arithmetic Targeting Posit Level 1 BLAS and Pair-HMM CoNGA’19, March 13–14, 2019, Singapore, Singapore

Config Available Used (core) Used (total)

posit(32,2)

LUT 331680 185174 (55.83%) 264078 (79.62%)
Register 663360 179229 (27.02%) 271031 (40.86%)
BRAM 1080 99 (9.17%) 425 (39.35%)
DSP 2760 704 (25.51%) 723 (26.20%)
Power 18.299W 25.379W

Table 4: FPGA resource utilization and power consumption estima-
tion of the pair-HMM posit accelerator implementation for Apache
Arrow, both for the accelerator core only and for the total imple-
mentation including the Power Service Layer.

posit (hw) posit (sw) float

8 16 24 32 40 48 56
Haplotype length (Y)

7

7.5

8

8.5

9

9.5

D
ec

im
al

 a
cc

ur
ac

y

X = 8 X = 16 X = 24 X = 32 X = 40

Figure 15: Decimal accuracy of the proposed pair-HMM hardware
accelerator results, compared to traditional float computation for
posit(32,2) . X and Y denote the read and haplotype input sequence
lengths respectively.

4.3 Evaluation
An implementation of a single pair-HMM accelerator core has been
generated and tested for the posit(32,2) configuration. We analyze
FPGA resource used, decimal accuracy of calculation results and
throughput performance as well as speedup compared to software
implementations of the pair-HMM algorithm. The machine used in
these experiments is the IBM® Power Systems™ S822LC featuring
two 10-core POWER8 CPUs running at 2.92GHz. This machine is
equipped with the Alpha Data ADM-PCIE-KU3 accelerator card
featuring the Xilinx Kintex® UltraScale™ XCKU060 FPGA used
for this design.

Table 4 shows the area utilization statistics for the posit dot
product accelerator implementations, along with estimated power
consumptions. The power consumption for only the accelerator
core as well as for the total design is displayed. The overall design
includes the Fletcher-generated logic and the Power Service Layer
(PSL), required for interfacing with the host using CAPI.

Figure 15 shows the decimal accuracy of the calculation results
produced based on simulation of the proposed hardware pair-HMM
accelerator. The decimal accuracy of the posit(32,2) hardware im-
plementations is evaluated, together with a software evaluation of
the pair-HMM forward algorithm using the float format.

The reference calculation for determining the decimal accuracy
is performed in a 100-decimal accuracy number format using the
Boost Multi- precision C++ library, providing a number type with a

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Initial constant (power of 2)

2

3

4

5

6

7

8

9

D
ec

im
al

 a
cc

ur
ac

y

posit<32, 2>
posit<32, 3>
float

Figure 16: Decimal accuracy as a function of the initial scaling con-
stant.

customizable number of decimal digits of precision at compile-time
[1].

For the presented evaluations, different combinations of input
sequence lengths X and Y have been tested. The initial scaling
constant is set at 210. For these conditions, both the software and
accelerator calculation results are performing better than the tradi-
tional float format for nearly every test case, with an increase in
decimal accuracy ranging between approximately 0.5 and 2 deci-
mals of accuracy.

Appropriate caution should be takenwith regard to the presented
results. All pair-HMM forward algorithm calculations heavily de-
pend on the initial conditions. These conditions are, apart from the
input read/haplotype bases and emission/transmission probabilities,
influenced by the chosen initial scaling constant. The comparison
of different initial scaling constants and their effect on the decimal
accuracy of final calculation results as depicted in fig. 16 shows
this behavior, along with the proof that scaling constants exist that
result in better decimal accuracy compared to the best achievable
decimal accuracy for the float format.

The average performance for the pair-HMM hardware accelera-
tor interfacing with the Apache Arrow columnar memory format
implementation in terms of MCUPS for different combinations of
sequence lengths X and Y is depicted in fig. 17a. This performance
benchmark is performed for 215 base pair comparisons. As can
be seen, the throughput decreases for any input sequence length
X lower than the number of PEs in the systolic array due to un-
derutilization of the overall accelerator. The theoretical maximum
throughput of 2000 MCUPS is not fully reached due to the present
hardware overhead. The explanation for this is that batch data is
loaded into the accelerator buffers between batches, and the next
batch will be loaded after finishing the previous batch. The over-
head between initiating the read request to the host and receiving
the full data set decreases the maximum achievable performance.
The speedup of the pair-HMM hardware accelerator calculations
compared to calculation in software (using a posit format emulation
library) is depicted in fig. 17b for the same data sets. A significant
speedup is observed for all tested combinations of read and haplo-
type input sequence lengths, ranging from a factor of approximately
105 to 106 times speedup.

CoNGA’19, March 13–14, 2019, Singapore, Singapore L. van Dam et al.

8 16 24 32 40 48 56
Haplotype length (Y)

0

200

400

600

800

1000

Pe
rf

or
m

an
ce

 (M
C

U
PS

) X = 8
X = 16
X = 24
X = 32
X = 40

(a) Performance in terms of throughput (in MCUPS).

8 16 24 32 40 48 56
Haplotype length (Y)

0

2

4

6

8

10

Sp
ee

du
p

(h
w

 v
s.

sw
)

10 5

X = 8
X = 16
X = 24
X = 32
X = 40

(b) Speedup of hardware versus software, based on total execution
time.

Figure 17: Performance in terms of throughput (in MCUPS) and
speedup compared to software calculation for the proposed pair-
HMM accelerator design. X and Y denote the read and haplotype
input sequence lengths respectively.

5 CONCLUSION & FUTUREWORK
This paper proposed a method for creating hardware-based designs
based on posit numbers that can maintain full accuracy in inter-
mediate results, generalizing previous approaches that maintained
higher-precision intermediate results in (fused) multiply-add [10]
or dot-product [7] [8] calculations. A vector arithmetic accelerator
for Level 1 BLAS functions of posit vectors and a pair-HMM accel-
erator were implemented using this framework. The accelerators
are enabled with a coherent hardware-software interface. Input
data is fed from column buffers represented by the Apache Arrow
in-memory format, and is able to be fetched directly using the CAPI
SNAP framework by the accelerator by using the Fletcher interface
generator for Apache Arrow.

The speedup of the hardware accelerator compared to software
emulation of the posit number format is dependent on the length
of the input vectors. For example, for the calculation of the vector
dot product for an input vector length of 106 elements, a speedup
of approximately 15000× is achieved for the machine configuration
as described in section 3.2. The achieved decimal accuracy of the
posit dot product operation is on average one decimal of accuracy
higher compared to posit emulation in software. Note that both
software calculations of the vector dot product have been computed
using a regular loop mechanism. One could improve the accuracy
of these calculations by making use of special software libraries for
performing BLAS operations such as the Intel Math Kernel library.

The proposed accelerator implementation utilizes approximately
40% of the resources for the targeted FPGA. Therefore, for this
platform, there are multiple ways of utilizing the remaining area
available. One of the options for improving the current design is
by extending the accelerator with support for multiple posit con-
figurations. Another option is to run multiple identical accelerator

cores in parallel. These cores could work on the same input vector
in parallel, or work on different input vectors.

Based on the overall results shown for the presented posit vector
arithmetic accelerator we can conclude that the application of hard-
ware acceleration for performing posit arithmetic on (large) input
vectors is beneficial when aiming towards improving the overall
performance of an application working with posit numbers. The
modularity of the proposed accelerator makes this design particu-
larly useful in existing applications as the presented wrapper library
serves as a drop-in replacement for existing software routines for
performing vector arithmetic.

A second application of the proposed posit hardware framework
is a pair-HMM accelerator, also operating on Apache Arrow in-
memory tables and leveraging the Fletcher and SNAP frameworks
to create the interfaces. With the appropriate choice of the initial
constant, both the software and accelerator calculation results are
performing better than the traditional float format for nearly every
test case, with an increase in decimal accuracy ranging between
approximately 0.5 and 2 decimals of accuracy. A significant speedup
is observed for all tested combinations of read and haplotype in-
put sequence lengths, ranging from a factor of approximately 105
to 106 times speedup as compared to a software implementation
leveraging the posit format.

REFERENCES
[1] Boost. 2013. cpp_dec_float - 1.63.0. http://www.boost.org/doc/libs/1_63_0/libs/

multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_dec_float.html.
(2013). [Online; accessed 2018-11-20].

[2] Jianyu Chen, Zaid Al-Ars, and H. Peter Hofstee. 2018. A Matrix-multiply Unit
for Posits in Reconfigurable Logic Leveraging (Open)CAPI. In Proceedings of
the Conference for Next Generation Arithmetic. ACM, Singapore, 1:1–1:5. https:
//doi.org/10.1145/3190339.3190340

[3] Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. 1998. Biologi-
cal Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (1 ed.).
Cambridge University Press.

[4] John L Gustafson. 2015. The End of Error: Unum Computing. CRC Press.
[5] John L. Gustafson. 2017. Posit Arithmetic. https://posithub.org/docs/Posits4.pdf
[6] John L. Gustafson and Isaac T. Yonemoto. 2017. Beating Floating Point at its Own

Game: Posit Arithmetic. Supercomputing Frontiers and Innovations 4, 2 (April
2017), 71–86. https://doi.org/10.14529/jsfi170206

[7] Reinhard Kirchner and Ulrich Kulisch. 1988. Arithmetic for vector processors. In
Reliability in Computing. Elsevier, 3–41.

[8] Jack Koenig, David Biancolin, Jonathan Bachrach, and Krste Asanovic. 2017.
A Hardware Accelerator for Computing an Exact Dot Product. In Computer
Arithmetic (ARITH), 2017 IEEE 24th Symposium on. IEEE, 114–121.

[9] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian
Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel,
Mark Daly, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework
for analyzing next-generation DNA sequencing data. Genome research (2010).

[10] R. K. Montoye, E. Hokenek, and S. L. Runyon. 1990. Design of the IBM RISC
System/6000 Floating-point Execution Unit. IBM J. Res. Dev. 34, 1 (Jan. 1990),
59–70. https://doi.org/10.1147/rd.341.0059

[11] Johan Peltenburg. 2018. fletcher: A framework to integrate FPGA accelerators
with Apache Arrow. (2018). https://github.com/johanpel/fletcher

[12] J. Peltenburg, S. Ren, and Z. Al-Ars. 2016. Maximizing systolic array efficiency to
accelerate the PairHMMForwardAlgorithm. In 2016 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM). 758–762. https://doi.org/10.1109/BIBM.
2016.7822616

[13] Stillwater Supercomputing, Inc. 2017. universal: Universal Number Arithmetic.
(2017). https://github.com/stillwater-sc/universal

[14] Jeffrey Stuecheli, Bart Blaner, CR Johns, and MS Siegel. 2015. CAPI: A coherent
accelerator processor interface. IBM Journal of Research and Development 59, 1
(2015), 7–1.

[15] The Apache Software Foundation. 2016. Apache Arrow. (2016). https://arrow.
apache.org

[16] Laurens van Dam. 2018. Enabling High Performance Posit Arithmetic Applications
Using Hardware Acceleration. Master’s thesis. ISBN 978-94-6186-957-9.

http://www.boost.org/doc/libs/1_63_0/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_dec_float.html
http://www.boost.org/doc/libs/1_63_0/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_dec_float.html
https://doi.org/10.1145/3190339.3190340
https://doi.org/10.1145/3190339.3190340
https://posithub.org/docs/Posits4.pdf
https://doi.org/10.14529/jsfi170206
https://doi.org/10.1147/rd.341.0059
https://github.com/johanpel/fletcher
https://doi.org/10.1109/BIBM.2016.7822616
https://doi.org/10.1109/BIBM.2016.7822616
https://github.com/stillwater-sc/universal
https://arrow.apache.org
https://arrow.apache.org

	Abstract
	1 Introduction
	2 Modular Framework for Posit Arithmetic
	2.1 Overall Dataflow
	2.2 Posit Extraction
	2.3 Posit Normalization
	2.4 Posit Adder
	2.5 Posit Multiplier
	2.6 Posit Accumulator

	3 Posit BLAS Arithmetic Accelerator
	3.1 Implementation
	3.2 Results

	4 Pair-HMM Posit Accelerator
	4.1 Accelerator Design
	4.2 Accelerator Microarchitecture
	4.3 Evaluation

	5 Conclusion & Future Work
	References

