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INTRODUCTION

Over the last few years, there has been a significant

surge in the use of unmanned air systems (UASs) or

aerial vehicles (UAVs), not only in military applica-

tions, but also in the civilian domain given the numer-

ous benefits they bring such as to agriculture,

e-commerce, filming, inspection-maintenance, to name

a few. This is primarily driven by the wide availability

of commercial off-the-shelf miniature UASs. They are

relatively cheap, can be easily operated and are

becoming more sophisticated, capitalizing on advances

in sensing systems, wireless communications, automa-

tion, and artificial intelligence (AI). However, the

potential security and safety threats UAVs pose, for

example, to manned aviation, privacy, and sensitive

infrastructure or assets, are widely recognized.

Therefore, there is a growing demand for reliable non-

cooperative drone surveillance for either of the following:

1) Counter UAS (C-UAS): Detect and mitigate the

unauthorized use of drones by malicious or novice

operators such as in exclusion zones around air-

ports [1] or military bases.

2) Unmanned Air Traffic Management (UTM): Har-

ness the full potential of UAVs via enabling their

safe, widespread, utilization, and integration into

the airspace along with manned aviation, for

instance, the Single European Sky ATM Research

SESAR programme 2004–2020 [2].

Noncooperative C-UAS and UTM solutions often

comprise of multiple sensors such as radar, electro-optical

cameras, acoustic, and radio frequency (direction finders)

to deliver consistent situational awareness in complex and

dynamically changing environments [3], [4], for example,

surrounding airports. Nevertheless, only radar offers

24-hour, all weather, surveillance at long ranges and for

wide areas. In this article, we consider (ground-based)

radar which can be part of a multisensor system governed

by a suitable concept of operations (CONOPS). For

instance, radar cues a high-resolution camera to confirm

the identify of a target of interest, such as a drone.

Here, we treat the specific problem of automatic target

classification (ATC) or recognition (ATR) of UASs from

Authors’ current addresses: Bashar I. Ahmad is with
Thales Land and Air Systems, Cambridge CB24 9NG,
U.K., and also with the Department of Engineering, Uni-
versity of Cambridge, Cambridge CB2 1PZ, U.K. (e-mail:
b.i.ahmad@gmail.com). Colin Rogers is with Thales
Land and Air Systems, Cambridge CB24 9NG, U.K.
(e-mail: colin.rogers@aveillant.com). Stephen Harman
and Mike Newman are with Thales UK, Reading RG2
6GF, U.K. (e-mail: stephen.HARMAN@uk.thalesgroup.
com; mike.newman@uk.thalesgroup.com). Holly Dale,
Mohammed Jahangir, Michael Antoniou, and Chris
Baker are with the Microwave Integrated Systems Labo-
ratory, School of Engineering, University of Birmingham,
Birmingham B15 2TT, U.K. (e-mail: had449@student.
bham.ac.uk; c.j.baker.1@ bham.ac.uk). Francesco Fiora-
nelli is with TU Delft, Faculty of Electrical Engineering,
Mathematics and Computer Science, 2600 GADelft, The
Netherlands (e-mail: f.fioranelli@tudelft.nl).
Manuscript received 25 April 2023; accepted 16
November 2023, and ready for publication 20 November
2023.
Review handled by Michael Brandfass.
0885-8985/23/$26.00 � 2023 IEEE

18 IEEE A&E SYSTEMS MAGAZINE FEBRUARY 2024
Authorized licensed use limited to: TU Delft Library. Downloaded on February 27,2024 at 07:16:41 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8974-6041
https://orcid.org/0000-0001-8974-6041
https://orcid.org/0000-0001-8974-6041
https://orcid.org/0000-0001-8974-6041
https://orcid.org/0000-0001-8974-6041
https://orcid.org/0000-0002-4018-9392
https://orcid.org/0000-0002-4018-9392
https://orcid.org/0000-0002-4018-9392
https://orcid.org/0000-0002-4018-9392
https://orcid.org/0000-0002-4018-9392
https://orcid.org/0000-0002-5847-380X
https://orcid.org/0000-0002-5847-380X
https://orcid.org/0000-0002-5847-380X
https://orcid.org/0000-0002-5847-380X
https://orcid.org/0000-0002-5847-380X
https://orcid.org/0000-0003-2977-2031
https://orcid.org/0000-0003-2977-2031
https://orcid.org/0000-0003-2977-2031
https://orcid.org/0000-0003-2977-2031
https://orcid.org/0000-0003-2977-2031
https://orcid.org/0000-0003-2572-151X
https://orcid.org/0000-0003-2572-151X
https://orcid.org/0000-0003-2572-151X
https://orcid.org/0000-0003-2572-151X
https://orcid.org/0000-0003-2572-151X
https://orcid.org/0009-0001-0449-6432
https://orcid.org/0009-0001-0449-6432
https://orcid.org/0009-0001-0449-6432
https://orcid.org/0009-0001-0449-6432
https://orcid.org/0009-0001-0449-6432
https://orcid.org/0000-0001-8254-8093
https://orcid.org/0000-0001-8254-8093
https://orcid.org/0000-0001-8254-8093
https://orcid.org/0000-0001-8254-8093
https://orcid.org/0000-0001-8254-8093


radar data, in particular the proliferating sub-50 kg drones,

see the NATO taxonomy in Table 1. This encompasses

improvised, commercial, and military grade rotary or fixed

wing drones. Spanning the “small” to “nano” labels of

Class I, the sub-50 kg platforms are thence referred to as

miniature UAS (mUASs) or UAVs (mUAVs) for brevity.

They pose unique challenges to radar as highlighted in the

next section. Tactical and Medium/High Altitude Long

Endurance (M/HALE) UAVs can be regarded to resemble

traditional targets such as airplanes and jets in terms of

radar cross section (RCS), speed, and altitude.

Different classification tasks can be formulated

depending on the sought target categories. For example,

the objective might be to distinguish drone from non-drone

targets, the UAS type (e.g., rotor or fixed wing), size (small,

medium, and large), carrying a payload or not and others. In

this article and for simplicity, we predominantly focus on

the radar ability to automatically discriminate between

drone and non-drone objects. ATC enabler, considerations,

performance metrics that are relevant to common opera-

tional requirements, and other related capabilities (e.g.,

ATR with drone subclasses, global classifiers, detecting

malicious intent, simulators, digital twins and others) are

also discussed. Additionally, here we use real measure-

ments from the Thales Gamekeeper radar for illustrations.

It is an L-band staring, otherwise known as ubiquitous or

holographic [5], radar with 64-element receiver array

designed for detecting, tracking in 3D and classifying

mUASs within a 7.5 km range, 90� azimuth coverage, and

with an� 0:27 s update period in its current configuration.

The remainder of this article is organized as follows.

In the section “Drone Surveillance Radar and ATC,”

we outline the key problems and considerations of

classifying mUASs with radar. ATC performance indicators

are introduced in the section “Classification Performance

Evaluation” and example results are shown in the section

“Example Results From Real Data.” Opportunities to

achieve enhanced (or more detailed) target recognition

results are highlighted in the section “Additional Capabili-

ties and Prospects.”

DRONE SURVEILLANCE RADAR AND ATC

WHY ARE DRONES DIFFICULT TARGETS FOR RADAR?

Class I (miniature) drones are particularly challenging tar-

gets to detect and track with radar because they can simul-

taneously have all (or most) of the following attributes:

� Small (low observable):mUASs can have low RCSs,

which can be � 0.01 m2 as with nano or micro

drones, and discriminative features of their radar

Image licensed by Ingram Publishing

Table 1.

NATO Drone Platforms Designations and Taxonomy

UAS Class Maximum Take-Off

Weight (kg)

Label

I(a) < 0:2 Nano

I(b) 0:2� 2 Micro

I(c) 2� 20 Mini

I(d) 20� 150 Small

II 150� 600 Tactical

III > 600 M/HALE
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signatures (e.g., micro-Doppler components) are a

further one to two orders lower [6]. This necessi-

tates the sensor having a high sensitivity and

thereby detecting a potentially large number of tar-

gets of similarly low RCSs such as birds.

� Slow:Drones can have markedly low speeds, for

example, less than 10 m/s which renders them virtu-

ally undetectable to conventional radar systems

(e.g., primary airport radars); rotary-wing mUAVs

can also hover. Consequently, their body return

and/or any distinguishable features in their radar

signatures (e.g., from their on-board rotors, if any)

can be easily obfuscated by stationary or slow-mov-

ing clutter within the same resolution (e.g., range,

azimuth, and elevation) cell making them difficult

to consistently detect and track.

� Low:mUASs can fly at low altitudes (e.g., between

30 to 150 m above ground and remain not easily

visible to the naked eye). At such heights, espe-

cially in urban-industrial environments, we can

have: a) occlusions to the radar line-of-sight from

terrain or buildings and electromagnetic RF inter-

ference; b) multipath effects, impacting targets

height measurements; c) interference from ground

targets (e.g., cars) and man-made equipment with

moving or rotating parts such as air-conditioning

units, generators or roof fans; and d) the potential

presence of large number of birds of various types

and sizes.

� Agile: While (semi-)autonomous mUAVs often

follow optimized smooth paths (e.g., between pre-

defined waypoints), they can be highly maneuver-

able, and can undertake sharp maneuvers such as

abrupt turns and accelerations. Manually operated

drones, for example racing or first person view

mUAVs, can fly erratically with frequent maneu-

vers. The radar multitarget tracker (MTT) has to

be able to handle a wide range of kinematic behav-

iors. This is generally constrained by the tracker

employing motion models with fixed, fine-tuned,

parameters for describing the expected level of

variability in the targets movements. This encom-

passes models specifically developed for manoeu-

vring targets [7]. Alternative techniques, such as

interacting multiple model [8] and adapted

MTT [9], can be either hard to correctly configure

or prohibitively computationally demanding when

simultaneously tracking large number of objects,

majority of which are non-drone targets such as

cars, pedestrians, birds, etc.

A drone surveillance radar processing chain nor-

mally consists of the standard three sequential opera-

tions for: 1) detection, 2) tracking and 3) classification

of targets within the field of coverage. Each is carried

out within a separate software-firmware module, which

can share information. An example block diagram is

shown in Figure 1. Merging two or more of these tasks

is known to substantially improve the radar perfor-

mance against mUASs, for instance track-before-

detect [10], joint tracking-classification [11], and even

recognize-before-detect. The latter however regularly

refers to a rule-based filtering of detections to prevent

overloading the multitarget tracker or the operator.

Next, we focus on ATC.

AUTOMATIC DISCRIMINATION: DRONE VERSUS

CONFUSER TARGETS

Several radar systems, including in multistatic configura-

tions, have emerged to address the formidable challenges

presented by mUASs [3], [5], [12]. Within a relatively

large field of coverage (e.g., spanning a few kilometers in

range), they have to contend with a large number of poten-

tial confuser targets, such as birds, which cohabit the same

aerospace and exhibit similar characteristics to mUASs,

for instance their RCSs, altitude, and speeds. A reliable

automatic target classifier is thus fundamentally important

in drone surveillance radars to distinguish between

mUASs, which are usually rare, and confuser targets (e.g.,

birds), which can be abundant in (semi-) rural or urban

environments. The surveillance system resources (e.g.,

secondary optical sensors) and/or operator attention

should be dedicated to scrutinizing targets that can pose a

threat (e.g., mUAVs). Otherwise, they can be over-

whelmed by the large number of tracked targets. ATC is

also crucial for automation to reduce the overall C-UAS/

UTM system operating cost by circumventing human-

intensive CONOPS.

To demonstrate the sheer number of targets drone sur-

veillance radars often handle, in Table 2 we list the aver-

age numbers of trajectories formed on targets per hour by

the Thales Gamekeeper sensor within a range of 7.5 km;

90� azimuth coverage. They are attained from 24-hour

Figure 1.
Standard processing chain of a drone surveillance radar.
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continuous recordings at various sites in the U.K. and

France. From the table, it can be seen that several thou-

sand tracks per hour are processed on average by the

radar; this can exceed 15,000 per hour at certain times in

mixed urban and semirural areas. On average several hun-

dred tracks can be considered at any point in time. Figure 2

displays all the trajectories reported by the radar MTT dur-

ing a 30 min period at semiurban/rural environment (Site

B). Although no ground-truth is available for all targets

within the radar coverage, analysis of the characteristics

of the tracks in Table 2 and Figure 2 (e.g., height, location,

speed, etc.) confirm that they are not spurious. Accord-

ingly, ATC module has to correctly classify the vast

majority of tracks as non-drone and avoid triggering false

alarms (FAs) whose prominence is emphasized in the

section “Classification Performance Evaluation.”

CLASSIFICATION ALGORITHMS AND ENABLERS

Automatic classification or recognition of noncoopera-

tive targets with radar, including UASs, is a well-estab-

lished research field with a plethora of existing

techniques [13]. Conventional approaches are com-

monly based on hand-crafted rules applied to selected

target features (e.g., RCS, height, velocity, etc.) and/or

employ classical spectral analysis tools (e.g., cepstrum).

Recent ATC algorithms on the other hand are increas-

ingly data-driven and leverage advances in machine

learning (ML), such as deep neural networks (DNNs),

to achieve impressive classification performance,

see [14], [15], [16], [17], [18], [19], [20], [21].

While progress is being made to better understand the

behavior of DNNs [22], the main difficulty in developing

Table 2.

Average Number of Tracks Per Hour From a Staring Radar, Within 7.5 Km Range and 90� Azimuth at Different Sites

Site Description Average Number of

Tracks (per hour)

A Dense urban environment with the radar overlooking a major U.K. city 6803.2

B Mixed semiurban and semirural environments with small-medium

villages/towns distributed in coverage

9204.5

C Semirural environment with major roads in coverage 9863.3

D National airport within a semirural environment and surrounded by

small-medium villages/towns

6532.3

E International airport with mixture of dense urban and industrial areas

within coverage

9394.4

F Mixed urban and semirural environment with major roads and

villages/towns within coverage

11183.9

Figure 2.
Trajectories of tracked targets within a range of 7.5 km at Site B during a typical 30 minute radar recording.
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generalizable machine-learned classifiers, usually within a

supervised learning framework, is the availability of exten-

sive and sufficiently representative labeled training data-

sets. This is due to the great diversity of potential targets to

be recognized relative to the available real radar measure-

ments. For example, the wide range of possible mUAS

sizes, designs, speeds, heights, trajectory profiles-maneu-

vers, rolls-pitch-yaw angles with respect to the radar (i.e.,

incident angles), rotor speeds which may depend on the

ambient wind, clutter characteristics, etc. Obtaining

ground-truth of bird targets can involve further complica-

tions, for example, due to the difficulties and cost of con-

ducting controlled trials with birds instrumented with

transceivers or employing a specialized targets labeling

solution with electro-optical sensors, secondary radars, etc.

Using synthetic data (e.g., to complement the available real

sensor data, see the section “Simulators and Digital

Twins”) can be critical to mitigate overfitting effects and

ensure that data-driven classifiers deliver robust perfor-

mance when applied under real operational conditions

(e.g., low SNR and previously unseen drone data).

Given the drastic measures that might need to be

taken when an unauthorized or malicious mUAS is

declared (e.g., closure of the airspace near civilian air-

ports that can severely disrupt the aviation traffic), it

can be highly desired for the radar ATR module to

report the certainty level in its classifications/predic-

tions such as confidence scores for all considered target

categories. For instance, a DNN micro-Doppler classi-

fier can have a softmax output layer to produce these

confidence scores, in lieu of the target final label [14],

[18], [19], [20]. This permits the multisensor counter

UAS or UTM system to not only adopt different risk

management strategies for different targets, but also a

more informed data fusion and CONOPS.

Drone classification often relies on target discrimina-

tive features that can be grouped into three categories:

micro-Doppler, kinematics, and long-term behavior.

They are described next along with their limitations.

MICRO-DOPPLER SIGNATURES

The motion of rotors or propellers on-board a mUAS pro-

duce spectral lines in the radar Doppler spectrum, with

approximate harmonic structure around the target body

Doppler frequency. These are dubbed micro-Doppler

components and their characteristics depend on the num-

ber of blades, blade length, frequency of rotation, radar

wavelength, and respective incident angle [23]. Example

Doppler spectrograms from a bird and DJI Inspire 2 quad-

copter drone are depicted in Figure 3, where both targets

are approximately 1:5� 2km from the L-band Game-

keeper radar. Unlike the bird, the mUAV Doppler spectro-

gram in Figure 3(a) has visible micro-Doppler

components symmetrically distributed around the target

body. Nevertheless, bird wings motion can result in intri-

cate micro-Doppler-type spectral features for appropri-

ately short radar wavelengths [24]; they are notably

distinctive from those originating from mUAS blades

rotating up to several thousand times a minute (i.e.,

drone’s propellers move at a very different speed to a

bird’s wings). On detecting micro-Doppler signatures for

ATC, convolutional neural networks (CNNs) have shown

great promise [14], [15], [16], [18], [19], [21]. Their input

can be Doppler spectrograms from multiple radar frames/

scans (e.g., magnitude spectrogram as in Figure 3), com-

plex time series data or covariance matrices. The former

can be treated as an image and micro-Doppler harmonic

structure becomes the sought pattern. Popular and special-

ized CNN architectures such as GoogLeNet, AlexNet,

Figure 3.
Doppler spectrograms from real radar data of a quadcopter drone

(a) and bird (b) at ranges � 1:5� 2 km. Red crosses mark the tar-

get body Doppler frequency at one time step; arrows indicate the

UAS micro-Doppler returns.
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CRNet, SPDNet or an aggregation of various models can

be utilized. Recurrent neural networks and other hybrid

DNNs have also proven effective for micro-Doppler-based

drone recognition [14]. While micro-Doppler is a strong

classification cue, especially against prevalent confuser

targets such as birds, rotors radar signatures can be �15 to

�20 dB lower than that of themUAS body. The correspond-

ing signal-to-noise (SNR) ratios decay rapidly with range

and can be reduced further due to the blades characteristics

(e.g., small size, fairing and constructions from a low reflec-

tive material such as carbon or plastic) as well as deliberate

concealment (e.g., with blade guards). Consequently, the

dectectability of micro-Doppler from drone propellers can

be restricted to specific scenarios such as mUASs at short

ranges and/or with certain rotor blades physical properties.

Furthermore, there are several (false positive) micro-Dopp-

ler sources in industrial/urban settings such as air-condition-

ing units, generators or roof fans, etc.

TARGET BODY KINEMATICS AND CHARACTERISTICS

Features extracted from the kinematic movements and

characteristics of the target main body can facilitate

distinguishing between drone and non-drone targets, for

instance velocity, acceleration, jerk, height above

ground, 2D/3D trajectory curvature, torsion, body

Doppler stability and spread over time, RCS and

others [16], [17]. They are typically derived from the

MTT output or even associated detections/plots; hence

their quality is dependent on the detection-tracking

accuracy. The classifier employs a statistical measure

of each kinematic feature (e.g., mean, L-moments,

median, standard deviation, smoothness metric, quan-

tiles, etc.) computed from the time series of its conse-

cutive instantaneous values for a given trajectory.

Contrary to micro-Doppler signature, the range of pos-

sible values of the kinematic features for the mUAS

and bird targets can largely overlap. Thereby, relying

on them alone can lead to a relatively low classification

performance.

LONG-TERM BEHAVIOR AND PATTERNS OF LIFE

Drones can follow distinctive trajectory shapes dictated by

a mission planning software to optimize use of resources

(e.g., time the platform is airborne under limited battery

life) such as waypoints-driven paths, hippodromes, hexa-

gon, and others [25]. These are generally not characteristic

of birds behavior. Conversely, frequent swooping maneu-

vers are more likely to be displayed by birds. Revealing

such distinctive long-term kinematic patterns can allow

identifying mUASs targets. They are however not always

present and demand a persistent tracking of low observ-

able and agile targets over extended durations, which is

difficult to maintain at long ranges and in high clutter-

noise environments. Additionally, a substantial delay is

incurred before a distinguishable motion pattern (if any)

materializes and this degrades the ATC timeliness which

we discuss in the section “Timeliness: Classification Time

Delay (CTD).” For some target types (e.g., cars or birds),

revealing high activity areas and times (e.g., on major

roads) can be salient pattern-of-life information that can

be exploited by the classifier; this can be viewed as con-

textual data.

Subsequently, it is imperative that combining micro-

Doppler, kinematic and long-term behavior features

(if available) can boost the ATC overall performance

[16], [17].

SUMMARY OF ATC CONSIDERATIONS

Linked to the challenges of detecting/tracking mUASs in

the section “Why are Drones Difficult Targets for

Radar?,” in summary the major considerations for formu-

lating drone surveillance radar ATC approaches are:

� Large number of confuser targets that can poten-

tially trigger FAs; this can render stringent FA

specifications (e.g., a maximum of one FA every

24 h or even every several days in urban-rural

settings) unachievable in practice with radar

alone.

� Fleeting discriminative target features, such as

micro-Doppler from a drone’s rotors, that are inter-

mittently observed due diversity in target type,

flight profiles, behaviors, clutter, multipath, respec-

tive incident angle, etc. This can lead to fluctuations

in the classification results over time. For illustra-

tion, an example of confidence scores in the UAS

class from three ML classifiers are depicted in

Figure 4. This is from real Gamekeeper radar data

of the DJI Inspire 2 drone, whose Doppler spectro-

gram is shown in Figure 3(a). The ATC methods

are: i) multistage with machine-learned decision

tree (DT) [17] trained on real sensor data and using

micro-Doppler as well as kinematic features at each

radar frame with a Simple Moving Average (SMA)

at its output, ii) AlexNet-based CNN in [18] with

nonoverlapping Doppler spectrograms of length

� 5:5s (updates every � 5:5s) and trained on real

radar data, iii) low-latency simple CNN model [20],

trained exclusively on synthetic data to use as its

input the Doppler spectrum from one update/time-

step. Both multistage and low-latency CNN classi-

fiers update every � 0:27s. The noticeable changes

in the classification results over time is visible in

Figure 4 for the three classifiers which all perform

reasonably well in terms of declaring this tracked

target a UAV (e.g., with a 50% decision threshold).

This variability in their outputs can be attributed to

Ahmad et al.
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changes in the radar measurements quality over

time: see spectrogram in Figure 3(a).

� Limited available data and generalizability of the

classifier, especially for data-driven (machine-

learned) ATC algorithms expected to tackle previ-

ously unseen drone types or targets whose data are

not in the training datasets.

� Capturing classification certainty to enable multi-

sensor C-UAS or UTM solutions to apply effective

CONOPS at the command and control (C2) system

level.

� Computational efficiency and swarms, to process

large number of targets with a track-level classifier.

An initial coarse plot-level classification is some-

times used by radars for pruning detections fed to

the tracker. This can be exacerbated by drones abil-

ity to fly in swarms, where 3281 is the Guinness

world record for most UAVs airborne simulta-

neously [26]. With large number of confuser targets,

a much smaller swarm could risk overwhelming the

radar sensor processing chain.

CLASSIFICATION PERFORMANCE EVALUATION

There are widely used detection and multitarget track-

ing key performance indicators (KPIs) for noncoopera-

tive surveillance systems, for example, the single

integrated air picture (SIAP) [27]. On the other hand,

radar ATC efficacy is often assessed in terms of stan-

dard object recognition metrics from the ML field, such

as accuracy, true positive (TP) and false positive (FP)

rates, confusion matrix, F1 score, and receiver operating

characteristic (ROC), if relevant. While these are infor-

mative, especially for developing and refining the

classification algorithm, in this section we revisit the

definitions of some of the traditional KPIs and propose

additional metrics that are important to the end-users in

various C-UAS/UTM applications.

EVALUATION FRAMEWORK

For simplicity, we note that the classification KPIs are

presented here for a binary discrimination problem,

namely miniature drone/truth versus non-drone/non-

truth (i.e., birds, cars, pedestrians, etc.) targets. This

also considers a framework underlined by the following

essential stipulations from the ATC considerations out-

lined in the section “Summary of ATC Considerations”:

� ATC specific metrics are exclusively studied; they

are disentangled from issues that arise from the

detection and tracking steps which have own KPIs

(e.g., SIAP). For instance, true positive classifica-

tions are obtained from time steps where a track is

formed and associated with the truth/drone target.

This permits a more objective examination of the

classifier behavior and benchmarking its perfor-

mance. This is despite the dependence of the ATC

on the detection-tracking results.

� Classification confidence and hard positives/nega-

tives are reported. The former, whose values can

range from 0 to 1 (or 0 to 100%), is the certainty

level in the classifier predictions for each of the

nominal target categories. A decision rule is then

applied to determine the target category, for

instance the most probable class, i.e., maximum a

Posteriori (MAP), or the confidence score in the

UAS class exceeding a threshold value. Thus, the

notion of “Hard” TP (HTP) and FP (HFP) is

Figure 4.
Confidence scores in UAS category from three classifiers for the quadcopter whose spectrogram is shown in Fig. 3(a); decision tree (DT),

simple moving average (SMA), and convolutional neural network (CNN).
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introduced to signify their post-decision nature.

Confidence scores can be attained from a time aver-

age (e.g., SMA) or other method for combining the

classifier results over time.

� All metrics are calculated per radar recording/data-

set (e.g., during a live drone trial) and combined

measures, such as average, across multiple ones can

be obtained. An example is the 30 min recording in

Figure 2. This ensures that a poor performance at a

specific site or time (e.g., due to high number of

confuser targets) is not overlooked, especially in

relation to FAs, see Table 2 for the variability

between locations. Even at one site, the surveyed

scene characteristics can substantially change with

time. Conversely, traditional ATC performance

assessments (e.g., with accuracy and confusion

matrix) are usually computed from all of the avail-

able test data (i.e., from the aggregate of all

datasets).

� FPs from individual non-truth tracks in a recording

are first calculated and subsequently combined

(e.g., via average, standard deviation, etc.) to repre-

sent FP metrics. This facilitates defining KPIs such

as timeliness and FAs. Truth information is regu-

larly unavailable for non-drone targets such as birds.

This is unlike TP metrics pertaining to cooperative

UAS targets during flight trials (e.g., from on-board

GPS). True positive KPIs are attained from data of

all tracks associated with the truth, within the corre-

sponding radar recording.

For context, consider a fixed site protection scenario,

where a C-UAS radar at a civilian airport is tasked with

reporting the presence of mUASs in the vicinity of (or

within) the restricted flying zone covering the protected

aerodrome [1]. Notation of the discussed metrics are listed

in Table 3. We make one further assumption here to

streamline the notation. At any kth time step (i.e., radar

frame or update at time instant tk), only one track can

associate with the jth truth/drone target. This can be easily

generalized to multiple associations at tk by appropriately

defining the setAj in Table 3.

TP CONFIDENCE, DEVIATIONS, AND HARD TRUE

POSITIVES

The confidence cþj;k estimated by the classifier is the one

for the UAS/truth category when a track plot at time

instant tk (i.e., kth radar frame or update interval) is

associated with the jth drone/truth target. Its values can

range from 0 to 1 (or 0 to 100%) and represent the

ATC certainty level in the target being a UAV. A deci-

sion on the target class can then be taken leading to the

Hard TP (HTP) Cþ
j;k 2 f0; 1g at tk. This can be based

on cþj;k being larger than the value for all other target

classes, or its own value exceeding a certain threshold

g, for instance, Cþ
j;k ¼ 1 if cþj;k > g ¼ 0:9 and zero

otherwise.

The mean TP Confidence (TPC) for the jth UAS/

truth is

TPCj ¼
P

k2Aj
cþj;k

Nþ
j

(1)

from the setAj of all time steps where a track-plot is asso-

ciated with the jth truth and Nþ
j ¼ jAjj. The average

across all J drone targets in the radar recording (e.g., dur-

ing a live drone trial) is given by: TPC ¼ P
j TPCj=J .

An increase in TPC implies a better ability to recognize

drone targets and with higher confidence. A related metric

that can measure the consistency of the TP confidences is

the standard deviation

DevTPCj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k2Aj

cþj;k � TPCj

� �2
=Nþ

j

vuut (2)

with average DevTPC ¼ P
j DevTPCj=J . A decrease in

its value signifies an improvement in the ability of the

classifier to recognize drones over a period of time.

Another metric to capture the variability in the TPC

can be explored. Hard True Positive Classification Prob-

ability (HTPCP) for the j ¼ 1; 2; . . .; J drone/truth

targets is

HTPCPj ¼
X
k2Aj

Cþ
j;k=Nj

HTPCP ¼
X
j

HTPCPj=J (3)

where HTPCP is the traditional true positive or recall KPI.

UAS DECLARATION PROBABILITY (UDP)

The likelihood that the jth UAS/truth target is correctly

classified as a drone for at least one time step. This is

termed UAS target declaration probability (UDP) and is

given by

UDPj ¼
1; if Cþ

j;k ¼ 1 for any k 2 Aj

0; otherwise

�
(4)

and UDP ¼ P
j UDPj=J for j ¼ 1; 2; :::J . In other

words, if a drone is within the radar system field of view

and it has been detected-tracked, this is the likelihood of it

being identified as a UAS. Higher UDP indicates a higher

ATC reliability; it should be considered with the timeli-

ness metric detailed next. A more demanding UDP rule

can be adopted such as HTPs are required to be main-

tained for a fixed duration.
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TIMELINESS: CLASSIFICATION TIME DELAY (CTD)

This conveys the delay incurred prior to successfully

declaring, for the first time, a detected-tracked UAS/truth

target as a drone. This is an ATC timeliness measure. For

the ith track which starts at time instant t0j;i and associates

with the jth drone/truth target, its CTD (in seconds) is

CTDj;i ¼ tþj;i � t0j;i (5)

where tþj;i ¼ minftk : Cþ
j;k ¼ 1; k 2 Tj;ig is the first time

step this track is declared as a drone target. A demonstra-

tion is shown in Figure 5, where we have a track break

caused by a temporary loss of the target (e.g., due to a

sharp manoeuvre, loss of detections of the low observable

target, a high clutter region, etc.). Time instants t0j;i and

tþj;i for the two tracks formed on the drone are marked by

arrows. Track 1 and 2 last for five and four time steps (or

updates), respectively. In this case and for a radar update

period of 0.27 s, CTDj;1 ¼ 0:27s and CTDj;2 ¼ 0:54s;

HTPCP ¼ 5=9, and UDP ¼ 1.

The average and minimum CTD from all tracks (with

unique IDs) that are associated with the jth UAS/truth tar-

get and each have at least one HTP, i.e., setHþ
j , are

CTDj ¼
X
i2Hþ

j

CTDj;i=jHþ
j j

CTDj;min ¼ minfCTDj;i; i 2 Hþ
j g: (6)

Averages can be computed for all J targets as per CTD ¼P
j CTDj=J and CTDmin ¼ P

j CTDj;min=J . If one

Table 3.

Notation for the Proposed Key Performance Metrics

T Duration (in Hours) of the Processed Radar Recording

J Total number of detected-tracked drone/truth targets

NT Total number of formed tracks with unique IDs in the radar recording

Aj Set of time steps (i.e., radar updates/frames), where there is a track-plot associated with the j th
truth/drone target

Nþ
j Total number of time steps in setAj and Nþ

j ¼ jAj j
Tj;i Set of time steps where the ith track is associated with a UAS

cþj;k Confidence cþj;k 2 ½0; 1� in the truth/UAS class at the k th step (at time instant tk ) when a track is

associated with the j th drone target

Cþ
j;k Hard true positive, Cþ

j;k 2 f0; 1g, that the target is a UAS/truth when a track plot at tk is associated

with the j th UAS/truth target

g Threshold value of a hard TP, Cþ
j;k ¼ 1 if cþj;k > g and 0 otherwise

Hþ
j Set of tracks (of unique IDs) that are associated with the j th drone/truth with Cþ

j;k ¼ 1 for at least one

time step

t0j;i Time instant (in seconds) of the start of the i th track, which associates with the j th truth/drone

target for at least one time step

tþj;i Time instant (in seconds) of the first/earliest HTP declared for the ith track associated with the jth
drone/truth target

I Total number of tracks (with unique IDs) not associated with any drone/truth target

c�i;k Confidence c�i;k 2 ½0; 1� in the UAS/truth category for the i th track plot at tk not associated with the

drone/truth target

C�
i;k Hard false positive, C�

i;k 2 f0; 1g, that the target is a UAS/truth at tk for the i th track plot not

associated with the drone/truth target

ĝ Threshold value for a hard FP, C�
i;k ¼ 1 if c�i;k > ĝ and 0 otherwise

Bi Set of time steps (i.e., radar update intervals) where i th track is not associated with any of the truth/

drone targets

N�
i Total number of time steps in set Bi and N�

i ¼ jBi j
Mu Number of successive hard FP for a track not associated with a drone/truth track that produces a

unique FA as per (9)
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continuous track is formed on the UAS, i.e., no breaks,

then jHþ
j j ¼ 1.

ATC timeliness can be critical where a minimal CTD

is often sought. Early recognition of the mUAS provides

C-UAS system operators with sufficient time to take nec-

essary action to address any threat the drone might pres-

ent, for example, air traffic management (ATM) can divert

flights. If a new trajectory with a unique ID is created by

the MTT for the same drone target (e.g., following a track

break), it will be treated as a new track that may require

scrutiny/interrogation by the surveillance system. Conse-

quently, the average CTD can be a more suitable timeli-

ness metric with a radar MTT that has a high rate of track

number changes (R) and/or low longest track segment

(both are SIAP measures of MTT continuity). CTD can be

in reference to the time instant tD0j the mUAS was

detectable in principle in lieu of t0j;i in (5). This mixes

detection and classification metrics and it is usually diffi-

cult to specify tD0j in complex environments.

FP CONFIDENCE, DEVIATIONS, AND HARD FP

For the ith track, which is not associated with a drone/

truth target during the time steps in set Bi and N
�
i ¼ jBij,

FPCi ¼
P

k2Bi
c�i;k

N�
i

;

DevFPCi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k2Bi

c�i;k � FPCi

� �2

N�
i

vuut
(7)

are the mean false positive confidence (FPC) and its devia-

tions, respectively. Hard false positive (HFP) follows from a

decision scheme with C�
i;k 2 f0; 1g at tk, for instance,

C�
i;k ¼ 1 if c�i;k > ĝ and 0 otherwise. While average from all

non-truth trajectories can be obtained, reporting the L (e.g.,

L ¼ 10) tracks with the highest mean FPC can be highly

beneficial to understanding the ATC false positive behavior.

A decrease in the mean FPC implies an improvement

in the ability to classify a non-drone as a non-drone, hence

potentially reducing hard FPs and FAs (see the section

“Summary of ATC Considerations”). Lower DevFPC (for

selected tracks or average across all non-drone tracks)

suggests a more consistent classification of non-drone tar-

gets. The traditional (hard) false positive metric, referred

to here by false positive classification probability

(HFPCP), within the studied radar recording is

HFPCP ¼
X
i

X
k2Bi

C�
i;k=N

�
i :

FALSE ALARM RATE

This is the number of tracks that trigger a FA and can require

the operator and/or secondary sensor attention (e.g., camera

to confirm the target class). We measure this as a rate, per

hour and/or per RTrack tracks. FAs are based on hard false

positives, i.e., post deciding the target class (e.g., with a

thresholding or MAP criterion). The ith track triggers a

unique FA (UFA), i.e., UFAi ¼ 1, if the ATC makes aMU

successive hard false classifications for this non-drone tra-

jectory, at least in one occasion such thatMU � 1 is an inte-

ger. We can formulate this for the ith track not associated

with the UAS target at the k 2 Bi time steps as follows:

UFAi;k ¼ 1; if k 2 Bi and
Pk

minðk;k�MUþ1Þ C
�
i;k � MU

0; otherwise

(

UFAi ¼
1; if

P
k UFAi;k > 0

0; otherwise.

�
(9)

It is thus unique false alarms since one track can cause at

most one FA.

Figure 5.
Example of a UAS trajectory with two formed tracks on a mUAS due to a temporary loss of the target (i.e., a track break/death, for instance

induced by the target going through zero-Doppler and/or undertaking a sharp maneuver). Hard TPs are displayed (green is for 1 and red for

0). Time instants of tracks start and first declared hard true positive are indicated by arrows.
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The FA rate (FAR) per hour is

FAR ¼
XI
i¼1

UFAi=T

and FAR ratio (FARR) per RTrack tracks (e.g.,

RTrack ¼ 100)

FARR ¼ RTrack

XI
i¼1

UFAi=NT :

These two performance metric determine: a) the user

confidence in the radar classifications since FAs can be

extremely distracting for operators; b) the load on the C-

UAS solution secondary sensors (e.g., cameras, RF direc-

tion finders, etc.); and c) potential for automation to

reduce human-intensive CONOPS. Minimizing the FA

rate is among the main challenges for long-range drone

surveillance radars [14], [17], [20]. It is noted that less

strict UFAi scheme can be employed in (9), e.g.,MU non-

successive hard false positives.

STANDARD METRICS AND OTHERS

The standard recall (i.e., HTPCP) in (3) and FP (i.e.,

HFPCP) in (8), other standard metrics such as accuracy,

F1 score, confusion matrix, and ROC (e.g., for any of the

TP versus FP measures to ascertain a suitable decision

threshold) are well-understood and can be utilized to eval-

uate the ATC performance. The mUAS classification

problem is however markedly unbalanced, with typically

far more non-drone data compared to drone due to con-

fuser targets (e.g., birds). It can be more reasonable to

apply different weights to HTPs and HFPs when calculat-

ing any measure that mixes them, thereby “weighted”

accuracy, F1 score, etc. Otherwise, the true negative and

FP data points can dominate the outcome. For this reason,

we introduced in this article additional metrics.

Examining ATC results with accuracy and/or F1

scores alone can hide a high FA problem. This is because

only if a small “percent“ (e.g., 0.1%) of the large number

of non-drone tracks (e.g., 8,000 per hour, see Table 2)

can lead to an excessive FAR (per hour) that can deluge

the C-UAS system and/or operators. This can occur even

if the accuracy and F1 scores are satisfactory high (e.g.,

exceeding 95%).

We explored SIAP inspired ATC metrics [28] such as

classification spuriousness (i.e., ratio of extant HFPs to all

hard positive classifications), continuity (i.e., maintaining

correct UAS identification over time), and ambiguity (i.e.,

over reporting drone presence). They were viewed to rank

lower in terms of relevance to requirements of noncooper-

ative drone surveillance systems compared with those

detailed above.

SENSITIVITY TO SNR

Classifiers efficacy is generally sensitive to the SNR per-

taining to the drone target, especially in terms of the

detectability of its micro-Doppler signatures [14], [19],

[21]. For example, CNNs’ impressive classification accu-

racy drastically degrades as SNR decreases [21]. A lower

SNR can be due to one or more of the following reasons:

1) longer target range, 2) smaller UAS platform (i.e.,

RCS), and 3) complex environment with higher back-

ground noise from clutter and interference.

Therefore, it is paramount to quantify the ATC sen-

sitivity to SNR. This can be achieved by plotting

the true-positives-related classification metrics (e.g.,

HTPCP, TPC, accuracy, and F1 score) versus the esti-

mated SNR from real radar data (see next section) and/

or from synthetically injected noise as in [21]. This

ensures a better assessment of the radar “classification

range” against different mUAS types/sizes and resil-

ience to environmental factors. Maximizing ranges at

which miniature drones can be recognized is vital to

implementing effective system level CONOPS and

threat mitigation protocols. For instance, a mUAS mov-

ing at a speed of 15 m/s toward the airport glide slope

and classifying it at 1.8 km away from this prohibited

region gives ATM operators 2 min to warn civilian air-

planes landing and taking off; this can be increased to 4

min if the ATC range is extended to 3.6 km.

EXAMPLE RESULTS1 FROM REAL DATA

To demonstrate the ATC metrics in the previous section,

we use real measurements from the Gamekeeper staring

radar. They were collected during 25 live drone trials (i.e.,

radar recordings) at various sites, including those in

Table 2. Each recording is of a duration of 5 to 16 min and

can have up to 6300 target tracks with unique IDs. It has

one UAS target (i.e., J ¼ 1), whose ground truth informa-

tion from onboard GPS is available. The overall test data

are � 4-hour of radar measurements in total and com-

prises of over 55,000 trajectories to be classified (drone

versus non-drone). It contains observations from numer-

ous mUASs such as the DJI Phantom 2 (diameter � 0:4 m

and weight � 1:38 kg), DJI Inspire 2 as in Figure 3, DJI

Matrice 200 (diameter � 0:9 m and weight � 5:5 kg), DJI

Mavic 2 (� 0.35 m and weight � 0:9 kg), fixed-wing

BlueBear Blackstart (diameter � 1:5 m and weight

� 4 kg), Alta X (diameter � 1:4 m and weight � 10 kg)

and Octocopter (diameter � 0.9 m and weight � 4:5 kg)

at ranges up to 7.5 km; over 50% of drone flights were at

1Results here are from experimental algorithms and should not be
considered in anyway to represent the performance of the Thales
Gamekeeper radar, which uses proprietary processing chain inclu-
sive of the ATC.
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ranges exceeding 3 km. This is a diverse and challenging

data with a wide range of SNRs (mean 35.14 dB and stan-

dard deviation 7.42 dB).

The machine-learned ATC algorithm [17] with an

SMA as in Figure 4 is utilized with a MAP decision crite-

rion for the hard true and false positives. Table 4 lists the

averages of selected ATC metrics from all of the 25 radar

recordings. One hard FP per track produces a FA with

MU ¼ 1 in (9). It can been noticed that the high accuracy

and low hard FP (HTPCP) does not give any insights on

the potential FA rate, where 3:4=h on average can be

regarded as high in some C-UAS scenarios if only a radar

sensor is employed.

The average true positive confidence and hard true

positive classification probability versus SNR from the

real data is depicted in Figure 6. The substantial decay

in TPC and HTPCP is visible as SNR declines. Finally,

Figure 7 shows the ROC plot of the average HTPCP

(recall) versus FAR (per hour) from all of the testing

datasets; this is for a wide range of possible decision

thresholds (i.e., rather than choosing the target cate-

gory with the highest confidence score as with the

MAP decision criterion as in Table 4). It exhibits the

usual compromise between the classifier’s TP and FP

performance.

ADDITIONAL CAPABILITIES AND PROSPECTS

We now discuss a few opportunities and technologies that

can aid improving the ATC functionality in drone

surveillance radars, for example, to keep pace with the

continuously evolving drone platforms. This goes beyond

general system-level resilience, coverage, and data quality

issues [3], [5], [29], for instance, utilizing distributed, mul-

tistatic, sensing-processing concepts, and state-of-the-art

Table 4.

Average ATC Performance From Real Radar Data

Metric Value Optimal Value

Accuracy 0.97 1

F1 Score 0.85 1

Hard TP Classification Probability (HTPCP)y 0.83 1

TP confidence (TPC) 0.76 1

TPC Deviation (DevTPC) 0.17 0

Hard FP Classification Probability (HFPCP)y 0.02 0

False Alarm Rate (FAR) (per hour) 3.4 0

FAR Ratio (FARR) (/100 tracks); RTrack ¼ 100 0.03 0

Classification Time Delay (CTD) (sec) 9.15 0

UAS Declaration Probability (UDP) 0.98 1

yThey correspond to the traditional (hard) TP and FP metrics definitions.

Figure 6.
Hard true positives and TP confidence for the test dataset versus

the estimated SNR for the truth (drone) targets.

Figure 7.
Hard true positive classification probability versus FA rate per

hour from radar measurements.
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hardware (e.g., quantum oscillators, antenna designs,

GPU-TPU-CPU, etc).

TARGET RECOGNITION BEYOND DRONE VERSUS

NON-DRONE

Estimating the drone physical parameters such as the

number of rotors and their rotation/flash rates, from the

radar micro-Doppler signatures has a long history. It

can offer indicators of the mUAS type (e.g., fixed or

rotary wing), specific platform, and any payload [12],

[30], [31], [32]. For example, the number of blades and

their rotation speeds can be referenced against a data-

base to establish the drone model. Similarly, the heavier

the weight a drone needs to carry, the faster its rotors

typically need to spin to provide sufficient lift. An

abrupt change in the rotation rates can pertain to the

drone releasing a payload. This information can aid

ATC, where classical spectral analysis tools (e.g., ceps-

trum) or neural networks can be utilized for estimating

the UAS physical parameters [30].

The ML classifier can be explicitly trained to recog-

nize particular drone types or models [14], [18], [33].

This necessitates the availability of datasets per target

label, thus higher training data requirements and/or

applying a well-defined pipeline for refining a learned

ATC algorithm, for instance, with transfer learning [14].

An alternative approach is to label the training data

with parent (abstract) classes that the ATR then treats,

for example, small fixed-wing, large rotary wing, and

small rotary wing for a CNN micro-Doppler classifier

as in [18].

COGNITIVE RADAR AND SENSING NETWORKS

The availability of low-cost electronic antennas, high

performing, easily programmable, signal/data process-

ing hardware and high-quality digital waveform genera-

tors are among those technology advancements that

enable embedding intelligence or cognition within mod-

ern radar systems. These sensors can in principle be

proactive and tailor their resources to multiple mission,

for example, to increase performance against certain

low observable targets such as drones whose salient

radar signatures (e.g., micro-Doppler from rotors) can

be otherwise undetectable due to the background noise-

clutter [34], [35]. The radar can suitably adjust its trans-

mission, beam-forming, and other parameters. It can

specifically adapt its data acquisition (dwell-time) and

processing (e.g., complexity of applied tracking and

ATC algorithms) in a given target resolution cell in

order to increase the SNR and maximize chance of

detecting any micro-Doppler signature(s).

Given the prevalence of occlusions to the radar line of

sight and persistent clutter in dense urban or other envi-

ronments with large structures such as wind turbine, a net-

worked or multistatic radar system with multiple spatially

distributed transmitters and/or receivers might be required

to maintain situational awareness over wide monitored

regions. Such solutions have additional system-level chal-

lenges to overcome such as synchronization, data fusion,

networking topology, etc. This is an active research area,

see [3], [12], [29], [31], [36].

SIMULATORS AND DIGITAL TWINS

The main limitation for training generalizable ML clas-

sifiers is the availability of extensive radar datasets for

all targets of interest. This is compounded by the rela-

tively high cost of conducting controlled drone trials to

collect real measurements; more so for birds instru-

mented with sensors (e.g., GPS tags) to provide ground

truth information or utilizing a sophisticated automated

labeling system (e.g., using cameras). Hence, there is a

pressing need to generate representative synthetic radar

data, including to augment the limited available real

radar measurements. Conventional full electromagnetic

physics-based radar simulators are generally prohibi-

tively complex and time consuming to construct as well

as difficult to validate. On the other hand, generative AI

technology, such as transformers, generative adversarial

networks, variational autoencoders, can expedite the

process of simulating realistic radar signatures of vari-

ous targets for training ATR algorithms. Easy and cheap

access to representative simulated radar data can be rev-

olutionary to the drone surveillance radar functionalities

in the era of AI and data centric engineering. For exam-

ple, it can permit adopting advanced fully or model-

driven ML/AI for target detection [19] and track-

before-detect methods [10] to enhance the radar ability

to detect micro-Doppler and track low observable UAS

targets (including when hovering).

Leveraging fully digitized and easily programmable

processing chain as well as access to elaborate data simu-

lators, digital twins can promote the rapid development,

verification-validation, and integration of new ATR algo-

rithms [35]. For example, the Thales Gamekeeper radar

has a full digital twin of its processing chain, and the raw

I&Q data from each receiver element can be recorded and

reprocessed. Refinements to the detection, MTT and ATC

modules can then be rapidly validated and deployed on

radars in the field.

GLOBAL CLASSIFICATION ARCHITECTURES

Different classifiers can rely on distinct underlying salient

characteristics in the target radar signatures (e.g., micro-
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Doppler components or kinematic behavior) and over

different time-scales as in Figure 4. Simultaneously

employing disparate classifiers that can be potentially

asynchronous (i.e., update at different rates) and heteroge-

neous (i.e., have different target categories) can deliver

more robust ATC, such as the global classification archi-

tecture with classifiers dedicated to kinematic-features-

based discrimination and others to micro-Doppler detec-

tion in [16]. Applying different versions of a classifier

(e.g., several realizations of the same DNN, each config-

ured following a particular initialization of its weights)

and combining their results is common in supervised

learning; see [37]. This can be extended to utilizing asyn-

chronous and heterogeneous recognition algorithms with

the associated fusion mechanism.

EXPLOITING CONTEXTUAL AND PATTERN-OF-LIFE

INFORMATION

Given the complexity and diversity of the large surveyed

areas with radar, available contextual (e.g., terrain type)

or pattern-of-life (e.g., bird migration times) information

can be highly effective at improving ATC and addressing

the high FA challenge at the sensor level. These can bias/

influence the classifier results and the associated decision

criteria on the target category. For example, FAs originat-

ing from objects near major roads or dense urban areas,

where high density vehicle traffic is expected (or even

dynamically detected) at selected times can be suppressed

or have a higher decision threshold. Similar schemes can

be applied for detected large flocks of birds or even the

occasional presence of bird species that can trigger FAs

such as large gliding birds (e.g., from ornithologist studies

or observations).

Therefore, a data fusion approach (e.g., within a Bayes-

ian framework) would be required to capitalize on addi-

tional information about the monitored scene or present

targets at the radar sensor or even at the C2 system level for

a more robust ATC. This nonetheless carries the risk that

inaccurate priors can undermine the radar ATC effective-

ness and adversaries can exploit them. It is noted that con-

textual or pattern-of-life data can also be learned from

historical radar data as with discriminative behavior fea-

tures in the section “Drone Surveillance Radar and ATC.”

META-LEVEL INFORMATION INFERENCE AND

MALICIOUS INTENT

As drones use is set to proliferate further, it will be critical

for surveillance systems to be able to infer “meta-level”

information on the detected-tracked-classified UAVs,

namely their intent (e.g., final destination and future trajec-

tory [38] to unveil, as early as possible, malicious

activities) and group interactions-hierarchies in drone

swarms (e.g., reveal coordinated mUASs groups and, if rel-

evant, their leaders which can have more on-board capabil-

ities). This can circumvent the system or operator being

overwhelmed by swamping tactics. It facilitates timely

decision making, automation, and prioritization of poten-

tial threats as well as selective deployment of countermeas-

ures (if relevant), thereby minimizing potential collateral

damage.

Bayesian meta-level tracking offers a generic frame-

work, for instance to determine, early, if a drone intends to

reach a prohibited zone [38], [39] or reveal a swarm hierar-

chy [40]. It can incorporate results from other threat assess-

ment schemes, see [38] for a recent overview, and/or the

ATC results as priors. For example, if the ATC indicates that

a drone is carrying a payload, then this is strong indicator of

malicious intent. Some of these functionalities can be

employed at the C2 level, rather than by the radar sensor.

CONCLUSION

Robust ATC is fundamentally important for drone surveil-

lance radar, especially given the large number of potential

confuser targets (e.g., birds) and complex monitored envi-

ronments. Although mUASs are formidably difficult tar-

gets to detect, track, and classify with radar, several

sensors (including in multistatic configurations) have

emerged over the last few years. They increasingly exploit

recent advances in data processing and ML (e.g., DNNs)

to deliver a strong ATC performance.

It is however crucial to: a) understand the unique chal-

lenges mUAVs pose to radar sensors and ATC enablers,

especially that drone platforms are expected to continu-

ously evolve and adapt as adversaries strive to make them

harder to detect; b) consider relevant classification

metrics when evaluating the efficacy of the classification

approach; and c) highlight opportunities for future radar

solutions. These aspects are discussed in this article. The

objective is to promote a better appreciation of what is

achievable in practice now and in the future, i.e., articulate

the relationship between the art of the possible and opera-

tional effectiveness of automatic classification of drones

with radar. An example is the common stringent ATC

false alarm rates requirement on a C-UAS solution (e.g.,

one FA every several days or weeks). This is currently

unrealistic to meet with a radar sensor alone while main-

taining the ability to detect-track-classify miniature (e.g.,

micro and nano) drones in complex urban/semirural envi-

ronments. While this can be fulfilled by a multisensor sys-

tem within which radar is a critical component, the full

potential of the C-UAS/UTM radar technology is yet to be

realized.

Although we predominately focused here on ground

surface radar and performance evaluation for a binary
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classification task (i.e., miniature drone versus non-drone),

several of the presented arguments seamlessly apply to

maritime and airborne radars. Metrics can also be easily

extended to multi-class ATC scenarios and other targets

(e.g., larger UAVs).
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