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Abstract This paper presents a mathematical analy-
sis of an extended model describing a sea ice-induced
frequency lock-in for vertically sided offshore struc-
tures. A simple Euler–Bernoulli beam as model for
the offshore structure is used, and a moving boundary
between an icefloe and the structure itself is introduced.
A nonlinear equation for the beam dynamics is found
by using an asymptotical approach and a Galerkin pro-
cedure. It is shown analytically that a frequency lock-
in regime occurs during ice-induced vibrations (IIV),
when the dominant ice force frequency is closed to a
natural frequency of the structure. For beams, perturbed
by small nonlinearities and a small damping, the con-
cept of quasi-modes is introduced. A quasi-mode is a
linear combination of the usual eigenmodes. The large
time behaviour of solutions at the instability onset is
determinedbya single quasi-mode,which ismaximally
linearly unstable.The beam model analysis leads to the
conclusion that an interaction between a moving ice
floe and a structure can lead to a “negative friction” for
particular values of the ice floe parameters. From the
analysis presented in the paper it follows that the lock-
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in regime occurs when simultaneously two phenomena
are present: a forcing resonance and a “negative fric-
tion”.

Keywords Ice induced vibration · Lock-in · Quasi-
mode · Negative friction · Moving contact

List of symbols

w = w(z, t) Transverse displacement of the
beam

z Vertical coordinate (along
the beam axis)

x Horizontal coordinate (along the
ice rod axis)

−H1 Coordinate of the lower edge of
the beam

H2 Coordinate of the top of the beam
t Time
subscripts z, x, t Indicating partial derivativeswith

respect to z,x and t , respectively
D Beam bending rigidity
m0 Beam mass per unit length
α > 0 Viscous damping coefficient of

the beam material
μ Force acting on the beam due to

the ice rod
u = u(x, t) Longitudinal ice rod displace-

ment
E Ice Young’s modulus

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-021-07089-5&domain=pdf
http://orcid.org/0000-0003-0576-8249


684 A. K. Abramian et al.

F Ice rod cross sectional area
δ0 Ice rod damping coefficient
m > 0 Ice rod mass per unit length
Q Force occurring in the rod due to

its side-surface contact with oth-
ers ice rods

β Ice friction coefficient during its
side-surface contact

r Coefficient relating the shearing
strain in the ice rod

k0 Characterizes the rod compres-
sion which is caused by stresses
due to the ice rod compression in
the transverse direction by other
ice rods

h Ice rod thickness
γ Coefficient determining the rate

of decrease of the displacement
u over the ice rod length

ν Poisson ratio
s(t) The total shift of the ice rod
v > 0 Relative ice velocity
ρ(t) Shift of the ice rod as a result of

ice breaking
d Length of an ice block that split

off the ice rod, each time it breaks
tn Time instants when the ice rod

crushes
H(z) Heaviside step function
p Pressure in the ice
pc Critical pressure in the ice when

it breaks
c0 = √

r/m Ice sound velocity
ε = k0/c20F Small parameter
Ωn Natural frequencies of the beam
τ = εt Slow time
λn Eigenvalues of the initial-

boundary value problem
ω = 2πv/d Breaking frequency of an ice rod
An Amplitude of the n-th oscillation

mode of the beam
φn Phaseof then-th oscillationmode

of the beam
A = (A1, A2, . . .) Infinite sequences of the func-

tions An(τ )

φ = (φ1, φ2, . . .) Infinite sequences of the func-
tions φn(τ )

‖A‖ Average amplitude of the beam
vibration

i Unit imaginary number

1 Introduction

Bottom fixed offshore structures subjected to dynamic
loading due to drifting ice may experience large ampli-
tude vibrations. The reason for this undesirable behav-
ior is the phenomenon of ice-induced vibrations (IIV),
and in particular its frequency lock-in (FLI) regime.
The FLI regime starts when the ice force frequency is
close to a natural frequency of the structure. The IIV
phenomenon includes 3 regimes: an intermittent crush-
ing, a continuous brittle crushing, and aFLIwhich is the
most dangerous from the practical point of view. The
amplitudes of vibrations during an intermittent crush-
ing and continuous brittle crushing are smaller than
those in theFLI regime. The physicalmechanismof IIV
is nowadays explained by two theories: the force vibra-
tion theory, and the self-excited vibration theory. The
first theory indicates that steady IIV regimes depend
on the breaking frequency of the ice sheets [22,29,33].
The second theory explains the initiation of the steady
regimes by negative damping occurring during an ice
structure interaction [5,23]. Based on experiments and
field observations some new coupled models for IIV
were developed [1,2,9,12,14,16,21,25,33]. In these
models the structure is usually described as a one or
a two degree of freedom oscillator with a linear or non-
linear structure rigidity. Depending on the IIV model,
a linear or nonlinear rheological model for the ice was
chosen. Only a few models exist which describe the
structure as a continuous structure. The flexibility of a
structural model is usually represented through a finite
number of assumed modes [8,11,19,27,32,37]. The
models introduced in the aforementioned papers lead
to a system of nonlinear ODEs that usually is analyzed
and solved numerically. A semi-analytical method to
approximate the behavior of the structure during a FLI
regime is suggested in [32] based on solutions of the
ODEs. The physical mechanism of the FLI was anal-
ysed in [18] by incorporating the Van der Pol equation
into the model of IIV.

This paper proposes an analytical analysis of a new
model. The model assumes that both the structure and
the ice floe are continuous mechanical systems with
a moving contact between the beam and the ice. By
extending existing models we incorporate this moving
contact in the analysis of the beam and the ice floe
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dynamics. The novelty with respect to existing models
is that the function which describes the movement of
this contact is not prescribed but unknown, and should
be found. By considering continuous models for the
interacting structure and ice, gives us a possibility to
describe the appearance of a second oscillationmode of
the structure during their interaction. Existing models
are not providing such a possibility. A nonlinear ODE
for the beam dynamics is finally obtained and inves-
tigated with the help of an asymptotic approach. The
following results are obtained. An asymptotic formula
shows how the negative friction depends on the relative
ice velocity and other system parameters.We show that
a frequency lock-in regime is a result of a simultaneous
action of two physical mechanisms: a forced resonance
and a negative friction. First, a resonance of the struc-
ture caused by regular breaking of the ice floe occurs.
Then, for a particular value of the ice floe velocity this
resonance leads to a negative friction. As a result the
amplitude of the structure vibration becomes large.The
structure instability occurs at the two first natural fre-
quencies of the beam. We observe two pitchfork bifur-
cations, a direct one leading to the instability onset, and
an inverse one, which produces damping.

This paper is organised as follows. In Sect. 2 of this
paper the problem is formulated, and in Sects. 3 and 4
the problem is solved approximately by using asymp-
totic methods. In Sect. 5 asymptotic expressions for
the ice rod displacement are found. Stability issues and
resonances are discussed in Sect. 6, and finally in Sect.
7 some conclusions are drawn.

2 Statement of the problem

In this section of the paper an Euler–Bernoulli beam
model for an offshore structure interacting with an ice
floe is formulated. The most important symbols which
are used in this paper are the following one.

As suggested in [2,12] the ice floe is considered as
a system of ice rods. Considering only one rod follows
from the theory introduced in [35]. It is also assumed
that the ice during the FLI regime is always in contact
with the structure as suggested in [12]. A vertical beam
and amoving ice rod are shown schematically in Fig. 1.
Based on these assumptions, the equation describing
the beam dynamics is given by:

Dwzzzz + m0wt t + αwzzzzt = μδ(z), (1)

Fig. 1 Dynamic beam model of the ice-structure interaction

wherew = w(z, t) is the transverse displacement of the
beam, z is a vertical coordinate (along the beam axis),
z ∈ (−H1, H2), subscripts z, t are indicating partial
derivatives with respect to z and t , D is the bending
rigidity of the beam, m0 is a mass of the beam per unit
length, and α > 0 is a viscous damping coefficient, and
the term αwzzzzt is the Kelvin–Voight damping term,
which describes a lateral structural damping. The term
μδ(z) simulates the localized action (due to presence of
delta-functions) of the ice rod on the platform (beam)
at surface level z = 0, where μ depends on the state of
the ice rod. For Eq. (1), the following initial conditions
are used:

w(z, 0) = 0, wt (z, 0) = 0. (2)

The boundary conditions are as follows. We use
clamped boundary conditions at the lower edge of the
beam at z = −H1:

w(z, t) = wz(z, t) = 0 (3)

and the following free end conditions at the top of the
beam ( [4]) at z = H2:

Dwzz(z, t) + αwzzt

= Dwzzz(z, t) + αwzzzt |z=H2 = 0. (4)

The term μ in (1) defines a force acting on the beam
due to the ice rod, and this term is given by

μ = EF

M
(ux + δ0uxt )

∣
∣
x=w(0,t), (5)

where u = u(x, t) is the longitudinal ice rod displace-
ment, subscripts x, t are indicating partial derivatives
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686 A. K. Abramian et al.

with respect to x and t , E is the ice Young’s modulus,
F is the ice rod cross sectional area, and δ0 is the ice
internal, structural damping coefficient. The term ux
in the right hand side of (5) defines the contribution
of linear deformations, and the term uxt is the ice vis-
cosity term. To simplify notations, let us introduce the
auxiliary quantity

q(t) = w(0, t), q(0) = 0,
dq

dt

∣
∣
∣
t=0

= 0.

The boundary conditions at x = q(t) (moving bound-
ary) also can be found in many other problems (see
for instance [3,10,30,39])where, oscillations in axially
moving cables are considered. The following equation
describes the dynamics of the ice rod, which is defined
on the semi-infinite domain It = {x : q(t) < x < ∞}
(see [2,35]),

ruxx − mutt + δ0uxxt = Q, (6)

Q = −β(st − ut ) − k0(s − u), (7)

where u(x, t) is the unknown ice rod displacement,
m > 0 is the ice rod mass per unit length, Q is a force
occurring in the rod due to its side-surface contact with
others ice rods in the space around the rod in the ice
floe that is considered in (6). The ice rod is drifting
along the x-axis. The parameters β, r , δ0, and k0 are
positive. The coefficient β is the ice friction coefficient
during its side-surface contact, the coefficient r is the
coefficient relating the shearing stress and the strain in
the ice rod, and thus defines “the load spreading capac-
ity of the foundation” according to [35]. The parameter
k0 characterizes the rod compression which is caused
by stresses due to the ice rod compression in the trans-
verse direction by other ice rods.Note that r = Eh

4γ (1+ν)
,

where h is the ice rod thickness, the parameter ν is the
Poisson ratio, the parameter γ is a coefficient determin-
ing the rate of decrease of the displacement u over the
ice rod length and canbe found experimentally (see also
[35] for further details). The parameter k0 = Ehγ

2(1−ν2)
.

In other words, the ice rod behavior can be modelled
by a generalized spring and a generalized dashpot as
suggested in [20]. The function s(t) describes the shift
of the ice rod, and we suppose that s(t) is defined by

s(t) = −vt + ρ(t), (8)

where v > 0 is the relative ice velocity, and

ρ(t) =
∞
∑

n=1

dnH(t − tn). (9)

Fig. 2 This plot shows a typical dependence of s(t) on time.
The parameter values are d = dn = 1, Δt = tn+1 − tn = 5, and
v = 0.2

Here, tn are time instants when the ice rod crushes at
x = q(t); dn are the lengths of ice blocks that split off,
and H(z) stands for the Heaviside step function. See
also Fig. 2 for a typical dependence of s(t) on time.
The time instants tn are defined by the condition

p(tn) = pc, (10)

that is, when the pressure p in the ice attains a criti-
cal level pc. The pressure p can be computed by the
relation

p(t) = p0
v(t − tn)

s(t)
, (11)

where tn is themoment of the previous break, and p0 =
(uxmc20)|t=0 is the initial pressure in the rod, where
c0 = √

r/m is the ice sound velocity. Therefore, the
ice rod breaks are determined by the relation

p(tn+1) = p0
v(tn+1 − tn)

s(tn+1)
= pc. (12)

We take the following boundary conditions for
u(x, t)

u(q(t), t) = q(t) = w(0, t), (13)

u(x, t) → 0 x → +∞. (14)

The condition (13) is a contact relation between the ice
rod and the beam, and the condition (14) is a radiation
condition at infinity. The initial conditions for u are
given by

u(x, 0) = φ0(x), ut (x, 0) = φ1(x),

x ∈ (q(0),∞), (15)
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where φ j (x) for j = 1, 2 are fast decreasing functions
in x for x → ∞ satisfying the compatibility conditions
with (2), that is,

φ0(q(0)) = 0, φ1(q(0)) = 0.

It is also assumed that

|φ j (x)| < c j exp(−b j x), b j , c j > 0, (16)

where b j , c j are arbitrary constants.
Notice that the differential equations, boundary and

initial conditions can be transformed to a dimensionless
form when we rescale the variables. For the rescaling,
the following relations are used: x̄ = x/h, q̄ = q/h,
s̄ = s/h, w̄ = w/h, ū = u/h, d̄k = dk/h, c20 = E/m,
v̄ = v/c0, t̄ = tc0/h, ᾱ = α/m0c0h2, β̄ = hβ/mc0,
D̄ = D/m0(c0h)2, k̄0 = k0h2/mc20, δ̄0 = δ0c0/h,
ε = k0/c20F .

It is obvious that the parameter ε is small. To sim-
plify notations, we omit now the bars and obtain the
equations:

Dwzzzz + wt t + αwt = ε(ux + δ0uxt )δ(z)|x=q(t),(17)

where z ∈ [−H1, H2], and
uxx − utt − βut − k0u + δ0uxxt

= −βst − k0s, t > 0, q(t) < x < ∞, (18)

where the initial conditions are

q(0) = 0, qt (0) = 0, (19)

u(x, 0) = φ0(x), ut (x, 0) = φ1(x),

q(0) < x < ∞, (20)

and where the boundary conditions for w and u are
given by (3–5) and by (13), (14).

In the next sectionswewill approximate the solution
of the initial-boundary value problem (17–20).

3 Galerkin decomposition for w(z, t)

As a first step, in solving the initial-boundary value
problem (17–20) we apply a Galerkin decomposition
for w(x, t).

We seek the beam displacement w(z, t) in the form
as used in the standard Galerkin method:

w(z, t) =
∞
∑

n=1

Wn(t)ψn(z), (21)

whereWn(t) are unknown time-dependent coefficients
and ψn(z) are eigenfunctions of the corresponding

spectral problem (see also Appendix 1):

d4ψn

dz4
= λnψn, (22)

satisfying the boundary conditions

ψn(z)|z=−H1 = ψnz (z)|z=−H1 = 0 (23)

at the bottom, and

ψnzz (z)|z=H2 = ψnzzz (z)|z=H2 = 0 (24)

at the top of the beam.
The linear operator (defined by those equations and

boundary conditions) is self-adjoint. So, the eigenval-
ues λn are real and positive, and the corresponding
eigenfunctionsψn are orthonormal. For the coefficients
Wn one obtains from (17) the following system of ordi-
nary differential equations:

d2Wn(t)

dt2
+ α

dWn(t)

dt
+ Ω2

nWn

= μ(W )ψn(0), n = 1, 2, . . . , (25)

where Ωn are natural frequencies of the beam. Note
that μ depends on the coefficients

W = (W1,W2, . . .)

due to the boundary conditions at the beam-ice rod con-
tact (see 5, 17), and therefore Eq. (25) can be consid-
ered as an infinite system of coupled oscillators. That
coupling, as we will see in the next sections, leads to
nonlinear effects and bifurcations.

4 Asymptotic solutions for the amplitude
coefficients in w(z, t)

The asymptotic approach to study the system of equa-
tions (25) is well known, see [6,7]. Let τ = εt be a slow
time. It is assumed that α = εᾱ, where 0 < ᾱ < C ,
with C a positive constant independent of ε. Further-
more, it should be observed that the right-hand side
of (17) is of order ε and depends on t and q. For that
reason we look for solutions Wn of (17) in the form

Wn = Wn,0(t, τ ) + εWn,1(t, τ ) + . . . , (26)

where

Wn,0 = An(τ ) sin(Ωnt + φn(τ )),

and where the amplitude An and the phase φn are
unknown slowly time-varying functions. From (26) it
follows that

∂tWn,0 = (Ωn + εφnτ )An(τ ) cos(Ωnt + φn(τ ))

+ εAn(τ )τ sin(Ωnt + φn(τ )),
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688 A. K. Abramian et al.

and

∂t tWn,0 = − Ω2
n cos(Ωnt + φn(τ ))

+ 2εΩn(Anτ cos(Ωnt + φn(τ ))

− Anφnτ sin(Ωnt + φn(τ )) + O(ε2).

By substituting these relations into (25), and by taking
together terms of order ε, one obtains the following
equation for Wn,1:

Wn,1t t + Ω2
nWn,1 = Sn(A, φ, t, ε), (27)

where

Sn = 2Ωn

(

−Anτ cos(Ωnt + φn(τ ))

+Anφnτ sin(Ωnt + φn(τ ))
)

+ Rn(A, φ, t), (28)

and

Rn(A, φ, t) = μ(W (A, φ))ψn(0)

− αΩn An cos(Ωnt + φn(τ )), (29)

and where A = (A1, A2, . . .) and φ = (φ1, φ2, . . .)

denote infinite sequences of the functions An(τ ) and
φn(τ )with n = 1, 2, .., respectively. Let 〈 f 〉 denote the
average of a continuous uniformly bounded function f :

〈 f 〉 = lim
T→∞

∫ T

0
f (t)dt.

For large times t = O(ε−1) Eq. (27) has bounded solu-
tions in t if and only if

〈Sn(A, φ, t, ε) cos(Ωnt + φn)〉 = 0, (30)

and

〈Sn(A, φ, t, ε) sin(Ωnt + φn)〉 = 0. (31)

Finally, it follows from (30) and (31) that the following
system of equations for the amplitude An and the phase
φn are obtained:

Ωn Anτ = 〈Rn(A, φ, t) cos(Ωnt + φn)〉, (32)

and

Ωn Anφnτ = −〈Rn(A, φ, t) sin(Ωnt + φn)〉. (33)

We investigate this system in the next section.

5 Asymptotic formulas for the ice rod
displacement u(x, t)

The ice rod displacement is studied in detail in [2]. We
repeat here the main formulas needed for the analysis
of (32–33).

5.1 Assumptions

The aim of this subsection is to express the displace-
ment u(x, t) in q, and obtain an equation involving q
only. We use the following assumption:

0 < Ω1 	 k1/20 , (34)

i.e., the first natural frequency of the beam is small with
respect to the cut-off frequency of the ice rod. We also
assume that all coefficients associated with friction and
damping effects are small, i.e.,

0 < β, δ0 	 Ω1. (35)

It is useful to introduce two other small parameters

η = βk−1/2
0 	 1, λ = Ω1k

−1/2
0 	 1. (36)

To find u we first define an auxiliary function V (t)
as a solution of the following second-order ODE:

Vtt + βVt + k0V = βst + k0s. (37)

We seek the solution u of (18) in the form u = V (t)+ū,
where ū satisfies the following equation,

ūxx − ūt t − βūt + δ0ūxxt − k0ū = 0, (38)

and the boundary and initial conditions:

ū(q(t), t) = q(t) − V (t), (39)

lim
x→+∞ ū(x, t) = −V (t), (40)

ū(x, 0) = φ0(x) − V (0),

ūt (x, 0) = φ1(x) − V ′(0), (41)

where V ′ = dV/dt . In the next subsections we deter-
mine the auxiliary function V , and construct an asymp-
totic approximation for ū. To simplify the computa-
tions, let us assume that dn = d. Then s(t) is a periodic
function with period T = d/v, and ω = 2π/T =
2πv/d is the breaking frequency of an ice rod. For the
Fourier coefficients ŝn of s one has

ŝn = id

2πn
(n �= 0), ŝ0 = d/2. (42)

The Fourier series for V has the form

V (t) =
∑

n∈Z
V̂n exp(iωnt) + Ṽ (t), (43)
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where the function Ṽ (t) is the homogeneous solution
of (37 ) and decreases in t with an exponential rate, and
the Fourier coefficients in (43) are defined by

V̂n = ŝn(k0 + iβnω)

k0 − (nω)2 + iβnω
, n �= 0. (44)

The coefficient V̂0 = d/2 is the average of V . Note
that the term Ṽ (t) is exponentially decreasing in t and
therefore we leave out that term for large times t �
β−1.

5.2 Asymptotics for ū

Let us introduce a new variable: y = x − q(t). Then
for ū(x, t) = ũ(y, t) one has ũ ≈ ũ(0) + ũ(1), where
the ũ(k) functions are defined as follows.

The complex frequencies ω̂n are defined by

ω̂2
n = k0 + iβωn − n2ω2 (45)

and

Ω̂2
n = k0 + iβΩn − Ω2

n . (46)

In (46), as usual, we choose the signs of the complex
roots such that the negative real parts for ω̂n and Ω̂n

are obtained. Then for Ω2
n 	 k0 one has

Ω̂n ≈ −k0
1/2 − i

βΩn

2k1/20

. (47)

Following [2] we obtain

ũ(0)(y, t) ≈
+∞
∑

n=1

Wn(t)ψn(0)Re exp(Ω̂n y)

−
+∞
∑

n=1

V̂n exp(ω̄n y + inωt), (48)

where ω̄n = ω̂n(1 + δ0inΩn)
−1/2. In this relation, we

represent the beam as a set of oscillators with frequen-
cies close to Ω̂n . The Fourier series in the right-hand
side of (48) converges since V̂n is O(n−2) as n → ∞.
A natural approximation for ũ(1) is:

ũ(1)(y, t) = G1(y, t)qt (t) + G2(y, t)qtt (t)

+ G3(y, t)q
2
t (t) + O(λ),

where

G1(y, t) = y
(

G10(y, t) + G11q + G12qt
)

, (49)

G2(y, t) = y
(

G20 + G21q
)

, (50)

G3(y, t) = y
(

G30 + G31q
)

, (51)

where

G10 =
∑

n∈Z
(inω + β/2 − δ0ω̄

2
n/2)

V̂n exp(ω̄n y + iωnt), (52)

G11 = −1

2
(β − δ0ω̄

2)Re exp(ω̄y),

G12 = −Re exp(ω̄y), (53)

G20 = 1

2

∑

n∈Z
V̂n exp(ω̄n y + iωnt),

G21 = 1

2
Re exp(ω̄y), (54)

G30 = −1

2

∑

n∈Z
ω̄n V̂n exp(ω̄n y + iωnt), (55)

G31 = 1

2
Reω̄ exp(ω̄y). (56)

The relations (49–56) allow us to find the deformation
at x = q(t) and further to find the amplitude coeffi-
cients Wn(t).

5.3 Ice floe deformation at the edge of the rod

The relations obtained in the previous subsections show
that the deformation ũ y at y = 0 has the form

ũ y(0, t) = S(t, q, qt , qtt ), (57)

where

S(t, q, qt , qtt ) = Reω̄q + F0(t) + F1(t)qt + F2(t)qtt

+F3(t)q
2
t + F4(t)qqt + F5(t)qqtt + F6(t)qq

2
t ,(58)

where

F0(t) = −
∑

n∈Z
ω̄n V̂n exp(iωnt), (59)

and

F1 = G10(y, t)|y=0, F2 = G20(y, t)|y=0,

F3 = (G12 + G30)(y, t)|y=0, F4 = G11(y, t)|y=0,

F5 = G21(y, t)|y=0, F6 = G31(y, t)|y=0.
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For the coefficients F1, F2, . . . , F6 we obtain (see
also (52–56))

F1(t) =
∑

n∈Z

(

inω + β

2
− δ0ω̄

2
n

2

)

V̂n exp(iωnt), (60)

F2(t) = 1

2

∑

n∈Z
V̂n exp(iωnt), (61)

and

F3(t) = −1 − 1

2

∑

n∈Z
ω̄n V̂n exp(iωnt), (62)

F4 = −β − δ0Reω̄2

2
,

F5 = −1/2, F6 = Reω̄

2
. (63)

In the next section the ODE for q(t) will be studied
by using the averaging method as presented in Sect. 4
of this paper.

6 The nonlinear equations for the amplitude
functions An(t) in w(z, t)

6.1 Equations for the amplitudes An and the phases φn

In contrast to [1] we are dealing here with many An

functions. Note that

q(t) =
∞
∑

n=1

Wn(t)ψn(0). (64)

The coefficients Wn can be represented by asymptotic
series, and it follows from Sect. 4 of this paper that the
function q(t) can be approximated by

q(t) =
∞
∑

n=1

ψn(0)An(τ ) sin(Ωnt + φn(τ )), (65)

where An(τ ) and φn(τ ) satisfy (32) and (33), respec-
tively. To approximate An(t) and φn(t) we introduce
the auxiliary function

Rn(t, τ ) = cos(Ωnt + φn(τ )) + δ0Ωn sin(Ωnt + φn(τ )).

From Sect. 4 it follows that the coefficients An(τ )

slowly evolve in time according to the following equa-
tion:

Ωn
d An

dτ
= Dn(v, φ) + D1,n(v, φ, A)

+D2,n(v, φ, A) + D3,n(v, φ, A)

≡ Pn(v, φ, A), (66)

where D1,n(v, A, φ), D2,n(v, A, φ) and D3,n(v, A, φ)

are linear, bilinear, and trilinear operators, respectively,
while Dn is independent of A. These operators and Dn

can be found as follows. By integrating by parts, and
by using expression (58) we obtain

Dn(v, φ) = 〈F0(t)Rn(t, τ )〉, (67)

D1,n(v, φ, A) = 〈(Reω̄ q + (F1(t) − αλn)qt (68)

+F2(t)qtt )Rn(t, τ )〉, (69)

D2,n(v, φ, A) = 〈(F3q2t + F4qqt + F5qqtt )

Rn(t, τ )〉, (70)

D3,n(v, φ, A) = 〈F6qq2t Rn(t, τ )〉. (71)

By substituting the expression (65) for q(t) into (68)
one obtains

D1,n(v, φ, A) =
∞
∑

n1=1

d(1)
nn1 An1 , (72)

where

d(1)
nn1 = ψn1(0)

(

〈Rnn1(t)Rn(t, τ )〉 − αλnδnn1

)

,

where

Rnn1 = (

Reω̄ − F2(t)Ω
2
n1

)

sin(Ωn1 t + φn1)

+ F1(t)Ωn1 cos(Ωn1 t + φn1),

andwhere δnm stands for the Kronecker symbol, δnm =
1 for n = m, otherwise δnm = 0. Similarly, from (70)
and (68) it follows that

D2,n(φ, v, A) =
∞
∑

n1=1

∞
∑

n2=1

d(2)
nn1n2 An1 An2 , (73)

where

d(2)
nn1n2

= ψn1(0)ψn2(0)
〈(

F3Ωn1Ωn2 cos(Ωn1 t + φn1)

× cos(Ωn2 t + φn2) + F4Ωn2 sin(Ωn1 t + φn1)

× cos(Ωn2 t + φn2) − F5Ω
2
n sin(Ωn1 t + φn1)

× sin(Ωn2 t + φn2)
)

Rn(t, τ )
〉

,

and from (71) and (68) it follows that

D3,n(v, φ, A)

=
∞
∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

d(3)
nn1n2n3 An1 An2 An3, (74)
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where

d(3)
nn1n2n3 = ψn1(0)ψn2(0)ψn3(0)F6Ωn2Ωn3

× 〈sin(Ωn1 t + φn1) cos(Ωn2 t + φn2)

× cos(Ωn3 t + φn3)Rn(t, τ )〉.

For the phase φn it follows from (33) and (68) that an
equation similar to (66) can be obtained, that is,

Ωn An
dφn

dτ
= Φn(v, A, φ) (75)

involving linear, quadratic and cubic terms. In the com-
ing subsectionwewill find asymptotics for Pn(v, φ, A).
These computations show that Pn(v, φ, A) does not
depend on the phase φ. Therefore, Eqs. (66) and (75)
can be solved separately. As a first step we find the
amplitudes An from (66), and then we can find the
phase φn from (75).

6.2 Large time behaviour of the solutions An(τ ) of
equation (66)

We suppose that there are m and n such that

mω ≈ 2Ωn (76)

but there are no m and n such that

mω ≈ 3Ωn, mω ≈ Ωn . (77)

Then under the assumptions (76) and (77) it is easy
to check that Dn(v) ≡ 0 and D2,n(v, φ, A) ≡ 0. For
D3,n(v, φ, A) it follows from (74) that:

D3,n(v, φ, A) = −C̄ An

∑

m

|Ωm |2|Am |2,

where C̄ = δReω̄ < 0. Taking into account these rela-
tions and (72) it follows that Eq. (66) reduces to

Ωn
d An

dτ
=

∑

m

d(1)
nm Am − AnC̄ Z , (78)

where

Z =
∑

m

|Ωm |2|Am |2

is an asymptotic approximation of the kinetic energy
of the beam. By using the nonlinear Eq. (78), we are
able to estimate solutions and to check the existence
of pitchfork bifurcations. This analysis is standard and
long, but quite straightforward, and it is presented in
Appendix 2 and in Appendix 3. Here, we formulate the

main results and their physical and mechanical inter-
pretation.
Result I: Solutions of system (78) tend to equilibrium
solutions Aeq for τ � 1.
Result II: Let us consider the polynomial P1(v), defined
by

P1(v) = −α − c1m
3v−2 + c2v

−1, (79)

where v ∈ (0,∞) is the ice rod speed, and ci are posi-
tive constants, which depend on the problem param-
eters but are independent of v. If this polynomial
takes a positive maximum value for a certain v∗, then
there exist two bifurcations. Let V+ = (v1, v2) be the
interval, where P1(v) takes positive values (which are
bounded). For v /∈ V+ one has

Aeq
n ≈ O(ε),

while for v ∈ V+ one has equilibrium solutions defined
by

|Aeq
n | ≈ C P1(v)1/2, C > 0, n ∈ Res(1),

|Aeq
n | = O(ε), n /∈ Res(1),

whereRes(1) is afinite subset of indicesn, Res(1) ⊂ N.
The number of equilibrium solutions is 2M , where
M = Res(1) is the number of elements in the set
Res(1) (the set of possible resonances causing the
largest amplitudes).

The mathematical proofs of these results can be
found in Appendix 2 and Appendix 3. Let us discuss
their non-formal interpretations.

Two approaches were developed to explain ice
induced vibrations. The first one is based on the idea
of resonance between an elastic structure and periodic
breaking of an ice rod at a frequencyω. According to an
alternative approach the cause of ice induced vibration
is the self-excited oscillation due to a negative friction.

Our approach (which uses a beam model) connects
both approaches. Namely, a resonance between the ice
breaking and the structure can lead to a negative fric-
tion. It can be described by a polynomial P1 (see Eq.
99). In this polynomial the first term represents the
usual internal structure friction (with a minus sign).
The second term and the third term in P1 are contri-
butions of the ice-structure interaction. The sum of all
terms can be positive, if α is not too large. Positive
values of P1 correspond to negative effective friction.

What can occur when P1(v) is positive? To under-
stand this we consider the sets Res(m) consisting of
indices n which correspond to resonance modes ψn ,
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where mω ≈ Ωn (in which ω is the frequency of the
periodic ice breaking, and Ωn is the n-th frequency of
the free oscillation of the structure). The main reso-
nance effect first arises when m = 1, and moreover, it
is the strongest resonance (with respect to m = 2, . . .).
The instability of the structure occurs at the first natural
frequency of the beam. To simplify the statement let us
consider the case when we are dealing with a single
resonance mode only, i.e., M = 1. Then, we see from
(84) that our equation for the equilibrium amplitude A1

reads (the small contributions of the order O(ε) terms
are neglected)

g(v)P1(v)A1 − A3
1 = 0, (80)

where g(v) is a positive function depending on the
ice rod speed v. Although Eq. (80) is simple, it is
fundamental in physics, where it occurs in the theory
of the second phase transitions developed by L. Lan-
dau. Mathematically this Eq. (80) describes a pitchfork
bifurcation. For negative P1 we have a trivial solution
A1 = 0 while for P1(v) > 0 there exist two solu-
tions A1 = ±√

g(v)P1(v). Actually in our problem
we observe two pitchfork bifurcations, a direct one,
leading to the instability onset at v = v1, and an inverse
one,which produces damping for large oscillations (see
Fig. 3).

Fig. 3 Dependence of the average magnitude ‖A‖ on the speed
v. Thedimensionless parameter values are : the frictionα = 0.01,
δ = 0.1, β = 1, κ = 0.1, k0 = 0.1. The number of beam modes
which are taken into account is M = 60

6.3 Main results

InFig. 3,which is obtainedbyusing the analytical equa-
tions and numerical simulations, we see the following
main effects:

(i) instability at a certain speed v leading to a sharp
amplitude increase;

(ii) then a growth of the amplitude ‖A‖;
(iii) breakdown to a small amplitude at a second critical

speed.

We observe here a plateau, and the results in Fig. 3
are consistent, at least qualitatively,with the results as
obtained in [22,29].

7 Discussion and conclusions

In this paper an interaction between an elastic struc-
ture and an ice floe is studied by using a new analyti-
cal approach. The analytical results describe to a great
extent the dynamic behavior of the beam. The verifi-
cation of the obtained asymptotic approximations of
the solution is performed in the same way as in [2], and
shows a good agreement with the numerical solution of
the system of equations describing the problem at times
of order 1/ε. The results are also compared with some
current IIV models. The system parameters necessary
for the calculations are chosen in the following way.
The bulk viscosity is the same as in [2] using datawhich
can be found in [24,26,27,34]. The calculations reveal
that if we take δ0 = 3·109 Pa·s and β = 0.75·109 Pa·s,
then the obtained results are in good agreementwith the
results as obtainedbyusingother IIVmodels and exper-
imental data. Such parameters as the length and bend-
ing rigidity of the beam were taken depending on the
IIVmodel towhich the beammodelwas compared. The
generalized rigidity and mass of the beam should be
equal to the rigidity and mass of the oscillator, respec-
tively. This can be accomplished by using the Rayleigh
method. In Fig. 4a the proposed model results are pre-
sented for the continuous brittle crushing regime at 0,02
m/sec. If we compare these results with the experimen-
tal data from [36] (see Fig. 4b) we can find a good
agreement in time behavior and in values for the max-
imum of the oscillation amplitude. In Fig. 5 Curve 1
depicts the beam displacements in the lock-in regime
at 0.18 msec−1 as obtained by the model presented in
this paper, and Curve 2 gives the model results from
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Fig. 4 The dependence of the displacement on time during con-
tinuous brittle crushing regime at a velocity of 0.02 msec−1

Fig. 5 The dependence of the displacement on time during an
intermittent crushing at a velocity of 0.13 msec−1. Comparison
displacements as obtained in this paper (Curve 1) with the dis-
placements as obtained in [36] (Curve 2)

[28]. In Fig. 6 Curve 1 describes the displacements as
obtained by using the model proposed in this paper for
the intermittent crushing at 0.13 msec−1; This curve
has the order of displacements for the same regimes,
as obtained by using the model proposed in [13,36].
In Fig. 7 Curve 1 depicts the maximal structural veloc-
ities during the steady-state vibration as obtained by
the model as described in this paper, and Curve 2 , the
ones as obtained in [15]. Also these results show a good
match with the results as obtained in [17].The differ-
ences at the down branches in Fig. 7 are due to the fact
that the values of the beam damping coefficient and the

Fig. 6 The dependence of the displacement on time during fre-
quency lock-in at an indention speed of 0,18 msec−1 (Curve 1:
model results as obtained in this paper; Curve 2: experimental
data from [28]

Fig. 7 The dependence of themaximal structural velocity on the
ice velocity during the steady-state vibration. Comparison of the
results as obtained in this paper (Curve 1) to those as obtained in
[15] (Curve 2)

ice friction coefficients as used in this paper may be
different from those which were used by the author of
[15] in the test (unfortunately, the author of [15] did
not provide the data for those parameters).

The real structure is of course a 3D object for which
the spectrum of natural frequencies can be located
densely, and vibrations may occur not only in one
plane. Those features of the structure will be taken
into account in future research. In 2D beam models the
fact that eigenvalues of the operator-spectrum , which
describe the structure, can be dense, was partly used in
the analysis as presented in this paper.
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The main obtained results are:

(I) For beams, perturbed by small nonlinearities and a
small damping, the concept of quasi-mode is intro-
duced. The quasi-mode is a linear combination of
the usual eigenmodes. The large time behaviour of
solutions at the instability onset is determined by
a single quasi-mode, which is maximally linearly
unstable.

(II) As we mentioned in the introduction two theories
compete to explain the ice induced vibrations of
structures which interact with a moving ice floe.
Our analysis shows that, in a sense, both theories
are correct. The instability exists, and it is gener-
ated by a force leading to nonlinear resonances of
the beam. An instability arises as follows. The res-
onance caused by regular breaking of the ice rod
at particular values of the ice rod speed lead to a
change of sign of the polynomial P1, and creates
an effective negative friction. As a result, the beam
vibrations grow but the amplitudes are bounded
due to the nonlinear terms which are also gener-
ated by the interaction between the beam and the
ice rod. Vibration amplitudes can be computed by
a quasi-mode approach, andwe show that themean
square of the beam displacement is proportional to
the number of resonance modes.

Author contributions AKA: Conceptualization, Methodol-
ogy, Formal analysis. SAV: Methodology, Formal analysis.
WTH: Conceptualization, Validation.

Data availability The data that support the findings of this study
are available from the corresponding author, upon reasonable
request.

Appendix 1: Eigenfunctions of the beam operator

The eigenfunctions ψn(z) can be found as follows.
Consider the problem where the functions ψn satisfy
the differential equation:

d4ψn/dz
4 = λnψn, −H1 < z < H2 (81)

and the boundary conditions

ψn(z)|z=−H1 = ψnz (z)|z=−H1 = 0, (82)

ψnz z(z)|z=H2 = ψnz zz(z)|z=H2 = 0. (83)

The operator d4/dz4 is self-adjoint under the bound-
ary conditions (82) and (83). By multiplying both sides
ofEq. (81) byψn andby integratingbyparts oneobtains

that
∫ H2
−H1

(d2ψ/dz2)2 = λn
∫ H2
−H1

ψ2 thus λn > 0. Let

k = λ
1/4
n > 0. The roots k4 = λn have the form k1 = k,

k2 = −k, k3 = √−1k and k4 = −√−1k. Therefore,
the eigenfunctions ψn can be represented as follows:

ψn(z) = C1 cosh(k(z + H1)) + C2 sinh(k(z + H1))

+ C3 cos(k(z + H1)) + C4 sin(k(z + H1)).

By using the boundary conditions (82) we obtain that
C2 = −C4 and C1 = −C3, and by using the boundary
conditions (83) one finally obtains that det A(k) = 0,
where A is a square 2 × 2 matrix with entries

a11 = sinh(kΔH) + sin(kΔH),

a12 = cosh(kΔH) + cos(kΔH),

a21 = cosh(kΔH) + cos(kΔH),

a22 = sinh(kΔH) − sin(kΔH),

where ΔH = H2 + H1 is the length of the beam. Then
a straightforward computation gives an equation for k:

cosh(kΔH) cos(kΔH) = 1.

For large k (which corresponds to large n) we have
kΔH ≈ π/2 + nπ . The eigenfunctions form a com-
plete orthonormal basis in the space L2[H1, H2]. The
key observation is that since the beam (platform) is a
macroscopic object, with large sizes, the spectrum of
the beam-oscillations can be dense and the eigenvalues
can be located densely.

Appendix 2: Investigation of the nonlinear equation
(78)

To investigate system (78), let us change the variable
An = Xn/Ωn and let us denote Bnm = Ω−1

m d(1)
nm . Then,

for the new unknown Xn one has

dXn

dτ
=

∑

m=1,2,...

Bnm Xm − C̄ Z Xn, (84)

where

Z =
∑

m

|Xm |2. (85)

The approach, followedhere, is similar to the famous
theory of hypercycles developed to describe chemical
and pre-biological evolution [31], but in our case we
are dealing with another nonlinear form. Let us define
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the Hilbert space H of sequences {Xn}, n = 1, 2, . . . ,
with bounded norm ‖X‖ defined by:

‖X‖2 =
∞
∑

n=1

|Xn|2.

The space H has a clear mechanical interpretation: it
is the set of all beam states with a bounded kinetic
energy. Let θ l be eigenfunctions of the operator B
defined by the matrix with entries Bnm in the space
H by (BX)n = ∑∞

m=1 Bnm Xm .One can show that B is
a compact operator inH, thus B has a complete system
of eigenfunctions and a countable set of eigenvalues λm
(which can have any sign). Note that in numerical sim-
ulations, we truncate the possible values of m, where
m = 1, 2, . . . at a certain level m < Nmode, and then
the space H becomes a finite dimensional Euclidean
space with standard norm. Therefore, in this case the
compactness of B is obvious. We can represent X by
the eigenvectors θ(m) of the operatorB in the following
way:

Xn(τ ) =
∞
∑

m=1

θ(m)
n Ym(τ ).

ThevectorsY = (Y1, Y2, . . . ,Ym, . . .) are called quasi-
modes [31]. The quasi-modes are linear combinations
of the usual modes X . Note that the matrix B is sym-
metric. Then there is an orthogonal transformation U
such that the substitution Y = UX transforms B to
a diagonal matrix, which has the same eigenvalues
as B. Moreover, the orthogonality property implies
that this transformation conserves the norm, and thus
Z = ∑∞

n=1 |Y 2
n |.

Then, as a result of this transformation, Eq. (84)
leads to the following system for the unknown coeffi-
cients Yn :
dYn
dτ

= λnYn − YnC̄ Z(τ ). (86)

Assuming that the function Z(t) is given, we obtain

Yn(τ ) = Yn(0) exp

(

λnτ − C̄
∫ τ

0
Z(s)ds

)

. (87)

Let us note that according to (85)

Z =
∑

m

|Ym |2, (88)

because the transformation X → Y conserves the norm
‖ ‖. Substituting (87) into (88) we obtain the following
equation for Z :

Z(τ ) exp

(

2C̄
∫ τ

0
Z(s)ds

)

= h(τ ), (89)

where

h(τ ) =
∑

n

Yn(0)
2 exp(2λnτ) > 0.

Equation (89) can be solved, yielding:

Z(τ ) = h(τ )

1 + 2C̄
∫ τ

0 h(s)ds
. (90)

By substituting (90) into (87) one finally obtains

Yn(τ ) = Yn(0)

(

1 + 2C̄
∫ τ

0
h(s)ds

)

exp(λnτ). (91)

This solution describes a competition between quasi
modes Yn ( [31]). Finally in the limit τ → ∞ the main
contribution in the beam displacement is given by a
quasi-mode with the maximal Reλn = Reλ∗. Thus we
obtain that

Y∗(τ ) ≈ constReλ1/2∗ τ � 1 (92)

|Yn(τ )| 	 |Y∗(τ )|, n > 1, τ � 1

for Reλ∗ > 0 , and

Yn(τ ) ≈ O(ε) n > 1, τ � 1. (93)

So, in the linear instability zone the large timebehaviour
of solutions of Eq. (84) is completely defined by the
most unstable quasi-mode Y∗, which corresponds to
λ∗ = λ∗(v). We will investigate that critical quantity
λ∗(v) in the next Appendix 3. It is important to note
that all solutions Y (t) (and therefore all solutions A(τ ),
which are linear combinations of Yn) converge to an
equilibrium solution. Moreover, although only a single
quasi-mode Yn determines the large time behaviour,
we have a number of nonzero coefficients Xn (and thus
An).

Appendix 3: Bifurcation analysis for (84)

Existence of bifurcations

We can show the existence of bifurcations for the
dynamical system defined by (84) in two ways. The
first one is as follows. We multiply the n-th equation in
(84) by X∗

n , where the star denotes the complex conju-
gate of Xn . Summing up over all so-obtained equations,
yields

dZ

dτ
= Q(v, X) − C̄ Z2, (94)
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where

Q(v, X) =
∑

m,n

Bnm XmXn .

The form Q can be estimated numerically and analyt-
ically. For small speeds v the quadratic form Q(v, X)

is negatively defined, because the friction term domi-
nates:

Q(v, X) ≤ −c‖X‖2, c > 0.

where c is a constant. Then by (94) we obtain

‖X (τ )‖ → 0 (τ → +∞).

On the other hand, for larger speeds the quadratic form
Q(X) is positively defined:

Q(v, X) ≥ c1‖X‖2, c1 > 0.

where c1 is a constant. Then by (94) we obtain

‖X (τ )‖ > X̄0 > 0 (τ → +∞).

So, we observe here the transition from trivial solu-
tions to non-trivial solutions. Eq. (84) can be studied
numerically. The results can be seen in Fig. 3.

Now we discuss an analytical approach, which
allows us to obtain more precise information on eigen-
functions. Instability onset at a speed level vc can
be found by an analysis of the spectrum of the lin-
ear operator, which is defined by the linear term
D1. To correctly define that linear operator, we first
introduce the space HA of infinite sequences A =
(A1, . . . , An, . . .). That space is defined byHA = {A :
‖A‖2 < ∞} and it is equipped with the standard norm
‖A‖ =

√
∑∞

n=1 |An|2. Let D(1)(v) be the linear oper-
ator defined on H by

D(1)(v) =
∑

n1

d(1)
n,n1 An1 .

Let us denote by λ∗(v) the eigenvalue of this operator
with the largest real part. Note that this quantity (aswell
as the operator itself) depends on the ice rod speed v.
Then the instability onset (a bifurcation) arises if at a
critical speed vc one has

Reλ∗(vc) = 0, and Reλ∗(v) > 0 for v > vc. (95)

One can show that there is an interval Iinst = [vc, vs]
for the speeds v such that

Reλ∗(v) > 0, v ∈ Iinst . (96)

This can be shown in the following way. Let us com-
pute first the entries d(1)

n,n1 . For simplicity we suppose

that δ0 > 0 is a small parameter and therefore we
neglect the terms with δ0 in the equation for Rn . Let
us introduce the quantitiesm±(n, n1) by the resonance
conditions

|m±(n, n1)ω − Ωn ± Ωn1 | < κ 	 1, (97)

where κ > 0 is a small detuning parameter. These
conditions (97) correspond to resonances between the
ice rod breaking frequency and the natural frequencies
of the beam. Then, we obtain

d(1)
n,n1 =

(

−αΩn1 + i

2
ReΩ̂n

)

δnn1

+S+(n, n1) + S−(n, n1), (98)

where

S±(n, n1) = Ω̂n1 V̂m±
2

×(−√−1Ω̂n1 + (
√−1m±ω + β/2)

)

if there is a m± satisfying (97) with the corresponding
sign, otherwise S±(n, n1) = 0. By using (98) one can
show that the plot of Reλ∗(v) as a function of v can
have a positive peak for some values of v. To see this,
first let us note that v ∝ ω, and then consider the case
for small k0 	 mω and β 	 k0. Then, we can use the
following asymptotic approximation for V̂m :

V̂m ≈ − idk0
2πm3ω2 .

Substituting this formula into d(1)
n,n1 we obtain that these

entries are defined by quadratic polynomials in z =
ω−1 = const/v, which have peaks at some z = z∗.
These polynomials have the form

Pm(v) = −α − c̄1m
3v−2 + c̄2v

−1, (99)

where c̄1 and c̄2 some constants which are independent
on v. For d(1)

nn1 one has

d(1)
nn1 ≈

∑

m

Pm(v)δκ(mω(v) − Ωn − Ωn1), (100)

where δκ is an approximation of the δ-function by tak-
ing into account the conditions (97), where κ > 0 is a
detuning parameter. The eigenvalues λ∗(v) of the oper-
ator D(1)(v) can be estimated by using the Rayleigh
principle for the maximum of quadratic forms:

λ∗(v) = max
A, 0<‖A‖2<∞

Q(v, A), (101)

where

Q(v, A) = 〈D(1)(v)A, A〉
‖A‖2 .
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In this formula forQ the numerator is a sumof contribu-
tions of dissipation and effects caused by an interaction
between the ice-rod and the beam. The denominator is
the squared average over all modes of the beam dis-
placement, i.e., ‖u‖2. By (100), the quadratic form can
be estimated. In fact, we see that

Q(v, A) ≈
∑

m

Pm(v)
∑

n,n1∈Res(m)

An An1

under the condition that
∑

n |An|2 = 1. Here Res(m)

denotes the m-th set of resonances defined by the con-
dition

Res(m) = {n, n1 : Ωn + Ωn1 ∈ [mω − κ,mω + κ]}.
The function Pm(v) is fast decreasing in m, and we
can take into account only the largest ( first) term with
m = 1 , and then obtain

Q(v, A) ≈ P1(v)
∑

n,n1∈Res(m)

An An1 .

Assume that we take into account a finite set of
modes, and that the number of elements (resonances)
in the set Res(1) is bounded. Then, one can show
that the optimal test vector A with a bounded norm
is A = (1/Nres, 1/Nres, . . . , 1/Nres, 0, . . . , 0, . . .),
where 1/Nres stands for the first Nres positions, and
Nres(v) is the number of resonances in the set Res(1)
which depends on ω (and thus on v). As a result, we
have a simple formula:

λ∗(v) = Nres(v)P1(v). (102)

Due to the special structure of our quadratic form
Q, in the resonance case one has

Aeq
n ≈ P1(v)1/2, n ∈ Res(1), (103)

Aeq
n ≈ O(ε) n /∈ Res(1), (104)

for P1(v) > 0, and

Aeq
n ≈ O(ε) (105)

otherwise. Note that λ∗(v) is negative for small v,
because the negative term −c̄1v−2 < 0 dominates in
P1(v). This means that contact interaction induces a
positive damping. On the other hand, for very large
v the terms −c̄1v−2 < 0 and −α dominate with
respect to a positive contribution c̄2v−1. This means
that both for small and large velocities λ∗(v) < 0, the
friction (damping) is positive and the solution has a
small amplitude. These arguments explain the effects
(i) and (ii) of Sect. 6.3. The sharp growth of the ampli-
tude is a consequence of the fact that there are no

Fig. 8 This plot shows a typical dependence of Nres(v). Here
κ = 0.3, the velocity v lies in the interval [0, 15] and Ωn are
uniformly distributed in the interval [3, 10] with the step-size
0.07

resonances for small v and Nres(v) = 0. However,
for some values v it is possible that P1(v) > 0 and
δκ(ω(v)−Ωn −Ωn1) �= 0. For such values the contact
interaction generates a negative friction that creates a
plateau as can be observed in Fig. 3. It is important to
note that in the beam model that plateau extends the
results with respect to the one degree of freedom oscil-
lator model, because we have a number of modes with
close frequenciesΩn (the beam is amacroscopic object
of large size). The number of resonances can be esti-
mated. One can show that this number is a piecewise
linear function of v (or ω). In fact, the number Nres

is proportional to the area of the planar domain Ωκ,v

defined by

Ωκ,v = {(x, y) : x, y > a, |x + y − ω| < κ},
ω = const · v,

where a = minΩn . It is obvious that this area equals
or tends to zero for small v and increases as a linear
function of v for large v. A typical plot of Nres(v) can
be obtained by simulations as is shown in Fig. 8.

In order to proceed with a numerical analysis, we
truncate theGalerkin series at some n = M � 1. Since
the Fourier coefficients V̂m are decreasing as O(m−3),
all series converge, and so this procedure can be jus-
tified. Let us compute two important quantities: ū and
vb,max. The first, ū is the average of the mean square
beamdisplacementwith respect to time t , and is defined

123



698 A. K. Abramian et al.

as follows :

ū = T−1
∫ T

0
‖u(·, t)‖dt,

‖u(·, t)‖2 =
∫ H2

−H1

u(z, t)2dz,

where T � 1. This quantity is a natural measure for
the beam displacement amplitude, however, it is hard
to measure ū in experiments. The quantity vb,max is the
maximal velocity of the beam at z = 0 :

vb,max = max
t∈[0,T ] |ut (0, t)|, T � 1,

and this quantity was measured in experiments [15]. To
find an asymptotic approximation for ū we first note
that due to the fundamental identity of Parseval, one
has

‖u(·, t)‖2 =
∫ H2

−H1

u(z, t)2dz ≈
∞
∑

n=1

|An(εt)|2.

According to (105) at the bifurcation point one has
∑

n

An(τ )2 ≈ Nres(v)P1(v).

Therefore

ū ≈ (Nres(v)P1(v))1/2, (106)

for P1(v) > 0, and

ū ≈ O(ε) (107)

otherwise. To compute vb,max, we use the asymptotic
approximation

vb,max ≈ max
t

∑

n

Ωn An(εt) cos(Ωnt + φn)ψn(0) + O(ε).

Taking into account that the main contributions in the
sum in this approximation are caused by the resonance
modes, we obtain that vb,max(v) and ū(v) are propor-
tional to the ice rod speed v functions :

wb,max(v) ≈ C ū ≈ C (Nres(v)P1(v))1/2,

where the constant C does not depend on v.
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