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ABSTRACT
Model-free iterative learning control (ILC) can lead to high performance by attenuating repeating disturbances completely, using
dedicated experiments on the real system to replace the traditional model. The aim of this paper is to develop a fast data-driven
method for MIMO ILC that uses random learning in the form of efficient unbiased gradient estimates. This is achieved by devel-
oping a stochastic conjugate gradient algorithm, in which the search direction and optimal step size are generated using dedicated
experiments. The approach is applied to MIMO automated feedforward tuning. Simulation and experimental results show that
the method is superior to earlier stochastic and deterministic methods.

1 | Introduction

Iterative learning control (ILC) leads to high performance in
many applications that perform repeating tasks, by attenuating
repeating disturbances completely. Through iterative updat-
ing, a compensating input signal is learned. Typically, this is
achieved by combining approximate models with measured data.
Examples of ILC frameworks include frequency-domain ILC [1]
and optimization-based approaches such as lifted norm-optimal
ILC [2] and gradient-descent ILC [3].

In contrast to model-based ILC approaches, direct data-driven
approaches do not suffer from performance limitations caused
by model uncertainties, and in addition they avoid the costly
process of modeling and identification [4–6]. Robustness is
typically provided by 𝑄-filters in model-based frequency-domain
ILC, which also reduce the attenuation of repeating disturbances
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at certain frequencies [7], by regularization in norm-optimal
ILC, which restricts the input signal, or through robust design
[3, 8]. This paper considers ‘model-free’ ILC, where the term
model-free is used to convey that these approaches use purely
data-based gradients to minimize a criterion. These approaches
of course assume several system properties, such as that the
system is an 𝑛𝑖 × 𝑛𝑜 linear time-invariant MIMO system, and
essentially replace filtering operations through a model by exper-
iments on the real system. In the remainder of the paper, the term
‘model-free’ is omitted. Most ILC methods, in particular direct
data-driven methods, are developed for SISO systems. In [9], a
MIMO ILC algorithm is introduced, which uses gradient-descent
ILC to minimize a cost criterion, using gradients that are gen-
erated through experiments on the adjoint system [10, 11]. The
approach is related to approaches such as extremum-seeking
based ILC [12]. In [9] and comparable experiment-based iterative
methods for MIMO systems, for example, iterative feedback

International Journal of Adaptive Control and Signal Processing, 2024; 0:1–12 1 of 12
https://doi.org/10.1002/acs.3903

https://orcid.org/0000-0003-1143-6195
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/acs.3903
http://crossmark.crossref.org/dialog/?doi=10.1002%2Facs.3903&domain=pdf&date_stamp=2024-09-02


tuning [13] and𝐻∞-norm estimation [14], the gradient for an𝑛𝑖 ×

𝑛𝑜 MIMO system is generated through 𝑛𝑖𝑛𝑜 experiments. There-
fore, the method does not scale well for massive MIMO systems:
a 10 × 10 system already requires 100 experiments per iteration.

To improve the feasibility of MIMO ILC, it is required to reduce
the number of experiments per iteration, as deterministic gradi-
ents are too experimentally expensive, and the number of itera-
tions, as standard gradient descent is typically slow. In [15], ILC
for MIMO systems is further developed by replacing the experi-
mentally expensive deterministic gradient from [9] with an unbi-
ased estimate generated by a single experiment. The approach
relates to simultaneous perturbation stochastic approximation
[16] and employs the gradient estimates in a stochastic gradient
descent optimization scheme. While this stochastic approxima-
tion adjoint ILC (SAAILC) reduces the number of experiments
significantly compared to [9], the number of iterations is still
high because a first-order optimization algorithm is used.

Methods to increase the convergence speed of first-order opti-
mization algorithms are typically focused on deterministic
optimization, and cannot be applied directly to stochastic
MIMO ILC. Regarding stochastic optimization, several stochas-
tic quasi-Newton methods have been developed that consider
mini-batching, an approach in the field of machine learning
that is non-deterministic, but which nevertheless can use mul-
tiple gradient evaluations of one mini-batch to obtain locally
deterministic Hessian estimates, see, for example, [17, 18]. The
consistency assumption employed in these methods cannot be
satisfied for the stochastic gradients used in ILC. While there
exist some recent results that do not depend on consistency,
see, for example, [19] which uses Gaussian processes to model
the inverse Hessian, conjugate gradients turn out to be more
suitable for the quadratic objectives used in ILC [20, sect. 8.3].
Existing stochastic conjugate gradient methods apply just a
few conjugate gradient steps within a mini-batch, assuming
exact gradients of the subset of data contained in that batch
[21, 22]. To determine the step size, [21] uses an inexact Wolfe
line search, while [22] uses an exact line search that employs
Hessian-vector products [23] that can be obtained efficiently
and automatically using gradient computations. This approach
does not extend to the measured gradient estimates in stochastic
MIMO ILC.

Although significant steps have been taken towards efficient ILC
for MIMO systems, a fast and accurate data-driven approach is
underdeveloped. The aim of this paper is the development of a
method that enables fast and accurate ILC for massive MIMO
systems using only experimental data. To that end, a stochastic
conjugate gradient descent algorithm is developed that uses
randomized experiments to determine experimentally cheap
unbiased gradient approximations, conjugate search directions
and optimal step sizes. In addition, the approach is extended
to the automated tuning of feedforward parameters for MIMO
systems in a case study. Since the number of parameters is
limited, this results in a straightforward approach that is feasible
in practice, as illustrated by the implementation on an indus-
trial flatbed printer. The main contribution of this paper is the
introduction of a framework for efficient data-driven MIMO ILC
using stochastic conjugate gradient descent with optimal step
sizes. This contribution consists of the following elements.

• A framework for efficient data-driven MIMO ILC using
stochastic conjugate gradient descent with optimal step
sizes is introduced that encompasses norm-optimal ILC and
automated feedforward control.

• Complete proofs are provided, including an analysis of the
convergence of the proposed algorithm.

• The proposed approach is compared to alternative determin-
istic and stochastic methods, including Broyden–Fletcher–
Goldfarb–Shanno (BFGS) and stochastic gradient descent
with optimal step sizes, both analytically and in simulation.

• Experimental results on an industrial flatbed printer are pro-
vided.

Preliminary results appear in [24], which presents an early ver-
sion of the stochastic conjugate gradient ILC approach, and [25],
which applies stochastic approximation adjoint ILC with optimal
step sizes to automated feedforward control in simulation. In the
current paper, new results are developed that replace these origi-
nal ideas, leading to a single stochastic conjugate gradient descent
ILC framework that encompasses both norm-optimal ILC and
automated feedforward control for MIMO systems. In addition,
the paper includes complete proofs, a convergence analysis,
comparisons to alternative deterministic and stochastic meth-
ods including BFGS, extensive simulations, and experimental
results.

This paper is structured as follows. In Section 2, the problem
is introduced. In Section 3, a framework for ILC with unbiased
gradient estimates is provided that encompasses both standard
ILC and parameterized feedforward tuning, and stochastic con-
jugate gradient descent with optimal step sizes is introduced.
In Section 4, implementation aspects are considered and the
proposed method is compared to alternative stochastic and
deterministic approaches. A case study on MIMO feedforward
tuning is provided in Section 5. Simulation and experimen-
tal results are given in respectively Sections 6 and 7. Lastly,
conclusions are given in Section 8.

2 | Problem Formulation

In this section, the problem considered in this article is intro-
duced. The aim of finding an input signal 𝑓 that minimizes the
error 𝑒 of a control system is expressed by the criterion

 (𝜃) = ||𝑒||2
𝑊𝑒

+ ||𝑓(𝜃)||2
𝑊𝑓

(1)

with cost  , ||𝑥||2
𝑊

= 𝑥⊤𝑊𝑥 and weighting matrices 𝑊𝑒 ≻ 0,
𝑊𝑓 ≽ 0 (see, e.g., [2] on how to select these weights). The input
𝑓(𝜃) is directly parameterized by the decision variable 𝜃, and the
error 𝑒 depends on 𝜃 through application of 𝑓 to a system 𝐽. The
MIMO linear time-invariant (LTI) system 𝐽 with 𝑛𝑖 inputs and 𝑛𝑜

outputs can represent both open-loop and closed-loop systems
and is given in lifted form by

⎡⎢⎢⎢⎣
𝑒1

⋮

𝑒𝑛𝑜

⎤⎥⎥⎥⎦
⏟⏟⏟

𝑒

=

⎡⎢⎢⎢⎣
𝑟1

⋮

𝑟𝑛𝑜

⎤⎥⎥⎥⎦
⏟⏟⏟

𝑟

−

⎡⎢⎢⎢⎣
𝐽11 … 𝐽1𝑛𝑖

⋮ ⋮

𝐽𝑛𝑜1 … 𝐽𝑛𝑜𝑛𝑖

⎤⎥⎥⎥⎦
⏟⎴⎴⎴⏟⎴⎴⎴⏟

𝐽

⎡⎢⎢⎢⎣
𝑓1(𝜃)

⋮

𝑓𝑛𝑖 (𝜃)

⎤⎥⎥⎥⎦
⏟⎴⏟⎴⏟

𝑓(𝜃)

(2)

2 of 12 International Journal of Adaptive Control and Signal Processing, 2024

 10991115, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3903 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [11/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



J
y –f e

r

FIGURE 1 | System 𝐽 with disturbance 𝑟, input 𝑓, output 𝑦 and error
𝑒 = 𝑟 − Jf according to (2). The 𝑛𝑖 × 𝑛𝑜 system 𝐽 can represent both
open-loop and closed-loop systems.

see also Figure 1. The dimensions of the input 𝑓(𝜃), error 𝑒,
unknown exogenous disturbance 𝑟 and output 𝑦 = Jf are given
by 𝑦𝑙, 𝑒𝑙, 𝑟𝑙, 𝑓𝑚(𝜃) ∈ ℝ𝑁×1 for 𝑙 = 1, … , 𝑛𝑜, 𝑚 = 1, … , 𝑛𝑖 . Each
SISO, LTI subsystem 𝐽𝑙𝑚 ∈ ℝ𝑁×𝑁 for finite signal length 𝑁 ∈ ℤ+

is denoted in lifted form as

𝐽𝑙𝑚 =

⎡⎢⎢⎢⎢⎢⎣

ℎ𝑙𝑚
0 0 … 0

ℎ𝑙𝑚
1 ℎ𝑙𝑚

0 … 0
⋮ ⋮ ⋱ ⋮

ℎ𝑙𝑚
𝑁−1 ℎ𝑙𝑚

𝑁−2 … ℎ𝑙𝑚
0

⎤⎥⎥⎥⎥⎥⎦
(3)

with ℎ𝑙𝑚
𝑖
, 𝑖 = 0, 1, … ,𝑁 − 1 the Markov parameters of subsys-

tem 𝐽𝑙𝑚. Throughout the paper, it is assumed that no model of 𝐽 is
available. Instead, signals 𝑓 and 𝑟 can be applied experimentally
to the system to measure 𝑒.

Input signal 𝑓(𝜃) is parameterized as 𝑓 = 𝜓(𝑦𝑑)
⊤𝜃 with

𝜃 ∈ ℝ𝑁𝜃×1, 𝜓(𝑦𝑑) ∈ ℝ𝑁𝜃×𝑁𝑛𝑖 and rank(𝜓(𝑦𝑑)) = 𝑁𝜃 . Here, 𝑦𝑑
is a known reference to which disturbance 𝑟 typically relates, as
illustrated in Section 5.3 for a closed-loop system. The parameter-
ization 𝑓 = 𝜓(𝑦𝑑)

⊤𝜃 encompasses both standard norm-optimal
ILC, by taking 𝜓 = 𝐼, and ILC with basis functions. While
standard norm-optimal ILC can attenuate a specific repeating
disturbance completely, ILC with basis functions can achieve
good performance for disturbances caused by varying references
by choosing 𝜓(𝑦𝑑) as a function of the reference 𝑦𝑑. Further
details regarding the choice of basis functions for MIMO systems
are given in Section 5.

The aim of this paper is to develop an efficient data-driven
approach to minimize (1). To this end, randomized experiments
are used to generate an unbiased estimate of the gradient 𝜕

𝜕𝜃
.

Since the estimate is unbiased, it can be employed in a stochastic
conjugate gradient-based optimization scheme. The approach is
introduced in the following section.

3 | Stochastic Conjugate Gradient Descent
for MIMO ILC

In this section, ILC using stochastic conjugate gradient descent
is introduced. Since criterion  (𝜃) in (1) is quadratic and strictly
convex, provided that 𝐽 is non-singular, 𝑁𝜃 is sufficiently small
or 𝑊𝑓 ≻ 0, gradient-based optimization is suitable. In particular,
unbiased gradient estimates are used that follow from a single
experiment on the unknown system. A conjugated gradient direc-
tion is considered to increase the convergence speed compared to
stochastic gradient descent.

The aim is to find the optimal parameters 𝜃∗ = arg min𝜃  (𝜃)

with  (𝜃) according to (1), in which 𝑓(𝜃) = 𝜓(𝑦𝑑)
⊤𝜃 and

𝑒 = 𝑟 − Jf(𝜃) = 𝑟 − 𝐽𝜓(𝑦𝑑)
⊤𝜃 (4)

according to (2). Using (4), the gradient of (1) is given by

𝑔(𝜃) = −2𝜓(𝑦𝑑)𝐽⊤𝑊𝑒𝑒 + 2𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑)
⊤𝜃 (5)

The transpose 𝐽⊤ of the system 𝐽 in (5) is unknown in this setting.
However, an unbiased estimate of 𝑔(𝜃𝑗) at iteration 𝑗, denoted by
𝑔̂𝑗 , can be generated through a single experiment, regardless of
the size of the MIMO system. This gradient estimate is used to
determine a search direction 𝑝𝑗 , which is then used to update the
parameters iteratively according to

𝜃𝑗+1 = 𝜃𝑗 + 𝜀𝑗𝑝𝑗 (6)

Here, 𝜀𝑗 denotes the optimal step size in search direction𝑝𝑗 . In the
remainder of this section, it is first shown how 𝑔̂𝑗 is obtained from
a single experiment on 𝐽. Then, experiments to obtain conjugate
search directions 𝑝𝑗 and optimal step sizes 𝜀𝑗 are introduced, and
the convergence is analyzed.

3.1 | Unbiased Gradient Estimates From a
Single Experiment

The adjoint operator 𝐽⊤ of 𝐽 is defined as the operator that satisfies⟨𝑓, 𝐽𝑔⟩ = ⟨𝐽⊤𝑓, 𝑔⟩ ∀𝑓, 𝑔 ∈ ℝ𝑁×1, where ⟨𝑓, 𝑔⟩ denotes the inner
product of two signals𝑓, 𝑔 ∈ ℝ𝑁×1. For a SISO, causal LTI system,
matrix 𝐽𝑙𝑚 in (3) has a lower-triangular Toeplitz structure, and
the adjoint 𝐽⊤ relates to 𝐽 through a time reversal by noting that(
𝐽𝑙𝑚

)⊤
=  𝐽𝑙𝑚 . The involutory permutation matrix

 =

⎡⎢⎢⎢⎣
0 1
⋰

1 0

⎤⎥⎥⎥⎦ ∈ ℝ𝑁×𝑁

has the interpretation of a time-reversal operator. This well-known
property is used in, for example, ILC [10] and L2-gain estimation
[11]. For SISO systems, this enables direct experiments on 𝐽⊤

through one experiment on 𝐽 with two time reversals. This
does not hold for non-symmetric MIMO systems, for which the
adjoint is given by [9]

𝐽⊤ =

⎡⎢⎢⎢⎣
(𝐽11)⊤ … (𝐽𝑛𝑜1)⊤

⋮ ⋮

(𝐽1𝑛𝑖 )⊤ … (𝐽𝑛𝑜𝑛𝑖 )⊤

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣
 0

⋱

0 

⎤⎥⎥⎥⎦
⏟⎴⎴⏟⎴⎴⏟

 𝑛𝑖

⎡⎢⎢⎢⎣
𝐽11 … 𝐽𝑛𝑜1

⋮ ⋮

𝐽1𝑛𝑖 … 𝐽𝑛𝑜𝑛𝑖

⎤⎥⎥⎥⎦
⏟⎴⎴⎴⏟⎴⎴⎴⏟

𝐽

⎡⎢⎢⎢⎣
 0

⋱

0 

⎤⎥⎥⎥⎦
⏟⎴⎴⏟⎴⎴⏟

 𝑛𝑜

(7)

For non-symmetric MIMO systems, 𝐽 ≠ 𝐽 and the term 𝐽⊤𝑊𝑒𝑒 in
(5) cannot be determined from a single experiment on 𝐽. Instead,
finding the exact gradient requires 𝑛𝑖𝑛𝑜 experiments as shown in
Section 4.4. However, an unbiased gradient estimate follows from
a single experiment according to the following theorem. This aux-
iliary result extends the earlier result [15, theorem 1] with a pro-
jection on 𝜓(𝑦𝑑), to enable both standard ILC and parameterized
feedforward.

Theorem 1. An unbiased estimate 𝑔̂𝑗 of (5) is given by

𝑔̂𝑗 = 2𝜓(𝑦𝑑)
(
𝑊𝑓𝜓(𝑦𝑑)

⊤𝜃 −  𝑛𝑖𝐴𝑗𝐽𝐴𝑗
𝑛𝑜𝑊𝑒𝑒𝑗

)
(8)
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where the matrix 𝐴𝑗 ∈ ℝ(𝑁𝑛𝑖)×(𝑁𝑛𝑜) is given by

𝐴𝑗 =

⎡⎢⎢⎢⎣
𝑎11
𝑗

… 𝑎
1𝑛𝑜
𝑗

⋮ ⋱ ⋮

𝑎
𝑛𝑖1
𝑗

… 𝑎
𝑛𝑖𝑛𝑜
𝑗

⎤⎥⎥⎥⎦⊗ 𝐼𝑁 (9)

with identity matrix 𝐼𝑁 ∈ ℝ𝑁×𝑁 . The entries 𝑎𝑙𝑚
𝑗

∈ {−1, 1} are sam-
ples from a symmetric Bernoulli ±1 distribution with probability
𝑃(𝑎𝑙𝑚

𝑗
= 1) = 𝑃(𝑎𝑙𝑚

𝑗
= −1) = 1

2
.

Proof. Since the term 𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑)
⊤𝜃 is known, only the

experimental term𝜓(𝑦𝑑)
𝑛𝑖𝐴𝑗𝐽𝐴𝑗

𝑛𝑜𝑊𝑒𝑒𝑗 is considered. Denote
𝑒𝑗 = 𝑊𝑒𝑒𝑗 . It holds that

 𝑛𝑖𝐴𝑗𝐽𝐴𝑗
𝑛𝑜 𝑒𝑗 =

⎡⎢⎢⎢⎢⎣
∑𝑛𝑜

𝑘=1

(∑𝑛𝑜
𝑙=1𝑎

1𝑙
𝑗

∑𝑛𝑖
𝑚=1(𝐽

𝑙𝑚)⊤𝑎𝑚𝑘
𝑗

)
𝑒𝑘
𝑗

⋮∑𝑛𝑜
𝑘=1

(∑𝑛𝑜
𝑙=1𝑎

𝑛𝑖𝑙

𝑗

∑𝑛𝑖
𝑚=1(𝐽

𝑙𝑚)⊤𝑎𝑚𝑘
𝑗

)
𝑒𝑘
𝑗

⎤⎥⎥⎥⎥⎦
(10)

Let 𝑎𝛼𝛽

𝑗
and 𝑎

𝛾𝛿

𝑗
, with 𝛼, 𝛾 = 1, 2, … , 𝑛𝑖 and 𝛽, 𝛿 = 1, 2, … , 𝑛𝑜,

denote two entries of 𝐴𝑗 . Since 𝑎
𝛼𝛽

𝑗
𝑎
𝛾𝛿

𝑗
= 1 if 𝛼 = 𝛾, 𝛽 = 𝛿 and

𝔼{𝑎𝛼𝛽

𝑗
𝑎
𝛾𝛿

𝑗
} = 0 otherwise, (10) is equal to 𝑦̃𝑗 + 𝜂𝑗 , with 𝜂𝑗 all terms

for which 𝛼 ≠ 𝛾 or 𝛽 ≠ 𝛿 and

𝑦̃𝑗 =

⎡⎢⎢⎢⎣
∑𝑛𝑜

𝑘=1(𝐽
𝑘1)⊤𝑒𝑘

𝑗

⋮∑𝑛𝑜
𝑘=1(𝐽

𝑘𝑛𝑖 )⊤𝑒𝑘
𝑗

⎤⎥⎥⎥⎦ (11)

Note that 𝑦̃𝑗 = 𝐽⊤𝑊𝑒𝑒𝑗 in (5). Since 𝔼{𝑎𝛼𝛽

𝑗
𝑎
𝛾𝛿

𝑗
} = 0 if 𝛼 ≠ 𝛾 or 𝛽 ≠

𝛿, it holds that 𝔼{𝜂𝑗} = 0 and therefore

𝔼{ 𝑛𝑖𝐴𝑗𝐽𝐴𝑗
𝑛𝑜𝑊𝑒𝑒𝑗} = 𝑦̃𝑗 = 𝐽⊤𝑊𝑒𝑒𝑗 (12)

By linearity of the expected value operator, it follows that

𝔼{𝑔̂𝑗} = 2𝜓(𝑦𝑑)
(
𝑊𝑓𝜓(𝑦𝑑)

⊤𝜃 − 𝐽⊤𝑊𝑒𝑒𝑗
)
= 𝑔𝑗 (13)

which concludes the proof. ◽

3.2 | Conjugate Search Directions

Next, the efficient unbiased gradient estimates are used in a
stochastic conjugate gradient descent algorithm. The minimum
of (1) can be found by setting 𝑔(𝜃) = 0. Therefore, minimizing
(1) is equivalent to solving a problem of the form 𝐴𝑥 = 𝑏, which
follows from rewriting (5) to

𝜓(𝑦𝑑)
(
𝐽⊤𝑊𝑒𝐽 +𝑊𝑓

)
𝜓(𝑦𝑑)

⊤

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝐴

𝜃 = 𝜓(𝑦𝑑)𝐽
⊤𝑊𝑒𝑟

⏟⎴⎴⏟⎴⎴⏟
𝑏

(14)

In the following the notations 𝐴 and 𝑏 are used for brevity.
Suitable choices of 𝑊𝑓 or 𝑁𝜃 ensure that 𝐴 ≻ 0, and therefore
an exact conjugate gradient step is at least as good as an exact
gradient descent step [26, theorem 11.3.3]. Conjugate gradient
descent minimizes a criterion along a sequence of conjugated gra-
dient directions to achieve fast convergence. Conjugate vectors
are defined as follows.

Definition 1. Two vectors 𝑥 and 𝑦 are 𝐴-conjugate if 𝑥⊤

𝐴𝑦 = 0.

For deterministic gradients, (1) is minimized through conjugate
search directions by taking 𝑝1 = 𝑔1 as initial search direction and
choosing all subsequent gradient-based search directions such
that 𝑖 ≠ 𝑗 ⇒ 𝑝⊤

𝑖
𝐴 𝑝𝑗 = 0 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑁𝜃 , that is, 𝑝𝑖 and 𝑝𝑗

are 𝐴 -conjugate. This generates a sequence of Krylov subspaces
[26, sect. 11.3], given by

𝑆𝑗 = span
{
𝑔1, 𝐴 𝑔1, (𝐴 )

2𝑔1, … , (𝐴 )
𝑗−1𝑔1

}
(15)

The conjugate search directions enable taking 𝜃𝑗+1 as the mini-
mizer in a Krylov subspace 𝑆𝑗 that includes both 𝜃𝑗 and 𝑔𝑗 , in con-
trast to standard gradient descent which uses a one-dimensional
search in the direction of 𝑔𝑗 . Each iteration, an exact line search
(Section 3.3) is used to ensure that

𝜃𝑗 = min
𝜃∈𝑆𝑗

 (𝜃), with (16)

𝑆𝑗 = span
{
𝜃1, 𝑔1, 𝐴 𝑔1, … , (𝐴 )

𝑗−1𝑔1
}

(17)

Instead of a deterministic gradient, an unbiased gradient estimate
𝑔̂𝑗 is available. Therefore, 𝑝1 = 𝑔̂1 is chosen as initial search direc-
tion. Subsequent search directions are given by

𝑝𝑗+1 = 𝑔̂𝑗+1 + 𝜏𝑗𝑝𝑗 (18)

where the scalar 𝜏𝑗 ensures that 𝑝𝑗+1 and 𝑝𝑗 are 𝐴 -conjugate.
Since 𝑔̂𝑗 ≠ 𝑔𝑗 in general, standard conjugate gradient expressions
cannot be applied, see Section 4. For the stochastic conjugate gra-
dient approach using estimate 𝑔̂𝑗 , the expression for 𝜏𝑗 is given in
the following theorem.

Theorem 2. The search directions 𝑝𝑗+1 and 𝑝𝑗 are 𝐴 -
conjugate if

𝜏𝑗 = −
(𝐽𝜓(𝑦𝑑)

⊤𝑝𝑗)
⊤𝑊𝑒(𝐽𝜓(𝑦𝑑)

⊤𝑔̂𝑗+1) + 𝑝⊤
𝑗
𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑)

⊤𝑔̂𝑗+1

(𝐽𝜓(𝑦𝑑)
⊤𝑝𝑗)

⊤𝑊𝑒(𝐽𝜓(𝑦𝑑)
⊤𝑝𝑗) + (𝑝⊤

𝑗
𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑))

⊤𝑝𝑗

(19)

Proof. If 𝑝𝑗+1 and 𝑝𝑗 are 𝐴 -conjugate, then

𝑝⊤
𝑗
𝐴 𝑝𝑗+1 = 0 (20)

Substituting (18) in (20) gives

𝑝⊤
𝑗
𝐴 𝑝𝑗+1 = 𝑝⊤

𝑗
𝐴 𝑔̂𝑗+1 + 𝜏𝑗𝑝

⊤
𝑗
𝐴 𝑝𝑗 = 0 (21)

𝜏𝑗 = −
𝑝⊤
𝑗
𝐴 𝑔̂𝑗+1

𝑝⊤
𝑗
𝐴 𝑝𝑗

(22)

Substituting 𝐴 in (22) and rearranging gives

𝜏𝑗 = −
(𝐽𝜓(𝑦𝑑)

⊤𝑝𝑗)
⊤𝑊𝑒(𝐽𝜓(𝑦𝑑)

⊤𝑔̂𝑗+1) + 𝑝⊤
𝑗
𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑)

⊤𝑔̂𝑗+1

(𝐽𝜓(𝑦𝑑)
⊤𝑝𝑗)

⊤𝑊𝑒(𝐽𝜓(𝑦𝑑)
⊤𝑝𝑗) + (𝑝⊤

𝑗
𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑))

⊤𝑝𝑗

(23)

which concludes the proof. ◽
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Although 𝐽 in (19) is unknown, 𝐽𝜓(𝑦𝑑)⊤𝑝𝑗 and 𝐽𝜓(𝑦𝑑)
⊤𝑔̂𝑗+1 can

be evaluated through system experiments, leading to 𝜏𝑗 .

3.3 | Unbiased Optimal Step Sizes

Suitable step sizes are essential for the performance and stability
of (stochastic) gradient-based optimization algorithms [27].
Here, the optimal step size 𝜀𝑗 = arg min𝜀  (𝜃𝑗+1) for parameter
update (6) follows from an exact line search, because the mini-
mum of criterion (1) along a search direction can be computed
exactly as shown in the following theorem. An exact line search
leads to faster convergence, compared to inexact line searches
that typically involve evaluating multiple candidate values for 𝜀𝑗
[28, chap. 3].

Theorem 3. The optimal step size 𝜀𝑗 = arg min𝜀  (𝜃𝑗+1) for a
given search direction 𝑝𝑗 is given by

𝜀𝑗 =
𝑒⊤
𝑗
𝑊𝑒𝐽𝜓(𝑦𝑑)

⊤𝑝𝑗 − 𝜃⊤
𝑗
𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑)

⊤𝑝𝑗

(𝐽𝜓(𝑦𝑑)
⊤𝑝𝑗)

⊤𝑊𝑒(𝐽𝜓(𝑦𝑑)
⊤𝑝𝑗) + 𝑝⊤

𝑗
𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑)

⊤𝑝𝑗

(24)

Proof. Substitution of (6) in criterion  (𝜃𝑗+1) gives

𝜀𝑗 = arg min
𝜀
||𝑟 − 𝐽𝜓(𝑦𝑑)

⊤(𝜃𝑗 + 𝜀𝑝𝑗)||2𝑊𝑒
+ ||𝜓(𝑦𝑑)⊤(𝜃𝑗 + 𝜀𝑝𝑗)||2𝑊𝑓

(25)

Taking the derivative to 𝜀 gives

𝜕

𝜕𝜀

(||𝑟 − 𝐽𝜓(𝑦𝑑)
⊤(𝜃𝑗 + 𝜀𝑝𝑗)||2𝑊𝑒

+ ||𝜓(𝑦𝑑)⊤(𝜃𝑗 + 𝜀𝑝𝑗)||2𝑊𝑓

)
= 𝜃⊤

𝑗
𝐴 𝑝𝑗 + 𝑝⊤

𝑗
𝐴 𝜃𝑗 + 2𝜀𝑝⊤

𝑗
𝐴 𝑝𝑗 − 𝑝⊤

𝑗
𝐵 − 𝐵⊤


𝑝𝑗 (26)

For the minimum it holds that 𝜕 (𝜃𝑗+1)

𝜕𝜀
= 0, and therefore

𝜀𝑗 =
𝑝⊤
𝑗
(𝐴 𝜃𝑗 − 𝐵 ) + (𝜃⊤

𝑗
𝐴 − 𝐵⊤


)𝑝𝑗

2𝑝⊤
𝑗
𝐴 𝑝𝑗

(27)

Substitution of 𝐴 , 𝐵 , (4) and rewriting leads to

𝜀𝑗 =
𝑒⊤
𝑗
𝑊𝑒𝐽𝜓(𝑦𝑑)

⊤𝑝𝑗 − 𝜃⊤
𝑗
𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑)

⊤𝑝𝑗

(𝐽𝜓(𝑦𝑑)
⊤𝑝𝑗)

⊤𝑊𝑒(𝐽𝜓(𝑦𝑑)
⊤𝑝𝑗) + 𝑝⊤

𝑗
𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑)

⊤𝑝𝑗

(28)

which concludes the proof. ◽

Step size 𝜀𝑗 is determined by evaluating the term 𝐽𝜓(𝑦𝑑)
⊤𝑝𝑗

through an experiment on the system. Regardless of the size
of the MIMO system, only three experiments are required per
iteration, in addition to the experiment to determine the error
𝑒𝑗 : a measurement of 𝑔̂(𝜃𝑗) according to (8), a measurement of
𝐽𝜓(𝑦𝑑)

⊤𝑔̂𝑗 to determine 𝜏𝑗−1 in (19) which leads to 𝑝𝑗 (see 18),
and a measurement of 𝐽𝜓(𝑦𝑑)⊤𝑝𝑗 to determine 𝜀𝑗 in (24). Note
that at iteration 𝑗, the term 𝐽𝜓(𝑦𝑑)

⊤𝑝𝑗−1 which is needed to
determine 𝜏𝑗−1 is already known from the earlier experiment to
determine 𝜀𝑗−1.

3.4 | Convergence of Stochastic Conjugate
Gradient Descent

The following lemma holds for the convergence of the presented
stochastic conjugate gradient ILC approach.

Lemma 1. Stochastic conjugate gradient ILC with update (6),
optimal step sizes according to Theorem 3, and search direction (18)
with 𝜏𝑗 according to Theorem 2 and unbiased gradient estimates
according to Theorem 1, converges to the minimum 𝜃∗ of (1) in at
most 𝑁𝜃 steps.

Proof. Criterion (1) is quadratic. The directions 𝑝𝑗,

𝑗 = 1, 2, … ,𝑁𝜃 are𝐴 -conjugate, and since𝐴 is positive-definite
the 𝑁𝜃 directions are linearly independent. Step size (24) ensures
that 𝜃𝑗 is optimal in 𝑆𝑗 . After 𝑁𝜃 iterations, 𝑆𝑗 spans the whole
space ℝ𝑁𝜃 such that 𝜃𝑁𝜃

= 𝜃∗. This is a well-known result for
conjugate direction methods and quadratic criteria, see, for
example, [26, sect. 11]. ◽

In practice, good performance is often achieved in fewer than 𝑁𝜃

iterations, as shown in the results in Sections 6 and 7. If the eval-
uations of system 𝐽 are noisy, which is often the case in practice,
Lemma 1 cannot guarantee convergence. The influence of noise
on the gradient estimates is limited, as these are already assumed
to be stochastic and remain unbiased. However, the expressions
for the search direction and the step size, that were previously
assumed to be deterministic, become stochastic when evaluations
of 𝐽 are noisy. As a result, it is not possible to maintain conju-
gacy of search directions over multiple iterations. In this case, the
search direction can be reset to the gradient estimate after a num-
ber of iterations, which is common practice for Krylov subspace
methods, see, for example, [29], yet which does not guarantee
convergence. It is also possible to revert to stochastic gradient
descent by taking 𝜏𝑗 = 0, such that 𝑝𝑗 = 𝑔̂𝑗 , see Section 4.3. For
decreasing step sizes, this leads to almost sure convergence by [15,
theorem 2]. In Section 6, the presented approach is simulated for
noisy system evaluations.

4 | Implementation and Relation to Other
Methods

In this section, several implementation aspects are consid-
ered. First, an overview of the approach is given. Secondly,
scaling for the gradient experiments is investigated. Lastly, the
method is compared to alternative methods: stochastic gradient
descent, conjugate gradient descent with exact gradients, and a
quasi-Newton method presented by [9].

4.1 | Overview of the Approach

The unbiased gradient estimate in Section 3 is combined with
the conjugate search direction in (18) and the optimal step size
in (24) to obtain parameter update 𝜃𝑗+1 according to (6). In addi-
tion to the experiment to determine the error 𝑒𝑗(𝜃𝑗) of iteration
𝑗, only three experiments are required to determine the gradient
estimate, search direction, and optimal step size, regardless of the
size of the MIMO system. The complete approach is summarized
in Algorithm 1.
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ALGORITHM 1 | Efficient MIMO iterative learning control
1: for 𝑗 = 1 ∶ 𝑛iteration
2: Apply input 𝑓𝑗 = 𝜓(𝑦𝑑)

𝖳𝜃𝑗 to measure 𝑒𝑗(𝜃𝑗) =

𝑟 − 𝐽𝜓(𝑦𝑑)
𝖳𝜃𝑗 .

3: Find unbiased estimate 𝑔̂(𝜃𝑗) using one experiment
according to (8) in Section 3.

4: if j=1
5: Set 𝑝1 = 𝑔̂1.
6: else
7: Apply input 𝑔̂𝑗 to measure 𝐽𝜓(𝑦𝑑)

𝖳𝑔̂𝑗 , and use
𝐽𝜓(𝑦𝑑)

𝖳𝑝𝑗−1 to determine 𝜏𝑗−1 in (19).
8: Take direction 𝑝𝑗 = 𝑔̂𝑗 + 𝜏𝑗−1𝑝𝑗−1.
9: end

10: Apply input 𝑝𝑗 to measure 𝐽𝜓(𝑦𝑑)
𝖳𝑝𝑗 to determine step

size 𝜀𝑗 in (24).
11: Update 𝜃𝑗+1 = 𝜃𝑗 − 𝜀𝑗𝑝𝑗 .
12: end

4.2 | Scaling Gradient Experiments

The approach in Algorithm 1 involves three dedicated experi-
ments: the gradient experiment with input 𝐴𝑗

𝑛𝑜𝑊𝑒𝑒𝑗 , the step
size experiment with input 𝜓(𝑦𝑑)

⊤𝑝𝑗 and the search direction
experiment with input 𝜓(𝑦𝑑)

⊤𝑔̂𝑗 . It may be necessary to scale
these inputs before applying them to the system, for example
when the signals are too large, such that implementing them
could damage the system, or when their magnitude is too small to
overcome the stick friction of a motion system. Therefore, a scal-
ing factor 𝛼 ∈ ℝ is introduced, that is, for example, implemented
as

𝐽𝜓(𝑦𝑑)
⊤𝑔̂(𝜃𝑗) =

1
𝛼
𝐽𝛼𝜓(𝑦𝑑)

⊤𝑔̂(𝜃𝑗) (29)

The implementation for the two other types of experiments
is similar. The scaling factor 𝛼 is chosen separately for each
experiment, and it is assumed to be chosen such that the system
is outside of the stick regime during the experiment, such that
the system behaves linearly.

4.3 | Recovering Stochastic Gradient Descent

Stochastic gradient descent ILC differs from the conjugate gradi-
ent ILC algorithm in that it uses the gradient estimate as search
direction, rather than a conjugate search direction derived from
this gradient estimate. Stochastic gradient descent ILC can be
recovered from the conjugate gradient ILC algorithm by taking
𝜏𝑗 = 0, such that 𝑝𝑗 = 𝑔̂𝑗 and the parameter update is given by

𝜃𝑗+1 = 𝜃𝑗 − 𝜀𝑗𝑔̂𝑗 (30)

The optimal step size follows from substituting 𝑝𝑗 = 𝑔̂𝑗 in (24).
For exact conjugate gradient (CG) and gradient descent (GD),
it holds that a CG step is at least as good as a GD step since
𝜓(𝑦𝑑)(𝐽

⊤𝑊𝑒𝐽 +𝑊𝑓)𝜓(𝑦𝑑)
⊤ ≻ 0 [26, theorem 11.3.3, 30]. In [15],

the gradient estimates 𝑔̂𝑗 are used in a Robbins–Monro type
stochastic gradient descent algorithm [31] and 𝜀𝑗 is chosen such
that criteria of almost sure convergence for a Robbins–Monro
algorithm are met. As shown in Section 6, this results in slow
convergence compared to the proposed stochastic conjugate
gradient approach.

4.4 | Conjugate Gradient Descent With Exact
Gradients

The approach developed in this article uses experimentally effi-
cient approximate gradients that are obtained through a single
experiment. However, the expressions for the conjugated search
directions and optimal step sizes can also be used with exact gra-
dient expressions, which are experimentally expensive. Exact gra-
dient expressions can be generated through 𝑛𝑖 × 𝑛𝑜 experiments
according to [9]

𝑔𝑗 = −2𝜓(𝑦𝑑) 𝑛𝑖

(
𝑛𝑖∑
𝑙=1

𝑛𝑜∑
𝑚=1

𝐸𝑙𝑚𝐽𝐸𝑙𝑚

)
 𝑛𝑜𝑊𝑒𝑒𝑗

+ 2𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑)
⊤𝜃 (31)

where 𝐸𝑙𝑚 consists of zeros, with a one on the 𝑙𝑚th entry. This
approach does not scale well for large MIMO systems because
generating the gradient requires 𝑛𝑖 × 𝑛𝑜 experiments. In addition,
obtaining exact gradients requires noise-free system evaluations.
In the theoretical case with noise-free evaluations and gradients,
the expressions for the search direction and step size can be sim-
plified to the well-known standard expressions for conjugate gra-
dient descent. If 𝑔̂𝑗 = 𝑔𝑗 ∀ 𝑗, expression (19) for 𝜏𝑗 reduces to

𝜏𝑗 =
𝑔⊤
𝑗+1𝑔𝑗+1

𝑔⊤
𝑗
𝑔𝑗

(32)

see for example, [26, sect. 11.3] for a derivation. This expression
for 𝜏𝑗 does not require any experiments. In addition, expression
(24) for 𝜀𝑗 reduces to

𝜀𝑗 =
−𝑔⊤

𝑗
𝑔𝑗

𝑝⊤
𝑗
𝐴 𝑝𝑗

=
−𝑔⊤

𝑗
𝑔𝑗

(𝐽𝜓(𝑦𝑑)
⊤𝑝𝑗)

⊤𝑊𝑒(𝐽𝜓(𝑦𝑑)
⊤𝑝𝑗) + 𝑝⊤

𝑗
𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑)

⊤𝑝𝑗

(33)

These standard expressions for conjugate gradient descent
depend on the assumption that 𝑔̂𝑗 = 𝑔𝑗 ∀ 𝑗 and cannot be used
in case of stochastic gradients or noisy system evaluations.

4.5 | Quasi-Newton Methods

In [9], deterministic gradients are used in a quasi-Newton adjoint
ILC approach. This approach uses the exact gradient, modified
by an estimate of the inverse Hessian, as search direction, in
contrast to the method in this article that uses conjugated search
directions based on gradient estimates. The search direction is
chosen as

𝑝𝑗 = −𝐵𝑗𝑔𝑗 (34)

where the BFGS inverse Hessian estimate 𝐵𝑗 is given by

𝐵𝑗 = 𝐵𝑗−1 −
𝑠𝑗𝛾

⊤
𝑗
𝐵𝑗−1 + 𝐵𝑗−1𝛾𝑗𝑠

⊤
𝑗

𝑠⊤
𝑗
𝛾𝑗

+

(
1 +

𝛾⊤
𝑗
𝐵𝑗−1𝛾𝑗

𝑠⊤
𝑗
𝛾𝑗

)
𝑠𝑗𝑠

⊤
𝑗

𝑠⊤
𝑗
𝛾𝑗

(35)
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with 𝑠𝑗 = 𝜃𝑗 − 𝜃𝑗−1 and 𝛾𝑗 = 𝑔𝑗 − 𝑔𝑗−1. The optimal step size,
that follows from an exact line search, is given by

𝜀𝑗 =
𝑔⊤
𝑗
𝐵𝑗𝑔𝑗

(𝐽𝜓(𝑦𝑑)
⊤𝐵𝑗𝑔𝑗)

⊤𝑊𝑒𝐽𝜓(𝑦𝑑)
⊤𝐵𝑗𝑔𝑗

+
𝑔⊤
𝑗
𝐵𝑗𝑔𝑗

𝑔⊤
𝑗
𝐵⊤
𝑗
𝜓(𝑦𝑑)𝑊𝑓𝜓(𝑦𝑑)

⊤𝐵𝑗𝑔𝑗
(36)

which is based on the assumption that deterministic gradients are
available. However, if only 𝑔̂𝑗 is available, (36) does not give the
optimal step size and the step size of Theorem 3 with 𝑝𝑗 = −𝐵𝑗𝑔̂𝑗
should be used instead. Yet even in that case, the inverse Hessian
estimate 𝐵𝑗 is biased, as shown in the following lemma.

Lemma 2. When 𝛾𝑗 in (35) is replaced by the unbiased esti-
mate 𝛾̂𝑗 = 𝑔̂𝑗 − 𝑔̂𝑗−1, the resulting 𝐵̂𝑗(𝛾𝑗) is a biased estimator of
𝐵𝑗(𝛾𝑗), that is, 𝔼{𝐵̂𝑗} ≠ 𝐵𝑗 . In addition, while 𝐵̂𝑗𝛾̂𝑗 = 𝑠𝑗 , this secant
condition is not satisfied for 𝛾𝑗 in expectation, that is, 𝔼{𝐵̂𝑗𝛾𝑗} ≠ 𝑠𝑗 .

Proof. Denote 𝛾̂𝑗 = 𝛾𝑗 + 𝜔𝑗 . First, to show that𝔼{𝐵̂𝑗} ≠ 𝐵𝑗 , con-
sider

𝐵̂𝑗 = 𝐵̂𝑗−1 −
𝑠𝑗𝛾̂

⊤
𝑗
𝐵̂𝑗−1 + 𝐵̂𝑗−1𝛾̂𝑗𝑠

⊤
𝑗

𝑠⊤
𝑗
𝛾̂𝑗

+

(
1 +

𝛾̂⊤
𝑗
𝐵̂𝑗−1𝛾̂𝑗

𝑠⊤
𝑗
𝛾̂𝑗

)
𝑠𝑗𝑠

⊤
𝑗

𝑠⊤
𝑗
𝛾̂𝑗

(37)

Here, 𝔼
{

𝛾̂⊤
𝑗
𝐵̂𝑗−1 𝛾̂𝑗

𝑠⊤
𝑗
𝛾̂𝑗 𝑠

⊤
𝑗
𝛾̂𝑗

}
≠

𝛾⊤
𝑗
𝐵̂𝑗−1𝛾𝑗

𝑠⊤
𝑗
𝛾𝑗𝑠

⊤
𝑗
𝛾𝑗

, that is, this scalar term is biased

and as a result 𝔼{𝐵̂𝑗} ≠ 𝐵𝑗 . Secondly, rewriting (35), see [32],
shows that 𝔼{𝐵̂𝑗𝛾𝑗} ≠ 𝑠𝑗 . In particular, 𝛾𝑗 = 𝛾̂𝑗 − 𝜔𝑗 leads to

𝐵̂𝑗𝛾𝑗 =

⎛⎜⎜⎝
(
𝐼 −

𝛾̂𝑗𝑠
⊤
𝑗

𝑠⊤
𝑗
𝛾̂𝑗

)⊤

𝐵̂𝑗−1

(
𝐼 −

𝛾̂𝑗𝑠
⊤
𝑗

𝑠⊤
𝑗
𝛾̂𝑗

)
+

𝑠𝑗𝑠
⊤
𝑗

𝑠⊤
𝑗
𝛾̂𝑗

⎞⎟⎟⎠𝛾𝑗
=

(
𝐼 −

𝛾̂𝑗𝑠
⊤
𝑗

𝑠⊤
𝑗
𝛾̂𝑗

)⊤

𝐵̂𝑗−1

(
−𝜔𝑗 +

𝛾̂𝑗𝑠
⊤
𝑗
𝜔𝑗

𝑠⊤
𝑗
𝛾̂𝑗

)

+ 𝑠𝑗 −
𝑠𝑗𝑠

⊤
𝑗
𝜔𝑗

𝑠⊤
𝑗
𝛾̂𝑗

(38)

Taking the expected value gives

𝔼{𝐵̂𝑗𝛾𝑗} = 𝑠𝑗 + 𝔼
⎧⎪⎨⎪⎩
(
𝐼 −

𝛾̂𝑗𝑠
⊤
𝑗

𝑠⊤
𝑗
𝛾̂𝑗

)⊤

𝐵̂𝑗−1

(
−𝜔𝑗 +

𝛾̂𝑗𝑠
⊤
𝑗
𝜔𝑗

𝑠⊤
𝑗
𝛾̂𝑗

)
−

𝑠𝑗𝑠
⊤
𝑗
𝜔𝑗

𝑠⊤
𝑗
𝛾̂𝑗

⎫⎪⎬⎪⎭
(39)

where it is clear that the second part of the expression has𝔼{⋅} ≠ 0
such that 𝔼{𝐵̂𝑗𝛾𝑗} ≠ 𝑠𝑗 . ◽

Lemma 2 illustrates that using the BFGS update (35) with
unbiased gradient estimates, either generated through (8) or
through (31) with noisy system evaluations, results in biased
inverse Hessian estimates that do not meet the secant condition
in expectation. As such, (35) is not suitable for acceleration of
stochastic gradient descent. This is further illustrated through
simulations in Section 6.

5 | Specialization to MIMO Basis Functions

In the previous sections, an efficient approach to MIMO itera-
tive learning control is introduced that optimizes a parameterized
input signal of the form

𝑓(𝑦𝑑, 𝜃) = 𝜓(𝑦𝑑)
⊤𝜃 (40)

In standard iterative learning control, 𝜓(𝑦𝑑) = 𝐼 such that 𝑓 = 𝜃

is an input signal that attenuates one specific repeating distur-
bance completely. However, many applications require varying
references that result in varying disturbances. In this case param-
eterized feedforward control can achieve both high accuracy and
flexibility by choosing 𝜓(𝑦𝑑) as a set of reference-dependent basis
functions, see, for example, [33].

In this section, an example of MIMO mass feedforward is given
which is then extended into a general framework for MIMO basis
functions, and suitable basis functions for MIMO motion systems
are presented. In Section 7, the MIMO basis function feedforward
framework is applied to an industrial flatbed printer.

5.1 | Example: MIMO Mass Feedforward

To illustrate a suitable structure for basis function feedforward
for MIMO motion control systems with interaction, consider the
example of mass feedforward𝑓𝑚 for a 2 × 2 system with reference
𝑦𝑑 =

[
𝑦1
𝑑
𝑦2
𝑑

]⊤. Matrix 𝜓(𝑦𝑑) contains the second derivative of the
reference, such that

[
𝑓1
𝑚
(𝑦𝑑, 𝜃)

𝑓2
𝑚
(𝑦𝑑, 𝜃)

]
=

[
𝑦𝑑

1 𝑦𝑑
2 0 0

0 0 𝑦𝑑
1 𝑦𝑑

2

]
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

𝜓(𝑦𝑑)
⊤

⎡⎢⎢⎢⎢⎢⎣

𝜃1

𝜃2

𝜃3

𝜃4

⎤⎥⎥⎥⎥⎥⎦
(41)

The four transfer functions in the MIMO system, that is, two
diagonal and two off-diagonal interaction terms, are each approx-
imated by a mass line. ILC can be used to find the mass estimates,
that is, the parameters 𝜃, that minimize (1).

5.2 | General Structure for MIMO
Parameterized Feedforward

A general structure for basis functions for MIMO systems is given
by

𝜓(𝑦𝑑)
⊤ =

⎡⎢⎢⎢⎣
𝜓1(𝑦𝑑) 𝜓2(𝑦𝑑) … 𝜓𝑛𝑏

(𝑦𝑑) … 0 0 … 0
⋮ ⋮

0 0 … 0 … 𝜓1(𝑦𝑑) 𝜓2(𝑦𝑑) … 𝜓𝑛𝑏
(𝑦𝑑)

⎤⎥⎥⎥⎦ (42)

with the 𝑛𝑏 basis functions 𝜓𝑛(𝑦𝑑), 𝑛 = 1, 2, … , 𝑛𝑏 given by

𝜓𝑛(𝑦𝑑) =
[
𝜓1
𝑛
(𝑦1

𝑑
) 𝜓2

𝑛
(𝑦2

𝑑
) … 𝜓

𝑛𝑜
𝑛 (𝑦

𝑛𝑜
𝑑
)
]

(43)

Here 𝜓1
𝑛
(𝑦1

𝑑
) ∈ ℝ𝑁×1 such that 𝜓(𝑦𝑑)⊤ ∈ ℝ𝑛𝑖𝑁×𝑛𝑏𝑛𝑜𝑛𝑖 . The param-

eter vector is structured as

𝜃 =
[
𝜃1 … 𝜃𝑛𝑏𝑛𝑜𝑛𝑖

]⊤
∈ ℝ𝑛𝑏𝑛𝑜𝑛𝑖×1 (44)
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FIGURE 2 | Closed-loop system with parameterized feedforward 𝑓.
Here 𝐽 = 𝑃(𝐼 + 𝐶𝑃)−1 is the process sensitivity describing the transfer
from 𝑓 to −𝑒. Reference 𝑦𝑑 leads to disturbance 𝑟 = (𝐼 + 𝑃𝐶)−1𝑦𝑑 .

Thus, 𝜓(𝑦𝑑)
⊤ consists of a set of 𝑛𝑏 basis function matrices,

applied to each of the 𝑛𝑖 input directions. Each of the basis
function matrices 𝜓𝑛(𝑦𝑑) consists of a specific basis function
applied to each of the 𝑛𝑜 output references. The parameter vector
𝜃 contains a separate parameter for each column in each of the
𝑛𝑖 × 𝑛𝑏 matrices 𝜓𝑛(𝑦𝑑). This results in 𝑛𝑖 feedforward signals of
the form

𝑓𝑛(𝑦𝑑, 𝜃) =

𝑛𝑜∑
𝑘=1

𝑛𝑏∑
𝑙=1

𝜓𝑘
𝑙
(𝑦𝑘

𝑑
)𝜃(𝑛−1)𝑛𝑜𝑛𝑏+(𝑙−1)𝑛𝑜+𝑘 (45)

Note that for each input direction, the same set of 𝑛𝑏 basis func-
tions is used and only the parameters are different. To take into
account couplings in the MIMO system, the input in each direc-
tion contains basis functions based on the reference in all output
directions. The framework allows for any type of basis functions
that is linear in the parameters, including finite impulse response
(FIR) bases or, for example, non-causal rational basis functions
with fixed poles.

5.3 | Basis Functions

Parameterized feedforward control aims to minimize the error for
any reference and is typically implemented as shown in Figure 2.
From (2) and Figure 2, it follows that zero tracking error requires

𝑓 = 𝐽−1𝑟 = (𝑃(𝐼 + 𝐶𝑃)−1)−1(𝐼 + 𝑃𝐶)−1𝑦𝑑 = 𝑃−1𝑦𝑑 (46)

It follows that 𝜓(𝑦𝑑)
⊤𝜃 should approximate 𝑃−1𝑦𝑑, that is, the

basis functions should approximate the inverse plant. Therefore,
interpretable basis functions with parameters that approximate
system parameters are preferred over generic parametrizations
such as radial basis functions or Gaussian processes. For typi-
cal motion systems, suitable basis functions are the position ref-
erence and its derivatives: velocity, acceleration and snap terms
compensate respectively viscous friction, mass dynamics and the
compliance of the flexible dynamics. This leads to the following
basis functions.

𝜓(𝑦𝑑)
⊤ =

⎡⎢⎢⎢⎣
𝑦𝑑,𝜏 𝑦′

𝑑,𝜏
… 𝑦

(4)
𝑑,𝜏

… 0 0 … 0
⋮ ⋮

0 0 … 0 … 𝑦𝑑,𝜏 𝑦′
𝑑,𝜏

… 𝑦
(4)
𝑑,𝜏

⎤⎥⎥⎥⎦ (47)

in which

𝑦𝑑,𝜏 =
[
𝑦1
𝑑
𝑦2
𝑑

… 𝑦
𝑛𝑜
𝑑

]
(48)

This parameterization relates each of the output references
to each input direction, modeling both the diagonal and
off-diagonal terms of the MIMO system. Therefore, it is suitable
for MIMO systems with strong interaction.

6 | Application: Simulation of a Massive MIMO
System

In this section, the proposed approach with 𝜓 = 𝐼 is applied to a
random 21 × 21 MIMO system, illustrated in Figure 3, in simula-
tions. Several approaches are compared for cases with noise-free
and noisy system evaluations.

1. Stochastic conjugate gradient ILC (this article) using 𝑔̂

according to (8), conjugate search directions and optimal
step sizes.

2. Stochastic approximation adjoint ILC [15] using 𝑔̂ according
to (8) with a fixed step size.

3. Deterministic adjoint ILC [9] using 𝑔 according to (31) with
a fixed step size.

4. Deterministic conjugate gradient ILC using 𝑔 according to
(31) with conjugated search directions and optimal step
sizes according to Section 4.4.

5. (Noisy evaluations) Deterministic conjugate gradient ILC
using 𝑔 according to (31) with conjugate search directions
and optimal step sizes according to Section 3.

6. (Noisy evaluations) Stochastic approximation adjoint ILC
using 𝑔̂ according to (8) with optimal step sizes.

7. (Noisy evaluations) BFGS with 𝑔̂ and 𝑔 using either the
non-optimal step size of (36) or the optimal step size of
Theorem 3.

First, it is shown that the proposed approach outperforms exist-
ing deterministic and stochastic approaches in case of noise-free
system evaluations. Secondly, it is shown that deterministic
methods diverge when the system evaluations are noisy, while the
proposed stochastic conjugate gradient ILC (SCGILC) still
converges. Thirdly, it is shown that BFGS is not suitable for
stochastic settings. In all simulations the weights are given by
𝑊𝑒 = 𝐼, 𝑊𝑓 = 0.

6.1 | Stochastic Versus Deterministic Conjugate
Gradient

Stochastic conjugate gradient ILC (SCGILC) is compared to
stochastic approximation adjoint ILC [15], to deterministic
adjoint ILC [9] and to a deterministic conjugate gradient method
(Section 4.4), which employs deterministic gradients generated
by (31).

In Figure 4, it is shown that the proposed stochastic conjugate
gradient algorithm requires far fewer experiments to reach the
same cost than the deterministic conjugate gradient algorithm.
The conjugate gradient algorithms outperform both stochastic
and deterministic gradient descent algorithms. In addition, the
smoothness of stochastic ILC is greatly improved by the line
searches of the conjugate gradient method.

6.2 | Noisy System Evaluations

In typical control applications, evaluations of the system 𝐽 are
noisy. As a result, gradient estimates generated through (31) are

8 of 12 International Journal of Adaptive Control and Signal Processing, 2024
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FIGURE 3 | Bode magnitude and phase plots of the last column of 21 subsystems of the random non-symmetric 21 × 21 MIMO system used for the
simulations results.
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FIGURE 4 | The cost as a function of the number of experiments for a non-symmetric 21 × 21 system. Four approaches are shown: the proposed
stochastic conjugate gradient ILC (SCGILC) method ( ), deterministic conjugate gradient ILC ( ), stochastic gradient descent ILC ( ) and deter-
ministic gradient descent ILC ( ). SCGILC ( ) requires far fewer experiments than other approaches to reach the same cost.

not deterministic, although the variance of these gradient esti-
mates is typically smaller than that of the unbiased estimates gen-
erated by (8). For the case of noisy system evaluations, SCGILC is
compared to a conjugate gradient method designed for determin-
istic gradients (Section 4.4).

In Figure 5, it is shown that deterministic conjugate gradi-
ent descent diverges when system evaluations are noisy. The
stochastic conjugate gradient ILC algorithm is implemented
with gradient estimates generated by respectively (8) and (31).
It is shown that while algorithm converges for both gradient
estimates, using gradient estimates obtained from a single
experiment results in much faster convergence in terms of the
required number of experiments. The SCGILC method is also
shown to converge slightly faster than stochastic gradient descent
with optimal step sizes, which does not require the additional
experiment to determine a conjugate direction.

6.3 | BFGS in a Non-Deterministic Setting

To illustrate the effect of non-optimal step sizes and biased
inverse Hessian estimates in BFGS, which follow from applying

(35) in case of noisy system evaluations, four different approaches
are simulated. In Figure 6, it is shown that applying the
non-optimal step size of (36) leads to divergence in a stochastic
setting, even when the full gradient expressions are used. Using
the optimal step size of Theorem 3 in combination with a biased
estimate of the inverse Hessian also leads to a diverging or
non-decreasing cost.

7 | Experimental Implementation on an
Industrial Flatbed Printer

The presented SCGILC approach with the basis functions
from Section 5 is applied to a 3 × 3 MIMO industrial Arizona
flatbed printer, shown in Figure 7. The system has inputs
𝐹 =

[
𝐹𝑦 𝐹𝑥 𝐹𝜑

]
and the outputs are the translation of the

carriage 𝑦, and the translation 𝑥 and rotation 𝜑 of the gantry.
The reference consists of a translation in 𝑥- and 𝑦-direction.
The weights are 𝑊𝑒 = 𝐼 and 𝑊𝑓 = 10−7𝐼 and the basis functions
are the reference, velocity and acceleration in each direction. In
Figure 8, it is shown that SCGILC converges to a low cost in a
small number of iterations, with each iteration requiring four

9 of 12
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FIGURE 5 | The cost as a function of the number of experiments for a noisy non-symmetric 21 × 21 system. Stochastic conjugate gradient ILC
(SCGILC) based on (8) ( ) requires far fewer experiments than the implementation using (31) ( ). Implementing deterministic conjugate gradient
( ) in case of noisy system evaluations and gradient estimates leads to a diverging cost. SCGILC ( ) is slightly faster than stochastic gradient descent
with optimal step sizes ( ), especially in the first iterations (zoom plot), and much faster and smoother than stochastic gradient descent with a fixed
step size ( ).
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FIGURE 6 | The cost as a function of the number of experiments for a noisy non-symmetric 21 × 21 system with different BFGS implementations.
For full gradients, BFGS leads to a diverging cost for both non-optimal ( ) and optimal ( ) stepsizes. For stochastic gradients, BFGS leads to a diverging
cost for non-optimal step sizes ( ) and a non-decreasing cost for optimal step sizes ( ).

FIGURE 7 | Photograph (left) and schematic overview (right) of the industrial Arizona flatbed printer that is used for the experimental results in
Section 7.
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FIGURE 8 | Cost over iterations for stochastic conjugate gradient descent parallel ILC with basis functions (position, velocity and acceleration).
Experimental results show convergence to small errors after only three iterations (12 experiments).
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experiments to determine the error, gradient estimate, conjugate
search direction and optimal step size.

8 | Conclusion

In this article, an efficient method for MIMO iterative learning
control is developed that achieves fast convergence through
random learning. The method employs a stochastic conjugate
gradient descent algorithm based on unbiased gradient estimates
that are generated through system experiments. Each iteration
requires only three dedicated experiments to determine an
unbiased gradient estimate, a conjugate search direction and an
optimal step size. The proposed method converges faster than
existing methods that use only unbiased gradient estimates or
deterministic gradients that require 𝑛𝑖𝑛𝑜 experiments per itera-
tion, and it retains this fast convergence property in case of noisy
system evaluations, as illustrated in simulations. The method is
applied to the practical case of automated feedforward tuning
for MIMO systems. Suitable basis functions for MIMO motion
systems with interaction are proposed, and the method is applied
to an industrial flatbed printer, leading to fast convergence and
small errors.
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on Extremum Seeking,” Automatica 66 (2016): 238–245, https://doi.org
/10.1016/j.automatica.2015.12.019.

13. H. Hjalmarsson, “Efficient Tuning of Linear Multivariable Con-
trollers Using Iterative Feedback Tuning,” International Journal
of Adaptive Control and Signal Processing 13 (1999): 553–572, https://doi.
org/10.1002/(SICI)1099-1115(199911)13:7<553::AID-ACS572>3.0.CO;
2-B.

14. T. Oomen, R. van der Mass, C. R. Rojas, and H. Hjalmarsson, “Iterative
Data-Driven H-Infinity Norm Estimation of Multivariable Systems With
Application to Robust Active Vibration Isolation,” IEEE Transactions on
Control Systems Technology 22, no. 6 (2014): 2247–2260, https://doi.org
/10.1109/TCST.2014.2303047.

15. L. Aarnoudse and T. Oomen, “Model-Free Learning for Massive
MIMO Systems: Stochastic Approximation Adjoint Iterative Learning
Control,” IEEE Control Systems Letters 5, no. 6 (2021): 1946–1951,
https://doi.org/10.1109/LCSYS.2020.3046169.

16. J. C. Spall, “Multivariate Stochastic Approximation Using a Simul-
taneous Perturbation Gradient Approximation,” IEEE Transactions on
Automatic Control 37, no. 3 (1992): 332–341, https://doi.org/10.1109/9
.119632.

17. N. N. Schraudolph and G. Simon, “A Stochastic Quasi-Newton
Method for Online Convex Optimization,” in Proceedings of the 11th
International Conference on Artificial Intelligence and Statistics (San Juan,
Puerto Rico: PMLR, 2007), 436–443.

18. A. Mokhtari and A. Ribeiro, “Stochastic Quasi-Newton Methods,”
Proceedings of the IEEE 108 (2020): 11, https://doi.org/10.1109/JPROC
.2020.3023660.

19. A. G. Wills and T. B. Schön, “Stochastic Quasi-Newton With
Line-Search Regularisation,” Automatica 127 (2021): 109503, https://doi
.org/10.1016/j.automatica.2021.109503.

20. K. P. Murphy, Machine Learning: A Probabilistic Perspective (Cam-
bridge, MA: MIT Press, 2012).

21. X. B. Jin, X. Y. Zhang, K. Huang, and G. G. Geng, “Stochastic Conju-
gate Gradient Algorithm With Variance Reduction,” IEEE Transactions
on Neural Networks and Learning Systems 30, no. 5 (2019): 1360–1369,
https://doi.org/10.1109/TNNLS.2018.2868835.

22. N. N. Schraudolph, T. Graepel, “Conjugate Directions for Stochas-
tic Gradient Descent,” in International Conference on Artificial Neural
Networks—ICANN, (Berlin, Heidelberg, Madrid, Spain: Springer, 2002),
1351–1356.

11 of 12

 10991115, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3903 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [11/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1109/MCS.2006.1636313
https://doi.org/10.1109/MCS.2006.1636313
https://doi.org/10.1016/S0005-1098(01)00154-6
https://doi.org/10.1016/S0005-1098(01)00154-6
https://doi.org/10.1002/rnc.1338
https://doi.org/10.1002/rnc.1338
https://doi.org/10.1002/rnc.1338
https://doi.org/10.1016/S0959-1524(01)00018-X
https://doi.org/10.1016/S0959-1524(01)00018-X
https://doi.org/10.1016/j.automatica.2004.11.021
https://doi.org/10.1016/j.automatica.2004.11.021
https://doi.org/10.1016/j.automatica.2004.11.021
https://doi.org/10.1109/TAC.2022.3148374
https://doi.org/10.1109/TAC.2022.3148374
https://doi.org/10.1080/00207170701484851
https://doi.org/10.1080/00207170701484851
https://doi.org/10.1080/00207170701484851
https://doi.org/10.1109/TAC.2015.2457785
https://doi.org/10.1109/TAC.2015.2457785
https://doi.org/10.1002/rnc.3611
https://doi.org/10.1002/rnc.3611
https://doi.org/10.1080/00207170601136726
https://doi.org/10.1080/00207170601136726
https://doi.org/10.1016/j.automatica.2010.05.012
https://doi.org/10.1016/j.automatica.2010.05.012
https://doi.org/10.1016/j.automatica.2010.05.012
https://doi.org/10.1016/j.automatica.2015.12.019
https://doi.org/10.1016/j.automatica.2015.12.019
https://doi.org/10.1016/j.automatica.2015.12.019
https://doi.org/10.1002/(SICI)1099-1115(199911)13:7%3C553::AID-ACS572%3E3.0.CO;2-B
https://doi.org/10.1002/(SICI)1099-1115(199911)13:7%3C553::AID-ACS572%3E3.0.CO;2-B
https://doi.org/10.1002/(SICI)1099-1115(199911)13:7%3C553::AID-ACS572%3E3.0.CO;2-B
https://doi.org/10.1002/(SICI)1099-1115(199911)13:7%3C553::AID-ACS572%3E3.0.CO;2-B
https://doi.org/10.1109/TCST.2014.2303047
https://doi.org/10.1109/TCST.2014.2303047
https://doi.org/10.1109/TCST.2014.2303047
https://doi.org/10.1109/LCSYS.2020.3046169
https://doi.org/10.1109/LCSYS.2020.3046169
https://doi.org/10.1109/9.119632
https://doi.org/10.1109/9.119632
https://doi.org/10.1109/9.119632
https://doi.org/10.1109/JPROC.2020.3023660
https://doi.org/10.1109/JPROC.2020.3023660
https://doi.org/10.1109/JPROC.2020.3023660
https://doi.org/10.1016/j.automatica.2021.109503
https://doi.org/10.1016/j.automatica.2021.109503
https://doi.org/10.1016/j.automatica.2021.109503
https://doi.org/10.1109/TNNLS.2018.2868835
https://doi.org/10.1109/TNNLS.2018.2868835


23. B. A. Pearlmutter, “Fast Exact Multiplication by the Hessian,” Neural
Computation 6, no. 1 (1994): 147–160, https://doi.org/10.1162/neco.1994
.6.1.147.

24. L. Aarnoudse and T. Oomen, “Conjugate Gradient MIMO Itera-
tive Learning Control Using Data-Driven Stochastic Gradients,” in 60th
IEEE Conference Decision Control (Austin, Texas, USA: IEEE, 2021),
3749–3754.

25. L. Aarnoudse and T. Oomen, “Automated MIMO Motion Feedforward
Control: Efficient Learning Through Data-Driven Gradients via Adjoint
Experiments and Stochastic Approximation,” IFAC-PapersOnLine 55, no.
37 (2022): 125–130, https://doi.org/10.1016/j.ifacol.2022.11.172.

26. G. H. Golub and C. F. Van Loan, Matrix Computations (Baltimore,
London: John Hopkins University Press, 2013).

27. M. Mahsereci and P. Hennig, “Probabilistic Line Searches for Stochas-
tic Optimization,” Journal of Machine Learning Research 18 (2017): 1–59.

28. J. Nocedal and S. J. Wright, Numerical Optimization (New York, NY:
Springer, 2006).

29. A. Baker, E. Jessup, and T. Kolev, “A Simple Strategy for Varying the
Restart Parameter in GMRES(m),” Journal of Computational and Applied
Mathematics 230, no. 2 (2009): 751–761, https://doi.org/10.1016/j.cam
.2009.01.009.

30. J. C. Allwright, “Conjugate Gradient Versus Steepest Descent,” Jour-
nal of Optimization Theory and Applications 20, no. 1 (1976): 129–134,
https://doi.org/10.1007/BF00933351.

31. H. Robbins and S. Monro, “A Stochastic Approximation Method,”
Annals of Mathematical Statistics 22, no. 3 (1951): 400–407.

32. R. Fletcher, “A New Approach to Variable Metric Algorithms,” Com-
puter Journal 13, no. 3 (1970): 317–322.

33. L. Blanken, F. Boeren, D. Bruijnen, and T. Oomen, “Batch-To-Batch
Rational Feedforward Control: From Iterative Learning to Identification
Approaches, With Application to a Wafer Stage,” IEEE/ASME Transac-
tions on Mechatronics 22, no. 2 (2017): 826–837, https://doi.org/10.1109
/TMECH.2016.2625309.

12 of 12 International Journal of Adaptive Control and Signal Processing, 2024

 10991115, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3903 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [11/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1016/j.ifacol.2022.11.172
https://doi.org/10.1016/j.ifacol.2022.11.172
https://doi.org/10.1016/j.cam.2009.01.009
https://doi.org/10.1016/j.cam.2009.01.009
https://doi.org/10.1016/j.cam.2009.01.009
https://doi.org/10.1007/BF00933351
https://doi.org/10.1007/BF00933351
https://doi.org/10.1109/TMECH.2016.2625309
https://doi.org/10.1109/TMECH.2016.2625309
https://doi.org/10.1109/TMECH.2016.2625309



