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Abstract—We introduce a re-ranking model that augments
the functionality of standard search engines to aid classroom
search activities for children (ages 6–11). This model extends the
known listwise learning-to-rank framework by balancing risk and
reward. Doing so enables the model to prioritize Web resources
of high educational alignment, appropriateness, and adequate
readability by analyzing the URLs, snippets, and page titles of
Web resources retrieved by a mainstream search engine. Ex-
perimental results demonstrate the value of considering multiple
perspectives inherent to the classroom when designing algorithms
that can better support children’s information discovery.

Index Terms—children’s web search, ranking

I. INTRODUCTION

Children in elementary classrooms (Kindergarten–5th grade,

typically 6–11 years old) use search engines (SE) to find Web

resources needed to complete their school assignments [1],

[2]. SE built specifically for children’s use in a classroom

environment, such as EdSearch, require regular maintenance,

e.g., curating resources (text or media) manually to identify

educational value or offering resources from allow-listed sites

using Google’s Custom Search (GCS) platform which utilizes

the SafeSearch feature to filter out pornographic resources.

Maintaining an up-to-date allow-list becomes burdensome as

the Web proliferates. Moreover, children’s SE based on GCS

are known to return less relevant results 30% of the time,

trading relevance for safer results [3]. Further, specialized

SE must overcome the barrier of adoption: children prefer to

use the popular mainstream options, e.g., Google, which are

known to dominate the market [4], [5].

Mainstream SE are designed and optimized for adults and

can overlook unique factors that impact children’s use [6]–[8].

This causes barriers to children identifying relevant resources

among those presented on a search engine result page (SERP)

generated in response to their inquiries [9], [10]. Children

struggle to recognize what and how much information is

available online, seldom looking past the first six SERP re-

sources [11]. Children have trouble understanding the content

of retrieved resources due to the complexity of their texts,

which leads to uncertainty when selecting relevant resources

[12]. When turning to mainstream SE, children may inadver-

tently be exposed to inappropriate resources, even when using

mainstream functionalities (like Google’s SafeSearch) as these

primarily filter for pornography [13] and do not account for

other potentially harmful content, e.g., violence. Safe search

functionality also suffers from over-filtering by preventing

resources from being returned if they contain terms that might

be mistaken as inappropriate [14].

To better enable children’s access to online information

via SE, we focus on tailoring SERP for specific audiences
and contexts. To scope our work, we turn to the framework

introduced in Landoni et al. [15] that allows for the compre-

hensive design and assessment of search systems for children

through four pillars. In our case: children aged 6–11 in grades

Kindergarten–5th (K–5) as the user group, classrooms as the

environment, information discovery as the task, and re-ranking

of resources to fit audience and context as the strategy.

We pose the following research question (RQ): Does adapt-
ing a learning-to-rank model to account for multiple traits
lead to prioritizing resources relevant to children and the
classroom setting? We posit that a learning to rank (LTR)

strategy can be augmented to simultaneously consider multiple

traits of online resources to yield a SERP that prioritizes

educationally valuable and comprehensible resources while

minimizing those that are objectionable. As such, we introduce

REdORank, a novel re-ranking framework based on multi-

perspective LTR meant to support children’s use of their

preferred SE to complete classroom-related tasks. This frame-

work leverages the optimization process of LTR to learn a

balance between the risks of inappropriate resources and the

rewards of contextually relevant resources. In the interest of

reproducibility, we share the implementation of REdORank
in https://github.com/Neelik/REdORank.

II. RELATED WORK

When using mainstream SE, children tend to explore SERP

sequentially from top to bottom and click higher-ranked re-

sults [5], [11], [16]. Consequently, existing solutions address-

ing this behavior re-rank resources according to a user-defined
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reading level [17], promote child-friendly sites or those of

educational value [18]–[21]. Unfortunately, these strategies

prioritize resources using a single perspective, which might not

be sufficient when serving particular user groups and contexts.

Within the educational domain, Yilmaz et al. [22] label

queries that align with educational subjects and use the la-

bels as an indicator for re-ranking resources in the Turkish

language. Usta et al. [23] train an LTR model for a query-

dependent ranking strategy to prioritize resources for students

in the 4th–8th grades. The authors extract features from the

query logs of a Turkish educational platform through feature

engineering. This approach differs from ours because the

features originate from a domain-specific SE that includes

course and grade information on the resources. In contrast,

we design a re-ranker that is SE agnostic. Additionally, the

features used in [23] include click data originating from

children, which is not readily or publicly available for our

user group.

Similar to REdORank, Korsce [10] examines the appropri-

ateness, curriculum alignment, objectivity, and reading com-

prehensibility of resources to identify those fitting children

in the 3rd – 5th grades. Korsce considers resources referring

to pornography and hate speech inappropriate but overlooks

other objectionable topics. Curriculum alignment is based on

topic modelling, which involves a word-level and semantic

space exploration but disregards contextual information that

can be garnered from resource text in its entirety. Readabil-

ity estimation is based on the Flesch-Kincaid formula. Yet,

other formulas have been reported to be more effective when

predicting the readability of K–12 resources [24]. Korsce

requires a user’s expected grade, which is rarely available for

mainstream SE. It also ranks resources according to a static set

of optimal weights, manually chosen as the result of empirical

exploration of near-optimal rankers [25]. The selected ranker

generates scores resource-by-resource (akin to pointwise meth-

ods). Alternatively, we utilize a listwise approach, allowing for

absolute relevance comparisons among resources.

III. METHODOLOGY

REdORank is a multi-perspective LTR framework that re-

ranks resources through examining in tandem the Readability,

Educational alignment, and Objectionability of each resource

R retrieved by a mainstream SE in response to a child’s query

inquiring on classroom-related concepts. Leveraging the power

of mainstream SE, REdORank prioritizes resources intended

for K–5 classrooms and students by taking advantage of its

three modules: reward, risk, and balance.

A. Reward

The reward module determines the interaction between

“positive” perspectives for resource analysis.

Readability. For resources to be useful, children must

be able to decode and comprehend the information within

them [26]. Readability, or “the overall effect of language

usage and composition on a readers’ ability to easily and

quickly comprehend the document” [27], aids in identifying

resources that children can understand. As shown in Eq. 1, in

REdORank, the readability score Sread of R, inferred using

its snippet RS
1 is determined by Spache-Allen [24]. This

formula utilizes a large vocabulary comprised of a broad range

of terms that children acquire as they age and was empirically

found to be effective for estimating the reading difficulty of

children’s online resources.

Sread(R) = Spache-Allen(RS) (1)

Educational Resources. Not all resources aligned with

children’s reading abilities are suitable for the classroom. To

explicitly respond to our environment, REdORank considers

the educational alignment of resources and aims to promote

those with educational value, as previous research has shown

that ranking educational resources higher in search results has

the potential to increase learning efficiency [28]. We focus

on educational resources that inform on subjects targeted for

children in grades K–5, such as developmentally appropriate

language arts, science, and social studies. As shown in Eq. 2, to

capture the degree to which a web resource R is educationally

aligned, we employ BiGBERT [29], the Bidirectional Gated

Recurrent Unit with BERT model. BiGBERT examines the

URL (RU ) and snippet (RS) of R based on known educational

standards, such as the United States’ Common Core State

Standards and the Next Generation Science Standards. Sedu

has a range of [0, 1].

Sedu(R) = BiGBERT (RS , RU ) (2)

B. Risk

The risk module looks at “negative” perspectives that iden-

tify resources as inappropriate for the user group.

Given the user group and environment of interest,

REdORank must mitigate the risk of presenting towards the

top of SERP resources that could be deemed inappropriate.

Doing so while avoiding over-filtering results that may appear

objectionable but are not, e.g., an article on breast cancer

[3], requires a solution beyond safe search. Inspired by prior

strategies to detect objectionable resources [10], [30], we

treat as objectionable for children in the classroom resources

that relate to any category in ObjCat: Abortion, Drugs, Hate

Speech, Illegal Affairs, Gambling, Pornography, and Violence.

The Drugs category refers to resources over-arching drugs,

but also alcohol, tobacco, and marijuana. Violence focuses

on violent content, as well as weapons; Hate Speech accounts

for racism and hateful/offensive content.

To identify objectionable resources, we extend a state-of-

the-art model to produce Judgebad, a lexicon-based classifica-

tion model that scrutinizes their terminology [10]. The original

model uses vocabulary from the pre-defined lists sourced

from Google’s archive [31] and the Hate Speech Movement’s

website [32] for the Pornography and Hate Speech categories.

Since we extend to other categories, defining further lists of

1Due to the complexities of gathering, computing resources, and storage
needs for processing the full content of Web pages, we use snippets as proxy.
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‘objectionable’ terms is necessary. Without curated term lists

for the remaining categories, we generate them through a

novel process called category understanding via label name

replacement [33]. For this, we use websites from Alexa Top

Sites [34] known to belong to categories in ObjCat as our

corpus. For each category, the occurrence of the category

name (and sub-category names, if available) within a website

is masked, and a pre-trained BERT encoder is used to produce

a contextualized vector representation h with the masked

category name. BERT’s masked language model head yields

a probability distribution that a term w from within BERT’s

vocabulary will occur at the location of the masked category

name. As terms can occur in different contexts within the

same corpus, extracted terms are ranked by their probability of

occurrence and by how many times they can replace a category

name in the corpus while maintaining context. As in [33], the

top 100 terms per category are used as the representative list.

We represent R with a collection of 16 text-based features

extracted from its snippet RS that account for the prevalence

(i.e., frequency of occurrence) of objectionable terms in RS ;

scenarios where a term could be misconstrued as objection-

able depending on context; and the fact that producers of

objectionable online content are known to introduce intended

misspellings as an attempt to bypass safe search filters [10].2

We use a Random Forest model to identify objectionable

resources based on its effectiveness in similar classification

tasks [10]. Using the feature representation of R as input,

a trained Random Forest model (max leaf node, min leaf

samples, and min sample split are set to 32; max depth to 8)

produces a binary probability distribution ŷ over each class–

objectionable and not–such that ŷ ∈ [0, 1] for R. To serve as

the sensitivity score exploited by the risk module, we define

Sbad as the probability value of R being associated with the

objectionable class (Eq. 3).

Sbad(R) = Judgebad(RS) (3)

C. Balance

The balancing module trades off the outputs of the risk
module (a value that acts as cost and therefore decreases

resource prioritization) and the reward module (a value meant

to increase resource prioritization in the ranking), resulting in

a final ranking score by which resources are reordered.

Listwise LTR & AdaRank. LTR is a machine learning

strategy that, when applied to Information Retrieval, refers

to the task of automatically constructing “a ranking model

using training data, such that the model can sort new objects

according to their degrees of relevance, preference, or impor-

tance” [36]. LTR models accept more than one resource as

input, resulting in pointwise, pairwise, or listwise variations

[37] that consider either a single resource, a pair of resources,

or a list of resources, resp., during the optimization of the

loss function. When used for Web search, listwise models are

2Feature implementation details are excluded due to space limitations, and
the fact that they are not the main contribution of this work. Implementation
can be found on Github (§I), with a detailed description in [35]

reported to be more effective than the pointwise and pairwise

counterparts [38], [39]. Popular listwise models [40], [41],

however, optimize their ranking functions on a single relevance

measure. In practice, relevance does not always depend on

a single trait, as relevance judgments are associated with

concepts like usefulness, utility, pertinence, etc. [42]. To better

align with such real-world scenarios, multi-objective LTR

strategies that optimize loss functions for multiple measures

of relevance have been brought forth [25], [43]. Yet, such

approaches opt for the pairwise variation [44], [45].

When accounting for multiple objectives, listwise ap-

proaches like AdaRank [41] are rarely considered, despite

being one of the more prevalent algorithms in LTR re-

search [46], [47]. AdaRank learns a ranking function through

the optimization of an evaluation measure. The metric most

commonly used for optimization is Normalized Discounted

Cumulative Gain (NDCG), which measures the agreement

between a predicted ranked list and the ground truth for a

query. This style of LTR is geared towards a single relevance

value with respect to a query and does not account for “risk”

factors of resources.

Cost-sensitive Optimization. The goal of a search system

is to retrieve resources from a collection that have the highest

relevance with regard to a user’s query. In some cases, these

collections contain resources not meant to be seen by all users,

such as private medical documents or top secret missives in

the case of a government system. These types of resources

are known as sensitive resources. To avoid presenting sensitive

materials in response to online inquiries, Sayed and Oard [48]

introduced an extended version of the DCG metric, called Cost

Sensitive Discounted Cumulative Gain (CS-DCG). This new

metric (Eq. 4) introduces a cost penalty, or risk factor, for

displaying a sensitive document within a k retrieved resources

ranking.

CS −DCGk =
k∑

i=1

gi
di
− ci (4)

where i is a position in the ranking, gi is the relevance gain

of the ith resource, and di is the discount for the ith resource.

Incorporating CS-DCG into an LTR model such as AdaRank

empowers the model to learn to rank sensitive documents

lower than those that are not sensitive. This aligns with

what we seek to do with the objectionability perspective of

REdORank: eradicate from top-ranking positions resources

that can be perceived as sensitive for the user group and

environment that are the focus of our work. Thus, instead of

depending upon the traditional NDCG for optimizing its LTR

re-ranker, REdORank uses CS-DCG. In this case, we use as

the sensitivity cost ci, Sbad (Eq. 3).

CS-DCG accounts for objectionable resources but still only

considers a single signal for relevance gain. In the context

of our work, however, it is imperative to leverage the influ-

ence that both educational alignment and readability have on

determining a given resource’s relevance. It is not sufficient

to simply linearly combine the respective grade level and
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educational alignment scores, Sedu and Sread. Instead, it is

important to understand these two scores’ interdependence in

dictating relevance gain.

We take inspiration from the popular TF-IDF weighting

scheme to model the connection between educational align-

ment and readability. Intuitively, we treat Sedu as repre-

sentative of the content of R (in terms of matching the

classroom setting) and readability as the discriminant factor

with respect to resources considered for ranking purposes.

Given the often high readability levels of online resources

[14], we use 13 as the readability level representative of the

collection and, therefore, use it as the max readability in the

numerator for IDF. The mixer score for R informed by the two

aforementioned signals of relevance is computed as in Eq. 5.

mixer(R) = Sread(R)× log2(
13

Sedu(R)
) (5)

By incorporating multiple signals of relevance into de-

termining relevance gain and expanding DCG with a cost-

sensitivity factor, we have defined an updated metric that

ensures REdORank explicitly learns to respond to the user

group, task, and environment requirements.

IV. EXPERIMENTAL SET-UP

While datasets like MQ2007 are available for evaluating

LTR models, none comprises queries, resources, and “ideal”

labels on our user group (children ages 6–11) and environment

(classroom). In addition, these datasets do not include known

objectionable resources, which are crucial for assessing the

validity of REdORank’s design. Thus, we construct our own

dataset: RANKSET. Beginning with a known “ideal” resource,

we use its title as a query to retrieve other resources to produce

a ranked list. The ideal resource is always positioned at the top

of the ranking, as it is treated as the ground truth. The remain-

ing top-N ranked resources (excluding the one originating the

search, if available) are used to complete the ranked list. To

evaluate REdORank’s ability to push objectionable resources

towards the bottom of the ranking, we append at the end of the

list a known “bad” resource. To act as ideal resources, we use

9,540 articles from NewsELA [49] with known reading levels

and educational value targeted for children on various topics.

For bad resources, we turn to OBJSET. We use Google’s API

to retrieve up to 20 resources, their titles, search snippets, and

rank positions (we drop queries that lead to no resources or

resources with missing content) for each query inferred from

ideal articles. We assign relevance labels of 2 to the ideal

resources, 0 to the bad resources, and 1 to all other resources.

This results in RANKSET containing 2,617 queries and 46,881

resources.

To demonstrate the correctness of REdORank’s design and

its applicability, we undertake an ablation study. To further

contextualize the performance of REdORank, we perform a

comparison with a baseline and a state-of-the-art counterpart.

To measure performance, we use NDCG@10 and Mean

Reciprocal Rank (MRR). Given the importance of positioning

objectionable resources very low among retrieved results, we

also compute an alternative version of MRR, in which we

account for the position of the first objectionable item. We call

this MRRB , where a lower value indicates better performance.

The significance of results is verified using a two-tailed student

t-test with p<0.05; all results reported and discussed in the

following section are significant unless stated otherwise.

V. RESULTS AND DISCUSSION

We begin our evaluation of adapting LTR to children search-

ing in the classroom by looking at how a known listwise LTR

algorithm, AdaRank, optimized for a standard metric, performs

when trained to rank according to our perspectives. We train

variations of AdaRank with each perspective, educational

alignment, readability, and objectionability, each acting as a

single feature. We refer to these variations with the suffixes

-E, -R, and -O, resp. We train the same set of variations for

REdORank with the addition of ones that use the mixer to

combine the educational alignment and readability perspec-

tives into a single feature. We refer to these with the suffixes

-M, where the mixed values are the only feature, and -MER,

where the mixed values are used alongside the individual

perspectives. Results are presented in Tables I and II.

As anticipated, AdaRank-O performed the worst, i.e., lower

NDCG and MRR scores but higher MRRB . We attribute

this to AdaRank-O optimizing for the “risk” perspective and

thus learning to prioritize the known bad resource above the

known ideal. When optimizing on the “reward” perspectives,

AdaRank-E and AdaRank-R outperform AdaRank-O. These

models place objectionable resources around the 10th position

according to MRRB ; ideal ones around the 5th position,

according to MRR (Rows 1–3 in Table I). This indicates these

models are learning to focus on the types of resources well-

suited for our user group and environment. When considering

TABLE I
ABLATION STUDY USING RANKSET. * INDICATES SIGNIFICANCE W.R.T.
REDORANK AND BOLD INDICATES BEST PERFORMING FOR EACH METRIC.

Row Algorithm Optimization
Metric NDCG MRR MRRB

1 AdaRank NDCG 0.778* 0.226* 0.097*
2 AdaRank-E NDCG 0.765* 0.209 0.110*
3 AdaRank-R NDCG 0.774* 0.222 0.101*
4 AdaRank-O NDCG 0.675* 0.148* 0.537*
5 REdORank-E nCS-DCG 0.765* 0.209 0.110*
6 REdORank-R nCS-DCG 0.774* 0.222 0.101*
7 REdORank-O nCS-DCG 0.675* 0.148* 0.537*
8 REdORank-M nCS-DCG 0.765* 0.209 0.110*
9 REdORank-MER nCS-DCG 0.777 0.218 0.089*
10 REdORank nCS-DCG 0.779 0.228 0.097

TABLE II
ASSESSMENT USING RANKSET. * INDICATES SIGNIFICANCE W.R.T.

REDORANK AND BOLD INDICATES BEST PERFORMING.

Algorithm Optimization
Metric NDCG MRR MRRB

LambdaMART NDCG 0.784 0.228 0.081*
Korsce N/A 0.753* 0.209 0.163*
REdORank nCS-DCG 0.779 0.228 0.097
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all of the features together, AdaRank outperforms each indi-

vidual variation, showcasing that the multi-perspective design

choice for REdORank is well-founded.

We surmise that the AdaRank models are learning to rank

objectionable resources lower as a beneficial side-effect of

optimizing on the educational alignment and readability. To

account for objectionable as an explicit signal of cost and to

balance that risk with the reward of the other perspectives, we

turn to REdORank, optimized for normalized CS-DCG (nCS-

DCG). For REdORank-E, REdORank-R, and REdORank-

O, we see similar performances to those of their AdaRank

counterparts (Rows 5–7 and 2–4 in Table I, resp.). This

further highlights that the perspectives matter. We posit that

the interconnection of educational alignment and readability

will serve as a beneficial composite signal for the relevance

of resources. Hence, we utilize the mixer to combine the two

perspectives. Surprisingly, REdORank-M performs worse in

all metrics when compared to REdORank-R and performs

the same as REdORank-E. To fully investigate whether this

combined perspective could provide value to the re-ranking,

we created REdORank-MER. Lending credence to the idea of

incorporating a combined perspective, REdORank-MER out-

performed each of the individual perspective variations. While

this variation performed significantly better than REdORank
in terms of MRRB , it performed worse for the other two

metrics. This highlights that the explicit consideration of

a sensitivity cost factor, alongside multiple perspectives of

relevance, has beneficial effects on re-ranking resources for

children searching in the classroom.

To attain a better understanding of how REdORank per-

forms, we also compare it to both a state-of-the-art coun-

terpart, Korsce (see §II), and a baseline LTR algorithm, in

LambdaMART, a popular pairwise LTR model that utilizes

Multiple Additive Regression Trees [50]. The results of these

two models ranking the resources in RANKSET can be seen

in Table II. We see that REdORank performs significantly

better than Korsce for all metrics. This is visually represented

in Figure 1. We attribute the difference in performance to

the fact that Korsce ranks in a pointwise, weighted objec-

tive manner. In an unexpected outcome, LambdaMART’s

performance was comparable to that of REdORank–except

for MRRB , differences in performance were not significant.

Recall that RANKSET contains a single ideal resource, which

can be more easily “located” by a pairwise algorithm due

to the one-to-one comparisons made. In contrast, a listwise

approach looks at all resources simultaneously, allowing a

single ideal resource to get lost in the crowd. We attribute this

characteristic of our dataset to be the cause of the performance

differences. However, a listwise approach is better suited to the

re-ranking task in real-world scenarios, where more than one

ideal resource is likely in a single list [38].

Going back to our RQ, given its visibly higher lower

bound on NDCG@10 over its counterparts (see Figure 1), its

successful performance regarding ranking known educational

and readable resources high in the rankings, and its expected

generalizability to real-world re-ranking scenarios, we con-

Fig. 1. NDCG@10 for different re-ranking models using RANKSET.

sider the design of REdORank to be an appropriate model for

providing re-ranking to search systems supporting children’s

online inquiry activities in the classroom.

VI. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

REdORank, the novel re-ranking strategy presented in

this manuscript advances Information Retrieval for Children–

centered on the design, development, and assessment of strate-

gies that enable children’s information discovery. REdORank
examines resources retrieved by commercial SE and prioritizes

them based on three perspectives, i.e., educational alignment,

readability, and objectionability, so that those best suited for

the context and user group at hand are ranked higher. In

turn, it serves as a means to ease SERP exploration when

children interact with the SE they favor. Given its promising

offline evaluations, we plan to study REdORank in a realistic

environment.

Currently, REdORank depends upon readability, which ap-

plies to English language resources. However, considering the

vastness of the web, exploring multilingual readability formu-

las and other estimation methods that account for the presence

of media elements, e.g., images and charts on web pages,

could offer valuable insights. We also suggest increasing the

granularity of Judgebad in identifying objectionable content

based on specific age groups. It is worth researching the

benefits of combining additional relevance signals beyond text,

such as the origin or authorship of a resource. Such factors

contribute to the credibility of a resource. Unfortunately,

children are known not to judge the credibility of online

resources [51], making credibility a valuable extra perspective

to bring into the fold for re-rankers. Ongoing research in

HCI has explored the impact of visual elements of a SERP

on children’s search behavior [9], [52]. REdORank provides

further avenues of exploration regarding identifying resource

types and elements that can serve as cues. Integrating visual

elements that align with the ranking process can enhance the

transparency of search systems. This can impact the ease of

use and understandability of a system, and integrating such

elements could benefit users learning to search [1], [53].
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