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a b s t r a c t 

This paper investigates the instability of vertical vibrations of an object moving uniformly 

through a tunnel embedded in soft soil. Using the indirect Boundary Element Method in 

the frequency domain, the equivalent dynamic stiffness of the tunnel-soil system at the 

point of contact with the moving object, modelled as a mass-spring system or as the lim- 

iting case of a single mass, is computed numerically. Using the equivalent stiffness, the 

original 2.5D model is reduced to an equivalent discrete model, whose parameters depend 

on the vibration frequency and the object’s velocity. The critical velocity beyond which 

the instability of the object vibration may occur is found, and it is the same for both the 

oscillator and the single mass. This critical velocity turns out to be much larger than the 

operational velocity of high-speed trains and ultra-high-speed transportation vehicles. This 

means that the model adopted in this paper does not predict the vibrations of Maglev and 

Hyperloop vehicles to become unstable. Furthermore, the critical velocity for resonance 

of the system is found to be slightly smaller than the velocity of Rayleigh waves, which 

is very similar to that for the model of a half-space with a regular track placed on top 

(with damping). However, for that model, the critical velocity for instability is only slightly 

larger than the critical velocity for resonance (of the undamped system), while for the cur- 

rent model the critical velocity for instability is much larger than the critical velocity for 

resonance due to the large stiffness of the tunnel and the radiation damping of the waves 

excited in the tunnel. A parametric study shows that the thickness and material damp- 

ing ratio of the tunnel, the stiffness of the soil and the burial depth have a stabilising 

effect, while the dam ping of the soil may have a slightly destabilising effect (i.e., lower 

critical velocity for instability). In order to investigate the instability of the moving object 

for velocities larger than the identified critical velocity for instability, we employ the D- 

decomposition method and find instability domains in the space of system parameters. In 

addition, the dependency of the critical mass and stiffness on the velocity is found. We 

conclude that the higher the velocity, the smaller the mass of the object should be to en- 

sure stability (single mass case); moreover, the higher the velocity, the larger the stiffness 

of the spring should be when a spring is added (oscillator case). Finally, in view of the sta- 

bility assessment of Maglev and Hyperloop vehicles, the approach presented in this paper 
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can be applied to more advanced models with more points of contact between the moving 

object and the tunnel, which resembles reality even better. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Dynamic effects are of significance for modern high-speed trains as propagating waves may be generated in the rail- 

way track and subsoil. The study of dynamic train-track-soil interactions has been of interest for researchers for decades. 

Popp et al. [1] gave a comprehensive review of the existing models that can be used to study the dynamic train-track-soil

interaction. 

In general, studies on moving trains fall into two categories. The first category is environmental vibrations induced by 

moving trains to assess vibration hindrance and to ensure the safety of the nearby structures. The second category is the

instability of vibrations of moving trains to ensure the safety and comfort of the passengers in the trains. For the former

category, the steady-state regime is assumed when investigating the dynamic amplification due to resonance [e.g., 2–4 ]. 

Other studies in the first category are devoted to transition radiation which occurs when a train passes an inhomogeneity 

[5,6] . 

For studies falling into the second category, the train is usually modelled as a single- or multi-degree of freedom system

[7] . When instability occurs, the free vibration (i.e., the vibration in the absence of an external force) of the train grows ex-

ponentially, resulting in an infinite displacement when time goes to infinity, which implies that a steady-state solution does 

not exist. This is very different from resonance, which happens when the steady-state response as induced by an external 

moving load is extreme (either bounded or not depending on the presence of damping). Both phenomena come with a cer-

tain critical velocity. The critical velocity for resonance is defined as the velocity at which the steady-state response induced 

by a moving load is extreme (i.e., resonance takes place at certain specific velocities) [8,9] , while the critical velocity for

instability is defined as the velocity beyond which instability can occur (i.e., instability occurs in a range of velocities). An-

other crucial difference between resonance and instability is that resonance can be totally removed by increasing damping, 

while damping mostly shifts the instability domain, for example, to a region of larger velocities [10,11] . 

The first study on instability of vibrations is that of a mass that moves uniformly along an elastically supported beam

[10] . The physical explanation of instability was given by Metrikine [12] who argued that the instability is caused by the ra-

diated anomalous Doppler waves [13] which increase the energy of the vibrating object. In addition, the physical mechanism 

of instability was discussed using the laws of conservation of energy and momentum [12,14] . 

After the pioneering works on the instability phenomenon [10,15] , several aspects that influence the stability of an object 

have been discussed. For example, the effect of thermal stresses in the structure was studied considering different models of 

moving oscillators [11,16,17] . Other papers considered the effect of more than one contact point between the object and the

structure [17] , and of contact nonlinearities [18] . Moreover, a more accurate beam model to represent the rail was considered

and a comparison between the Timoshenko and Euler-Bernoulli beam models was given [19] . Four different beam and plate

models were considered in [14] . Furthermore, Verichev et al. introduced other complexities in their model, i.e., a bogie model

which consists of a rigid bar of finite length on two identical supports [20] . Recently, Mazilu studied the instability of a train

of oscillators moving along an infinite Euler-Bernoulli beam on a viscoelastic foundation [21] . Another work focused on the

stability of a moving mass in contact with a system of two parallel elastically connected beams, with one of them being

axially compressed [22] . Later, the stability of vibrations of a railway vehicle moving along an infinite three-beam/foundation 

system has been considered, with an emphasis on the effect of the damping and stiffness of the secondary suspension of

the railway vehicle [23] . For a more simple model, Dimitrovová presented a semi-analytical solution for the evolution of the 

beam deflection shapes and oscillator vibrations [24] . In that paper, not only the onset of instability, but also the severity is

addressed. 

All the above works used a one-dimensional or two-dimensional model of the railway track, which may be less accu- 

rate than three-dimensional models [25,26] to predict the instability of moving trains. However, they all convey the very 

important message that, in the presence of damping, the instability of moving trains may happen at speeds that exceed 

the critical velocity for resonance of the undamped system (which is equal to the minimum phase velocity of waves in

the structure); that is, the critical velocity for instability is larger than the critical velocity for resonance. The few existing

works related to instability analysis employing three-dimensional models of the railway track consider trains moving on a 

track founded on the ground surface [25,26] . It has been shown that the critical velocity for instability of the moving object

is close to the Rayleigh wave speed in the soil. Instability of trains moving through an underground tunnel has not been

analysed yet. In this paper, we therefore aim to conduct the instability analyses for an oscillator and the limiting case of a

single mass moving through a tunnel embedded in soft soil. We will investigate whether the critical velocity for instability 

of the moving object is also close to the Rayleigh wave speed in the soil, for both a shallow and a deep tunnel. The re-
2 
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Fig. 1. A 2.5D model of an oscillator (i.e., mass-spring system) moving through a tunnel embedded in an elastic half-space and the associated coordinate 

systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sults are of practical relevance especially for contemporary high-speed railway tracks as well as upcoming ultra-high-speed 

transportation systems such as Maglev and Hyperloop, respectively [27–29] . 

The paper is organised as follows. We present the model and a framework to conduct the instability analysis in Section 2 .

Section 3 discusses the 2.5D Green’s functions of a full-space and a half-space [30,31] , presents the Green’s functions of the

shell and the formulation of the indirect Boundary Element Method (BEM). Validations of the proposed indirect BEM are 

given in Section 4 . In Section 5 , we conduct the instability analysis of the single mass and the mass-spring oscillator. To this

end, we study the equivalent dynamic stiffness to find the critical mass and stiffness, and analyse the effect of the tunnel

thickness, the material damping ratios in the tunnel-soil system, the Lamé parameters of the soil and the burial depth of 

the tunnel on the critical velocity for instability. Moreover, the dependency of the critical mass and stiffness on the velocity

is investigated. Conclusions are given in Section 6 . 

2. Model and solution of the problem 

2.1. Model description 

In this paper, we study the vibrations of an object moving through a tunnel embedded in soft soil using a so-called

2.5D model. The soil is modelled as an elastic continuum, whereas the tunnel is modelled by the Flügge shell theory [32] .

Both the soil and tunnel are assumed to be linear, elastic, homogeneous and isotropic. The soil is characterised by den-

sity ρ1 , Poisson’s ratio ν1 , and complex Lamé parameters λ∗
1 

= λ1 ( 1 + 2 i sgn (ω) ξ1 ) and μ∗
1 

= μ1 ( 1 + 2 i sgn (ω) ξ1 ) , where 

i is the imaginary unit, ω is the frequency and ξ 1 the material damping ratio of the soil related to the adopted hys-

teretic damping model. The parameters of the tunnel are density ρ2 , Poisson’s ratio ν2 , and complex Lamé parameters 

λ∗
2 

= λ2 ( 1 + 2 i sgn (ω) ξ2 ) and μ∗
2 

= μ2 ( 1 + 2 i sgn (ω) ξ2 ) , with ξ 2 being the hysteretic material damping ratio of the tunnel. 

The burial depth of the tunnel is H , and its inner and outer radii are R i and R o . The object is modelled by a mass-spring

oscillator (see Fig. 1 ), which is characterised by its mass M and spring stiffness K , and moves through the tunnel with a

constant velocity V . Note that there is no vertical external force acting on the mass because the presence of such a force is

irrelevant for the dynamic-instability analysis. 

Shallow and deep embedded tunnels are considered in this paper. For the shallow tunnel, the soil medium is modelled 

as a half-space, while for the deep tunnel, the soil is modelled as a full-space. Fig. 1 only shows the configuration of the

shallow tunnel. If H → ∞ , it essentially becomes a deep tunnel. 

The governing equations of the shell are presented later, in Section 3 . The current section only presents the framework

to conduct instability analysis. 

2.2. Method of solution 

To analyse instability of vibrations of the moving object, the concept of the equivalent stiffness (also referred to as dy-

namic stiffness) is employed [33,34] . The procedure is illustrated in Fig. 2 and goes as follows. First, we compute the steady-

state response of the system shown in Fig. 2 (a) which is subject to a uniformly moving oscillatory point load applied

at the tunnel invert ( r 1 = R i , θ1 = −π
2 , x = V t). The oscillatory load has the form of P (t) = P 0 exp ( i 	t ) , in which P 0 is the

amplitude, 	 = 2 π f 0 is the angular frequency; f 0 is the load frequency in Hz. P ( t ) essentially represents a harmonic interac-

tion force between the moving object and the tunnel-soil system. The steady-state radial displacement at the loading point 

can be expressed as U r 1 (r 1 = R i , θ1 = −π
2 , x = V t) = U 0 (	, V ) exp ( i 	t ) , where U 0 ( 	, V ) is the complex amplitude of this

harmonic vibration. The indirect Boundary Element Method is employed to compute the response of the system, which is 
3 
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Fig. 2. (a) A tunnel embedded in an elastic half-space subject to a uniformly moving oscillatory point load P(t) = P 0 exp ( i 	t ) , (b) an equivalent discrete 

model consisting of a mass-spring oscillator resting on an equivalent spring K eq ( 	, V ); 	 is the angular frequency of vibrations and V the velocity of the 

oscillator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

presented in detail in Section 3 . From the result, we obtain the equivalent stiffness of the tunnel-soil system at the loading

point using the following relation: 

K eq (	, V ) = 

P 0 
U 0 (	, V ) 

. (1) 

By doing so, the original 2.5D model can be reduced to an equivalent discrete model, shown in Fig. 2 (b), consisting of

a mass-spring system resting on an equivalent spring with a complex-valued stiffness K eq ( 	, V ), which depends on the

frequency and velocity of the oscillator. 

To study the instability of a moving oscillator, we apply, in accordance with previous dynamic-instability studies [11,24] , 

the Laplace integral transform with respect to time t ( s denotes the Laplace parameter) 

W ( s ) = 

∫ ∞ 

0 

w ( t ) exp ( −st ) d t (2) 

to the well-known governing equation of the vertical motion of the oscillator. Assuming zero initial conditions (which can 

be done as they do not influence the stability [11,24] ), the following characteristic equation for the free vibration of the

oscillator is obtained: 

Ms 2 + 

KK eq (s, V ) 

K + K eq (s, V ) 
= 0 . (3) 

The roots of Eq. (3) determine the (complex) eigenfrequencies, 	 = − i s, of the vertical motion of the oscillator as it interacts

with the tunnel-soil system. If one of the roots s of the characteristic equation has a positive real part, the response will

grow exponentially, which implies that the vertical vibration of the oscillator is unstable [11,19,25,26,35] . Obviously, the 

equivalent stiffness must be single-valued for all 	 in order for Eq. (3) to be meaningful; see also Section 2.3 . 

It has been shown in [11] that the instability of a moving object may occur if and only if the imaginary part of the

equivalent stiffness K eq is negative in a frequency band. In [11] , a single moving mass is considered, the motion of which is

even necessarily unstable as soon as Im( K eq ) < 0 at any frequency band. The imaginary part of the equivalent stiffness can

be considered to be the damping coefficient of the dashpot in the equivalent mass-spring system. A negative imaginary part 

of the equivalent stiffness indicates a negative damping, which makes the vibration of the moving mass unstable. 

It would be very laborious to determine all the roots of the characteristic equation and check whether one of these

roots has a positive real part. Alternatively, we follow a convenient method of root analysis, namely the D-decomposition 

method, to determine the number of ‘unstable roots’. This method has been used in several papers [11,19,25,26,35] . The idea

of this method is to map the imaginary axis of the complex s plane (i.e., the border between stability and instability) onto

the plane of a system parameter, M or K , which is allowed to be complex. The mapped line divides the M or K plane into

domains with different numbers of unstable roots. It is noted that the imaginary part of the complex system parameter has

no physical meaning. Only the positive real part of the system parameter is physical, and the crucial question is whether

one of the so-called instability domains overlay the positive real axis. 

The procedure is as follows. Consider s = i 	, where 	 serves as the parameter of the mapping, is real valued and has

the meaning of frequency (same as introduced above), and has to be varied from minus to plus infinity. We discuss the

following two cases in this paper. The first one is the limit case of a single mass moving through the tunnel, thus assuming

K → ∞ . The characteristic equation for a single mass is reduced from Eq. (3) to 

Ms 2 + K eq (s, V ) = 0 . (4) 

Substituting s = i 	 into Eq. (4) gives the following rule for the mapping: 

M = 

K eq (	, V ) 

	2 
. (5) 

The second case we consider is the more general one of the moving oscillator, taking into account both the mass and the

spring of the oscillator. In this case, the stiffness K will be used as the parameter for the D-decomposition assuming M to be
4 
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constant because it is of practical relevance. Taking the limit case of the moving mass as the starting point, it is interesting

to know what the added stiffness of the spring should be to render the oscillator vibration unstable (see also Section 5.2 ).

Substituting s = i 	 into Eq. (3) , we get the following mapping rule for the complex K plane: 

K = M 	2 K eq ( 	, V ) 

K eq ( 	, V ) − M 	2 
. (6) 

By replacing s by i 	 in K eq ( s, V ), which essentially entails considering the limit case of s → i 	, one can use the equiva-

lent stiffness ( Eq. (1) ) which is determined based on the steady-state response to the harmonic loading. Employing Eq. (5) or

(6) as the mapping rule, one can plot the D-decomposition curve, for example, Im( M ) versus Re( M ) (as shown in Fig. 11 , for

example), where 	 is the running parameter along this curve. One side of the D-decomposition curve is shaded, and this 

side is related to the right-hand side of the imaginary axis in the s plane. Crossing the curve in the direction of the shading

once indicates that there is an additional unstable root. Thus, one can find information on the relative number of unstable

roots in domains of the complex M or K planes. The number of unstable roots in all the domains can be determined if the

absolute number of those is known for any arbitrary value of the considered system parameter. By doing so, the instability

domains can be found in the M or K plane, which generally allows to identify the critical velocity for instability (defined as

the velocity at which an instability domain first overlays the positive real axis when increasing the velocity). The instability 

analysis is conducted in Section 5 . 

2.3. Response to a moving oscillatory point load and derivation of equivalent stiffness 

As shown in Section 2.2 , it is customary to employ the equivalent stiffness K eq to conduct the instability analysis. In the

current section, we aim to derive the expression for the equivalent stiffness. To this end, we first derive the steady-state

response to a moving oscillatory point load at the loading point. Additionally, the response at a fixed observation point is

derived, which is needed for validating the indirect BEM in Section 4 . All the responses can be computed using the indirect

BEM presented in Section 3 . Here we summarise the important steps and outcome in view of the specified aim. 

The shear stresses σr 1 θ1 
and σr 1 x at the inner surface of the tunnel wall induced by the moving oscillatory point load 

(see Fig. 2 (a)) are zero. The non-zero normal stress σr 1 r 1 (R i , θ1 , x, t) can be expressed as 

σr 1 r 1 ( R i , θ1 , x, t ) = 

P 0 
R i 

δ
(
θ1 + 

π

2 

)
δ( x − Vt ) exp ( i 	t ) , (7) 

where δ(.) is the Dirac delta function. 

As the considered problem is linear, we apply the Fourier Transform to derive the response of the system subject to the

uniformly moving oscillatory point load in the wavenumber-frequency ( k x , ω) domain. The Fourier Transform applied with 

respect to time t and spatial coordinate x is defined in the following form (for an arbitrary function g ( r 1 , θ1 , x, t )): 

˜ ˜ g ( r 1 , θ1 , k x , ω ) = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

g ( r 1 , θ1 , x, t ) exp ( − i ( ωt − k x x ) ) d x d t (8) 

with the inverse Fourier Transform given by 

g ( r 1 , θ1 , x, t ) = 

1 

4 π2 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

˜ ˜ g ( r 1 , θ1 , k x , ω ) exp ( + i ( ωt − k x x ) ) d k x d ω. (9) 

The Fourier series, which is used to derive the response in the ( k x , ω) domain, of a general response quantity f ( θ1 ) reads 

f ( θ1 ) = 

n = ∞ ∑ 

n = −∞ 

f n exp ( i nθ1 ) , f n = 

1 

2 π

∫ 2 π

0 

f ( θ1 ) exp ( − i nθ1 ) d θ1 . (10) 

Expanding the term δ(θ1 + 

π
2 ) in Eq. (7) into a Fourier series, the normal stress can be rewritten as 

σr 1 r 1 ( R i , θ1 , x, t ) = 

n = ∞ ∑ 

n = −∞ 

P 0 
2 πR i 

exp 

(
i n 

(
θ1 + 

π

2 

))
δ( x − Vt ) exp ( i 	t ) . (11) 

Applying the Fourier Transform defined by Eq. (8) to Eq. (11) , the normal stress in the wavenumber-frequency domain is

obtained as: 

˜ ˜ σr 1 r 1 ( R i , θ1 , k x , ω ) = 

n = ∞ ∑ 

n = −∞ 

P 0 
2 πR i 

exp 

(
i n 

(
θ1 + 

π

2 

))
2 πδ( ω − 	 − k x V ) = 

˜ ˜ σaux ( R i , θ1 , k x , ω ) 2 πP 0 δ( ω − 	 − k x V ) . 

(12) 

The response induced by the auxiliary stress ˜ ˜ σaux ( R i , θ1 , k x , ω ) , which relates to a radial stress in the form of δ
(
θ1 + 

π
2 

)
·

δ(x ) δ(t) , can be computed using the indirect BEM ( Section 3 ) and is denoted as ˜ ˜ U 1 , aux ( r 1 , θ1 , k x , ω ) . Thereafter, we get the

expression of the actual displacement vector excited by the stress ˜ ˜ σr 1 r 1 ( R i , θ1 , k x , ω ) shown in Eq. (12) : 

˜ ˜ U 1 ( r 1 , θ1 , k x , ω ) = 

˜ ˜ U 1 , aux ( r 1 , θ1 , k x , ω ) 2 πP 0 δ( ω − 	 − k x V ) . (13) 
5 
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We obtain the space-time domain response by applying the inverse Fourier Transform over wavenumber k x and fre- 

quency ω to Eq. (13) : 

U 1 (r 1 , θ1 , x, t) = 

1 

4 π2 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

˜ ˜ U 1 ( r 1 , θ1 , k x , ω ) exp ( + i ( ωt − k x x ) ) d k x d ω 

= 

P 0 
2 π

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

˜ ˜ U 1 , aux ( r 1 , θ1 , k x , ω ) δ( ω − 	 − k x V ) exp ( + i ( ωt − k x x ) ) d k x d ω 

= 

P 0 
2 π

∫ ∞ 

−∞ 

1 

V 

˜ ˜ U 1 , aux 

(
r 1 , θ1 , 

ω − 	

V 

, ω 

)
exp 

(
− i 

ω − 	

V 

x 

)
exp ( i ω t) d ω . (14) 

In Eq. (14) , the inverse Fourier Transform over wavenumber k x has been evaluated analytically, whereas the inverse Fourier 

Transform over frequency ω needs to be evaluated numerically. 

The radial displacement component of the steady-state response at the loading point can be obtained by substituting 

x = V t into Eq. (14) : 

U r 1 

(
R i , −

π

2 

, V t, t 

)
= 

P 0 exp ( i 	t ) 

2 π

∫ ∞ 

−∞ 

1 

V 

˜ ˜ U r 1 , aux 

(
R i , −

π

2 

, 
ω − 	

V 

, ω 

)
d ω. (15) 

In accordance with Eq. (15) , the complex amplitude of this harmonic response, which is relevant for the computation of the

equivalent stiffness, is given as 

U 0 ( 	, V ) = 

P 0 
2 π

∫ ∞ 

−∞ 

1 

V 

˜ ˜ U r 1 , aux 

(
R i , −

π

2 

, 
ω − 	

V 

, ω 

)
d ω. (16) 

Using Eq. (16) , the equivalent stiffness K eq defined in Eq. (1) is obtained: 

K eq = 

1 

1 
2 π

∫ ∞ 

−∞ 

1 
V 

˜ ˜ U r 1 , aux 

(
R i , −π

2 
, ω−	

V 
, ω 

)
d ω 

. (17) 

We note that this result is single-valued for all 	 as the Green’s functions (see Section 3 ) used in the indirect BEM compu-

tations are uniquely defined. 

We also consider the steady-state response at a fixed observation point x = 0 , which is needed for the validation of the

indirect BEM. Substituting x = 0 into Eq. (14) gives the corresponding displacement vector: 

U 1 ( r 1 , θ1 , 0 , t ) = 

P 0 
2 π

∫ ∞ 

−∞ 

1 

V 

˜ ˜ U 1 , aux 

(
r 1 , θ1 , 

ω − 	

V 

, ω 

)
exp ( i ωt ) d ω. (18) 

Eq. (18) contains the responses observed at x = 0 ; for an observation point at the tunnel invert, t < 0 indicates that x = 0 >

 t, which means that the moving load has not reached the observation point yet; t = 0 indicates that the moving load is at

the observation point; t > 0 indicates that x = 0 < V t, which means that the moving load has passed the observation point.

For the case of a stationary (i.e., non-moving) harmonic point load, which is also used in Section 4 for validation, an

expression for the induced displacements is given in Appendix A . 

3. Indirect boundary element method 

In this paper, the indirect BEM is employed to compute the response of the tunnel-soil system in the wavenumber-

frequency ( r 1 , θ1 , k x , ω) domain. To this end, the Green’s functions of the soil and tunnel are needed; note that the indirect

BEM uses the Green’s functions of the soil without cavity (full-space or half-space). In Sections 3.1 and 3.2 , the Green’s

functions of the soil and tunnel are presented. The indirect BEM is formulated in Section 3.3 . 

3.1. Green’s functions of the soil 

The so-called two-and-a-half dimensional Green’s functions of an elastodynamic full-space [30] and a half-space [31] are 

used in our work. The source considered in the mentioned papers is a spatially varying line load in the longitudinal direc-

tion, having the form of f j (y, z, x, t) = F j δ(y − y s ) δ(z − z s ) exp ( i ( ωt − k x x ) ) , where j = y, z, x indicates the direction of the

load, subscript “s” indicates the coordinates of the source point, and F j is the amplitude of the source (Green’s functions can

be obtained by setting F j = 1 ). 

The Green’s functions of the half-space consist of source terms which are the same as those of the full-space, and of

surface terms which are necessary to satisfy the stress-free boundary conditions at the surface of the half-space [31] . How-

ever, we found that the stress-free conditions are not satisfied using the Green’s functions presented in [31] , while they

are satisfied when the source terms are replaced by the ones presented in [30] that contains the full-space Green’s func-

tions. Therefore, the Green’s functions of the half-space used in the current paper consist of the source terms presented in

[30] and of the surface terms presented in [31] . 
6 
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Fig. 3. A cylindrical shell, the associated coordinate system and displacement components of the shell. 

 

 

 

 

 

 

 

 

 

 

Because the reference frames in [31] are different from that in the current paper, we have to transform the Green’s func-

tions for displacements and stresses given in [31] through the following relations ˜ ˜ G u, 1 = T 1 
˜ ˜ G u, ref T 

T 
1 

and 

˜ ˜ G σ, 1 = [ T 1 ] ̃
 ˜ G σ, ref T 

T 
1 
,

where subscripts “1” and “ref” denote the responses defined in the coordinate systems of the current and reference papers, 

respectively. The transformation matrix reads: 

T 1 = 

( 

1 0 0 

0 −1 0 

0 0 1 

) 

. (19) 

˜ ˜ G u, 1 and 

˜ ˜ G σ, 1 are the Green’s functions for displacements and stresses of the soil without tunnel/cavity (i.e., of the full-

space or half-space), and are 3 × 3 matrices. In matrix ˜ ˜ G u, 1 , the first, second and third rows represent the displacement

components ˜ ˜ u r 1 , 
˜ ˜ u θ1 

and 

˜ ˜ u x , while the first, second and third columns correspond to the spatially varying unit line loads

acting in y, z and x directions, respectively. In matrix ˜ ˜ G σ, 1 , the first, second and third rows represent the stress components
˜ ˜ σr 1 r 1 , 

˜ ˜ σr 1 θ1 
and 

˜ ˜ σr 1 x , while the columns also correspond to the loads in different directions. 

3.2. Green’s functions and responses of a cylindrical shell 

The tunnel is modelled by an infinitely long cylindrical Flügge shell. The associated coordinate system is shown in Fig. 3 .

The equations of motion of the shell read [32] : 

−ρ2 R 

(
1 − ν2 

2 

)
E 2 

∂ 2 ū 

∂t 2 
− ν2 

∂ w̄ 

∂x 2 
− 1 

R 

∂ ̄v 
∂θ2 

− 1 

R 

ū − h 

2 

12 

[
R 

∂ 4 ū 

∂x 4 
2 

+ 

2 

R 

∂ 4 ū 

∂x 2 
2 
∂θ2 

2 

+ 

1 

R 

3 

∂ 4 ū 

∂θ4 
2 

]
+ R 

(
1 − ν2 

2 

)
E 2 h 

q r 2 

+ 

h 

2 

12 

[
∂ 3 w̄ 

∂x 3 
2 

− ( 1 − ν2 ) 

2 R 

2 

∂ 3 w̄ 

∂ x 2 ∂ θ2 
2 

+ 

( 3 − ν2 ) 

2 R 

∂ 3 v̄ 
∂ x 2 

2 
∂ θ2 

− 1 

R 

3 
ū − 2 

R 

3 

∂ 2 ū 

∂θ2 
2 

]
= 0 , 

(20) 

−ρ2 R 

(
1 − ν2 

2 

)
E 

∂ 2 v̄ 
∂t 2 

+ 

( 1 + ν2 ) 

2 

∂ 2 w̄ 

∂ x 2 ∂ θ2 

+ R 

( 1 − ν2 ) 

2 

∂ 2 v̄ 
∂x 2 

2 

+ 

1 

R 

∂ 2 v̄ 
∂θ2 

2 

+ 

1 

R 

∂ ̄u 

∂θ2 

+ R 

(
1 − ν2 

2 

)
E 2 h 

q θ2 

+ 

h 

2 

12 

[
3 ( 1 − ν2 ) 

2 R 

∂ 2 v̄ 
∂x 2 

2 

− ( 3 − ν2 ) 

2 R 

∂ 3 ū 

∂ x 2 
2 
∂ θ2 

]
= 0 , 

(21) 

−ρ2 R 

(
1 − ν2 

2 

)
E 2 

∂ 2 w̄ 

∂t 2 
+ R 

∂ 2 w̄ 

∂x 2 
2 

+ 

( 1 − ν2 ) 

2 R 

∂ 2 w̄ 

∂θ2 
2 

+ 

( 1 + ν2 ) 

2 

∂ 2 v̄ 
∂ x 2 ∂ θ2 

+ ν2 
∂ ̄u 

∂x 2 
+ R 

(
1 − ν2 

2 

)
E 2 h 

q x 2 

+ 

h 

2 

12 

[
( 1 − ν2 ) 

2 R 

3 

∂ 2 w̄ 

∂θ2 
2 

− ∂ 3 ū 

∂x 3 
2 

+ 

( 1 − ν2 ) 

2 R 

2 

∂ 3 ū 

∂ x 2 ∂ θ2 
2 

]
= 0 , 

(22) 

where ū , v̄ and w̄ are the mid-surface displacements in directions r 2 , θ2 and x 2 , respectively. E 2 is the Young’s modulus

of the shell and h its thickness. The radii of the inner and outer surface of the shell can be expressed as R i = R − h 
2 and

R o = R + 

h 
2 , respectively. q r 2 , q θ2 

and q x 2 are the net external stresses acting on the shell, namely the difference between the

stresses acting at the inner and outer surfaces. 

The governing equations of the shell can be rewritten into matrix form as 

A ̄u 2 = q̄ 2 , (23) 

where ū 2 = ( ̄u , ̄v , w̄ ) is the displacement vector, q̄ 2 = 

(
q̄ r 2 , q̄ θ2 

, q̄ x 2 

)
is the net stress vector corresponding to the mid-surface 

of the shell, and A is an operator matrix given in Appendix B . 
7 
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The stress vector q̄ 2 is related to the stress vectors q 

o 
2 

and q 

i 
2 

corresponding to the outer and inner surfaces of the shell,

respectively, through the following relations [36] : 

q̄ 2 = 

⎛ 

⎝ 

1 

h 
2 R 

∂ 
∂θ2 

h 
2 

∂ 
∂x 2 

0 1 + 

h 
2 R 

0 

0 0 1 

⎞ 

⎠ q 

o 
2 = B 

o q 

o 
2 , q̄ 2 = 

⎛ 

⎝ 

1 

−h 
2 R 

∂ 
∂θ2 

−h 
2 

∂ 
∂x 2 

0 1 + 

−h 
2 R 

0 

0 0 1 

⎞ 

⎠ q 

i 
2 = B 

i q 

i 
2 . (24) 

According to Love’s simplification in the shell theory [37] , the longitudinal and tangential displacements vary linearly across 

the shell’s thickness, whereas the radial displacement is independent of radial coordinate. Therefore, the mid-surface dis- 

placement vector ū 2 is related to the displacement vector u 

o 
2 

corresponding to the outer surface of the shell through the 

following relation 

u 

o 
2 = 

⎛ 

⎝ 

1 0 0 

− h 
2 R 

∂ 
∂θ2 

1 + 

h 
2 R 

0 

− h 
2 

∂ 
∂x 2 

0 1 

⎞ 

⎠ ū 2 = D ̄u 2 . (25) 

After applying the Fourier Transform over time t and spatial coordinate x 2 to Eq. (23) , computing the Fourier coefficients

of the circumferential harmonics (i.e., the second relation in Eq. (10) ), and considering Eqs. (24) and (25) , the governing

equations of the shell can be written as 

˜ ˜ A n 
˜ ˜ D 

−1 
n 

˜ ˜ u 

o 
2 ,n = 

˜ ˜ B 

o 
n 

˜ ˜ q 

o 
2 ,n + 

˜ ˜ B 

i 
n 

˜ ˜ q 

i 
2 ,n , (26) 

which is essentially a set of algebraic equations; n denotes the number of the circumferential harmonic, and matrices ˜ ˜ A n , 
˜ ˜ B 

o 
n ,

˜ ˜ B 

i 
n and 

˜ ˜ D n are given in Appendix B ; ˜ ˜ u 

o 
2 ,n 

and 

˜ ˜ q 

{ o , i } 
2 ,n 

contain the Fourier coefficients of ˜ ˜ u 

o 
2 

and 

˜ ˜ q 

{ o , i } 
2 

, respectively. If q 

{ o , i } 
2 

are

taken as q 

{ o , i } 
2 

= [ δ(θ2 ) , δ(θ2 ) , δ(θ2 ) ] 
T δ(x 2 ) δ(t) , then ˜ ˜ q 

{ o , i } 
2 ,n 

= 

[
1 

2 π , 1 
2 π , 1 

2 π

]T 
. The associated Green’s functions of the shell can 

be derived by solving Eq. (26) for each of the load components, and subsequently adding the solutions for all components

in the Fourier series (see Eq. (10) ): 

˜ ˜ g 

o ( θ2 , k x 2 , ω ) = 

n = ∞ ∑ 

n = −∞ 

˜ ˜ g 

o 
n exp ( i nθ2 ) = 

n = ∞ ∑ 

n = −∞ 

1 

2 π
˜ ˜ D n 

˜ ˜ A 

−1 
n 

˜ ˜ B 

o 
n exp ( i nθ2 ) , 

˜ ˜ g 

i ( θ2 , k x 2 , ω ) = 

n = ∞ ∑ 

n = −∞ 

˜ ˜ g 

i 
n exp ( i nθ2 ) = 

n = ∞ ∑ 

n = −∞ 

1 

2 π
˜ ˜ D n 

˜ ˜ A 

−1 
n 

˜ ˜ B 

i 
n exp ( i nθ2 ) , 

(27) 

where ˜ ˜ g o n interrelates ˜ ˜ u 

o 
2 ,n 

and 

˜ ˜ q 

o 
2 ,n 

, ˜ ˜ g i n interrelates ˜ ˜ u 

o 
2 ,n 

and 

˜ ˜ q 

i 
2 ,n 

, and 

˜ ˜ g o , ˜ ˜ g i , ˜ ˜ g o n and 

˜ ˜ g i n are 3 × 3 matrices. The positive

directions of the longitudinal axes in the global coordinate system (see Fig. 1 ) and the local coordinate system for the shell

(see Fig. 3 ) are opposite to each other (i.e., x 2 = −x ). Therefore, the relation between the longitudinal wavenumbers k x 2 and

k x (which, for the moving oscillatory point load considered in Section 2.3 , is defined as ω−	
V ) is as follows: k x 2 = −k x ; this

relation is used below. 

Using the convolution rule, the displacement vector of the shell under an arbitrary load can be obtained as 

˜ ˜ u 

o 
2 ( θ2 , k x 2 , ω ) = R o 

∫ 2 π

0 

n = ∞ ∑ 

n = −∞ 

1 

2 πR o 

˜ ˜ D n 
˜ ˜ A 

−1 
n 

˜ ˜ B 

o 
n exp 

(
i n 

(
θ2 − θ ′ 

2 

))
˜ ˜ q 

o 
2 

(
θ ′ 

2 , k x 2 , ω 

)
d θ ′ 

2 

+ R i 

∫ 2 π

0 

n = ∞ ∑ 

n = −∞ 

1 

2 πR i 

˜ ˜ D n 
˜ ˜ A 

−1 
n 

˜ ˜ B 

i 
n exp 

(
i n 

(
θ2 − θ ′ 

2 

))
˜ ˜ q 

i 
2 

(
θ ′ 

2 , k x 2 , ω 

)
d θ ′ 

2 . 

(28) 

The displacements in Eq. (28) are defined in the local coordinate system of the shell ( r 2 , θ2 , x 2 , see Fig. 3 ). To satisfy

the continuity of displacements and stresses at the shell-soil interface, the displacement and stress vectors ˜ ˜ u 

o 
2 
, ˜ ˜ q 

o 
2 

and 

˜ ˜ q 

i 
2 

defined in the local coordinate system of the shell have to be transformed to ˜ ˜ U 

o 
2 
, ˜ ˜ Q 

o 
2 

and 

˜ ˜ Q 

i 
2 , respectively, defined in the

global cylindrical coordinate system of the soil ( r 1 , θ1 , x ), which has origin at the center of the tunnel (see Fig. 1 ), through

relations 

˜ ˜ U 

o 
2 ( θ1 , k x , ω ) = T 2 ̃

 ˜ u 

o 
2 ( θ2 , −k x , ω ) , 

˜ ˜ q 

o 
2 ( θ2 , −k x , ω ) = T 

T 
2 

˜ ˜ Q 

o 
2 ( θ1 , k x , ω ) , ˜ ˜ q 

i 
2 ( θ2 , −k x , ω ) = T 

T 
2 

˜ ˜ Q 

i 
2 ( θ1 , k x , ω ) , 

(29) 

in which θ1 = θ2 and 

T 2 = 

( 

1 0 0 

0 1 0 

0 0 −1 

) 

. (30) 
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Fig. 4. The elastic half-space with the fictitious cavity. L r (solid line) and L s (dashed line) are surfaces at which the receiver (filled circles) and source (open 

circles) points are located, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting Eq. (29) into Eq. (28) , we obtain the displacements of the shell in the global cylindrical coordinate system: 

˜ ˜ U 

o 
2 ( θ1 , k x , ω ) = R o 

∫ 2 π

0 

n = ∞ ∑ 

n = −∞ 

1 

2 πR o 
T 2 

˜ ˜ D n 
˜ ˜ A 

−1 
n 

˜ ˜ B 

o 
n T 

T 
2 exp 

(
i n 

(
θ1 − θ ′ 

2 

))
˜ ˜ Q 

o 
2 

(
θ ′ 

2 , k x , ω 

)
d θ ′ 

2 

+ R i 

∫ 2 π

0 

n = ∞ ∑ 

n = −∞ 

1 

2 πR i 

T 2 
˜ ˜ D n 

˜ ˜ A 

−1 
n 

˜ ˜ B 

i 
n T 

T 
2 exp 

(
i n 

(
θ1 − θ ′ 

2 

))
˜ ˜ Q 

i 
2 

(
θ ′ 

2 , k x , ω 

)
d θ ′ 

2 . 

(31) 

3.3. Formulation of the indirect boundary element method 

In this section, the formulation of the employed indirect BEM is presented. The excitation stress vectors are [ ̃  ˜ σaux , 0 , 0]

and [ ̃  σaux , 0 , 0] for the moving and stationary point load cases, respectively, which come into play through 

˜ ˜ Q 

i 
2 

(as shown

below). The expressions for ˜ ˜ σaux and ˜ σaux are given in Eq. (12) and Eq. (A.3) , respectively. For the considered problem, we

have continuous displacements and stresses at the tunnel-soil interface L r : 

˜ ˜ U 1 ( R o , θ1 , k x , ω ) = 

˜ ˜ U 

o 
2 ( θ1 , k x , ω ) , (32) 

˜ ˜ �1 ( R o , θ1 , k x , ω ) = 

˜ ˜ �o 
2 ( θ1 , k x , ω ) , (33) 

where ˜ ˜ U 1 and 

˜ ˜ U 2 are the displacement vectors of the soil and tunnel, respectively, and 

˜ ˜ �1 and 

˜ ˜ �2 their stress vectors.

The displacement and stress vectors of the soil and shell at the tunnel-soil interface are expressed as ˜ ˜ U 1 = [ ̃  ˜ U r 1 , 
˜ ˜ U θ1 

, ˜ ˜ U x ] 
T ,

˜ ˜ �1 = [ ̃  ˜ σr 1 r 1 , 
˜ ˜ σr 1 θ1 

, ˜ ˜ σr 1 x ] 
T , ˜ ˜ U 

o 
2 

= [ ̃  ˜ U 

o 
r 2 

, ˜ ˜ U 

o 
θ2 

, ˜ ˜ U 

o 
x 2 

] T and 

˜ ˜ �o 
2 

= [ ̃  ˜ σ o 
r 2 r 2 

, ˜ ˜ σ o 
r 2 θ2 

, ˜ ˜ σ o 
r 2 x 2 

] T . Note that all these displacements and stresses

are defined in the global cylindrical coordinate system ( r 1 , θ1 , x ). 

According to the indirect BEM, the displacement and stress vectors in the soil are given as [36] 

˜ ˜ U 1 ( x r , k x , ω ) = 

∫ 
L s 

˜ ˜ G u, 1 ( x r , x s , k x , ω ) F ( x s ) d l ( x s ) , (34) 

˜ ˜ �1 ( x r , k x , ω ) = 

∫ 
L s 

˜ ˜ G σ, 1 ( x r , x s , k x , ω ) F ( x s ) d l ( x s ) , (35) 

where F ( x s ) is the yet unknown vector of the source amplitudes placed inside the fictitious cavity which is commonly

used for the indirect BEM (see Fig. 4 ). Vectors x r = [ x r , y r , z r ] and x s = [ x s , y s , z s ] are coordinates of the receiver and source

points, respectively. L s is the surface at which the source points are located, and the radius of the surface L s is taken as

R s = R o − 3(2 πR o /N r ) , where N r denotes the number of receiver points, and N r ≥ 20 as suggested in [36] . The surface L r at

which the receiver points are located lies at r 1 = R o , which is the outer surface of the actual tunnel. 

An expression for the displacement vector of the shell has been obtained in Eq. (31) , and can be rewritten as 

˜ ˜ U 

o 
2 ( x r , k x , ω ) = 

∫ 
L r 

˜ ˜ G 

o 
u, 2 

(
x r , x 

′ 
r , k x , ω 

)
˜ ˜ Q 

o 
2 

(
x 

′ 
r , k x , ω 

)
d l 

(
x 

′ 
r 

)
+ 

∫ 
L 

˜ ˜ G 

i 
u, 2 

(
x r , x 

′ , k x , ω 

)
˜ ˜ Q 

i 
2 

(
x 

′ , k x , ω 

)
d l 

(
x 

′ ), (36) 

where ˜ ˜ G 

{ o , i } 
u, 2 

contain the Green’s functions for the displacements of the shell defined in the global cylindrical reference frame. 

The integration surfaces in Eq. (36) are L r and L (i.e., source points located at r 1 = R o and r 1 = R i , respectively) corresponding

to the Green’s functions of the shell related to the forces acting at its outer and inner surfaces. The stress vectors acting at

the outer and inner surfaces of the shell, respectively, for the current problem read, employing Eq. (33) 

˜ ˜ Q 

o 
2 

(
x 

′ 
r , k x , ω 

)
= 

˜ ˜ �2 

(
x 

′ 
r , k x , ω 

)
= 

˜ ˜ �1 

(
x 

′ 
r , k x , ω 

)
, ˜ ˜ Q 

i 
2 

(
x 

′ , k x , ω 

)
= 

˜ ˜ P 

(
x 

′ , k x , ω 

)
, (37) 
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Table 1 

Displacement components (20 ·log 10 | U i |) at different locations ( r 1 , θ1 , x ) for a tunnel embedded in an elastic 

full-space subjected to a stationary harmonic point load with excitation frequency f 0 = 10 Hz obtained using 

different numbers of source and receiver points ( N s , N r ). In each row, the displacements are normalised by the 

corresponding response obtained using (N s , N r ) = (20 , 40) . 

Displacements (N s , N r ) = (20 , 40) (N s , N r ) = (30 , 60) (N s , N r ) = (40 , 80) (N s , N r ) = (60 , 60) 

U r 1 
( R o , − π

2 
, 0) 1.0000 1.0002 1.0002 1.0002 

U r 1 
( R o , 

π
2 

, 0) 1.0000 1.0008 1.0008 1.0008 

U r 1 
( R o , π , 0) 1.0000 1.0000 1.0000 1.0000 

U y 1 
(20 m, π , 20 m) 1.0000 1.0000 1.0000 1.0000 

U z 1 
(20 m, π , 20 m) 1.0000 1.0000 1.0000 1.0000 

U x 
(20 m, π , 20 m) 1.0000 1.0000 1.0000 1.0000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where ˜ ˜ P is the excitation stress vector (i.e., [ ̃  ˜ σaux , 0 , 0] T or [ ̃  σaux , 0 , 0] T ) induced by the external point load (see Fig. 2 (a)). 

Substituting Eqs. (34) and (36) into Eq. (32) , and considering Eqs. (35) and (37) , we derive the boundary integral equation

in terms of the unknown source amplitude vector: ∫ 
L s 

˜ ˜ K ( x r , x s , k x , ω ) F ( x s ) d l ( x s ) = 

˜ ˜ R ( x r , k x , ω ) , (38) 

where 

˜ ˜ K ( x r , x s , k x , ω ) = ̃

 ˜ G u, 1 ( x r , x s , k x , ω ) −
∫ 

L r 

˜ ˜ G 

o 
u, 2 

(
x r , x 

′ 
r , k x , ω 

)
˜ ˜ G σ, 1 

(
x 

′ 
r , x s , k x , ω 

)
d l 

(
x 

′ 
r 

)
, 

˜ ˜ R ( x r , k x , ω ) = 

∫ 
L 

˜ ˜ G 

i 
u, 2 

(
x r , x 

′ , k x , ω 

)
˜ ˜ P 

(
x 

′ , k x , ω 

)
d l 

(
x 

′ ). (39) 

In order to compute the source vector for every k x and ω combination, Eq. (38) is discretised (i.e., surfaces L r , L and L s ), as

indicated above. Note that the size of the matrix related to ˜ ˜ K is (3 N r × 3 N s ), where N s denotes the number of source points;

this implies that it is a small matrix, and the inversion of the matrix does not take much time. The most time consuming

part (even in the entire procedure of instability analysis) is the evaluation of integrals over the horizontal wavenumber k y 
in the Green’s functions of the half-space, for which we use the “quadv” routine in Matlab. 

4. Validations 

To validate the accuracy of the presented indirect BEM, we compare the results obtained by the proposed method with 

those calculated by Yuan et al. [38] . The first validation is performed for the case of a tunnel embedded in an elastic full-

space subject to a stationary harmonic point load at the tunnel invert. The excitation for the indirect BEM computation 

in this case is ˜ σaux ( Eq. (A.3) ), with P 0 = 1 N , and the steady-state response is given in Eq. (A.5) . The elastic full-space is

characterised by its longitudinal wave speed C P , 1 = 944 m / s , shear wave speed C S , 1 = 309 m / s , density ρ1 = 20 0 0 kg / m 

3 

and material damping ratio ξ1 = 0 . 03 . The elastic parameters for the tunnel are the Young’s modulus E 2 = 50 GPa , Poisson’s

ratio ν2 = 0 . 3 , density ρ2 = 2500 kg / m 

3 and material damping ratio ξ2 = 0 . The inner and outer radii of the tunnel are

R i = 2 . 75 m and R o = 3 m . 

Before showing the results, we first present a convergence test for the proposed method for the considered loading 

case. As shown in Eq. (A.5) , the inverse Fourier Transform over longitudinal wavenumber k x has to be evaluated to get the

harmonic response in the space-time domain. The integral was computed numerically using an inverse fast Fourier Trans- 

form algorithm in Matlab. The convergence was tested regarding the discretisation of k x (i.e., k x and k max 
x ), the maximum

number of circumferential modes of the shell N 

max 
shell 

in Eq. (31) and the maximum number of Fourier components N 

max 
load 

in

Eq. (A.3) , and the number of source and receiver points ( N s , N r ). We found that it is sufficient to use k max 
x = 2 π, k x = 

2 π
1023 ,

N 

max 
shell 

= 20 and N 

max 
load 

= 20 . The convergence test for the number of source and receiver points ( N s , N o ) at different locations

( r 1 , θ1 , x ) is given in Table 1 . Responses at the tunnel invert, tunnel apex ( R o , 
π
2 , 0), tunnel side ( R o , π , 0) and at a point

far from the load (20 m, π , 20 m) are presented; the load is characterised by P 0 = 1 N and f 0 = 

	
2 π = 10 Hz . It is clear that

converged results can indeed be obtained using ( N s , N r ) = (20, 40). 

Fig. 5 shows the converged vertical displacements at the tunnel invert, tunnel apex and tunnel side as a function of

frequency for the first validation case. A good agreement can be observed between the results obtained by different methods, 

which validates the proposed method and its implementation. 

The second validation case is that of a shallow tunnel embedded in an elastic half-space subject to a stationary harmonic

load. The soil is characterised by its longitudinal wave speed C P , 1 = 400 m / s , shear wave speed C S , 1 = 200 m / s , density

ρ = 1800 kg / m 

3 and material damping ratio ξ = 0 . 02 . The parameters of the tunnel are the same as in the previous case,
1 1 

10 



M. Zhao, J.M. de Oliveira Barbosa, J. Yuan et al. Journal of Sound and Vibration 494 (2021) 115776 

Fig. 5. Vertical displacements ( 20 · log 10 | U z 1 | ) at locations of (a) tunnel invert ( r 1 = R o , θ1 = − π
2 

, x = 0 ), (b) tunnel apex ( r 1 = R o , θ1 = 

π
2 

, x = 0 ) and (c) 

tunnel side ( r 1 = R o , θ1 = π, x = 0 ) for the case of a tunnel embedded in an elastic full-space subject to a stationary harmonic point load. 

Fig. 6. Displacement components (20 · log 10 | U i |) at a point on the ground surface ( y = −20 m , z = 0 , x = 20 m ) for the case of a tunnel embedded in an 

elastic half-space ( H = 5 m ) subject to a stationary harmonic point load acting at the tunnel invert: (a) horizontal displacement, (b) vertical displacement 

and (c) longitudinal displacement. 

Table 2 

Velocities ( V i ( y, z, x )) and displacement (U r 1 (r 1 , θ1 , x )) at different locations for a tunnel embedded in an elastic half- 

space subject to a uniformly moving point load ( V = 75 m / s , f 0 = 0 ) using different numbers of source and receiver 

points ( N s , N r ). In each row, the responses are normalised by the corresponding response obtained using (N s , N r ) = 

(20 , 40) . 

Responses Time (s) (N s , N r ) = (20 , 40) (N s , N r ) = (30 , 60) (N s , N r ) = (40 , 80) (N s , N r ) = (60 , 60) 

V z t = 0 1.0000 1.0000 1.0000 1.0000 

(0, 0, 0) t = 1 1.0000 1.0000 1.0000 1.0000 

V x t = 0 1.0000 1.0000 1.0000 1.0000 

(0, 0, 0) t = 1 1.0000 1.0000 1.0000 1.0000 

V z t = 0 1.0000 1.0000 1.0000 1.0000 

( −20 m , 0, 0) t = 1 1.0000 1.0000 1.0000 1.0000 

V x t = 0 1.0000 1.0000 1.0000 1.0000 

( −20 m , 0, 0) t = 1 1.0000 1.0000 1.0000 1.0000 

U r 1 t = 0 1.0000 0.9998 0.9998 0.9998 

( R o , − π
2 

, 0) t = 1 1.0000 1.0000 1.0000 1.0000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

except that ξ2 = 0 . 015 , and the burial depth of the tunnel is H = 5 m . It is noted that in the reference paper [ 38 ], the

mentioned material damping ratio should be the loss factor (there is a difference of a factor 2), which is indicated in paper

[39] . This also holds for the next validation case. The displacement components (again obtained using Eq. (A.5) ) at a point on

the ground surface ( y = −20 m , z = 0 , x = 20 m ) are presented in Fig. 6 , where again a good match between the results is

observed. The minor differences can be attributed to the use of a continuum to model the tunnel in [38] , instead of a shell.

The third validation comprises the case of a tunnel embedded in an elastic half-space subject to a uniformly moving 

constant point load. The excitation for the indirect BEM computation in this case is ˜ ˜ σaux ( Eq. (12) ) and the steady-state

response is given in Eq. (14) . The parameters for the soil and tunnel are as follows: μ1 = 1 . 154 × 10 7 N / m 

2 , λ1 = 1 . 731 ×
10 7 N / m 

2 , ρ1 = 1900 kg / m 

3 , ξ1 = 0 . 025 , μ2 = 1 . 042 × 10 10 N / m 

2 , λ2 = 6 . 944 × 10 9 N / m 

2 , ρ2 = 2400 kg / m 

3 , ξ2 = 0 . 01 ,

R i = 2 . 75 m , R o = 3 m , H = 15 m . The moving load is characterised by velocity V = 75 m / s , excitation frequency f 0 = 0

and P 0 = 1 N . The inverse Fourier Transform over frequencies needs to be evaluated to get the space-time domain response

(see Eq. (14) ). The convergence for the moving point load case was tested regarding the discretisation of ω (i.e., ω and

ω 

max ), N 

max 
shell 

in Eq. (31) and N 

max 
load 

in Eq. (12) , and the number of source and receiver points ( N s , N r ). Numerical results

related to two points on the ground surface and one at the tunnel invert are presented in Table 2 for the considered case

of the moving load using different numbers of source and receiver points ( N s , N r ). We found that converged results can be

obtained using f max = 

ω max 

2 π = 15 Hz ,  f = 

ω 
2 π = 0 . 05 Hz , N 

max 
shell 

= 20 , N 

max 
load 

= 20 and ( N s , N r ) = (20, 40). This is clear from
11 
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Fig. 7. Velocities ( V i ) at the origin ( y = 0 , z = 0 , x = 0 ) on the ground surface for the case of a tunnel embedded in an elastic half-space ( H = 15 m ) subject 

to a uniformly moving point load ( V = 75 m / s , f 0 = 0 ): (a) vertical velocity and (b) longitudinal velocity. 

 

 

 

 

 

 

 

 

 

 

 

Table 2 which presents the responses observed at x = 0 for varying time moments: t = 0 means that the load is right below

the observation point, whereas t = 1 s indicates that the load has passed that point. Fig. 7 presents the comparison between

the results obtained by the proposed method and those shown in the literature. The good agreement gives confidence about 

the accuracy of the proposed method. 

The convergence requirements for the computation of the equivalent dynamic stiffness for different velocities are pre- 

sented in Appendix C . 

5. Instability of vibrations 

The main framework to conduct instability analysis has been given in Section 2.2 . In the current section, we present the

results for both the full-space and half-space. The base-case parameters of the tunnel-soil system are listed in Table 3 ; it is

noted that the base case assumes that the burial depth H → ∞ . The parameters presented in Table 3 represent a soft soil

and a concrete tunnel. 

We chose the full-space case as the base case simply because the results for the half-space are pretty similar, and the

computation of the two-and-a-half dimensional Green’s functions of the full-space [30] is less expensive than that of the 

half-space Green’s functions [31] . The Green’s functions of the full-space are available analytically and can be evaluated very 

fast; however, the surface-terms part of the Green’s functions of the half-space (see Section 3.1 ) are not available analytically,

and integrals over the horizontal wavenumber k y need to be evaluated numerically. 

Table 3 

Base-case parameters of the tunnel-soil system. 

Soil Tunnel 

μ1 = 1 . 154 × 10 7 N / m 

2 μ2 = 1 . 042 × 10 10 N / m 

2 

λ1 = 1 . 731 × 10 7 N / m 

2 λ2 = 6 . 944 × 10 9 N / m 

2 

ρ1 = 1900 kg / m 

3 ρ2 = 2400 kg / m 

3 

ξ1 = 0 . 05 ξ2 = 0 . 02 

C S , 1 = 77 . 94 m / s C S , 2 = 2083 . 7 m / s 

C P , 1 = 145 . 80 m / s C P , 2 = 3402 . 5 m / s 

C R , 1 = 72 . 29 m / s R i = 2 . 75 m , R o = 3 m , h = 0 . 25 m , H → ∞ 

5.1. Critical velocity for instability of the moving object 

As has been discussed in Section 2.2 , the imaginary part of the equivalent stiffness being negative indicates that the

vibration of the object (i.e., moving mass or oscillator) can become unstable. Therefore, we first study the equivalent stiffness 

to find the critical velocity for instability of the moving object (here defined as the velocity at which Im( K eq ) < 0 first takes

place). Note that the critical velocity for instability generally differs from the classical critical velocity at which the steady- 

state response induced by a moving load is extreme (i.e., resonance). In the general case, where the oscillator has dissipative

components, the critical velocity for instability should be identified from the D-decomposition curve in the complex M or K 

plane (see Sections 2.2 and 5.2 ), not from the analysis of Im( K eq ) alone [19,26] . Im( K eq ) < 0 is only a necessary condition for

instability. As the moving oscillator and moving mass considered in this paper do not have intrinsic dissipative components, 

their critical velocities for instability are the same. 
12 
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Fig. 8. The real part of the equivalent stiffness for different velocities: (a) V = 0 . 90 V inst 
cr , (b) V = 1 . 00 V inst 

cr , (c) V = 1 . 01 V inst 
cr , (d) V = 1 . 02 V inst 

cr , (e) V = 

1 . 03 V inst 
cr , (f) V = 1 . 04 V inst 

cr , (g) V = 1 . 05 V inst 
cr , (h) V = 1 . 06 V inst 

cr and (i) V = 1 . 20 V inst 
cr . These results are related to the base case presented in Table 3 , and 

V inst 
cr = 942 m / s . 

 

 

 

 

 

 

 

 

 

 

 

 

 

In previous studies [11,19] where beam on elastic foundation models (without damping) are considered, it is shown 

that the critical velocity for instability V inst 
cr of the moving object is equal to the critical velocity for resonance (of the

undamped system), which in turn is equal to the minimum phase velocity V min 
ph 

of waves in the system. For a half-space

model with a regular track on top [25,26] , the critical velocity for instability in the presence of damping is slightly larger

than V min 
ph 

. Additionally, V min 
ph 

, which is close to and smaller than the velocity of Rayleigh waves, is easily found from the

dispersion relation of the system [12,40] . However, for the tunnel-soil system considered in this paper, it is very difficult to

get the dispersion curves, as the dispersion characteristics of the system are considerably more complicated. Therefore, the 

minimum phase velocity cannot be easily computed. We can, however, compute the steady-state response of the tunnel- 

soil system subject to a uniformly moving non-oscillatory load and check the features of responses for different velocities 

to determine the critical velocity for resonance (for the system with damping, strictly speaking, but the influence of the 

damping on V res 
cr is small). This analysis is presented in Appendix C , and it shows that V res 

cr ≈ 70 m / s for the current tunnel-

soil system, which is also close to and smaller than the velocity of Rayleigh waves, like for the above-mentioned half-space

model. 

For the system with the base-case parameters, we find that the imaginary part of the equivalent stiffness starts having 

a negative sign for at least a small frequency range at a velocity of V inst 
cr = 942 m / s . Based on this critical velocity for

instability, we study the behavior of K eq ( 	, V ) for different velocities in the range of (0 . 9 − 1 . 2) V inst 
cr . The real and imaginary

parts are shown in Figs. 8 and 9 , respectively. Nine different velocities were chosen to show the features of Re( K eq ) and

Im( K eq ) as a function of the load frequency 	. Note that, if its mass is relatively small, the vibration of the object can still

be stable when it moves faster than V inst 
cr , as will be demonstrated in the next section (see also Fig. 11 ). 

In Fig. 8 , we observe that the real part of the equivalent stiffness is positive, and the decaying trend of Re( K eq ) with

frequency 	 is similar for each velocity. The decaying trend may be related to the effect of inertia. The trough can probably
13 
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Fig. 9. The imaginary part of the equivalent stiffness for different velocities: (a) V = 0 . 90 V inst 
cr , (b) V = 1 . 00 V inst 

cr , (c) V = 1 . 01 V inst 
cr , (d) V = 1 . 02 V inst 

cr , (e) 

V = 1 . 03 V inst 
cr , (f) V = 1 . 04 V inst 

cr , (g) V = 1 . 05 V inst 
cr , (h) V = 1 . 06 V inst 

cr and (i) V = 1 . 20 V inst 
cr . These results are related to the base case presented in Table 3 , and 

V inst 
cr = 942 m / s . The read dots indicate the crossings. 
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be interpreted as a quasi-resonance which takes place at low frequencies and is related to the wave resonance which occurs 

if the velocity of the moving load is the same as the group velocity of a wave excited by the load [25] . 

The imaginary part of the equivalent stiffness is shown in Fig. 9 for each of the chosen velocities. For the ‘sub-critical’

( V < V inst 
cr ) case shown in Fig. 9 (a), V = 0 . 9 V inst 

cr , Im( K eq ) is positive for all the frequencies 	, which indicates that the

damping coefficient of the equivalent mass-spring system is positive, and thus, the system is always stable (see Section 2.2 ).

The frequency band considered in this study of the dynamic stiffness is limited to (0 − 40) Hz , because instability is de-

termined by the behaviour at low frequencies [25,26] ; see also the explanation given at the end of this section. For the

‘critical’ and ‘super-critical’ ( V ≥ V inst 
cr ) cases, shown in Figs. 9 (b) - (i), the imaginary part of the equivalent stiffness is

negative at low frequencies and becomes positive at higher frequencies. We can verify that the curves of Im( K eq ) in the

high-frequency band have the same trend as that in the sub-critical case; they are not shown here since we focus on

features of Im( K eq ) in the low-frequency band. There are peaks and troughs in the curves of Im( K eq ), and these are sup-

pressed or enlarged as the velocity increases. We observe that the Im( K eq ) curve crosses the real axis 0, 4, 3, 7, 5, 3, 3,

1 and 1 times for V = (0 . 9 , 1 . 00 , 1 . 01 , 1 . 02 , 1 . 03 , 1 . 04 , 1 . 05 , 1 . 06 , 1 . 20) V inst 
cr , respectively. We can verify that for velocities

 = (1 . 06 − 1 . 20) V inst 
cr , similar features of Im( K eq ) are observed (i.e., the Im( K eq ) curve crosses the real axis only once), the

only difference is that the crossing occurs at higher frequency 	 as the velocity increases (see Figs. 9 (h) and (i)). The dif-

ferent features of Im( K eq ) observed in the entire considered velocity range imply that in the complex M or K plane different

amounts of separated domains, each having a specific number of ‘unstable roots/eigenvalues’, are expected for different ve- 

locities (see Section 5.2 ). At this point, it is concluded that the equivalent dynamic stiffness, especially its imaginary part,

strongly depends on V . 

In order to trace similarities and differences, let us now compare two different instability problems: the above men- 

tioned model of an object moving on a track placed on the ground surface [25,26] , and the current model of an object

moving through a tunnel embedded in a half-space. The critical velocity for instability for the current model with all pa-

rameters in accordance with the base case, except the burial depth H which is taken as 15 m, is found to be 891 m/s (see
14 
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Fig. 10. Typical dispersion curves of the current system, which are similiar to the ones for an Euler-Bernoulli beam resting on an elastic foundation. Four 

different realizations of the kinematic invariant (i.e., 	 being zero and nonzero, together with two different velocities V 1 and V 2 ) are considered. 	 is the 

load frequency, ω and k x are the frequency and wavenumber of the waves excited by the load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

also Section 5.3.4 ). Clearly, V inst 
cr is much larger than the critical velocity for resonance ( V res 

cr ≈ 70 m / s ) in the model with

an embedded tunnel, while V inst 
cr is just slightly larger than V res 

cr in the model with a track directly placed on the ground

[25,26] ( V res 
cr is related to the undamped system in these studies, but the influence of the damping on V res 

cr is small). The

difference is due to the large stiffness of the tunnel and the radiation damping/leaky character of the waves excited in the

tunnel. However, there are similarities regarding ground vibrations in these two models. In the regime of V < V res 
cr ( ≈ V min 

ph 
) ,

for both models mostly the medium in the vicinity of the load is disturbed by the eigenfield excited by the moving non-

oscillating object, while in the regime of V > V res 
cr , both the vicinity of the moving source and the field far from the source

are disturbed because waves are generated (see Appendix C ). As mentioned above, the critical velocity for resonance of 

the current tunnel-soil system is close to and smaller than the velocity of Rayleigh waves, like that of the other model.

Therefore, from the ambient-vibration point of view, there is a clear similarity between both problems. However, instability 

happens only far beyond the critical velocity for resonance for the model with the tunnel, which is clearly different from

the finding for the half-space with a track placed on top. 

As shown in [12] , an external source has to supply a vibrating object with energy in order to maintain its uniform

motion. In the case of unstable vibrations, the work done by the source is partially transferred to vibration energy of the

object by the so-called anomalous Doppler waves [13] , which are waves of negative frequency. Typical dispersion curves of 

the current tunnel-soil system, which are similar to the ones of the beam on elastic foundation model [35] , are shown in

Fig. 10 and can be used to explain why the instability only happens in the low-frequency band, as stated above. Fig. 10 also

shows the so-called kinematic invariant ω = k x V + 	, which is essentially found in the argument of the Dirac function in

the response to a moving oscillatory load (see Eq. (14) ). The kinematic invariant is a straight line indicating the relation

between the load frequency 	, and the frequency ω and wavenumber k x of the waves that are potentially excited by the

moving object; different realizations (i.e., 	 being zero and nonzero, together with two different velocities) are shown in 

Fig. 10 . Intersections of the kinematic invariant with the dispersion curves represent the excited waves. We observe that 

intersections with negative frequency ω (i.e., anomalous Doppler waves) are only possible when the load frequency 	 is 

relatively small. If the load frequency 	 is large, the kinematic invariant will practically never intersect the dispersion curves 

at negative frequency, which explains why the vibration of the moving object is always stable in the high-frequency band 

(i.e., Im( K eq ) > 0, see Fig. 9 ); this also justifies that we restricted the analysis of K eq to the low-frequency band in Figs. 8 and

9 . 

5.2. D-decomposition: complex M and K planes 

In order to investigate the instability of the object vibrations for velocities larger than the corresponding critical velocity 

for instability identified in the previous section, we apply the D-decomposition method. We first investigate the limit case 

of the single mass moving through the tunnel. Considering the base case, the D-decomposition curve can be plotted in the

complex M plane (i.e., Im( M ) versus Re( M )) using the mapping rule shown in Eq. (5) and is presented in Fig. 11 . For most of

the considered velocities, the D-decomposition curve crosses the positive real axis, that is, one or more crossing points M 

∗

are obtained. It can be verified that the frequency at which the curve crosses the real axis corresponds to the frequency at

which the imaginary part of the dynamic stiffness changes sign (see Fig. 9 ). A crossing point lying on the positive real axis

can be explained by the fact that Re( K eq ) is positive when the Im( K eq ) changes its sign (see Fig. 8 ). 

As it is clearly shown in Fig. 11 , the crucial difference between the D-decomposition curves in the super-critical and

sub-critical cases - compare Figs. 12 (b) and (a), for example - is that there are crossing points M 

∗
1 
, M 

∗
2 
, M 

∗
3 

and M 

∗
4 

on

the positive axis of Re( M ) for the super-critical case. The existence of such crossing points means that the number N of
15 
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Fig. 11. Separation of the complex M plane into domains with different number N of unstable roots: (a) V = 0 . 90 V inst 
cr , (b) V = 1 . 00 V inst 

cr , (c) V = 1 . 01 V inst 
cr , 

(d) V = 1 . 02 V inst 
cr , (e) V = 1 . 03 V inst 

cr , (f) V = 1 . 04 V inst 
cr , (g) V = 1 . 05 V inst 

cr , (h) V = 1 . 06 V inst 
cr and (i) V = 1 . 20 V inst 

cr . These results are related to the base case 

presented in Table 3 , and V inst 
cr = 942 m / s . The red dots indicate the crossings (i.e., the critical masses M 

∗), and N in each separated domain is shown. 

Points 	 → ± 0 are indicated in (a)-(i), while points 	 → ± ∞ are only indicated in (a) for visibility reasons. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

unstable roots (roots with a positive real part) is different in the domains of M < M 

∗
1 
, M 

∗
2 

< M < M 

∗
3 

and M > M 

∗
4 

from that

in domains of M 

∗
1 

< M < M 

∗
2 

and M 

∗
3 

< M < M 

∗
4 
. 

The procedure to determine N is as follows. The relative number of unstable roots in domains of the complex M plane

can be calculated by counting the number of times that one crosses the D-decomposition curve in the direction of the

shading, which has been explained in Section 2.2 . To get the absolute number in all domains, the number of unstable roots

for M = 0 has to be determined. M = 0 means that there is essentially no moving mass, which implies that the vibration of

the mass cannot be unstable (i.e., the number of unstable roots N = 0 ). Thereafter, the absolute number of unstable roots in

each domain can be determined and the result is shown in Fig. 11 . The number of unstable roots has also been validated

using the Argument Principle, but this is not shown in the paper. 

In Fig. 11 , we observe that the vibration of the moving mass is stable for all values of M for V = 0 . 9 V inst 
cr ; for V = 1 . 00 V inst 

cr ,

the vibration of the moving mass is unstable when M 

∗
1 

< M < M 

∗
2 

and M 

∗
3 

< M < M 

∗
4 

( N = 2 ); for V = 1 . 01 V inst 
cr , when M 

∗
1 

<

M < M 

∗
2 

and M > M 

∗
3 
, etc. Note that the vibration of a mass which moves faster then the critical velocity is not necessarily

unstable. For relatively small values of the mass, for example, the vibration is stable even for super-critical velocities (as 

illustrated in Section 5.3 ). 

The question of practical relevance when studying the instability of the moving mass is whether adding flexibility (by 

creating a spring between the mass and the tunnel) may destabilize the system. For the mass-spring oscillator with the 

mass being constant, the D-decomposition curve can be plotted in the complex K plane (i.e., Im( K ) versus Re( K )) using the

mapping rule shown in Eq. (6) and is presented in Fig. 12 . The mass of the moving oscillator is taken as M = 2 × 10 4 kg ,

which is a realistic value for a train wagon. In order to get the absolute number of unstable roots in the complex K plane

with this mass, we have to connect the instability analysis of the moving oscillator to that of the single moving mass shown

in Fig. 11 . From that figure, we find that N = 0 for M = 2 × 10 4 kg , which implies that the system is stable for this value

of the mass for all the considered velocity cases. The single mass case corresponds to the oscillator case with K → ∞ .
16 
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Fig. 12. Separation of the complex K plane into domains with different number N of unstable roots: (a) V = 0 . 90 V inst 
cr , (b) V = 1 . 00 V inst 

cr , (c) V = 1 . 01 V inst 
cr , 

(d) V = 1 . 02 V inst 
cr , (e) V = 1 . 03 V inst 

cr , (f) V = 1 . 04 V inst 
cr , (g) V = 1 . 05 V inst 

cr , (h) V = 1 . 06 V inst 
cr and (i) V = 1 . 20 V inst 

cr . These results are related to the base case 

presented in Table 3 , and V inst 
cr = 942 m / s . The red dots indicate the crossings (i.e., the critical stiffness K ∗), and N in each separated domain is shown. 

Points 	 → ± ∞ are indicated in (a)-(i), while points 	 → ± 0 are only indicated in (a) for visibility reasons. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, knowing that the number of unstable roots at K → ∞ is zero and following the direction of the shading, the

absolute number of unstable roots in domains of the complex K plane can be determined. 

The following can be observed from the D-decomposition curve in the complex K plane shown in Fig. 12 . For V = 0 . 9 V inst 
cr ,

the vibration of the moving oscillator is stable for all values of the stiffness; for V = 1 . 00 V inst 
cr , the vibration of the moving

oscillator is destabilized by the added spring when K 

∗
1 < K < K 

∗
2 and K 

∗
3 < K < K 

∗
4 ( N = 2 ); for V = 1 . 01 V inst 

cr , that happens

when K < K 

∗
1 

and K 

∗
2 

< K < K 

∗
3 
, etc. Using these findings, it can be readily concluded that for the sub-critical case, the vibra-

tion of the oscillator is stable independently of the oscillator’s stiffness, while for the super-critical cases, the stability of the

oscillator depends on the stiffness of the added spring. 

5.3. Parametric study 

In Section 5.1 , we found the critical velocity beyond which instability of the moving object may occur. As the critical

velocity for instability is the most important outcome of the instability analysis, the effects of the tunnel thickness, the 

material damping ratios in the tunnel-soil system, the Lamé parameters of the soil and the burial depth of the tunnel on

the critical velocity are studied here. In addition, the dependency of the critical mass and stiffness (identified in Section 5.2 )

of the corresponding moving mass and moving oscillator on velocity is considered; this is only done for full-space cases 

because of the computational demand of the calculations for the half-space. 

5.3.1. The effect of the thickness of the tunnel 

Four different thicknesses of the tunnel are considered, and the corresponding critical velocities for instability are shown 

in Table 4 , where the subscript “B” (also shown in Tables 5–8 ) indicates the parameters of the base case shown in Table 3 .

Table 4 shows that the critical velocity for instability decreases as the tunnel thickness decreases. The reason of this reduc-

tion is the reduction of the stiffness of the tunnel. Moreover, we observe that even for the thinnest tunnel with thickness
17 
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Table 4 

Critical velocities for instability for different thicknesses of the tunnel. 

Thickness of the tunnel (m) h = h B = 0 . 25 h = 0 . 20 h = 0 . 10 h = 0 . 05 

Critical velocity for instability (m/s) V inst 
cr = 942 V inst 

cr = 934 V inst 
cr = 887 V inst 

cr = 617 

 

 

 

 

 

 

V

 

 

 

 

 

h = 0 . 05 m , the critical velocity for instability is still much higher than the (envisaged) operational velocity of Maglev trains

( V ≈ 125 m/s) and Hyperloop pods ( V ≈ 277 m/s). 

5.3.2. The effect of the material damping ratios in the tunnel-soil system 

We consider four different combinations of the material damping ratios of the soil and tunnel as shown in Table 5 . It

demonstrates that the critical velocity for instability increases as the damping ratio of the tunnel increases and that of soil

decreases. Therefore, we can conclude that the material damping of the tunnel stabilises the vibration of the moving object, 

while the material damping ratio of the soil may have a destabilising effect, which is similar to the finding in [26] . 

Table 5 

Critical velocities for instability for different material damping ratios of the soil and tunnel. 

Damping ratios of the soil and tunnel ξ1 = ξ1 , B = 0 . 05 ξ1 = ξ1 , B ξ1 = ξ1 , B × 0 . 6 ξ1 = ξ1 , B × 0 . 6 

ξ2 = ξ2 , B = 0 . 02 ξ2 = ξ2 , B × 2 . 0 ξ2 = ξ2 , B ξ2 = ξ2 , B × 2 . 0 

Critical velocity for instability (m/s) V inst 
cr = 942 V inst 

cr = 967 V inst 
cr = 956 V inst 

cr = 979 

5.3.3. The effect of the Lamé parameters of the soil 

Three sets of the Lamé parameters of the soil are considered, see Table 6 . It shows that the critical velocity for instability

of the moving object increases as the Lamé parameters of the soil increase. Thus, the stiffness of the soil has a stabilising

effect on the vibration of the moving object, which is in line with the literature finding [26] . 

Table 6 

Critical velocities for instability for different Lamé parameters of the soil. 

Lamé parameters of the soil (N/m 

2 ) λ1 = λ1 , B = 1 . 731 × 10 7 λ1 = λ1 , B × 2 . 0 λ1 = λ1 , B × 3 . 0 

μ1 = μ1 , B = 1 . 154 × 10 7 μ1 = λ1 , B × 2 . 0 μ1 = λ1 , B × 3 . 0 

Critical velocity for instability (m/s) V inst 
cr = 942 V inst 

cr = 10 0 0 V inst 
cr = 1027 

5.3.4. The effect of the burial depth of the tunnel 

It is interesting to compare the critical velocity for instability for the full-space and half-space cases. Table 7 shows that

 

inst 
cr decreases as the depth of embedded tunnel decreases. This reduction is probably and mostly because the Rayleigh 

wave, which is slower than the body waves in the soil, also starts to play a role, although its influence is not very large. 

Table 7 

Critical velocities for instability for different burial depths of the tunnel. 

Burial depth of the tunnel H (m) H = H B → ∞ H = 15 

Critical velocity for instability (m/s) V inst 
cr = 942 V inst 

cr = 891 

5.3.5. Dependency of the critical mass and stiffness on velocity 

In this section, three cases (see Table 8 ) are considered to investigate the dependency of the critical mass and stiffness of

the moving mass and moving oscillator, respectively, on the velocity in the range of V = (1 . 00 − 1 . 20) V inst 
cr . We chose three

full-space cases to investigate the dependency relationship. As observed in Figs. 11 and 12 , there are many critical masses

and stiffnesses for some velocities. For these velocities, we only consider the smallest critical mass M 

∗
1 

and the largest

critical stiffness K 

∗
max because we are interested to find the regions where the vibration of the moving oscillator is stable
18 
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Table 8 

Three cases considered in the study of the dependency of the critical mass and stiffness on velocity. 

Cases Thickness Lamé parameters Damping ratios Burial depth 

of the tunnel of the soil of the soil and tunnel of the tunnel 

Case I h = h B λ1 = λ1 , B ξ1 = ξ1 , B H = H B 
(V inst 

cr = 942 m / s ) μ1 = μ1 , B ξ2 = ξ2 , B 

Case II h = h B λ1 = λ1 , B ξ1 = ξ1 , B H = H B 
(V inst 

cr = 967 m / s ) μ1 = μ1 , B ξ2 = ξ2 , B × 2 . 0 

Case III h = h B λ1 = λ1 , B × 2 . 0 ξ1 = ξ1 , B H = H B 
(V inst 

cr = 10 0 0 m / s ) μ1 = μ1 , B × 2 . 0 ξ2 = ξ2 , B 

Fig. 13. Dependency of the critical mass on velocity: (a) V/V inst 
cr = (1 . 00 − 1 . 02) , (b) V/V inst 

cr = (1 . 02 − 1 . 04) and (c) V/V inst 
cr = (1 . 04 − 1 . 20) . The three cases 

are defined in Table 8 , and three small intervals are considered to clearly show the trend in each interval. The region below the line relates to stable 

vibrations of the single mass. 

Fig. 14. Dependency of the critical stiffness on velocity: (a) V/V inst 
cr = (1 . 00 − 1 . 02) , (b) V/V inst 

cr = (1 . 02 − 1 . 04) and (c) V/V inst 
cr = (1 . 04 − 1 . 20) . The three 

cases are defined in Table 8 , and three small intervals are considered to clearly show the trend in each interval. The region above the line relates to stable 

vibrations of the oscillator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(even though V > V inst 
cr ). The results are shown in Figs. 13 and 14 . The smallest critical mass and largest critical stiffness

correspond to the zero crossing of Im( K eq ) ( Fig. 9 ) with largest frequency 	. 

In Figs. 13 and 14 , the interval of V = (1 . 00 − 1 . 20) V inst 
cr is divided into three sub-intervals: V = (1 . 00 − 1 . 02) V inst 

cr , V =
(1 . 02 − 1 . 04) V inst 

cr and V = (1 . 04 − 1 . 20) V inst 
cr . The reason is that the critical mass and stiffness can decrease and increase

dramatically as the velocity increases, and by distinguishing the three sub-intervals, we clearly show the trend in each 

interval. In Fig. 13 , we observe that the critical mass in all three cases decreases as the velocity increases, which is in line

with [11] . Fig. 13 also shows that the critical mass of the moving object (single-mass case) in case III is the largest and

the one in case I is the smallest when V = V inst 
cr , and that the difference between the three critical masses is very large.

However, the critical mass in case III becomes the smallest and the one in case I the largest when V = 1 . 20 V inst 
cr , and the

difference between the three critical masses becomes much smaller. Fig. 14 shows that the critical stiffness of the oscillator

in the three cases increases as the velocity increases, which is again in line with the literature finding in [25] . Another

similarity between our result and the literature is that the instability of the moving oscillator occurs when its stiffness is

in the order of 10 6 (kg/s 2 ), which is approximately the same as the value of the stiffness of springs used for conventional

trains. However, the critical stiffness increases dramatically up to the order of 10 8 (kg/s 2 ) for our model while K 

∗ stays in the

same magnitude as the velocity increases for the model considered in the literature [25] . Fig. 14 also shows that the critical

stiffness in case III is the smallest and the one in case I is the largest when V = V inst 
cr , and that the difference between

the three critical stiffnesses is very small. However, when V = 1 . 20 V inst 
cr , the critical stiffness in case III becomes the largest

and the one in case I the smallest, and the difference between the three critical stiffnesses becomes much larger. Finally,

Figs. 13 and 14 show that the dependency of the critical mass and stiffness on the velocity is similar in the considered

velocity range for the three cases; however, as is clear from the comparison of cases II and III, the Lamé parameters of the

soil have a larger effect on the curves compared to the damping ratio of the tunnel. 
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In Fig. 13 (14) , the region below (above) the line relates to stable vibrations of the object. In the region above (below)

the line, the object vibration can be either purely unstable, or alternately either stable or unstable, which is the case when

Im( K eq ) has many zero crossings (see Figs. 11 and 12 ). In case I, for velocities V = (1 . 06 − 1 . 20) V inst 
cr , the vibration of the

moving mass in the region above the line shown in Fig. 13 is always unstable. It can be verified, however, that for velocities

 = (1 . 00 − 1 . 05) V inst 
cr , both stable and unstable sub-regions exist above the lines. For example, for V = V inst 

cr , the vibration of

the moving mass is unstable in sub-regions of M 

∗
1 

< M < M 

∗
2 

and M 

∗
3 

< M < M 

∗
4 
, but stable in the sub-regions M 

∗
2 

< M < M 

∗
3 

and M > M 

∗
4 
. Related to that, the vibration of the moving oscillator can be verified to be unstable for V = V inst 

cr in the sub-

regions of K 

∗
1 < K < K 

∗
2 and K 

∗
3 < K < K 

∗
4 , but stable in the sub-regions K 

∗
2 < K < K 

∗
3 and K < K 

∗
1 . In case II, for velocities

 = 1 . 00 V inst 
cr and V = 1 . 02 V inst 

cr , the number of the critical masses and stiffnesses can be verified to be 2 and 9, respectively;

for velocities V = (1 . 04 − 1 . 20) V inst 
cr , however, the number is 1. In case III, in the velocity range of V = (1 . 00 − 1 . 08) V inst 

cr , the

number of the critical masses and stiffnesses varies significantly and jumps from 1 to 11 and then back to 3; for velocities

 = (1 . 10 − 1 . 20) V inst 
cr , the number is again 1. Clearly, the precise number of sub-regions highly depends on the stiffness of

the soil, and on the damping ratios of soil and shell. 

6. Conclusions 

In this paper, instability of the vibration of an object moving through a tunnel embedded in soft soil has been studied.

We employed the concept of the equivalent dynamic stiffness, which reduces the original 2.5D model to an equivalent dis- 

crete model, whose parameters depend on the vibration frequency and the object’s velocity. The frequency-domain indirect 

Boundary Element Method was used to obtain the equivalent stiffness of the tunnel-soil system at the point of contact with

the moving object (i.e., the mass-spring system and the limit case of a single mass). Prior to that, the indirect BEM was vali-

dated for specific problems: the response of the system to a stationary harmonic point load and to a moving non-oscillatory

load acting at the invert of a tunnel. Using the equivalent stiffness, the critical velocity beyond which the instability of the

object may occur was found (it is the same for both the moving mass and the moving oscillator). The critical velocity for

instability is the most important result of the instability analysis. We found that the critical velocity for instability turns out 

to be much larger than the operational velocity of high-speed trains and ultra-high-speed Hyperloop pods, which implies 

that the model adopted in this paper predicts the vibrations of these objects moving through a tunnel embedded in soft

soil to be stable. 

For the model of a track founded on top of the elastic half-space, considered for comparison, the critical velocity for

instability in the presence of damping is just slightly larger than the critical velocity for resonance of the undamped system

(which is equal to the minimum phase velocity of the system). However, for the current model, the critical velocity for

instability is much larger than the critical velocity for resonance (of the damped system, strictly speaking, but the influence 

of the damping on the resonant velocity is small). For both models, the critical velocity for resonance is slightly smaller than

the velocity of Rayleigh waves, and the fact that the critical velocity for instability is so much larger in the model with the

embedded tunnel is due to the large stiffness of the tunnel and the radiation damping of the waves excited in the tunnel.

Other parameters affect the instability as well. A parametric study shows that the thickness of the tunnel, the material 

damping ratio of the tunnel, the stiffness of the soil and the burial depth have a stabilising effect, while the damping of the

soil may have a slightly destabilising effect. 

In order to investigate the instability of the moving object in case the velocity exceeds the identified critical velocity for

instability, we employed the D-decomposition method and found the instability domains in the space of system parameters. 

For a deep tunnel, the dependency of the critical mass and stiffness on the velocity was investigated. We conclude that the

higher the velocity, the smaller the mass of the object (single mass case) should be to ensure its stability. Furthermore, the

higher the velocity, the larger the stiffness of the spring should be when the spring is added (oscillator case). Our findings

regarding the velocity dependency of the critical mass and stiffness are aligned with the conclusions obtained by Metrikine 

et al. [11,25] for other models. 

The fact that the critical velocity for instability for the current model is much higher than the operational velocity of

contemporary and future vehicles is promising for the Maglev and Hyperloop transportation systems. Furthermore, the ap- 

proach presented in this paper can be applied to more advanced models with more points of contact between the moving

object and the tunnel, which would resemble reality even better. Finally, as the dynamic stiffness is very important for the

instability analysis for the tunnel-soil system, a refined model of the tunnel, which can potentially increase the accuracy of 

the response at its interior, can be considered in future work. 
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Appendix A. The steady-state response of the tunnel-soil system subject to a stationary harmonic point load 

We consider the tunnel-soil system subject to a stationary harmonic point load for the purpose of validation ( Section 4 ).

The shear stresses σr 1 θ1 
and σr 1 x at the inner surface of the tunnel induced by the stationary harmonic point load are zero.

The non-zero normal stress σr 1 r 1 (R i , θ1 , x, t) can be expressed in a complex form as 

σr 1 r 1 ( R i , θ1 , x, t ) = 

P 0 
R i 

δ
(
θ1 + 

π

2 

)
δ( x ) exp ( i 	t ) , (A.1) 

where P 0 is the amplitude of the harmonic load, 	 = 2 π f 0 is the angular frequency, f 0 the excitation frequency, and R i the

radius of the inner surface of the tunnel. Expanding the term δ(θ1 + 

π
2 ) in Eq. (A.1) into a Fourier series (see Eq. 10 ), the

normal stress can be rewritten as 

σr 1 r 1 ( R i , θ1 , x, t ) = 

n = ∞ ∑ 

n = −∞ 

P 0 
2 πR i 

exp 

(
i n 

(
θ1 + 

π

2 

))
δ( x ) exp ( i 	t ) . (A.2) 

Applying the Fourier Transform over spatial coordinate x (see Eq. 8 ) to Eq. (A.2) , the normal stress in the wavenumber

domain is obtained: 

˜ σr 1 r 1 ( R i , θ1 , k x , t ) = 

n = ∞ ∑ 

n = −∞ 

P 0 
2 πR i 

exp 

(
i n 

(
θ1 + 

π

2 

))
exp ( i 	t ) = ˜ σaux ( R i , θ1 , k x ) exp ( i 	t ) . (A.3) 

The response induced by the auxiliary stress ˜ σaux ( R i , θ1 , k x ) can be computed using the indirect BEM ( Section 3 ) and is

denoted as ˜ U 1 , aux ( r 1 , θ1 , k x ) . Thereafter, we get the expression for the actual displacement vector excited by the actual stress 

˜ σr 1 r 1 ( R i , θ1 , k x , t ) shown in Eq. (A.3) : 

˜ U 1 ( r 1 , θ1 , k x , t ) = 

˜ U 1 , aux ( r 1 , θ1 , k x ) exp ( i 	t ) . (A.4) 

We get the space-time domain response by applying the inverse Fourier Transform over wavenumber k x ( Eq. 9 ): 

U 1 ( r 1 , θ1 , x, t ) = 

1 

2 π

∫ ∞ 

−∞ 

˜ U 1 ( r 1 , θ1 , k x , t ) exp ( − i k x x ) d k x = 

1 

2 π

∫ ∞ 

−∞ 

˜ U 1 , aux ( r 1 , θ1 , k x ) exp ( − i k x x ) d k x exp ( i 	t ) , 

(A.5) 

where the integral needs to be evaluated numerically. Note that if we take the real part of the complex-valued excitation in

Eq. (A.1) , then the corresponding displacement will be the real part of the complex-valued displacement shown in Eq. (A.5) .

Appendix B. Matrices used for the Green’s functions of the Flügge shell 

The components of matrix A in Eq. (23) are written as follows: 

A 11 = ρh 

∂ 2 ū 
∂t 2 

− K 0 

[ 
−h 2 

12 

(
∂ 4 

∂x 4 
2 

+ 

2 
R 2 

∂ 4 

∂ x 2 
2 
∂ θ2 

2 

+ 

1 
R 4 

∂ 4 

∂θ4 
2 

)
− 1 

R 2 
− h 2 

12 

(
1 

R 4 
+ 

2 
R 4 

∂ 2 

∂θ2 
2 

)] 
, 

A 22 = ρh 

∂ 2 v̄ 
∂t 2 

− K 0 

[ 
1 −ν2 

2 
∂ 2 

∂x 2 
2 

+ 

1 
R 2 

∂ 2 

∂θ2 
2 

+ 

h 2 

12 
3 ( 1 −ν2 ) 

2 R 2 
∂ 2 

∂x 2 
2 

] 
, 

A 33 = ρh 

∂ 2 w̄ 

∂t 2 
− K 0 

[ 
∂ 2 

∂x 2 
2 

+ 

1 −ν2 

2 R 2 
∂ 

∂θ2 
2 

+ 

h 2 

12 
1 −ν2 

2 R 4 
∂ 2 

∂θ2 
2 

] 
, 

A 12 = −A 21 = −K 0 

[ 
−1 
R 2 

∂ 
∂θ2 

+ 

h 2 

12 

(
3 −ν2 

2 R 2 
∂ 3 

∂ x 2 
2 
∂ θ2 

)] 
, 

A 13 = −A 31 = −K 0 

[ 
−ν2 

R 
∂ 

∂x 2 
+ 

h 2 

12 

(
1 
R 

∂ 3 

∂x 3 
2 

− 1 −ν2 

2 R 3 
∂ 3 

∂ x 2 ∂ θ2 
2 

)] 
, 

A 23 = A 32 = −K 0 

[
1+ ν2 

2 R 
∂ 2 

∂ x ∂ θ

]
, 

(B.1) 
2 2 
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where K 0 = 

E 2 h 

1 −ν2 
2 

. The components of the matrix ˜ ˜ A n read: 

˜ ˜ A 11 n = −ω 

2 ρh + K 0 

[
h 2 

12 

(
k 4 x + 

2 
R 2 

k 2 x n 

2 + 

n 4 

R 4 

)
+ 

1 
R 2 

+ 

h 2 

12 

(
1 

R 4 
− 2 n 2 

R 4 

)]
, 

˜ ˜ A 22 n = −ω 

2 ρh + K 0 

[
1 −ν2 

2 
k 2 x + 

n 2 

R 2 
+ 

h 2 

12 
3 ( 1 −ν2 ) 

2 R 2 
k 2 x 

]
, 

˜ ˜ A 33 n = −ω 

2 ρh + K 0 

[
k 2 x + 

1 −ν2 

2 R 2 
n 

2 + 

h 2 

12 
1 −ν2 

2 R 4 
n 

2 
]
, 

˜ ˜ A 12 n = − ˜ ˜ A 21 n = K 0 

[
1 

R 2 
i n + 

h 2 

12 
3 −ν2 

2 R 2 

(
i k 2 x n 

)]
, 

˜ ˜ A 13 n = − ˜ ˜ A 31 n = −K 0 

[
ν2 

R ( i k x ) + 

h 2 

12 

(
1 
R 

i k 3 x − 1 −ν2 

2 R 3 
i k x n 

2 
)]

, 

˜ ˜ A 23 n = 

˜ ˜ A 32 n = −K 0 

[
1+ ν2 

2 R 
k x n 

]
. 

(B.2) 

Matrices ˜ ˜ B 

o 
n , 

˜ ˜ B 

i 
n and 

˜ ˜ D n in Eq. (26) are given as follows 

˜ ˜ B 

o 
n = 

( 

1 

h 
2 R 

i n − h 
2 

i k x 
0 1 + 

h 
2 R 

0 

0 0 1 

) 

, ˜ ˜ B 

i 
n = 

( 

1 

−h 
2 R 

i n 

h 
2 

i k x 
0 1 + 

−h 
2 R 

0 

0 0 1 

) 

, (B.3) 

˜ ˜ D n = 

( 

1 0 0 

− h 
2 R 

i n 1 + 

h 
2 R 

0 

h 
2 

i k x 0 1 

) 

. (B.4) 

Appendix C. The critical velocity for resonance of the tunnel-soil system and convergence requirements for the 

computation of the equivalent dynamic stiffness 

In this appendix, our first aim is to find the critical velocity for resonance V res 
cr of the current tunnel-soil system. To this

end, we analyse the response of the tunnel-soil system induced by a uniformly moving non-oscillatory ( f 0 = 

	
2 π = 0 ) point

load observed at the tunnel invert at x = 0 as derived in Section 2.3 (see Eq. (18) ). We consider three cases of V = 30 m / s ,

 = 69 m / s and V = 70 m / s in the sub-Rayleigh regime ( V < C R , 1 = 72 . 29 m / s ), one case of V = 75 m / s ( C R , 1 < V < C S , 1 =
77 . 94 m / s ) in the super-Rayleigh regime, and one case of V = 150 m / s in the supersonic regime ( V > C P , 1 = 145 . 8 m / s ). A

half-space model is considered and the burial depth of the tunnel is H = 15 m . All other parameter values are taken in

accordance with the base case defined in Table 3 . 

Fig. C.1 (a) shows the amplitude spectra of the radial displacements observed at the tunnel invert, at the observation 

point x = 0 , for one sub-Rayleigh, one super-Rayleigh and one supersonic case (the others look similarly). The Fourier trans-

formed displacement, ˜ U r 1 (r 1 , θ1 , x, ω) , is defined as the integrand of Eq. (18) except for the term exp ( i ωt) . It is shown

that the spectra are spread around f = 0 . The time-domain responses are shown in Fig. C.1 (b). Clearly, for V = 30 m / s

and V = 69 m / s , the disturbance is localized around the moving load, and there is no significant wave radiation in these
Fig. C.1. The radial displacement at the tunnel invert and at the observation point x = 0 when the tunnel-soil system is subject to a uniformly moving 

non-oscillatory ( f 0 = 0 ) point load for different velocities [m/s]: (a) amplitude spectra and (b) time-domain responses. 
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Fig. C.2. The radial displacement at the tunnel invert and at the observation point x = 0 when the tunnel-soil system is subject to uniformly moving 

oscillatory ( f 0 = 5 Hz ) point load for different velocities [m/s]: (a) amplitude spectra and (b) real part of the time-domain responses. 

Table C.1 

Requirements for f, f max and ( N s , N r ) to obtain the converged results for different velocities 

and loading frequencies. 

Velocity (m/s) Frequency f 0 (Hz) f (Hz) f max (Hz) ( N s , N r ) 

V = 30 f 0 = (0 − 40)  f = 0 . 05 f max = 100 (N s , N r ) = (20 , 40) 

V = 75 f 0 = (0 − 40)  f = 0 . 05 f max = 200 (N s , N r ) = (20 , 40) 

V = 150 f 0 = (0 − 40)  f = 0 . 05 f max = 300 (N s , N r ) = (20 , 40) 

V = 10 0 0 f 0 = (0 − 40)  f = 0 . 02 f max = 20 0 0 (N s , N r ) = (160 , 160) 

V = 1200 f 0 = (0 − 40)  f = 0 . 02 f max = 20 0 0 (N s , N r ) = (160 , 160) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cases. For V = 70 m / s , a wave pattern emerges, which comes with significant asymmetry of the profile. For V = 75 m / s

and V = 150 m / s , a more clear wave pattern can be observed; in these two cases, Rayleigh waves, and Rayleigh, shear and

compressional waves are generated, respectively. Furthermore, the response is extreme for V = 70 m / s , which indicates res- 

onance. Therefore, we conclude that for the current tunnel-soil system, V res 
cr ≈ 70 m / s . Clearly, a constant load moving faster 

than this critical speed will radiate waves. 

As explained in Subsection 2.2 , the radial displacement at the loading point, excited by a uniformly moving oscillatory 

load (i.e., f 0 � = 0), is a key element for the instability analysis (see Eqs. (16) and (17) ). The second aim of this appendix is

therefore to find the requirements that need to be met to get converged steady-state responses. Essentially, these require- 

ments need to be defined based on U 0 ( 	, V ) in Eq. (16) , as that quantity is used to obtain the equivalent stiffness ( Eq. (17) ).

However, the radial displacement presented in Eq. (18) , when evaluated at t = 0 (i.e., U r 1 (R, −π
2 , 0 , 0) ), is exactly equal to

U 0 ( 	, V ). Therefore, the convergence requirements can be found based on the spectra and time-domain responses computed

using Eq. (18) . 

For illustration purposes, we consider the three cases of V = 30 m / s , V = 75 m / s and V = 150 m / s with a load frequency

f 0 = 5 Hz shown in Fig. C.2 . In this figure, small frequency and time windows are shown in order to present clear features of

the spectra and time-domain responses. One observes that the amplitude spectra of displacements become wider compared 

with the case of f 0 = 0 (compare Figs. C.1 (a) and C.2 (a)) and are spread around f = f 0 . In the time-domain responses,

oscillatory patterns are observed even for the sub-critical case due to the oscillation of the load. In addition, the Doppler

effect is observed in Fig. C.2 (b) [10,40] , which implies that waves are generated at frequencies different from that of the

load; these frequencies are usually found from the intersections of the kinematic invariant (e.g., line 3 or 4 in Fig. 10 ) and

the dispersion curves. 

Based on the amplitude spectra and time-domain responses for different velocities and loading frequencies, we found 

the requirements (in terms of f, f max and ( N s , N r )) to obtain converged results, and they are shown in Table C.1 . Note that

N 

shell = 20 and N 

load = 20 were sufficient for all the computed cases. 
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