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Abstract
The feasibility of computing the flow pressure on the basis of PIV velocity data has been demonstrated abundantly for low-
speed conditions. The added complications occurring for high-speed compressible flows have, however, so far proved to 
be largely inhibitive for the accurate experimental determination of instantaneous pressure. Obtaining mean pressure may 
remain a worthwhile and realistic goal to pursue. In a previous study, a Reynolds-averaging procedure was developed for 
this, under the moderate-Mach-number assumption that density fluctuations can be neglected. The present communication 
addresses the accuracy of this assumption, and the consistency of its implementation, by evaluating of the relevance of the 
different contributions resulting from the Reynolds-averaging. The methodology involves a theoretical order-of-magnitude 
analysis, complemented with a quantitative assessment based on a simulated and a real PIV experiment. The assessments 
show that it is sufficient to account for spatial variations in the mean velocity and the Reynolds-stresses and that temporal 
and spatial density variations (fluctuations and gradients) are of secondary importance and comparable order-of-magnitude. 
This result permits to simplify the calculation of mean pressure from PIV velocity data and to validate the approximation of 
neglecting temporal and spatial density variations without having access to reference pressure data.

1 Introduction

Knowledge of flow pressure is of fundamental importance 
in several fluid-dynamic areas, such as aero-acoustics, tur-
bulence, cavitation, and fluid–structure interactions. The 
feasibility of obtaining pressure data from particle image 
velocimetry (PIV) or particle tracking velocity data has been 
demonstrated abundantly over the recent years, notably for 
low-speed conditions. The method provides an appealing 
approach to achieve access to the flow field pressure in a 
non-intrusive way. A recent overview of the operating prin-
ciples and a variety of application areas has been provided 
in van Oudheusden (2013).

The basic working principle of the procedure is to invoke 
the momentum equation to calculate the local pressure gra-
dient from flow velocity and material acceleration data, 
which can be provided by PIV measurements. Pressure fields 
are subsequently obtained through spatial integration with 

appropriate boundary conditions applied. The nature of the 
flow configuration dictates the type of PIV data required for 
a successful implementation of the method: whereas planar 
data may be sufficient for nearly two-dimensional flows, vol-
umetric velocity data are required for flows that are notably 
three-dimensional in nature (Charonko et al. 2010; Violato 
et al. 2011; de Kat and van Oudheusden 2012). Similarly, 
the determination of instantaneous pressure for unsteady 
flows involves the evaluation of the temporal development 
of the flow field, which requires high-speed (time-resolved) 
measurements.

It is generally accepted that the accuracy with which 
the material acceleration is determined is the dominant 
factor for the pressure reconstruction (Violato et al. 2011; 
de Kat and van Oudheusden 2012; van Gent et al. 2017a), 
setting particular demands on both spatial and temporal 
resolution of the velocity measurement. For application in 
the high-speed regime, which is the area of interest of the 
present communication, meeting these demands becomes 
increasingly challenging, for a variety of reasons. First, 
the environment of high-speed wind tunnel operation is 
characterised by increased vibration levels, limited optical 
access, flow seeding issues, and optical aberration effects, 
which adversely affect the PIV measurement accuracy. 
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Furthermore, the time scales associated with high-flow 
speeds are beyond the current standard (high-speed) 
PIV capabilities, so that time-resolved data can only be 
obtained by adopting alternative multi-pulse procedures 
(Souverein and van Oudheusden 2009; Lynch and Scarano 
2014; Blinde et al. 2015). Although the feasibility of using 
a four-pulse procedure has been validated on the basis of 
synthetic experimental data (van Gent et al. 2017a) and 
advances have been made by tracking individual tracer 
particles (Novara et  al. 2016), achieving the accuracy 
required for satisfactory instantaneous pressure results is 
challenging (Blinde et al. 2015). Furthermore, setting up 
and operating a multi-pulse PIV system is significantly 
more complexity and laborious than using a standard dou-
ble-pulse system.

Whereas the calculation of instantaneous pressure 
fields for unsteady flows requires time-resolved data, 
mean pressure fields can be derived from velocity field 
statistics obtained from uncorrelated velocity measure-
ments, by means of a Reynolds-averaging approach (Gurka 
et al. 1999; van Oudheusden et al. 2007). Since no time-
resolved measurements are required, this technique can 
rely on relatively simple PIV systems. Furthermore, since 
it is a statistical approach, it benefits from a reduction in 
uncertainty by combining a large ensemble of measure-
ments. The merits of obtaining mean pressure fields from 
planar PIV measurements were recently demonstrated in 
van Gent et al. (2017b) who applied the technique to assess 
the impact of nozzle length and the presence of an exhaust 
plume on transonic and supersonic base flows with exhaust 
plumes. The above shows the pursuit of the mean pressure 
data as a worthwhile and realistic objective for high-speed 
flow applications.

Although the particular interest of the present study 
lies in pressure determination in high-speed flows which 
are compressible, as an introduction, first, the procedure 
for incompressible flow will be shortly outlined for refer-
ence (see also, e.g., Unal et al. 1997; Baur and Köngeter 
1999; Gurka et al. 1999). As stated previously, the com-
putation of pressure from the velocity field basically relies 
on invoking the momentum equation, which for an incom-
pressible flow reads:

where ui denotes the (instantaneous) velocity in the direction 
 xi, ρ represents the density, and µ is the kinematic viscosity. 
Equation (1) uses Einstein summation convention imply-
ing summation over terms indexed by j. With density and 
viscosity constant, the pressure gradient is related uniquely 
to the measured velocity field variables. The viscous terms 

(1)
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�xi
= −�
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�ui

�t
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�ui

�xj

)
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�2ui
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on the right can be neglected at high Reynolds numbers as 
confirmed by several studies (e.g., van Oudheusden et al. 
2007; Ghaemi et al. 2012). Although viscosity still plays 
a significant role in regions with high-velocity gradients, 
the length scales associated with viscous stresses are small 
and they therefore only make minor contributions during 
spatial integration of the pressure gradient. Although the 
viscous terms could still be maintained for completeness, 
they become easily corrupted in the presence of inaccuracies 
in the measured velocity data and will therefore generally be 
discarded in the ensuing analysis.

Considering now high-speed applications, apart from 
the increased challenge to obtain reliable measurement 
data as discussed earlier, a complication is to account for 
the unknown, variable density. In the previous studies 
(van Oudheusden et al. 2007; Souverein et al. 2007; van 
Oudheusden 2008), a convenient was found by removing 
the density as independent variable through the use of addi-
tional relations derived from the flow governing physical 
principles. In particular, the gas law (ρ = p/RT) is used to 
replace the density in Eq. (1), while the adiabatic assump-
tion of constant total temperature is employed to express 
temperature (T) in terms of the velocity:

where Cp is the specific heat at constant pressure, V is the 
velocity magnitude, γ is the ratio of specific heats, R is the 
gas constant, M denotes the Mach number, and the subscript 
∞ refers to freestream conditions.

A justification of this approach has been provided by an 
assessment of a synthetic PIV experiment constructed on 
the basis of a numerical simulation (van Gent et al. 2017a), 
which demonstrated that instantaneous pressure data could 
be reliably reconstructed under the assumptions mentioned 
above. However, as mentioned, the current interest is to 
obtain a reliable result for the mean pressure using velocity 
statistics in a Reynolds-averaging approach. The procedure 
was developed in an earlier publication (van Oudheusden 
2008) and relies on the moderate-Mach-number assumption 
that density fluctuations can be neglected. This assumption 
is partly motived by physical arguments, reflecting Morko-
vin’s hypothesis (Smits and Dussauge 2006) and partly by 
practical considerations, as density fluctuations cannot be 
obtained from the PIV measurement.

The specific objective of the present communication is to 
address the accuracy of this assumption, and the consistency of 
its implementation, by means of an evaluation of the relevance 
of all terms resulting from the Reynolds-averaging, includ-
ing those that are discarded. The assessment methodology 
involves a theoretical order-of-magnitude analysis (Sect. 2) 
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that is complemented with the results of a synthetic and a real 
PIV experiment (Sects. 3 to 5). The flow configuration of the 
experiments is an axisymmetric base flow at Mach 0.7, similar 
to the one studied in Blinde et al. (2015) and van Gent et al. 
(2017a). The compressible base flow is characterised by large-
scale unsteady separation and a richness in terms of flow scales 
making it particularly suited to provide a realistic and chal-
lenging test case. In addition, since it has been observed that 
base flows display less intense unsteadiness under supersonic 
conditions [e.g., Humble et al. (2007)], the transonic case is 
likely to pose a more critical combination of unsteadiness and 
compressibility.

2  Theory

2.1  Governing relations to determine mean 
pressure in compressible flows

The primary relation to calculate the mean pressure for 
unsteady compressible flows is given by the Reynolds-aver-
aged momentum equation:

where the momentum equation is written in conservative 
form to facilitate the Reynolds-averaging procedure. When 
needed, (part of) the momentum equation can be expressed 
in a non-conservative form by use of the continuity equation:

In the ensuing Reynolds-decomposition approach, variables 
are written as the sum of a mean and fluctuating component, 
denoted by an overbar and prime, respectively, e.g., u = u + u� . 
Depending on the specific conditions or approximation, fluctu-
ations may be discarded for all variables (for a steady flow) or 
for the density only (as approximation). The resulting expres-
sions correspond to those reported previously in van Oudheus-
den et al. (2007) and van Oudheusden (2008), respectively, but 
are repeated here for completeness.

2.1.1  Steady-flow conditions

Under the assumption that the flow is steady, all fluctuations 
can be discarded which simplifies the Reynolds-averaging 
operator in the continuity and momentum equations, such that 
the latter can be written as follows:

(3)
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This expression is similar to what would have been obtained 
for an incompressible flow, the difference, however, being that 
now in Eq. (5), the density is a spatial variable. To enable the 
computation of the pressure gradient from the velocity data 
(Souverein et al. 2007), the density is eliminated by means of 
the gas law ( � = p∕RT ), yielding:

where the temperature T is calculated from the local meas-
ured velocity using the adiabatic flow condition, Eq. (2).

2.1.2  Relations for unsteady flow (neglecting density 
fluctuations)

Considering an unsteady flow and incorporating the velocity 
fluctuations in the Reynolds-averaging, but neglecting the 
effect of density fluctuations (for moderate-Mach numbers), 
the pressure gradient follows from Eq. (3) as:

The effect of flow compressibility is reflected in the 
variable value of the density in the first two terms on the 
right-hand side, and the presence of an additional third term, 
which is related to the spatial gradient of the mean density. 
Again, elimination of the density allows an explicit relation 
for the pressure gradient to be obtained:

This relation was derived in van Oudheusden and Sou-
verein (2007) and applied to an oblique shock-wave bound-
ary-layer interaction at a freestream Mach number of 1.7, 
revealing the contribution of the turbulent fluctuations in the 
pressure determination to be minor in that case.

2.1.3  Relations for unsteady flow (including density 
fluctuations)

A proper evaluation that includes all variables in the Reyn-
olds-averaging, i.e., both velocity and density fluctuations, 
yields:
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As can be observed, in addition to the contributions 
already identified in Eq. (7), four additional terms appear 
that are related to the density fluctuations. Since the density 
fluctuations themselves cannot easily be accessed from the 
velocity measurement, either directly or indirectly through 
the additional governing equations, no attempt can be made 
to incorporate these in the final pressure determination, as 
was done in the two previous sections. Instead, the purpose 
of this formulation is to provide the framework for the fol-
lowing theoretical and numerical analysis.

2.2  Order‑of‑magnitude analysis

To perform an order-of-magnitude analysis of the different 
contributions to the pressure gradient (Eq. 9), appropriate 
scaling values (indicated by an asterisk) are introduced for 
the different parameters involved, such that:

To find the appropriate scaling for the temporal and spa-
tial density variations, ρ′ and 𝜕�̄�

/
𝜕xj , the gas law ( � = p∕RT ) 

is cast in differential form:

In view of the momentum equation: dp ∼ �VdV  and with 
the assumption of constant total temperature: cpdT ∼ VdV  , 
this can be written as follows:

Interpreting dρ as either a temporal or spatial variation 
(i.e., fluctuation or gradient) of the density, the following 
results are obtained:

Finally, although mean velocity gradients scale accord-
ing to Eq. (10) as: �ui∕�xj ∼ U∗∕L∗ , this is not appropriate 
for the divergence term �uj∕�xj that occurs in Eq. (9), as 
it does not reflect that the divergence should vanish under 
incompressible flow conditions. Instead, upon invoking the 
continuity equation [Eq. (4)], we find:

Application of these estimates provides the order-of-mag-
nitude estimate of each of the contributions to the pressure 
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gradient in Eq. (9), which are collected in Table 1. Note 
that the first three rows indicate the contributions that are 
accessible from the PIV measurement and were proposed 
to be included in the evaluation of the pressure gradient by 
van Oudheusden (2008) [see Eq. (7)]. The first four rows in 
table 1 indicate all terms that involve density fluctuations 
and cannot be obtained from the PIV measurements.

Observing the results for the different terms, it is con-
cluded that all terms, apart from the mean flow accelera-
tion, scale in proportion to u*/U* and the density fluctua-
tion terms all involve an additional scaling with the Mach 
number. However, it is interesting to observe that the third 
term, maintained in Eq. (7), appears to be of similar order as 
the first two additional terms related to the density fluctua-
tions. This would suggest that either its inclusion in Eq. (7) 
is unnecessary, or that the additional terms identified in 
Eq. (9) should not be neglected with respect to the terms 
maintained in Eq. (7). However, this is only an order-of-
magnitude estimate and a proper evaluation of their relative 
importance should be based on a quantitative assessment, as 
undertaken in the following section.

3  Numerical assessment

The theory from Sect. 2 is assessed in a series of assess-
ments. This first assessment employs the result of a zonal 
detached eddy simulation (ZDES) [e.g., Weiss et al. (2009)], 
which was specifically designed for the purpose of testing 
pressure reconstruction techniques (van Gent et al. 2017a). 
The simulation was set up to represent the same geometry 
and flow conditions as those of the experimental assessment 
considered in Sect. 5.

Table 1  Order-of-magnitude analysis

Contribution 
to the pressure 
gradient

Order-of-magnitude Order-of-magnitude 
relative to mean flow 
acceleration
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3.1  Description of the test case

Figure 1 depicts the model geometry and the measurement 
domain for the simulated PIV experiment (Sect. 4). The 
model main body has a diameter (D) of 50 mm and the 
afterbody has a diameter of 20 mm (0.4 D), resulting in 
a step height of 15 mm (0.3 D). Wind tunnel walls were 
omitted in the simulation for simplicity and robustness. 
The free stream flow has a total pressure (pt) of 200 kPa 
and a total temperature (Tt) of 285 K, corresponding to 
a free stream pressure of 144,186 Pa, a free stream tem-
perature of 260 K, and a free stream velocity (U∞) of 
226 m s−1. The Reynolds number based on the model main 
body diameter  (ReD) is 1.3 million.

The present analysis focuses on a region directly down-
stream of the step with a size of 1.2 D × 0.47 D × 0.08 D 
(60 mm × 24 mm × 4 mm, L × H × W) that corresponds with 
the measurement domain of the simulated experiment (see 
Sect. 4). To facilitate the computation of spatial gradients, 
the original simulation data are interpolated onto a rectan-
gular grid of 171 × 67 × 11 point in x-, y-, and z-directions, 
using natural neighbour interpolation (Sibson 1981). The 
data set consists of 5000 snapshots with a time separation 
of 2 µs, covering a total duration of 10 ms. The reader is 
referred to van Gent et al. (2017a) for further details.

To characterise the mean properties and fluctuations 
in the flow, Fig. 2 shows the mean streamwise velocity, 
mean pressure, and mean density (left figures) as well 
as the turbulence intensity (T.I.) and the root mean 
square of pressure and density fluctuations with respect 
to their mean value (right figures). Contours are shown 
for the centre plane of the region of interest. The pres-
sure coefficient (Cp) and the turbulence intensity (T.I.) 
are defined as follows: Cp =

(
p − p∞

)/(
1

2
�p∞M

2
∞

)
 and 

T.I. =

√(
�2
u
+ �2

v
+ �2

w

)
∕3 , where �2

u
 , �2

v
 , and �2

w
 denote 

the variances of the velocity components in x-, y-, and 
z-directions, respectively.

The mean flow field displays a shear layer that emanates 
from the corner of the step at y/D = 0.3 and grows in down-
stream direction towards reattachment on the afterbody at 
about x/D = 1.2. Below the shear layer lies a large-scale sep-
arated region where the mean velocity, pressure, and density 
reach minimum values of about ū ≈ −0.35U∞ , Cp ≈ −0.24 , 
and � ≈ 0.86�∞ Velocity, pressure, and density increase 
towards reattachment. Elevated levels of turbulence inten-
sity, pressure, and density fluctuations are notably present in 
the shear layer and the reattachment region (right figures).

3.2  Pressure gradient evaluation

The data of the numerical simulation allow to directly 
evaluate the different terms that make up the mean pres-
sure gradient [Eq. (9)]; these are defined as the partial 
contributions (∇p̄)i to the total pressure gradient, in the 
sense that ∇p̄ =

∑
i (∇p̄)i . Figure 3 shows the spatial dis-

tributions of the total pressure gradient (top figures) and 
of the contributions of different terms. The left column 
corresponds to the pressure gradient in x-direction ( 𝜕p̄∕𝜕x ) 
and right column to the gradient in y-direction ( 𝜕p̄∕𝜕y ). 
All pressure gradients have been non-dimensionalised 
according to C∇p̄ = D∇p̄

/
1

2
𝛾p∞M

2
∞

 . Noting the difference 

in the colour scale, the figure shows that the mean flow 
terms (figures c, d) and Reynolds-stresses terms (figures 
e, f) are the dominant contributors to the total pressure 
gradient (figures a, b) and are an order-of-magnitude 
greater than the other terms. The mean flow terms are the 
only terms that substantially contribute to the pressure 
gradient in the recirculation region and in the freestream 
where overall fluctuations in the flow are small (compare 
Fig. 2). The contributions from the Reynolds-stresses are 
particularly large in the shear layer and the reattachment 

Fig. 1  Test geometry: overview and detail of the numerical mesh 
in the base-flow region (D is the main body diameter); the coloured 
insert indicates the measurement domain for   the simulated experi-

ment; filled colour contours depict the mean streamwise velocity 
[reproduced with permission from van Gent et al. (2017a)]
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region. Interestingly, looking at the pressure gradient in 
streamwise direction (left column), the contributions of 
the mean flow and Reynolds-stresses terms are large in the 
shear layer, but cancel each other out. The general behav-
iour of the pressure gradient in the region of the shear 
layer, regarding the contributions of the mean flow (figures 
c, d), Reynolds-stresses (figures e, f), and density gradient 
(figures g, h), is in good qualitative agreement with theory 
from Sect. 2.

The relevance of each pressure gradient term is further 
assessed by means of an integral measure that represents 
the average value of the norm of the contribution:

where A is the area of interest, which is taken to correspond 
to the measurement volume of the simulated experiment. 
Table 2 provides an overview of the values of this integral 
measure for the different terms. Note that as the integral 
measure is defined from the norm of the contribution, the 
values of all contributions do not add up to exactly the same 
value as that for the total pressure gradient itself. The table 

(15)
⟨
‖‖
‖

(
C∇p̄

)
i

‖‖
‖

⟩
=

1

A ∫ ∫ ∫
‖‖
‖

(
C∇p̄

)
i

‖‖
‖
dA,

confirms that the contributions from the mean flow and the 
Reynolds-stresses terms are, indeed, larger than those of the 
other terms (by about two orders-of-magnitude), the latter 
representing not more than 0.02 of the measure for the total 
pressure gradient.

4  Simulated experimental assessment

The numerical simulation from Sect. 3 has been used to 
construct a simulated tomographic PIV experiment. The 
specific purpose of this assessment, in addition to the one 
from the previous section, is to model the issues involved 
in a “real” PIV experiment, yet having the reference pres-
sure field available for validation. These additional issues 
are, notably: (1) the finite resolution and accuracy of the 
PIV measurement, and (2) the additional modelling steps 
required to extract the pressure from the velocity fields, as 
discussed in the introduction.

Fig. 2  Characterization of the flow field statistics: a mean streamwise velocity, b turbulence intensity, c mean pressure, d pressure fluctuation 
levels, e mean density, and f density fluctuations [partly adapted from van Gent et al. (2017a)]
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4.1  Simulation of PIV experiment

Imaginary seeding particles are traced through the simulated 
flow field that is represented by the numerical data. Particle 
images are then obtained by projecting the three-dimen-
sional particle positions onto two-dimensional sensors. The 

digital resolution of the images is 22.9 vox mm−1 (optical 
magnification M = 0.12). The virtual cameras are calibrated 
by a combination of geometric calibration and volume self-
calibration (Wieneke 2008). Noise is added to the synthetic 
particle images and all processing steps associated with 
tomographic PIV are subsequently applied to generate a 

Fig. 3  Contributions to the pressure gradient: a, b total pressure gradient, c, d mean flow terms, e, f Reynolds-stresses terms, g, h density-gradi-
ent terms and i, j density fluctuation terms; left column: contributions to �p

/
�x ; right column: contributions to �p

/
�y
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data set representative of realistic PIV results, albeit under 
optimum imaging conditions. The resulting PIV data consist 
of 171 × 67 × 11 velocity vectors in x-, y-, and z-directions. 
For more details on the simulated experiment, the reader is 
referred to van Gent et al. (2017a).

4.2  Pressure results

The velocity fields are used to calculate the pressure gradient 
according to the logarithmic formulation of Eqs. (6) and (8). 
The problem is discretized using a similar discretisation as 
Jeon et al. (2015) and the resulting system of linear equa-
tions is solved via the use of QR decomposition. Pressure 
gradients are used as Neumann boundary conditions on all 
sides of the domain except for the top surface, where refer-
ence pressure as obtained from the simulation is prescribed 
as Dirichlet boundary condition.

Figure 4 shows the reference pressure field from the sim-
ulation data (top figure), the pressure fields reconstructed 
from the PIV data (left figures) as well as their respective 
difference (right figures). Comparison of Fig. 4a, b shows 
that reconstruction of pressure fields from mean flow terms 
only [Eq.  (6)] leads to substantial error levels (also see 
figure c). Figure 4d shows that the additional inclusion of 
Reynolds-stresses terms leads to a dramatic improvement 
(compare figure c and e). Further addition of the density-
gradient terms (Fig. 4f) has a little effect, if not leading to 
slightly higher errors. Only slightly more accurate results 
could be achieved using the reference temperature from the 

simulation data instead of the temperature calculated by 
assuming adiabatic flow [Eq. (2)].

To quantify these findings, Table 3 shows the r.m.s. value 
of the error fields depicted in the right figures. As indicated 
in the table, the normalized error is 17% when only the mean 
flow terms are used and reduces to about 5% when including 
the Reynolds-stresses terms.

As surface pressure is of great importance for many appli-
cations, particular attention is given to the reconstruction 
of surface pressure from the PIV results. Figure 5a shows 
the mean pressure distribution along the bottom edge of the 
measurement domain. Similarly, Fig. 5b compares the mean 
pressure profiles for x/D = 0.6 where the pressure attains its 
minimum value. Reference data have been obtained by inter-
polating the simulation data to the PIV grid. Other pressure 
profiles have been reconstructed from velocity data using 
different terms. The figures also include a profile obtained 
using reference density data instead of assuming adiabatic 
flow to show the impact using an adiabatic flow model as 
well as a profile reconstructed from reference velocity data 
to show the impact of measurement errors from PIV and its 
spatial filtering behaviour.

Confirming earlier findings, the figures show that includ-
ing the Reynolds-stresses terms in the pressure reconstruc-
tion leads to a notably improvement over using only the 
mean flow terms. Inclusion of the density-gradient terms 
has no perceivable impact. Using reference density data and, 
therefore, avoiding the need to assume adiabatic flow only 
leads to a minor improvement, again confirming the validity 
of the adiabatic flow model. Figure 5b shows that using ref-
erence velocity data leads to a step improvement compared 
to using PIV velocity data. This is attributed to the spatial 
filtering behaviour of PIV. Regardless, Fig. 5a shows that 
the surface pressure can be accurately reconstructed from 
PIV measurements.

5  Actual experimental assessment

A final assessment of the mean pressure reconstruction pro-
cedure uses data from an actual PIV experiment. Validation 
is performed by comparison to additional measurements by 
pressure transducers.

5.1  Experimental arrangement

The experiments have been performed in the transonic-
supersonic wind tunnel (TST-27) at the Aerodynamics 
Laboratory at Delft University of Technology. The facility 
has a test section of 280 mm (width) × 270 mm (height). 
In the present experiments, the wind tunnel is operated 
at a total pressure (p0) of 2.0 × 105 Pa. Total temperature 
(T0) is approximately 280 K. The nominal Mach number 

Table 2  Relative importance of the contributions to the pressure gra-
dient

Contribution 
to the pressure 
gradient

Integral measure ⟨
‖‖‖
(
C∇p

)
i

‖‖‖

⟩ Integral measure relative 
to that of the total pressure 
gradient

Total pressure 
gradient �p

�xj

4.2 × 10−1 1

�̄�uj
𝜕ui

𝜕xj

3.6 × 10−1 0.86

�
�u′

i
u′
j

�xj

1.8 × 10−1 0.43

u′
i
u′
j

��

�xj

4.1 × 10−3 < 0.01

�′u′
j

�u′
i

�xj

3.1 × 10−3 < 0.01

uj
��′u′

i

�xj

2.4 × 10−3 < 0.01

�′u′
i

�u′
j

�xj

6.4 × 10−5 < 0.01

��′u′
i
u′
j

�xj

3.1 × 10−3 < 0.01
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is set at 0.7. Based on pressure static pressure measure-
ments in the test section (p∞ = 1.38 × 105 Pa) and assum-
ing isentropic expansion, the effective free stream Mach 
number (M∞) is determined to be 0.75. The difference 

with the nominal Mach number is caused by the reduction 
in the effective cross-sectional area due to the presence 
of the model. The freestream velocity (U∞) is 238 m  s−1 

Fig. 4  Mean pressure: a reference pressure field, b pressure field 
reconstructed using mean flow terms and c corresponding error, d 
pressure field reconstructed using mean flow and Reynolds-stresses 
terms and e corresponding error, f pressure field reconstructed using 

mean flow, Reynolds-stresses and density-gradient terms and g cor-
responding error, h pressure field reconstructed using mean flow and 
Reynolds-stresses w/o adiabatic assumption, and i corresponding 
error
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and the Reynolds number based on the model diameter 
 (ReD) is 1.3 × 106.

The wind tunnel model has a similar geometry as the 
model used in the simulation (see Fig. 1). The main body is 
held from the rear by a sting that also acts as the afterbody.

The PIV measurements were performed in a thin volume 
located downstream of the step over the afterbody surface. 
The size of the measurement volume is 1.7 D × 1.0 D × 0.1 D 
(85 mm × 50 mm × 5 mm, L × H × W). The flow was seeded 
with Di-Ethyl-Hexyl-Sebacat (DEHS) particles. The parti-
cles have a nominal diameter of 1 µm and a response time of 
about 2 µs (Ragni et al. 2010). The particles were introduced 
into the settling chamber via a seeding rake connected to a 
PIVTEC atomizing DEHS seeder. Based on visual inspec-
tion of various regions in different images, the particle den-
sity is estimated to vary between 0.03 and 0.07 particles per 
pixel (ppp).

Illumination was provided by double-cavity Nd–Yag 
lasers. The laser light was introduced into the wind tun-
nel by an optical probe that was located downstream of the 
test section. The laser light was shaped into a sheet using 
optics inside the probe. Upon exiting the probe, the edges 
of the laser light sheets were cut off to obtain a more clearly 

defined laser sheet and to achieve a light sheet thickness 
of approximately 5 mm. The synchronization of all com-
ponents and the acquisition of image data were performed 
using an external timing unit. The time separation between 
two consecutive pulses was set at 2.5 µs, corresponding to a 
freestream particle displacement of 15 voxels in the recon-
struction. Recording was performed by 5 LaVision Imager 
LX 2MP cameras (pixel resolution 1628 × 1236  pixel, 
pixel size 4.4 × 4.4 micron) arranged, as shown in Fig. 6, 
at a recording rate of at 5 Hz. Each camera was equipped 
with a 75 mm Tamron C-mount lens attached to a custom-
manufactured Scheimpflug mount. Their aperture was set 
at f/5.6, leading to a focal depth of about 9.6 mm (0.19 D). 
The digital resolution is 23.0 vox mm−1 (optical magnifica-
tion M = 0.10).

Images are pre-processed by subtracting the minimum 
intensity over the time-series and subtracting the minimum 
intensity within 31 pixel-sized kernels. The intensity is nor-
malized by the average intensity of the time-series. After 
volume self-calibration (Wieneke 2008), reconstructed 
objects are initialized by the multiplicative line-of-sight 
(MLOS) method (Atkinson and Soria 2009) and refined by 
eight iterations of the fast-MART algorithm in the LaVision 

Table 3  Error assessment of 
reconstructed pressure fields

Basis for pressure field reconstruction
(
Cp,REF − Cp

)

RMS

(
Cp,REF−Cp

)

RMS(
Cp,REF

)

RMS

Mean flow terms only 2.48 × 10−2 0.174
Mean flow + Reynolds-stresses terms 0.77 × 10−2 0.054
Mean flow + Reynolds-stresses terms (without adiabatic assumption) 0.74 × 10−2 0.052
Mean flow + Reynolds-stresses + density-gradient terms 0.86 × 10−2 0.060
Mean flow + Reynolds-stresses + density-gradient terms (without adi-

abatic assumption)
0.80 × 10−2 0.056

Fig. 5  a Mean pressure profile over afterbody located at the bottom edge of the PIV measurement domain and b for x/D = 0.6
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8.1 software. Gaussian smoothing is performed after each 
iteration, excluding the final iteration (Discetti et al. 2013). 
Each reconstructed voxel was required to be visible by least 
three cameras. Due to the use of five cameras with distinctly 
different viewing angles and a relatively thin volume, the 
signal-to-noise ratio of the resulting reconstruction exceeded 
ten, as inferred from its intensity distribution in z-direction 
(the ‘z-profile’).

Velocity data are obtained by direct cross-correlation of 
the reconstructed intensity fields using an iterative multi-
grid volume deformation (Scarano and Riethmuller 2000), 
symmetric block direct correlation (Discetti and Astarita 
2012), and Gaussian window weighting. Vector fields from 
intermediate correlation steps are enhanced for the next 
iteration by removing spurious vectors, identified by uni-
versal outlier detection (Westerweel and Scarano 2005), 
replacing them using linear interpolation, and by Gaussian 
smoothing of the velocity field. The final three iterations are 
performed with an interrogation volume size of 32 voxels at 
75% overlap. As for the intermediate steps, spurious vectors 
are removed after the final step by universal outlier detec-
tion and replaced using linear interpolation. The amount of 
removed vectors after the final correlation step is typically 
below 1%. Based on the ensemble size of 500 images, the 

uncertainty in mean velocity is (1/500)−1/2 = 4.5% of the 
velocity fluctuations, which translates to a maximum of 
about 1% of the freestream velocity. The uncertainty of the 
Reynolds-stresses is about (2/500)1/2 = 6.3% (of the Reyn-
olds-stresses) (Sciacchitano and Wieneke 2016).

5.2  Flow characterization

To characterise the flow field, Fig. 7 shows the mean stream-
wise velocity and turbulence intensity. The figures include 
the contours of the model. Note that a small flow region 
close to the rear surface of the model main body is obscured 
as a result of the camera viewing angles. Overall, the experi-
mental data show a similar flow organisation as the simu-
lation (compare Fig. 2), although mean flow reattachment 
occurs more upstream at x/D = 1.0. Elevated turbulence lev-
els near the top of the domain and close to the afterbody are 
attributed to measurement noise, since they do not appear in 
the simulation data and are accompanied by poorer illumi-
nation and seeding conditions than what is typical for other 
parts of the measurement domain.

By performing additional numerical simulations, it was 
checked that the longer reattachment length in the simula-
tion is not due to the confinement effect of the wind tunnel 

Fig. 6  Schematics of camera setup; a top view; and b back view; figures do not show proper relative dimensions

Fig. 7  Characterisation of the flow field statistics: a mean streamwise velocity and b turbulence intensity. Black line in figure a indicates zero 
streamwise velocity
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walls in the experiment. Rather, the difference in reattach-
ment length is attributed to the lower freestream turbulence 
levels in the simulation. The lower turbulence levels lead to 
reduced mixing between low-momentum fluid in the recir-
culation region and high-momentum fluid in the freestream 
for a given streamwise position and, therefore, later reat-
tachment. The presence of relatively high freestream turbu-
lence levels in the experimental facility was demonstrated by 
measurements of pressure fluctuations in a test section with-
out the main body of the model (not shown here for brevity).

5.3  Pressure results

The procedure to calculate the pressure fields from the PIV 
velocity data is similar as for the simulated experiment 
(Sect. 4.2), with the only difference that the pressure values 
applied as Dirichlet boundary condition at the top of the 
domain are determined from the relations for isentropic flow. 
The validity of using an isentropic flow model in the top of 
the domain was confirmed by van Gent et al. (2017a).

Figure 8 shows the pressure fields reconstructed using the 
different terms, as previously. Consistent with earlier obser-
vations, there is a relatively large difference between using 
mean flow terms only (top figure) and using both mean flow 
and Reynolds-stresses terms (middle figure). Additional con-
sideration of the density-gradient terms (bottom figure) has 
a marginal impact (bottom figure). Quantitatively, the r.m.s. 
difference due to the addition of the Reynolds-stresses terms 
is 19% with respect to the r.m.s. of the mean flow term-only 
solution. Additional inclusion of density-gradient terms has 
an effect of only about 1%.

To validate the reconstructed pressure results, Fig. 9 com-
pares the PIV-based pressure distribution over the afterbody 
to transducer reference measurements. To obtain reference 
measurements at eight locations with four pressure trans-
ducers, the main body was translated with respect to the 
afterbody-support, such that the relative locations of the 
transducers shifted. PIV-based pressure profiles have been 
obtained at two vector spacing distance from the lower 
boundary of the measurement domain, since the data directly 
at the boundary were found to be noisy. The simulation data 
from the numerical assessment are included for compari-
son. The horizontal axis has been scaled by the reattachment 
length to account for the difference in reattachment length 
between the experiment and the simulation (1.0 vs. 1.2 D, 
respectively; see Sect. 5.2 for discussion).

The simulation data and the transducer measurements 
show excellent agreement. The PIV-based pressure profile 
calculated with Reynolds-stresses terms shows a good agree-
ment with both the simulation data and the transducer meas-
urements. The typical deviation is smaller than ΔCp < 0.02. 
Comparison of the different reconstructed profiles again 
shows the necessity of including the Reynolds-stresses terms 

and the negligible impact of accounting for density-gradient 
terms. Using the simulation data, it could be concluded that 
deviations between the PIV-based pressure profile and the 
other profiles can, to a large extent, be attributed to the dis-
tance from the afterbody at which the PIV-based pressure 
profile was obtained. This distance is the direct result of the 
challenge to obtain reliable PIV measurements close to the 
model due to laser light reflections. Although this was not 
a limiting factor here, in other experiments, the density of 
seeding particles near surfaces may be relatively low, posing 
an additional challenge.

The comparison of the transducer measurements and PIV-
based pressure profile in Fig. 9 is sensitive to the value of 
the freestream velocity used in the PIV-based reconstruc-
tion. This is because the normalisation of the transducer 

Fig. 8  Mean pressure field reconstructed a using mean flow terms, b 
using mean flow and Reynolds-stresses terms, and c using mean flow, 
Reynolds-stresses and density-gradient terms
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measurements only requires the freestream pressure (p∞) 
and the freestream Mach number (M∞), whereas the PIV-
based pressure level is sensitive to the freestream Mach 
number (M∞), pressure (p∞), and velocity (U∞). In the pre-
sent study, the value of the static freestream pressure (p∞) 
was obtained by static pressure measurements through a 
pressure tap in the wall of the test section. The freestream 
Mach number (M∞) and the freestream velocity (U∞) were 
then calculated via the isentropic flow relations, with the 
total temperature (Tt) and the total pressure (pt) measured 
in the settling chamber as additional inputs. In short, the 
freestream parameters were calculated from direct measure-
ments of the total temperature (Tt) and the total pressure (pt) 
and the freestream pressure (p∞). The above underlines the 
importance of good control and knowledge of the experi-
mental conditions.

6  Conclusions

The computation of (mean) pressure fields from PIV data 
through the application of the momentum equation requires 
additional flow governing relations to be invoked in the case 
of compressible flow, to account for the variable density. 
A convenient solution consists of combining the gas law 
and the adiabatic flow assumption (as a specific form of 
the energy equation), together with the momentum equa-
tion with the viscous terms removed (van Oudheusden et al. 
2007; Souverein et al. 2007; van Oudheusden 2008). In an 
earlier publication (van Oudheusden 2008), a Reynolds-aver-
aging formulation for unsteady flow was developed, based 
on the assumption that density fluctuations can be neglected. 

The present communication has addressed the accuracy of 
this assumption, by means of an evaluation of the relevance 
of the terms that are discarded. The assessment methodology 
involves a theoretical order-of-magnitude analysis, comple-
mented with a quantitative assessment based on a simulated 
and a real PIV experiment of a transonic afterbody flow.

The assessments show that it is sufficient to account for 
spatial variations in the mean flow and the Reynolds-stresses 
and that temporal and spatial density variations (fluctuations 
and gradients) are of secondary importance and comparable 
order-of-magnitude. This has two interesting consequences 
in view of the practical implementation of the procedure of 
experimentally obtaining mean pressure from velocity sta-
tistics in compressible flows. First, the original formulation 
of the problem can be simplified to:

Second, since the density-gradient term (which can be 
calculated but has been omitted) has been found to be of 
comparable order-of-magnitude as the terms related to the 
density fluctuations (which cannot be determined from the 
PIV data), comparing the results computed with and with-
out density-gradient term can provide an indication of the 
error introduced by not accounting for the density fluctua-
tions. This comparison permits the experimental procedure 
to validate the approximation of not accounting for density 
fluctuations without requiring to have access to “exact” ref-
erence pressure data.
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