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a b s t r a c t

Meta-elliptical copulas are often proposed to model dependence between the compo-
nents of a random vector. They are specified by a correlation matrix and a map g ,
called density generator. While the latter correlation matrix can easily be estimated from
pseudo-samples of observations, the density generator is harder to estimate, especially
when it does not belong to a parametric family. We give sufficient conditions to non-
parametrically identify this generator. Several nonparametric estimators of g are then
proposed, by M-estimation, simulation-based inference, or by an iterative procedure
available in the R package ElliptCopulas. Some simulations illustrate the relevance
of the latter method.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Elliptically contoured distributions are usual semi-parametric extensions of multivariate Gaussian or Student dis-
ributions. They correspond to continuous distributions on Rd whose isodensity curves (with respect to the Lebesgue
easure) are ellipsoids: see, e.g., [3,10,17,22]. To be specific, let X be a random vector in Rd whose elliptical distribution

is parameterized by a vector µ ∈ Rd, a positive definite matrix Ω = [Ωi,j]1≤i,j≤d and a measurable function g : R+ →
R+ ∪ {+∞}. Its density with respect to the Lebesgue measure in Rd is

fX(x) = |Ω |−1/2g
(
(x− µ)⊤Ω−1 (x− µ)

)
, x ∈ Rd. (1)

This distribution is denoted Ed(µ,Ω, g) and its cumulative distribution function by Hg,Ω ,d. To specify the law of the
random vector X, we will write X ∼ Ed(µ,Ω, g). The map g is called ‘‘density generator’’, or simply ‘‘generator’’. By
integration of (1), a density generator of an elliptical vector satisfies the constraint

sd

∫
∞

0
rd−1g(r2) dr = sd

∫
∞

0
td/2−1g(t) dt/2 = 1, (2)

where sd := 2πd/2/Γ (d/2) is the surface area of the unit ball in Rd, d ≥ 2 (s1 = 2). Conversely, any nonnegative function
g that satisfies (2) can be used as the density generator of an elliptical distribution. For example, the density generator
of a Gaussian distribution is gGauss(u) := exp(−u/2)/(2π )d/2.
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Remark 1. It is possible to define elliptical distributions with singular matrices Ω : see [3]. In such cases, λ⊤X = 0 a.s.
or some vector λ in Rd, and the law of X is supported on an affine subspace of Rd. Such ‘‘degenerate’’ cases will not be
onsidered in this paper.

A d-dimensional copula C is said meta-elliptical (or simply ‘‘elliptical’’) if there exists an elliptical distribution in
d whose copula is C . Due to the invariance of copulas by location-scale transforms, an elliptical copula depends on
generator and a correlation matrix only. Indeed, for any X ∼ Ed(0,Ω, g), set Y := (X1/

√
Ω1,1, . . . , Xd/

√
Ωd,d)⊤. Then,

Y ∼ Ed(0,Σ , g) for a correlation matrix Σ := [Ωi,j/(Ωi,iΩj,j)1/2]. Obviously, the meta-elliptical copulas of X and Y are the
same. Thus, for any correlation matrix Σ , denote by MEd(Σ , g) the (unique) meta-elliptical copula that corresponds to
the elliptical distribution Ed(0,Σ , g). More generally, this copula corresponds to the elliptical distributions Ed(µ,Ω, g)
for any µ,Ω , such that Σ is the correlation matrix associated to Ω .

A trans-elliptical distribution [29,30] is a distribution whose copula is meta-elliptical. Trans-elliptical distributions [9]
extend elliptical distributions, by allowing the associated margins to be arbitrarily specified. For any correlation matrix Σ ,
we will denote by T Ed(Σ , g, F1, . . . , Fd) the trans-elliptical distribution whose copula is MEd(Σ , g) and marginal cdfs’
are F1, . . . , Fd.

The probabilistic properties of meta-elliptical copulas and their statistical analysis have been studied in several papers
in the literature: their conditional distributions and dependence measures [9], the estimation of the correlation matrix
Σ [42], stochastic ordering [1], sampling methods [41], their tail dependence function [23–25], their use semi-parametric
regressions [43] or some goodness-of-fit tests [20,21], their relationships with partial and conditional correlations [26],
etc., are notable contributions. Thanks to Sklar’s theorem, meta-elliptical copulas can be used as key components of many
flexible multivariate models, far beyond elliptically-distributed random vectors. Moreover, the literature has considered
parametric families of generators that include the popular Gaussian and/or Student copulas as particular cases, with
practical applications in hydrology [13,37], risk management [6,12], econometrics [35], biology, etc.

To the best of our knowledge, all these papers assume the generator of a meta-elliptical copula is known, possibly
up to finite dimensional parameter. Thus, the problem of estimating g itself is bypassed. For instance, [13] proposed
a graphical tool to select a ‘‘well-suited’’ generator among a finite set of potential generators. Approximations of meta-
elliptical copulas are proposed in [38] through projection pursuit techniques but the consistency of the proposed algorithm
seems to occur only under very restrictive conditions. Actually, a general nonparametric estimation of the generator g is
problematic. As noticed in Genest et al. [13]: ‘‘The estimation of g is more complex, considering that it is a functional
parameter. Indeed, a rigorous approach to this problem has yet to be developed. Financial applications to date have
simply treated g as fixed; however, several possible choices of g have often been considered to assess the robustness
of the conclusions derived from the model’’. Therefore, until now, no nonparametric consistent estimator of g seems to
be available in the literature. This should not be surprising. Indeed, a preliminary point would be to state the identifiability
of g from the knowledge of the underlying copula. This result is far from obvious and is one of the main contributions of
our work.

Let us explain why this is the case. As recalled in the supplementary material, all margins of a distribution Ed(0,Σ , g)
have the same density fg , where, for every t ∈ R,

fg (t) =
π (d−1)/2

Γ ((d− 1)/2)

∫
+∞

0
g(t2 + s)s(d−3)/2 ds. (3)

Note that fg is even. For notational convenience, we do not write the dependency of fg on the dimension d. Set its marginal
dfs’ Fg (x) =

∫ x
−∞

fg (t) dt for every real number x, and its quantile function Qg (u) = inf{x; Fg (x) ≥ u}, u ∈ [0, 1]. By Sklar’s
heorem, our meta-elliptical distribution C ∼MEd(Σ , g) is given by

C(u) = Hg,Σ ,d
(
Qg (u1), . . . ,Qg (ud)

)
= |Σ |−1/2

∫ Qg (u1)

−∞

· · ·

∫ Qg (ud)

−∞

g
(
x⊤Σ−1x

)
dx, (4)

or every u ∈ (0, 1)d. Hence, the associated meta-elliptical copula density with respect to the Lebesgue measure exists
nd may be defined as

c(u) :=
g
(
Q⃗g (u)Σ−1Q⃗g (u)⊤

)
|Σ |1/2

∏d
k=1 fg

(
Qg (uk)

) , where Q⃗g (u) :=
[
Qg (u1), . . . ,Qg (ud)

]
, (5)

for every u ∈ [0, 1]d. The latter density and cumulative distribution function will be denoted by cg and Cg respectively,
when we want to stress its dependence with respect to g .

Concerning the inference of meta-elliptical copulas, the usual estimator of the matrixΣ has been known for a long time
and is based on empirical Kendall’s tau (see below). When one observes i.i.d. realizations of elliptically-distributed random
vectors, several estimators of the generator g have been proposed in the literature (see our supplementary material). This
paper is related to the same purpose, but for trans-elliptical distributions, or, equivalently, for meta-elliptical copulas. In
such a case, the inference of g is more difficult than for elliptical laws because copula densities depend on g through a
highly nonlinear and complex relationship. Moreover, it is not known whether the mapping g ↦→ c is one-to-one. To
g
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the best of our knowledge, this problem has never been tackled in the literature. Authors only rely on ad-hoc chosen
generators, or on parametric families of generators.

In Section 2, we give sufficient conditions for the identifiability of the generator of a meta-elliptical copula. Estimation
rocedures of g are proposed in Section 3. They allow the nonparametric estimation of an assumed trans-elliptical

distribution, because Σ and its margins are easily estimated beside. Section 3.1 proposes a penalized M-estimation of g ,
when a simulation-based estimator is given in Section 3.2. Section 3.3 states a numerical iterative procedure to evaluate
g . It will be called MECIP, as ‘‘Meta-Elliptical Copula Iterative Procedure’’. Its performances are evaluated in Section 4 and
it is implemented in the R package ElliptCopulas [5].

2. Identifiability of meta-elliptical copulas

Consider a meta-elliptical copula C = MEd(Σ , g) where Σ is a correlation matrix and g satisfies the usual
normalization constraint (2). The question is to know whether the latter parameterization is unique. Strictly speaking,
this is the same question as for trans-elliptical distributions when their margins are known.

For any meta- or trans-elliptical distribution, the correlation matrix Σ is identifiable. Indeed, it is well-known there
xists a nice relationship between its components and the underlying Kendall’s tau: Σk,l = sin(πτk,l/2), k ̸= l, where
τk,l is the Kendall’s tau between Xk and Xl. See [42] and the references therein, for instance. Since every τk,l is uniquely
defined by the underlying copula of X, this is still the case for Σ too.

Proposition 1. If U ∼MEd(Σ , g) and U ∼MEd(Σ̃ , g̃) where Σ and Σ̃ are two correlation matrices, then Σ = Σ̃ .

Note that it is possible to have g ̸= g̃ due to the non-uniqueness of meta-elliptical copula generators (see Proposition 2
below). If X is a trans-elliptical random vector, the inference of the matrix Σ can be done independently of the margins.
The estimated matrix Σ̂ := [Σ̂k,l] is given by Σ̂k,l := sin(πτ̂k,l/2), k ̸= l, and Σ̂k,k = 1, introducing empirical Kendall’s tau

τ̂k,l :=
2

n(n− 1)

∑
1≤i<j≤n

sign(Xi,k − Xj,k)× sign(Xi,l − Xi,l), k ̸= l.

Since it is not guaranteed that Σ̂ is a correlation matrix, this can be imposed by projection techniques ([34, Section
8.7.2.1], e.g.). Hereafter, we require that Σ̂ is invertible.

Having tackled the identifiability and the estimation problem of Σ , the problem is reduced to the following one: let g
and ḡ be two density generators of meta-elliptical copulas on [0, 1]d such that cg = cḡ , with the previous notations. Does
it imply that g = ḡ almost everywhere?

Remark 2. There is a one-to-one mapping between generators g of meta-elliptical copulas and the so-called univariate
densities fg , as given in (3), once the underlying copula density c is known. Indeed, since Σ−1 is definite positive, its
diagonal elements are positive. Then, invoke (5) with Q⃗g (u) :=

[
x, 0, . . . , 0

]
for some arbitrary x ∈ R. Since fg is even,

Fg (0) = 1/2 and fg (0) ̸= 0 by (3). This yields g(γ x2) = |Σ |1/2fg (0)d−1fg (x)c
(
Fg (x), 1/2, . . . , 1/2

)
for every x and some

known positive constant γ . This means the map g ↦→ fg is invertible, restricting ourselves to meta-elliptical copula
generators. In other words, since copula densities are nonparametrically identifiable, the identifiability problem of g or
of fg are the same. But, since fg can be (nonparametrically) identified only in the case of elliptical distributions, this does
not prove the identifiability of g for general meta-elliptical/trans-elliptical distributions.

Recall that elliptical distributions Ed(µ,Ω, g) are not identifiable in general without any identifiability constraint (see
Proposition 1 in the supplementary material). Therefore, most authors impose a condition such as Cov(X) = Ω (when
X has finite second moments) or Tr(Ω ) = 1 (in the general case). To deal with meta-elliptical copulas, we are facing
similar problems. Indeed, such distributions are never identifiable without identifiability constraints, as proven in the
next proposition.

Proposition 2. Let Σ be a positive definite correlation matrix and g be a density generator of a meta-elliptical copula on
[0, 1]d. Then, for any a > 0, MEd(Σ , g) =MEd(Σ , ga) by setting ga(t) := ad/2g(a× t).

Proof of Proposition 2. By (3), we easily get fga (t) =
√
afg (
√
at) for every t . Deduce Fga (x) = Fg (

√
ax) and Qga (u) =

Qg (u)/
√
a for every t and u. Then, applying (5), we check that the copula densities associated to g and ga respectively are

he same. □

Therefore, for a given meta-elliptical copula, its generator g has to satisfy at least another constraint in addition to (2),
o be uniquely defined. We will prove that the generator of any elliptical copula is identifiable under some regularity
onditions. This is one of the main contributions of our work. Before, we need our density generators to be sufficiently
egular so that the associated univariate densities fg are differentiable. This is guaranteed by the next assumption.

ondition 1. Set ag := sup{t | t > 0, g(t2) > 0} ∈ R̄+. The map t ↦→ g(t2) from R to R+ is strictly positive and
ifferentiable on (−a , a ). Moreover, the map t ↦→

∫
+∞ g(t2 + r2)rd−2 dr is finite and differentiable on R.
g g 0

3
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As a consequence, {t | g(t) > 0} (resp. {t | fg (t) > 0}) is equal to the interval (−a2g , a
2
g ) (resp. (−ag , ag )), possibly

ncluding the boundaries. Thus, we do not allow generators whose supports exhibit ‘‘holes’’, such as sums of indicator
unctions that are related to disjoint subsets. The forbidden models correspond to meta-elliptical copulas whose densities
re zero in some ‘‘cavities’’ that look like ‘‘distorted rings’’ (when plotted on [0, 1]d). Such features can easily be identified
y plotting nonparametric estimates of cg as a preliminary stage. They are also unlikely to happen in practical applications.
Denote by G the set of density generators g that satisfy Condition 1, in addition to (2). They will be called ‘‘regular

ensity generators’’. Moreover, denote by ci,j the map from [0, 1]2 to R that is equal to the copula density c , when all its
rguments are equal to 1/2, except the ith and the jth.

roposition 3. Consider a meta-elliptical random vector U ∼MEd(Σ , g), where the correlation matrix Σ is not the identity
atrix Id. Let i and j be two different indices in {1, . . . , d} for which the (i, j)-component of Σ−1 is not zero. Assume that ci,j
as finite first-order partial derivatives on (0, 1)2. Moreover, the maps u ↦→ ∂k ln ci,j(u, 1/2), k ∈ {1, 2}, are locally Lipschitz

on (0, 1). Consider two couples (Σ k, gk), gk ∈ G, k ∈ {1, 2}, that induce the same law of U and that both satisfy

b :=
π (d−1)/2

Γ ((d− 1)/2)

∫
+∞

0
gk(s)s(d−3)/2 ds, (6)

for a given positive real number b. Then these couples are essentially unique: Σ 1 = Σ 2; the supports of g1 and g2 are the same
interval (except possibly at its boundaries), and g1 = g2 on the interior of their common support.

Therefore, b can be arbitrarily chosen. For any generator g , it is always possible to find a version g̃ such that
MEd(Σ , g) =MEd(Σ , g̃) for all matricesΣ , and such that b(g̃) = 1. An explicit procedure to build g̃ is given in Algorithm
1. Note that (6) means fg1 (0) = fg2 (0) = b. By (3), fg1 = fg2 and Fg1 = Fg2 everywhere, implying Cg1 = Cg2 everywhere
by (4). Condition 1 implies g(0) > 0, that is equivalent to c(1/2, 1/2, . . . , 1/2) > 0 (see (13) in the proof). The latter
condition seems to be weak, particularly under a practical perspective: copulas that have no mass at the center of their
support can be considered as ‘‘pathological’’.

Therefore, for a given elliptical copula and if Σ ̸= Id, there ‘‘most often’’ exists a unique regular density generator g for
which the constraints (6) and sd

∫
∞

0 td/2−1g(t) dt/2 = 1 are both satisfied. In other words, two moment-type conditions
are sufficient to uniquely identify the generator of an elliptical copula ‘‘most of the time’’. Proposition 3 shows that, when
d > 2, the generator of a d-dimensional elliptical copula is uniquely defined by these two moment conditions in addition
to the knowledge of a single map (u, v) ↦→ ci,j

(
u, v

)
, i and j being two indices in {1, . . . , d} for which the (i, j)-component

of Σ−1 is not zero. In other words, it is not necessary to know the whole copula density c on [0, 1]d to recover the density
generator of an elliptical copula. Only a single bivariate cross-section is sufficient.

Example 1. Consider the particular case of meta-elliptical copulas whose generator is given by g(t) = P(t) exp(−λtβ )
for some positive constants λ, β and some polynomial P such that P(0) > 0 and P(t) ≥ 0 for every t ≥ 0. They are
linear combinations of the generators associated to the family of symmetric Kotz-type distributions (see [9], Example
2.1), including Gaussian copulas as particular cases. They satisfy Condition 1 and then Proposition 3 applies to them.

Example 2. When a meta-elliptical copula generator is g(t) = Km,N
(
1 + t/m

)−N for some positive constants Km,N ,m
and N > 1, this yields the copulas associated to the family of symmetric bivariate Pearson type VII distributions (see [9],
Example 2.2), including Student distributions when N = m/2+ 1. Check that Condition 1 is fulfilled when N > 1+ d/2.

Proof of Proposition 3. First consider the bivariate case d = 2. Denote by ρ ̸= 0 the extra-diagonal component of Σ .
With the same notations as above, the copula density c of U with respect to the Lebesgue measure satisfies

c
(
Fg (x), Fg (y)

)
fg (x)fg (y) =

g
(
(x2 + y2 − 2ρxy)/(1− ρ2)

)√
1− ρ2

, (7)

for almost every (x, y) ∈ R2, by Sklar’s theorem. Here, we clearly see that the maps g ↦→ Fg and g ↦→ fg are one-to-one
for a given copula density c: setting x = ρy, Eq. (7) yields

g
(
y2
)
=

√
1− ρ2c

(
Fg (ρy), Fg (y)

)
fg (ρy)fg (y), (8)

for every y ∈ R. Therefore, the knowledge of fg (or Fg , equivalently) provides a single generator g that induces the given
opula c. Now, it is sufficient to prove the identifiability of fg . By Condition 1, (−ag , ag ) is the support of fg (possibly
ncluding the boundaries) and fg (0) = b is positive. Setting y = 0 in (7), we get√

1− ρ2c
(
Fg (x), 1/2

)
fg (x)b = g

(
x2/(1− ρ2)

)
,

for every x ∈ R. Since g is non zero and continuous at zero, there exists an open neighborhood of zero V0 for which(
Fg (x), 1/2

)
> 0 when x ∈ V0.

We will restrict ourselves to the couples (x, y) ∈ R2 such that the non-negative number {x2 + y2 − 2ρxy}/(1 − ρ2)
elongs to [0, a2g ). Denote by X (g) the set of such couples. Note that X (g) contains an open neighborhood of (0, 0) and
hat f (x)f (y) > 0 for such couples, due to (7).
g g

4
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Condition 1 means that fg is differentiable on R. Since it is even, f ′(0) = 0. By differentiating (7) with respect to x, we
get

∂1c
(
Fg (x), Fg (y)

)
f 2g (x)fg (y)+ c

(
Fg (x), Fg (y)

)
f ′g (x)fg (y) = g ′

(x2 + y2 − 2ρxy
1− ρ2

) 2(x− ρy)
(1− ρ2)3/2

, (9)

or any (x, y) ∈ X (g). Set y = x/ρ, canceling the right-hand side of (9). This yields

∂1 ln c
(
Fg (x), Fg (x/ρ)

)
f 2g (x)+ f ′g (x) = 0,

for every x ∈ (−ag , ag ). As a consequence, f ′g is continuous on the latter interval.
By independently differentiating (7) with respect to y and comparing with (9), we obtain

(y− ρx)
{
∂1c
(
Fg (x), Fg (y)

)
f 2g (x)fg (y)+ c

(
Fg (x), Fg (y)

)
f ′g (x)fg (y)

}
= (x− ρy)

{
∂2c
(
Fg (x), Fg (y)

)
fg (x)f 2g (y)+ c

(
Fg (x), Fg (y)

)
fg (x)f ′g (y)

}
, (10)

or every (x, y) ∈ X (g). Consider the particular value y = 0, for which fg (y) = b > 0 and f ′g (y) = 0. By symmetry,
g (x) = 1− Fg (−x) for every real number x and Fg (0) = 1/2. Then, (10) can be rewritten as follows:

ρ
{
∂1 ln c

(
Fg (x), 1/2

)
f 2g (x)+ f ′g (x)

}
= −∂2 ln c

(
Fg (x), 1/2

)
fg (x)b, (11)

or every x in a sufficiently small neighborhood of zero such that c(Fg (x), 1/2) > 0 (such as V0 above, for instance). Thus,
we have obtained an ordinary differential equation, whose solution z := Fg would be a function of x when x belongs to a
eighborhood of zero. The latter differential equation can be rewritten as

z ′′ + ∂1 ln c
(
z, 1/2

)
(z ′)2 + ∂2 ln c

(
z, 1/2

) z ′b
ρ
= 0. (12)

etting the bivariate map z⃗ = [z, z ′], we are facing the usual Cauchy problem: find z⃗, a function of x, such that dz⃗ = H(z⃗) dx
and that satisfies z⃗(0) = [1/2, b]. Here, the latter map H : [0, 1] × R ↦→ R2 is

H(z1, z2) :=
[
z2;−∂1 ln c

(
z1, 1/2

)
z22 − ∂2 ln c

(
z1, 1/2

) z2b
ρ

]
.

y assumption, this map H is Lipschitz on any subset [α, β]×[b−ϵ, b+ϵ], when 0 < α < β < 1 and ϵ > 0. In particular,
this is the case when α < 1/2 < β . By the Cauchy–Lipschitz Theorem, we deduce there exists a unique solution z⃗ in an
open neighborhood of x = 0. Note that this solution satisfies (6) by construction.

Therefore, consider a (global) solution z⃗ = [Fg , fg ] of (12) on some maximum interval Sg on the real line that
contains zero. We can impose the latter solution is associated to a regular generator that satisfies (6). Now, assume
there are two different regular generators g and ḡ that induce the same copula. Set z = [Fg , fg ], z̄ = [Fḡ , fḡ ] and
A := {t ∈ Sg ∩ Sḡ ; z(t) = z̄(t)}. We have proved that A contains an open ball around zero. Define t∗ := sup{t; t ∈ A} and
assume that t∗ is finite. Assume t∗ < min(ag , aḡ ). By the continuity of the considered cdfs’ and densities (Condition 1),
z(t∗) = z̄(t∗) is a known value v∗. Then, we can apply again the Cauchy–Lipschitz Theorem to the differential equation (12),
with the condition z(t∗) = v∗. This yields a unique solution of (12) in an open neighborhood of t∗. As a consequence,
z(t∗ + ϵ) = z̄(t∗ + ϵ) for some ϵ > 0. This contradicts the definition of t∗. Assuming w.l.o.g. ag ≤ aḡ , this implies
t∗ ≥ ag . In other words, fg (resp. Fg ) and fḡ (resp. Fḡ ) coincide on (−ag , ag ), implying g = ḡ on the (−a2g , a

2
g ) (recall (8)).

To satisfy (2) with ḡ , this requires ãg = ãḡ , i.e., ag = aḡ . Thus, g = ḡ on the interior of their common support. This proves
the result when d = 2.

Second, for an arbitrary dimension d > 2, there exists a non-zero extra-diagonal element in Σ−1 by assumption.
W.l.o.g., assume it is corresponding to the couple of indices (1, 2). Let us fix the other arguments of the copula density
c at the value 1/2, i.e., we focus on the points (x, y, 0, . . . , 0) in Rd. This implies there exist two non zero real numbers
(θ, γ ) such that

c
(
Fg (x), Fg (y),

1
2
, . . . ,

1
2

)
=

g
(
γ x2 + γ y2 + 2θxy

)
|Σ |1/2fg (x)fg (y)bd−2

, (13)

or every (x, y) ∈ R2. By differentiation with respect to x and y respectively, we get an ordinary differential equation that
s strictly similar to (12), apart from different non zero constants. By exactly the same arguments as in the bivariate case,
e can prove there exists a unique global solution on the real line of this differential equation. As a consequence, g is
niquely defined by c (except at the boundaries of its support), proving the result. □

Unfortunately, the limiting case Σ = Id cannot be managed similarly by considering differential equations and some
nitial conditions at the particular point x = 0. This is due to the nullity of both sides of (11): differentiate (7) with respect
o y, set y = 0, and deduce that ∂2 ln c

(
Fg (x), 1/2

)
= 0 for every x in a neighborhood of zero. Nonetheless, we can provide

artial answers to this problem by imposing some conditions at +∞. This requires restricting ourselves to a smaller class
f generators. To this end, we introduce a measurable map ψ : R+ → R.
5
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Condition 2. The density generator g : R+ → R+ belongs to G, with ag = +∞. Moreover, for every x ∈ R, the map
↦→
(
g ′/g

)
(x2 + y2) has a finite limit ψ(x2), when y→+∞.

Denote by G̃ψ the set of density generators g that satisfy Condition 2, in addition to (2). Note that such g are assumed
to be strictly positive on R+. For a lot of reasonable generators, we can hope ψ(x) = 0. This is the case for all generators
that are sums of maps of the form P(x) exp(−λxβ ) for some polynomials P and some constants λ > 0 and β ∈ (0, 1).
When β = 1, we get a family of ‘‘Gaussian-type’’ generators, for which ψ(x) = −λ for every x. But Condition 2 is not
ulfilled for such generators when β > 1.

roposition 4. Consider a meta-elliptical random vector U ∼ MEd(Id, g). Assume that, for every u ∈ (0, 1), the map
v ↦→ ∂1 ln c(u, v) exists and has a finite limit χ (u) when v → 1, v < 1. Moreover, χ is locally Lipschitz on (0, 1). For a
given map ψ , consider two couples (Σ k, gk), gk ∈ G̃ψ , k ∈ {1, 2}, that induce the same law of U and that satisfy (6). Then these
couples are essentially unique: Σ 1 = Σ 2 and g1 = g2 on their common support R+.

Proof of Proposition 4. Let us assume first that d = 2. By definition, the copula density c satisfies

c
(
Fg (x), Fg (y)

)
fg (x)fg (y) = g(x2 + y2), (14)

for every (x, y) ∈ R2. Since the support of g is R+, the support of fg is the whole real line. Differentiating the latter equation
with respect to x and dividing the new one by both members of (14), we deduce

∂1 ln c
(
Fg (x), Fg (y)

)
fg (x)+

f ′g
fg
(x) = 2x

(g ′
g

)
(x2 + y2),

or every real numbers x and y. Now, let us make y tend to +∞. From Condition 2, we deduce, for every x ∈ R,

χ
(
Fg (x)

)
fg (x)+

f ′g
fg
(x) = 2xψ(x).

The latter equation is a second-order differential equation with respect to the unknown function Fg =: z, i.e.,

χ
(
z
)
z ′ +

z ′′

z ′
(x) = 2xψ(x), or z ′′ = 2xz ′ψ(x)− χ

(
z
)
(z ′)2.

As in the proof of Proposition 5, consider the initial conditions z(0) = 1/2 and z ′(0) = b. By a similar reasoning
(Cauchy–Lipschitz theorem), we prove the result when d = 2.

When d > 2, we consider the map (u, v) ↦→ c(u, v, 1/2, . . . , 1/2) that satisfies

c
(
Fg (x), Fg (y),

1
2
, . . . ,

1
2

)
fg (x)fg (y)bd−2 = g(x2 + y2),

for every (x, y) ∈ R2. The same reasoning as for the case d = 2 proves the result. □

It can be checked that the meta-elliptical copulas of Example 1 satisfy Condition 2 when β ≤ 1 and Proposition 4
applies to them. This is still the case for the copulas of Example 2, for any value of (m,N), N > 1+ d/2.

Finally, as shown in [1], Proposition 1.1, the identifiability of g may be obtained in the particular case of Gaussian
copulas. Let us extend the latter result in dimension d ≥ 2.

Proposition 5. Let U ∼MEd(Σ , g) and U ∼MEd(Id, gGauss) where Σ is a correlation matrix. Then Σ = Id and g = gGauss
a.s.

Proof of Proposition 5. The first part of the proposition is the result of the identifiability of the correlation matrixΣ . Since
U ∼MEd(Id, gGauss), check that U1, . . . ,Ud are mutually independent. Thus, Qg (U1), . . . ,Qg (Ud) are independent variables
and their joint law is an elliptical distribution Ed(0, Id, g). Lemma 5 in [22] implies that

(
Qg (U1), . . . ,Qg (Ud)

)
∼ N (0, Id),

or Ed(0, Id, gGauss) equivalently. Using Proposition 1 in the supplementary material, this yields g = gGauss. □

3. Inference of density generators of meta-elliptical copulas

In this section, we define three inference strategies to evaluate g , since we now know that such generators are
nonparametrically identifiable under some regularity conditions and two moment-type constraints.

Let X be a random vector whose distribution is trans-elliptical T Ed(Σ , g, F1, . . . , Fd) for a correlation matrix Σ . Let
(X1, . . . ,Xn) be an i.i.d. sample of realizations of X. As a particular case, its law could be elliptical Ed(0,Σ , g) when all its
margins Fk are equal to Fg . Moreover, if its margins are uniformly distributed on [0, 1], then the law of X is given by a
meta-elliptical copula MEd(Σ , g). We assume there exists a single generator g such that Condition (2) and Condition (6)
are fulfilled, for some given constant b > 0, i.e.,

sd

∫
+∞

td/2−1g(t) dt = 2, sd−1

∫
+∞

td/2−3/2g(t) dt = 2b. (15)

0 0

6
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As proven in Section 2, this is in particular the case when the conditions of Proposition 3 (when Σ ̸= Id) or Proposition 4
(when Σ = Id) are satisfied. Any candidate for the underlying density generator may be normalized to satisfy the two
latter conditions, for instance through a transform t ↦→ αg(βt) with two conveniently chosen positive constants α and β .
This leads to the ‘‘normalizing’’ Algorithm 1. In practical terms, the choice of b does not really matter. We simply advise
to set b = 1 by default, our choice hereafter.
Algorithm 1: Normalization of a meta-elliptical copula generator

Input: An estimate ĝ of the generator for a meta-elliptical copula of dimension d ≥ 2.
ompute I1 =

∫
+∞

0 td/2−1ĝ(t)dt and I2 =
∫
+∞

0 td/2−3/2ĝ(t)dt ;

et β =
(
b sd I1/(sd−1 I2)

)2 and α = 2βd/2/(sd I1) ;
alculate g̃ := {t ↦→ α × ĝ(β × t)} ;
utput: A modified version g̃ satisfying the normalization and identification constraints (Eq. (2) and (6)).

As usual, the marginal distributions Fj, j ∈ {1, . . . , d} of X ∼ T Ed(Σ , g, F1, . . . , Fd) will be consistently estimated
by their empirical counterparts F̂j: for every x ∈ R and j, F̂j(x) := n−1

∑n
i=1 1(Xi,j ≤ x), where Xi := (Xi,1, . . . , Xi,d). As

announced, the goal is now to propose nonparametric estimators of the generator g , assuming that g is identifiable. To
the best of our knowledge, this paper is the first to propose solutions to this problem in a well-suited rigorous theoretical
framework.

We will use the following notations:

• Uk := Fk(Xk) and Ûi,k := F̂k(Xi,k) for k ∈ {1, . . . , d}, i ∈ {1, . . . , n}. Set U := (U1, . . . ,Ud) and Ûi := (Ûi,1, . . . , Ûi,d),
i ∈ {1, . . . , n}.
• the sample of (unobservable) realizations of U is U := (U1, . . . ,Un); the sample of pseudo-observations Û is

Û := (Û1, . . . , Ûn).

Since X ∼ T E(Σ , g, F1, . . . , Fd), note that the law of U ∼ME(Σ , g) is the meta-elliptical copula C of X.

3.1. Penalized M-estimation

Without any particular parametric assumption, regular generators g are living in the infinite dimensional functional
space G. Its subset of generators that satisfy the two identifiability constraints (2) and (6) will be denoted by I. In practical
terms, we could approximate G by finite dimensional parametric families Gm = {gθ ; θ ∈ Θm}, where the dimension of
Θm is denoted by pm. Most of the time, pm → ∞ with m, and the family (Gm) is increasing: Gm ⊂ Gm+1, even if this
requirement is not mandatory. Moreover, it is usual that m = mn and mn tends to infinity with n, as in the ‘‘method of
sieves’’ for inference purpose (see the survey [4], e.g.). Nonetheless, we do not impose the latter constraint again. Ideally,
∪mGm is dense in G for a convenient norm (typically, in a Lr space). A less demanding requirement would be to assume
g ∈ ∪mGm, a condition that is sufficient for our purpose. Therefore, a general estimator of θ would be

θ̂n,m := arg min
θ∈Θm

Gn(θ, Û)+ pn(λn, θ ), (16)

for some empirical loss function Gn, some penalty pn(·, ·) and some tuning parameter λn.
Typically, the loss function is an average of the type

Gn
(
θ, (u1, . . . ,un)

)
=

1
n

n∑
i=1

ℓn(θ,ui),

for some map ℓn from Θn×Rd to R. For instance, for the penalized canonical maximum likelihood method, set Gn(θ, Û) =
−
∑n

i=1 ln cgθ (Ûi)/n. Many other examples of loss functions could be proposed, based on Lr -type distances between cdfs’,
densities or even characteristic functions.

Concerning the choice of Gm, an omnibus strategy could be to rely on Bernstein approximations: for any a > 0, define
he family of polynomials

Gm,a :=
{
g ∈ I : g(x) =

m∑
k=0

bk(a+ x)k(a− x)m−k 1(x ∈ [0, a]), bk ∈ R+ ∀k
}
.

Any continuous map g can be uniformly approximated on [0, a] by Bernstein polynomials that are members of Gm,a, for
m sufficiently large (see [27], e.g.). If g(t) → 0 when t tends to infinity, then, for every ϵ > 0, there exist a(ϵ) > 0, an
integer m(ϵ) and a map gϵ in Gm(ϵ),a(ϵ) such that ∥g − gϵ∥∞ < ϵ. If g is compactly supported, simply set a(ϵ) as the upper
bound of g ’s support. If g ∈ Lr , r > 0 and is continuous, then there exists a similar approximation in Lr . Therefore, the
set Gm in (16) may be chosen as Gm(ϵ),a(ϵ) for a given ϵ ≪ 1, obtained with prior knowledge about the true underlying
density generator.
7
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Alternatively, if g ∈ L2(R), introduce an orthonormal basis (hn)n≥0 of the latter Hilbert space, say the Hermite functions.
hen, g can be decomposed as g =

∑
k≥0 < g, hk > hk and Gm could be defined as

Gm :=
{
h+ = max(h, 0) : h(x) =

m∑
k=0

bkhk(x), bk ∈ R ∀k
}
.

ote that every latter map h+ is not differentiable at a finite number of points, the roots of h. Thus, the members of
Gm as defined above do not satisfy Condition 1. This can be seen as a theoretical drawback and this can be removed
by conveniently smoothing the functions of Gm. For instance, replace all latter maps h+ by a smoothed approximation
x ↦→ h+ ∗ φN (x), φN (t) := N exp(−πN2t2), and for some N ≫ 1 and any t .

Another alternative family of generators supported on R+ could be

Gm =

{
g ∈ I : g(x) =

m∑
ℓ=1

Q 2
ℓ (x) exp

(
−(x− µℓ)αℓ/σℓ

)
, for some polynomials Qℓ,

deg(Qℓ) ≤ qm, and constants (µℓ, αℓ, σℓ) ∈ R× R∗
+
× R+, ℓ ∈ {1, . . . ,m}

}
,

where (qm) denotes a sequence of integers that tends to infinity with m. The dimension pm of Gm (or Θm, similarly) is then
pm = m(qm+4). We do not know whether ∪mGm is dense in Lr for any r > 0 and well-chosen sequences (qm). Nonetheless,
we conjecture that most ‘‘well-behaved’’ density generators can be accurately approximated in some Lr spaces by some
elements of Gm, at least when m and qm are sufficiently large.

If we had observed true realizations of U, i.e., if U replaces Û in (16), then one could apply some well established theory
of penalized estimators: see Fan and Li [7], Fan and Peng [8] (asymptotic properties), Loh [31] (finite distance properties),
among others. When the loss Gn is the empirical likelihood and there is no penalty, θ̂n,m is called the Canonical Maximum
Likelihood estimator of θ0 [14,36], assuming the true density g = gθ0 belongs to Gm. Tsukahara [39,40] has developed the
corresponding theory in the wider framework of rank-based estimators. When the parameter dimension is fixed (pm is
a constant), the limiting law of θ̂n,m can be deduced as a consequence of the weak convergence of an empirical copula
process, here the empirical process associated to Û: see [2,11,15,16]. Nonetheless, to the best of our knowledge, the single
existing general result that is able to simultaneously manage pseudo-observations and penalizations is [32]. The latter
paper extends [31] to state finite distance boundaries for some norms of the difference between the estimated parameter
and the true one. In this work, we slightly extend their results to deal with (16), i.e., with a sequence of parameter spaces
(Θm). This yields the finite distance properties of θ̂n,m: see Appendix B in the supplementary material.

3.2. Simulation-based inference

The previous inference strategy is mainly of theoretical purpose and would impose difficult numerical challenges. In
particular, the log-likelihood criteria require the evaluation of copula densities through g , fg and Fg . Unfortunately, Fg is
a complex map that is not known analytically in general. Here, we propose a way of avoiding the numerical calculations
of Fg , Qg or fg , by using the fact that it is very easy to simulate elliptical random vectors.

To be specific, consider a trans-elliptical random vector X ∼ T Ed(Σ , g, F1, . . . , Fd). Its copula C is then meta-elliptical
MEd(Σ , g). By definition and with our notations, C must satisfy

C
(
Fg (x1), . . . , Fg (xd)

)
= Hg,Σ ,d(x1, . . . , xd),

for every x := (x1, . . . , xd)⊤. Note that all margins are the same because Σ is a correlation matrix. The goal is still to
estimate g , with a sufficient amount of flexibility. To fix the idea, assume that g belongs to ∪mGm, with the same notations
s in Section 3.1. Therefore, as in Section 3.1, the idea would be to approximate the true generator g by some map that
elongs to a parametric family Gm, for some ‘‘large’’ m.
First, let us estimate the copula C non-parametrically, for instance by the empirical copula Cn based on the sample

(Xi)i∈{1,...,n}.
Second, assume for the moment that (g,Σ ) is known. For any arbitrarily large integer N , let us draw a N sample

(Y1, . . . ,YN ) of independent realizations of Y ∼ Hg,Σ ,d. This is easy thanks to the polar decomposition of elliptical vectors:
Y law
= RA⊤V, where A⊤A = Σ , V is uniformly distributed on the unit ball in Rd, and R has a density that is a simple function

of g . All margins of Y have the same distributions Fg , and denote by F̂g an empirical counterpart: for every y ∈ R,

F̂g (y) :=
1
dN

N∑
l=1

d∑
k=1

1(Yk,l ≤ y).

oreover, denote by Ĥg,Σ the joint empirical cdf of Y, i.e., Ĥg,Σ (y) = N−1
∑N

l=1 1(Yl ≤ y). Then, we expect we
pproximately satisfy the relationship

C ◦ F⃗ (x) := C
(
F̂ (x ), . . . , F̂ (x )

)
≃ Ĥ (x , . . . , x ), x ∈ Rd.
n g n g 1 g d g,Σ 1 d

8
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Obviously, since we do not know g nor Σ , we cannot draw the latter sample (Yi)i∈{1,...,N} strictly speaking. Then,
e will replace Σ by a consistent estimator Σ̂ . Moreover, for any current parameter value θ , we can generate the N

sample (Yθ,1, . . . ,Yθ,N ), Yθ,l ∼ Ed(0, Σ̂ , gθ ). The associated empirical marginal and joint cdfs’ are denoted by F̂gθ and
Ĥgθ ,Σ̂

. Therefore, for a fixed m, an approximation of g will be given by gθ̂m , where

θ̂m := arg min
θ∈Θm

D
(
Cn ◦ F⃗gθ ; Ĥgθ ,Σ̂

)
,

for some discrepancy D between cdfs’ on Rd and some parameter set Θm in Rpm . Note that θ̂m implicitly depends on n
and N . For instance, consider

D
(
Cn ◦ F⃗gθ ; Ĥgθ ,Σ̂

)
:=

∫ {
Cn
(
F̂gθ (x1), . . . , F̂gθ (xd)

)
− Ĥgθ ,Σ̂

(x)
}2
w(x) dx,

for some weight functionw. To avoid the calculation of d-dimensional integrals, it is possible to choose some ‘‘chi-squared’’
type discrepancies instead, as

Dχ
(
Cn ◦ F⃗gθ ; Ĥgθ ,Σ̂

)
:=

L∑
l=1

⏐⏐⏐ ∫
Bl

dCn
(
F̂gθ (x1), . . . , F̂gθ (xd)

)
− Ĥgθ ,Σ̂

(dx)
⏐⏐⏐,

for some partition (B1, . . . , BL) of Rd. Alternatively, we could replace the measure w(x) dx with the empirical law of our
bservations, yielding

Demp
(
Cn ◦ F⃗gθ ; Ĥgθ ,Σ̂

)
:=

1
N

N∑
i=1

{
Cn
(
F̂gθ (X1,i), . . . , F̂gθ (Xd,i)

)
− Ĥgθ ,Σ̂

(Xi)
}2
,

and this modification avoids suffering from the curse of dimensionality. Unfortunately, whatever the chosen criterion,
stating the limiting law of θ̂m when N and n tend to infinity (or even the limiting law of gθ̂m − g when m, N and n tend
to infinity) seems to be a particularly complex task that lies beyond the scope of this paper.

3.3. An iterative algorithm: MECIP, or ‘‘Meta-Elliptical Copula Iterative Procedure’’

In this section, we propose a numerical recursive procedure called MECIP that allows the estimation of g .
The supplementary material refers to several estimation procedures of the density generator of an elliptical distribu-

tion. We select one of them, that will be called A. Formally, A is the operator that maps an i.i.d. dataset (Z1, . . . , Zn) ∈ Rd×n

generated from an elliptical distribution Ed(µ,Σ , g)⊗n to a map ĝ := A(Z1, . . . , Zn):

A : Rd×n
−→ F

(Z1, . . . , Zn) ↦→ ĝ, (17)

where F is the set of all possible density generators of elliptical distributions. Note that any g in F has to satisfy (2), but
not (6).

In our case, we do not have access to a dataset following an elliptical distribution. Assume that we observe a dataset
U1, . . . ,Un following a meta-elliptical copulaME(Σ , g). If we knew the true generator g , we could compute the univariate
quantile function Qg , and, as a consequence, Q⃗g (Ui) :=

(
Qg (Ui,1), . . . ,Qg (Ui,d)

)⊤
∼ Ed(0,Σ , g) for every i ∈ {1, . . . , n}.

Therefore, we could define an ‘‘oracle estimator’’ of g by

ĝoracle
:= A

(
Q⃗g (U1), . . . , Q⃗g (Un)

)
=: An(g). (18)

In practice, two issues arise that prevent us from using this oracle estimator. First, we do not have access to the true
distributions F1, . . . , Fd, but only to empirical cdfs F̂1, . . . , F̂d. As usual, it is possible to replace the ‘‘unobservable’’
realizations Ui,k = Fk(Xi,k) by pseudo-observations Ûi,k = F̂k(Xi,k) in Eq. (18). Second and more importantly, we need
Qg , i.e., g itself, to compute the oracle estimator ĝoracle. This looks like an impossible task.

To solve the problem, we propose an iterative algorithm as follows. We fix a first estimate ĝ (0) of g , so that we
can compute Ẑ(1)

i = Q⃗ĝ(0) (Ûi), for every i ∈ {1, . . . , n}. From this first guess, we can compute an estimator ĝ (1)
:=

A
(
Ẑ(1)
1 , . . . , Ẑ

(1)
n
)
. Note that this estimator should be normalized in order to satisfy the necessary condition that is related

to the identifiability of g . At this stage, we impose Condition (6), for a fixed constant b, and invoke Algorithm 1. Iteratively,
for any N ∈ N, we define Ẑ(N)

i = Q⃗ĝ(N−1) (Ûi) and ĝ (N)
:= A

(
Ẑ(N)
1 , . . . , Ẑ(N)

n
)
. This procedure MECIP is detailed in Algorithm 2

below. See Fig. 1 too.
To summarize, for a fixed sample size n, the latter recursive algorithm is classical in the domain of fixed points analysis:

we assume there exists a generator such that g∗n = An(g∗n ) and we approximate g∗n by a recursion ĝN+1
n = An

(
ĝN
n

)
. When

N →∞, we hope that ĝN
n ≃ g∗n . This is the case if An is a contraction (Banach Contraction Principle), but the latter property

is not guaranteed. Moreover, with a large n, we hope that g∗n tends to the true underlying generator g , because of the
consistency of the estimation procedure A . In other words, our algorithm is a mix between fixed point search procedures
n

9
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d

Fig. 1. Simplified flowchart of the iterative estimation procedure MECIP.

and classical nonparametric inference. The theoretical study of its convergence properties appears as particularly complex,
due to its multiple nonlinear stages.

Hereafter, A will be chosen as Liebscher’s estimation procedure [28] to evaluate the generator of an elliptical
istribution. It requires the introduction of the instrumental map ψ defined by ψ (x) := −a + (ad/2 + xd/2)2/d for any
a a

10
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x ≥ 0 and some constant a > 0. Since Liebscher’s method is non-parametric, we need a usual univariate kernel K (here,
the Gaussian kernel) and a bandwidth h = hn, hn → 0 when n tends to infinity. See the exact formula of Liebscher’s
estimator below, in Algorithm 2.

We will propose three ways of initializing the algorithm:

(i) the ‘‘Gaussian’’ initialization, where ĝ (0)
:= e−x, suitably normalized (with the notations of Algorithm 1, I1 = Γ (d/2)

and I2 = Γ (d/2− 1/2));
(ii) the ‘‘identity’’ initialization, in which ĝ (0)

:= A
(
(Ûi,j)1≤i≤n, 1≤j≤d

)
as if, in lines 8–9 of Algorithm 2, the quantile function

Qĝ(N−1) were replaced by the identity map;

(iii) the ‘‘A ∼ Φ−1’’ initialization, where ĝ (0)
:= A

((
Φ−1(Ûi,j)

)
1≤i≤n, 1≤j≤d

)
and Φ denotes the cdf of a Gaussian N (0, 1)

distribution.

olution (ii) may seem a brutal approximation and can be considered as an ‘‘uninformative prior’’. It can actually be
ell-suited, compared to (i), when the true generator is far from the Gaussian generator: see Fig. 3. The main motivation
f (iii) is to put U whose support is [0, 1] back on the whole real line R, through a usual numerical trick.
The implementation of the algorithm of MECIP is available in the R package ElliptCopulas [5].

Algorithm 2: Basic iteration-based procedure MECIP for the estimation of the elliptical copula density generator g
ith a given method A

Input: A dataset (X1, . . . ,Xn), n > 0.
Input: An estimation method A for elliptical distribution density generators.
for j← 1 to d do

Compute the empirical cdf F̂j and the pseudo-observations Ûi,j := F̂j(Xi,j) for all i ∈ {1, . . . , n};
nd
ompute an estimator of the correlation matrix Σ̂ of the elliptical copula using Kendall’s taus ;
nitialize N := 1. Initialize g to a value ĝ (0) ;
ormalize ĝ (0)

:= Algorithm 1(g̃ (0)) ;
epeat

Compute the univariate quantile function Qĝ(N−1) associated with the elliptical distribution Ed( , Id, ĝ (N−1));
For every i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, compute Ẑ (N)

i,j := Qĝ(N−1) (Ûi,j);
Update ĝ (N)

:= A(Ẑ(N)
1 , . . . , Ẑ(N)

n ; Σ̂ ), corresponding to the following step when A is Liebscher’s procedure with a
given a > 0;

begin
/* Liebscher’s procedure */

For i ∈ {1, . . . , n}, let Yi = ψa

(
Ẑ(N)
i
⊤Σ̂

−1
Ẑ(N)
i

)
;

Let g̃ (N)(t) = s−1d ψ ′a(t)t
−d/2+1(nh)−1

∑n
i=1

[
K
({
ψa(t)− Yi

}
/h
)
+ K

({
ψa(t)+ Yi

}
/h
)]

;

end
Normalize ĝ (N)

:= Algorithm 1(g̃ (N)) ;
Update N = N + 1 ;

until convergence of ĝ;
Output: A normalized estimator ĝ (∞) of g .

3.4. Adjustments of the iterative algorithm MECIP in the presence of missing values

Whenever a dataset contains missing values, the previous numerical procedure can be adapted to estimate the
orrelation matrix Σ and the generator of the underlying elliptical copula. We consider the simplest case of missing
t random observations. Note that many other missing patterns may exist, but a complete treatment of these cases is left
or future work.

When missing values arise, the previous Algorithm 2 will be adjusted as follows:

1. Each empirical cdf F̂j is estimated using all non-missing observations for the jth variable.
2. Pseudo-observations Ûi,j := F̂j(Xi,j) are defined as ‘‘NA’’ whenever Xi,j = NA (i.e., is missing).
3. Kendall’s taus are estimated using pairwise complete observations. In other words, for two variables 1 ≤ j1 ̸= j2 ≤ d,

the Kendall’s tau between Xj1 and Xj2 is estimated using the set of observations
{
i ∈ {1, . . . , n} : Xi,j1 ̸=

NA and X ̸= NA
}
.
i,j2

11
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If the correlation matrix is not positive semi-definite, it is projected on the (convex) set of positive semi-definite
matrices using the R function nearPD, which implements the method proposed in [18]. See alternative methods
in [19,33], among others.

4. The pseudo-observations Ẑ (N)
i,j := Qĝ(N−1) (Ûi,j) at iteration N are defined to be NA whenever Ûi,j = NA.

5. At each step of the main loop, for every i ∈ {1, . . . , n} such that some Ẑ (N)
i,j is NA, we complete the vector Ẑ(N)

i in
the following way: let miss(i) =

{
j ∈ {1, . . . , d} : Ẑ (N)

i,j = NA
}
be the set of the missing components for the ith

observation. The non-missing part of Ẑ(N)
i , denoted Ẑ(N)

i,−miss(i), is left unchanged. If we knew the true generator g
and the correlation matrix Σ , we would use the non-missing part Ẑ(N)

i,−miss(i) of the random vector Ẑ(N)
i to complete

the other entries by using their conditional law. Indeed, if a vector Z follows an elliptical distribution Ed(µ,Σ , g),
then, for any subset I ⊂ {1, . . . , d}, the law of ZI given (Z−I = z−I ) is still elliptical E |I|(µz−I ,Σ z−I , gz−I ). Some
explicit expressions for these three conditional parameters are given in [3, Corollary 5]. Therefore, an ‘‘oracle’’ way
of generating Ẑ(N)

i,miss(i) is to draw

Ẑ(N)
i,miss(i) ∼ E |miss(i)|

(
µẐ(N)

i,−miss(i)
,Σ Ẑ(N)

i,−miss(i)
, gẐ(N)

i,−miss(i)

)
,

neglecting the fact that Ẑ(N)
i follows only approximately an elliptical distribution (unless ĝ (N)

= g , which is rather
unlikely). However, Σ and g are unknown; then, we propose to replace Σ by its empirical counterpart and g by
its most recent estimate g̃ (N). Finally, we obtain the updated ‘‘feasible’’ generating formula

Ẑ(N)
i,miss(i) ∼ E |miss(i)|

(
µ̂Ẑ(N)

i,−miss(i)
, Σ̂ Ẑ(N)

i,−miss(i)
, ĝ (N)

Ẑ(N)
i,−miss(i)

)
, (19)

for some approximate conditional mean µ̂Ẑ(N)
i,−miss(i)

based on Σ̂ , some approximate conditional correlation matrix

Σ̂ Ẑ(N)
i,−miss(i)

based on Σ̂ and some approximate conditional generator based on g̃ (N) and on Σ̂ .

Algorithm 3: Improved version of the iteration-based procedure MECIP for the estimation of the elliptical copula
density generator g with a given method A

Input: A dataset (X1, . . . ,Xn), n > 0.
Input: An estimation method A for elliptical distribution density generators.
for j← 1 to d do

Compute the empirical cdf F̂j using available data for the j-th variable and the pseudo-observations Ûi,j := F̂j(Xi,j)
for all i ∈ {1, . . . , n};

end
Compute an estimator of the correlation matrix Σ̂ of the elliptical copula using Kendall’s taus estimated on pairwise
complete observations ;

Initialize N := 1. Initialize g to a value g̃ (0) ;
Normalize ĝ (0)

:= Algorithm 1(g̃ (0)) ;
repeat

Compute the univariate quantile function Qĝ(N−1) associated with the elliptical distribution Ed( , Id, ĝ (N−1));
For every i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, compute Ẑ (N)

i,j := Qĝ(N−1) (Ûi,j) ;
For everyi ∈ {1, . . . , n}: Zi contains missing values at entries miss(i), Simulate the missing part Z(N)

i,miss(i) of Z
(N)
i

using Eq. (19) Update ĝ (N)
:= A(Ẑ(N)

1 , . . . , Ẑ(N)
n ; Σ̂ ), corresponding to the following step when A is Liebscher’s

procedure with a given a > 0 ;
begin

/* Liebscher’s procedure */

For i ∈ {1, . . . , n}, let Yi = ψa

(
Ẑ(N)
i
⊤Σ̂

−1
Ẑ(N)
i

)
;

Let g̃ (N)(t) = s−1d ψ ′a(t)t
−d/2+1(nh)−1

∑n
i=1

[
K
({
ψa(t)− Yi

}
/h
)
+ K

({
ψa(t)+ Yi

}
/h
)]

;

end
Normalize ĝ (N)

:= Algorithm 1(g̃ (N)) ;
Update N = N + 1 ;

until convergence of ĝ;
Output: A normalized estimator ĝ (∞) of g .
12
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d
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Fig. 2. Estimated generators by the iterative method MECIP, with n = 1000, d = 2, ρ = 0.2, a = 1, h = 0.05 and starting point = ‘‘identity’’.

. Numerical results for the iteration-based method MECIP

.1. Simulation study in dimension 2

For this simulation study, fix the dimension d = 2 and the sample size n = 1000. The values of the estimated
enerators are calculated on a grid of the interval [0, 10] with the step size 0.005. The correlation matrix is chosen as

=

(
1 0.2
0.2 1

)
. We use uniform marginal distributions, but still estimate them nonparametrically using the empirical

istribution function as if they were unknown.
We consider the normalized versions of six possible generators: g(x) = 1/(1+ x2), g(x) = e−x, g(x) = e−x + bump(x),

(x) = e−x+e−x/3 cos2(x), g(x) = x/(1+x3), and g(x) = x2e−x
2
, where bump(x) = 1{x ∈ [1, 1+π ]}(x−1)(1+π−x) sin(x−1)

is a smooth function supported on [1, 1 + π ]. The estimated generators obtained with the iterative method (Algorithm
2 using Liebscher’s procedure) are plotted in Fig. 2. In general and after less than N = 10 iterations, our estimated
generators yield convenient approximations of the true underlying generators, even if g(0) = 0 (a case that was excluded
by Condition 1). Nonetheless, when g is highly non monotonic, as for ‘‘double-bump’’ generators, the iterative algorithm
is less performing and larger sample sizes are required. Note that, when d = 2, the parameter a has no influence on the
result, since for any x > 0, ψa(x) := −a+ (ad/2 + xd/2)2/d = x.

In Fig. 3, the mean integrated squared error MISE(ĝh) := E[∥ĝh− g∥22] of our iterative estimator is plotted as a function
of the bandwidth h, for different true generators g and initialization strategies. These MISE are computed using N equal
to ten and 100 replications of each experiment. As expected, a clear-cut optimal bandwidth can be empirically identified
for most generators.

Restricting ourselves to the case of the Gaussian generator, we then study the joint influence of the sample size n
and of the bandwidth h on the MISE of our estimators, using the ‘‘identity’’ initialization: see Fig. 4. We find the same
13
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Fig. 3. MISE of the estimates given by Algorithm 2 for n = 1000, different choices of the generator g , the bandwidth h and the initialization method.

ehaviors as for usual kernel-based estimators: empirically, the optimal bandwidths are ‘‘closely’’ linear functions of ln(n).
he computation time for the three initialization methods are compared in Fig. 6. They are mostly similar. The ‘‘Gaussian’’
nitialization is the fastest method as it is not data-dependent.

.2. Simulation study for higher dimensions

Here, we consider the same sample size n = 1000 as before, but the dimension d varies between 3 and 11. The
correlation matrix is chosen as Σi,j = 0.2 when i ̸= j. For the Gaussian generator, we then study the performance of our
algorithm as a function of the tuning parameters a and h. The results are displayed in Fig. 5. We observe that the MSE
ncreases with the dimension, even for the best choices of the tuning parameters a and h. When d ≥ 5, avoid choosing a
ess than one, while the influence of the bandwidth h seems to be less crucial.

Computation times increase only slowly with the dimension d: see Fig. 7. This is because the generator is a univariate
unction regardless the dimension of the random vector. Therefore, most steps in our algorithms are invariant with respect
o the dimension d, except the transformation of the sample Yi := ψa

(
Ẑ⊤i Σ̂ Ẑi

)
. The latter step costs at most (4d2+2d+3)n

elementary operations, a reasonable amount when d is moderate.

Remark 3. Actually, it is possible to bypass the problem of high dimensions d. Indeed, any subvector of an elliptical
istribution is itself elliptically distributed. As a consequence, if the copula of a random vector Y is elliptical with generator
d, then the copula of a subvector Y(m) of m components of Y is still an elliptical copula whose generator gm is given by Eq.

(A.2) in the supplementary material. Therefore, it is possible to estimate the generator of an elliptical copula by using only
a sample of m-dimensional subvectors. By a numerical inversion of Eq. (A.2), one would get a generator that corresponds
to the copula of the whole vector Y.
14
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i

Fig. 4. MISE of the estimate given by Algorithm 2 as a function of n, for the best bandwidth h = h∗(n), and h∗(n) as a function of n. Both plots are
n semi-log scale. The true generator is the Gaussian g(x) = e−x with the initialization ‘‘identity’’.

Fig. 5. MISE of the estimate given by Algorithm 2 as a function of a, h, for n = 1000, and different choice of the dimension d. The true generator
is the Gaussian g(x) = e−x with the initialization ‘‘identity’’.
15
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4

e

F

Fig. 6. Density plot of the computation time as a function of the starting point, for d = 2 and n = 1000.

.3. When Σ is non exchangeable and almost non invertible

We consider the same setting as in the previous section, and we aim for measuring the effect of the lack of
xchangeability in the matrix Σ on the estimation of g . For this, two different frameworks are considered.

(a) First framework: the dimension is d = 3, h = a = 0.2 and the correlation matrix is Σ (3)(ρ12) =

( 1 ρ12 0.2
ρ12 1 0.2
0.2 0.2 1

)
.

(b) Second framework: the dimension is d = 10, a = 1, h = 0.1 and the correlation matrix is

Σ (10)(ρ12) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ12 ρ12 0.2 · · · 0.2
ρ12 1 ρ12 0.2 · · · 0.2
ρ12 ρ12 1 0.2 · · · 0.2

0.2 0.2 0.2 1
. . .

...
...

...
...

. . .
. . . 0.2

0.2 0.2 0.2 · · · 0.2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Note that there exists a value ρ12 for which Σ (3)(ρ12) and Σ (10)(ρ12) are positive semi-definite if and only if ρ12 > ρ12.

or the first and the second frameworks, ρ12 ≈ −0.919 and ρ12 ≈ −0.432 respectively.
The MISE is computed for both frameworks as a function of ρ12 and is displayed respectively in Figs. 8 and 9. On these

figures, the MISE stays stable whenever ρ12 is not too close to the boundary value ρ12. When ρ12 is close to ρ12, the
estimator of the correlation matrix becomes unreliable, degrading the performance of the estimator ĝ . This deterioration
is stronger in the second framework where d = 10. Note that, as in the previous section, the performance for d = 10 is
always worse than for d = 3 even far away from the boundary.

4.4. Simulation study with missing values

In this case, we choose n = 1000, d = 3, and the same correlation matrix as before. Contrary to the previous simulation
experiments, we introduce some missing values in the dataset (represented by NA in the R environment). The missing
16
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v

Fig. 7. Density plot of the computation time as a function of the dimension, for the initialization method ‘‘identity’’ and n = 1000.

Fig. 8. MISE of the estimate given by Algorithm 2 as a function of ρ12 for d = 3 and n = 1000, where the correlation matrix is Σ (3)(ρ12).

alues are generated as follows: we fix a number Nmissing of observations that are affected by missing values; we randomly
draw a number Nmissing,1 of observations (uniformly between 0 and Nmissing ) for which a single component is missing; let
Nmissing,2 := Nmissing − Nmissing,1 be the number of observations for which two components are missing. Because d = 3,
considering the case of three missing components does not make sense because this would induce an empty vector
(which should rather induce a smaller sample size rather than a missing value issue if it were the case). We select Nmissing,1
(respectively Nmissing,2) observations at random, and replace the missing values by NA.

For the estimation procedure, we choose a = 0.08 and h = 0.2, the optimal choices according to Fig. 5. The
corresponding MISE are displayed in Fig. 10. They show that the MISE deteriorates as the number of missing values
increases, but this tendency is not very strong.
17
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Fig. 9. MISE of the estimate given by Algorithm 2 as a function of ρ12 for d = 10 and n = 1000, where the correlation matrix is Σ (10)(ρ12).

Fig. 10. MISE of the estimate given by Algorithm 2 as a function of the number of observations that contains missing values. The sample size is
n = 1000, the dimension is d = 3 and the true generator is the Gaussian g(x) = e−x with the initialization ‘‘identity’’.

5. Conclusion

We have stated some sufficient conditions to obtain the identifiability of the generator g of a meta-elliptical copula.
In many standard practical situations, they are satisfied, particularly when the corresponding correlation matrix Σ is not
the identity matrix. Some inference procedures have been discussed, in particular an iterative method called MECIP that
yields satisfying empirical results.

Among the avenues for further studies, a theoretically sound data-driven bandwidth selector would be welcome. The
theoretical properties of the iterative algorithm (consistency, rate of convergence) remain unknown, even if the procedure
seems to behave conveniently in our experiments. The proof of such results would be particularly challenging, due to the
highly nonlinear analytical features of the maps we use in our algorithm MECIP. Moreover, it would be nice to weaken
the conditions for the identifiability of g when Σ = Id (Proposition 4). Finally, we conjecture that our results apply even
when g(0) = 0, a situation that was excluded for the sake of clarity in the theoretical developments, but that seems to
be conveniently managed in our numerical experiments.
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Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2022.104962.
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