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Summary

The main goal of this report is to improve the traveltime of the CyberKnife treatment, used for
radiotherapy, without loss of plan quality. This is done by using optimization techniques, such
as Dijkstra’s Algorithm, as well as incorporating Hamiltonian paths and the Traveling Salesman
Problem. All calculations are done using Matlab, a numerical computing software.

With the above mentioned techniques, we created OPA, an Optimal Path Algorithm, that is
based on finding Hamiltonian paths, combined with the iterated process of interchanging nodes
with adjacent ones. With OPA, the traveltimes for 31 patients have been brought down by 35.9%
on average, without any significant loss of plan quality.
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Chapter 1

Introduction

1.1 Radiotherapy

In the history of medicine, different treatments for cancer have been developed, such as radio-
therapy, surgery and chemotherapy. However, nowadays more than 50% of the people diagnosed
with cancer, undergo a radiotherapy treatment [1]. During a radiotherapy treatment, the tumor
is treated locally witch ionizing radiation, which destroys the malignant cells, while sparing
the surrounding healthy tissue as much as possible [2]. Some other forms of radiotherapy in-
clude stereotactic radiosurgery (focusing high-power energy on a small area of the body) and
brachytherapy (placing a radiation source inside the tumor).

Whenever a patient has to undergo radiotherapy, a computed tomography scan (CT-scan) has
to be made of the patient, on which a treatment plan is designed. This plan tells which parts
should be irradiated and with what level [3]. After this, the treatment is delivered by a treatment
device, which will be further outlined in the next section.

1.2 The CyberKnife

The CyberKnife is a robotic radiosurgery system that was invented by Dr. John R. Adler, a Stan-
ford University professor and Peter and Russell Schonberg of Schonberg Research Corporation.
It is used for treating a variety of tumors, such as lung, prostate, and head-and-neck tumors.
For this project, we will focus on prostate cancer patients only. Since 2004, the Radiotherapy
department of the Erasmus Medical Center Rotterdam started using the CyberKnife, as seen in
Figure 1.1, for precise radiations.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: CyberKnife used at the Erasmus Medical Center Rotterdam

The treatment plan for a patient contains a selection of around 25 out of 110 nodes which is
found to be best fitting for the treatment of that patient. The nodes mentioned in the treatment
plan are the nodes from which radiation is delivered.

For the actual treatment of the patient, a virtual grid is placed around the patient. Since the
nodes emanated from treatment plans made for prostate cancer patients, the grid is shaped like
a semisphere, containing 110 candidate nodes, as seen in Figure 1.2.

Figure 1.2: Breedveld, S. (2013). CyberKnife search space. Towards automated treatment plan-
ning in radiotherapy. The blue rectangle represents the operating table.
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If for example a head-and-neck tumor had to be treated, the shape of the grid would resemble
something close to three-quarter of a sphere, since traveling underneath the head is also possible
with the CyberKnife.

The approximately 25 nodes used to radiate the patient are the so called mustpass nodes, while
the remaining ∼85 nodes can be used as traveling nodes for the CyberKnife to move from one
node to the other, the so called inbetween nodes. There are also 8 dummy nodes, which are used
for the sole purpose of serving as inbetween nodes. Radiation from these nodes is not possible.
Note that the inbetween nodes change for every patient, as each patient has a different set of
mustpass nodes.

Movement of the CyberKnife is restricted to grid lines between the nodes. This has to do with
safety reasons. The three-dimensional grid is placed around the patient so that the CyberKnife
moves safely alongside the patient without touching him or her. If the machine were not to move
around the grid lines, but simply around the fastest route from one node to another, which would
be a straight line in Euclidean space, the machine could injure the patient. Therefore it travels
around the patient by the pre-programmed lines. If the CyberKnife has to travel from node A to
adjacent node B, it could do so directly by a straight line. However, if there is not a direct path
from node A to B, the CyberKnife may first need to move to an adjacent node C. This process
is repeated until the node B can be directly reached.
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Chapter 2

Problem description

2.1 Research goals

Now that we have a decent understanding of the working of the CyberKnife, we can formulate
our general research question:

“How can we optimize the traveltime of the CyberKnife?"

Before we start thinking of any strategies to answer this question, there are still some important
restrictions of the CyberKnife which we will need to take into consideration:

• The CyberKnife can only travel from nodes to higher-numbered nodes. This means that
if the CyberKnife for example has to travel from node 1 to 4, it could do so by going from
1 to 3 to 4, but not by going from 1 to 5 to 4. This is because of mechanical limitations,
such as cables of the robotic arm getting tied up.

• The order in which the mustpass nodes are visited cannot be altered. The CyberKnife
currently visits the mustpass nodes in ascending order.

• It is also determined in the treatment plan which mustpass nodes need to be visited.
Deviating from these nodes may result in loss of plan quality.

Based on these restrictions, we can split up our research question into three sub-questions:

1. How can we travel as fast as possible from node A to node B?

2. Does changing the order of the mustpass nodes benefit the traveltime?

3. Does replacing mustpass nodes with adjacent nodes benefit the traveltime, without loss of
plan quality?

Now we can start outlaying our steps to answer these questions.

5
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2.2 Overview

In Chapter 3 we will take a look at the first two sub-questions. We will discuss three related
methods for finding shortest paths through the mustpass nodes, and compare results. In Chapter
4, we will continue with the last sub-question: finding adjacent solutions without degrading the
plan quality. We will first develop a method for finding adjacent solutions, after which we can
check whether the plan quality is still acceptable. In Chapter 5 we will look at two additional
restrictions that came along the research. Lastly, we will discuss our results in Chapter 6 and
give further recommendations in Chapter 7.

Since this project is done almost entirely in Matlab, there will be pseudocode provided for all
the Matlab programs. The actual Matlab code is added in Appendix A.

2.3 Study Design

The Erasmus Medical Center Rotterdam provided a dataset containing a cell with mustpass
nodes of plans for the patients, as well as a traversal matrix: a matrix of traveltimes between
the nodes. The cell contains nodes of 30 patients, from which 20 patients have 30 mustpass
nodes, and 10 patients have 32 mustpass nodes. Besides the nodes for the 30 patients, they also
provided 25 nodes for a class solution [4]. This is a path that is acceptable for all patients. Since
it contains less nodes than the paths for the patients, it does not result in a optimal treatment
plan, but saves more time on the other hand. We will include this path as our ‘patient 0’.

The traversal matrix is a 110 × 110 matrix, mustpass nodes and inbetween nodes mixed, so
because of its size, it is not possible to fully display the matrix, so a small section of it is
displayed in Table 2.1. Note that the matrix is the same for all patients, as these times concern
the traveltimes of the nodes in the grid, which is stored information.

1 2 3 4 5 6 7 8
1 0 8.5 x x x x x 10.8
2 x 0 3.7 8 5.3 7 10.2 5.7
3 x x 0 7.7 x 9.5 12.7 7
4 x x x 0 4.3 x 13.7 x
5 x x x x 0 8 11.5 10.2
6 x x x x x 0 4.7 9.2
7 x x x x x x 0 11.7
8 x x x x x x x 0

Table 2.1: Section of the asymmetrical traversal matrix. Traveltimes denoted in seconds.

The time it takes the CyberKnife to travel from node A to node B, with A < B, can be found
in matrix element (A,B). Note that if A > B, we always find x as a result, because traveling
to a lower-numbered node is not possible with this implementation. This is coherent with the
restrictions mentioned in section 2.1.
There are also some x’s above the diagonal. This implies that there is not a direct path between
those nodes. For example, if the algorithm has to travel from node 1 to node 5, it first checks
all the directly reachable nodes from node 1. From those nodes, it checks if node 5 now can be
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directly reached. It keeps doing so until node 5 can be directly reached, or until a shorter path
with more nodes is found. For example if 1 → 2 → 4 → 5 would be faster than 1 → 3 → 5,
because traveling from node 3 to 5 is apparently very inefficient. Lastly, traveling to a node itself
has no traveltime, and therefore the diagonal entries are all 0.
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Chapter 3

Shortest Path Optimization

This chapter contains three related algorithms for finding shortest paths through the mustpass
nodes. For each algorithm, an explanation of its functioning will be provided, both in words,
pseudocode and visual. The chapter will be concluded with a comparison of the three algorithms.

3.1 Asymmetrical Dijkstra Algorithm (ADA)

In this section, we will give a description of the current programming of the CyberKnife. This
method utilizes the Asymmetrical Dijkstra Algorithm (ADA). For the construction of the algo-
rithm, an implementation of Dijkstra from Mathworks [5] was used. A pseudocode description
of Dijkstra’s algorithm [6] is shown in Algorithm 1.

Input Graph G = (V,E) with traveltimes on edges; starting node s; finish node f ;
Ouput Shortest distance from s to f ;

W = set of all unvisited nodes;
for all vertices v in G do

d(s, v) =∞;
d(s, s) = 0;
add v to W ;

end
while W 6= ∅ do

u = vertex with minimal d(s, u);
W = W\{u};
for each neighbour v ∈W of u do

d(s, v) = min{d(s, v), d(s, u) + d(u, v)};
end

end

Algorithm 1: Pseudocode description of Dijkstra’s algorithm.

9
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3.1.1 Methods

The shortest path problem in the CyberKnife treatment comes down to the following: find the
shortest path that covers all mustpass nodes, starting from node(1), to node(2),..., to node(end).
This basically means applying Dijkstra’s algorithm to each sequential node pair and finding the
shortest times between these pairs. If we then add up all the sequential times, we get the total
traveltime to cover all the mustpass nodes.

To visualize this process, we will discuss an example with the use of Figure 3.1.
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Figure 3.1: Example of the ADA.

Suppose we have a simplified grid with 13 inbetween nodes, with 3 mustpass nodes: 1, 10 and
16. Our starting node will be node 1, and our finish node will be node 16. If it is possible to
travel directly from one node to the other, the nodes are labeled neighbours and are connected
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with an edge with the traveltime between those node on it, as displayed in Figure 3.1(a). The
ADA will now apply Dijkstra’s algorithm with starting node 1 and finish node 10. It finds the
shortest path as displayed in Figure 3.1(b). Note that 1 → 2 → 3 → 7 → 6 → 10 is actually
a shorter path, but since that contains a traversal to a lower-numbered node, it is not possible.
The ADA then applies Dijkstra’s algorithm with starting node 10 and and finish node 16 and
finds the shortest path as displayed in Figure 3.1(c). After having computed all the sequential
shortest paths, the ADA then adds up all the sequential traveltimes which results in the final
traveltime. In our example, this results in a path length of 18.

A pseudocode description of the ADA is displayed in Algorithm 2. The full Matlab code is added
in Appendix A.1.

Input Mustpass odes for all patients; Traversal matrix;
Output Shortest paths and traveltimes for all patients;

for all patients do
Sort all nodes in ascending order;

end
Initialize table with results ;
for all patients do

Initialize table with nodes times between sequential mustpass node pairs;
for nodes per patient do

Compute traveltimes between sequential mustpass node pairs with Dijkstra
implementation;

end
Sum all sequential node times;
Return traveltime

end
Algorithm 2: Pseudocode for the Asymmetrical Dijkstra algorithm

3.1.2 Results

Using the data from the Erasmus Medical Center Rotterdam, the ADA results in the traveltimes
denoted in Figure 3.2. These are the current traveltimes of the CyberKnife for the 30 patients.
The full table with results is added in Appendix B.
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Figure 3.2: Traveltimes of 31 patients, computed with the ADA.

3.2 Symmetrical Dijkstra Algorithm (SDA)

We will now take our first step in improving the current programming of the CyberKnife, by
removing the first restriction in Section 2.1, which states that the CyberKnife can only travel
to lower-numbered inbetween nodes. The algorithm presented in this section uses the same
implementation of Dijkstra’s algorithm, but with a minor modification in the input, which will
be explained in the next section.

3.2.1 Methods

We do now allow traveling to lower-numbered inbetween nodes, so we need to know the traveltime
from node A to node B, where A > B. The most staightforward choice would be the same
traveltime from node B to node A. This means we have to modify the matrix from Section 3.1.1,
by mirroring it over its diagonal, which will result in a symmetrical matrix with zeros on the
diagonal. A section of the now symmetrical traversal matrix is denoted in Table 3.1.
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1 2 3 4 5 6 7 8
1 0 8.5 x x x x x 10.8
2 8.5 0 3.7 8 5.3 7 10.2 5.7
3 x 3.7 0 7.7 x 9.5 12.7 7
4 x 8 7.7 0 4.3 x 13.7 x
5 x 5.3 x 4.3 0 8 11.5 10.2
6 x 7 9.5 x 8 0 4.7 9.2
7 x 10.2 12.7 13.7 11.5 4.7 0 11.7
8 10.8 5.7 7 x 10.2 9.2 11.7 0

Table 3.1: Small part of the symmetrical node traversal matrix. Traveltimes denoted in seconds.

The x’s in the matrix are the same ones as in the matrix in Figure 2.1, meaning that there is not a
direct path between the nodes. If the algorithm now has to find the shortest path from mustpass
node A to mustpass node B, it can now also pick inbetween nodes with a lower numbering than
A.

To visualize this process, we return to our example from Section 3.1.1.
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Figure 3.3: Example of the SDA.

This time, we allow traveling to lower-numbered nodes, so the SDA can pick the path that we
already mentioned in 3.1.1, 1→ 2→ 3→ 7→ 6→ 10, as our shortest path from node 1 to node
10, as displayed in Figure 3.3(a). The SDA then does the same for start node 10 and finish node
10, which results in the shortest path 10→ 9→ 13→ 14→ 15→ 16, as shown in Figure 3.3(b).
The total path length is now 16, which is an improvement over the ADA.

So our Symmetrical Dijkstra Algorithm (SDA) basically operates the same as the ADA, with the
only difference being that we feed the algorithm the symmetrical matrix instead of the asym-
metrical matrix. Therefore the pseudocode description of the SDA is the same as in Algorithm
2. The full Matlab code is added in Appendix A.2.
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3.2.2 Results

Using the same data as in Section 3.1.1, the SDA results in the traveltimes denoted in Figure
3.4.

Figure 3.4: Traveltimes of 31 patients, computed with the SDA.

We would expect better results with the SDA, since more paths are allowed, thus creating a
higher chance of finding a shorter path. A comparison of the ADA and SDA is shown in Figure
3.5. The full table with results is added in Appendix B.

Figure 3.5: Time advantages of SDA over ADA for 31 patients.
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If we look at Figure 3.5, we see that there is already a time advantage for all the patients, with
an average of 15.5 seconds, which translates to a 4.4% time advantage on average. The standard
deviation here amounts more than 7 seconds, which is interesting. This probably has to do with
the fact that some paths simply cannot get much better by traveling to lower-numbered nodes.

3.3 Hamiltonian Path Algorithm (HPA)

Now we can focus on the second restriction from Section 2.1. Not only do we allow traveling to
lower-numbered inbetween nodes, but also changing the order of the mustpass nodes. This means
we now have a number of n nodes which need to be visited as quickly as possible, regardless of
the order in which we do so. This resembles one of mathematics most well known problems: The
Traveling Salesman Problem (TSP), which states the following: “Given a list of cities and the
distances between each pair of cities, what is the shortest possible route that visits each city exactly
once and returns to the original city?" In our problem, the cities are nodes, and the distances
are traveltimes. Note that the TSP requires that the starting point and the ending point are the
same. This is required so that the postman, in the original problem, returns home instead of
ending up somewhere and then having to travel all the way back home. In our problem however,
it is not necessary for the CyberKnife to return to its starting position. Therefore we are free to
choose our begin and end node, as long as we cover all the mustpass nodes. Again, we recognize
another famous problem in mathematics, closely related to the TSP: finding a Hamiltonian path
in a graph. This problem comes down to the following:

“A Hamiltonian path is a path in a graph that visits each vertex exactly once. Then
does a given graph contain a Hamilton path?

This problem will play a big role in constructing our new algorithm, which we will continue in
the next section.

3.3.1 Methods

Now that we only focus on reordering the mustpass nodes, every combination of nodes is now
possible. Therefore we need to extend the matrix in Section 3.2.1. This means we have to replace
the remaining x’s in the matrix with the accompanying traveltimes, for convenience. This can be
accomplished by applying Dijkstra’s algorithm on every entry in the matrix. Note that whenever
we used the ADA or the SDA in the previous sections, since not all entries in the 110×110 matrix
were filled with a positive traveltime, the algorithm had to compute the traveltimes for all the
elements in the matrix for every single patient again. To reduce the computational time, instead
of computing all the values again for every patient, we fill in the matrix in advance, so that the
algorithm can simply check the value in every element. A pseudocode description of the process
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is displayed in Algorithm 3. The full Matlab code is added in Appendix A.3.

Input Matrix used in the SDA;
Output Symmetrical matrix with traveltimes for all node pairs and matrix with paths between
all node pairs;

Initialize empty matrix for traveltimes ;
Initialize empty matrix for paths ;

for all rows do
for all columns do

Compute the traveltimes and paths between every node pair with Dijkstra’s algorithm ;
end

end
Algorithm 3: Pseudocode for computing the traveltimes and paths between every node pair

This results in symmetrical matrix with traveltimes and a matrix with paths. Small sections of
both of them are displayed in Table 3.2 and Table 3.3.

1 2 3 4 5 6 7 8
1 0 8.5 12 16.5 13.8 15.5 18.7 10.8
2 8.5 0 3.7 8 5.3 7 10.2 5.7
3 12 3.7 0 7.7 9 9.5 12.7 7
4 16.5 8 7.7 0 4.3 12.3 13.7 13.7
5 13.8 5.3 9 4.3 0 8 11.5 10.2
6 15.5 7 9.5 12.3 8 0 4.7 9.2
7 18.7 10.2 12.7 13.7 11.5 4.7 0 11.7
8 10.8 5.7 7 13.7 10.2 9.2 11.7 0

Table 3.2: Shortest traveltimes between all node pairs.

1 2 3 4 5 6 7 8
1 1 [1 2] [1 12 3] [1 2 4] [1 2 5] [1 2 6] [1 2 7] [1 8]
2 [2 1] 2 [2 3] [2 4] [2 5] [2 6] [2 7] [2 8]
3 [3 12 1] [3 2] 3 [3 4] [3 2 5] [3 6] [3 7] [3 8]
4 [4 2 1] [4 2] [4 3] 4 [4 5] [4 5 6] [4 7] [4 2 8]
5 [5 2 1] [5 2] [5 2 3] [5 4] 5 [5 6] [5 7] [5 8]
6 [6 2 1] [6 2] [6 3] [6 5 4] [6 5] 6 [6 7] [6 8]
7 [7 2 1] [7 2] [7 3] [7 4] [7 5] [7 6] 7 [7 8]
8 [8 1] [8 2] [8 3] [8 2 4] [8 5] [8 6] [8 7] 8

Table 3.3: Shortest paths between all node pairs.

For the actual algorithm a TSP implementation from MathWorks [7] was used, from the same
author as the Dijkstra implementation. It is slightly different than the standard TSP, as this
implementation does not require the near optimal route to be a cycle, but rather a path. So the
implementation finds the near optimal Hamiltonian path, which is exactly what we want. Note
that the computed path will be a near optimal path instead of the optimal path, since solving
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the TSP is an NP-complete problem. This means we can find different solutions that approach
the optimal solution each time we run the program, because there is a random factor in the
implementation. More about this is examined in Chapter 7.

We visualize the process of finding a Hamilton in our example from Section 3.1.1. We do now
not need to start at node 1, but can also pick node 10 or 16. As it turns out, the shortest path
is achieved by starting from node 10, as displayed in Figure 3.6, with a path length of 15, which
is shorter than both lengths computed with ADA and SDA.
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Figure 3.6: Example of the HPA.

A pseudocode description of the Hamiltonian Path Algorithm (HPA) is displayed in Algorithm
4. The full Matlab code is added in Appendix A.4.

Input List of N mustpass nodes; traversal matrix between all the nodes;
Output Hamiltonian paths and traveltimes for all the patients;

Initialize table with results;
for all patients do

Synchronize matrix dimensions to number of nodes per patient;
Synchronize array dimensions to number of nodes per patient;
for nodes per patient do

Fill in N × 2 matrix with mustpass nodes;
end
for nodes per patient do

Fill in matrix with traveltimes between only the mustpass nodes;
Make sure diagonal entries are 0;

end
Compute Hamiltonian path ;
Display path and traveltime;

end
Algorithm 4: Pseudocode for Hamilton Path Algorithm

In the third for loop, we use a N ×N matrix. By doing so, the algorithm has to look for shortest
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paths in a N × N matrix, where N ≤ 32, instead of the 110 × 110 matrix that both the SDA
and ADA use. This is done to reduce the computational time of the HPA.

3.3.2 Results

Using the same data from Section 3.1.1, the HPA results in the traveltimes denoted in Figure
3.7. The full table with traveltimes is added in Appendix B.

Figure 3.7: Traveltimes of 31 patients, computed with the HPA.

To compare results, a comparison of the HPA and ADA traveltimes is shown in Figure 3.8.

Figure 3.8: Time advantages of HPA over SDA for 31 patients.
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We see more equal time advantages for all patients, with an average of 53.0 seconds , which
translates to a 15.1% time advantage. This is already significantly better than the 4.4% of the
SDA.

3.4 Comparison of methods

We have now discussed our methods for finding shortest paths. Out of all 3 of them, the HPA
is clearly the best method. As seen in Figure 3.9, the method has a significant time advantage
for every patient, with an average of 68.3 seconds, which translates to a 19.4% time advantage
on average.

Figure 3.9: Time advantages of HPA over ADA for 31 patients.

For as far as computational time, the ADA takes less than one second per patient to compute
the shortest path and traveltime, while the HPA takes around 20 seconds per patient to do so.
So the HPA runs quite slower compared to the ADA, but this is no surprise, since Hamilton is
a more powerful algorithm than Dijkstra. Since 20 seconds is still a very reasonable time for a
program to run, we still favor the HPA over the ADA and the SDA. The full table with shorter
paths is added in Appendix B.



20 CHAPTER 3. SHORTEST PATH OPTIMIZATION



Chapter 4

Neighbour Path Algorithm (NPA)

Now that we have answered the first two of our sub-questions, we can continue with the third
sub-question: can we find shorter paths if we replace mustpass nodes with adjacent nodes that
result in a better traveltime? We will answer this question in the section 4.1. Then, in Section
4.2 we will do a convergence analysis of our method. Lastly, in Section 4.3 we will talk about
the plan quality of our newly found paths.

4.1 Computing Neighbour Paths

4.1.1 Methods

Our Neighbour Path Algorithm (NPA) takes the path computed with the HPA per patient as
its standard path. It works in 2 basic steps:

1. Per node, find its neighbour nodes

2. Per node, replace the node with its neighbours, and check per neighbour if this results in
a shorter path. If it does, replace the node with its neighbour.

To find neighbour nodes, we look at nodes that fall in a certain interval of degrees from the
original node. We chose an interval of 15◦, as we do not find any neighbours within 10◦, and
any number above 15 results in too many neighbours, which would take too much computational
time. Choosing 15◦ usually leads to around 7 neighbours. The full Matlab code on choosing
these neighbours is added in Appendix A.5.

Note that the NPA operates in a Greedy way. It only checks for a local minimum per node, and
then moves on to the next node. More about this is examined in Chapter 7.

For computation of the shortest path after replacing a node with a neighbour node, we use
Dijkstra, since the order of the mustpass nodes is fixed. This comes down to using the SDA. A
pseudocode description is displayed in Algorithm 5. The full allgorithm is added in Appendix
A.6.

21
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Input A list of N mustpass nodes; traversal between all nodes;
Output Neighbour paths for all patients; traveltimes for all patients; potential time
advantages;

Initialize empty tables for results;
for all patients do

Compute the Hamiltonian path;
Copy nodes of Hamiltonian path into new vector;
Set initial shortest traveltime equal to HPA traveltime;
for all N nodes in the Hamiltonian path do

Find all neighbour nodes;
Remember current node that is being replaced;
for all neighbour nodes do

if neighbour node is not already in Hamiltonian path then
Replace current node with neighbour node;
Compute traveltime of new path with Dijkstra;
if Traveltime new path < initial traveltime then

Set new initial shortest traveltime equal to computed traveltime;
Set new initial shortest path equal to computed path;
Update current shortest path by replacing current node with neighbour node

end
end

end
If neighbour node does not result in a better path, set replaced node back to previously
best neighbour node;

end
Enter results in tables;

end
Algorithm 5: Pseudocode for Neighbour Path Algorithm
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4.1.2 Results

Using the same data from Section 3.1.1, the NPA results in the traveltimes denoted in Figure
4.1. The full table with results is added in Appendix B.

Figure 4.1: Traveltimes computed with NPA for 31 patients.

Again, we see some improvement in the traveltimes compared to those of the HPA. This is further
illustrated in Figure 4.2

Figure 4.2: Time advantages of NPA over HPA for 31 patients.
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For 13 out of 30 patients, the NPA results in an average time advantage of 48.0 seconds over the
HPA, which translates to about 17.6%. On top of the 19.4% improvement the HPA made over
the ADA, this means that the traveltimes for all 31 patients have been brought down already by
25.6% from the ADA already.

4.2 Analysis of Convergence

As noted before, there is a random factor in the HPA. This causes the computed path to differ a
few seconds each time the program is run. This raises a question: do these traveltimes eventually
do converge to an optimal traveltime?

To check this hypothesis, we created the Iterated Neighbour Path Algorithm (INPA). It computes
a shortest path with the NPA, takes the computed path as input and iterates the algorithm 10
times. This way, the path gets slightly altered after each iteration. The iterations resulted in
three different pictures:

(a) Improvement until a few iterations. (b) No improvement.

(c) Improvement at first, then alternating between times.

Figure 4.3: 10 Iterations for different patients.
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While the the traveltimes in 4.3(a) and 4.3(b) seem to converge, the traveltimes in 4.3(c) show
some more interesting behaviour. After two succesfull iterations, the traveltimes then start to
alternate between 208 and 210 seconds. Unfortunately we do not have an explanation for this,
but we can conclude that even though the traveltime does not always converge, it does not get
any worse after a few iterations. It is fair to conclude that it is worth iterating the path found
with the NPA at least 3-5 times. We should mention that there was a single case in which
the traveltime got worse after one iteration and then alternated between two traveltimes. This
specific result is displayed in Figure 4.4.

Figure 4.4: Case where the traveltime gets worse.

Note however that the degradation in time only concerns less than 0.5 seconds, which is not
of any significance, while the improvement of the convergent cases can concern almost up to 20
seconds. Because of this, we will use the INPA as our next step in optimizing the traveltime. The
INPA results in an average time advantage of 130.5 seconds over the ADA traveltimes, which
translates to about 37.1%. This is illustrated in Figure 4.5.

Figure 4.5: Time advantages of INPA over ADA for 31 patients.
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The pseudocode for the INPA is similar to that of Algorithm 5, so it will not be included here.
The full Matlab code is added in Appendix A.7.

4.3 Plan Quality

While a large section of this report is dedicated to shortest path optimization, it is also very
important that these newly found paths do not degrade too much in plan quality, or else they
will be useless. To verify this, Sebastiaan Breedveld did calculations on the plan quality each
time after we found shorter paths. These calculations resulted in a Dosis-Volume-Histogram
(DHV-Figure) for each patient. An example of a DHV-Figure is shown in Figure 4.6

Figure 4.6: DHV-Figure for a patient.

The continuous lines represent the results with the original paths, while the dotted line represents
the results with the convergent path found after 10 iterations. To not degrade in plan quality,
it is important that the dotted lines stay as close as possible tot he continuous lines. As seen
in Figure 4.6, most results remain the same, only the lower dose in the bladder degrades some
in quality, while the high dose in the bladder improves slightly. The plan quality calculations
showed that this result is quite usual for all of the patients. In fact, for some patients, the plan
quality remained almost identical. This means that our optimized paths are appropriate to use,
since the plan quality does not degrade significantly.
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Additional restrictions

With the INPA, we have removed all the restrictions from Section 2.1. However, as the project
was progressing, two new restrictions came by: starting nodes and dummy nodes. We will discuss
the nature of these restrictions and how we fixed them. We will combine these restrictions into
one algorithm that will compute the final traveltimes for the patients.

5.1 Starting Nodes

There is a set of 45 nodes from which the CyberKnife can start its treatment. The traveltime
would benefit if the first node of the path is starting node. Otherwise the CyberKnife would first
have to travel to the first node of the path, which might be on the other side of the grid. This
would harm the traveltime and be a waste of all time used to the compute the shortest path.

5.1.1 Methods

We took the result from the INPA, and added a starting node to the path. To incorporate these
starting nodes in the paths, we had to distinguish three different cases of where the starting
nodes can already be in the path:

1. There are no starting nodes in the path yet. The SNA then computes the traveltimes for
all 45 starting nodes added to the path and picks the fastest. The path length increases
with one.

2. There are starting nodes in the path, but not yet at the beginning of the path. The SNA
puts all starting nodes in the path at the beginning, checks the travelime and picks the
fastest. The path length does not change.

3. There are starting nodes in the path and one of them is already in the beginning. The
SNA does not need to do anything.
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5.2 Dummy Nodes

The last restriction that came along concerns dummy nodes. We briefly mentioned them in
Section 1.2, but now we will fully incorporate them into the algorithm.

5.2.1 Methods

A brief recap, the dummy nodes are 8 nodes which are used for the sole purpose of serving as
inbetween nodes. Radiation from these nodes is not possible. In the treatment plan, these nodes
will never be candidate mustpass nodes. So it is only during the INPA, that we need to modify
the algorithm, since they could be picked as neighbour nodes. Therefore we can use the INPA
again, with the addition of one line of code that checks if the algorithm does not pick a dummy
node as its neighbour for replacement. This is done in the same style as line 48 in Appendix A.7.

With the addition of a starting node and the removal of dummy nodes, we have now completed
our final algorithm, the Optimal Path Algorithm (OPA). A pseudocode description of the OPA
is presented in Figure 6. The full Matlab code is added in Appendix A.8.

5.3 Concluding Results

We can now compute the final traveltimes for all patients with the OPA. Using the same data
from Section 3.1.1, the OPA results in the traveltimes denoted in Figure 5.1. The full table with
results is added in Appendix B.

Figure 5.1: Traveltimes of 31 patients, computed with the OPA.
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Input N Mustpass nodes for each patient; traversal matrix;
Output Shortest paths with starting nodes and without dummy nodes for all patients;
f Initialize empty tables for results;
Initialize dummy nodes and starting nodes;
for all patients do

Compute the shortest path with the HPA;
for 10 iterations do

Compute the neighbour path with the NPA;
end
if first node of path is not a starting node then

if there is a starting node in the path then
Set all starting nodes in vector;
Set shortest path distance equal to infinity;
for all starting nodes in path do

Define nodes that remain if starting node is placed in front;
Compute shortest path and traveltime of remaining N − 1 nodes with HPA;
if Traveltime new path with starting node < initial shortest path distance then

Save current starting node and path;
end

end
else

Set initial value of traveltime of starting node to first node equal to infinity;
for all 45 starting nodes do

Compute traveltime of starting node to first node of original path;
if traveltime < initial value then

Save current starting node;
end

end
Add best starting node to path;

end
else

Program does nothing and keeps original path and traveltime;
end
Display results;

end
Algorithm 6: Pseudocode for the OPA.
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To get a better view of our improvement, we compare the results of the OPA with the ADA, our
first method of finding shortest paths. The results are illustrated in Figure 5.2.

Figure 5.2: Time differences of OPA over ADA for 31 patients.

We see a notable drop in times for all patients, with an average of 136.2 seconds per patient.
This translates to a 38.6% improvement on average, with a maximum of 46.9%. The full table
with new paths for all 31 patients is added in Appendix C.



Chapter 6

Conclusions

The main goal of this project was to optimize the traveltime of the CyberKnife. We split up this
goal into three sub-goals, as formulated in Section 2.1. After 2 months of research, we achieved
the following results:

• With the SDA, the CyberKnife travels as fast as possible from node A to node B. We
expanded this method with the HPA, which uses Hamiltonian paths. This changes the
order of the mustpass nodes, which on average dropped the initial traveltimes by almost
20%. These results answered the first two of our research questions.

• Next up, we used the NPA to replace nodes in the path with adjacent nodes. This resulted
in better paths for almost half of the patients, while the other half did not get worse.
This result got sharpened when we noticed that iterating a new path into the NPA at
least once did improve the traveltime. After a few iterations, all the paths were either
converging, constant, or alternating between two better paths. So with the use of the
INPA, our traveltimes had dropped 37.1% already. After these changes in the mustpass
nodes, the plan quality did not lose a significant amount of quality. With these results, the
last sub-question was answered as well.

• Lastly, we modified the INPA slightly, because of the addition of starting nodes and the
removal of dummy nodes. This had to be done in order for the traveltime not to suffer
under certain restrictions of the CyberKnife. There was an extra restriction concerning
image blocking nodes, but we were not able to incorporate that restriction due to time
limitations. More about this is explained in Chapter 7.

All of the previously mentioned algorithms resulted in the OPA, our final algorithm which opti-
mized original the traveltimes with 38.6% on average, without any significant loss of plan quality.
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Chapter 7

Recommendations

Further research on this project could be done by incorporating image blocking nodes. During
the CyberKnife treatment, X-rays of the patient are made at regular intervals, to verify and/or
update information on the patient’s position. This is done by two X-ray detectors, as shown in
Figure 7.1.

Figure 7.1: CyberKnife shown with the two X-ray detectors.

If the CyberKnife is irradiating from certain nodes, the linear accelerator or the robotic arm
blocks the X-ray detectors. This causes the CyberKnife to retrieve from its current node, move
to a position where it is not blocking the detectors, and then move the next node in the path.
This could be prevented if the CyberKnife is always located at a detection-free node at the
moment the detectors create an image. One way to do this would be to pin a node in the
Hamilton implementation. This means that you could tell to the Hamilton implementation that
the k-th node in the path has to be node 5 for example. The k-th node would then be the node
where an image is made, and 5 would not be an image blocking node. We did not yet discover a
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way to achieve this with the current implementation, but perhaps there are other more suitable
implementations for this purpose.

The idea of pinning a node could also be of benefit in adding starting nodes. With the current
version of the OPA, the algorithm has to identify the starting nodes, put them at the beginning
and compute the traveltimes with HPA. It could save quite some for loops and thus computational
time if this could be done by entering a few commands in the Hamilton implementation.

The NPA could also be more optimized. As mentioned in Section 4.1.1, the NPA operates in a
Greedy way. It could for example be possible that replacing the first node with a sup-optimal
neighbour results in a better overall path than replacing the first node with the optimal neighbour.
Therefore the NPA is probably not the optimal method of computing neighbour solutions, but
we could not come up with any better solutions. Also computational times started to rise quickly
from that point, so heavier algorithms would have probably not fit in the time schedule.

One subject that was overlooked a bit is the ’random-factor’ in the Hamilton implementation.
We did not do any research into why Hamilton implementation result in different traveltimes
each time. There also seems to be a little flaw in the OPA, as the path lengths of 4 patients
were changed from 30 to 32. After we ran the OPA again for the 4 patients separately, the path
length changed back to their original lengths. However, since we concluded that the plan quality
did not suffer significantly under these changes, we kept the changed path lengths in Appendix
C.

Lastly, the OPA takes about 40 minutes to compute traveltimes and paths for all 30 patients.
With all the above mentioned improvements, it should be possible to reduce the 40 minutes
computational time.
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Appendix A

Matlab codes

A.1 Asymmetrical Dijkstra Algorithm

1 c l e a r a l l ; c l o s e a l l ; c l c
2 load NodesForAl lPat ients
3 load pat i en t1
4

5 A = c e l l (1 , l ength ( NodesForAl lPat ients ) ) ;
6 f o r i = 1 : l ength ( NodesForAl lPat ients )
7 A{ i } = so r t ( t ranspose ( NodesForAl lPat ients { i }) ) ;
8 end
9

10 aptab le = ze ro s ( l ength ( NodesForAl lPat ients ) , 2 ) ;
11

12 f o r k = 1 : l ength ( NodesForAl lPat ients )
13 aptab le (k , 1 ) = k ;
14 NodeTimesAsym = ze ro s ( l ength (A{k}) −1 ,1) ;
15 f o r i = 1 : l ength (A{k}) − 1
16 [ NodeTimesAsym( i ) , paths { i } ] = PathDi jkstra (TxTimeParams .

NodeTraversalMap , TxTimeParams . NodeTraversalMap ,A{k}( i ) ,A{k
}( i +1) ) ;

17 end
18 TotalNodeTimeAsym = sum(NodeTimesAsym) ;
19 aptab le (k , 2 ) = TotalNodeTimeAsym ;
20 end
21 aptab le

A.2 Symmetrical Dijkstra Algorithm

1 c l e a r a l l ; c l o s e a l l ; c l c
2 load NodesForAl lPat ients
3 load pat i en t1
4

5 A = c e l l (1 , l ength ( NodesForAl lPat ients ) ) ;
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6 f o r i = 1 : l ength ( NodesForAl lPat ients )
7 A{ i } = so r t ( t ranspose ( NodesForAl lPat ients { i }) ) ;
8 end
9

10 SymMat = TxTimeParams . NodeTraversalMap + transpose (TxTimeParams .
NodeTraversalMap ) ;

11 SymMat( end , end ) = 0 ;
12

13 sp tab l e = ze ro s ( l ength ( NodesForAl lPat ients ) , 2 ) ;
14

15 f o r k = 1 : l ength ( NodesForAl lPat ients )
16 sp tab l e (k , 1 ) = k ;
17 NodeTimesSym = ze ro s ( l ength (A{k}) −1 ,1) ;
18 f o r i = 1 : l ength (A{k}) − 1
19 [ NodeTimesSym( i ) , paths { i } ] = PathDi jkstra (SymMat , SymMat ,A{k}(

i ) ,A{k}( i +1) ) ;
20 end
21 TotalNodeTimeSym = sum(NodeTimesSym) ;
22 sp tab l e (k , 2 ) = TotalNodeTimeSym ;
23 end
24 sp tab l e

A.3 Total Matrices

1 TotalCosts = ze ro s (110 ,110) ;
2 TotalPaths = c e l l (110 ,110) ;
3

4 [ co s t s , paths ] = PathDi jkstra (SymMat , SymMat) ;
5

6 f o r i = 1:110
7 f o r j = 1:110
8 TotalCosts ( i , j ) = co s t s ( i , j ) ;
9 TotalPaths ( i , j ) = paths ( i , j ) ;

10 end
11 end

A.4 Hamiltonian Path Algorithm

1 c l e a r a l l ; c l o s e a l l ; c l c
2 load NodesForAl lPat ients
3 load pat i en t1
4 load SymMat
5 run Tota leMatr i ces
6

7 hptable = ze ro s ( l ength ( NodesForAl lPat ients ) , 2 ) ;
8

9 f o r k = 1 : l ength ( NodesForAl lPat ients )
10 hptable (k , 1 ) = k ;
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11 m2 = ze ro s ( l ength ( NodesForAl lPat ients {k}) , l ength (
NodesForAl lPat ients {k}) ) ;

12 r2 = transpose ( s o r t ( NodesForAl lPat ients {k}) ) ;
13 r t2 = ze ro s ( l ength ( NodesForAl lPat ients {k}) ,2 ) ;
14 f o r m = 1 : l ength ( r2 )
15 r t2 (m, 1 ) = r2 (m) ;
16 r t2 (m, 2 ) = r2 (m) ;
17 end
18 f o r j = 1 : l ength ( NodesForAl lPat ients {k})
19 f o r l = 1 : l ength ( NodesForAl lPat ients {k})
20 i f j == l
21 m2( j , l ) = 0 ;
22 e l s e
23 m2( j , l ) = TotalCosts ( r2 ( j ) , r2 ( l ) ) ;
24 end
25 end
26 end
27 userConf ig = s t r u c t ( ’ xy ’ , rt2 , ’ dmat ’ ,m2) ;
28 r e s u l t S t r u c t = tspo_ga ( userConf ig )
29 hptable (k , 2 ) = r e s u l t S t r u c t . minDist ;
30 end
31 hptable

A.5 Finding neighours

1 f o r k=1: s i z e (Beams . Setup . Points , 1)
2 f o r j =1: s i z e (Beams . Setup . Points , 1)
3 Angle ( j , k ) = acosd (sum(Beams . Setup . Points (k , : ) .∗Beams . Setup .

Points ( j , : ) ) ) ;
4 end
5 end
6

7 Dummy = [12 16 20 22 26 57 73 7 7 ] ;
8 f o r j = Dummy
9 Angle = [ Angle ( : , 1 : j−1) ones ( s i z e ( Angle , 1) , 1) ∗ I n f Angle ( : , j :

end ) ] ;
10 Angle = [ Angle ( 1 : j −1, : ) ; ones (1 , s i z e ( Angle , 2) ) ∗ I n f ; Angle ( j :

end , : ) ] ;
11 end

A.6 Neighbour Paths Algorithm

1 c l e a r a l l ; c l o s e a l l ; c l c
2 load pat i en t1
3 load NodesForAl lPat ients
4 load SymMat
5 run hoekte s t
6 run Tota leMatr i ces
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7

8 C = c e l l ( l ength ( NodesForAl lPat ients ) , 1 ) ; %c e l l with the neighbour
paths

9 nt = ze ro s ( l ength ( NodesForAl lPat ients ) , 2 ) ; %tab l e with t r av e l t ime s
10 ta = ze ro s ( l ength ( NodesForAl lPat ients ) , 2 ) ; %tab l e with the time

advantages
11

12 f o r k = 1 : l ength ( NodesForAl lPat ients )
13 nt (k , 1 ) = k ;
14 ta (k , 1 ) = k ;
15 %Compute the s ho r t e s t path f o r a l l p a t i en t s with Hamilton
16 m2 = ze ro s ( l ength ( NodesForAl lPat ients {k}) , l ength (

NodesForAl lPat ients {k}) ) ;
17 r2 = transpose ( s o r t ( NodesForAl lPat ients {k}) ) ;
18 r t2 = ze ro s ( l ength ( NodesForAl lPat ients {k}) ,2 ) ;
19 f o r m = 1 : l ength ( r2 )
20 r t2 (m, 1 ) = r2 (m) ;
21 r t2 (m, 2 ) = r2 (m) ;
22 end
23

24 f o r j = 1 : l ength ( NodesForAl lPat ients {k})
25 f o r l = 1 : l ength ( NodesForAl lPat ients {k})
26 i f j == l
27 m2( j , l ) = 0 ;
28 e l s e
29 m2( j , l ) = TotalCosts ( r2 ( j ) , r2 ( l ) ) ;
30 end
31 end
32 end
33 userConf ig = s t r u c t ( ’ xy ’ , rt2 , ’ dmat ’ ,m2) ;
34 r e s u l t S t r u c t = tspo_ga ( userConf ig ) ;
35

36 %Compute the neighbour paths
37 inp = rt2 ( r e s u l t S t r u c t . optRoute , 2) ; %copy the nodes o f the

Hamiltonpath in to a new vec to r inp
38 ka = r e s u l t S t r u c t . minDist ; %s e t the i n i t i a l s h o r t e s t t r ave l t ime
39

40 f o r b = 1 : l ength ( inp ) %check a l l the nodes in the Hamiltonpath
41 f = f i nd ( Angle ( : , inp (b) ) <15) ; %f i nd the ne ighbours o f a

s p e c i f i e d node
42 bestNode = inp (b) ; %remember the node that i s be ing rep laced
43 f o r j = 1 : l ength ( f ) %check a l l the ne ighbours o f a node
44 i f ~ismember ( f ( j ) , inp ) %make sure the new neighbour node

i s not a l r eady in the path
45 inp (b) = f ( j ) ; %r ep l a c e the s p e c i f i e d node with the

neighours , and c a l c u l a t e the new path length
46 f o r i = 1 : l ength ( inp ) − 1
47 [ NodeTimesSym( i ) , paths { i } ] = PathDi jkstra (SymMat

, SymMat , inp ( i ) , inp ( i +1) ) ; %c a l c u l a t e s h o r t e s t
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path with D i j k s t r a
48 end
49 TotalNodeTimeSym = sum(NodeTimesSym) ;
50 i f TotalNodeTimeSym < ka
51 ka = TotalNodeTimeSym ; %i f one the neighbour

nodes r e s u l t s in a sho r t e r path , the minimal
d i s t anc e i s updated

52 kp = inp ; % same f o r the minimal path
53 bestNode = inp (b) ; %i f the new node r e s u l t s in a

sho r t e r path , update the best node
54 end
55 end
56 end
57 inp (b) = bestNode ; %i f the new node does not r e s u l t in a

sho r t e r path , s e t the bes t e Node back to the p r ev i ou s l y
found best node

58 end
59 C{k} = kp ;
60 nt (k , 2 ) = ka ;
61 ta (k , 2 ) = r e s u l t S t r u c t . minDist − ka ;
62 end

A.7 Iterated Neighbour Path Algorithm

1 c l e a r a l l ; c l o s e a l l ; c l c
2 load pat i en t1
3 load NodesForAl lPat ients
4 load SymMat
5 run Tota leMatr i ces
6 run hoekte s t
7

8 a = 10 ;
9

10 TR = c e l l ( l ength ( NodesForAl lPat ients ) , 1 ) ;
11 PR = c e l l ( l ength ( NodesForAl lPat ients ) , 1 ) ;
12

13 f o r k = 1 :1
14 %Compute the s ho r t e s t path f o r a l l p a t i e n t s with Hamilton
15 m2 = ze ro s ( l ength ( NodesForAl lPat ients {k}) , l ength (

NodesForAl lPat ients {k}) ) ;
16 r2 = transpose ( s o r t ( NodesForAl lPat ients {k}) ) ;
17 r t2 = ze ro s ( l ength ( NodesForAl lPat ients {k}) ,2 ) ;
18 f o r m = 1 : l ength ( r2 )
19 r t2 (m, 1 ) = r2 (m) ;
20 r t2 (m, 2 ) = r2 (m) ;
21 end
22

23 f o r j = 1 : l ength ( NodesForAl lPat ients {k})
24 f o r l = 1 : l ength ( NodesForAl lPat ients {k})
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25 i f j == l
26 m2( j , l ) = 0 ;
27 e l s e
28 m2( j , l ) = TotalCosts ( r2 ( j ) , r2 ( l ) ) ;
29 end
30 end
31 end
32 userConf ig = s t r u c t ( ’ xy ’ , rt2 , ’ dmat ’ ,m2) ;
33 r e s u l t S t r u c t = tspo_ga ( userConf ig ) ;
34

35 inp = rt2 ( r e s u l t S t r u c t . optRoute , 2) ; %copy the nodes o f the
Hamiltonpath in to a new vec to r inp

36 ka = r e s u l t S t r u c t . minDist ; %s e t the i n i t i a l s h o r t e s t d i s t anc e
37

38 f o r c = 1 : a
39 TR{k}( c , 1 ) = c ;
40 %Compute the neighbour paths
41 f o r b = 1 : l ength ( inp ) %check a l l the nodes in the

Hamiltonpath
42 f = f i nd ( Angle ( : , inp (b) ) <15) ; %f i nd the ne ighbours o f a

s p e c i f i e d node
43 bestNode = inp (b) ; %remember the node that i s be ing

rep laced
44 f o r j = 1 : l ength ( f ) %check a l l the ne ighbours o f a node
45 i f ~ismember ( f ( j ) , inp ) %make sure the new neighbour

node i s not a l r eady in the path
46 inp (b) = f ( j ) ; %r ep l a c e the s p e c i f i e d node with

the neighours , and c a l c u l a t e the new path
length

47 f o r i = 1 : l ength ( inp ) − 1
48 [ NodeTimesSym( i ) , paths { i } ] = PathDi jkstra (

SymMat , SymMat , inp ( i ) , inp ( i +1) ) ; %
c a l c u l a t e s h o r t e s t path with D i j k s t r a

49 end
50 TotalNodeTimeSym = sum(NodeTimesSym) ;
51 i f TotalNodeTimeSym < ka
52 ka = TotalNodeTimeSym ; %i f one the neighbour

nodes r e s u l t s in a sho r t e r path , the
minimal d i s t anc e i s updated

53 kp = inp ; % same f o r the minimal path
54 bestNode = inp (b) ; %i f the new node r e s u l t s

in a sho r t e r path , update the best node
55 end
56 end
57 end
58 inp (b) = bestNode ; %i f the new node does not r e s u l t in a

sho r t e r path , s e t the bes t e Node back to the
p r ev i ou s l y found best node

59 end
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60 TR{c }( c , 2 ) = ka ;
61 PR{k} = kp ;
62 inp = kp ; %update input with the output o f the prev ious path
63 end
64 end

A.8 Optimal Path Algorithm

1 c l e a r a l l ; c l o s e a l l ; c l c
2 load pat i en t1
3 load NodesForAl lPat ients
4 load SymMat
5 run Tota leMatr i ces
6 run hoekte s t
7

8 a = 10 ;
9 f t = ze ro s ( l ength ( NodesForAl lPat ients ) , 1 ) ; %c r ea t e t ab l e f o r f i n a l

t r av e l t ime s f o r a l l the pa t i en t s
10 snp = c e l l ( l ength ( NodesForAl lPat ients ) , 1 ) ; %c e l l with the s t a r t i n g

node paths
11 s t a r tnode s = [1 26 28 29 30 36 :51 60 76 78 79 :83 85 :93 96 :100 102

1 1 0 ] ;
12 dummy = [12 16 20 22 26 57 73 7 7 ] ; %these nodes cannot be in the path
13

14 f o r k = 1 : l ength ( NodesForAl lPat ients )
15 m2 = ze ro s ( l ength ( NodesForAl lPat ients {k}) , l ength (

NodesForAl lPat ients {k}) ) ;
16 r2 = transpose ( s o r t ( NodesForAl lPat ients {k}) ) ;
17 r t2 = ze ro s ( l ength ( NodesForAl lPat ients {k}) ,2 ) ;
18 f o r m = 1 : l ength ( r2 )
19 r t2 (m, 1 ) = r2 (m) ;
20 r t2 (m, 2 ) = r2 (m) ;
21 end
22

23 f o r j = 1 : l ength ( NodesForAl lPat ients {k})
24 f o r l = 1 : l ength ( NodesForAl lPat ients {k})
25 i f j == l
26 m2( j , l ) = 0 ;
27 e l s e
28 m2( j , l ) = TotalCosts ( r2 ( j ) , r2 ( l ) ) ;
29 end
30 end
31 end
32 userConf ig = s t r u c t ( ’ xy ’ , rt2 , ’ dmat ’ ,m2) ;
33 r e s u l t S t r u c t = tspo_ga ( userConf ig ) ;
34

35 inp = rt2 ( r e s u l t S t r u c t . optRoute , 2) ; %copy the nodes o f the
Hamiltonpath in to a new vecto r inp

36 ka = r e s u l t S t r u c t . minDist ; %s e t the i n i t i a l s h o r t e s t d i s t anc e
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37

38 f o r c = 1 : a
39 %Compute the neighbour paths
40 f o r b = 1 : l ength ( inp ) %check a l l the nodes in the

Hamiltonpath
41 f = f i nd ( Angle ( : , inp (b) ) <15) ; %f i nd the ne ighbours o f a

s p e c i f i e d node
42 bestNode = inp (b) ; %remember the node that i s be ing

rep laced
43 f o r j = 1 : l ength ( f ) %check a l l the ne ighbours o f a node
44 i f ~ismember ( f ( j ) , inp ) %make sure the new neighbour

node i s not a l r eady in the path
45 i f ~ismember ( f ( j ) ,dummy) %make sure the new

neighbour node i s not a dummy node
46 inp (b) = f ( j ) ; %r ep l a c e the s p e c i f i e d node

with the neighours , and c a l c u l a t e the new
path length

47 f o r i = 1 : l ength ( inp ) − 1
48 [ NodeTimesSym( i ) , paths { i } ] =

PathDi jkstra (SymMat , SymMat , inp ( i ) , inp
( i +1) ) ; %c a l c u l a t e s h o r t e s t path with
D i j k s t r a

49 end
50 TotalNodeTimeSym = sum(NodeTimesSym) ;
51 i f TotalNodeTimeSym < ka
52 ka = TotalNodeTimeSym ; %i f one the

neighbour nodes r e s u l t s in a sho r t e r
path , the minimal d i s t anc e i s updated

53 kp = inp ; % same f o r the minimal path
54 bestNode = inp (b) ; %i f the new node

r e s u l t s in a sho r t e r path , update the
best node

55 end
56 end
57 end
58 end
59 inp (b) = bestNode ; %i f the new node does not r e s u l t in a

sho r t e r path , s e t the bes t e Node back to the
p r ev i ou s l y found best node

60 end
61 inp = kp ; %update input with the output o f the prev ious path
62 end
63

64 %%%%%%%%%%%%%%%%%Add a s t a r t i n g node
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

65 i f isempty ( i n t e r s e c t ( kp (1 ) , s t a r tnode s ) ) == 1 %checks i f the f i r s t
node o f the computed path i s not a s t a r t node

66 i f ~isempty ( i n t e r s e c t ( s tar tnodes , kp ) ) %s c ena r i o #1: the re i s
a s t a r t i n g node in the computed sho r t e s t path
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67 i s = i n t e r s e c t ( s tar tnodes , kp ) ; %de f i n e l ength o f
i n t e r s e c t i o n o f s t a r tnode s and the computed sho r t e s t
path

68 spd = i n f ; %s e t the s ho r t e s t path d i s t anc e equal to
i n f i n i t y

69 f o r i = 1 : l ength ( i s )
70 newnodes = s e t d i f f ( kp , i s ( i ) ) ; %de f i n e the s e t o f

nodes without the s t a r t i n g node
71 m2 = ze ro s ( l ength ( newnodes ) , l ength ( newnodes ) ) ;
72 r2 = transpose ( s o r t ( newnodes ) ) ;
73 r t2 = ze ro s ( l ength ( newnodes ) ,2 ) ;
74 f o r m = 1 : l ength ( r2 )
75 r t2 (m, 1 ) = r2 (m) ;
76 r t2 (m, 2 ) = r2 (m) ;
77 end
78 f o r j = 1 : l ength ( newnodes )
79 f o r l = 1 : l ength ( newnodes )
80 i f j == l
81 m2( j , l ) = 0 ;
82 e l s e
83 m2( j , l ) = TotalCosts ( r2 ( j ) , r2 ( l ) ) ;
84 end
85 end
86 end
87 userConf ig = s t r u c t ( ’ xy ’ , rt2 , ’ dmat ’ ,m2) ;
88 r e s u l t S t r u c t = tspo_ga ( userConf ig ) ;
89 i f c o s t s ( i s ( i ) , r t 2 ( r e s u l t S t r u c t . optRoute (1 ) ) ) +

r e s u l t S t r u c t . minDist < spd %f i nd the best o f a l l
s t a r t i n g nodes

90 spd = co s t s ( i s ( i ) , r t 2 ( r e s u l t S t r u c t . optRoute (1 ) ) )
+ r e s u l t S t r u c t . minDist ;

91 be s tS ta r t = i s ( i ) ;
92 bestRoute = rt2 ( r e s u l t S t r u c t . optRoute ) ;
93 end
94 end
95 newRoute = [ be s tS ta r t bestRoute ] ;
96 f t ( k ) = spd
97 snp{k} = newRoute ;
98 newRoute
99 e l s e %s c ena r i o #2: the re are no s t a r t i n g nodes in the

computed sho r t e s t path
100 s f c = i n f ; %s e t the Shor t e s t Connection to the F i r s t node

equal to i n f i n i t y
101 f o r n = 1 : l ength ( s ta r tnode s )
102 ck = co s t s ( s t a r tnode s (n) , kp (1 ) ) ; %compute the c o s t s

o f the k−th s t a r t i n g node to the f i r s t node o f kp
103 i f ck < s f c
104 s f c = ck ;
105 be s tS ta r t = s ta r tnode s (n) ;
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106 end
107 end
108 kp = [ be s tS ta r t kp ’ ] ;
109 f t ( k ) = ka + s f c
110 snp{k} = kp ;
111 kp
112 end
113 e l s e %i f the f i r s t node o f the o r i g i n a l path i s a l r eady a

s t a r t i n g node , the program does not need to do anything , and
r e tu rn s the o r i g i n a l path

114 f t ( k ) = ka
115 snp{k} = kp ;
116 kp
117 end
118 c l o s e a l l ;
119 end
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