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This article explores some dominant trends in teaching 
classical electromagnetic (EM) field theory in electrical 
engineering (EE) undergraduate curricula. The acronym 
EM will be used interchangeably to designate either elec-

tromagnetic or electromagnetism. The intended significance will 
be evident from the context.

The focus of this article is on identifying innovation vec-
tors, to equip students to understand and fittingly apply com-
putational EM (CEM) tools as required when addressing 
present-day EM engineering challenges. Two aspects in need 
of critical reexamination are selected: the mathematic inter-
pretation of EM field quantities and the conditions validating 
the use of bulk material properties. Both elements are inspect-
ed from the perspective of their incorporation into compu-
tational schemes. Additionally, the conceptual benefits of 
stressing the encompassing role played by special relativity in 
classical electrodynamics is highlighted. This survey produces 
guidelines for programmatically recalibrating expert training 
within EE curricula, primarily at the undergraduate level.

INTRODUCTION
EE has made true technological leaps in recent years, intro-
ducing unprecedented perspectives toward a green and 

(practically) fully interconnected society. Identifying the 
transforming solutions that society expects is unthinkable 
without an insightful understanding of the foundations of 
EE, and solid training in classical EM is one of the pillars 
of any EE curriculum. The undergraduate EE curriculum, 
with an emphasis on its electronic and telecommunication 
tracks, is what we scrutinize in this study.

While not claiming that they are exhaustive, our experi-
ences with a wide range of European EE curricula show 
that the mainstream approach to teaching EM field theory 
starts by discussing the static fields, which are then used as a 
platform to discuss (quite basic) electrodynamics in the early 
bachelor’s (B.Sc.) degree phase. Subsequently, the special-
ized courses in the master’s (M.Sc.) degree curriculum focus 
on (advanced) EM propagation and scattering phenomena, 
as well as their applications. 

These courses seldom, if ever, revisit basic EM concepts 
such as field quantities or influence of matter, so EE gradu-
ates’ general perceptions owe a lot to the often-simplistic 
definitions given in early B.Sc. courses. Further, the increas-
ing accessibility of custom-designed and commercial CEM 
tools brought them into the classroom, both as a supporting 
instrument [1]–[6] but also in an increasingly systematic 
manner [7]–[9], with [10] rightfully observing their decisive 
role in any present-day EM curriculum.

However, indiscriminate use of CEM and enclosed 
commercial platforms can become detrimental, as noted 
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in the preface of [6]. Referring to M.Sc. students, our 
observation is that overuse of CEM leads to further 
obscuring the physical background of EM quantities and 
phenomena, resulting in not infrequent simulations that 
make perfect computational sense but have little, if any, 
physical justification. Interestingly enough, the insuf-
ficient preoccupation for the conceptual basis of the EM 
field extends into postgraduate (Ph.D.) education. For 
example, advanced courses in the European School of 
Antennas [80] program develop competencies in state-of-
the-art design and modeling techniques, but seldom touch 
on the nature and physical significance of the computed 
quantities.

The results of this pedagogy are the following prevalent 
perceptions in the antenna engineering (AE) commu-
nity, as summarized in the standard textbooks that most 
frequently provide the EM background for teaching AE 
[11]–[17].
1) EM quantities are vector quantities.
2) Maxwell’s equations ([18]; see also the extremely informative 

historical perspectives in [19] and [20]) are introduced as
such and live a life of their own.

3) Propagation in homogeneous and isotropic embedding (free
space) and scattering from (im)penetrable objects are the
only relevant EM aspects.

4) Inhomogeneity-related phenomena are confined to
extremely small subdomains that are habitually accounted
for via circuital models.

5) Time-harmonic operation is ubiquitous, with time-domain
studies being, in fact, multifrequency analyses with little
concern for the differences in the physical background and
modeling instruments (with de Hoop [11] being a notable
exception).

While it is principally sufficient to handle standard design 
and development tasks, this unilateral and occasionally sim-
plistic view does not adequately equip the future EE (and, 
especially, AE) experts with the insight needed to tackle the 
great EM engineering challenges that lie ahead. These tests 
include either those posed by nanotechnologies, with nano-
spheres, nanodipoles, or dimers becoming critical enablers 
as optical antennas [21]–[27], or from emerging carbon-
based nanoelectronics [28].

To address this situation, we critically reexamine the basic 
principles that underpin both undergraduate courses on clas-
sical EM and high(er)-level, system-engineering ones that 
build on classical EM. To this end, inspiration is drawn from 
reference physics textbooks on classical EM, with [29] being 
one of the most widely used and [30] and [31] offering an 
exceptional bridge between specialized physics curricula and 
EE profiles. To better serve the training of the experts, we 
focus on the following three aspects that we deem conditional 
for a proper understanding of EM phenomenology within the 
EE context:
1) the general framework, by also stressing the crucial interrela-

tion between classical electrodynamics and classical mechan-
ics via special relativity

2) the proper understanding of the EM field quantities, with
an emphasis on duality and the geometrical interpretation 
of both the quantities themselves and the governing equa-
tions

3) the adequate understanding of bulk material parameters,
with intrinsic limitations following from quantum mechanics 
and technological realizability.

Our analysis now proceeds by examining three aspects from 
a twofold perspective: the present state of undergraduate 
curriculum and the innovation vectors. The discussion will 
be confined to the conceptual foundations, with technical 
details intentionally left out as all these technicalities are 
elaborately covered in the cited references. Conclusions will 
be drawn at the end.

Throughout our study, the position in the configura-
tion is specified by the coordinates { , , }x y z  with respect 
to a background Cartesian reference frame with origin O  
and three mutually orthogonal unit vectors { , , }x y zt t t  that, in 
this order, form a right-handed system. The position vector 
is x y zr x y z,= + +t t t  with | | ,rr =  and the time coordinate 
is .t  The EM terminology used in this account is aligned 
with that used in EE [11]: ( , )tE r = electric field strength; 

( , )tB r = magnetic flux density; ( , )tD r = electric flux den-
sity; ( , )tH r = magnetic field strength; ( , )tJ r = the volume 
density of the electric (convection) current; ( , )tJ rext =  the 
volume density of the impressed (external) electric current; 

( )rf =  permittivity [ ( )rf  in the case of isotropic media]; 
( )rn = permeability [ ( )rn  in the case of isotropic media]; in 

free space ;0f f=  and ,0n n=  with ( )c /
0 0 0

1 2f n= -  repre-
senting the EM wave speed.

GENERAL FRAMEWORK

WHERE WE ARE
As clearly illustrated by textbooks [29]–[31], the physics 
approach to teaching EM is to first treat electrodynam-
ics, with the central position of special relativity as the 
unifying bridge between Maxwell’s electrodynamics and 
mechanics [30, p.  455] already highlighted at an early 
stage. The electrostatic and magnetostatic fields are then 
introduced as particular cases, by constantly stressing the 
intimate relationship between the two facets of the EM 
field [30, p. 477].

EE curricula follow a different path. The foundation of 
the EM training is laid down at the start of the B.Sc. pro-
gram, by accounting for the limitations in the mathematic 
baggage of first-year students. (An observation in [32, p. 
vii] is quite in place.) Teaching EM starts with discussing
static fields and then proceeds to a (more or less) brief
examination of electrodynamics. EM wave propagation
and scattering are primarily taught in basic M.Sc. courses
by starting from Maxwell’s equations, which are intro-
duced axiomatically. Little attention is given to reexamin-
ing the nature of the EM field quantities, while deriving
electrodynamics from special relativity is seldom, if at all,
mentioned.



INNOVATION VECTORS
We deem that training of the kind discussed is insufficient to 
prepare the (M.Sc.) EE student for tackling advanced topics 
(such as integrated electronics and optics, critical elements in 
present-day AE), for which interdisciplinary dialogue, especially 
with fundamental physics branches, is indispensible. The  fol-
lowing vectors can play an instrumental role in remedying this 
situation.

EM FIELD: THE BIG PICTURE
Any EE M.Sc.-level course should begin with properly defin-
ing the nature of the EM field, with [31, pp. 1–2] providing 
an excellent platform to this end. The EM field is ultimately a 
combination of E and B manifesting themselves in concert 
at every time instant t  and point in space .r  The fields carry 
energy, momentum, and angular momentum. This perspective 
can (and should) already be stated during B.Sc.-level introduc-
tory courses.

An observation is due at this point. EE EM curriculum 
focuses on the field equations as a trampoline toward deriving 
transmission models that rely on power-transfer arguments, an 
approach primarily justified by standard physical measurement 
protocols. As a result, the energy considerations are elaborately 
covered in the curriculum. However, the EM momentum and 
angular momentum are largely overlooked due to an (appar-
ent) lack of practical utility. Developing deep-space explora-
tion instruments is likely to render this viewpoint obsolete. 
Insufficient familiarity with EM (angular) momentum entails a 
restrictive view of the EM field, with phenomena such as EM 
wave pressure difficult to comprehend and handle. We strongly 
advocate for insisting on the complete EM picture, in which 
field quantities and full electrodynamics form an interdepen-
dent, unitary whole.

EM FIELD AND COMPUTATIONAL TECHNIQUES
Solving the vast majority of EM problems requires applying some 
computational techniques [31, p. 302]. Paradoxically, the CEM 
fundamentals are seldom (if at all) a part of EM courses, so that 
M.Sc. (and even Ph.D.) students have a limited ability to design 
numerical analyses and interpret numerical results. While gen-
eral and specific numerical methods are discussed in dedicated 
courses, it is the role of M.Sc. EM courses to discuss the following 
two aspects that are quintessential for any CEM technique. 
1) Any meaningful discretization of the EM field quantities

requires a thorough understanding of the nature of, and the
interdependencies between, field quantities (see the “Field
Quantities” section). By discretization, physical problems
translate into mathematic models. Numeric results are rep-
resentations of the physical states, which are constructed
under specific assumptions that must be considered when
assessing the adequacy of numeric results.

2) Numeric methods require some space–time discretization.
For examining the propagation in homogeneous embedding
+ (im)penetrable scatterer configurations, a spatial discreti-
zation at the scatterers’ boundaries offers an encompassing
solution. However, the study of (highly) inhomogeneous

configurations can only be carried out via local analysis 
techniques that call upon a full space–time discretization. 
The coarseness of the spatial discretization of such prob-
lems is selected for providing the level of detail required by 
the problem at hand. Unfortunately, it is less realized that 
this coarseness is bounded below by the limit of the validity 
of the macroscopic EM laws [31, pp. 286–289]. From an 
EE perspective, an even better lower bound is given by the 
scale at which macroscopic measurements are still feasible, 
which is termed the mesoscopic scale [33], [34]. A subdivi-
sion beyond these scales makes perfect sense from a com-
putational point of view, but has no physical significance. 
Once a spatial discretization is selected, the temporal dis-
cretization is dictated by the mathematics of the employed 
numeric technique. In view of its outstanding relevance, 
the spatial discretization will be focused upon in the “Mate-
rial Parameters” section.

EM FIELD AND SPECIAL RELATIVITY
Upon acquiring a proper understanding of the EM funda-
mentals, M.Sc. students should be introduced to the intimate 
relationship between EM field theory and special relativity. 
Without going into detail, EE M.Sc. students must concep-
tualize that the EM field is “relativity at low speeds” [31, p. 
148], with special relativity bridging electrodynamics and 
mechanics [30, p. 455]. An adequate instrument to this end 
is discussing some didactic examples [35]–[39]. Further, we 
believe that a didactic benefit can be drawn from present-
ing landmark experiments that paved the way toward special 
relativity [40, Ch. 1]. The next level of conceptual complex-
ity is deriving the EM field equations from special relativ-
ity. Admittedly, this would be too much of a detour in an EE 
undergraduate course although it can definitely be considered 
for Ph.D.-level courses. Interested students will find excellent 
self-study guidelines for understanding these topics in text-
books [29]–[31], [40]–[42].

FIELD QUANTITIES
One of the fundamental points that is insufficiently elucidated in 
the EE EM curriculum is the mathematic representation of the 
field quantities and its physical justification. This circumstance 
results in incomplete comprehension of the depth and complexity 
of the EM phenomena. By elaborating on the arguments in [43], 
this section will parallel the present prevalent framework in EE 
EM training and some alternatives, along two lines: the math-
ematic representation of the EM field quantities and the selec-
tion of the field quantities to be evaluated, based on the implicit 
complementarities manifesting between them. The next step will 
be to highlight the importance of judiciously selecting the spatial 
support to be employed when defining field quantities. These 
elements will eventually be combined into an easily comprehen-
sible and versatile framework that is properly rooted in the phys-
ics of (highly) inhomogeneous configurations and can be directly 
mapped onto a computational scheme [44]. This framework also 
representss a highly apt didactic instrument for understanding 
the EM field in all its complexity and beauty.



FIELD QUANTITIES REPRESENTATION
EM theory and, subsequently, AE-related topics are prac-
tically always taught based on the field quantities rep-
resented as vectors that depend continuously on space 
and time coordinates and have a time-harmonic temporal 
dependence. (These field quantities with continuous space–
time dependence are routinely used in local field equations 
that require the corresponding functions to be at least 
differentiable, if not twice-differentiable, as when wave 
equations are derived. From this perspective, stepping 
over to integrated field equations, as those employed in the 
“Space–Time Domain-Integrated EM Field Model” section, 
require the mathematically weaker integrability condition.) 
The continuous dependence on space and time is directly 
reflected in how the EM field quantities are constructed 
via Green’s function representations, a strategy that seems 
natural in the typical AE scenario: localized sources; free-
space propagation; (im)penetrable scatterers. Nonetheless, 
little, if any, attention is given to some (intrinsic) limitations 
of this ansatz.

The preference for the vector representation is justified 
mostly on a historic basis (see the excellent overview in [19] 
and the supplementary information in [45]) and by the facil-
ity of its (mathematic) handling. Moreover, in free space 
it enables a complete description of the EM field [31, pp. 
1–2]. However, as soon as matter and material interfaces are 
present, the vector rendition encounters difficulties. From 
a strictly mathematic point of view, it leads to inconsisten-
cies as concerns symmetry, as analyzed in [19]. Even more 
importantly, the continuous spatial dependence can result 
in (integrable) field singularities. While such behavior bears 
manifest conceptual benefits, as cogently demonstrated in 
[46], it is not amenable to physical measurements and cannot 
be reproduced numerically. Moreover, the singular behavior 
requires the EM field equations to preserve their form at 
indiscriminately small scales, a fact that collides with the 
matter’s discrete structure at the (sub)atomic scale.

The Green’s function type propagation also deserve discus-
sion. To begin with, it assumes EM propagation through linear, 
homogeneous, isotropic embeddings or similar stratifications 
with convenient geometries. Strictly speaking, the conjunction of 
linearity, homogeneity, and isotropy applies solely to free space, 
although it can also be safely assumed for gases. However, these 
features only make sense in condensed matter by invoking bulk 
material properties, the validity of which is limited below by the 
scale at which atomic averaging is meaningful [31, Sec. 81]. A 
note is due at this point: Recently, there has been a pronounced 
trend in AE toward using artificially engineered materials that 
technologically consist of nonnegligibly small elements. Propaga-
tion through homogeneous, isotropic media (almost) never applies 
to such materials, although, sadly, bulk properties are incorrectly 
employed in many simulation-driven designs [49]. (Note that in 
a reduced number of cases, such as those presented in [47] and 
[48], some “averaged” materials parameters can be asymptotically 
inferred for artificially engineered. The validity of this inference 
is conditioned by the structure containing enough elements as 

to give rise to the relevant bulk behavior. This situation is largely 
equivalent to that described in [31, Sec. 81].)

In view of the vector representation with continuous space–
time dependence encountering the difficulties mentioned, we 
now examine two possible alternatives.

DIFFERENTIAL FORMS REPRESENTATION
The starting point is the observation that the vector interpreta-
tion of the EM field quantities is, in fact, geometric in nature 
and its purpose is to indicate that these quantities not only have 
a magnitude but are also testing direction dependent. Once the 
geometric nature of this problem is recognized, the next step is 
to identify instruments that are suitable to manage it, implicitly 
accounting for the spatial discontinuities in the support of EM 
problems and, as much as possible, ensuring the metric invari-
ance of the formulations.

The sought for solution was offered by the differential 
forms algebra (also referred to as exterior calculus) [50]. Cast-
ing the classical EM field theory into a differential forms for-
malism originates in the pioneering works [51]–[54] and was 
elaborated upon in [55]. Differential forms were applied in 
EM over a very broad range, starting with basic formulations 
[56] up to high-level studies [57]. The main difference with
respect to the prevalent, vector mathematic representation
of EM quantities is dropping the continuous r-dependence,
which was unwarranted in this case, and replacing it with a
small integrals interpretation.

The immediate consequence is that considering material 
parameters at a point becomes meaningless, matter being includ-
ed in the formalism via parameters that are somehow averaged 
over small volumes. These ideas emerged in a large number of 
reference works mainly concerned with the computation of static 
and stationary fields [58]–[65]. Surprisingly, this approach had 
a reduced echo in AE, with [66] acting as one of the singular 
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references that mentions the use of differential forms and [67] 
employing a Whitney forms discretization (a typical differential 
forms instrument), but within a vector wave equation. A similar 
situation also manifests itself in the realm of physics, with Hehl 
and Obukhov [68, p. 8] noting the scarcity of works on classical 
EM using exterior calculus.

For brevity, the differential forms expression of the EM 
field equations, suggestively summarized in Figure 1, is 
omitted here; readers are referred to the elaborate treat-
ments in [51]–[55]. Furthermore, following arguments in 
[54], the analysis in [43] highlights the manner in which the 
symmetries in the scheme in Figure 1 reflect important EM 
field features and insist on the conceptual benefits entailed, 
as well as on the difficulties encountered in the computer-
code implementation of this approach to interpreting EM 
field quantities.

Teaching EM via differential forms algebra can be reward-
ing (see [69] for the educational profits of this avenue). Such 
an effort can take advantage of a sufficient number of excellent 
textbooks using this instrument in EM theory [55], [59], [68], 
[70], [71]. Translating Maxwell’s equations into this framework 
is formally very easy, as demonstrated by [54] and [55] (also see 
the summary in [43]). The most relevant conceptual benefits 
are 1) an articulated “big picture” (see Figure 1) in which the 
interdependencies between field sources and field quantities 
are clearly illustrated and 2) a direct translation of the formalism 
into numeric schemes.

The exterior calculus perspective on EM has similarities 
with the space–time domain-integrated field relations method 
[33] that we will elaborate upon in the “Space–Time Domain-
Integrated EM Field Model” section. Note that this method was
constructed, in essence, as a computational tool. Nonetheless, its
physical justification is similar to using differential forms, with
which it also shares a common point of view on material proper-
ties that are only accounted for in an averaged manner, and only
over finite volumes.

TENSOR REPRESENTATION
An alternative interpretation of the EM field quantities is 
as tensors. This perspective is best illustrated by [72] (see 
also [41, Ch. 10]). This avenue also attempts to reconcile 
the geometric features of the mathematic representa-
tion with the physical fabric of the represented quanti-
ties. Recall that using a tensor formalism is at the core 
of special relativity, and that standard physics textbooks 
[29]–[32], [41] include substantial space on the algebra 
and, above all, on the physical substrate of the four-vectors 
and tensors describing relativistic quantities. It is also 
worth noting that de Hoop [72] explicitly advocated teach-
ing EM via a tensor formalism, insisting on the insight 
benefits obtained at the price of using, in fact, quite basic 
mathematical tools. From this perspective, that formalism 
offers singular opportunities as a conceptualization vehicle 
and an educational tool, with classroom implementations 
testing the students’ proficiency in comprehending and 
manipulating EM field notions.

SELECTION OF THE FIELD QUANTITIES
As we decidedly indicated at the beginning of the “Innovation 
Vectors” section, since duality and complementarity are at the 
core of the EM field concept, these primordial features should 
be stressed at the inception of any EM course. In EE curri-
cula, preeminence is given to one field quantity or another for 
emphasizing the wave-like propagation of the EM field. How-
ever, the need to concurrently account for two complementary 
field quantities is the norm in CEM by now and should become 
mainstream in classrooms.

Selecting the correct combination of representative field 
quantities is crucial. In EE in general and especially in AE, 
there seems to be a preference for the E H)  duality. This 
choice stems from the association of E with voltages and of H  
with electric currents (construed as the sources of the magnetic 
field). The combination of the two is put in correspondence with 
a circuital perspective on the operation of EM devices. In a 
CEM context, opting for the E H)  duality is also justified by 
the (apparent) similarity in representation of the two quantities.

Nonetheless, in physics there is no doubt that E B)  is 
the proper duality [30, p. 477]. The fundamental justification 
of this choice is dictated by special relativity: E and B are the 
quantities intervening in the four-vectors and tensors providing 
the relativistic description of the EM field [29]–[32], [41]. But 
opting for B (as opposed to H) has important benefits from an 
engineering perspective as well. As indicated in [44], operating 
with E and B in a CEM context entails exclusively evaluating 
field quantities that are continuous across any (locally) smooth 
interface. It must be noted that any imposed discontinuity of the 
applicable field components of E and B requires invoking active 
magnetic charge distributions or currents (with “active” being  
interpreted as in [11, Sec. 18.3]). While induced magnetic charg-
es or currents do serve a purpose in CEM, imposing them 
requires acknowledging their physical existence and all available 
observations compellingly contradict this (see also [68, p. 3]).

HIERARCHY AND DUALITY IN R3 OBJECTS
Recognizing that defining the EM field quantities in a some-
what integrated manner, as opposed to assigning them a value 
at any given point, presents clear conceptual advantages, it 
becomes important to carefully examine the nature of the spa-
tial support of those aimed-at integrals. This problem received 
an elegant and conclusive solution in [73] and [74], in which a 
general topological hierarchy of 3D manifolds was constructed 
and the physical properties of the EM quantities were mapped 
on those manifolds. The core ideas of this theory are summa-
rized in [43] and those arguments are now briefly reiterated for 
the convenience of the reader.

The framework in [73] distinguishes between configuration 
variables associated with an inner orientation and source vari-
ables associated with an outer orientation (see Figure 2). Field 
quantities only make sense in integrated form; consequently, 
this framework is termed the finite formulation of the EM field. 
Duality plays a fundamental role in that construction: the field 
quantities have dual topological supports that directly find their 
counterpart in the duality of field quantities. As a result, any 



computational scheme must make use of dual meshes and the 
supports of the integrals that involve configuration and source 
variables cannot be collocated. It is noteworthy to observe that 
this strategy meant a return to the principles pioneered in [75] 
for hexahedral meshes. Nonetheless, the finite formulation of 
EM field was also applied to unstructured grids via Voronoy 
mesh duality.

SPACE–TIME DOMAIN-INTEGRATED EM FIELD MODEL
The arguments presented were combined in the space–time 
domain-integrated field relations in EM, as proposed in [34]. It 
admittedly is a primarily computational construction but with 
a solid physical background. That method was revisited in [44] 
and its physical basis was refined further. In view of their value 
as an insightful didactic instrument, we summarize the appli-
cable main choices and equations, as given in [34] and [44].

The following prerequisites apply.
1) The method is designed to analyze highly inhomogeneous

domains inside which inhomogeneity is (possibly) preserved
down to the mesoscopic scale (see the definition in the
“Innovation Vectors” section).

2) A simplicial (tetrahedral) mesh is constructed at mesoscopic
scale. The mesh fits tightly on the boundaries of the subdo-
mains where material continuity can be assumed. Strictly for 

computational purposes, the simplicial mesh should be a 
Delaunay one and mesh refinements are exclusively per-
formed to ensure this condition. Note that the Delaunay 
meshing is not required from a conceptual point of view.

3) Define the constructed simplicial mesh as the primal mesh
and its barycentric dual [73] as the dual mesh.

4) Discretize EM field quantities via consistently linear edge
and face expansion functions [76] on the primal mesh: E and
H  via edge expansion functions and ,B  ,D  ,J  and Jext  via
face expansion functions. In this manner, field quantities are 
defined on the boundary of the simplicial cells only and then 
are extrapolated into the cells’ interior. (Algebraic topology
ensures the possibility to employ a consistently linear spatial
expansion based on the limiting values of the expanded
quantities upon approaching nodes, edges, and faces.) This
expansion is needed for performing line, surface, and volume 
integrations of the local EM field quantities.

5) Complement the spatial discretization by a linear time dis-
cretization.

Two elements are quintessential to this scheme: the simplicial 
mesh and using exclusively linear interpolations. Since only 
(somehow) integrated quantities can be subject to physical 
measurements, it is logical to select the simplest integration 
supports, namely lines, triangles, and tetrahedra. Further, 

Inner Orientation of a
Volume: Compatible
Orientation With That of
Its Faces

Inner Orientation of a
Surface: Compatible With
the Orientation of Its Edges

Inner Orientation of a Line:
The Basic Feature for
Assigning an Orientation to
All Geometrical Elements

Inner Orientation of a Point:
A Positive Point Is Oriented
as a Sink

Inner Orientation

Outer Orientation of a Point:
Compatible With the Inner
Orientation of the Volume
Containing the Point

Outer Orientation of a Line:
The Inner Orientation of a
Surface Intersecting the Line

Outer Orientation of a
Surface: The Inner Orientation
of a Line Crossing the Surface

Outer Orientation of a
Volume: The Choice of
Outward or Inward Normals
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FIGURE 2. The inner and outer orientations, according to the scheme in [73, Fig. 2]. The inner orientation is fully defined along 
a line, surface, etc., while the outer orientation requires crossing a line, surface, etc. Except for points, all orientations are 
consistently derived from the inner orientation on a line. The duality between geometric elements is illustrated. (Used with 
permission from [73].)



local quantities can only be inferred from those integral quan-
tities via some interpolation/extrapolation procedure and the 
linear interpolation offers the natural instrument to this end. 
Computationally, the conjunction of simplicial decomposition 
and linear interpolation allows expressing all entailed inte-
grals analytically, with obvious computational effectiveness 
benefits.

By following the reasoning in [34], but making use of the 
customary volume densities of (impressed) electric currents, the 
space–time domain-integrated field relations are
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The following notations are used in the space–time domain-
integrated field relations: D = a bounded domain with piece-
wise smooth boundary ;D2  S = a simply connected subsurface 
of D2  with piecewise smooth boundary ;S2  n=t  the unit vec-
tor along the outward normal to D2  (the orientation on S2  and 
that of nt  are related by means of the right screw rule); x =t  the 
unit vector along the tangent to ;S2  and T = a bounded time 
interval with boundary { , },t tT 1 22 =  the notation u T2  being 
used for u( ) ( ),( )f t f tf t 12T = -2  with ( )f $  an arbitrary function.

These relations are supplemented with the following volume 
(source) integral relations:
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As usually, ( , )t An D r d
D
$

2
t#  is interpreted as the total (time-

dependent) electric charge enclosed by .D2  Inside domains 
where no volume charge density is stored, as is the case in the 
vast majority of (C)EM relevant configurations, (4) has a zero 
right-hand side term as in [34], with the usual current continu-
ity condition being readily entailed. The space–time domain-
integrated field relations must be complemented by suitable 

,E D)  E J)  and B H)  mappings, with [33], [34], and [44] 
providing the guidelines.

Equations (3) and (4) generalize the standard Gauss’s laws. 
However, as stressed in [34], they are in fact space–time inte-
grated compatibility relations since a summation of (1) and (2) 
applied to any subsurface composing D2  automatically yields 
(3) and (4). Two important observations apply to these space–
time domain-integrated relations.
1) In line with [73] and [74], (1) and (3) are written for curves

and surfaces with an inner orientation, while (2) and (4) for
surfaces with an outer orientation. In view of the assumed
prerequisites, (1) and (3) are associated with elements of the
primal mesh, whereas (2) and (4) are associated with ele-
ments of the dual mesh.

2) Relations (1) and (3) have the dimension of action rated by
charge and (2) and (4) have that charge, with action and
charge being the fundamental mechanical and electrical
physical observables (as discussed in Rumsey [77]), respec-
tively. At this point, we note that [31, p. 273] speculated on
the benefits (and beauty) of a CEM method using action as a 
basic quantity and observed the unavailability of such a for-
mulation; the space–time domain-integrated EM field
model may offer that missing tool.

In the classroom, the space–time domain-integrated rela-
tions framework offers a unique instrument for demonstrating 
the geometric fabric of the EM field equations while requir-
ing extremely basic mathematic tools. Furthermore, its close 
relation to the manner in which physical measurements are 
effectuated renders it very tangible and easily comprehen-
sible. Moreover, judiciously interrelating integral quantities 
with some local values (via linear interpolation) provides a 
path toward defining field quantities, while precluding any 
singularity. At a higher conceptual level, constructing the field 
quantities via the consistently linear expansions associated 
with simplexes of the primal mesh enables expressing straight-
forwardly surface integrals on any configurational surface. In 
particular, it allows expressing the integrals needed for applying 
the EM reciprocity theorems [11, Ch. 28], a fundamental result 
in classical EM field theory.

MATERIAL PARAMETERS
The last aspect to be elucidated is accounting for material 
parameters. Here it is noted that most AE works concentrate 
on very simple, homogeneous, and isotropic media. Moreover, 
the examined configurations often consist of contrasting scatter-
ers that are immersed in an embedding (free space or a simple 
dielectric with permittivity ,0rf f f=  with the relative permit-
tivity rf  as a scalar constant). However, the technological evolu-
tions mentioned in the “Introduction” make use of extremely 
fragmented media, possibly down to a mesoscopic level. The 
materials in these subdomains are themselves nontrivial, such as 
the strongly anisotropic artificial dielectrics proposed in [47] and 
[48]. As a result, examining the adequate manners to include 
intricate material properties in EM formalisms is fully justified.

WHERE WE ARE
The mainstream approach in EE is to account for bulk 
material parameters inside subdomains of arbitrary shapes 
and bounded by sharp transition boundaries (interfaces) 
where the standard, local interface boundary conditions 
are applied; see, for example, [11, Sec. 20.1], [12, Sec. 
1.5], [14, Sec. 11.4], and [15, Sec. 1.5). The relevant mate-
rial properties are inferred via (often implicit) averaging 
strategies, an approach that concurs with the manner in 
which macroscopic measurements are performed. This 
avenue is not free of caveats, with the most evident being 
the legitimacy of the averaging procedure that yields the 
employed bulk property. We highlight two situations when 
this legitimacy is debatable (other doubtful situations may 
also be identified).



NATURAL MEDIA
Bulk (electrical) properties can only be inferred above a 
scale that greatly exceeds that at which the large atomic 
variations manifest themselves, with [31, Sec. 81] giving 
a lower limit of about 10 nm, above which quantum fluc-
tuations can be deemed “washed out.” For most present-
day technologies, there is a safe margin down to that limit. 
However, pushing toward higher operational frequencies 
and integrated circuits miniaturization may compress that 
margin. An immediate example is provided by [23], [27], and 
especially [24] that operate with nanoparticles with shape 
details coming very close to the 10-nm limit. Another exam-
ple is inferring circuital parameters from surface roughness 
in the case of devices manufactured in sub-32-nm technolo-
gies. The validity of this strategy is challenged not only by 
the stochastic character of the surface’s shape, an aspect 
that is already accounted for, but also by the fact that many 
of the surface irregularities may contain insufficient atoms 
to justify the use of an averaged, bulk material property.

ARTIFICIALLY ENGINEERED MEDIA
An even more pressing need to adequately understand 
bulk material properties arises in the realm of artificially 
engineered media, which are generically referred to as 
metamaterials. These purposefully created materials hold 
promise for exceptional EM properties, some of them not 
encountered in nature, that allow developing devices with 
unprecedented features. As a result, a vast research effort 
is being invested in metamaterials, with exotic material 
properties being readily used in CEM simulation-driven 
studies and designs. Interestingly enough, metamaterials 
are routinely accounted for in CEM via bulk material prop-
erties. However, most of such materials consist of lattices 
of (resonant) structures of macroscopic dimensions, which 
leads to the issue of the legitimacy of averaging for deriv-
ing bulk properties for such media. With strict respect to 
the use of metamaterials in CEM, the following situations 
can occur.
1) The domain occupied by metamaterials has dimensions

commensurable with those of the constructive elements. In
such situations, inferring bulk properties via averaging is
questionable, the more so when the simulation technique
makes use of submeshing. These difficulties can be circum-
vented by resorting to alternative, standard, methodologies
that explicitly avoid invoking any (unphysical) bulk material
parameters [49].

2) The domain for which the metamaterial behavior is pre-
sumed is too small to accommodate any technologically real-
izable lattice. In these cases, although applying a numerical
analysis with a presupposed bulk property is computationally 
legitimate, the technological impossibility renders that study
completely irrelevant.

3) The domain for which the metamaterial behavior is pre-
sumed is sufficiently large to allowing averaging and the
(CEM-employed) bulk properties are physically justifiable.
Nevertheless, such structures are necessarily electromag-

netically (very) large and, as such, are amenable to analyses 
via instruments such as the ones described in [78] and [79] 
that do not invoke bulk material parameters.

In view of the continuously increasing interest in artificially 
engineered media and the expected increased involvement of 
students in design efforts making use of them, it is important 
to insist on these aspects during (basic) EM courses to preclude 
misconceptions and false expectations.

INNOVATION VECTORS
This review has clearly demonstrated the need to include 
an in-depth discussion on bulk behavior in any EE (AE) 
training. The basic elements of this discussion should be as 
follows.

 ■ At the technological macroscopic level, any bulk prop-
erty must rely on averaging over a sufficient number of
constructive elements that are expected to collectively
offer a certain EM capability. Should this not be the
case, using bulk properties is not warranted; this also
holds when the applied numerical technique requires
submeshing, the size of the mesh elements not endors-
ing the averaging.

 ■ At the microscopic level, the lower limit for which quantum
fluctuations can be averaged (about 10 nm) inherently sets
a lower limit for the applicability of bulk properties. Here,
too, the need to submesh may raise supplementary concerns
about the validity of using bulk material properties.

CONCLUSIONS
We have scrutinized some trends in teaching classical EM 
field theory within the EE undergraduate curricula. Our 
analysis yielded a number of innovation vectors. The first 
concerns the general framework, with the crucial inter-
relation between classical electrodynamics and classical 
mechanics via special relativity being highlighted as a nec-
essary addition to the current programs. Subsequently, 
upon noting the pervasive interpretation of the EM field 
quantities as vector functions that depend continuously 
on space and time coordinates, and have a time-harmonic 
temporal dependence, we put forward a differential forms 
representation, a tensor representation, and a space–time 
domain-integrated field relations formalism as alternative 
interpretations. 

In all these cases, a time-domain dependence was 
assumed and two of the approaches circumvented the con-
tinuous dependence on the space coordinates. Our survey 
insisted on the dualities and complementarities that mani-
fest themselves in the classical EM theory. The treatment 
of the mathematic modeling was complemented by discuss-
ing a general topological hierarchy of 3D manifolds that 
provides support for expressing the (somehow) integrated 
field equations. The the space–time domain-integrated field 
relations in EM, in essence, a computational framework, was 
singled out as a didactic avenue to gain insight and proficien-
cy for handling classical EM field concepts. The third vector 
concerned the appropriate understanding and the physically 



justifiable use of bulk material properties. Upon noting mis-
conceptions, some rules were formulated to adequately 
account for bulk properties. In natural media, averaging must 
always be performed at a scale at which quantum fluctuations 
are “washed out,” with a diameter of 10 nm as a practical lower 
bound. In artificially engineered media, the lower limit is dic-
tated by the electrical size of the elements that collectively offer 
a specific property. In most practical cases, the scale at which 
averaging must be performed is so large that accounting for bulk 
material properties is actually impractical.

Including these elements in undergraduate curricula will 
allow their programmatic recalibration, especially in the context 
of pervasive use of computational instruments in education. 
Moreover, we deem their discussion conditional for equipping 
future EM experts with an adequate platform for understanding 
and correctly applying CEM tools, as required to address the 
emerging EM engineering challenges.
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