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Repetitive Control for Lur’e-Type Systems:
Application to Mechanical Ventilation

Joey Reinders , Mattia Giaccagli , Bram Hunnekens , Daniele Astolfi , Tom Oomen , Senior Member, IEEE,
and Nathan van de Wouw , Fellow, IEEE

Abstract— Repetitive control (RC) has shown to achieve supe-
rior rejection of periodic disturbances. Many nonlinear systems
are subject to repeating disturbances. The aim of this article is
to develop a continuous-time RC design with stability guarantees
for nonlinear Lur’e-type systems. Approximate output tracking
is achieved by combining an internal model, consisting of a finite
number of linear oscillators with frequencies at the reference
frequency and at its multiples, with a stabilizer that guarantees
a convergence property of the closed-loop system. The developed
RC approach is applied to a nonlinear mechanical ventilation
system for intensive care units (ICUs), which can be modeled
as a Lur’e-type system. The experimental study confirms that
the RC scheme is able to successfully follow the desired target
pressure profile to properly support the ventilation needs of an
adult patient.

Index Terms— Circle criterion, convergent systems, harmonic
regulation, Lur’e-type system, mechanical ventilation, medical
applications, nonlinear output regulation, repetitive control (RC).

I. INTRODUCTION

REPETITIVE control (RC) schemes are particularly suit-
able to achieve robust tracking of a periodic reference

signal, see [1], [12], [18], [20]. Tracking of periodic signals
is a common control problem in many relevant application
fields, for example, in healthcare. In this article, the proposed
analysis and controller design are motivated by the application
of mechanical ventilation of patients on intensive care units
(ICUs). Mechanical ventilation is used to support the breathing
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of patients by providing the correct oxygen support and
elimination of carbon dioxide [40]. In ventilation, tracking of
a periodic signal, i.e., pressure target, is desired.

Several studies in the literature have focused on achiev-
ing accurate tracking performance for mechanical ventilation,
e.g., [7], [17], [31], [34]. In particular, promising is the
application of discrete-time–frequency domain RC in [32]
and [29]. In this work, a significant reduction of the pressure
tracking error is achieved. However, this is achieved under
a linearity assumption of the considered ventilation system
dynamics, whereas a mechanical ventilation system contains
nonlinear system dynamics, see [30].

The considered ventilation system is a nonlinear dynami-
cal system, which can be modeled as a Lur’e-type system.
Lur’e-type systems consist of the interconnection of linear
time-invariant dynamics with a static nonlinearity in the feed-
back loop. These systems form a practically relevant subclass
of nonlinear systems, also for other application domains.
To achieve robust tracking of the periodic pressure target of
the ventilation system, a generically applicable RC scheme for
Lur’e-type systems is developed.

The structural idea of RC is based on the internal model
principle, namely, on the fact that when a periodic signal with
known period T must be tracked, a copy of the disturbance
model generating such a signal must be included in the regu-
lator [5]. This is generally done through a universal generator
of a T -periodic signal. Such a generator is implemented using
a memory loop with a delay of length T . This memory loop
places an infinite number of poles on the imaginary axes at
the fundamental frequency 2π/T and its multiples, see [14],
[12]. Then, the extended system composed by the plant and
such memory loop is stabilized with feedback control.

Because a delay is easily implemented in discrete time,
significant research efforts have been devoted to the develop-
ment of discrete-time implementations of RC. In this approach,
mostly linear systems are addressed from the theoretical point
of view, and good tracking performance is achieved in these
systems, see [6], [10], [21], [32], [35], [36]. Unfortunately,
the developed frequency analysis tools cannot be directly
employed in the presence of nonlinearities. Therefore, typi-
cally, no formal stability proofs are provided for RC applied
to nonlinear systems.

In the existing literature, several studies have considered
output tracking problems for continuous-time nonlinear sys-
tems. For instance, in [1], [8], [19], and [3], the problem of
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output tracking for nonlinear systems that can be written in
the canonical normal form is considered. In [22], incremental
passivity concepts are used for the design of global regu-
lators, and in [25], output regulation of Lur’e-type systems
using convergent system properties is considered. However,
a constructive design of the stabilizer and guaranteed harmonic
regulation properties are not presented. The design in [2], [12],
and [3] relies on state-feedback approaches, and the domain
of attraction of the periodic solution is only local in the size
of [2] and [3] or not discussed [12]. In [13], contractive
feedback laws in tracking problems are developed for constant
references, but not for periodic references. Finally, in [38],
[39], and [37], a learning control approach has been devel-
oped to achieve tracking in nonlinear systems with repetitive
disturbances. These methods show a significant improvement
in tracking performance. In the scope of the challenge taken on
in this article, a drawback of the work in [37], [39], and [38] is
that these algorithms do not apply straightforwardly to Lur’e-
type systems with (uncertain) output nonlinearities.

Although significant progress on output regulation for non-
linear systems has been made, an intuitive RC scheme for
nonlinear Lur’e-type systems with a formal stability guarantee
is not yet available. To achieve this, a finite-dimensional
realization of the exact RC scheme in [9] and [1] is used.
The reason to consider a finite-dimensional realization is
the difficulty to analyze the interconnection of an infinite-
dimensional system, i.e., the internal model, with nonlinear
plant dynamics with nonlinear outputs. In this article, we fol-
low an approach that relies on the harmonic representation of
the delay, see [2], [3], [12], [20]. The RC scheme is imple-
mented by including a finite number no of linear oscillators in
the control loop. This results in no poles on the imaginary axes
at the frequency of the periodic reference and its multiples.
Therewith, if the resulting closed-loop trajectories converge
to a periodic solution, harmonic regulation of the tracking
error is guaranteed. More precisely, the Fourier coefficients of
the error signal corresponding to the frequencies embedded
in the linear oscillators are zero, and the L2-norm of the
error signal is sufficiently small if no is large enough [2], [3],
[12]. To guarantee the existence of globally asymptotically
stable periodic solutions, the theory of convergent systems is
exploited, see [23], [24], [26], [27]. To this end, we suppose
that the static nonlinearity in the Lur’e-type system satisfies
an incremental sector bound condition. Then, using the strictly
positive real (SPR) lemma, sufficient conditions for a stabi-
lizing output-feedback law are established. From a practical
point of view, such an approach is interesting, because the
conditions can be checked by visual inspection of the Nyquist
plot and linear analysis tools (potentially using measured data
only).

Eventually, this proposed repetitive controller design is
applied to the practical problem of mechanical ventilation.
The existing literature, e.g., [29], [32], has shown that
frequency-domain RC can significantly improve the tracking
performance in ventilation systems. However, because these
ventilation systems are nonlinear, formal stability guarantees
for the closed-loop system with RC are missing. Therefore,
the control approach developed in this article is applied to

this Lur’e-type ventilation system to improve its performance
with formal stability guarantees.

Summarizing, the main contributions of this article are as
follows:

1) the development of an RC strategy for nonlinear Lur’e-
type systems, including a formal stability analysis;

2) the implementation and analysis of this RC scheme
on the practical use case of a nonlinear mechanical
ventilator, including experimental validation.

This article is organized as follows. In Section II, the
problem statement is formalized. In Section III, the main
results concerning the RC controller design are presented.
Then, in Section IV, the RC paradigm is applied to the
mechanical ventilation use case. Finally, the main conclu-
sions and recommendations for future work are presented in
Section V.

Notations: Throughout this article, s represents the Laplace
variable. Given an n ×n symmetric matrix P , we write P ≻ 0
(≺ 0) if P is strictly positive (negative) definite. Given an
n × n matrix P , the operator blkdiag

(
P · · · P

)
represents a

block-diagonal matrix with P as block-diagonal elements, and
the dimensions are specified case-wise. Furthermore, ẋ repre-
sents the continuous-time derivative of x . Finally, we define
PT (r̃) as the set of C1 T -periodic functions with bounded
infinity norm and bounded infinity norm of its derivative.
In particular, we say that r(t) ∈ PT (r̃) if r is C1, T -periodic,
and satisfies sup

t∈[0,T ]

|r(t)| ≤ r̃ and sup
t∈[0,T ]

|ṙ(t)| ≤ r̃ for some

nonnegative real number r̃ .

II. PROBLEM STATEMENT

In Section I, a gap in the existing literature has been identi-
fied in the application of RC to mechanical ventilation systems.
More specifically, the commonly used frequency-domain RC
does not provide formal stability guarantees when it is applied
to Lur’e-type nonlinear ventilation systems. Therefore, in this
section, a formal problem statement is formulated to develop
RC for Lur’e-type systems.

Consider a single-input single-output (SISO) Lur’e-type
system of the form

ẋ = Ax + Bu + Ew

y = Mx + Nw

w = −ϕ(y)

v = Cx + Dw (1)

where x ∈ Rn is the state, u ∈ R is the control input,
w and y are in R, v ∈ R is the measured output, and
A, B, E, M, N , C, and D are real matrices of appropriate
dimensions. The static nonlinearity ϕ : R 7→ R satisfies
ϕ(0) = 0, and the following incremental sector bound
condition:

ϕ ≤
ϕ(y1) − ϕ(y2)

y1 − y2
≤ ϕ̄ ∀ y1 ̸= y2 (2)

for some known nonnegative constants 0 ≤ ϕ ≤ ϕ̄. The control
objective is to regulate the output v of (1) to a T -periodic
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bounded reference r ∈ PT (r̃). Hence, the output regulation
error is defined as follows:

e(t) := r(t) − v(t) . (3)

With the mechanical ventilation application in mind, where
the full-state x is not available for feedback, we aim to design
a dynamic output feedback controller for (1), processing only
the regulated output error e, such that harmonic regulation is
achieved in the following sense.

Problem 1 (Harmonic Regulation of Order no): Consider
(1) with regulation error (3), and assume that the nonlinearity
ϕ satisfies the incremental sector bound condition (2). Given
any r̃ > 0, no > 0, determine a dynamic output feedback
controller of the form

ż = ξ(z, e)

u = ζ(z, e) (4)

such that for any reference r ∈ PT (r̃) and any initial
condition xcl(0) := [xT (0), zT (0)]T

∈ Rnx , the corresponding
steady-state trajectory x̄cl := [x̄T , z̄T

]
T of the closed loop (1),

(3), and (4) is bounded, T -periodic, and exponentially stable,1

and the steady-state output error ē has no harmonic content at
frequencies ω = k2π/T , k = 0, 1, . . . , no.

The RC approach in [2], [3], and [12] is followed to
achieve the harmonic regulation objective stated in Problem 1.
The main idea is to include linear oscillators at the periodic
reference frequency and its multiples in the regulator dynam-
ics (4). This approach achieves, if the closed-loop steady-
state trajectories are bounded and periodic, structural zeros
at the frequencies kω with the blocking property of zeroing
the Fourier coefficients of the output e corresponding to these
frequencies. As a consequence, the strategy that we propose
in this work is to do the following.

1) Design the function ξ in (4) to include the linear
oscillators.

2) Design the feedback ζ in (4) to ensure the desired
stability properties for the resulting closed-loop system.

3) Analyze the resulting trajectories, and show that the
harmonic content is zero at the desired frequencies. As a
byproduct, we verify that if the number of oscillators
included in the regulator are large enough, the asymp-
totic ℓ2-norm of the output e can be regulated to an
arbitrarily small value.

III. RC OF LUR’E-TYPE SYSTEMS

In this section, the repetitive controller design for Lur’e-
type systems is presented. First, in Section III-A, the repetitive
controller design is presented, the closed-loop dynamics are
obtained, and a loop transformation is applied that allows the
use of known results on exponentially convergent Lur’e-type
systems. In Section III-B, known results on convergent Lur’e-
type systems are presented as a stepping stone to the stability
analysis. Finally, in Section III-C, it is shown that the proposed
controller design solves Problem 1.

1A time-varying solution x̄(t) is called exponentially stable if ∥x(x(0), t)−
x̄(x̄(0), t)∥ ≤ α∥x(0) − x̄(0)∥e−λt for some α, λ > 0.

A. Controller Design

To provide a solution to Problem 1, the RC approach in [12]
is adopted by including no linear oscillators in the control
loop, at the reference frequency and its multiples, that process
the output e to be regulated, as in standard output regulation
problems, see [2], [3], [27]. To this end, the control structure
in (4) is defined as follows:

ż = ξ(z, e) := 8z + 0e (5)
u = ζ(z, e) := K z (6)

where z =
[
z0 zT

1 · · · zT
no

]T
∈ R(2no+1)×1 with z0 ∈ R

and zk ∈ R2×1 for k = 1, . . . , no, and where the matrices
8 ∈ R(2no+1)×(2no+1), 0 ∈ R(2no+1)×1, and K ∈ R1×(2no+1)

are defined as follows:

8 := blkdiag
(
0 φ1 · · · φno

)
0 :=

[
γ0 γ T

1 · · · γ T
no

]T

K :=
[
κ0 κ1 · · · κno

]
(7)

where

φk := k

 0
2π

T

−
2π

T
0

, k = 1, . . . , no (8)

with γ0 ̸= 0 the integrator gain, such that z0 embeds an
integrator, and the matrix γk ∈ R2×1 is chosen, such that the
pair (φk, γk) is controllable for any k = 1, . . . , no. By con-
struction, the pair (8, 0) is, therefore, controllable. In this
control structure, the z dynamics represent the state-space
representation of no linear oscillators at the periodic reference
frequency and its multiples. The number of oscillators no

represents a degree of freedom of the controller design, as it
defines the dimension of the chosen internal model, and allows
to suppress the first no harmonics of the steady-state trajectory,
which is formalized later.

Next, the closed-loop system consisting of the plant (1)
and (3) and the repetitive controller (5) and (6) is written as
a Lur’e-type system

ẋcl = Aclxcl + Eclwcl + d(t)

ycl = Mclxcl + Nclwcl

wcl = −ϕ(ycl) (9)

where

Acl :=

[
A BK

−0C 8

]
, Ecl :=

[
E

−0D

]
, Qcl :=

[
0
0

]
Mcl :=

[
M 0

]
, Ncl := N (10)

where xcl := [xT , zT
]
T

∈ Rnx , wcl := w, ycl := y, and
d(t) := Qclr(t), is a periodic, with period time T , time-
varying piecewise continuous disturbance (induced by the
periodic reference).

Next, a loop transformation as described in [16, Chap-
ter 7] is applied to the closed-loop dynamics. This loop
transformation gives an equivalent Lur’e-type system where
the transformed nonlinearity ϕ̃(ylt) satisfies the incremental
sector bound in (2) with ϕ̃ = 0 and ϕ̃

−

= ∞. This enables direct
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application of the known results on exponentially convergent
Lur’e-type systems in Section III-B. This loop transformation
gives the following loop-transformed Lur’e-type system:

ẋ lt = Altxlt + Eltwlt + d(t)

ylt = Mltxlt + Nltwlt

wlt = −ϕ̃(ylt) (11)

where

Alt := Acl −

(
Eclϕ

(
Mcl + Ncl

(
1 + ϕNcl

)−1
ϕMcl

))
Elt := Ecl

(
1 − ϕDcl

(
1 + ϕNcl

)−1
)

Mlt := φMcl − φNcl

(
1 + ϕNcl

)−1
ϕMcl

Nlt := 1 + φNcl

(
1 + ϕNcl

)−1
(12)

where xlt ∈ Rnx , ylt ∈ R, wlt ∈ R, φ = ϕ̄ − ϕ, and ϕ̃(ylt)

satisfies the incremental sector bound in (2) with ϕ̃ = 0 and
ϕ̃
−

= ∞. Furthermore, it is assumed that the controller is
designed, such that Assumption 1 holds.

Assumption 1: The pair (Alt, Elt) is controllable, and the
pair (Alt, Mlt) in (11) is observable.

Next, to solve Problem 1, it must be shown that the
closed-loop system exhibits a globally exponentially sta-
ble steady-state trajectory that is well defined, bounded,
T -periodic, and that the associated output error ē has no
harmonic content at the frequencies included in the internal
model. To show this, known results on exponentially conver-
gent Lur’e-type systems are used. These results are provided
next.

B. Exponentially Convergent Lur’e-Type Systems

First, we provide the following definition of convergent
systems, see [23], [24], [33], applicable to the Lur’e-type
systems of the form (11), with D a set of piecewise continuous,
bounded disturbances.

Definition 1: Given d(t) ∈ D, (11) is said to be globally
exponentially convergent if the following hold.

1) There exists a solution x̄ lt,d(t) defined and bounded for
all t ∈ R.

2) The solution x̄ lt,d(t) is globally exponentially stable.
System (11) is called convergent for d ∈ D if it is

convergent for any d(t) ∈ D, see [27, Definition 2.16]. Note
that for an exponentially convergent system, the steady-state
solution is unique, see [27, Property 2.15]. Moreover, if the
input d(t) is T -periodic, then, for exponentially convergent
systems, x̄ lt,d(t) is also T -periodic, as recalled in the next
property, see [23], [24], [27].

Property 1: Consider (11), and suppose it is exponentially
convergent. If d is a periodic signal with period T > 0, i.e.,
d(t) = d(t + T ) for all t , then the corresponding steady-state
solution x̄ lt,d(t) is also periodic with period T .

To show that the closed-loop Lur’e-type system of the
form (11) is a globally exponentially convergent system, let

H(s) = Mlt(s I − Alt)
−1 Elt + Nlt. (13)

Then, results from [41] and [27, Chapter 5] can be used.
By combining the definition of an SPR transfer function
and the incremental sector bound condition (2), Lemma 1
is obtained that expresses sufficient conditions that guarantee
that (11) is globally exponentially convergent, which is proven
in [16, Chapter 7].

Lemma 1: Let Assumption 1 hold. If (2) holds and the
transfer function H(s) is SPR, then (11) is globally exponen-
tially convergent.
Using Lemma 1, global exponential convergence of the closed-
loop Lur’e-type system in (11) can be guaranteed by showing
that H(s) is SPR. The transfer function H(s) is SPR if and
only if the following conditions hold, see [23], [41].

1) H(s) is Hurwitz.
2) Re{H( jω)} > 0 ∀ω ∈ R.
3) H(∞) > 0 or H(∞) = 0 and limω→∞ ω2H( jω) > 0.

Note that the SPR conditions on H(s) can be visually verified
with the Nyquist plot, see [16, Chapter 7]. This makes these
conditions particularly useful to verify in practical applica-
tions, see Section IV. Next, these results are used to design the
feedback gain K in the feedback law (6), such that Problem 1
is solved.

C. Harmonic Regulation of Lur’e-Type Systems

The results of Lemma 1 enable the main theoretical result
of this article, which solves Problem 1. More specifically,
it is shown that the presented repetitive controller achieves
the desired harmonic regulation properties and convergence
properties of the closed-loop system if the feedback gain K
is designed properly.

If we can design the feedback law (6), such that the closed
loop (1), (3), (5), and (6) is globally exponentially convergent
for any d(t), then by virtue of Definition 1 and Property 1,
for every initial condition, the solutions of (9) exponentially
converge to a unique, bounded, and well-defined steady-state
solution, which is T -periodic if the reference r(t) is T -
periodic. Then, using Lemma 2 [2], [12], it is shown that the
Fourier coefficients, of the associated steady-state solution ē
of the error e, corresponding to the no frequencies embedded
in the internal model (5), must be zero. Hence, harmonic
regulation is achieved.

Lemma 2: Let the steady-state solution (x̄, z̄) be a bounded
trajectory of the cascade (1), (3), and (5), with the correspond-
ing steady-state output error ē(t). Suppose that ē(t +T ) = ē(t)
for all t ≥ 0. Then, necessarily∫ T

0
cos

(
k 2π

T t
)
ē(t)dt =

∫ T

0
sin

(
k 2π

T t
)
ē(t)dt = 0 (14)

for all k ∈ [0, 1, . . . , no]. Moreover, for any compact set Cx ⊂

Rn , for any r̃ > 0, ū > 0, and ε > 0, such that x̄(t) ∈ Cx ,
r ∈ PT (r̃), and |ū(t)| ≤ ū for all t ≥ 0, there exists n∗

o ≥ 1,
such that the following holds:

∥ē(t)∥L2 :=

(∫ T

0
|ē(t)|2dt

) 1
2

≤ ε ∀ no ≥ n∗

o . (15)

Note that a bound for ε can be computed following the proof
of [2, Proposition 3]. This bound depends on the Lipschitz
constant of the nonlinearity.
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Then, combining these harmonic regulation properties and
the convergent system properties of the loop-transformed
closed-loop system solves Problem 1, which brings us to the
result in Theorem 1.

Theorem 1: Consider the Lur’e-type system (1) and (3),
with the nonlinearity ϕ(·) satisfying the incremental sector
condition in (2), in closed loop with a dynamical controller
(5) and (6). Given an arbitrary integer no > 0 and suppose
that the matrix K is chosen, such that the transfer function
H(s) in Lemma 1, with the matrices Alt, Elt, Mlt, and Nlt
defined in (10), satisfies Assumption 1 and the SPR conditions
in Lemma 1. Then, Problem 1 is solved, namely, harmonic
regulation of order no, as defined by (14), is achieved.

Proof: Consider (1) and (3) in closed loop with (5)
and (6), which can be written in the form of (9) and (10).
Then, the loop transformation can be applied to obtain (11)
and (12). Since the conditions of Lemma 1 are satisfied and the
loop-transformed system is equivalent to the original closed-
loop system, the closed-loop system is globally exponentially
convergent. Hence, by Property 1, if r(t) is periodic with
period T > 0, there exists a bounded, globally exponentially
stable solution x̄(t) and z̄(t), which is T -periodic. As a con-
sequence, the resulting output steady-state trajectory ē is also
bounded and T -periodic. By direct application of Lemma 2,
it satisfies (14). This concludes the proof. □

The statement of Theorem 1 establishes a set of sufficient
conditions for the design of the regulator in (5) and (6). In par-
ticular, the matrices K and 0 should be designed, such that
the desired SPR conditions on H(s) are satisfied to ensure the
satisfaction of the conditions in Lemma 1. The SPR conditions
at the end of Section III-B can be supported by graphical
checks in a Nyquist plot, similar to frequency-domain design
techniques for linear controller design.

In case the system in (9) is a minimum-phase system with
unitary relative degree,2 a systematic design of the gain K can
be done by the following [3]. The system in (9) can be put
in this form, for instance, when C B ̸= 0 and D = 0. In such
case, it can be put in the canonical normal form following
[15, Chapter 4]. Then, additional properties can be established.
In particular, by selecting K , such that the bound

K00T K T
≤ a (16)

holds with a a positive and bounded scalar, which is indepen-
dent of no, it can be proved that the asymptotic L2-norm of
ē can be made arbitrarily small by increasing the number of
oscillators. More specifically, in such case, ϵ in (15) can be
made arbitrarily small by increasing the number of oscillators
no. For instance, one can match condition (16) by selecting
the gains γk in (7) as γk = k−(1+ϵ)γ̄ k with γ̄ k , so that |γ̄ k | ≤ γ̄

for any k = 1, . . . , no, for some γ̄ > 0, and by selecting κk

in (7), such that |κk | ≤ κ̄ for any k = 1, . . . , no, for some
κ̄ > 0. Note that condition (16) essentially establishes that
the regulator (5) and (6) has an L2 gain between the input e
and the output u, which does not depend on the number of

2In this case, we refer to a system in normal form with stable zero
dynamics. See, for instance, (2) and [1, Assumption 2]. Necessary and
sufficient conditions under which a system of the form (9) can be written
in canonical normal form are well known in the literature, see [15].

Fig. 1. Schematic of the blower-hose-patient system, with the corresponding
resistances, lung compliance, pressures, and flows.

oscillators no. The complete proof of this property is given in
[3, Lemma 3]. Intuitively, the main idea behind such a choice
is to put decreasing weights on higher harmonics in order to
obtain a bounded gain when summing up the contribution of
the L2 gain of all oscillators.

This design philosophy will be pursued in the mechanical
ventilation application to experimentally show the desired
approximate L2 output regulation objective (15).

IV. APPLICATION TO MECHANICAL VENTILATION

In this section, the RC strategy is applied to a nonlinear
mechanical ventilation system; i.e., this section describes the
second contribution of this article. First, in Section IV-A,
an overview of the considered ventilation system and the
control goal for ventilation are described. Thereafter, the
mathematical ventilation model and the actual mechanical
ventilation setup are presented in Section IV-B. Then, repet-
itive controllers for mechanical ventilation are designed, and
stability of the closed-loop system is analyzed in Section IV-C.
Then, in Section IV-D, the experimental results are presented
and analyzed. Thereafter, another ventilation use case is briefly
considered to analyze the conservatism of Theorem 1 in
Section IV-E. Finally, a remark on RC design is made based
on observations from the experimental case study.

A. Ventilation System Overview and Control Goal

Mechanical ventilators are essential equipment in ICUs to
assist patients who cannot breathe on their own or need support
to breathe sufficiently. The goal of mechanical ventilation is
to ensure adequate oxygenation and carbon dioxide elimi-
nation [40], thereby sustaining the patient’s life. Next, the
considered ventilation system and corresponding control goal
are described.

1) Ventilation System Overview: A schematic overview of
the considered ventilation system is depicted in Fig. 1. The
main components of this system are the blower, the hose-
filter system, and the patient. A centrifugal blower compresses
ambient air to achieve the desired blower outlet pressure pout.
The difference between pout and the airway pressure paw
results in the outlet flow Qout through the hose. This hose
is modeled using a nonlinear hose model. The flow through
the hose, i.e., the outlet flow Qout, is divided into a patient
flow Qpat and a leak flow Qleak. The intended leak near the
patient is used to flush CO2-rich air from the system. Finally,
the patient’s lungs are inflated and deflated by the patient flow.
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Fig. 2. Typical airway pressure for two breathing cycles of PCV, showing
the set point ( ) and the typical response ( ).

2) Control Goal: In this experimental use case, pressure
controlled ventilation (PCV) is considered. A schematic exam-
ple of PCV is depicted in Fig. 2. In PCV, the pressure near
the patient’s mouth, the airway pressure paw, should track a
desired pressure target ptarget, i.e., r := ptarget. On a preset peri-
odic interval, of length T , the pressure level is increased to the
inspiratory positive airway pressure (IPAP) and consequently
lowered to the positive end-expiratory pressure (PEEP). These
varying pressure levels ensure the desired airflow in and out
of the patient’s lungs. The total breath length T consists of the
inspiration time Ti and expiration time Te, i.e., T = Ti + Te.

The control goal for PCV is to achieve a small tracking
error e := r − paw = r − v, where the reference r(t) is a
time-varying signal that is perfectly periodic with an interval
length T , i.e., r(t) = r(t + T ) for a known T > 0 and all
t ≥ 0. Because of this periodicity property and the nonlinear
nature of the hose model, the RC strategy developed in this
article is particularly suitable for this application.

B. Mathematical Model and Experimental Ventilation System

For controller design and the stability analysis, a mathe-
matical Lur’e-type system model is derived. The ventilation
model is based on [30]. Thereafter, the actual experimental
ventilation setup is presented.

1) Mathematical Model of the Ventilation System: In this
section, first, the separate models for the plant components
are derived, i.e., blower model Gb, hose model Rhose, and
patient-leak model G p. Thereafter, these models are combined
to obtain the open-loop Lur’e-type ventilation system model
for the controller design and associated stability analysis.
The complete plant and the considered control strategy are
visualized in the block diagram in Fig. 4.

The blower model Gb is obtained by means of the
sixth-order fit of a frequency response measurement (FRF)
of the actual blower dynamics [28]. This state-space model
accurately describes the input–output relation of the blower,
i.e., from the control signal pc to the blower output pout.
The measured FRF and the blower model Gb are depicted
in Fig. 3, showing that Gb is an accurate representation of
the FRF measurement of the actual blower. The blower Gb is
modeled as the following state-space system:

ẋb = Abxb + Bb pc

pout = Cbxb (17)

Fig. 3. FRF ( ) and the sixth-order identified parametric model ( ) of
the blower, i.e., from pc to pout.

Fig. 4. Block diagram of the full ventilation system, with Gb the blower
dynamics, C an arbitrary feedback controller, G p the patient-leak dynamics,
and ϕ(1p) = Rhose(1p) + η1p the nonlinear hose model.

with xb ∈ R6, pc ∈ R, pout ∈ R, and system matrices of
appropriate dimensions.

The hose is modeled by the nonlinear hose resistance Rhose,
as presented in [30], which describes the relation between the
flow through the hose Qout and the pressure drop over the hose
1p := pout − paw. From experiments, it is concluded that the
hose can be modeled as follows:

Qout : = Rhose(1p)

= sign(1p)
−R1 +

√
R2

1 + 4R2|1p|

2R2
(18)

where R1 and R2 are the hose-resistance parameters.
Next, the combined patient-leak model G p describes the

relation between the outlet flow Qout and the system out-
put y = paw. This patient model is described by the
following first-order state-space model, based on the linear
one-compartmental lung model in [4]:

ṗlung = ap plung + bp Qout

paw = cp plung + dp Qout (19)

with

ap = −
1

Clung
(
Rleak + Rlung

)
bp =

Rleak

Clung
(
Rleak + Rlung

)
cp =

Rleak

Rleak + Rlung
, dp =

Rleak Rlung

Rleak + Rlung
. (20)

Finally, these separate models are combined to obtain the
open-loop plant model, as depicted inside the dashed box in
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Fig. 4. Note that an additional term η1p is added to the
nonlinear hose resistance, i.e., ϕ(1p) := Rhose(1p) + η1p,
and subtracted in the parallel path; this is included to ensure
that the linear dynamics of the open-loop plant in Lur’e-
type form are controllable and observable. The total system’s
dynamics, i.e., the full Lur’e-type ventilation system, are
independent of the choice of η ∈ R.

To obtain the open-loop plant model, the blower, hose, and
patient model are combined. This gives the open-loop model
from pc to paw in the form of (1). The open-loop ventilation
system is defined by (1) with the system matrices

A =

[
Ab 0

−(1 − ηdp)
−1ηCbbp ap + ηcp(1 − ηdp)

−1bp

]
B =

[
Bb

0

]
, E =

[
0

−bp(1 − ηdp)
−1

]
M =

[
Cb + dp(1 − ηdp)

−1ηCb

−cp − dp(1 − ηdp)
−1ηcp

]T

N = dp(1 − ηdp)
−1, Do = −dp(1 − ηdp)

−1

C =
[
−dp(1 − ηdp)

−1ηCb cp + dp(1 − ηdp)
−1ηcp

]
(21)

and the nonlinearity

ϕ(y) := Rhose(y) + ηy. (22)

These open-loop system matrices and the nonlinearity in
combination with the RC that is designed in Section IV-C
are used to retrieve the closed-loop ventilation system and to
guarantee that it solves Problem 1 using Theorem 1.

2) Experimental Ventilation Setup: The main components
of the experimental setup used in this case study are depicted
in Fig. 5. The figure shows the Macawi blower-driven mechan-
ical ventilation module [11]. The dSPACE system (dSPACE
GmbH, Paderborn, Germany) is used to implement the controls
in MATLAB Simulink (MathWorks, Natick, MA, USA). Fur-
thermore, the ASL 50003 Breathing Simulator (IngMar Med-
ical, Pittsburgh, PA, USA) represents the patient. This lung
simulator can be used to emulate a wide variety of patients
with a linear resistance and compliance. Furthermore, a typical
ventilation hose with leak is used to attach the ventilation
module to the lung simulator. The system parameters that are
used for the stability analysis are shown in Table I. The leak
and hose parameters are obtained by a calibration, and the
patient parameters are the settings used on the mechanic lung
simulator, i.e., patient emulator in Fig. 5.

The analysis in Section IV-C is done using a continuous-
time representation of the controller and plant model. How-
ever, the controller is implemented in dSPACE using a
discrete-time representation of the continuous-time control
strategy. The discrete-time controllers are obtained using the
zero-order hold discretization scheme at a sampling frequency
of 500 Hz. This sampling frequency is significantly higher
than the relevant system dynamics, e.g., the blower shows
strong roll-off at frequencies above 10 Hz. Furthermore,
500 Hz is significantly higher that the frequency content of
the reference signal. Therefore, the continuous-time controller

3Trademarked.

Fig. 5. Experimental setup with the mechanic patient simulator, the
respiratory module, the ventilation hose, and the dSPACE module.

TABLE I
RELEVANT SYSTEM AND EXPERIMENT PARAMETER

FOR THE STABILITY ANALYSIS

design and stability analysis are deemed relevant for this
application.

C. Controller Design for Mechanical Ventilation

Next, the RC controller design for mechanical ventilation
is described, and it is shown that it solves Problem 1 for this
ventilation use case.

1) Controller Design: For the design of the feedback con-
troller C in Fig. 4, the control strategy in (5), (7), and (8) with
feedback law (6) is followed. This means that the feedback
controller C consists of an integrator and no oscillators from
the first up until the nth

o harmonic of the breathing frequency
ωb = 2π/T rad/s. Besides this feedback controller, a unity
feedforward controller, as depicted in Fig. 4, is used. The
unity feedforward term is included to improve the overall
regulation accuracy. Note that it does not affect stability, since
it is included in the closed-loop ventilation system through the
disturbance term d in (9). The stability analysis is independent
of this disturbance in view of the convergence properties of
the closed-loop dynamics.

For the final RC design, different controllers are designed
to analyze the effect of the number of oscillators, i.e., no ∈

{0, 1, 5, 15, 20}. We select the integrator gain as γ0 = 2π

and oscillator gains as γk =
[
1 1

]
(2/k1+ϵ) with ϵ = 0.4,

for k = 1, 2, . . . , no. The feedback law is chosen as K ∈

R1×(2no+1) with all entries 1. Note that the design of the
gains 0, K satisfies (16). Next, the stability properties of
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Fig. 6. Visualization of the nonlinearity ϕ(1p) ( ), and its sector bounds
ϕ1p ( ) and ϕ̄1p ( ), showing that the incremental sector condition
holds for [ϕ, ϕ̄] = [80, (1/R1) + η].

the closed-loop ventilation system with the RC controller are
analyzed.

2) Stability Analysis: To guarantee exponential convergence
of the closed-loop ventilation system, and therewith showing
that Problem 1 is solved, Theorem 1 is verified. First of
all, the controlled system is written in the closed-loop form
of (9), and the upper ϕ̄ and lower ϕ sector bounds of the
nonlinearity ϕ(y) in (22) are computed. Using these bounds,
the loop transformation is applied to obtain the system in (11).
Thereafter, Lemma 1 is verified, which ensures that Theorem 1
holds.

The upper sector bound ϕ̄ is defined by taking the derivative
of ϕ(1p) at the origin, where the slope of ϕ is the largest,
see Fig. 6, which gives ϕ̄ = (1/R1) + η. The lower sector
bound ϕ is obtained from visual inspection, such that it holds
on a finite domain of 1p ∈ [−20, 20] mbar; this domain
is sufficient for the practical application of ventilation. This
leads to the sector ϕ ∈ [ϕ, ϕ̄] = [80, (1/R1) + η] for the
nonlinearity in (22). The nonlinearity and these sector bounds
are visualized in Fig. 6.

Using these sector bounds, the loop transformation is per-
formed to obtain the system in (11), and it is verified that
the pair (Alt, Elt) is controllable, and the pair (Alt, Mlt) is
observable for every no; i.e., Assumption 1 holds. Thereafter,
H(s) is constructed using the matrices of the loop-transformed
system.

Then, it is guaranteed that H(s) is SPR, and it is first
verified that for all no ∈ {0, 1, 5, 15, 20}, the transfer
function H(s) is Hurwitz, which is verified by computing
the poles and checking that they reside in the open left half-
plane. Thereafter, it is graphically validated that Re(H( jω)) >

0 ∀ω ∈ [−∞, ∞]. This is validated in Fig. 7; it is clearly
shown that for all considered values of no, the real part of
H( jω) is strictly positive. Finally, it is verified thatH(∞) > 0.
This is also the case for all no ∈ {0, 1, 5, 15, 20}.

From these results, Lemma 1, and Theorem 1, it is con-
cluded that the nonlinear closed-loop ventilation system is

Fig. 7. Nyquist plot of H(s) for no = 0 ( ), no = 1 ( ), no = 5
( ), no = 15 ( ), and no = 20 ( ). The figure shows that
Re(H( jω)) > 0∀ω ∈ [−∞, ∞].

exponentially convergent on a compact domain4 in state space
for which 1p ∈ [−20, 20] mbar, and that this controller
solves the RC problem. Next, the performance of the different
controllers is analyzed by means of experiments.

Remark 1: To ensure the stability of systems with slowly
varying parameters (which is typically the case for this
mechanical ventilation case), an approach similar to [32] could
be followed. One could design a single controller for a nominal
parametric setting and prove the stability property for a variety
of (slowly, i.e., quasi-constant) varying parameters. This can be
achieved by ensuring the SPR property for the linear dynamics
of the Lur’e-type system for a set of parameters, e.g., lung
compliances.

D. Experimental Results for Mechanical Ventilation

The main experimental results are shown in Figs. 8 and 9.
The time-domain results of the 20th breath with the integrator
only, i.e., no = 0, and the repetitive controller with 20 oscil-
lators, i.e., no = 20, are visualized in Fig. 8. The top plot
shows the reference and the measured outputs, and the bottom
plot shows the tracking error for both controllers. The figure
clearly shows that the tracking error is significantly reduced
by the repetitive controller. The overshoot is eliminated, and
the rise time is significantly shorter. Note that the residual
error with RC contains oscillatory behavior, especially during
the expiration at PEEP level, i.e., between 82 and 84 s.
These oscillations contain mostly frequency content higher
than 20 times the breathing frequency, i.e., above 5 Hz.
It is observed that the tracking error’s frequency content at
frequency above the nth

o harmonic is increased. In Section IV-F,
a remark and analysis of this phenomenon are included, since
this phenomenon could potentially deteriorate the system’s
tracking performance.

The ℓ2-norm of the error per breath for every controller
is shown in Fig. 9. The ℓ2-norm of the error of a particular

4Such domain can be explicitly formulated using a quadratic Lyapunov
function following from the Kalman–Yakubovich lemma for the SPR transfer
function H(s).
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Fig. 8. Time domain results upon convergence for no = 0 ( ) and
no = 20 ( ), and the target pressure ( ). The figure shows that the
error is significantly reduced by the repetitive controllers.

Fig. 9. ℓ2-norm of the error for every breath for no = 0 ( ), no = 1
( ), no = 5 ( ), no = 15 ( ), and no = 20 ( ). The figure shows
that more oscillators result in a smaller error, and the controllers converge in
approximately ten breaths.

breath j is defined as ∥e∥2 = (
∑ jρ

k=1+( j−1)ρ |e(k)|2)(1/2) with
ρ = (T/1T ) and 1T the sampling time. The figure clearly
shows that increasing the number of oscillators reduces the
ℓ2-norm of the error upon convergence. Including 20 oscil-
lators in the loop reduces the ℓ2-norm of the error by more
than a factor of 3 compared with integral action only. Further-
more, it is observed that the convergence time is longer for
an increasing number of oscillators, and the controller with
20 oscillators converges in approximately 15 breaths.

Concluding, all controllers show convergent behavior in
the experiments, as expected by the analysis. Furthermore,
the tracking error is reduced significantly, by more than a
factor of 3, by including RC. The Fourier coefficients of the
steady-state output error ē(t) are suppressed at the frequencies
w = k(2π/T ), k = 0, 1, . . . , no.

Fig. 10. Nyquist plot of H(s) for no = 20 ( ) for the baby use case.
The figure shows that Re(H( jω)) > 0∀ω ∈ [−∞, ∞] does not hold; hence,
convergence is not guaranteed.

E. Analysis of Conservatism

To analyze how conservative the convergence properties
of Theorem 1 are, an experimental use case is presented
where the SPR properties are violated. This is achieved by
considering a ventilation use case with lung parameters that
represent a baby patient; i.e., Clung = 3 mL/mbar and Rlung =

50 mbar s/L. The same hose and blower system as for the
adult use case are used; hence, the same sector conditions for
the linearity can be used. Furthermore, the same RC design
as for the adult use case is followed for no = 20. The transfer
function H(s) is computed for this system and visualized in
Fig. 10. This figure clearly shows that the second condition
for SPR transfer functions is violated for no = 20. Therefore,
the desired convergence properties of the system cannot be
guaranteed for this controller design with no = 20 oscillators.

The resulting ℓ2-norm of the error per breath is shown in
Fig. 11. This figure clearly shows that the system behaves
unstable for no = 20. Concluding, this use case shows that the
sufficient conditions in Theorem 1 have limited conservatism,
which is a desirable property for practical controller design,
because it allows more design freedom.

F. Remark on Repetitive Controller Design

In the experimental analysis, especially in the baby use case,
it is observed that the remaining error consists of oscillations
at frequencies above the harmonics of the nth

o oscillator. These
oscillations in the error are increasing for an increasing num-
ber of oscillators, limiting the overall tracking performance.
Especially, in other use cases, it is observed that increasing the
number of oscillators can significantly deteriorate the system
performance. This effect can be explained by analyzing the
sensitivity Sre, i.e., transfer function from the reference r to the
tracking error e, of a linearization of the closed-loop ventila-
tion system. This linearized closed-loop system is obtained by
replacing the nonlinearity in Fig. 4 by a linear resistance; i.e.,
Rhose(1p) is replaced by (1p/Rlin) with Rlin = (2/ϕ + ϕ̄),
and η = 0. The resulting Bode magnitude plot of Sre is
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Fig. 11. ℓ2-norm of the error for every breath for no = 0 ( ), and no = 20
( ) for the baby use case. The figure shows unstable behavior for that the
closed-loop system with no = 20.

Fig. 12. Bode magnitude plot of the sensitivity Sre for the linearization of
the closed-loop system with no = 0 ( ), no = 1 ( ), no = 5 ( ),
no = 15 ( ), and no = 20 ( ). The figure shows a magnitude increase
at frequencies around 8 Hz, causing oscillations at these frequencies.

shown in Fig. 12. This Bode magnitude plot clearly shows
that the tracking error is zero at the harmonics of the breathing
frequencies. However, it also shows an increase in magnitude
at frequency above the oscillator frequencies. The magnitude
at these frequencies is increasing for an increasing number of
oscillators. This increase in magnitude causes the oscillations
at these frequencies as shown in the experiments. Therefore,
in future work, it should be analyzed how this increase in
magnitude at these specific frequencies can be eliminated.

V. CONCLUSION AND FUTURE WORK

In this article, an RC scheme that achieves robust tracking
for nonlinear Lur’e-type systems with stability guarantees is
presented. The RC scheme is composed of a dynamical system
consisting of no linear oscillators at the reference’s period and
its multiples, which represents the internal model, processing
the tracking error, and a pure integral controller guaranteeing
the closed-loop system to be convergent. This convergence
property ensures that the steady-state trajectory is periodic, and
therefore, harmonic regulation is achieved at the frequencies
included in the internal model.

This RC scheme is successfully implemented in a mechan-
ical ventilation system for ICUs, a medical application to
support the breathing of patients. Through a stability analysis
based on the Nyquist plot, it is shown that this closed-loop
ventilation system is convergent, and hence, the designed
controller solves the RC problem at hand. In addition, it is

also shown experimentally that by increasing the number of
oscillators, the asymptotic L2-norm of the regulated output
is reduced. Furthermore, experiments show that the presented
controller design is able to significantly improve pressure
tracking when compared with pure integral action.
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