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Summary 
Vaccination is a strong and effective way to prevent spreading of infectious diseases and 

promotes global health. In the future, the importance of vaccines is expected only to increase, 

driven by factors such as increased international traveling, higher healthcare expenditures, 

and a growing population. To meet the growing demands, it is necessary to shorten process 

development timelines for the production of new vaccines without compromising on safety, 

efficacy, consistency, and stability of the product. Therefore, it is necessary to advance process 

development approaches of vaccines to respond quickly and in event of an emerging 

infectious disease. The work in this thesis employed mathematical modeling and simulation 

techniques to accelerate this process development. The developed methods are particularly 

valuable for early phase process development, aiming to enhance process knowledge and 

minimize the consumption of valuable resources and material. While the project has a focus 

on vaccine production processes, the modeling tools and methods developed are also 

applicable to other (bio)pharmaceutical processes. In Chapter 2, we discussed the present 

and future process development approaches in (bio)pharmaceutical purification with an 

emphasis on vaccines. The primary needs are to establish standardized processes and to 

improve understanding of both production processes and host cell impurities. Modeling, 

when combined with high throughput experimentation, can play a crucial role in achieving 

these goals.  

We used mechanistic modeling (MM) to mathematically describe the physical phenomena 

occurring in a real process. As chromatography can attain very high product purities, this is 

one of the main purification techniques for vaccines and therefore one of our central focuses 

throughout this thesis. Identifying an optimal purification process early in the development 

phase is advantageous considering costs, quality, and development time. Flowsheet 

optimization evaluates all potential process sequences in silico and therefore enables selecting 

the most optimal process(es) in the early phase of the process development. An optimization 

software was developed to perform such complex flowsheet optimization, which is described 

in Chapter 3. However, during flowsheet optimization, chromatographic mechanistic 

modeling can be time consuming and speed limiting, and therefore artificial neural networks 

(ANNs) were developed. Artificial neural networks functioned as surrogate models of the 

mechanistic model, with the goal of reducing overall computational time while still identifying 

the most optimal sequence(s). In this chapter, we compared the utilization of both artificial 

neural networks and mechanistic modeling during flowsheet optimization in terms of 

outcomes and computational time. Our results demonstrated that artificial neural networks 

can be used during global optimization to pre-select the most optimal process sequences 
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based on defined objectives and constraints. The overall computational time, including data 

generation and artificial neural networks training, is reduced by 50% when using artificial 

neural networks.  

Apart from the modeling technique as described in Chapter 3, the optimization strategy itself 

appeared to be just as important in terms of outcome, complexity, and time-efficiency 

(Chapter 4). In this chapter, we compared three optimization strategies along with each 

strategy being optimized by both mechanistic modeling and artificial neural networks. 

Moreover, an optional buffer exchange was included between the chromatography steps, 

which increased the complexity of the flowsheet optimization. The three optimization 

strategies (e.g., simultaneous, top-to-bottom, and superstructure decomposition) differed in 

their approach to optimize the sequence of unit operations, whether all at once, in parts, or 

individually. The superstructure decomposition strategy with mechanistic modeling was found 

to be the most time efficient method, a complete flowsheet optimization considering 39 

flowsheets was performed around a day using a state-of-the-art computer workstation. 

Adsorption isotherm parameters are essential input parameters for mechanistic modeling. 

The determination of these parameters is typically done experimentally, and remains a 

bottleneck for mechanistic modeling of adsorption in process development. An alternative in 

silico method is quantitative structure property relationship (QSPR), which can predict 

retention times or specific adsorption isotherms based on the structure of individual proteins 

by correlating physiochemical properties. In Chapter 5, we developed a multiscale modeling 

approach by integrating quantitative structure property relationship with mechanistic 

modeling. The quantitative structure property relationship-based adsorption isotherm 

parameters were used in the mechanistic model. The validated mechanistic model showed a 

strong agreement with the experimental data, as only 0.2% difference between the retention 

peak values was observed, relative to the salt gradient length. Subsequently, the validated 

mechanistic model was employed to optimize a chromatographic capture step.  

This work highlights the value of modeling approaches in process development. The 

application of different modeling techniques and optimization strategies during flowsheet 

optimization can guide in finding a suitable approach for a given case study. Furthermore, the 

multiscale modeling approach demonstrated its potential for industrial applications, allowing 

to find an optimal process without doing any initial experiments. 
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Samenvatting 
Vaccineren is een effectieve manier om de verspreiding van infectieziekten te voorkomen en 

bevordert daarmee wereldwijd de gezondheid. Het belang van vaccins zal naar verwachting 

in de toekomst alleen maar toenemen als gevolg van toegenomen internationale reizen, 

hogere gezondheidskosten en een groeiende wereldpopulatie. Om snel te kunnen handelen 

en aan een toenemende vraag te kunnen voldoen als er een infectieziekte opkomt, is het 

noodzakelijk om de procesontwikkelingstijd voor de productie van nieuwe vaccins te 

verkorten zonder daarbij concessies te doen aan veiligheid, werkzaamheid, consistentie, en 

stabiliteit van het product. Het werk verricht in dit proefschrift omvat wiskundige modeleer- 

en simulatietechnieken om zo de procesontwikkeling voor de productie van vaccins te kunnen 

versnellen. De ontwikkelde methoden zijn met name waardevol in de beginfase van de 

procesontwikkeling om proceskennis te vergroten en tegelijkertijd het gebruik van kostbare 

middelen en materialen te minimaliseren. Alhoewel het project gericht is op het 

productieproces van vaccins, kunnen de ontwikkelde modellen en methoden ook worden 

toegepast op andere (bio)farmaceutische productieprocessen. In Hoofdstuk 2 worden de 

huidige en mogelijk toekomstige benaderingen voor proces ontwikkeling in 

(bio)farmaceutische productzuivering besproken, met een nadruk op vaccins. Hieruit blijkt dat 

het essentieel is om een standaardproces te ontwikkelen en de kennis met betrekking tot het 

productieproces en de onzuiverheden van de gastheercel te verbeteren. Wiskundige 

modellen kunnen hierbij een cruciale rol spelen wanneer deze worden gecombineerd met 

geautomatiseerde experimenten. 

Mechanistische modellen worden gebruikt om wiskundig de fysische verschijnselen te kunnen 

beschrijven die plaatsvinden tijdens het echte proces. Aangezien met chromatografie zeer 

hoge product zuiverheden bereikt kunnen worden, is dit een van de belangrijkste 

zuiveringstechnieken voor vaccins en daarmee een van de hoofdthema’s in dit proefschrift. 

Het is bevorderlijk om in een vroeg stadium van de procesontwikkeling een optimaal 

zuiveringsproces vast te stellen, met betrekking tot kosten, kwaliteit en ontwikkelingstijd. Met 

flowsheet-optimalisatie worden alle potentiële volgordes van processtappen in silico 

geëvalueerd. Dit maakt het mogelijk om in de beginfase van de procesontwikkeling de meest 

optimale proces(sen) te selecteren. Voor het uitvoeren van dergelijke complexe flowsheet-

optimalisaties is een optimalisatie software ontwikkeld, zoals beschreven in Hoofdstuk 3. 

Tijdens flowsheet-optimalisaties kunnen chromatografische mechanistische modellen echter 

tijdrovend en beperkend in rekensnelheid zijn, daarom zijn er kunstmatige neurale netwerken 

(Artificial Neural Networks - ANNs) ontwikkeld.  
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Kunstmatige neurale netwerken dienen als een vereenvoudigd model van het mechanistische 

model, met als doel de totale rekentijd te verminderen, terwijl nog steeds het meest optimale 

proces kan worden geselecteerd. De toepassing van zowel kunstmatige neurale netwerken als 

mechanistische modellen wordt vergeleken tijdens de flowsheet-optimalisatie, voor zowel de 

behaalde resultaten als de benodigde rekentijd. De resultaten tonen aan dat kunstmatige 

neurale netwerken gebruikt kunnen worden om de meest optimale processen vooraf te 

selecteren tijdens de globale optimalisatie op basis van vastgestelde doelstellingen en 

randvoorwaarden. De totale rekentijd, inclusief het genereren van de data en het trainen van 

de kunstmatige neurale netwerken, vermindert met 50% bij het gebruik van kunstmatige 

neurale netwerken.  

Naast de verschillende modelleer technieken zoals beschreven in Hoofdstuk 3, blijkt de 

optimalisatiestrategie zelf net zo belangrijk te zijn voor wat betreft het resultaat, de 

complexiteit en de rekentijd in flowsheet-optimalisatie. In Hoofdstuk 4 worden de 

optimalisatiestrategieën vergeleken, waarbij zowel mechanistische modellen als kunstmatige 

neurale netwerken zijn gebruikt. Daarnaast is een optioneel filtratieproces toegevoegd om 

buffers te verwisselen tussen de chromatografie stappen, waardoor de complexiteit van de 

flowsheet-optimalisatie toeneemt. De drie gebruikte optimalisatiestrategieën (e.g., simultaan, 

top-to-bottom en superstructuurdecompositie) verschillen in hun benadering om de volgorde 

van de processtappen te optimaliseren: allemaal tegelijk; opgedeeld; of individueel. De 

superstructuurdecompositie’ strategie  uitgevoerd met mechanistische modellen blijkt de 

meest rekentijds-efficiënte methode te zijn. Een volledige flowsheet-optimalisatie van 39 

flowsheets duurt ongeveer een dag, uitgevoerd met een geavanceerde state-of-the-art 

computer.  

Adsorptie-isothermparameters zijn essentiële ingrediënten voor een mechanistisch 

chromatografie model. De bepaling van deze parameters gebeurt doorgaans experimenteel 

en dit blijft daardoor een obstakel voor de grootschalige toepassing van mechanistische 

modellen voor adsorptie in procesontwikkeling. Een alternatieve in silico methode is om 

gebruik te maken van kwantitatieve structuur-eigenschapsrelaties (Quantitative Structure 

Property Relationships - QSPR). Deze modellen kunnen de chromatografische retentietijd 

danwel specifieke adsorptie-isothermparameters voorspellen op basis van de individuele 

eiwitstructuur door fysisch-chemische eigenschappen te correleren. In Hoofdstuk 5 hebben 

we de kwantitatieve structuur-eigenschapsrelaties geïntegreerd met mechanistische 

chromatografie modellen om zo een modelleer aanpak op meervoudig niveau te ontwikkelen. 

De adsorptie-isothermparameters verkregen via kwantitatieve structuur-eigenschapsrelaties, 

worden nu gebruikt in het mechanistisch model. Het gevalideerde mechanistische model 

komt zeer goed overeen met de experimentele data, met slechts 0.2% verschil tussen de 
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retentiepieken relatief t.o.v. de lengte van de zoutgradiënt voor elutie. Uiteindelijk is dit 

gevalideerde model gebruikt om een chromatografische zuiveringstap te optimaliseren.  

Dit werk benadrukt de toegevoegde waarde van mathematisch modeleren in 

procesontwikkeling. De toepassing van verschillende modelleertechnieken en 

optimalisatiestrategieën tijdens flowsheet-optimalisatie kan als leidraad dienen bij het vinden 

van een geschikte aanpak voor een bepaalde casus. Tevens toont de integrale 

modelleeraanpak, waarbij kwantitatieve structuur-eigenschapsrelaties worden gecombineerd 

met mechanistische modellen, haar potentieel voor industriële toepassingen. Hierdoor is het 

uiteindelijk mogelijk om een optimaal proces te ontwerpen zonder enige initiële 

experimenten uit te voeren.  
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1.1. Background and aim   

Communicable diseases, commonly referred as infectious diseases, account for approximately 

a quarter of all global deaths, of which 90% occur in low- and middle-income countries [1, 2]. 

In these countries, communicable diseases were responsible for more than half of the 

mortality among children and adolescents (e.g., 0 – 24 years), compared to only 5.6% of 

deaths in high-income countries [1]. Vaccination is pivotal in preventing and controlling the 

spread of infectious diseases. It significantly decreases the morbidity and mortality rates 

associated with vaccine-preventable diseases [2]. For instance, vaccination played a crucial 

role in completely eradicating smallpox worldwide. In recent years, the world has experienced 

several epidemics and pandemic, including the Zika virus, Ebola and COVID-19, which have led 

to a worldwide increased awareness about the value of vaccines. In addition to improved 

public health, vaccination also lowers the healthcare expenses, fostering economic growth, 

ensuring travel safety, and extending life expectancy [3, 4]. Vaccines are a subgroup of 

biopharmaceuticals, which are medications derived from or containing components of living 

organisms. The production processes for various biopharmaceuticals share broad similarities. 

Consequently, the methods developed in this thesis can be applied to other 

biopharmaceutical productions. 

The global revenues in the vaccine market are expected to reach almost 82 billion US dollars 

in 2023, which is a significant increase compared to 26 billion US dollars in 2016 [2, 5]. In 2021, 

the reported value of the global biopharmaceutical market was approximately 343 billion US 

dollars, indicating that the market share of vaccines is about 24% [6]. COVID-19 had a 

substantial impact in the biopharmaceutical industry, with two of the top-selling 

biopharmaceuticals in 2021 being Comirnaty by Pfizer & BioNTech and Spikevax by Moderna. 

Together, these vaccines generate a cumulative revenue of 54.5 billion US dollars [6]. In the 

coming years, it is expected that the revenues from COVID-19 vaccines will decline, while 

other vaccines are expected to exhibit a steady upward trend, as illustrated in Figure 1.1 [5]. 

The leader companies in vaccines, excluding COVID-19 vaccines, are GSK, Merck & Co, Sanofi, 

and Pfizer, with their respective market shares in percentages shown in Figure 1.1 [2, 5]. 

UNICEF plays a crucial role in delivering vaccines to children and young adults in need 

worldwide [7]. One of three largest suppliers to UNICEF is the Serum Institute of India (SSI), a 

global leader in vaccine production, providing over 1.3 billion doses annually [2]. 
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Figure 1. 1. Upper figure: The global revenues of vaccines, given in US dollars, from 2016 to the 
prospective year 2028. COVID-19 vaccines are separately indicated with a light blue color. Lower figure: 
Global market share, in percentages, between the leader companies, excluding COVID-19 vaccines 
(December 2023). Data source: Statista [1]. 

 

Infectious diseases are caused by various pathogens, including bacteria, viruses, parasites, or 

fungus. These pathogens consist of several distinct components, also known as antigens. 

When the human body is exposed to an antigen, the immune system responds by producing 

antibodies that specifically target the antigen and consequently eliminate the pathogen (see 

Figure 1.2A). Upon re-infection with the same pathogen, the immune system recognizes the 

antigen, resulting in a faster response and preventing the individual from severe sickness [8]. 

Vaccines evoke an immune response by presenting a foreign antigen to the immune system. 

As vaccines only contains a part of a pathogen or an inactivated/attenuated form, they induce 

an immune response without causing illness (see Figure 1.2B). In this way, the immune system 
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can respond faster once exposed to the real pathogen [8]. Different types of vaccines exist, 

such as whole pathogen (inactivated or attenuated), antigenic components (subunit) of 

pathogen, or nucleic acid vaccines [9]. 

 

Figure 1. 2. A: Pathogen with specific antigens targeted by an antibody. B: The vaccine only consists of 
the antigen or a weakened version of the pathogen. Created with BioRender.com. 

 

Developing a vaccine is a complex process that involves multiple clinical trials to establish the 

safety, efficacy, potency, and manufacturing consistency of the product [9]. Therefore, the 

production process of vaccines is crucial in determining the final product. A general vaccine 

production process consists of an upstream part, involving amplification of the antigen by 

fermentation or cell culture, and a downstream part, including the purification, and 

formulation of the product, see Figure 1.3 [10]. In the purification of vaccines, achieving very 

low contaminant concentrations is crucial to prevent issues such as high reactogenicity and 

unwanted immune responses. Downstream processing removes the majority of host cell 

impurities and process additives, aiming to achieve high product purity and yield [9]. 

Chromatography plays an essential role to achieve these very high product purities. However, 

the downstream process, particularly chromatography, represents a significant part of the 

total manufacturing costs [11]. While monoclonal antibodies (mAbs) share relatively similar 

properties, proteins subunit vaccines, for example, exhibit significant variation in physico-

chemical properties, posing a greater challenge in standardizing the purification process [12]. 

As vaccines are administered to healthy people, the safety requirements are extremely high. 

This causes additional complexity for the process development, leading to a time-consuming 

and costly vaccine development [9, 13]. Hence, minimizing time-to-market is essential for the 

biopharmaceutical industry, yielding both life-saving outcomes and financial benefits. This 

emphasizes the importance of systematic, general, and efficient process development aiming 

to increase the process understanding and process control, and reduce process development 

times [14-16].   
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1 

Figure 1. 3. General overview of a vaccine production process, starting with the upstream part 
consisting of a fermentation process. Followed by the downstream processing in which multiple 
separation techniques are used to purify the product. The final part consists of formulation of the 
product and filling it into small containers. Created with Biorender.com. 

 

In recent and upcoming years, the biopharmaceutical industry is shifting towards more model-

based process development, aligning with the Industry 4.0 for digitalization of the entire 

production process [17, 18]. Models are mathematical representations of real systems, 

allowing to run virtual experiments to enhance process and/or product understanding [19, 

20]. Their applicability is versatile, models can function as digital twins for process control and 

monitoring purposes, or they can perform simulations for design or optimization purposes. 

Consequently, the use of modeling techniques reduces the need for extensive experimental 

effort and minimizes material costs.  

Mechanistic models attempt to describe the physical phenomena occurring in a process or 

system [21, 22]. These models are based upon process knowledge and described in a 

mathematical form, including material and/or energy balances, as well as transport and 

thermodynamic phenomena. In order to describe the process, specific process related model 

parameters are needed, which can be determined experimentally or by physical correlations. 

An ongoing challenge for industry to adopt mechanistic modeling in their chromatography 

process development is the experimental determination of adsorption isotherms. A 

computational alternative is quantitative structure property relationship (QSPR), which aims 

to predict the retention behavior of proteins, or even adsorption isotherms parameters, based 

on the protein structure [23, 24]. Once the mechanistic model is developed, it needs to be 

validated, which involves the comparison between the modeled data and the experimental 

data to assess the model’s accuracy in describing the real process. Subsequently, the validated 

mechanistic model can replace real experiments, for example, to screen operating conditions. 

However, for the final process design, an experimental verification is always required. 
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When mechanistic models for each step are present, an overall downstream process can be 

described. Eventually, the combination of purification steps will determine the overall process 

performance. Developing an entire downstream process involves numerous factors, including 

type and sequential order of the purification techniques, operating conditions, and costs [25, 

26]. Especially in the early stages of development, it is desirable to identify the optimal 

downstream process considering costs, quality, and development time. The aim of 

optimization is to achieve specific objectives, such as obtaining a high yield (retaining the 

majority of product material), high purity (minimizing impurities in the product), and 

achieving a high productivity (producing a specified quantity within a certain time period, 

thereby reducing costs). The way a process can be optimized is by tuning the operating or 

design parameters, such as the salt concentration in the buffers, the duration of a purification 

step, and the size of the chromatography column, among others.  

Optimizing the entire purification sequence at once by screening the overall design space is 

crucial for finding the optimal purification process [27]. This is because the most optimal 

purification process may not necessarily involve each unit operation performing at its 

individual optimum. Flowsheet optimization involves assessing all potential options, including 

the number, type and order of purification steps and their operating conditions, to purify the 

product [28]. Initially, a superstructure is designed, encompassing all possible process 

configurations, which are also referred as flowsheets. Subsequently, each flowsheet is 

optimized. Mechanistic models are utilized in the optimization, from the simulated 

chromatogram the process performances can be extracted, such as the yield, purity and 

productivity. Based on these outcomes, the optimization solver determines the necessary 

adjustments to the operating or design parameters, aiming to attain higher levels of yield, 

purity, and productivity. However, these mechanistic models can be speed-limiting, and this 

can be a significant disadvantage, particularly for flowsheet optimization purposes. Artificial 

Neural Networks (ANNs) can be used instead, serving as surrogate model of the mechanistic 

model and allowing for faster computations [29, 30]. The ANN functions as a ‘black-box’ model 

that is trained with certain input and output parameters, so only for the used in-and output 

parameters the ANN can be used [20]. The data needed to train, validate, and test the ANNs 

is obtained by running numerous simulations with the mechanistic model. 

1.2. Project setting  

This project ‘Computational modeling and optimization of biopharmaceutical downstream 

processes’ was funded by GlaxoSmithKline Biologicals S.A. (Belgium) and part of a 

collaboration between GlaxoSmithKline Biologicals S.A. (Belgium) and Technical University of 

Delft (The Netherlands). The collaboration aims to implement model-based high throughput 
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process development techniques into the end-to-end workflow of GSK’s vaccine process 

development. This collaboration project focuses on Escherichia coli based recombinant 

vaccines and can be extended to other vaccines. Ultimately, this approach will contribute to 

reducing process development times by minimizing the experimental effort and enhancing 

process understanding through the application of mechanistic modeling. This collaboration 

comprises three PhD-projects. One of the projects focuses on developing experimental 

methods to characterize the host cell proteome and determine modeling parameters for this 

complex mixture. The other project focuses on QSPR modeling, in which protein structures 

are used to calculate physiochemical properties that correlate to specific retention behavior. 

This PhD-project aimed to computationally describe and optimize the entire downstream 

process. Although, the project focus is to apply these methods to protein subunit vaccines, 

the developed methods can also be applied to other (bio)pharmaceuticals. Initially, 

mechanistic models were developed for ion-exchange chromatography, hydrophobic 

interaction chromatography and ultrafiltration/ diafiltration. Subsequently, an optimization 

software was built to perform flowsheet optimization, which supports decision-making in 

identifying the optimal purification process. Additionally, the use of ANNs to accelerate 

flowsheet optimization and various optimization strategies were explored. Finally, a multiscale 

modeling approach integrated QSPR and chromatographic mechanistic modeling, enabling 

the optimization of a cation exchange capture step based solely on knowledge of the protein 

structure. 

 

1.3. Thesis outline 

The in silico techniques developed and applied to downstream process case studies are 

described in  this PhD thesis of which an overview is provided in Figure 1.4.
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In Chapter 2, current and future approaches to downstream process development in the 

biopharmaceutical industry are provided, with a particular focus on chromatography. The 

chapter discusses experimental-driven methods, such as, Design-of-Experiments and High 

Throughput Screening, followed by expert-knowledge approaches, including utilization of 

platform processes. The section of model-based downstream process development describes 

the different types of models, such as data-driven, mechanistic, and hybrid models. 

Subsequently, the chapter delves into research examples of high throughput process 

development studies. In the final section, with a focus on the future, the integration of 

Artificial Intelligence in process development is explored. 

Advanced modeling techniques are employed to identify the global optimum within the 

overall design space. An optimization software is developed for performing complex flowsheet 

optimizations, utilizing mechanistic models to determine the process performances under 

specific conditions. In Chapter 3, ANNs are considered as an alternative to chromatographic 

mechanistic models during global flowsheet optimization, aiming to decrease the 

computational time and identify the best process sequence(s). A comparison of both 

modeling techniques during flowsheet optimization is conducted using a biopharmaceutical 

case study involving three types of chromatography with a maximum of three unit operations.  

In chapter 3 a total of 15 flowsheets are evaluated, however, when considering more unit 

operations and different types, the number of flowsheets to be assessed increases. Hence, 

the optimization strategy becomes crucial in terms of time-efficiency, complexity, and 

outcome. In Chapter 4, we compare three optimization strategies, namely simultaneous, top-

to-bottom, and superstructure decomposition to determine the most effective approach for 

complex flowsheet optimization. In this flowsheet optimization, we include an optional 

diafiltration mode between the chromatography steps, resulting in a total combination of 39 

flowsheets to be assessed. Additionally, each optimization strategy is performed both by using 

mechanistic modeling and ANNs during the global optimization to also assess the difference 

in performance and duration between mechanistic models and ANNs. All strategies are 

successfully implemented and able to identify multiple optimal flowsheets. In summary, this 

chapter highlights the importance of various optimization strategies and modeling techniques 

for flowsheet optimizations.  

As stated previously, this project aims to computationally describe the entire downstream 

process. However, a remaining bottleneck for mechanistic model implementations in industry 

is the experimental determination of adsorption isotherm parameters, which are needed as 

input parameters. In Chapter 5, we demonstrate a multiscale modeling approach in which we 

combine QSPR and mechanistic modeling techniques to optimize a cation exchange capture 
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step for an unseen protein. QSPR aims to correlate physicochemical properties with specific 

behavior, such as retention times or specific adsorption isotherm parameters. Once the 

database and QSPR model are developed, only the protein structure is needed to determine 

these specific model parameters and simulate the chromatographic process using mechanistic 

modeling. This multiscale modeling approach emphasizes the value of integrating diverse 

modeling techniques and, furthermore, reducing  the dependence on wet-lab experiments, 

particularly in early phase process development.  

Chapter 6 presents a final conclusion of this work and the key findings, together with 

prospects for future research. 
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Chapter 2 

 
Recent advances to accelerate purification 

process development: a review with a focus 
on vaccines 

 

The safety requirements for vaccines are extremely high since they are administered to 

healthy people. For that reason, vaccine development is time-consuming and very expensive. 

Reducing time-to-market is key for pharmaceutical companies, saving lives and money. 

Therefore the need is raised for systematic, general and efficient process development 

strategies to shorten development times and enhance process understanding. High 

throughput technologies tremendously increased the volume of process-related data 

available and, combined with statistical and mechanistic modeling, new high throughput 

process development (HTPD) approaches evolved. The introduction of model-based HTPD 

enabled faster and broader screening of conditions, and furthermore increased knowledge. 

Model-based HTPD has particularly been important for chromatography, which is a crucial 

separation technique to attain high purities.  This review provides an overview of downstream 

process development strategies and tools used within the (bio)pharmaceutical industry, 

focusing attention on (protein subunit) vaccine purification processes. Subsequent high 

throughput process development and other combinatorial approaches are discussed and 

compared according to their experimental effort and understanding. Within a growing sea of 

information, novel modeling tools and artificial intelligence (AI) gain importance for finding 

patterns behind the data and thereby acquiring a deeper process understanding.  
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2.1. Introduction  

The COVID-19 pandemic has engulfed the world, which has already cost over millions of lives 

and is still infecting hundreds of thousands of people every day, one and a half year after the 

first outbreak in December 2019. More than ever the world is aware of the value of 

vaccination, contributing to improved public health, reduced healthcare costs, economic 

growth, travel safety and prolonged life expectancy [1, 2]. In general, vaccination is estimated 

to prevent 2-3 million childhood and almost 6 million adult deaths annually [1, 3]. Recently, 

the WHO published an action plan making vaccination available to everyone in the world and 

promoting innovation within the vaccine industry [4]. 

The downstream process plays a key role in reducing contaminant concentrations in vaccines 

to very low values. This prevents for example high reactogenicity and unwanted immune 

responses, and guarantees the safety and efficacy of the vaccine. Designing a vaccine 

purification process is accompanied with many decisions, such as type and sequential order 

of purification techniques, conditions, costs, and other performance measurements [5]. 

Additionally, optimization of a single unit operation and overall purification sequence is 

important, whereas small variations of conditions in one step may affect the subsequent unit 

operation performance. High safety and purity demands lead to increased complexity of the 

vaccine purification process. This, often along with a low productivity and process capability, 

makes the downstream process very expensive in both costs and time [6, 7]. One of the main 

challenges in developing  vaccine purification processes is the separation of critical impurities 

closely related to the product, such as host cell proteins (HCPs) to a protein-antigen vaccine 

or genomic DNA or RNA to a DNA or RNA-based vaccine, respectively. Another challenge is 

the preservation of the antigen structure during the purification process, as well as the antigen 

stability, as most antigens are vulnerable to temperature, pH or salt concentration changes. 

Fast vaccine process development is of utmost importance in light of infectious outbreaks and 

pushing competitive market, which highly depends on its design strategy for the purification 

process [6]. Traditionally, vaccines are developed within 10 – 15 years, hence pharmaceutical 

companies desire to reduce the process development time drastically in every aspect. One of 

the reasons the first SARS-CoV-2 vaccines could be developed within 1-2 years, is the 

employment of an accelerated development timeline due to parallelization of phases instead 

of sequential development [8]. Additional reasons for such a quick development are the 

application of previous knowledge and production processes from related viruses and existing 

vaccines (i.e. platform knowledge), and widely available government funding enabling 

parallelization, risk-taking and fast regulatory reviewing [9].   
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The ‘quality by design’ (QbD) paradigm [10, 11] made the pharmaceutical industry shift from 

a trial-and-error approach towards a more comprehensive, systematic, and efficient approach, 

with the purpose to increase process understanding and process control [12-16]. The 

implementation of high-throughput process development (HTPD) approaches contributes to 

faster and more efficient process developments, additionally decreasing material 

consumption and improving cost-effectiveness [16]. HTPD is a combinatorial approach of both 

high throughput experimentation (HTE) and modeling techniques. Recently Sao Pedro et al. 

outlined the areas of major problems (e.g. cell culture, filtration and analytical tools) within 

HTPD, along with suggested solutions (microfluidics, modeling and Process Analytical 

Technologies (PAT)) for the purpose of integrated and continuous bio manufacturing [17]. 

Although this review is not focused on continuous biomanufacturing, the current limitations 

of HTPD are likewise applicable to the vaccine purification process development.  

Vaccine purification processes can differ enormously from each other as they depend strongly 

on the type of vaccine and crude starting material/host organism (e.g. fertilized eggs, 

bacterial-, mammalian-, and insect cells). Carvalho et al. pointed out the influence of vaccine 

types on downstream process strategies and described into detail each vaccine purification 

step with a focus on influenza vaccines [18]. A general overview of vaccine types is shown in 

Figure 2.1, being classified either as whole pathogen (inactivated or attenuated), antigenic 

components (subunit) of pathogen or nucleic acid vaccines, though slightly different 

classifications have also been reported. 

 

Figure 2. 1. Types of vaccines classified in whole pathogen, antigenic components of pathogen and 
nucleic acid vaccines [2-5]. 

 

In order to preserve the genetic stability of live and inactivated vaccines, the downstream 

process consist of only a few steps.  The purification of protein recombinant or subunit 

vaccines involves a complex purification challenge because of the presence of HCPs closely-
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related to the target protein [6]. Recently Jones et al. pointed out the concerns of high-risk 

HCPs and recommended a strategy for monitoring and eliminating the known impurities [19]. 

Despite the great variance between different protein subunit vaccine downstream processes, 

the generic order of purification steps is similar as shown in Figure 2.2. If the antigen (product 

of interest) is produced intracellular the purification process requires a cell lysis step, while 

this step is not needed if the antigen is produced extracellular. Detailed purification schemes 

for certain vaccine types are outside the scope of this paper and can be found elsewhere. For 

example, Josefsberg and Buckland [20] described the production process of several virus-

based conjugate and DNA vaccines, while Abdulrahman and Ghanem [21] summarized the 

most recent advances in the purification of plasmid DNA vaccines. In the book of Wen et al., 

viral vaccines purification and protein subunit vaccines purification are described into more 

detail [6, 22, 23].   

 

Figure 2. 2. General process flowsheet for vaccines including the upstream and downstream part, from 
fermentation to the last formulating steps. The optional processing techniques for different types of 
vaccines are given below each unit operation. The solid line represent a purification process in which 
the antigen is produced intracellular, including the cell lysis. The dashed line shows a purification 
process for extracellular products excluding cell lysis.    

 

Most of the current vaccine development approaches are based on design of experiments 

(DoE), in which multiple factors are changed simultaneously to evaluate the underlying 

interactions, thereby obtaining a multidimensional model that correlates the effects of various 

factors on the critical quality attributes (CQA), which is an essential aspect within QbD 

guidelines [14, 24]. However, the existing vaccine process development strategy requires high 

experimental effort and little process understanding is gained through it. Moreover, the 
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sequential determination of purification steps and individual process optimizations might lead 

to a suboptimal process design with respect to the objective, such as yield or costs [25-27]. A 

standardized approach, also known as platform process, as established for monoclonal 

antibodies (mAbs) is yet missing, mainly due to the large diversity between vaccine types [28]. 

Even when considering only protein subunit vaccines, already a very diverse range of proteins 

can be found due to a variety of expression systems. 

A platform process for specific vaccine types would be highly beneficial in terms of process 

development time, knowledge, resources, costs and regulatory aspect [7]. Another often 

complicated task is the precise quantitatively measurement and characterization of virus or 

bacterial particles, further complicated by the lack of rapid analytical technologies [7, 22]. A 

trend within the QbD initiative is the use of PAT, allowing real-time measurements to ensure 

consistent product quality and performance, besides providing a better understanding of the 

process [14]. Mechanistic models rely on physical processes occurring during a certain 

separation step and can therefore be of great merit to the process understanding, but also 

decrease experimental effort and allow to perform processes on different scales in silico. The 

use of AI techniques could eliminate shortcomings within the modeling area and bring 

modeling techniques to a higher level of applicability and usability.  

This review presents modern and future downstream process development approaches and 

their application in (bio)pharmaceutical industry with a focus on chromatography, as this is 

the main purification technique for protein subunit vaccines. This paper aims to show the 

evolvement of model-based high throughput process development approaches through the 

use of more advanced modeling techniques, such as empirical, mechanistic and hybrid 

modeling. The applicability and benefit using these methods are supported by case studies 

from industry and academia. 

2.2. Downstream process development methods 

The overall goal of process development is to design the optimal purification process, by 

means of achieving purity targets at minimum costs and time efforts, while at the same time 

adhering to all regulatory requirements. Currently, vaccine development employs mostly DoE-

based methods, though it could benefit from more advanced model-based process 

development approaches, which are already used in other biopharmaceutical branches, such 

as for the purification of mAbs. Figure 2.3 shows two types of process development 

approaches, the DoE-based method and a modeling-based method. In the following section, 
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process development approaches are described briefly. More comprehensive reviews on this 

topic can be found elsewhere [16, 29]. 

 

Figure 2. 3. Overview of two different process development approaches. Left: Design of Experiments 
(DoE) approach, which performs experiments based on statistical tools and evaluating the results by 
statistical analysis. This approach is commonly applied within biopharmaceutical industry. Right: 
Model-based process development approach, which employs targeted experiments to determine 
model input parameters such as isotherm parameters and column parameters. The model has to be 
validated before performing the optimization. 

 

2.2.1. Experimental driven downstream process development 

2.2.1.1. One-factor-at-a-time and Design of Experiments 

One-factor-at-a-time (OFAT) is a more traditional approach in which one factor is changed 

during a series of experiments while the other factors are kept constant. In this method 

dependencies between factors are neglected and therefore discovery of the optimum is rather 

difficult and quite inefficient [30]. For that reason, the biopharmaceutical industry shifted 

more than a decade ago to the statistics-based DoE approach to design and analyze 

experiments, thereby obtaining more valuable information by conducting less experiments. 

The classical DoE-method is factorial design. Experiments are performed on all possible 

combinations of factors with the purpose to identify effects of each factor as well as 

interactions between factors on the response. An improvement on the classical DoE-

screenings is definitive screening design which estimates the curvature effects and enables 

separation of factors having a significant impact on the response from the factors having 

negligible effects. Oher methods offering a three level multifactorial design are for example 

Box-Behnken [31] or central composite designs. Hibbert extensively described the most 

common used DoE methods with a focus on chromatography [32, 33]. Various DoE software 
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are available nowadays, such as Design-Expert, Modde and JMP, though other statistical 

software, like R, SPSS and various Python packages, can also be used for DoE purposes. 

2.2.1.2. Parameter acquisition for modeling purposes 

An alternative experimental strategy is to determine parameters that serve as input for 

mechanistic or physical models. The use of mechanistic models has been established decades 

ago and is nowadays widely adopted by chemical industry, where some processes are even 

designed entirely in silico [34]. Only recently, biopharmaceutical and vaccine industry initiated 

this strategy into their process development, in which the major challenge is often the 

complex  feed mixture containing the product of interest (e.g. antigen) together with 

thousands of proteins and impurities [23]. This is probably why mechanistic modeling 

together with parameter acquisition has not been widely adopted yet, as it is nearly 

impossible to experimentally determine and model thousands of proteins and impurities. 

However, HTE made it worthwhile to determine model parameters even for more complex 

mixtures [35-37]. Noteworthy, a validated model increases process understanding and 

enables to optimize the process in silico, resulting in time, material and costs savings [38]. For 

chromatographic purposes, as this is the main purification technique in protein subunit 

vaccines, the adsorption isotherm parameters describing the binding behavior of components 

to the solid phase, are of utmost importance. Experimental determination of adsorption 

equilibria is required to establish the isotherm parameters and can be obtained by batch 

adsorption experiments [36, 39-42], frontal analysis, isocratic elution or linear gradient elution 

[41, 43, 44] or by making use of inverse techniques, which minimize the difference between 

experimental and simulated elution profiles by tuning certain parameters [36, 44, 45]. Besides 

isotherm determination, column and resin characteristics must also be obtained in order to 

acquire a validated model, however these are more straightforwardly obtained [41]. 

2.2.1.3. High Throughput Screening (HTS) 

The introduction of liquid handling stations (LHS), about two decades ago, allowed the 

acceleration of conducting experiments, also known as HTE or HTS. Due to automation, 

miniaturization and parallelization it became viable to create large data sets while using a 

reduced amount of sample volume and resources within a shorter time-frame [46, 47]. 

Another benefit of automation is the lowered variability and superior precision [48]. 

Nowadays, LHS is a widely applied technique in both academia and industry and reduces the 

process development time significantly [49-51]. As LHS allows to screen more conditions, it is 

more feasible to find optimal conditions for a purification process. Apart from the system’s 

benefits there are certainly also some disadvantages pointed in literature [52, 53]. For 

example, the LHS’s limitation in accurately mimicking the flow distributions of process 
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columns [49]. HTS requires high understanding of efficient experimental design in order to 

make optimal use of the system, therefore it is rather a tool to be used than an approach on 

its own. 

2.2.2. Expert-knowledge driven downstream process development 

2.2.2.1. Universal  

Rules of thumb, available knowledge and experience of previous processes are the basis for 

expert knowledge or heuristic approaches to design new production processes [29, 54]. Using 

expert insights is easy to apply and can speed up the process design by eliminating 

combinations of unit operations with less promising results [55]. Asenjo et al. developed an 

expert system focused on downstream protein processes; this software uses databases 

consisting of expert knowledge on universal process designs (heuristics) to support and 

accelerate decision-making for the selection of a sequence of unit operations [54, 56]. Several 

handbooks, like Sofer & Hagel [57] and GE healthcare [58], outline general design heuristics 

extensively. Most vaccine purification processes are also based upon heuristics, as for example 

the purification of hepatitis A virus from mammalian cell cultures, in which the first step 

involves a low-cost anion-exchange chromatography to capture the product and remove a 

substantial amount of impurities and the last step of the downstream process a polishing and 

desalting step using size-exclusion chromatography [22, 57, 59]. A general example that is 

almost entirely based on knowledge are platform processes as explained into more detail in 

the next paragraph.    

2.2.2.2. Platform process  

Platform processes are used as ‘templates’ for designing an entire purification sequence for a 

specific type of molecule, utilizing a pre-established series of unit operations [29]. The 

platform instructions provide details of the operating conditions for each unit operation, 

corresponding to the overall purification process. One of the key advantages is a reduced 

process development time, regulatory aspect and resources for similar molecules and 

accordingly decreased time-to-market and validation effort [57]. Moreover, the platform 

documents can be shared and aligned among not only different departments, but also across 

different manufacturing sites, serving as a site-independent process [60]. The platform 

process approach is most suited for biopharmaceuticals with similar characteristics and thus 

purification steps [28, 57]. For example, mAbs are relatively well defined and platform 

processes are used to establish similar purification processes for new mAbs variants. Detailed 

information about process-related contaminants such as persistent HCPs and other impurities 

for the corresponding cell culture, i.e. CHO and hybridism are known [60]. The order of 

purification steps includes protein A chromatography, low pH viral inactivation, IEX 
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chromatography polishing steps, viral filtration, and ultrafiltration/diafiltration. Only small 

changes are required in the purification process conditions to determine a new mAb variant 

purification process. Other potential candidates for platform approaches could be pDNA 

vaccines and influenza vaccines, both having similar properties and purification steps [21, 57]. 

However, mAbs are relatively similar to each other in their properties, while protein subunit 

vaccines vary greatly in their appearance, making it more difficult to standardize the 

purification process. 

2.2.3. Model-based downstream process development 

In process engineering models play an important role, they aim to represent a real system in 

an abstracted mathematical format [61, 62]. Bézivin and Gerbé defined a model as “a 

simplification of a system built with an intended goal in mind. The model should be able to 

answer questions in place of the actual system” [63]. The intended goal related to process 

engineering could be for example, control, simulation, design, monitoring or optimization. 

Depending on the goal, different models can be appropriate [64]. Models help to understand 

complex problems and could provide potential solutions if the model is an adequate 

representation of the modeled system’s features of interest [65]. Running the model with a 

given set of parameters is a simulation and hence an inexpensive and safe way to run a virtual 

experiment [66]. For that reason, the number of experiments in laboratory can be reduced 

and/or designed more efficiently, thereby reducing time and material consumption. Although, 

using models sounds attractive and promising, it does cost time, effort and knowledge to 

develop decent models that are able to fulfill the desired purposes. Moreover, there is a lack 

of educated people in this area that can develop and maintain scientific-, and engineering 

software. Within the near future, it is expected that more process engineers or scientist are 

familiar with modeling, because most technical related studies provide programming and 

data-processing courses nowadays. In order to build a model two main resources are essential, 

knowledge of the process, translated into laws of nature, and the collection of data obtained 

from the real system [66]. In process engineering, a distinction can be made between first-

principles, mechanistic or knowledge-driven models and data-driven or empirical models, 

respectively known as transparent white-box and less transparent black-box models [61]. A 

combination of both is named hybrid semi-parametric models. An overview of the main 

advantages and disadvantages is given in Table 2.1. 
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Table 2. 1. Overview of the main advantages and disadvantageous of different modeling approaches.   

 Advantages Shortcomings 

Data-driven models - Requires no or little process 
understanding in advance 

- Takes less effort/time to  
develop the model 

- Easy to use and understand  

- Only valid in a predefined  
measured region 

- Extrapolation generally not  
applicable 

- Parameters have often  
no physical meaning 

- Data-collection might be 
an issue for the application 
and generalization of data-
driven models in 
biomanufacturing industry 

 

Mechanistic models - Allows extrapolation and  
exploration of conditions  
beyond measured results 

- Acquires process 
understanding  

- Parameters have a physical 
meaning 

 

- Requires process 
understanding in advance 

- Complex to develop and 
hence time and effort 

- Determination of model 
parameters can be difficult  

Hybrid models - Eliminate drawbacks of  
certain modeling approaches  

- Improved model accuracy and 
extrapolation properties 

- Less data is required 
compared to purely data-
driven models 

 

- Requires additional  
effort, time and knowledge 
to develop hybrid models 

- Data-collection can be 
challenging 
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2.2.3.1. Data-driven models  

Data-driven or empirical models attempt to describe the input-output relation based upon 

observed experiments within a predefined design space, such as artificial neural networks 

(ANN), statistical and regression models [64]. The biopharmaceutical industry often makes use 

of statistical models, either by executing a predefined set of experiments using DoE and an 

appropriate statistical data analysis method, such as response surface methodology (RSM), or 

by employing a multivariate data analysis using an existing dataset [67]. RSM is a well-known 

empirical model and describes the relation of a response between different tested factors 

within a DoE, and produces a model describing the mathematical relationship [32]. This 

statistical (black-box) model solely observes the factor-to-response correlation without 

gaining fundamental mechanistic (physiochemical) understanding of the estimated 

parameters. By making use of DoE and regression analysis through first- and second order 

polynomials the optimum input combination can be estimated [68]. However, fitting data to 

second order polynomials is a major drawback of RSM, as frequently not all curvatures within 

the systems can be described by the second order polynomial [69]. DoE in combination with 

empirical modeling has been widely applied to design downstream purification processes in 

biopharmaceutical industry and academia [70-72]. The effect of high-salt solution on RNA 

precipitation and pDNA recovery was investigated using DoE and linear regression models 

[71]. And more recently, Chiang et al. evaluated the impact of chromatographic parameters 

on virus clearance when switching from a single to multicolumn operation utilizing DoE [73]. 

A major limitation of data-driven models is that they are merely valid in a defined region of 

measured variables and only able to predict variables within that region, making extrapolation 

generally highly inaccurate. Moreover, little process knowledge can be extracted, because the 

parameters are often just correlations [74]. On the other hand, data-driven modeling requires 

no process understanding in advance and is less time consuming compared to mechanistic 

modeling [74].   

2.2.3.2. Mechanistic models  

Mechanistic, first-principle, or knowledge-driven models attempt to describe the inner 

mechanisms and phenomena occurring in a process or system based upon knowledge about 

the process. These models consist of material and/or energy balances together with transport 

and thermodynamic phenomena and have a fixed structure, meaning the parameters might 

have a physical interpretation [74]. The model parameters are estimated by experimental data 

or physical correlations. The physical processes occurring during a purification process can be 

translated into mathematical simulation models. A validated mechanistic model allows to 

explore various conditions in silico and therefore enables to acquire optimum operating 

conditions efficiently [75]. The phenomena taking place inside a chromatographic column are 
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well described in literature, Ruthven extensively outlined the dynamics and adsorption 

processes [76]. Kinetic or rate models are most common in practice, including dispersive 

factors, like mass transfer and dispersion effects, and equilibrium factors, such as adsorption 

isotherms, ionic dissociation and intermolecular association [41]. The three most prominent 

kinetic models are lumped kinetic model, lumped pore model, and general rate model, which 

are listed in order of complexity. The main difference between these models is the degree of 

covering pore diffusion effects [77]. However, it applies for all mechanistic models that 

isotherm parameters are crucial as explained previously in section 2.1.2, for which numerous 

binding models exist, such as linear, Langmuir [78], steric mass action [43] and mixed-mode 

[39]. The utilization of chromatographic models varies from process synthesis, optimization 

and control [79-85] to scale-up, resin selection and robustness checks [86-89]. One step 

further is the simulation of a combination of integrated chromatography and other 

conditioning steps to find the overall optimum purification process [5, 25, 90-93]. Nowadays, 

various commercial software of chromatographic mechanistic models are available, e.g. 

GoSilico (now part of Cytivia, and formally known as ChromX) [94], Aspen Chromatography, 

DelftChrom, CADET [95] and ChromaTech [96].  

Alternative in silico methods for adsorption experiments have been investigated for several 

years. Molecular dynamics simulations attempt to describe the interaction between resin-

proteins on a detailed atomic level [97-99]. Quantitative structure activity relationships 

(QSAR) combine molecular properties with empirical modeling to find correlations amongst 

retention behavior and protein surface properties [100-102]. This kind of molecular modeling 

can be used to predict the retention behavior of proteins on resins to reduce process 

development times [103]. However, often detailed information is required about each 

component, such as amino acid sequence or crystal structure and also a large amount of 

experiments [75]. 

Mechanistic models can explore conditions over a wide range and even beyond the observed 

measured results, possessing an increased extrapolation capability compared to data-driven 

models [74]. This contributes to process understanding, which is line with the QbD initiative, 

although mechanistic modeling also requires physical understanding. The major drawback of 

knowledge-based models is their complexity, hence requiring more development time 

compared to data-driven models.   

2.2.3.3. Hybrid (semi-parametric) models 

Hybrid (semi-parametric) modeling combines parametric (i.e. first principle-, mechanistic-, 

and knowledge-based models) with nonparametric (i.e. data-driven models) in order to 

eliminate drawbacks of individual approaches and get the best out of both [61]. Von Stosch et 
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al. extensively reviewed the hybrid semi-parametric modeling framework and the various 

applications in (bio)chemical engineering concerning process monitoring, control, 

optimization, model-reduction and scale-up. The parametric and nonparametric models can 

be configured in series or parallel, depending on the scope of the model. Usually a parallel 

mode is recommended when the mechanistic (white-box) model performance is limited or 

insufficiently accurate and the addition of a nonparametric (black-box) model may improve 

the estimations, Figure 2.4C. A serial approach is often utilized for reducing complexity of 

mechanistic models by determining parameters using nonparametric models, Figure 2.4A, or 

when the results of mechanistic models function as an input for nonparametric models, Figure 

2.4B  [61].   

 

 

Figure 2. 4. Hybrid modeling configurations, white-boxes represent mechanistic/first-principle models 
and black-boxes represent data-driven models [2]. Serial approach (A, B) and parallel mode (C). 

 

The usefulness of hybrid modeling lies within its capability to cost-effectively and efficiently 

solve a complex problem and develop a model. Other advantages are an improved model 

accuracy, transparency and extrapolation properties, besides gaining a broader process 

understanding [74]. However, the challenge is knowing in what manner different type of 

models can be combined to develop a hybrid model. Therefore, thorough understanding on 

both data-driven and mechanistic models is desired, as well as knowledge to acquire the 

correct data. Hybrid modeling is gaining more interest in both industry and academia, and 

seems to be a promising approach to overcome deficiencies in data-driven-, and mechanistic 

models.   

2.3. High Throughput Process Development  

2.3.1. Single or double purification steps 

Hybrid process development approaches combine experimental and modeling tools to design 

a process. After the introduction of the LHS, hybrid approaches gained a special interest as 

LHS enabled experimentation in high throughput manner. Utilizing HTE in relation to process 

design is known as HTPD, combining HTS with empirical or mechanistic modeling is named 
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model-based HTPD [16, 38]. The implementation of HTPD pursues the QbD paradigm in terms 

of process and product understanding, hence contributing to high and stable product quality 

as well as process robustness [47]. The establishment of HTPD arose about 15 years ago [51, 

55, 104, 105] and evolved ever since as an efficient and cost-effective method broadly 

acknowledgement by industry [15]. (Model-based) HTPD can be applied in various 

development stages and for different purposes, like resin and solubility screenings, design-

space definition, risk-assessment, process robustness and control. In the review of Baumann 

and Hubbuch, several commercial miniaturized HT-suitable systems in both up and 

downstream process development are described [29]. The technical review of Lacki outlined 

the most frequently used chromatography HT equipment, such as microtiter filter plates, 

prefilled pipette tips and robocolumns, nowadays ranging from 50-600 µL [52]. Here, HTPD 

research from academic and industrial researchers are discussed. One can find more details 

on these and other HTPD approaches in Table 2.2. Depending on the purpose of the research 

a different HTDP approach is suitable, for example resin selection usually goes together with 

the use of empirical models while mechanistic modeling is preferred for an overall process 

design including multiple purification steps. 

Bhambure and Rathore proved a tremendous increase in productivity (170x higher) utilizing a 

HTPD platform (2 and 6 µL resin volume) against the traditional laboratory scale (0.5 mL resin 

volume) for defining the characterization space of an ion exchange chromatography step using 

DoE [50]. A more practical and general HTPD workflow was developed by Welsh et al. involving 

a multistep approach of HT chromatography techniques as a guidance for defining the 

operating space [106]. No detailed modeling tools were implemented as accurate 

performance predictions were not the aim, only isotherm models to regress the partitioning 

coefficient and maximum binding capacity were used. Weigel et al. applied a similar method 

as Welsh et al. to investigate the effectiveness of hydrophobic interaction chromatography 

(HIC) as a final purification step for a cell culture-derived influenza A and B virus [107]. 96-well 

filter plate experiments were used for screening various resins and salt concentrations, 

followed by conventional lab-scale columns for dynamic binding capacity characterization. 

However, the major reason for choosing a rational step-wise method over mathematical 

modeling was the lack of available virus purification data by HIC to be able to determine model 

parameters. As vaccine platform processes are barely available yet, Ladd Effio et al. initiated a 

capture step as first part of a generic purification platform process for virus-like particles (VLP) 

[108]. Ladd Effio et al. established a one-step removal of HCPs and DNA from a complex VLP 

feedstock with an anion-exchange membrane capture step by making use of HTE and 

mechanistic modeling for in silico optimization purposes [108]. Although equilibrium and 

binding capacities of membrane chromatography are often limited, at high flowrates 
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membrane chromatography outperforms conventional packed bed chromatography in terms 

of productivity and for short residence times also in bed utilization [109]. It is expected that 

in the near future membrane materials with higher binding capacities will become available 

and therefore could overcome the restriction on surface area per unit volume of resin. The 

advancement in membrane chromatography technology is definitely interesting to the 

biopharmaceutical industry.  

Even though chromatography is one of the main purification techniques for 

biopharmaceuticals and vaccines, other downstream process techniques are also HT-suited. 

Precipitation is a well-known technique to isolate a desired component such as a protein, DNA 

or virus and proven to be HT-suited [110] [22]. This separation technique depends on the 

physical and/or chemical interaction between the precipitating agent (e.g. calcium chloride, 

ammonium sulfate or PEG) with one or several of the components in which solubility is the 

most critical thermodynamic property [111]. Aqueous two-phase systems (ATPs) could also be 

an alternative to chromatography as it is based on liquid-liquid extraction employing two 

immiscible phases to separate components from mixtures. HT techniques in combination with 

statistical [112, 113] or mathematical/thermodynamic [114] models are a convenient method 

for characterizing these systems.  

Analytics to monitor the process are just as important as the purification techniques itself. 

Analytics, however, remain a bottleneck during HTE, and consequently slow down 

experimentation considerably. Konstantinidis et al. provided a strategic assay deployment that 

helps selecting appropriate analytical methods, while preserving data quality [115]. 

Nonetheless, finding innovative ways to accelerate the analytical throughput would be of 

great merit. 
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2.3.2. Overall purification process 

The studies described in the previous paragraph focused mainly on applying HTPD to one or 

two sequential purification steps, but thereby do not consider the overall purification 

workflow. Designing a downstream process by optimizing each unit operation individually 

could lead to a suboptimal process design, as small variations in one-unit operation may affect 

the performance of subsequent following purification steps. The combination of HT and 

model-based optimization approaches for a sequence of unit operations has seldom been 

studied. Nfor et al. established a systematic approach to rationally define the protein 

purification process utilizing a top-to-bottom approach [90]. The least promising flowsheets 

were eliminated at each tree-diagram level by means of flow-sheet selection with the aim of 

keeping a minimum number of purification units. Instead of sequential optimization, which 

might generate a suboptimal process [25, 26], Huuk et al. presented a simultaneous two-step 

ion exchange chromatography process flowsheet optimization, including salt-gradient shapes 

and cut-points for fraction collection [25]. Pirrung et al. even proved the feasibility of 

simultaneous optimization of an integrated process consisting of three chromatographic steps 

(e.g. cation exchange, hydrophobic interaction and mixed-mode), including buffer exchange 

steps in between (e.g. ultra- and diafiltration) applied to a complex biological feedstock 

purification [5]. First the isotherm parameters were acquired utilizing HT techniques as 

illustrated in more detail in their previous work [36], hence other parameters were obtained 

by conventional lab-scale experiments. The use of ANN for finding suitable starting conditions 

for the local optimization using mechanistic models enabled circumvention of speed-

limitations [5, 27]. These examples to optimize an overall downstream process require a 

comprehensive combination of modeling and experimental methods. If more HTPD 

approaches are established that combine efficiently all available technologies (e.g. LHS, 

modeling-, analytical-, and data-processing tools), this optimization strategy could become 

more interesting. 
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2.4. Artificial Intelligence in process development 

The interest in HTPD raised after the introduction of HT technologies, having the major benefit 

to generate more data while consuming less material. Nevertheless, these arising 

technologies still face a number of hurdles. Experimentally transferring every item into HT 

mode, including analytics, remains a burden and although more data is being produced, 

processing and handling these data efficiently is still challenging. Modeling is a promising tool 

to close this gap. Further advancements of modeling are discussed in the following paragraph. 

While complex mechanistic models attempt to describe the mechanisms and thermodynamic 

phenomena, determining certain parameters is rather difficult. Simplifying models could avoid 

certain difficulties, however, oversimplifications may cause inaccurate predictions and 

meaningless results. The optimal model should be as simple as possible while still gaining high 

or sufficient understanding. Moreover, a trade-off between accuracy versus speed has to be 

made especially when running optimizations. This led to the question; how to reduce the 

computational time effort or simplify complex models while retaining a similar level of 

accuracy and/or detail.  

Although ANNs were already used in the late 90s to predict retention times in chemical 

chromatography [116, 117]. Due to the generation of larger data-sets and better computer 

systems in recent years, the use of AI gained popularity in various technology fields, likewise 

within the biotechnology area. In 1992, Psichogios and Ungar presented the first hybrid neural 

network-first principles approach applied to model a fed-batch bioreactor [118]. This hybrid 

model used a neural network model to estimate unknown process parameters serving as an 

input to a first principle model, resulting in an improved inter- and extrapolating capability, 

and understanding over merely “black-box” neural networks. Von Stosch et al. extensively 

reviewed the hybrid semi-parametric modeling framework, as explained in 2.2.3.3., and the 

various applications in (bio)chemical engineering concerning process monitoring, control, 

optimization, model-reduction and scale-up [61]. Nagrath et al. established an optimization 

framework using a serial white- and black-box configuration (Figure 2.4) to find the optimal 

design for a chromatographic process applied to a binary and tertiary mixtures [119]. After 

obtaining the physical model parameters experimentally, numerous simulations were 

performed under various conditions using the physical model (i.e. white-box) for training the 

neural network. Finally, the optimal operating conditions for several purity levels were 

identified by using the neural network to accelerate the computation. Likewise, Pirrung et al. 

used an ANN to accelerate a flowsheet optimization consisting of three chromatography and 

UF/DF units [5, 27]. However, here the ANN was used to find adequate starting conditions 

during the global optimization to be used for the local optimization, which was performed 
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together with a mechanistic model in order to assure realistic and accurate results. A speed 

improvement of 70% was found, including training of the networks, compared to using solely 

mechanistic models for the optimization. Reducing the computational cost was the main 

objective for these latter two examples (Nagrath et al. and Pirrung et al.), and therefore using 

ANNs was advantageous. However, the data-driven model, here ANNs, depends on the 

accuracy of the mechanistic model and so limits the predictive power of ANNs. Recently, Nikita 

et al. showed a novel approach making use of reinforcement learning (RL) to increase 

computational efficiency during a continuous chromatography process optimization [120]. 

Each mechanistic model simulation is rewarded according to a RL-method and consequently 

the optimization criteria (design space) are adjusted to accelerate the convergence of 

optimization. The optimal flowrate, directly related to yield and purity demands, was found 

three times faster using the RL based optimization method compared to conventional trial and 

error methods. However, thorough understanding of the RL-principle and mechanistic 

modeling is required to develop this RL-method. Apart from using hybrid semi-parametric 

modeling for optimization intentions, other research showed the usefulness of black-box 

modeling to estimate certain white-box model parameters that are hard to determine. Wang 

et al. used neural networks to directly derive mass transfer, isotherm and characteristic charge 

parameters from experimental chromatograms, after which these parameters served as input 

for the mechanistic model [121]. In this way, time-consuming experimental methods for 

determining these parameters were circumvented. However, this approach requires still a 

considerable number of experiments. In mechanistic filtration models the flux is a key 

parameter, but predicting this parameter accurately might be quite complex. Therefore, Krippl 

et al. used an ANN to determine the flux using transmembrane pressure, cross-flow velocity 

and concentration as input parameters [122]. Placing the hybrid model in series enabled to 

perform a multistep ahead prediction of the concentration over time. In general, data-driven 

models combined with white-box models can be advantageous in terms of prediction 

accuracy, computing and model development efficiency and enhanced extrapolation 

properties [61]. 

With an eye on the future more applications of hybrid modeling approaches are expected, in 

both industry and academia. In order to realize this prospective, more experts in modeling are 

needed to develop and maintain these software applications. Moreover, the modeling 

techniques utilized in the process development (HTPD) can also be used for process control 

and optimization in later development stages and manufacturing processes. One step ahead 

is industry 4.0, known as the latest revolution and aiming to digitalize the whole 

manufacturing process. From process control to decision-making, all monitored data is 

efficiently collected, which in turn is also valuable for process development [123]. In order to 
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realize Industry 4.0, digital twins are highly essential, defined as a virtual counterpart of the 

physical process and their interconnection [124]. 

2.5. Summary and Conclusion  

Vaccination protects millions of people from infectious diseases and, because a high product 

quality is pivotal, the downstream processing is likewise as important. Downstream process 

operations in manufacturing have a direct influence on time-to-market, product quality and 

cost of goods. Therefore, modernizing the strategies for developing processes could be of 

great merit. The urge to decrease the process development timeline of vaccines has raised, as 

well as the need for deeper process understanding as stated by the quality by design guideline.  

The introduction of high throughput technology accelerated experimental data generation 

and allowed to investigate the influence of parameters more thoroughly and systematically. 

However, HT also required to enhance data-processing and modeling techniques. Mechanistic 

models provide insights on the inner working mechanism of unit operations and are being 

increasingly adopted by industry in recent years, proving they add deeper process 

understanding and greater application possibilities. The combination of HT and modeling 

techniques led to HTPD approaches, acquiring and using data in a more efficient and 

purposeful way, thereby also enabling standardized process development approaches. The 

future direction in process development is to design and optimize the overall downstream 

process in silico, for which only a limited number of model calibration and validation 

experiments are needed. Hybrid (semi-parametric) modeling can help to ease the model 

development or improve the accuracy by making optimal use of both mechanistic and data-

driven models. Recent research has shown the potential of artificial neural networks in 

addition to mechanistic models for circumvention of computational speed limitation or 

estimation of parameters.   

With these emerging new technologies, it will now be possible to standardize process 

development workflows, provided that a proficient combination of experimenting and 

modeling techniques is utilized. Creating a generic process development workflow will 

enhance process development time and shared knowledge among different departments and 

manufacturing sites.  
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Chapter 3 
 

Using artificial neural networks to accelerate 
flowsheet optimization for downstream 

process development  
 

An optimal purification process for biopharmaceutical products is important to meet strict 

safety regulations, and for economic benefits. To find the global optimum, it is desirable to 

screen the overall design space. Advanced model-based approaches enable to screen a broad 

range of the design-space, in contrast to traditional statistical or heuristic-based approaches. 

Though, chromatographic mechanistic modeling (MM), one of the advanced model-based 

approaches, can be speed-limiting for flowsheet optimization, which evaluates every 

purification possibility (e.g., type and order of purification techniques, and their operating 

conditions). Therefore, we propose to use Artificial Neural Networks (ANNs) during global 

optimization to select the most optimal flowsheets. So, the number of flowsheets for final 

local optimization is reduced and consequently the overall optimization time. Employing ANNs 

during global optimization proved to reduce the number of flowsheets from fifteen to only 

three. From these three, one flowsheet was optimized locally and similar final results were 

found when using the global outcome of either the ANN or MM as starting condition. 

Moreover, the overall flowsheet optimization time was reduced by 50% when using ANNs 

during global optimization. This approach accelerates the early purification process design, 

moreover, it is generic, flexible, and regardless of sample material’s type.  
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3.1. Introduction 

Purifying biopharmaceuticals is crucial to reduce contaminants to very low levels, which 

ensures safety and efficacy of the product. The downstream process consists of a combination 

of multiple separation techniques such as filtration, centrifugation, and chromatography. 

Chromatography is a powerful separation technique and has been employed in the industrial 

bioprocesses for decades; it is generally the most essential technique to achieve high product 

purity [1]. A purification process is developed by employing a certain approach, for example, 

trial-and-error, design of experiments (DoE), or modeling based. An overview of these 

different downstream process development strategies and recent advancements has been 

described elsewhere [2]. DoE is based on statistical methods and most commonly applied for 

process development in pharmaceutical industry [3, 4]. It provides a multidimensional model 

that correlates the effects of various factors on the critical quality attributes (CQA). CQA is an 

essential aspect of the Quality-by-Design (QbD) guidelines, which is a strategy of process 

development to ensure quality and performance of the final product [5-7]. As statistical 

methods provide little process-understanding and extrapolation is not possible, DoE is 

inadequate for overall process optimization. Therefore, the pharmaceutical industry is shifting 

towards a model-based process development strategy that is compliant with the QbD 

guidelines and with the adoption of Industry 4.0. Industry 4.0 desires a full digitalization of 

the whole manufacturing process; monitored data are collected and communication between 

machines could directly improve the process [8-11]. In this new era, model-based techniques 

are essential, involving mathematical mechanistic models (MMs), hybrid modeling, and 

artificial intelligence (AI). MMs are based on physical correlations and attempt to describe the 

real process [12]. The combination of AI techniques with mechanistic modeling could 

eliminate shortcomings in both techniques, and so improve the applicability and usability [13-

15]. The potential of applying AI driven models for process development and their practical 

implementations have been discussed elsewhere [16, 17].  

Developing a purification process requires making decisions such as type and sequential order 

of purification techniques, operating conditions, and costs [18, 19]. Minor variations in 

operating conditions may critically impact the performance of subsequent purification steps. 

In addition, it should be noted that the most optimal purification process may not consist of 

each unit operation performing at its individual optimum. Hence, to find the optimal 

purification process, it is pivotal to optimize the entire purification sequence at once by 

screening the overall design space. The optimal purification process is defined by certain 

process performances such as, yield, purity, productivity, or buffer consumption. However, for 

early process designs, the type and order of unit operations have yet to be decided. 

Superstructures contain all possible process configurations, each process configuration is also 
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referred as flowsheets. Flowsheet optimization evaluates each flowsheet to find the optimal 

sequence for purifying the product, which can support decision-making on early process 

designs [20]. 

Kawajiri described different optimization strategies for chromatographic modeling and 

summarized related studies [21]. Moreover, an open-software optimization framework for 

modeling conventional and advanced batches and continuous chromatography processes was 

developed by Schmölder and Kaspereit [22]. However, both studies are applicable to batch or 

continuous chromatography, but not to flowsheet optimization. Nfor et al. applied a top-to-

bottom optimization approach to obtain a minimum number of purification steps in the final 

process [19]. As sequential optimization can lead to a suboptimal process, Huuk et al. 

simultaneously optimized a two-step ion-exchange chromatography process [18]. A similar 

approach was applied by Pirrung et al. simultaneously optimizing an integrated process of 

three chromatographic steps (e.g., cation exchange, hydrophobic interaction, and mixed-

mode) including buffer exchange steps if needed (e.g., ultra- and diafiltration) [23]. 

Many parameters play a role at an early-stage-design, for instance the number, order, and type 

of unit operations and their operating conditions. Finding global optima is therefore a complex 

task. The main aim of flowsheet optimization, for early process design, is to find the most 

effective sequence unit operation(s) and an estimation of their operating conditions. MMs are 

very appropriate for flowsheet optimization because of their extrapolation capabilities. 

However, these models can be speed-limiting when used for optimization purposes and 

therefore, using meta-models, such as Artificial Neural Networks (ANN), as a representation 

of the MM can accelerate the optimization. In the early 2000s, Nagrath et al. already 

established a hybrid model optimization framework for preparative chromatography, using 

ANNs for speed improvement [24]. In the work of Pirrung et al. all flowsheets of a 

superstructure were evaluated by a global and local optimizer; the outcomes of the global 

optimizer was used as starting conditions for the local optimizer [23, 25]. In this case, ANNs 

replaced the mechanistic model during global optimization, however these ANNs were less 

precise and therefore unable to always find realistic results. The local optimization took 

around 80% of the total optimization time. Another approach would be to focus on the global 

optimization and to first find the most promising sequence(s) of unit operations, and only 

optimize a selection of best processes locally. In this way the number of flowsheets to be 

evaluated during local optimization would be significantly reduced and so the overall 

optimization time. In order to realize this, ANNs that function as surrogate models should be 

developed and therefore additional input parameters, the mass of each protein, are needed. 

However, increasing the number of input parameters for the ANN makes it more challenging 

to generate accurate ANNs with a limited number of sample points.  
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In this approach, we performed a flowsheet optimization to evaluate the use of ANNs versus 

MMs in identifying the overall best process sequence(s) during global optimization. The most 

promising process options can be optimized locally, hence saving a time-consuming task in 

which no significant better process is obtained. First, we developed ANNs for each 

chromatography mode and evaluated their accuracy in terms of R-squared and root mean 

squared error (RMSE) values. Secondly, we created a superstructure optimization framework 

in which MM and/or ANNs were used. At last, we evaluated, in terms of time and precision, if 

and when ANNs would be sufficient for flowsheet optimization purposes. We compared two 

optimization frameworks in which only a selection of best processes was evaluated locally; (i) 

global and local optimization using MMs and (ii) global optimization using ANNs and local 

optimization using MMs. 

3.2. Materials & Methods 

3.2.1. Flowsheet optimization workflow 

In this study a superstructure of three different chromatography modes in a maximum 

sequence of three unit operations was evaluated. Only flowsheets satisfying certain 

conditions are considered, for example; at least one unit operation is needed for the 

purification. To generate a maximum number of structures that confirm defined conditions, 

this problem is mathematically formulated as  

 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]  Eq. 3.1 

𝑠. 𝑡.  ∑ 𝑦 ≥ 1  
Eq. 3.2 

 𝑦𝑖 ≠ 𝑦𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦𝑖 > 0   Eq. 3.3 

 𝐹𝑜𝑟 𝑖 = 2, 3, … , 𝑛: 
𝑖𝑓  𝑦𝑖 > 0, 𝑡ℎ𝑒𝑛 𝑦𝑖−1 > 0  

Eq. 3.4 

where 𝑦 is the process configuration, in which 𝑛, in this case 𝑛 = 3, is the length of the vector. 

The variable 𝑦𝑖 ∈ {0, 1, 2, 3} represents the value of the 𝑖𝑡ℎ element of vector 𝑦. The first 

statement, Eq. 3.1, defines the set of all possible vectors 𝑦 , where each element is number 

between 0 to 3, which in this study represents the considered chromatography modes, none, 

CEX, AEX, and HIC, respectively. The second statement assures, Eq. 3.2, to have at least one 

unit operation present in the sequence. The third statement, Eq. 3.3, ensures that each mode 

can only appear once in the sequence. The conditional constraint in Eq. 3.4 is applied to all 

positions in the sequence, except the first position. This constraint imposes that any occupied 

position in the sequence must be preceded by another occupied position. This ensures to have 

no isolated modes in the sequence, and requiring all modes to be linked. For example, 𝑦 =
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 [1, 3, 0] is a two-step chromatography process of CEX followed by HIC. This mathematical 

formulation can be easily extended for more and different types of unit operations. 

Each flowsheet of the superstructure was optimized according to certain objective(s) and 

constraint(s), these are described in section 3.2.5. Case study. The objective is to find an initial 

concept of a purification process. Therefore, we focused on the global optimization to select 

the best processes. A minor local optimization was performed afterwards, as at the early stage 

of the local optimization, using the Nelder-Mead algorithm, the steps can be larger towards 

the local minimum and therefore the solution is already closer to the final minimum. 

Subsequently, the selected process(es) were further optimized locally using MMs. The 

outcome of the foregoing global and local optimization was used as initial guess for the final 

local optimization. The overall flowsheet optimization workflow is shown in Figure 3.1, in 

which framework A runs the global optimization and minor local optimization using the MM, 

while framework B uses the ANN. In this way a fair comparison can be made between using 

MMs or ANNs during the flowsheet optimization.  

 

Figure 3. 1. Each flowsheet of the superstructure, upper right figure, is first optimized globally to select 
the ‘best processes’. These are further optimized using a final local optimizer. Framework A used MMs 
and framework B used ANNs for global optimization. 

After the global and minor local optimization according to the set objective, we used the 

weighted overall performances (WOP) to select the ‘best processes’. The WOP was 

determined as  

𝑊𝑂𝑃 =  0.5 ∗ 𝑝𝑢𝑟𝑖𝑡𝑦 + 0.3 ∗ 𝑦𝑖𝑒𝑙𝑑 + 0.2 ∗ ( 100 −  𝑏𝑢𝑓𝑓𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ), Eq. 3.5 
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where, the purity (%) is determined by dividing the amount of product by the total amount of 

proteins present in the product-pool. The yield (%) is determined by the total amount of 

product recovered divided by the loaded amount of product. The buffer consumption 

(L/gproduct) is approximately between 1 and 50. Subtracting the buffer consumption from 100 

ensures the WOP increases when less buffer is consumed. Here, 100 is chosen to be in a similar 

range as the purity and yield.  

Two other requirements in both global and local optimizers were: 

- The next-unit operation could only be evaluated if the previous unit operation 

achieved a yield higher than 5%. This prevents the solver from failing because of too 

low concentration values. 

- Between two unit operations, it was required to adapt the salt concentration to the 

conditions of the subsequent unit operation.  

3.2.2. Chromatography mechanistic model 

To describe the dynamic adsorption behavior in the chromatographic process, we used the 

equilibrium transport dispersive model in combination with the linear driving force as follows: 

𝜕𝐶𝑖

𝜕𝑡
+ 𝐹

𝜕𝑞𝑖

𝜕𝑡
=  −𝑢

𝜕𝐶𝑖

𝜕𝑥
+ 𝐷𝐿,𝑖

𝜕2𝐶𝑖

𝜕𝑥2
, 

Eq. 3.6 

𝜕𝑞𝑖

𝜕𝑡
= 𝑘𝑜𝑣,𝑖( 𝐶𝑖 − 𝐶𝑒𝑞,𝑖

∗  ) , Eq. 3.7 

𝑘𝑜𝑣,𝑖 =  [
𝑑𝑝

6𝑘𝑓,𝑖
+

𝑑𝑝
2

60𝜀𝑝𝐷𝑝,𝑖
]

−1

, Eq. 3.8 

where 𝐶 and 𝑞 are the concentrations in the liquid and solid phase respectively, and 𝐶𝑒𝑞,𝑖
∗  is 

the liquid phase concentration in equilibrium with the solid phase. 𝐹 is the phase ratio, 

defined as 𝐹 = (1 − 𝜀𝑏)/𝜀𝑏, where 𝜀𝑏 is the bed porosity. The interstitial velocity of the 

mobile phase is represented by 𝑢, and the axial dispersion coefficient by 𝐷𝐿. 𝑡 and 𝑥 indicate 

the time and space respectively. 𝑘𝑜𝑣,𝑖 is the overall mass transfer coefficient defined as a 

summation of the separate film mass transfer resistance and the mass transfer resistance 

within the pores [26]. Here, 𝑑𝑝 is the particle diameter, 𝜀𝑝 is the intraparticle porosity, and 𝐷𝑝 

is the effective pore diffusivity coefficient. The first term represents the film mass transfer 

resistance, 𝑘𝑓 =  𝐷𝑓𝑆ℎ 𝑑𝑝⁄ , in which 𝐷𝑓 is the free diffusivity and 𝑆ℎ is the Sherwood number. 

More information on the MM can be found in a previous study [27]. Moreover, we used the 

multicomponent mixed-mode isotherm, as formulated by Nfor et al. [28] and described in 

Appendix 3.B. 
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3.2.3. Developing Artificial Neural Networks 

A complete ANN consists of multiple layers of interconnected nodes, also known as artificial 

neurons, in which each neuron of one layer is connected with each neuron in the next layer 

[29]. The outcome of each neuron is calculated by its activation function (𝜎), which is 

determined by function (𝑧). Commonly used activation functions are Rectified Linear Unit 

(ReLU), sigmoid and tangens hyperbolicus [30]. The function (𝑧) is determined by the 

weighted sum (𝑤) of their inputs (𝑥) added with a bias (𝑏). The overall outcome of a neuron 

is mathematically represented as  

𝜎(𝑧) =  𝜎 ( ∑ 𝑤𝑖 ∙ 𝑋𝑖 +  𝑏

𝑗

𝑖=1

 ), Eq. 3.9 

 

where 𝑗 is the number of neurons for the previous layer and 𝜎 represents the activation 

function. The neural network is trained by minimizing the error between the predicted and 

target output, this can be achieved by adjusting the weight and bias parameters of each 

neuron. In this work we used a deep neural network consisting of an input layer, two or three 

hidden layers, and an output layer. Determining the number of hidden layers, and other 

hyperparameters (e.g., batch size, and number of epochs, and neurons), was done by varying 

the hyperparameter values and evaluating the effect on the ANN’s accuracy. We used a ReLU 

activation function for the hidden layers as it is computationally more efficient, the sigmoid 

activation function was used for the output layer [31].  

The chromatographic MM performed numerous simulations to generate data that can be used 

for creating the neural network. The chosen input variables are the mass of each component, 

amount of loading, gradient length, initial and final salt concentrations, and the lower and 

upper cut points in percentage of the peak maximum (Figure 3.2). In order to model a 

sequence of unit operations, the mass of each protein, volume, and salt concentration present 

in the product pool are needed as input for the next unit operation. The mass in the product-

pool varies and thus the mass as input for the next unit operation also varies. Therefore, the 

mass of each protein is needed as an input parameter for the ANNs. All output variables were 

taken from the product pool; mass of each component, volume, salt concentration and each 

cut point in column volume (CV). We noticed that including salt concentration of the product 

pool as an output variable increased the ANN’s accuracy. We used the salt concentration as 

an output variable, but this value can also be calculated using the initial and final salt 

concentration (input parameters) and the cut points in CV (output parameter). Including the 

cut points in CV as output, resulted also in a better prediction of the volume. 
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Figure 3. 2. Input parameters used for the ANN. Initial salt concentration ranging from 5−300 mM for 
CEX and AEX, and 100−500 mM for HIC. The final salt concentration ranging from 100−1200 mM for 
CEX and AEX, and 5−300 mM for HIC. The gradient length in the range of 1−10 CV, and loading factor 
from 0.05−5 CV. The concentration, converted to mass, ranging from 0.001−4 g/L. Both cut points in 
percentage of the peak maximum, lower cut point from 1−80% and upper cut points from 20−99%. 

 

We used the Latin hypercube sampling method of the pyDOE package for generating 

randomized data. The parameter space was based on prior-knowledge of biopharmaceutical 

downstream processes [32]. This was applied to both input- and output parameters and 

minimized the ‘black-box’ size. The best ANN was chosen out of 10 trained ANNs, as each time 

the weight and biases are trained in a different way and therefore the accuracy can differ. 

Moreover, the data were divided into 70% training, 15% validation and 15% testing data. All 

other settings are described in section 2.4. Numerical methods. The used hyperparameters 

for each ANN of each chromatography mode are given in Table 3.1. 

Table 3. 1. Overview of final hyperparameters for each chromatography mode. 

Hyperparameter CEX AEX HIC 

Batch size 512 128 512 

Epochs 100 200 100 

Number of hidden layers 2 3 2 

Number of neurons 50 50 50 

Learning rate 0.01 0.01 0.01 

 

The ANN performance was assessed by the R2
 and RMSE value, these are based on the values 

predicted by the MM and calculated as follows: 
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𝑅2 = 1 −  
∑ ( 𝑦𝑖 − 𝑌𝑖  )2𝑁

𝑖

∑ ( 𝑌𝑖 − �̅�𝑖 )2𝑁
𝑖

 , Eq. 3.10 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − 𝑌𝑖)2𝑁

𝑖

𝑁
, 

Eq. 3.11 

 

where,  Yi is the mechanistic model data and yi the data predicted by the ANN. N is the 

amount of data points used, and the Y̅i is the mean of all the mechanistic model data points. 

Moreover, plots of the residual values are provided to show the data’s randomness. The R2 is 

a relative measure of fit and represents the proportion of variance explained by the relation 

between two variables. While the RMSE value is an absolute measure of fit that indicates the 

absolute mean difference between the predicted and true values. 

 

3.2.4. Numerical methods 

All codes are written in Python (version 3.7), which is a free and open-source programming 

language. An overview of the used python libraries is given in Appendix 3.A. 

Dynamic chromatography column model 

The Method of Lines is applied for the spatial discretization to transfer partial differential 

equations (PDEs) into ordinary differential equations (ODEs) with respect to time. Moreover, 

a fourth-order central difference scheme for both first and second-order derivatives with 

respect to space are used. The system of ODEs is solved using the LSODA (Livermore Solver 

for Ordinary Differentia Equations) algorithm from the scipy.integrate package. This method 

automatically switches between the nonstiff Adams method and the stiff BDF method [33]. 

Optimization  

The scipy.optimize package was used for the optimization; the differential_evolution 

algorithm for the global optimization and Nelder-Mead algorithm for the local optimization. 

The maximum number of iterations for global optimization was 9 and the population size 10 

when using MMs, and for ANNs maxiter was 15 and population size was 20. Latin hypercube 

sampling was used to initialize the population. The maximum number of iterations for local 

optimization was 20. The relative tolerance for global and local optimization was 1e-2, and the 

function tolerance 1e-2. The maximum number of iterations for the final local optimization 

was 200. Due to limited accuracy of the ANNs, the mass could be predicted higher or lower, 

and so influencing the performance measurements. The predicted mass was set to the mass 

injected if it was overpredicted. The boundary condition for the lower cut point was between 
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1–80% of the peak maximum, and for the upper cut point between 20–99% of the peak 

maximum. The initial salt was between 5–300 mM, and the final salt between 100–1200 mM 

for CEX and AEX. For HIC the initial salt was between 100–500 mM and the final salt 

concentration between 5–300 mM. The gradient length was varied between 1 and 10 CV. The 

computations were performed on a Dell Precision 5820 Tower XCTO having a 3.7G Intel Xeon 

processor of 3.7 GHz, 10C, and a  8GB Nvidia Quadro of 8GB. Multiple cores were used to 

execute the simulations most efficiently, however the number of cores varied depending on 

the simulation.  

 

Artificial Neural Networks 

The ANNs are developed using the Keras Module (version 2.4) of Tensorflow (version 2.3), 

both are open-source packages available in Python language. The ANN structure was defined 

using keras.models.Model and optimized using keras.optimizers.Adam, for which the learning 

rate was set to 0.001. Scaling of the data was done using the 

sklearn.preprocessing.MinMaxScaler module. The optimizer’s loss function was set to 

‘mean_squared_error’, which is commonly applied for regression problems. 

 

3.2.5. Case study 

For the case study, the product of interest, a monoclonal antibody (referred further as protein 

1), and four impurities (referred further as proteins 2 to 5) were considered, data was taken 

from a previous study [34]. The protein names can be found in Appendix 3.B. From the 

isotherm parameters it is expected that protein 1 elutes together with protein 5 in CEX, for 

AEX it is expected that protein 1 elutes together with protein 2, and partly with 3, and for HIC 

protein 1 will likely elute simultaneously with protein 4 and possibly partly with protein 5. 

Details of the isotherm and resin parameters can be found in Appendix 3.B. The linear velocity 

was set to 150 cm/h. The initial concentration and amount of loaded product were varied for 

generating the data for creating ANNs. For the optimization part, the initial concentration of 

all proteins was set to 2 g/L with a loading factor of 2.0 CV.  

The global and local objective were formulated as  

𝑚𝑖𝑛 𝑓(𝑥) =  ( 100 −  𝑦𝑖𝑒𝑙𝑑 (𝑥) )  +  2 ∗  ( 100 −  𝑝𝑢𝑟𝑖𝑡𝑦 (𝑥))
+ 𝑒𝑙𝑢𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑥) 

Eq. 3.12 

𝑠. 𝑡. ℎ(𝑥)
= 0                      (𝑜𝑛𝑙𝑦 𝑎𝑝𝑝𝑙𝑖𝑒𝑠 𝑡𝑜 𝑀𝑀) 

Eq. 3.13 

 0 ≤ 𝑥 ≤ 1, Eq. 3.14 
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where 𝑓(𝑥) is the objective function to be minimized, and the variables 𝑥 can be operating or 

design parameters. All variables (x) were normalized between 0 and 1 for enhanced 

optimization purposes (Eq. 3.14). Moreover, when using the MM, the equality equations ℎ(𝑥) 

must be complied, which are mass balances and equilibrium relations (Eq. 3.13). For 

optimizing each flowsheet, only operating variables (𝑥) were considered, namely, the length 

of the gradient elution, initial and final salt concentration, lower and upper cut point. The 

performance measurements (e.g., yield, purity, buffer consumption) are calculated over the 

whole purification sequence. Purity was weighted twice as high, as purity is the most 

important factor for purifying biopharmaceuticals. By minimizing the buffer consumption, the 

costs, batch throughput and productivity are indirectly represented. The cost of lost feed is 

related to the yield. Subsequently, the selected best flowsheets and their most optimal 

conditions obtained after performing the global and minor local optimization were used as an 

input for the final local optimization.  

 

3.3. Results & Discussion 

3.3.1. Artificial Neural Networks 

The ANNs were used as a meta-model during the global optimization to select the most 

promising flowsheet(s). Therefore, high accuracies of the ANNs are desired. Several steps were 

performed to build the ANNs, first high-quality data were generated, second the number of 

sample points was determined, and lastly the hyperparameters were optimized.  

The accuracy of ANNs is relying on the quality of the data. The range of input variables is key, 

having a too broad range could lead to a poor accuracy on the data with lower values, while a 

too narrow range could lead to a biased optimization outcome and ANNs lacking flexibility. 

Details on the final range of parameters are given in Figure 3.2. The desired accuracy for the 

ANNs was an R2> 0.90 and RMSE < 0.04, as a trade-off has to be made between the number 

of sample points and the accuracy of the ANN. This RMSE value is normalized, transforming 

this value to the absolute value would give an error rate of about 15% on the mass of each 

protein, for the predicted volume and salt concentration of the product pool it was less than 

15%. The mass input range was quite broad (4.81·10-8 - 0.02 g), as both the mass and loading 

factor are input variables. We posited that an error rate of 15% would be acceptable for 

performing the flowsheet optimization, and with certainty identify the most optimal 

flowsheets while disregarding the less promising ones. Hence, to obtain this accuracy, the 

required number of sample points was evaluated for the product (Figure 3.3 (A, B) for CEX). 

Ten ANNs were trained for each number of sample points, and the unseen test data was used 

for the boxplots. Increasing the number of sample points resulted in a higher R2 and lower 
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RMSE value, as expected. Using ANNs instead of MMs for the optimization would only be more 

efficient if less simulations are needed to generate the data than to run the optimization with 

the MM. Considering a flowsheet optimization of three chromatography modes, and assume 

15 flowsheets have to be evaluated 1000 times, this will result in a total of about 33.000 

simulations with the MM [25]. The total number of simulations can be derived by summing 

over the different types of flowsheets, namely three times one chromatography mode, six 

times two chromatography modes, and six times three chromatography modes, which results 

in a total of 33.000 MM simulations. Consequently, a maximum of 10.000 simulations for 

generating the ANN data for each chromatography mode was desired. Based on this 

estimation and on the fact 10.000 sample points reached the desired accuracies, Figure 3.3 

(A, B), we decided to continue with 10.000. The optimal ANN structure was identified by 

evaluating the effect of several hyperparameters (e.g., batch size, and number of epochs, 

hidden layers, and neurons) on the R2 and RMSE value, Figure 3.3 (C – F) for CEX. This overall 

evaluation for each chromatography mode and each protein can be found in Appendix 3.C. 

The final hyperparameters were chosen based upon highest median for R2 and lowest median 

for RMSE value. Moreover a small interquartile range (IQR) is desired, indicating less variance 

in accuracy. The used hyperparameters for each ANN are given in Table 3.1. 
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Figure 3. 3. Boxplots A & B show the accuracy (left: R2 and right: RMSE value) for different number of 
sample points for the CEX chromatography mode using the data of the product. Boxplots C – F show 
the effect of varying certain hyperparameters on the R2 for protein 1 in CEX chromatography. The 
standard hyperparameters were 3 hidden layers each having 50 neurons, a batch size of 128 and epoch 
of 200, the number of sample points used was 10.000.   
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Table 3. 2. Quantitative evaluation for each chromatography mode and all proteins. The 
calculations of each protein are based on the mass. The product pool volume is needed for 
connecting the unit operations and calculating the performance measurements during 
flowsheet optimization, therefore this parameter is included.  

  Protein 1 Protein 2 Protein 3 Protein 4 Protein 5 Volume 

CEX R2 0.97 0.08 0.07 0.95 0.97 0.96 
 RMSE 0.032 0.153 0.176 0.027 0.034 0.029 
AEX R2 0.99 0.98 0.97 0.98 0.98 0.96 
 RMSE 0.022 0.027 0.026 0.009 0.009 0.035 
HIC R2 0.97 0.99 0.0 0.96 0.98 0.99 
 RMSE 0.037 0.025 0.5 0.041 0.028 0.034 

 

The quantitative evaluation of each ANN is shown in Table 3.2, most of the ANNs reached the 

desired values of R2 > 0.90 and RMSE <0.04. The generated data is focused on the product 

peak, and hence some proteins will never elute or be present in the product pool. As these 

output values were all very small, it is very hard to train the ANNs accurately, and so the R2 

remains low. However, the absolute RMSE is also very low (<1·10-5). As we know these proteins 

will never be present in the product pool, we could assume they would always be removed. 

The generated ANNs have sufficient predictive ability, as shown in Figure 3.4, for proteins 1, 

4, and 5 during CEX for unseen test data. The data points are aligned close to the diagonal, 

meaning the ANN is able to predict the outcome of the MM. The prediction capabilities for 

the other output variables and chromatography modes can be found in Appendix 3.D. In 

addition to the R2 and RMSE quantification, the residual plots assess the model’s validity by 

evaluating the randomness in the residuals. In this case, all ANNs for the presented proteins 

show randomly scattered data points around the identity line, except for the proteins that 

were never present in the product pool, Figure 3.4 and Appendix 3.D. 
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Figure 3. 4. Upper figure: Prediction capabilities for the normalized ANN outcome of mass against the 
outcome of MM. Lower figure: Residuals showing the difference between predicted mass values by the 
ANN and the MM. Both plots show unseen test-data (1493 points) for the proteins 1, 4, and 5 for the 
CEX mode. 

Contour plots for each chromatography mode were made to qualitatively evaluate the ANNs, 

Figure 3.5. These contour plots are used to evaluate if certain regions predicted by the ANNs 

are overpredicted or underpredicted, meaning the predicted ANN-values are higher, 

overprediction, or lower, underprediction,  compared to the MM-values. The ANN contour 

plots for both AEX and HIC are very similar to the MM contour plots (Figure 3.5 (2a, b and 3a, 

b)). However, all ANN contour plots show an over-prediction for a low lower-cut-point and 

high upper-cut-point compared to the MM results. While the ANN for CEX underpredicts the 

upper part of the lower cut point, hence when the cut point is closer to the end of the product-

peak (Figure 3.5 (1a)). The overprediction by ANNs is due to the standard deviation and results 

in an overprediction of the yield, e.g., mass output divided by the mass injected.  
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Figure 3. 5. Qualitative analysis of the ANNs compared to the true values of the MMs for each 
chromatography mode (CEX, AEX, and HIC). In the first column the predicted results of the ANN for a 
varying range of cut points is shown, in the second column the outcome of the MM is shown. In the 
last column, the case study is shown including the initial and final salt concentration and gradient 
length. The loading factor was 2 CV and the inlet concentration 2.5 g/L or 0.00481 g in mass. The mass 
output is normalized to the mass injected (0.00481 g), also known as the yield. 

 

3.3.2. Flowsheet optimization 

Optimizing a flowsheet is a multimodal optimization where multiple global optima could be 

present [35]. In this optimization problem no information is known about the number of global 

optima, and the mathematical characteristics and gradient functions are also unknown. 

Therefore, we have chosen a stochastic and heuristic algorithm for the global and local 

optimization, respectively (e.g., Differential evolution and Nelder-Mead). This will enhance the 

likelihood of finding most of the global optima. To perform the flowsheet optimization within 

a reasonable amount of time, the number of function evaluations was defined for which the 

details can be found in section 3.2.4. Numerical methods. The global optima are found when 

the function evaluations reach a plateau over several iterations, in this study a plateau is 

defined that the lowest 50 function evaluations have a maximum difference of 0.1 (Appendix 
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3.E). This statement is needed, as often the number of maximum iterations is already reached 

before the relative and/or absolute tolerance are satisfied.  

The optimization was performed for a superstructure of three chromatography modes and a 

maximum sequence of three unit operations, resulting in an evaluation of 15 flowsheets. The 

same operating conditions were used for the global optimization using either MMs or ANNs, 

which also applies to the optimization settings, except for the number of iterations that was 

increased when using ANNs. The flowsheets are evaluated by the WOP, which is based on the 

purity, yield, and buffer consumption (section 3.2.1. Flowsheet optimization workflow). The 

performance results of the global optimization using either MMs or ANNs is shown in Table 

3.3. 
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Most of the performance outcomes between MM and ANN are comparable, as well as the 

calculated WOP. Only the sequences where CEX is the first unit operation failed to predict a 

sufficient purity. As seen in Figure 3.5, the extreme cut points were overpredicted and 

underpredicted, so the ANN of CEX is not that accurate in this region. Consequently, the ANN 

is not able to  find the global optima during the global optimization. However, it is remarkable 

that the ANN of CEX shows similar quantitative results as the other two chromatography 

modes (Table 3.2). The ANN of CEX can be improved to obtain the desired optimal accuracy, 

but that is not within the scope of this study, which aims to show the validity of the overall 

optimization approach. Most of the outcomes for sequences with three unit operations, 

predicted by the ANNs, imply the global optima were not found yet. The function evaluations 

show the plateau has not been reached, so more evaluations are needed to find the global 

optima (Appendix 3.E). Due to the ANN’s accuracy it is more difficult to find the global optima, 

therefore more evaluations were allowed and even more would be needed for the sequences 

with three unit operations. The predictions for single unit operations show very similar results 

between MM and ANN, the same can be noticed for the two unit operation sequences starting 

with AEX or HIC. Only the predicted concentrations vary between MM and ANN, this could 

indicate different global optima were found. However, multiple global optima can be close to 

the same optimal objective value, while using different decision variables values. The same 

applies to the found global optima when only using MMs. A well-considered trade-off was 

made between number of sample points versus the ANN’s accuracy. Even though different 

global optima were found between the MM and ANN, a confident decision can be made to 

select the most promising flowsheets and disregards the least promising ones. Ideally, a 

process employs a minimum number of unit operations. From the WOP results, we can draw 

the conclusion that a single unit operation is not sufficient to purify the product, but two unit 

operations can be sufficient. As two unit operations would be able to purify the product, the 

sequences with three unit operations can be disregarded. Although we considered the HIC 

sequences during the global optimization for showing the completeness of this approach, HIC 

is undesired to be the first unit operation as a buffer exchange step is needed before and after 

the process to increase and decrease the salt concentration. When using MMs, the found 

optimal sequences are 1, 3, 6, and 8 for a WOP > 85. For ANNs, the optimal sequences found 

are 1, 6, and 8. So, one sequence would be overlooked when only using ANNs for the global 

and minor local optimization. Nevertheless, most of the promising sequences to purify the 

product of interest are found with the ANNs. The identified sequences correspond to the 

results from Nfor et al. [19]. The performance results differ because other process conditions, 

objective, and variables were applied. Also, Pirrung et al. performed a similar study in which  

the optimal found sequence  was CEX – HIC, in this study equal sequence 3 [25]. Although 
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different process conditions, objective, and variables were used, higher yield and purity values 

for all sequences were obtained in this study compared to the optimized results of Pirrung et 

al., when using MMs during he optimization [25]. This can be assigned to different settings or 

to the fact that the global optima were not found yet.  

As example, the global outcome of AEX-HIC for both MM and ANN was used as starting 

conditions to perform a final local optimization, for which similar results were found, Figure 

3.6. The range of the initial salt concentration varied between 5–300 mM. As a result, the 

predicted optimal conditions show an early elution of the product peak and a few impurities 

during the loading. This would be undesirable if more proteins or other impurities are present. 

However, the range of the initial salt concentration can be adjusted for both the global 

optimization or the final local optimization. An example is shown in Figure 3.6 (MM – 3), where 

the maximum initial salt concentration for the final local optimization was adjusted to 150 

mM. This also applies to the other input parameters. If the range is significantly different for 

the global optimization, it is recommended to train new ANNs to ensure accuracy. 
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Figure 3. 6. Outcome of the final local optimization using either the global outcome of the MM (first 
row) or the ANN (second row) as a starting condition. The third row (MM – 3) shows the final local 
optimization outcome if the initial salt concentration is adjusted to a maximum of 150 mM. Protein 1 
(mAb) is the target protein, to be separated from protein 2- 5 (impurities). 

Even though ANNs can be used for finding the optimal sequences during global optimization, 

they also should be beneficial for flowsheet optimization. An overview of time spent for global 

optimization using either MMs or ANNs is shown in Table 3.4. As expected for ANNs, about 

97% of the total simulation time is spend on data generation, as MMs are used for this task. 

The data generation also includes the training of ANNs, however the time required to 

complete this task is minimal. Much more optimization evaluations can be performed using 

ANNs, but also more evaluations are required to find sufficient results. The simulation time 

for the different length of sequences is similar for both the MM and ANN, Table 3.4. Overall, 

ANNs are twice as fast compared to MMs for this flowsheet optimization. To make a fair 

comparison, optimal parallelization was excluded for this study, however, both approaches 

would benefit from parallelization to decrease the overall simulation time. The minor local 
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optimization, included within the overall global optimization time, took about 15 hours for the 

mechanistic model and 0.08 hours for the ANNs, which did not have a significant influence on 

the overall time. As both frameworks use the MM for the final local optimization, the duration 

was also similar for both frameworks. 

Table 3. 4. Comparison of time spend for the global optimization when using MMs or ANNs. The data 
generation for the ANNs includes simulations of 10.000 sample points for each chromatography mode 
and the training of the ANNs. 

Mechanistic model Artificial Neural Network 

 
Global optimization: 
Local optimization: 
Total time: 
Total global evaluations: 
Total local evaluations: 

 
399 hrs. 
2.9 hrs. 
401.9 hrs. 
15500 
128 

Data generation: 
Global optimization:   
Local optimization:                  
Total time: 
Total global evaluations:       
Total local evaluations:                                

195 hrs. 
5.6 hrs. 
6.4 hrs. 
207 hrs.  
52800 
308 
 

 
 

 

This approach becomes especially advantageous when evaluating larger superstructures, 

involving either more unit operation modes and/or larger sequence-lengths. For example, 

considering five different resins in a maximum sequence of three unit operations, 85 

flowsheets have to be evaluated. This will take approximately 95 days when using MMs. For 

ANNs, the optimization will only take 1.3 days, and generating data for five different resins will 

take about 14 days. Hence, using ANNs for this larger superstructure will be 6.4 times faster 

than using MMs. For a process design where more proteins are considered, it is expected that 

both approaches would need about similar extra simulations time. 

 

5%

32%

63%

1 unit operation

2 unit operations

3 unit operations

6%

36%

58%

1 unit operation

2 unit operations

3 unit operations
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3.4. Conclusions 

In this study, we have compared two optimization frameworks for purifying 

biopharmaceuticals, by either employing MMs or ANNs for global optimization. The global 

optimization outcome was used to pre-select the most optimal process sequences, which 

subsequently were optimized locally. Three types of chromatography were considered during 

the optimization. First, we built the ANNs for each chromatography mode, most of them 

reached an accuracy of R2 > 0.95 and RMSE < 0.04. Next, we performed a flowsheet 

optimization for a superstructure of 15 flowsheets. Our results proved that ANNs can be used 

during global optimization to make a pre-selection for the most optimal process-sequences 

according to certain objectives and constraints. The final local optimization results were 

comparable when using either the global outcome of the MMs or the ANNs as starting 

condition. The overall computation of the global optimization when using MMs took about 

400 hours, while using ANNs took about half of the time so 200 hours. 

To make ANNs more accurate, the data acquisition has to be tuned, for example, narrowing 

the design space of the input parameters. Though, by incorporating more knowledge, ANNs 

will also become more biased and less flexible. Another approach is to develop several ANNs 

for specific regions of the input parameters. In this study, we chose to make one ANN to 

reduce complexity, and a broader range of input parameters to remain flexible and less biased. 

Though, at the expense of accuracy. 

This study represents a step toward a new model-based application for developing 

biopharmaceutical purification processes. This is especially important for early conceptual 

process design, when a limited amount of sample material is available and little is known 

about the sample’s purification process. This study provides a generic way to develop ANNs 

for downstream processes and shows the usefulness of ANNs in accelerating flowsheet 

optimizations. In fact, for this case study, using ANNs during flowsheet optimization reduced 

the computational time by 50% compared to using only MMs. For larger superstructures ANNs 

could even be an order of magnitude times faster than shown for this superstructure 

consisting of 15 flowsheets. 
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Chapter 4 

 

Comparing in silico flowsheet optimization 
strategies in biopharmaceutical downstream 

processes 
 

The challenging task of designing biopharmaceutical downstream processes is initially to 

select the type of unit operations, followed by optimizing their operating conditions. For 

complex flowsheet optimizations, the strategy becomes crucial in terms of duration and 

outcome. In this study, we compared three optimization strategies, namely, simultaneous, 

top-to-bottom, and superstructure decomposition. Moreover, all strategies were evaluated by 

either using chromatographic Mechanistic Models (MMs) or Artificial Neural Networks 

(ANNs). An overall evaluation of 39 flowsheets was performed, including a buffer-exchange 

step between the chromatography operations. All strategies identified orthogonal structures 

to be optimal, and the weighted overall performance values were generally consistent 

between the MMs and ANNs. In terms of time-efficiency, the decomposition method with 

MMs stands out when utilizing multiple cores on a multiprocessing system for simulations. 

This study analyses the influence of different optimization strategies on flowsheet 

optimization and advices on suitable strategies and modeling techniques for specific 

scenarios. 
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4.1. Introduction 

Downstream processing is of major importance for delivering the required quality and 

quantity of a biopharmaceutical product, which has to meet the strict standards by regulatory 

authorities [1]. The downstream process is a substantial expense of the overall manufacturing 

costs, therefore, an efficient and cost-effective process is crucial. One of the major, most costly, 

and essential purification techniques is chromatography, which is capable to achieve very high 

product purities [2]. Eventually, the combination of purification steps will determine the 

overall process performance. Therefore, developing a purification process is a challenging 

task, involving many variables, such as type and sequential order of purification techniques, 

operating conditions, and costs [3, 4]. A comprehensive overview of the different strategies in 

downstream process development together with the latest breakthroughs was given recently 

by Keulen et al. [5]. Finding an optimal purification process at an early stage of the process 

design is desirable in terms of costs, quality, and development time. Flowsheet optimization 

evaluates all process possibilities in-silico, which can support the decision-making for an early 

process design. For many years, flowsheet optimization has been applied to design chemical 

processes, therefore, it is well-known in the field of process systems engineering [6, 7].  

Around the 1970s, the first articles were published about process design synthesis [8, 9]. 

Sirrola et al. developed a general computer-aided process synthesizer that was able to select 

process equipment and the system configurations [8]. Umeda et al. presented an integrated 

optimization approach to optimize two alternative routes for a distillation system [9]. Over the 

past five decades, the field of superstructure-based optimizations has evolved greatly, along 

with the intensified computing possibilities [10]. Mencarelli et al. provides an adequate 

overview of superstructure-based optimization history, superstructure representation types, 

and modeling strategies [6]. Most superstructure-based optimizations applied in chemical 

engineering are related to reactor networks [11], distillation processes [12], and heat 

exchangers [13]. Several programs are available to perform a chemical superstructure-based 

optimization, for example, P-graph [14], Pyosyn [15], and Super-O [16]. As most of these 

chemical process simulations are based on first-principle models this can be computationally 

time-consuming, therefore the interest in employing surrogate models for optimization 

purposes increased. In 1998, Altissimi et al. already showed the value of replacing a first-

principle model with a surrogate model for optimization purposes [17]. Afterwards, more 

research followed on using surrogate or meta-models for superstructure or complex 

optimization purposes [18-22].  

Despite the biopharmaceutical industry only emerged about 40 years ago, this industry is 

advancing rapidly and shifting towards Industry 4.0 [23-25]. Industry 4.0 desires to entirely 
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digitalize the manufacturing process, aiming to implement and combine model-based process 

development techniques with efficiently stored monitored data. Hence, realizing the 

utilization of Digital Twins, which are digital models of the real process and enable to directly 

control the real process [26, 27]. In this way, more knowledge can be acquired about the 

processes, which is in compliance with the Quality by Design guidelines [28, 29]. A general 

biopharmaceutical process consists of an upstream and downstream part, in which the 

downstream part focuses on the purification of the biopharmaceutical. The purification steps 

can be subdivided into capture, intermediate, and polishing steps as shown in Figure 4.1. The 

main purpose of the capture and intermediate steps is to concentrate, isolate, and stabilize 

the product, and remove the majority of the impurities. While the subsequent polishing steps 

target high purity values [2]. 

 

Figure 4. 1. Simplified schematic overview of the chromatography steps in a biopharmaceutical 
downstream process, the sequence can also have less or more chromatography operations depending 
on the process. The capture step aims to concentrate, isolate, and stabilize the product, together with 
the Intermediate step, their target is to remove the bulk impurities. The main purpose of the polishing 
step is to attain high product purities.  

Chromatographic MMs have been around for several years, and industry is gradually adopting 

these methods [30, 31]. Lately, advances have been made to faster and more efficiently 

determine the adsorption isotherms, which are needed as input parameters for the 

mechanistic model [32-34]. Likewise, several research has been published to determine 

adsorption isotherms for complex mixtures [35-37]. And more recently, Disela et al. 

characterized the host cell proteome of two universal E. coli strains based on mass 

spectrometry data, which approach can be used for initial decision-making on process 

development [38]. Not only the techniques and methods to determine the adsorption 

isotherm are making progress, also the MMs are advancing in terms of speed and accuracy. 

Meyer et al. applied a computational more efficient method for the spatial discretization and 

obtained a speed-improvement of at least 20 times, for higher precision it even improves over 

100 times compared to the open-software CADET [39, 40]. Their chromatography model was 

recently extended by Breuer et al., which applied a similar method to the particle mass 
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balance [41]. Rao et al. developed a 3D model to simulate the chromatography process with 

very high precision to acquire knowledge about the complex transport mechanism [42]. 

Moreover, hybrid modeling, using artificial intelligence (AI) in combination with mechanistic 

modeling, can overcome certain limitations of both modeling techniques [43, 44]. Narayanan 

et al. employed artificial neural networks (ANNs) for fitting the solid-phase mass balance, 

which reduced the model complexity, and an improved accuracy compared to the 

conventional mechanistic model was observed [45]. Accordingly, this progress in 

experimentally determining model-parameters, improving the MMs, and making use of hybrid 

modeling, is advantageous for digitalization of the downstream process and likewise for 

optimization purposes.  

As described previously, flowsheet optimization enables to screen the overall design space 

and finding the optimal purification process at an early development stage. Process systems 

engineering recognized the added value of superstructure-based optimization for chemical 

processes. Also for biochemical processes, it is essential to optimize the integrated processing 

steps to discover the most optimal process globally [46]. Liu and Papageorgiou developed a 

data-driven optimization framework to find the best process according to economical and 

certain performance objectives [47]. However, the data for each optional processing steps is 

already provided and not generated internally. This type of optimization is known as 

biopharmaceutical manufacturing process optimization, usually based on mixed integer 

programming techniques [48-51]. Though, these optimizations do not use detailed 

mechanistic modeling techniques, they are either data-driven or using surrogate models to 

represent the unit operations. In the work of Nfor et al., a top-to-bottom optimization 

approach is performed that evaluates the performance of each unit operation at each level 

and disregards the least promising options [3]. As the influence of sequential steps is not 

incorporated in this approach, it might overlook the most promising sequence(s). Therefore, 

Huuk et al. performed an integrated two-step ion-exchange chromatography optimization [4]. 

Subsequently, Pirrung et al. performed a flowsheet optimization having a maximum of three 

chromatography steps (e.g., cation exchange, hydrophobic interaction, and mixed-mode) 

including a buffer exchange if needed, and simultaneously optimizing each flowsheet [52]. In 

their work, ANNs functioned as surrogate model for the MMs during the global optimization 

to find starting conditions for the local optimization, and so reducing the overall optimization 

time. However, the ANNs were infrequently able to find realistic results and for the 

subsequent local optimization the MMs were used, which was the most time-consuming part 

of the overall optimization [52, 53]. In our previous work, we extended this method by 

including the mass of each component as a variable and using more data to increase the ANN 

accuracy [54]. Subsequently, we compared ANNs, functioning as surrogate models, versus 
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MMs for flowsheet optimization to select the ‘most promising sequences’ during the global 

optimization. Only the ‘most promising sequences’ were further optimized through local 

optimization using MMs. The ANNs selected three out of four best flowsheets and reduced 

the overall computational time by 50%. However, for more complex flowsheet optimizations 

(e.g., including more unit operations and/or larger sequences) or when considering more 

components, not only the modelling technique (e.g., MMs or surrogate models) matters, but 

also the optimization strategy might play a significant role in the overall flowsheet 

optimization. Hence, what optimization strategy is most useful in terms of outcome, 

complexity, and time-efficiency?  

In this chapter, we compared three different optimization strategies: simultaneous 

optimization, top-to-bottom approach, and superstructure decomposition, to evaluate which 

strategy would be most beneficial in terms of outcome, complexity, and time-efficiency when 

performing a complex flowsheet optimization. Simultaneous optimization involves optimizing 

all parameters simultaneously, top-to-bottom approach optimizes parameters sequentially 

from the initial to the final unit operation, and decomposition of the superstructure involves 

breaking down the process into smaller parts and optimizing each part separately. These 

strategies were chosen based on the difference in number of unit operations being optimized 

simultaneously and so the overall considered possibilities within the design space as indicated 

in Figure 4.2. For example, the top-to-bottom approach might overlook promising sequences, 

as it lacks a focus on optimizing the connections between chromatography steps. Additionally, 

for each optimization strategy the MMs and the ANNs are employed to evaluate their 

performance on a more complex optimization. In this complex flowsheet optimization, we 

included an optional buffer exchange between the chromatography steps, described by a 

filtration MM. This gives a total combination of 39 flowsheets to be evaluated. 
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Figure 4. 2. Visualization of the difference between the chosen optimization strategies; top-to-bottom, 
superstructure decomposition, and the simultaneous strategy. The x-axis shows the number of unit 
operations being optimized simultaneously during flowsheet optimization. While, the y-axis 
correspondingly shows that more options in the design space are explored when the connection 
between chromatography steps is also considered, which is not taken into account for the top-to-
bottom approach as it individually optimizes each chromatography step.  

4.2. Materials & Methods 

4.2.1. Flowsheet optimization workflow 

First, the superstructure was generated considering a maximum of three chromatography 

steps and a dilution or buffer exchange by Tangential Flow Filtration (TFF) between the 

chromatography operations. This gives a maximum sequence of five unit operations, and at 

least one unit operation is needed for the purification. To generate this superstructure, 

confirming the defined conditions, the mathematical problem is formulated as 

 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]  Eq. 4.15 

𝑠. 𝑡.  ∑ 𝑦 ≥ 1  
Eq. 4.2 

 𝐹𝑜𝑟 𝑖 𝑖𝑠 𝑜𝑑𝑑:   
𝑦𝑖 = 1, 2, 3    
𝑦𝑖 ≠ 𝑦𝑖+2  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦𝑖 > 0 

Eq. 4.3  

 𝐹𝑜𝑟 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛: 
𝑦𝑖 = 4, 5  

Eq. 4.4  

 𝐹𝑜𝑟 𝑖 = 2, 3, … , 𝑛: 
𝑖𝑓  𝑦𝑖 > 0, 𝑡ℎ𝑒𝑛 𝑦𝑖−1 > 0 , 

Eq. 4.5  

where 𝑦 is the process configuration, in which 𝑛, in this case 𝑛 = 5, is the length of the vector. 

The variable 𝑦𝑖 ∈ {0, 1, 2, 3, 4, 5} represents the value of the 𝑖𝑡ℎ element of vector 𝑦. The first 

statement, Eq. 4.1, defines the set of all possible vectors 𝑦 , where each element is an integer 
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number between 0 to 5, which in this study represents the considered unit operations; none, 

CEX, AEX, HIC, dilution, and filtration, respectively. The second statement, Eq. 4.2, guarantees 

that the sequence includes at least one unit operation. The third and fourth statements, 

Eq. 4.3 and Eq. 4.4, specify that only at odd positions in the sequence, a chromatography step 

is present, while for even number positions, either a dilution or filtration step is employed. 

Furthermore, statement three ensures that each chromatography mode appears only once in 

the sequence. The conditional constraint in Eq. 4.4 is applicable to all positions in the 

sequence, except the first position. It enforces that any occupied position in the sequence 

must be preceded by another occupied position. This guarantees that there are no isolated 

modes in the sequence and requires all modes to be connected.  

The flowsheets consisting of a filtration operation to perform the buffer exchange step are 

modelled as a nested optimization, which means that the outer optimization involves 

matching the chromatography steps with their respective variables, while the inner 

optimization focuses on optimizing the filtration step [55]. So, for each evaluation of the outer 

optimization, the filtration step is always optimized internally. As the filtration model is less 

complex and described by ordinary differential equations (ODEs) with respect to time, it has 

a significantly shorter solving time compared to the chromatography model. The same 

flowsheet optimization workflow, as presented in our previous paper [54], was applied as 

shown in Figure 4.3. First, a global and minor local optimization was performed according to 

certain objective(s) and constraint(s), these are described in 4.2.5. Case study. For this part, 

either MMs or ANNs were used for the chromatography steps. After this global and minor 

local optimization, the most promising sequences were selected based on the weighted 

overall performance (WOP), which is described as follows: 

𝑊𝑂𝑃 =  0.5 ∗ 𝑝𝑢𝑟𝑖𝑡𝑦 + 0.3 ∗ 𝑦𝑖𝑒𝑙𝑑 + 0.2 ∗ ( 100 −  𝑏𝑢𝑓𝑓𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ), Eq. 4.6  

where the calculation of purity (%) involves dividing the product amount by the total amount 

of proteins present in the product-pool. The yield (%) is determined by the total amount of 

product recovered divided by the loaded amount of product. The buffer consumption typically 

ranges from 1 to 50 (L/gproduct). Subtracting this buffer consumption from 100 aligns it with the 

purity and yield ranges, and ensures that higher WOP values indicate less buffer consumption. 
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Figure 4. 3. Within the superstructure, as depicted in the upper right figure, each flowsheet is initially 
optimized globally to identify the most optimal processes. F / D indicates the option to have either a 
filtration  (F) or dilution step (D). Subsequently, these selected processes are finetuned using a final 
local optimization step. For the global optimization, Framework A uses MMs and Framework B uses 
ANNs.  

The selected processes were further locally optimized using the simultaneous strategy with 

MMs, the outcome of preceding minor local optimization was used as initial guess for the final 

local optimization. This flowsheet optimization workflow was applied to all three optimization 

strategies, the difference is the manner of solving the superstructure. Each strategy was 

evaluated for using either the MMs or ANNs for the global and minor local optimization. The 

strategies (e.g., simultaneous optimization, top-to-bottom approach, and decomposition of 

the superstructure) are separately described in the following sections.  

 

4.2.1.1. Strategy I: Simultaneous flowsheet optimization  

The simultaneous flowsheet optimization is the same as applied in Keulen et al. [54]. In this 

strategy, all parameters are optimized simultaneously, which means that the total number of 

variables linearly increases with the number of chromatography steps present in the 

sequence, as shown in Figure 4.4. For example, if five optimization variables are considered 

and the sequence consists of two chromatography steps, ten variables have to be optimized 

in total. For three unit operations, this will lead to 15 variables to be optimized. 
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4.2.1.2. Strategy II: Top-to-bottom approach 

The top-to-bottom approach, based on the work of Nfor et al. [3], evaluates the 

superstructure by each level, see Figure 4.4. The first level optimizes the first unit operation 

individually. After optimizing the first level, the initial constraint assesses whether the optimal 

process has been achieved (e.g., purity > 99% and yield > 95%). The second constraint assesses 

if the optimized unit operation satisfies the minimal requirements (e.g., purity > 20% and yield 

> 40%) to continue to the next level, otherwise the flowsheets, starting with this type of unit 

operation, will be disregarded. All options present in the second level are also optimized 

individually. Subsequently, the overall sequence of two chromatography steps, including the 

dilution or the filtration operation, are simulated. The outcome of these flowsheets is 

evaluated by the previously described constraints, however, the second constraint is only 

satisfied if the purity and yield are higher than 40%. If the optimal process has not been 

identified yet, the optimization will continue to the third level, which operates in the same 

manner as the second level. If the optimal performance is not achieved after three levels, the 

best out of all these evaluated flowsheets can still be chosen, as all outcomes are stored. The 

constraints between the levels can be easily adapted to a different number and/or different 

performance measurements to be assessed.   

4.2.1.3. Strategy III: Superstructure decomposition  

In the previous study, we observed that approximately 60% of the total optimization time, 

whether employing MMs or ANNs, was dedicated to optimizing sequences of three unit 

operations [54]. This aligns with the fact that the maximum number of function evaluations 

increases with the number of variables to be optimized [56]. Accordingly, the question raised; 

does the third unit operation have a significant impact on the previous unit operations? 

Followed by, is it really necessary to optimize the whole process simultaneously or can we 

decompose the superstructure when optimizing larger sequences? In chemical engineering, 

different formats of decomposing the superstructure have been applied [6, 57-59]. In this 

study, this strategy is a combination of the simultaneous and top-to-bottom approach as 

shown in Figure 4.4. The superstructure is ordered in such a way that the sequences consisting 

of the same first three unit operations are sequential in order of length. The sequence 

consisting of three unit operations is optimized first, subsequently, the outcome of the third 

unit operation (e.g., second chromatography step) is used as input for the last 

chromatography step, which is optimized individually. After individually optimizing the third 

chromatography step, the overall sequence of five unit operations is simulated, similar to the 

workflow of top-to-bottom approach. In this way, only a maximum of two chromatography 

steps is optimized simultaneously, making the overall optimization more time-efficient 

compared to simultaneous optimization. 
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4.2.2. Chromatography  

4.2.2.1. Mechanistic model 

The same chromatographic MM from previous work was used [54]. The equilibrium transport 

dispersive model in combination with the linear driving force described the dynamic 

adsorption behavior during the chromatographic separation process as 

𝜕𝐶𝑖

𝜕𝑡
+ 𝐹

𝜕𝑞𝑖

𝜕𝑡
=  −𝑢

𝜕𝐶𝑖

𝜕𝑥
+ 𝐷𝐿,𝑖

𝜕2𝐶𝑖

𝜕𝑥2
, 

Eq. 4.7 

𝜕𝑞𝑖

𝜕𝑡
= 𝑘𝑜𝑣,𝑖( 𝐶𝑖 − 𝐶𝑒𝑞,𝑖

∗  ) , Eq. 4.8 

𝑘𝑜𝑣,𝑖 =  [
𝑑𝑝

6𝑘𝑓,𝑖
+

𝑑𝑝
2

60𝜀𝑝𝐷𝑝,𝑖
]

−1

, Eq. 4.9 

 

where 𝐶𝑖 is the concentration in the liquid phase, 𝑞𝑖 the concentration in the solid phase, and 

𝐶𝑒𝑞,𝑖
∗  is the liquid phase concentration in equilibrium with the solid phase. The phase ratio, 𝐹, 

is defined as 𝐹 = (1 − 𝜀𝑏)/𝜀𝑏, where 𝜀𝑏 is the bed porosity. 𝑢 represents the interstitial 

velocity of the mobile phase and 𝐷𝐿 is the axial dispersion coefficient. Time and space are 

indicated by 𝑡 and 𝑥 respectively. 𝑘𝑜𝑣,𝑖 is the overall mass transfer coefficient defined as a 

summation of the separate film mass transfer resistance and the mass transfer resistance 

within the pores [60]. Here, 𝑑𝑝 is the particle diameter, 𝜀𝑝 is the intraparticle porosity, and 𝐷𝑝 

is the effective pore diffusivity coefficient. The first term represents the film mass transfer 

resistance, 𝑘𝑓 =  𝐷𝑓𝑆ℎ 𝑑𝑝⁄ , in which 𝐷𝑓 is the free diffusivity and 𝑆ℎ is the Sherwood number. 

More information on the MM can be found in a previous study [61]. Moreover, we used the 

linear multicomponent mixed-mode isotherm, as formulated by Nfor et al. [62] and described 

in Appendix 3.B. The input parameters used in this chapter are given in Appendix 4.A and 

4.2.5. Case study. 

 

4.2.2.2. Artificial Neural Networks 

The ANNs were created as described previously [54]. In this work, we applied the same input 

variables (e.g., mass of each component, amount of loading in column volume (CV), gradient 

length, initial and final salt concentrations, and the lower and upper cut points in percentage 

of the peak maximum) and output variables (e.g., mass of each component, volume, salt 

concentration and each cut point in CV, salt concentration). The parameter space was based 

on prior-knowledge of biopharmaceutical downstream processes [63]. The data consisted of 

10.000 sample points divided into 70% for training, 15% for validation, and 15% for testing. 
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Based on previous work, the same hyperparameters were used as starting point for 

developing the ANNs. Out of ten trained, validated, and tested ANNs, the best one was chosen 

based on R2 and root mean squared error (RMSE) values. An overview of the final used 

hyperparameters and applied parameter space is given in Table 4.1.   
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Table 4. 1. Overview of hyperparameters for each chromatography mode and the applied parameter 
space.  

 CEX AEX HIC 

Hyperparameters    

Batch size 512 512 512 

Epochs 200 500 500 

Number of hidden layers 2 2 2 

Number of neurons 50 50 50 

Learning rate 0.01 0.01 0.01 

Parameter space    

Gradient length (CV) 1 – 10 1 – 10   1 – 10   

Loading factor (CV) 0.05 – 5  0.05 – 5 0.05 – 5 

Mass (g) 2e-5 – 0.39 2e-5 – 0.39 2e-5 – 0.39 

Initial salt concentration (mM) 1 – 200  1 – 200 350 – 500  

Final salt concentration (mM) 100 – 1200  100 – 1200 5 – 200  

Lower cut point (%) 1 – 80  1 – 80 1 – 80 

Upper cut point (%) 20 – 99  20 – 99  20 – 99  

 

4.2.3. Filtration mathematical model 

An ultrafiltration / diafiltration (UF/DF) mathematical model was developed to describe the 

buffer exchange if a filtration step was used between the chromatography steps. This model 

consists of first-order differential equations involving the feed solution volume (𝑉) and added 

diluent volume (𝑉𝑤) over time, and the solute concentrations (𝐶𝑖) and the salt concentration 

(𝐶𝑠) over time [64]. The system of mass balances for which the proteins are completely 

retained by the membrane is written as follows: 

𝑑𝑉

𝑑𝑡
= (𝛼 − 1)𝐽𝐴,   

Eq. 4.10 

𝑑𝑉𝑤

𝑑𝑡
= 𝛼𝐽𝐴,   

Eq. 4.11 

𝑑𝐶𝑖

𝑑𝑡
=

𝐶𝑖

𝑉
(𝜎𝑖 −  𝛼)𝐽𝐴,   

Eq. 4.12 

𝑑𝐶𝑠

𝑑𝑡
=

𝐶𝑠

𝑉
(𝜎𝑠 − 𝛼)𝐽𝐴, 

Eq. 4.13 

where 𝐽 is the permeate flux and 𝐴 is the membrane area. 𝜎𝑖  and 𝜎𝑠 are the rejection 

coefficients, in this work all proteins were significantly larger than the membrane pores, hence 

𝜎𝑖  was equal to one. While the salts could flow through and therefore 𝜎𝑠 was equal to zero. 𝛼 

is the ratio between the diluent flowrate (𝑢) and the permeate flowrate and given as 
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𝛼 =  
𝑢

𝐽𝐴
. Eq. 4.14 

The operation was performed in an ultrafiltration with variable volume diafiltration (UFVVD), 

therefore 𝛼 can range between 0 and 1. A value close to zero indicates to operate in an UF 

mode, while close to one DF occurs. The flux was defined by the osmotic pressure model as 

𝐽 =  
∆𝑃𝑇𝑀 −  ∆𝜋

𝜇 ∗ 𝑅𝑚
, Eq. 4.15 

where Δπ denotes the osmotic pressure difference and 𝜇 is the solution viscosity. ∆𝑃𝑇𝑀 is the 

transmembrane pressure, which denotes the pressure difference between both sides of the 

membranes and acts as the driving force for the flux through the membrane. In the osmotic 

pressure model, the solute wall concentration is considered as a variable and increases usually 

over time, therefore the osmotic pressure changes, which directly impacts the flux negatively 

over time. The initial solute wall concentration, 𝐶𝑖,𝑤,0, is predicted by solving the following 

equation: 

𝑘0 𝑙𝑛
𝐶𝑖,𝑤,0

𝐶𝑖,0
 =  

∆𝑃𝑇𝑀 −𝛥𝜋

𝜇 𝑅𝑚
, Eq. 4.16 

where 𝐶𝑖,0 represent the initial concentrations in solution and 𝑘0 is the initial mass transfer 

coefficient. The change of the wall concentration over time was included in the mass balance 

systems as  

𝑑𝐶𝑖,𝑤

𝑑𝑡
 =  

    
𝑘0

𝐶𝑖
− ln

𝐶𝑖,𝑤

𝐶𝑖
 
𝑑𝑘
𝑑𝐶𝑖

     

𝑘0

𝐶𝑖,𝑤
+

1
𝜇 𝑅𝑚

 
𝛥𝜋

𝑑𝐶𝑖,𝑤

  
𝑑𝐶𝑖

𝑑𝑡
, 

Eq. 4.17 

where the change of osmotic pressure is found by differentiating Eq. 4.17 with respect to 𝐶𝑖,𝑤 

[64]. Similarly, differentiating the mass transfer to 𝐶𝑖 gives 𝑑𝑘 𝑑𝑐𝑖⁄ . The mass transfer 

coefficient is viscosity dependent and given as follows [64]: 

𝑘 = 𝑘0 (
𝜇

𝜇0
)

−
1

6
, 

Eq. 4.18 

where 𝜇 is the solution viscosity and 𝜇0 is the viscosity of the pure solvent. In Appendix 4.B, 

additional information is provided on the transmembrane pressure, osmotic pressure, second 

virial coefficient (B22), the mass transfer correlations, and determination of the initial 

membrane resistance through a water flux wet experiment. Moreover, the filtration model 

was validated for an UF/DF wet experiment using a Bovine Serum Albumin (BSA) solution, 

more information can also be found in Appendix 4.B.   
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4.2.4. Numerical methods 

The same numerical methods as applied in previous work were used, only minor adjustments 

were made [54]. All codes are written in Python (version 3.8). An overview of the Python 

libraries used is provided in Appendix 3.A. The computations were performed on a Dell 

Precision 5820 Tower XCTO having a 3.7G Intel Xeon processor of 3.7 GHz, 10C, and a 8GB 

Nvidia Quadro. Multiple cores were used to execute the simulations most efficiently; however, 

the number of cores varied depending on the simulation. 

Dynamic chromatography column model 

The Method of Lines is applied for the spatial discretization, using a fourth-order central 

difference scheme for both first and second-order derivatives with respect to space, to 

transfer partial differential equations into ODEs with respect to time. The LSODA (Livermore 

Solver for Ordinary Differentia Equations) algorithm from the scipy.integrate package is used 

to solve the ODEs, this method automatically switches between the nonstiff Adams method 

and the stiff BDF method [65]. 

Optimization  

The scipy.optimize package was employed for the optimization, whereas the 

differential_evolution algorithm was used for the global optimization and Nelder-Mead 

algorithm for the local optimization. For global optimization, the maximum number of 

iterations was 6 and a population size of 5 for MMs, while for ANNs, the maximum number of 

iterations was 8 with a population size of 8. Latin hypercube sampling was used to initialize 

the population. The initial local optimization had a maximum of 5 iterations. The relative and 

function tolerances for both global and local optimizations were set to 1e-2. The final local 

optimization allowed a maximum of 50 iterations. Limited ANN accuracy can lead to varied 

mass predictions and affect the performance measurements. Overpredicted masses were set 

to the injected mass. The lower cut point ranged from 1–80% of the peak maximum, while the 

upper cut point ranged from 20–99% of the peak maximum. Initial salt concentrations were 

between 1–150 mM for CEX and AEX, 100–500 mM for HIC using MM, and 350–500 mM for 

HIC using ANN. Final salt concentrations were between 160–1200 mM for CEX and AEX, 5–

300 mM for HIC using MM, and 5–200 mM mM for ANN. The gradient length varied from 1 to 

10 CV. For optimizing the filtration operation, the Nelder-Mead algorithm with standard 

settings was employed. 

Artificial Neural Networks 

The Keras Module (version 2.10.0) of TensorFlow (version 2.10.1) were used to create the 

ANNs, these are open-source libraries compatible with the Python programming language. 
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The ANN structure, optimized with a learning rate of 0.01 using keras.optimizers.Adam and 

defined using keras.models.Model, employed data scaling via the 

sklearn.preprocessing.MinMaxScaler module. The optimizer loss function used the 

‘mean_squared_error’ metric. Randomized data was generated by applying the Latin 

hypercube sampling method from the pyDOE package. 

 

4.2.5. Case study  

The case study focused on a monoclonal antibody product of interest and referred to as 

protein 1, and eight impurities (referred to as proteins 2 to 9), using data from a prior study 

[35] and additional artificial data as shown in Table 4.2. No data was available for BSA on HIC-

resin, based on performed column gradient experiments, we estimated the isotherm 

parameters to be equal to protein 3 (Chitotriosidase), as both proteins elute at the end of the 

gradient. More details can be found in Appendix 4.A, as well as details about the resin 

parameters. The artificial data ensured at least three chromatography modes were required 

to purify the product of interest. Accordingly, a comprehensive comparison between the 

different optimization strategies could be accomplished. The chromatography column size 

(20.1 mL) was set in compliance to the size of the filtration unit operation. The linear flowrate 

of the chromatography process was 150 cm/h and the loading factor was 2.0 CV. 
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The validated filtration model for BSA was used to make valid assumptions for the simulation 

of other proteins during the overall flowsheet optimization. All proteins had similar or higher 

molecular weights compared to BSA, therefore full retention by the membrane was assumed 

for all proteins. The yield of the filtration operation was set to 95% for compensation of the 

lost material by adding an additional unit operation. The same constants for determining the 

B22 value, as given in Appendix 4.B, were assumed for the other proteins. However, due to the 

low protein concentrations evaluated in this case study, the B22 has no significant influence 

on the DF operation. Here, a DF mode (α=0.99) was employed to exchange buffers, e.g., adapt 

salt conditions, between the chromatography steps. Therefore, only the time is a variable and 

the optimization problem was formulated as 

   min 𝑓(𝑡) = |𝐶𝑠,𝑚𝑜𝑑𝑒𝑙(𝑡) − 𝐶𝑠,𝑑𝑒𝑠𝑖𝑟𝑒𝑑|     Eq. 4.19 

𝑠. 𝑡. 𝑉(𝑡0) = 𝑉0 ;  𝐶𝑖(𝑡0) =  𝐶𝑖,0 ;  𝐶𝑠(𝑡0) =  𝐶𝑠,0,                Eq. 4.20 

where 𝑡 is the time variable to be optimized. 𝐶𝑠,𝑚𝑜𝑑𝑒𝑙 is the model-predicted final salt 

concentration to be equalized to the desired final salt concentration, 𝐶𝑠,𝑑𝑒𝑠𝑖𝑟𝑒𝑑. The desired 

final salt concentration is in this case the initial salt concentration of the next chromatography 

operation.  

For the flowsheet optimization, the global and local objective were formulated as  

𝑚𝑖𝑛 𝑓(𝑥) =  ( 100 −  𝑦𝑖𝑒𝑙𝑑 (𝑥) )  +  2 ∗  ( 100 −  𝑝𝑢𝑟𝑖𝑡𝑦 (𝑥))
+ 𝑒𝑙𝑢𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑥) 

Eq. 4.21 

𝑠. 𝑡. ℎ(𝑥)
= 0                      (𝑜𝑛𝑙𝑦 𝑎𝑝𝑝𝑙𝑖𝑒𝑠 𝑡𝑜 𝑀𝑀) 

Eq. 4.22 

 0 ≤ 𝑥 ≤ 1, Eq. 4.23 

where 𝑓(𝑥) is the objective function to be minimized, all variables (𝑥) were normalized 

between 0 and 1 for enhanced optimization purposes (Eq. 4.23). Additionally applicable when 

using MMs is to satisfy the equality equations  ℎ(𝑥), such as the mass balances and 

equilibrium relations (Eq. 4.22). The optimizing variables (𝑥) for the chromatography steps 

were: the gradient elution length, initial and final salt concentrations, and the lower and upper 

cut points. The performance measurements (e.g., yield, purity, buffer consumption) were 

evaluated across the entire purification process, with purity being assigned twice the weight 

due to its critical importance in biopharmaceutical purifications. Minimizing buffer 

consumption indirectly addresses the costs, batch throughput, and productivity concerns. The 

cost of lost feed is related to yield. Finally, the selected optimal flowsheets and their conditions 

from the global and minor local optimization were used as input for the final local 

optimization.  

For both the global and local optimizers the following requirements were applied: 
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- Evaluation of the subsequent unit operation is only performed if the prior unit 

operation exceeds a yield of 5%, preventing solver failure due to excessively low 

concentration values.  

- If the product pool’s salt concentration is larger than the initial salt concentration of 

the next unit operation, either a dilution or filtration step is performed, depending on 

the flowsheet being evaluated. 

- If the product pool’s salt concentration is smaller than the initial salt concentration of 

the next unit operation, a spiking dilution step using a salt stock concentration of 5 M 

is performed. 

- When using ANNs, the loading factor should be within the range of 0.05 and 5 CV to 

ensure compatibility with the data range for which the ANNs were developed. 

Otherwise, this option is indicated with not-a-number (Nan). 

4.3. Results & Discussion 

4.3.1. Filtration model validation 

The filtration model was validated for the UF/DF experiment of BSA as shown in Figure 4.5. A 

good agreement between the experimental protein concentration and the model was found, 

R2 = 0.99 and a low standard deviation of 0.03. Also the salt reduction over time is accurately 

predicted, R2 = 0.97 and a standard deviation of 6.25. The alpha parameter was fitted to be 

0.405, instead of the initial determined 0.7, as the permeate flowrate appeared to be not 

entirely constant throughout the process.  

  
Figure 4. 5. Left: model prediction of the protein concentration, containing BSA, over time compared to 
the experimental values. Right: model prediction of the salt concentration over time compared to the 
experimental values. The initial protein concentration was 0.3 kg/m3, the initial salt concentration 
contained 175 mM NaCl. The initial volume was 100 mL, the flowrate was 20 mL/min. The 
transmembrane pressure was 0.142 MPa.  
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4.3.2. Artificial Neural Networks 

The quantitative evaluations showed that the desired values of R2 > 0.90 and RMSE < 0.04, 

based on previous research [54], were reached for almost all ANNs (Table 4.3). Converting the 

normalized RMSE values into absolute RMSE values gives an error value between 9.3–14.1% 

for protein 1, and for the volume between 3.6–11%. As justified in previous research, we 

considered an error rate of 15% to be acceptable, and to confidently identify the most optimal 

flowsheets while disregarding the less promising ones during flowsheet optimization. The 

generated data is focused around the product peak, resulting in some proteins that never 

elute or appear in the product pool. Therefore, training accurate ANNs is challenging due to 

their consistently low output values, inducing low R2 values. Nevertheless, the absolute RMSE 

values also remain low (<8·10-5). Given our understanding that these proteins will never be 

present in the product pool, we can assume they would always be removed. The most 

challenging proteins to remove are the ones eluting around the product peak, and therefore 

these are considered as the critical proteins for that chromatography mode. For AEX these are 

the proteins: 2, 3, 7, and 8, while for CEX these are the proteins: 5, 6, 7, 8, and 9, and for HIC 

the proteins: 4, 8, and 9.  

Table 4. 3. Quantitative evaluation for all proteins and volume on each chromatography mode. The 
RMSE is given as a normalized number. The product pool volume and salt concentration are included 
as these are needed for connecting the unit operations and calculating certain performance 
measurements. 

 AEX CEX HIC 

 R2 RMSE  R2 RMSE  R2 RMSE  
Protein 1 0.99 0.016 0.99 0.020 0.98 0.022 
Protein 2 0.99 0.020 -0.10 0.028 0.00 0.005 
Protein 3 0.94 0.028 0.00 0.052 -0.14 0.328 
Protein 4 -0.41 0.018 0.61 0.021 0.98 0.024 
Protein 5 -1.08 0.014 0.99 0.021 0.00 0.010 
Protein 6 -1.11 0.006 0.99 0.023 0.03 0.327 
Protein 7 0.99 0.020 0.98 0.026 0.03 0.019 
Protein 8 0.99 0.017 0.93 0.021 0.98 0.025 
Protein 9 0.55 0.006 0.98 0.024 0.97 0.029 
Volume 0.93 0.052 0.94 0.042 0.89 0.035 
Salt 0.98 0.018 0.98 0.02 0.97 0.022 

 

4.3.3. Flowsheet optimization 

The flowsheet optimization workflow is designed to initially identify the global optima for each 

flowsheet. Subsequently, the most promising candidates can be further optimized locally, 

while the less promising ones may be disregarded. In this way, the number of flowsheets to 

be evaluated locally can be drastically reduced and correspondingly decreasing the overall 
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optimization time. Optimizing a complex flowsheet involves finding global optima, therefore, 

a stochastic and heuristic algorithm was employed to increase the chance of finding most of 

the global optima [66]. 

We compared three optimization strategies, namely, simultaneous, top-to-bottom, and 

decomposition, in terms of time-efficiency, complexity, and final results. Each optimization 

strategy was executed following the optimization workflow, as described in 4.2.1. Flowsheet 

optimization workflow, by either using MMs or ANNs. The flowsheet optimization was 

performed for a superstructure of three chromatography modes with a dilution or a filtration 

operation between the chromatography steps to function as a buffer exchange. In total, 39 

flowsheets were evaluated. The maximum number of iterations using MMs was reduced 

compared to previous work to perform the flowsheet optimization within a reasonable 

amount of time, details can be found in 4.2.4. Numerical methods [54]. Similarly for ANNs, 

the number of iterations was adapted to guarantee a fair comparison between both 

workflows. The overall performance of each flowsheet is evaluated using the WOP value as 

described in 4.2.1. Flowsheet optimization workflow. In this work, the WOP is determined by 

the purity, yield, and buffer consumption. Based on the highest WOP value for all strategies 

using MMs, two best flowsheets were selected for which both MM and ANN results are shown 

in Table 4.4. All results of the global optimized flowsheet for all strategies, using MMs or ANNs, 

can be found in Appendix 4.D. Note, when the salt concentration in the pool is lower than the 

initial salt concentration of the subsequent chromatography step, a dilution with a stock salt 

solution is performed, as described in 4.2.5. Case study. This also applies to flowsheets 

positioned with a filtration step, and can be confirmed by evaluating the optimized variables 

for the salt conditions. Moreover, in the top-to-bottom strategy using ANNs, Nan occurred 

when the loading factor of a second or third chromatography step was out-of-range for the 

ANNs, as stated in the requirements in 4.2.5. Case study. 
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The strategies top-to-bottom and decomposition found the same best flowsheet (AEX – D – 

HIC – D – CEX), while the simultaneous strategy found a different one (CEX – D – HIC – D – 

AEX), as highlighted in Table 4.4. The flowsheet (AEX – D – HIC – D – CEX) was selected as an 

optimal candidate in all strategies when using ANNs. In overall, the ANNs found more optimal 

flowsheets (WOP>96) compared to MM results. This is mainly appointed to an overestimation 

of the yield, which depends on the ANN accuracies for each protein (Appendix 4.D). The 

Swarmplot, in Figure 4.6, shows the WOP values for the structures of one, two, or three 

chromatography steps in a sequence by either using MMs or ANNs. The different strategy 

outcomes are merged into the number of chromatography steps. Moreover, we clearly 

observe the same increasing trend when considering more chromatography steps for both 

ANNs and MMs. For one and two chromatography steps, the WOP value is a bit overestimated 

by the ANNs, mainly due to the overestimation of the yield as pointed out previously. The 

range for WOP values of three chromatography steps is about equal, only more flowsheets 

were estimated with a higher WOP value when using ANNs.  

 

Figure 4. 6. The WOP value of each flowsheet determined by each optimization strategy is compared 
for one, two, and three chromatography steps, and between using either MMs or ANNs as modeling 
workflow. 

 

The selected best flowsheets, for each optimization strategy with MMs, were further locally 

optimized using the simultaneous strategy with MMs, as shown in Figure 4.7. Noticeably, the 

solver objective is to discover the ideal salt conditions within sequential chromatography 

steps, thereby eliminating the need for filtration and so obtaining enhanced yields and 

reducing buffer consumptions. Often, an orthogonal structure is applied in industrial 

processes, meaning that ion exchange and hydrophobic interaction chromatography are 
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alternated [2]. Here, the two selected best flowsheets also have an orthogonal structure. 

However, from the global optimization results, other promising sequences, with a WOP>96, 

are not necessarily orthogonal. For the final local optimization, a maximum number of 50 

iterations was set to minimize the computational time, which took about eight hours. From 

the final results in Figure 4.7, it can be observed that there is a clear trade-off between purity 

and yield, for example the purity result of the simultaneous strategy is reduced, while the yield 

increases, when comparing to the global optimized results. The buffer consumption was 

reduced in all strategies, but the overall WOP value was not improved for all strategies. So, to 

really improve the outcome, more iterations are needed. Or if a certain performance 

measurement, such as the purity, is a severe constraint (>99%), this can be applied to only 

local or both global and local optimization.   
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For comparing the overall computational effort, the total amount of hours for each strategy 

and workflow (MMs or ANNs) are evaluated and shown in Figure 4.8. However, the overall 

flowsheet optimization workflow applied parallelization whenever possible. The ANN-time 

involves the data-generation (using MMs), ANN development, and running the optimization, 

though, 99% of the time is devoted to the data-generation. The MM only includes the 

optimization time. The simultaneous strategy with MMs is obviously the most 

computationally intensive, whereas the top-to-bottom with MMs requires the least amount 

of computational effort.  

 

Figure 4. 8. Comparison of the overall computational effort between the optimization strategies and 
modeling workflows. The computational hours represent the total (sequential) amount of hours needed 
for each strategy.  

Nowadays, more advanced computers consist of at least 10 or even 20 cores, and as a 

consequence  the simultaneous and decomposition strategy can be executed way more time-

efficiently. The decomposition can be parallelized maximally 15 times, as sequences of three 

chromatography steps depend on the two-chromatography step sequences. Whereas, the 

simultaneous strategy can be split into the number of flowsheets to be evaluated, in this case 

39. Similarly for the ANN workflow, where, in principle, infinite codes can run simultaneously 

to generate data. Only the top-to-bottom strategy with MMs cannot be parallelized, as 

decisions are made sequentially between the various levels of chromatography steps. Figure 

4.9 shows the effect of using 10 or 20 cores on each strategy and workflow. The decomposition 

strategy with MMs is the most time-efficient when making optimal use of the cores. In this 

case study, ANNs are significantly more time-efficient for the simultaneous strategy and for 

the top-to-bottom strategy when using 20 cores.  
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Figure 4. 9. Comparing the computational hours for each optimization strategy and modeling workflow 
when using 10 or 20 cores. 

Evidentially, the optimization strategy plays a significant role in the overall computational 

effort. But, if the optimization strategy and workflow are parallelized most efficiently, the 

difference in computational time between the strategies decreases, ranging from about 1 to 

7 days. In this case study, all strategies found multiple and similar optimal flowsheets. 

However, to obtain the most optimal conditions when connecting several unit operations, the 

simultaneous strategy is still recommended. In this flowsheet optimization evaluation, ANNs 

did not appeared to be more time-efficient. Presumably, if more resins and/or larger 

sequences are considered and at least 20 cores can be used, it is expected that the ANNs 

exceeds the time-efficiency compared to MMs. This would be an interesting evaluation for a 

follow-up. Moreover, ANNs are very fast in executing the flowsheet optimization, which can 

be advantageous when evaluating different scenarios for the optimization problem. In 

general, multiple factors determine which optimization strategy and workflow (MMs or ANNs) 

might be optimal for a specific case study, such as, the objective(s) and constraint(s), the size 

of the superstructure, and/or the computer power. The overview in Table 4.5 can help to make 

decisions for a flowsheet optimization approach.  
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Table 4. 5. Suggestions for deciding the type of optimization strategy and/or modeling workflow (ANNs 
or MMs) for certain scenarios/case studies.  

Optimization problem  Time 

Optimization objectives and constraints 

• Objective(s) and constraint(s) are clear:  

MMs, however, depending on 

superstructure size 

• Different objective(s) and constraint(s) 

to be evaluated:  

ANNs 

 Depending on available number of cores. 

If multiple cores can be used: 

• Limited time: 

Decomposition strategy  

• Extended time:  

Simultaneous strategy 

Superstructure size 

Number of chromatography modes (type of 

resins) to be considered: 

• 3 chromatography modes: MMs  

• 4 chromatography modes: ANNs + MMs 

• 5 chromatography modes: ANNs + MMs 

  

   

Flexibility of method 
 

Complexity 

Optimizing variables 

• Decided variables:  

MMs and/or ANNs  

• Undecided variables:  

MMs easier to use,  

or make more general ANNs with 

various input variables, or generate 

multiple ANNs 

 In terms of coding and knowledge 

• All optimization strategies are about equal in 

development complexity, as the general 

optimization workflow is similar to all of 

them for both ANNs and MMs 

• Developing the ANNs adds more complexity 

to the overall approach  

• Advanced knowledge is required on the 

various MMs employed, the overall 

optimization workflow, developing the 

ANNs, all the algorithms/solvers used for the 

optimization and ANNs 

Apply different objectives for different steps 

Decomposition strategy, this strategy can 

apply different objectives for the first step 

(capture step) and second and/or third steps 

(polishing steps). 

 

 In terms of solving  

• Least complex:  

Top-to-bottom, as it individually solves 

each unit operation  

• Most complex:  

Simultaneous, challenging to find the 

optimal solution for a sequence of more 

than 3 unit operations having at least 5 

variables per unit operation. Increasing 

the number of unit operations in the 

sequence or the number of variables will 

significantly increase the complexity to 

solve the problem 



Comparing in silico flowsheet optimization strategies in biopharmaceutical downstream 
processes 

  107 
 

4 

4.4. Conclusions 

In this study, we compared three optimization strategies to determine the most effective 

approach for complex flowsheet optimization based on their outcomes, time-efficiency, and 

complexity. Each strategy, e.g., simultaneous, top-to-bottom, and decomposition of the 

superstructure, was evaluated by either using MMs or ANNs for the global optimization. This 

complex flowsheet optimization consisted of 39 flowsheets, including an optional buffer 

exchange between the chromatography steps. The filtration mathematical model was 

validated for an UF/DF step using BSA. The protein concentration achieved an R2 of 0.99 and 

a standard deviation of 0.03, and the salt concentration achieved an R2 of 0.97 and a standard 

deviation of 6.25. Therefore, this model was assumed to be valid and applicable to the other 

proteins during flowsheet optimization, which had a similar or higher molecular weight than 

BSA. For the ANNs, all critical proteins, which are present around the product peak, reached 

an R2 > 0.93, and the product of interest achieved an R2 > 0.98 and RMSE < 0.022.  

Subsequently, flowsheet optimization using MMs identified the same optimal flowsheet (AEX 

– D – HIC – D – CEX) for both top-to-bottom and decomposition strategies, the ANNs predicted 

the same WOP for this sequence. The simultaneous strategy with MMs identified a different 

sequence (CEX – D – HIC – D – AEX), which was not selected as one of the best by the other 

two strategies, giving a WOP threshold of at least 96. In general, the WOP values were 

predicted within a similar range when using either ANNs or MMs. In the case of orthogonal 

sequences, the solver often determined the optimal salt conditions to exclude the filtration 

step and instead employed a dilution / spiking step, and so reducing buffer consumptions and 

enhancing yields. Leveraging the multi-core processing capabilities, commonly available in 

contemporary computers, minimizes the duration of the flowsheet optimization between the 

strategies. When using multiple cores, the superstructure decomposition method employed 

with MMs is the most time-efficient approach. Utilizing ANNs is only significantly more time-

efficient when employing the simultaneous strategy, and top-to-bottom approach when 

utilizing 20 cores. Furthermore, if various optimization problems want to be evaluated, ANNs 

are valuable for their fast flowsheet optimization, taking under an hour with multiple cores. 

All strategies are about equal in terms of complexity to develop the software. However, the 

combination with ANNs adds a layer of complexity because more knowledge is required on 

different aspects.  

This study points out the importance of different optimization strategies and modeling 

techniques for complex flowsheet optimizations. Since numerous factors play a role, the 

decision-making table can support to find the most suitable type of strategy and modeling 

technique for a certain case study. Flowsheet optimization is crucial during the early 
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conceptual process design to decrease costs and development time. Moreover, at the initial 

stage of a development process, limited sample material is available and knowledge about the 

sample purification has yet to be acquired. All strategies, whether employing MMs and ANNs, 

successfully identified multiple optimal flowsheets. Moreover, due to efficient parallelization, 

the difference in computational time between the strategies was minimized. Though, the 

decomposition of the superstructure strategy with MMs proved to be most time-efficient. 

Furthermore, it has the advantage to apply different objectives for specific steps during the 

purification process, enhancing its versatility and utility in biopharmaceutical process 

development.  
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Chapter 5 

 
From protein structure to an optimized 

chromatographic capture step using 
multiscale modeling 

 

Optimizing a biopharmaceutical chromatographic purification process is currently the greatest 

challenge during process development. A lack of process understanding calls for extensive 

experimental efforts in pursuit of an optimal process. In silico techniques, such as mechanistic 

or data driven modeling, enhance the understanding, allowing more cost-effective and time 

efficient process optimization. This work presents a modeling strategy integrating quantitative 

structure property relationship (QSPR) models and chromatographic mechanistic models 

(MM) to optimize a cation exchange (CEX) capture step limiting experiments. In QSPR, 

structural characteristics obtained from the protein structure are used to describe 

physicochemical behavior. This QSPR information can be applied in MM to predict the 

chromatogram and optimize the entire process. To validate this approach, retention profiles 

of six proteins were determined experimentally from two mixtures, at different pH (3.5, 4.3, 

5.0, 7.0). Four proteins at different pH’s were used to train QSPR models predicting the 

retention times and characteristic charge, subsequently the equilibrium constant was 

determined. For an unseen protein knowing only the protein structure, the retention peak 

difference between the modeled and experimental peaks only was 0.2% relative to the 

gradient length (60 column volume). Subsequently, the CEX capture step was optimized, 

demonstrating a consistent result in both the experimental and QSPR-based methods. The 

impact of model parameter confidence on the final optimization revealed two viable process 

conditions, one of which is similar to the optimization achieved using experimentally obtained 

parameters. The multiscale modeling approach reduces the required experimental effort by 

identification of initial process conditions which can be optimized.  

This chapter has been submitted for publication: Keulen, D., Neijenhuis, T., Lazopoulou, A., Disela, R., 

Geldhof, G., Le Bussy, O., Klijn, M.E., and Ottens, M..
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5.1. Introduction 

Over the past years, the biopharmaceutical industry has experienced substantial growth, with 

protein-based biopharmaceuticals (e.g., monoclonal antibodies (mAbs) and protein subunit 

vaccines)  being a significant part of the industry [1]. As a consequence, the biopharmaceutical 

industry endeavors to accelerate process development with the primary goal to deliver 

biopharmaceuticals at the earliest possible time, pushing the competitive market [2]. 

Moreover, the competition even intensified more due to the emerging field of biosimilars [3, 

4]. The biopharmaceutical sector requires therefore innovative approaches to advance 

process development, while ensuring product quality and stability. Especially the downstream 

process is the major cost driver of the overall manufacturing costs, demanding an efficient 

and cost-effective process. To achieve very high product purities, chromatography is currently 

the most essential but also the most costly technique [5].  

In silico techniques, such as mechanistic or data-driven modeling, can be of great merit for 

process development. These methods allow for increased process understanding while 

reducing experimental effort and/or use of critical sample material, and decreasing process 

development times [6, 7]. Within the next years, modeling techniques will become more 

essential for biopharmaceutical industry. Specifically for Industry 4.0 that aims to digitalize the 

entire manufacturing process [8-11]. Moreover, increased process understanding and process 

and product quality control are in agreement with the Quality-by-Design (QbD) guidelines [12-

15]. Identifying the operating window of the critical process parameters (CPP) is an essential 

part to guarantee process’ stability. Currently, these operating windows are determined with 

expensive and time-consuming wet-lab Design-of-Experiments (DoE). Chromatographic MM 

attempt to describe the chromatographic process in silico and could be an inexpensive and 

fast alternative to determine the CPP operating window. Over the past years, the industry has 

been gradually adopting chromatographic MM, with ongoing advancement being made in 

determining the essential input parameters [16-18]. In the future, the ultimate objective is to 

determine adsorption isotherm for complex mixtures more easily [19, 20]. Progress in utilizing 

mass spectrometry data could play a crucial role in achieving this goal [21]. However, at this 

moment determining adsorption isotherm parameters for the MM remains a bottleneck for 

industrial application, mainly due to time and material limitations especially in the early phase 

of downstream process development [22]. Quantitative Structure Property Relationships 

(QSPR) modeling could be an in silico alternative to experimentally determining the 

adsorption isotherm parameters. QSPR aims to correlate physicochemical properties with 

specific behavior, such as chromatographic retention time [23]. These physicochemical 

properties are calculated from protein structure models that describe the position of each 
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atom. Combining MM with QSPR and optimization tools could pave the way for a holistic 

modeling approach/workflow.  

In 2001, Mazza et al. introduced a QSPR model for predicting protein retention times for ion 

exchange chromatography [23]. Their approach involved feature calculation using the 

proprietary software platform MOE a genetic algorithm for feature selection for the training 

of a partial least squares model [24, 25]. As a result, several follow-up studies applied QSPR 

models to different modes of chromatography/type of chromatography resins, using support 

vector machine regression methods, and including pH effects [26-31]. Malmquist et al. 

developed an additional set of protein descriptors that are pH-dependent and based on 

electrostatic and hydrophobic properties [32]. Moreover, several studies considered the 

crucial binding orientations within protein-resin binding affinities in their QSPR models [33-

35]. In recent years, QSPR has been applied to more complex proteins, such as Fabs and mAbs, 

showing the growing interest from industry and the added value of these models [22, 36, 37]. 

Robinson et al. showed the potential of QSPR models for in silico resin screening of six 

chromatographic systems applied to Fabs [36]. While Saleh et al. built QSPR models using 21 

mAbs variants to predict the adsorption isotherm parameters, the equilibrium constant and 

the characteristic charge, which were subsequently applied to the MM and able to predict the 

cation exchange chromatography (CEX) step [22]. Their study shows promising capabilities of 

a multiscale model to simulate different process conditions without the need for wet-lab 

experiments. Several software packages are available to calculate the protein descriptors that 

are needed for QSPR modeling, an overview of these software packages has been provided 

elsewhere [38, 39]. Most software tools are only available via webservers or commercially, 

lacking source code availability. Therefore, Neijenhuis et al. have recently published an open-

source QSPR software tool, which has also been used in this work [40]. 

Most research on QSPR modeling either developed protein descriptors or applied existing 

protein descriptors for their QSPR model with the aim to increase the protein-behavior 

understanding via retention prediction [29, 32, 36, 37, 41]. Additionally, other research also 

applied the predicted QSPR parameters to MM and validated the predicted chromatographic 

process from a protein structure/sequence [22, 28, 30]. So far, no research has shown the 

ability of QSPR models in combination with MM to optimize a chromatographic process step 

without any need for protein material. Moreover, the influence of the accuracy of the 

predicted QSPR-parameters on an optimized process has not yet been evaluated.  

This chapter presents a general multiscale modeling strategy that integrates QSPR and 

chromatographic MM to optimize a CEX capture step. We were able to simulate and validate 

a CEX step only using the protein structure. Subsequently, we compared the uncertainty of 
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the experimentally determined and predicted parameters on the final optimization outcome. 

An overview of the experimental-based and QSPR-based strategy is shown in Figure 5.1. This 

strategy can be used to determine the operating window of CPPs in an early stage process 

development, showing the potential applicability for industry. Combining these modeling 

techniques together with an optimization software reduces the experimentally effort overall 

process development time significantly. Previous research mostly used pure components to 

perform the linear gradient experiments (LGE), however the availability of pure components 

is limited in biopharmaceutical industry. Therefore, performing LGE with complex protein 

mixtures would offer significant advantages. So far, only Buyel et al. applied QSPR modeling 

to a crude mixture of plant extracts to predict retention times for ion exchange and mixed 

mode chromatography separations [31]. Here, we performed LGE for five different gradient 

lengths and four pHs applied to two mixtures of each three proteins. Performing the 

experiments with protein mixtures instead of each protein individually, reduces the total LGE 

from 30 to 10 experiments. We developed QSPR models for predicting the retention times 

and characteristic charges. These predicted QSPR parameters were used to obtain the 

equilibrium constants. The multiscale model was validated for an unseen protein, which was 

excluded from the QSPR training and testing data. Finally, we compared the influence of 

parameter uncertainties on the optimization outcome by using experimental and QSPR 

predicted parameters. 
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Figure 5. 1. Overview of the experimental-based method and the QSPR-based method. Both methods 
can be used to determine the adsorption isotherm parameters that can be used in the mechanistic 
model for process optimization purposes. The equilibrium constant is denoted by 𝐾𝑒𝑞 and the 

stoichiometric coefficient of salt counter ions with 𝑣. 
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5.2. Materials & Methods 

5.2.1. Experimental part 

5.2.1.1. Materials & Equipment 

A 1-mL CEX column of HiTrap SP FF (Cytiva Life Sciences, USA) was used for the preparative 

column experiments. For the analytical size exclusion chromatography – ultra performance 

liquid chromatography (SEC-UPLC), an ACQUITY UPLC Protein BEH SEC 200 Å column (Water 

Corporation, USA) was used, protected with a prior/foregoing ACQUITY UPLC Protein BEH SEC 

guard 200 Å column (Water Corporation, USA). 

The following proteins were purchased from Sigma-Aldrich, USA: bovine serum albumin (BSA), 

lysozyme, cytochrome C, chymotrypsinogen A from bovine pancreas, and conalbumin. 

Ribonuclease pancreatic (RNase) was purchased from Roche Diagnostics GmbH, Germany. 

Dextran (DXT1740K) (American Polymer Standards Corporation, USA) was used for column 

characterization.  

The buffers were prepared with Milli-Q water and adjusted to the desired pH using either 0.5 

M sodium hydroxide or 1 M hydrochloric acid. The buffers were filtered to remove undissolved 

salts, 0.2 μm pore-size hollow fiber MediaKap (Repligen, USA) filter for UPLC buffers and a 0.2 

μm Membrane Disc Filter (Pall corporation, USA) for ÄKTA buffers. Moreover, all buffers were 

degassed for 20 minutes using an ultrasonic bath (Branson Ultrasonics, USA) to prevent 

introducing air bubbles into the column. The protein mixture was filtered using a 0.2 μm 

Whatman Puradisc FP 30 mm (GE Healthcare Life Sciences, USA). 

5.2.1.2. Linear gradient column experiments 

LGE were conducted at various pH values (pH 3.5, 4.3, 5.0, and 7.0) for five gradient lengths: 

20, 30, 40, 60, and 80 column volumes (CV). For every pH a different running buffer was 

needed, citric acid monohydrate (pH 3.5, 20 mM), sodium acetate trihydrate (pH 4.3 and 5.0, 

50 mM), and sodium phosphate monobasic dihydrate (pH 7.0, 50 mM). The elution buffer is 

the same as the running buffer for that respective pH with the addition of 1 M sodium 

chloride. The pH-values were selected to theoretically favor a positive net charge for most 

proteins, and therefore anticipating their binding to the CEX resin. The chromatographic 

column experiments were performed on an ÄKTA pure system (Cytiva Life Sciences, USA) with 

UNICORN version 7.5 software, with a flowrate of 1 mL/min, and measuring UV absorbance 

at 230, 280, and 400 nm wavelength. The column characteristics are given in Table 5.1, more 

information on the characterization methods can be found in Appendix 5.A. During the 

chromatography runs, 1 mL samples were collected using a fraction collector. These samples 

were additionally analyzed with a Dionex UPLC system using Chromeleon Chromatography 
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Data System version 7 software, measuring UV absorbance at 230, 280, and 400 nm 

wavelength. The UPLC-running buffer was a 100 mM sodium phosphate monobasic dihydrate 

with a pH of 6.8. A flowrate of 0.1 mL/min and analysis time of 40 minutes was applied. The 

SEC-UPLC analysis enabled the identification of the peaks obtained during the LGE’s with their 

corresponding proteins. However, the protein mixture was divided into two groups, as some 

proteins with similar characteristics were indistinguishable in the SEC-UPLC analysis. Group 

one consisted of RNase, cytochrome C, conalbumin, and group two of chymotrypsinogen, 

lysozyme, and albumin. Both multi-component mixtures contained 0.8 mg/mL of each 

protein.  

Table 5. 1. Column characteristics for HiTrap SP FF column. 

Parameter Value Unit 

Column volume 0.97 mL 
Column diameter1 0.70  cm 

Bed height1 2.50 cm 
Maximum pressure1 2.0 MPa 
Ionic capacity2 800 mM 
Particle size1 90 μm 
Pore diameter3 54 nm 
Cross sectional area 0.39 cm2 

System dead volume (𝑽𝒅𝒆𝒂𝒅) 0.34 mL 
Total porosity (𝜺𝒕) 0.918 - 
Extraparticle porosity (𝜺𝒃) 0.298 - 
Intraparticle porosity (𝜺𝒑) 0.887 - 

System dwell volume  (𝑽𝒅𝒘𝒆𝒍𝒍) 1.09 mL 
1Manufacturer, 2Osberghaus et al. [42], 3Hagemann et al. [43]. 

Table 5. 2. Overview of the protein characteristics, in which PDB stands for Protein Data Bank. 

Protein PDB names Mass 
(kDa)  

Estimated 
Isoelectric 
point 

Conalbumin 1OVT 75.83 6.62 
Albumin 6QS9 66.43 5.49 
Chymotrypsinogen 2CGA 25.67 8.13 
Lysozyme 1GWD 14.31 9.20 
RNase 1RNAse 13.69 8.29 
Cytochrome C 6FF5 12.33 9.60  

 

First, the column was equilibrated with 5 CV running buffer, followed by a 300 μL sample 

injection using a 10 mL Superloop (Cytiva Life Sciences, USA). After the sample injection, 

unretained proteins were removed by washing the column for 5 CV using the running buffer. 

Subsequently, a gradient elution was performed from 0 (running buffer) to 1 M sodium 
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chloride (elution buffer). The proteins in the collected fractions were identified with the SEC-

UPLC analytical method. Though, it is expected that the elution order of the proteins remains 

the same and therefore, only the fractions of two gradients for each pH were analyzed with 

SEC-UPLC. For each fraction analysis, 5 μL sample was injected. 

5.2.2. Chromatographic mechanistic model 

The chromatographic MM from previous work was used to describe the dynamic adsorption 

behavior during the chromatographic separation process [44]. This employed MM is a 

combination of the equilibrium transport dispersive model combined with the linear driving 

force model as 

𝜕𝐶𝑖

𝜕𝑡
+ 𝐹

𝜕𝑞𝑖

𝜕𝑡
=  −𝑢

𝜕𝐶𝑖

𝜕𝑥
+ 𝐷𝐿,𝑖

𝜕2𝐶𝑖

𝜕𝑥2
, Eq. 5.1 

𝜕𝑞𝑖

𝜕𝑡
= 𝑘𝑜𝑣,𝑖( 𝐶𝑖 −  𝐶𝑒𝑞,𝑖

∗  ) , Eq. 5.2 

𝑘𝑜𝑣,𝑖 =  [
𝑑𝑝

6𝑘𝑓,𝑖
+

𝑑𝑝
2

60𝜀𝑝𝐷𝑝,𝑖
]

−1

, Eq. 5.3 

 

where the concentration in the liquid phase is represented by 𝐶𝑖 and in the solid phase with 𝑞𝑖, 

in which subscript 𝑖 denotes the protein component. The liquid phase concentration at 

equilibrium is denoted by 𝐶𝑒𝑞,𝑖
∗ . The phase ratio is equal to 𝐹 = (1 − 𝜀𝑏)/𝜀𝑏,  where 𝜀𝑏 is the 

bed porosity. Time and space are indicated by 𝑡 and 𝑥 respectively. 𝑢 is the mobile phase 

interstitial velocity and 𝐷𝐿 is the axial dispersion coefficient. The overall mass transfer 

coefficient, 𝑘𝑜𝑣,𝑖, is defined as the combined result of both the separate film mass transfer 

resistance and the mass transfer resistance within the pores [45]. In Eq. 5.3, the particle 

diameter is denoted by 𝑑𝑝, the intraparticle porosity by 𝜀𝑝, and the effective pore diffusivity 

coefficient by 𝐷𝑝. The film mass transfer resistance is 𝑘𝑓 =  𝐷𝑓𝑆ℎ 𝑑𝑝⁄ , in which 𝐷𝑓 is the free 

diffusivity and 𝑆ℎ is the Sherwood number. The Livermore Solver for Ordinary Differentia 

Equations (LSODA) algorithm, part of the scipy.integrate package, is employed to solve the 

Ordinary Differential Equations (ODEs), automatically transitioning between the nonstiff 

Adams method and the stiff BDF method [46]. Additional details regarding the MM can be 

found in a prior study [47].  

We employed the linear multicomponent mixed-mode isotherm, developed by Nfor et al. [48] 

to determine the equilibrium liquid phase concentration as 

𝑞𝑖

𝐶𝑒𝑞,𝑖
∗ =  𝐾𝑒𝑞,𝑖

(𝑣𝑖+𝑛𝑖)(𝑧𝑠𝑐𝑠)−𝑣𝑖𝑐𝑣
−𝑛𝑖𝛾𝑖 ,  

Eq. 5.4 



From protein structure to an optimized chromatographic capture step using multiscale 
modeling 

125 
 

5 

where the equilibrium constant, 𝐾𝑒𝑞,𝑖, quantifies the strength of the interaction between the 

protein and the stationary phase.  is the ligand density or ionic capacity of the concerned 

resin, 𝑧𝑠 is the charge of the salt counter ion, 𝑐𝑠 is the salt concentration in the liquid phase, 

and 𝑐𝑣 is the molarity of the solution in the pore volume. The stoichiometric coefficient of salt 

counter ions is denoted by 𝑣𝑖 , determined by 𝑣𝑖 = 𝑧𝑝 𝑧𝑠⁄ , in which 𝑧𝑝 is the effective binding 

charge of the protein. For monovalent counter-ions, the charge equals one (𝑧𝑠 = 1), for 

example Na+ in the sodium chloride elution buffer. In this work, only the ion-exchange part of 

the mixed-mode isotherm is used, therefore hydrophobic interaction stoichiometric 

coefficient (𝑛𝑖) will be equal to zero. The activity coefficient (𝛾) of the protein solution can be 

calculated as  

 𝛾𝑖 = 𝑒𝐾𝑠,𝑖𝑐𝑠+𝐾𝑝,𝑖𝐶𝑖, Eq. 5.5 

where  𝐾𝑠 is the salt-protein interaction constant and 𝐾𝑝 the protein-protein interaction 

constant. In the linear range of adsorption, the protein concentrations are low and protein-

protein interactions are expected to be minimal, therefore 𝐾𝑝 becomes insignificant and can 

be neglected [49, 50]. Because of the low salting-out effects, the 𝐾𝑠 also becomes negligible 

[49]. Subsequently, incorporating the assumptions for this work, the linear multicomponent 

mixed-mode isotherm is reformulated as  

𝑞𝑖

𝐶𝑒𝑞,𝑖
∗ =  𝐾𝑒𝑞,𝑖

𝑣𝑖(𝑧𝑠𝑐𝑠)−𝑣𝑖  . 
Eq. 5.6 

 

5.2.3. Procedure to determine adsorption isotherm parameters 

The peak retention volumes were obtained from the LGE’s for each gradient length and at 

each pH. The initial retention volumes (𝑉𝑅,0)  were corrected to be aligned with the elution 

gradients as follows: 

𝑉𝑅 = 𝑉𝑅,0 −  𝑉𝑚 − 𝑉𝐷 −
𝑉𝑖𝑛𝑗

2
,  

Eq. 5.7 

where 𝑉𝑅 is the peak retention volum, 𝑉𝑚 is the column void volume, determined by dextran 

pulse, and 𝑉𝐷 is the system’s dwell and dead volume,  details can be found in Appendix 5.A 

[51]. The injection volume is denoted by 𝑉𝑖𝑛𝑗, half of this volume needs to be subtracted [52]. 

The regression formula of Shukla et al. [53], adapted from Parente and Wetlaufer [51], was 

used to obtain the equilibrium constant (𝐾𝑒𝑞) and the characteristic charge (𝑣) for each 

protein as follows:  

𝑉𝑅 =  ((𝐶𝑠,0
𝑣+1 +

𝑉𝑚𝐾𝑒𝑞𝐹𝑣(𝑣 + 1) ∗ (𝐶𝑠,𝑓 − 𝐶𝑠,0) 

𝑉𝐺
)

1
𝑣+1

− 𝐶𝑠,0) ∗
𝑉𝐺

𝐶𝑠,𝑓 − 𝐶𝑠,0
, 

Eq. 5.8 
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where 𝑉𝐺 is the gradient length. 𝐶𝑠,0 and 𝐶𝑠,𝑓 are the initial and final salt concentration during 

the elution respectively. As no separate pore balance is considered in the chromatographic 

MM, the column phase ratio is considered the same 𝐹 = (1 − 𝜀𝑏)/𝜀𝑏. To validate the 

regression and accordingly the MM, the experimental data of 60 CV is left out during the 

regression.  

The initial peak retention volumes (𝑉𝑅,0) were determined using the function find_peaks of 

the signal module from the Scipy library. The regression was performed using the curve_fit 

function of the optimize module from the Scipy library.  

Specifically at pH 5.0, Cytochrome C and RNAse co-eluted. The absorbance and respective 

calibration lines of Cytochrome C at 400 and 280 nm were used to trace back the RNAse peak. 

Moreover, at pH 4.3, Albumin and Chymotrypsinogen co-eluted. However, from the SEC-UPLC 

analysis it was observed that Albumin eluted later compared to the UV peak detected by the 

UNICORN software. Therefore, the peak retention volumes for Albumin at pH 4.3 were 

determined by analyzing the concentrations by SEC-UPLC in the 1 mL fractions obtained from 

the LGE. Albumin peak areas obtained from the SEC-UPLC were used to fit a third degree 

polynomial function representing the retention time as the maximum.   

5.2.4. QSPR model 

5.2.4.1. Structure preparation and descriptor calculation 

For each protein, the respective models, listed in Table 5.2, were obtained from the protein 

data bank [54], specific entry selection was performed based on resolution and coverage. 

Duplicate chains were removed from each structural model using pdb-tools [55] to yield 

monomer representations. The side chain pKa of titratable residues were predicted using 

PROPKA3.0 [56] allowing for more accurate charge calculations with respect to pH. Protein 

features at pH 3.5, 4.3, 5.0 and 7.0 were calculated using our open-source software package 

prodes by Neijenhuis et al. [40] using the default settings, only supplying the modified pKa 

estimations. Visualization of protein structures was performed using UCSF-Chimera [57]. 

5.2.4.2. QSPR model training 

For predicting the protein retention times and adsorption isotherm parameters, Multi Linear 

Regression (MLR) models were trained. The prediction of conalbumin was removed from the 

dataset prior to train-test splitting to eliminate all bias. To find an accurate predictive MLR 

model, series of filter thresholds were screened by testing a range of feature-feature 

correlation filters (Pearson correlations of 0.8, 0.9 and 0.99). Followed by feature-observation 

correlations filtering, maintaining a predefined percentage of features (10% to 100% in 10% 

increments). Feature selection was performed by sequential forward selection. Final models 
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were selected based on the cross-validated R2 and test set RMSE, which should be close to the 

cross-validation RMSE to ensure model robustness. Feature importance was assessed by 

analysis of the regression coefficient and the influence of feature permutation. For the 

prediction of the unknown conalbumin, the confidence interval was calculated as 

�̂�ℎ ± 𝑡
(1−

𝛼
2

,𝑛−𝑝) 
× √𝑀𝑆𝐸 (1 + 𝑋ℎ

𝑇(𝑋𝑇𝑋)−1𝑋ℎ), 
Eq. 5.9 

where �̂�ℎ is the predicted value, 𝑡(1−
𝛼

2
,𝑛−𝑝) is the “t-multiplier”, 𝑋 and 𝑋ℎ are the feature 

matrixes of the training set and the value to be predicted. The mean squared error (MSE) is 

calculated as 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖 . Eq. 5.10 

   

5.2.5. Optimization  

We evaluated the uncertainty-influence of the regressed and predicted QSPR adsorption 

isotherm parameters on the final optimization outcome. The equilibrium constant and 

characteristic charge values were varied between their standard deviation values for 100 

samples. These samples were used in the optimization. First, the optimization was formulated 

and evaluated to be consistent when performing the same optimization multiple times. The 

global and local objectives were formulated as follows: 

𝑚𝑖𝑛𝑓(𝑥) = 2 ∗ (100 − 𝑦𝑖𝑒𝑙𝑑(𝑥)) + 1 ∗ (100 − 𝑝𝑢𝑟𝑖𝑡𝑦(𝑥)) Eq. 5.11 

𝑠. 𝑡.   ℎ(𝑥) = 0              Eq. 5.12 

 0 ≤ 𝑥 ≤ 1, Eq. 5.13 

where the objective function, 𝑓(𝑥), is minimized. The equality equations, such as the mass 

balances and equilibrium relations, need to be satisfied (Eq. 5.12). Moreover, variables (𝑥) 

were normalized for more efficient optimization purposes (Eq. 5.13).  Four variables were 

chosen namely, the initial and final salt concentrations, and the lower and upper cut points. 

The weights of the objective function were chosen to reflect a capture step to be optimized, 

hence removing most of the bulk impurities and preventing losing product material.  

For the global optimization, the differential_evolution algorithm from the scipy.optimize 

package was employed, using the Latin hypercube sampling to initialize the population and 

the maximum number of iterations was 10 with a population size of 23. For the local 

optimization the Nelder-Mead algorithm was used, with a maximum of 100 iterations. The 

relative and function tolerances for both global and local optimizations were set to 1e-2. The 

lower cut point ranges from 1 – 80% on the left of the peak maximum, and the upper cut point 
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from 20 – 99% on the right of the peak maximum. The initial salt concentration varies between 

1 – 150 mM, and the final salt concentration between 320 – 800 mM.  

5.3. Results & Discussion 

5.3.1. Linear gradient experiments 

5.3.1.1. Determining the retention volume  

LGE’s were conducted for two protein mixtures at four pH values (pH 3.5, 4.3, 5.0, and 7.0) 

and various gradient lengths (20, 30, 40, 60, and 80 CV), as described in the experimental 

section 5.2.1. The elution order of the proteins was identified by SEC-UPLC analysis for each 

pH, to determine single peak retention volumes. The results for the 20 CV LGE are shown in 

Figure 5.2. As expected, a downward trend for the retention is observed when increasing the 

pH. No correlation between isoelectric point (PI) and retention was observed. Although 

cytochrome C, lysozyme, RNase and chymotrypsinogen elute in the order of descending pI 

(9.60, 9.20, 8.29 and 8.13 respectively) at pH 3.5. No retention volume for albumin and 

conalbumin (pI of 5.49 and 6.62, respectively) was determined as these proteins did not elute 

during the salt gradient, showing greater affinity for the column, which is in accordance with 

[30]. 

 

Figure 5. 2. Peak retention volumes (mL, y-axis) given for each protein (x-axis) at each pH (bars). These 
retention volumes are from the 20 CV gradient length using a HiTrap SP FF column, 1 CV is equal to 
0.97 mL.  

5.3.1.2. Regression of adsorption isotherm parameters 

The corrected retention volumes, according to Eq. 5.7, were used to regress 𝐾𝑒𝑞 and 𝑣 using 

Eq. 5.8. The regression parameters for each protein at each pH are shown in Table 5.3. The 

regression plots of each protein at each pH are provided in Appendix 5.B, all fits achieved an 

R2 close to one and RMSE values varied between 0.002 and 0.11. 
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A B 

  
Figure 5. 3. Left: Trendlines between the (A) characteristic charge (y-axis) and (B) the equilibrium 
constant (y-axis) and the pH value (x-axis) for each protein.  

From Table 5.3 it can observed that the characteristic charge, 𝑣, varied between 1% and 6% 

of the regressed parameter value and the standard deviation values of the equilibrium 

constant, 𝐾𝑒𝑞 , varied between 7% and 25%. Figure 5.3A shows that the characteristic charge 

decreases with increasing pH for all proteins with multiple data points. This is due to the 

protonation of amino acids, which results in a higher net protein charge at lower pH values. A 

higher net charge results in more available binding sites to interact with the resin. However, 

no general trend can be observed between the equilibrium constant and the pH (Figure 5.3B). 

The equilibrium constant of cytochrome C and lysozyme decreases rapidly from pH 3.5 to pH 

4.3. However, at pH 7.0 𝐾𝑒𝑞 increases again for RNase, chymotrypsinogen, lysozyme, and 

cytochome C (increase of 1.19, 0.26, 0.23, and 0.23 respectively). Similar findings were 

reported by Yang et al., and the regressed parameters are in the same order of magnitude as 

reported in literature [30, 41]. In general, a higher equilibrium constant indicates a stronger 

binding affinity towards the resin, and therefore eluting later during the salt gradient. The 

same trend can be observed for the majority of proteins, see Table 5.3 and Figure 5.3. Not all 

proteins follow this trend, such as chymotrypsinogen, cytochrome c, and lysozyme relative to 

RNase (pH 7.0), and albumin relative to chymotrypsinogen (pH 4.3). These proteins elute at a 

later moment while having a lower equilibrium constant than the proteins eluting at an earlier 

moment. Though, the characteristic charge value is higher for these proteins with a lower 

equilibrium constant. Eventually, it is the combination of these two parameter values that 

determines the protein’s elution moment. 
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5.3.1.3. Chromatographic mechanistic model validation  

The chromatographic MM was validated for the gradient length of 60 CV, for pH 5.0 and 7.0. 

The results of pH 5.0 are shown in Figure 5.4, and of pH 7.0 in Appendix 5.C. The calibration 

lines  convert the UV absorbance to concentration, these can be found in Appendix 5.D. As 

the experiments were performed in two mixtures of each three proteins, only parts of the 

peaks corresponding to a certain protein were used to avoid pollution of the peak by another 

component. In this way, the validation of each protein with the MM could be clearly evaluated.  

  

  

  
Figure 5. 4. Chromatographic mechanistic model validation for gradient length of 60 CV, equal to 58.2 
mL, at a pH of 5.0. The blue line indicates the MM predicted concentration of the protein, while the red 
dotted line indicates the experimental concentration. The black dotted line indicates the salt 
concentration. The initial concentrations are albumin: 0.24 mg/mL, chymotrypsinogen: 0.80 mg/mL, 
conalbumin: 0.31 mg/mL, cytochrome C: 0.41 mg/mL, lysozyme: 0.55 mg/mL, and RNase: 0.56 mg/mL. 

For all proteins at pH 5.0, the maximum retention peak difference is 1.04 CV and the average 

retention peak difference is 0.92 CV, which is 1.73% and 1.53% with respect to the gradient 
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length (60 CV). In all cases, except for RNase, the model predicts the start of the elution and 

the peak maximum earlier than the experimental results. Even though it was not be feasible 

to extract the entire experimental peak in all cases, it was observed that for conalbumin, 

cytochrome C, and lysozyme the experimental peak seems sharper than the modelled peak. 

To assess the concentration agreement between the modeled and experimental results, we 

compared the difference between the peak width at half of the peak maximum and the peak 

concentration. The maximum peak width difference is 1.14 CV, equal to 1.89% relative to the 

gradient length (60 CV). The average peak width difference is 0.81 CV, equal to 1.35% relative 

to the gradient length (60 CV). The average difference in the peak concentration is 0.04 

mg/mL, equal to 7.36% relative to the initial concentration. Overall, the MM, using the 

regressed adsorption isotherm parameters, can predict the experimental data sufficiently 

accurate with a maximum retention peak difference of 1.73%. 

5.3.2. QSPR 

QSPR models relate specific descriptors, calculated from the protein structure, to behavior 

(e.g., retention). Prediction of the MM parameters, needed for simulation, starting from the 

protein structure allows for a full in silico optimization framework. From the dataset composed 

of the six different proteins, conalbumin at pH 5.0 was removed to be used for model 

verification. This protein and pH were selected because retention times for this protein were 

not obtained for any other pH value. This means, that conalbumin at pH 5.0 would be truly 

unknown for the final predictive model. The remaining 18 datapoints were split into a train 

and test set, where the test set was comprised of albumin measured at pH 4.3 and 5.0. As 

retention volumes for albumin were only obtained for pH 4.3 and 5.0, these two data points 

will validate the models’ ability to predict the effect of differences in pH and to predict unseen 

proteins.  

5.3.2.1. Characteristic charge  

For the prediction of the characteristic charge, a MLR was trained. To avoid overfitting, a ratio 

of five observations to one feature should be maintained [58]. Meaning only a maximum of 

three features should be used in the model. To select the specific features, a redundancy filter, 

removing features with a Pearson correlation of >0.99 to other features, was applied. A second 

filter step was performed removing 40% of the features with lowest correlation to the 

characteristic charge. From the remaining features, sequential forward selection was 

performed to select the best features. A model with high accuracy (cross-validated R2 of 0.86 

and RMSE of 0.67) was obtained using only two features (Figure 5.5). As would be expected, 

the most important feature was related to the electrostatic potential (EP) of the protein 

surface. More specifically, the maximal found surface EP. The regression coefficient of this 
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feature was found to be 8 and permutation of the feature would result in a model not capable 

of predicting 𝜈 (Figure 5.5B). The second feature that was selected is the trimean of the 

negative hydrophobicity. This feature is less important as the regression coefficient is 1.5 and 

permutation results in a model with a cross-validated R2 of 0.8. The positive regression 

coefficient for the second feature suggests that increasing the hydrophilicity reduces the 

characteristic charge. There is the possibility however, that this feature captures the titratable 

amino acid content on the surface, as amino acids contributing to a negative hydrophobicity 

are predominantly titratable. At this point we have been unable to confirm this. 

 A B 

 

Feature Coefficient Permutation CV 
R2 

Intercept -1.26  

Maximum of 
surface EP 

8.09 -0.52 

Trimean of 
negative 
hydrophobicity 

1.54 0.80 

  

Figure 5. 5. Prediction of characteristic charge. A: Model validation of the regression model trained to 
predict 𝜈 where the circles represent the leave-one-out cross-validation and the triangles the test set. 
B: Overview of the selected features with the regression coefficient and the cross-validated R2 after 
feature permutation. 

Applying the same approach to build a QSPR model for 𝐾𝑒𝑞 did not yield sufficiently accurate 

models.   With the current dataset, the best performing models yielded only a R2 of 0.58 (data 

not shown). This was considered to be insufficient for robust predictions. While 𝜈 has direct 

physical implications, by representing the number of charge interactions between the resin 

and protein, 𝐾𝑒𝑞 is lacking this [42, 59]. The equilibrium constant represents all phenomena 

contributing to adsorption. As observed in Figure 5.3, 𝜈 shows a clear negative trend with 

increasing pH, this trend is lacking for 𝐾𝑒𝑞. It is thought that the current dataset-size is the 

main limitation as more features might be required to capture the complex relation. To 

overcome this challenge, increasing the dataset-size would result in a model trained over a 

greater range of property values, while also allowing an increase of the number of used 

features without loss of robustness [22, 30].  

5.3.2.2. Retention times 

Alternatively, the 𝐾𝑒𝑞 can be obtained from the regression as performed in 5.3.1.2 for 

experimental data. To achieve this, a MLR model for each LGE was trained (Figure 5.6). The 

best performing models were obtained using a feature - property correlation filter, removing 
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40% of the features with the lowest correlation, prior to the feature selection. The trained 

MLR models, for each LGE, all achieved a cross-validated R2 of at least 0.88. For all models, the 

most important feature relates to the EP. More specifically, the median shell positive EP was 

most important for the four lower gradient lengths (20, 30, 40, and 60 CV). This feature 

describes the positive EP on the exterior of the protein by projecting each charge onto a plane 

that represents the resin. For the calculation of the shell, a total of 120 planes surround the 

protein, in this way representing different binding orientations. Opposed to mapping the EP 

onto solvent accessible surface, this method considers the distance through the solvent, 

penalizing protein surface within pockets. The surface fraction of alanine was the second 

feature selected. Alanine is a small hydrophobic amino acid, therefore this feature implicitly 

describes the surface hydrophobicity. The positive regression coefficient fitted for this feature 

indicates that a greater alanine content, and thus higher surface hydrophobicity, results in a 

higher retention volume. This can be explained by the salting-out effect of the Na+ ions used 

during the gradient elution, resulting in hydrophobic interactions with the resin material [41]. 

 

A.1 A.2 

 

Feature Coefficient  Permutation 
CV R2 

Intercept 7.47  
Median of shell 
positive EP 

16.56 -0.17 

Alanine surface 
fraction 

2.68 0.83 

  

B.1 B.2 

 

Feature Coefficient  Permutation 
CV R2 

Intercept 6.50  
Median of shell 
positive EP 

24.18 -0.18 

Alanine surface 
fraction 

4.05 0.83 
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C.1 C.2 

 

Feature Coefficient  Permutation 
CV R2 

Intercept 6.39  
Median of shell 
positive EP 

31.79 -0.20 

Alanine surface 
fraction 

5.48 0.83 

  

D.1 D.2 

 

Feature Coefficient  Permutation 
CV R2 

Intercept 2.97  
Median of shell 
positive EP 

46.76 -0.21 

Alanine surface 
fraction 

8.33 0.83 

   

E.1 E.2 

 

Feature Coefficient  Permutation 
CV R2 

Intercept -1.74  
Mean of surface 
positive EP 

37.73 0.85 

Mean of shell 
positive EP 

26.28 0.89 

Serine surface 
fraction 

12.76 0.83 

  

Figure 5. 6. Prediction of protein retention at different salt gradient lengths. A to E show the validation 
and test of the prediction of the retention time while applying a salt gradient of 20, 30, 40, 60 and 80 
column volumes, respectively. One column volume equals 0.97 mL (Table 5.1).  The tables right of the 
plots show the feature coefficients and the effect of feature permutation on the cross-validated R2. 

 

For the 80 CV retention MLR model, the following features were selected: shell positive EP 

mean, solvent accessible surface positive EP mean, and the serine surface fraction. The 

feature combination yielded an accurate model with a cross-validated R2 of 0.91 and a RMSE 

of 3.9 (Figure 5.6E). For the prediction of the test set, it is observed that the point at the lower 

end of the retention data is under predicted, compared to being over predicted in all other 

models. While the EP remains to be most important in the model, different features were 

selected during the sequential feature selection. This is due to the fact that there is no exact 
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linear relationship between gradient length and retention, as can be most notably observed 

at pH 7.0 in Appendix 5.B. While the Mean and Median of the shell EP are similar, the slight 

differences in the features resulted in the selection of the mean by the SFS for this model. The 

mean of surface positive EP and mean of shell positive EP are both important features, with 

regression coefficients of 37.73 and 26.28 respectively. This importance is not reflected by the 

permutation models, as both features describe the positive EP, collinearity allows for 

compensation for a loss of one of the features. However, it is essential to maintain both 

features to accurately predict  the test set, as removing one of them results in less accurate 

retention estimates (data not shown). Surprisingly, the surface area fraction of serine has a 

positive regression coefficient, like the alanine surface fraction in the other four models. In 

contrast to alanine, serine is a hydrophilic residue. However, the positive regression coefficient 

indicates increasing retention with higher serine content on the surface, which contradicts the 

hypothesis for alanine selection for the previous four models. The reason behind the selection 

of serine in this model is currently unknown. Yet all models show good accuracy during both 

cross-validation and model testing, providing high confidence in model robustness. 

5.3.2.3. Property prediction of conalbumin at pH 5 

To demonstrate the true predictive capabilities of the trained QSPR models for the prediction 

of retention times and isotherm parameters, conalbumin was completely removed from the 

dataset prior to the train test splitting. This allowed to minimize the bias applied on the model 

selection. For the prediction of the retention times, the error of prediction increased with 

increasing gradient lengths (Table 5.4). The range of observed retention volumes rises along 

with the gradient lengths, likewise, the 95% confidence interval increases. Nevertheless, the 

effect of increasing the gradient length was captured correctly, having a maximal error of 

about 2 mL in retention volume, which falls within the 95% confidence interval. The 

characteristic charge was predicted with an error of 0.5, complying to the 95% confidence 

interval. Unfortunately, as no robust and accurate QSPR model for the 𝐾𝑒𝑞 could be trained 

with the current dataset, no direct prediction could be made. Therefore, we applied an 

alternative method, the predicted retention times and characteristic charge were used to 

regress the 𝐾𝑒𝑞using the regression formula, similar to the experimental data method as 

shown in 5.3.1.2. Regression of adsorption isotherm parameters. The 𝐾𝑒𝑞 obtained was 0.028 

±0.006 which is slightly lower than the 𝐾𝑒𝑞 of 0.078 obtained by regression of the 

experimental data. This is due to the higher predicted 𝜈 by the QSPR model. Validation of the 

predicted parameters showed an accurate prediction of the conalbumin elution using a 60 CV 

gradient length (Figure 5.7). Both peak maximum and peak shape are simulated accurately. 

The difference in the peak retention time is very small, 0.12 CV, which is 0.2% difference 

relative to the gradient length (60 CV). The peak concentration differs by 0.009 g/L, which is 
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2.85% relative to the initial concentration, and the difference in the peak width at half of the 

peak maximum is only 1.0% relative to the gradient length (60 CV). Interestingly, the predicted 

parameters seem to better describe the retention profile compared to the parameters 

obtained from the experimental LGE, which was an average peak retention difference of 1.53% 

and an average peak width difference of 1.35% with respect to the gradient length (60 CV).  
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Table 5. 4. Predicted properties for conalbumin at pH 5.0.  

Property  Experimental 
value 
(mL) 

Predicted value 
(mL) 

95% Confidence interval 

Retention 20 CV 11.66 11.89 2.56 
Retention 30 CV 12.89 12.92 3.69 
Retention 40 CV 14.02 13.76 4.80 
Retention 60 CV 16.20 15.21 7.02 
Retention 80 CV 18.19 20.23 8.98 
Characteristic charge 
(𝜈) 

2.36 3.05 1.40 

 

 

 

Figure 5. 7. Chromatographic mechanistic model validation of conalbumin for gradient length of 60 CV, 
equal to 58.2 mL, at a pH of 5.0 using the predicted isotherm parameters. Blue line indicates the MM 
predicted concentration of the protein, while the red dotted line indicates the experimental 
concentration. The black dotted line indicates the salt concentration. 

 

5.3.3. Comparing optimization results between experimentally and QSPR-based 

methods 

For the test protein, conalbumin at pH 5.0, both adsorption isotherm parameters, 𝐾𝑒𝑞 and 𝑣, 

were determined via two methods. The first method regressed the adsorption isotherm 

parameters from the LGE data directly, hence LGE are needed to perform this method. While 

the second method involved the QSPR approach, which, after being properly trained, requires 

the protein-structure to determine the 𝑣 and the retention volumes. These two QSPR models 

were then used to regress the 𝐾𝑒𝑞 using the regression formula (Eq. 5.8).  

The capture step was optimized to separate conalbumin from the other proteins, prioritizing 

yield over purity, utilizing the adsorption isotherm parameters determined from both 
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methods. This optimization aimed to assess the agreement between the optimized capture 

step and the parameters obtained from both methods. The resulting capture steps for both 

methods are depicted in Figure 5.8. The optimized variables (e.g., lower and upper cut points 

and the initial and final salt concentration) show comparability. The differences in both cut 

points are within 3.3%, and the deviation for both initial and final salt concentration is around 

10 mM, approximately 3% relative to the final salt concentration (330 mM). The obtained 

purity only differs 0.3% and the yield 1.2% between both methods. These results demonstrate 

that, in this case study, it was viable to optimize the CEX capture step based solely on 

knowledge of the protein structure.  

 

Experimental 
Purity = 74.6% 

Yield = 96.3% 

QSPR-based 
Purity = 74.3% 

Yield = 97.5% 

  
Figure 5. 8. Left: experimental-based method, the adsorption isotherm parameters were regressed 
directly from the LGE. 𝐾𝑒𝑞 0.071 and 𝑣 = 2.37, lower and upper cut point are 7.7% and 91.2% 

respectively. The initial and final salt concentration are 24.5 mM and 320.6 mM respectively. Right: 
QSPR-based method, the retention volumes and 𝑣 are obtained from QSPR models, followed by using 
these QSPR models to regress the 𝐾𝑒𝑞 parameter. 𝐾𝑒𝑞= 0.028 and 𝑣 = 3.05, lower and upper cut points 

are 4.4% and 91.7% respectively. The initial and final salt concentration are 14.8 mM and 330.4 mM 
respectively. 

 

In the next part, we assessed the effect of the adsorption isotherm parameter uncertainties 

on the optimization outcome. We aimed to determine if variations within the standard 

deviation of the parameters would result in different optimal values. For both methods, 

numerous sample points were generated for each isotherm parameter, covering a range 

within their respective standard deviation. Subsequently, these sample points were used in 

the optimization case study. First, the consistency of the optimization case study was 

evaluated by running the same optimization five times, these results for both methods can be 

found in Appendix 5.E. This consistency evaluation aimed to ensure there were no major 

deviations in results within the same optimization using identical parameters. Additionally, 
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the minor deviations could be attributed to the optimization process itself. The optimized 

results for various combinations of 𝐾𝑒𝑞 and 𝑣, ranging within their respective standard 

deviation, are shown in Figure 5.9 for both methods. This includes the optimized variables, 

such as the lower and upper cut points and the initial and final salt concentrations, as well as 

the purity, and the yield.  

In the experimental-based method, the standard deviations for both 𝐾𝑒𝑞 (0.071±0.012) and 𝑣 

(2.37±0.12) are relatively small, resulting in minimal variance in the optimized variables 

(Figure 5.9, A.1-F.1 and A.2-F.2, for variations in 𝐾𝑒𝑞 and 𝜈 respectively). The lower and upper 

cut points have a maximum difference of 7% (Figure 5.9A,B). The initial salt concentration 

varies between 15 and 40 mM (Figure 5.9C.1,2), and the final salt concentration is found 

between 320 and 327 mM (Figure 5.9D.1,2). These results suggest that despite variations in 

the isotherm parameters, a consistent optimum is identified, and the optimized variables 

exhibit only minor variations. The impact on the yield is minimal, with only a 2% variation 

(Figure 5.9F.1,2).  On the contrary, the effect on purity is more pronounced, fluctuating 

between 70% and 81%. The decrease in purity is primarily attributed to an increase in the 𝐾𝑒𝑞 

(Figure 5.9E.1), which is due to the greater relative standard deviation compared to 𝜈.   

For the QSPR-based method, the standard deviation of 𝐾𝑒𝑞 is small (0.028 ±0.006). The 

randomly spread data indicates that there is no clear correlation between 𝐾𝑒𝑞 and the 

optimized variables (Figure 5.9A.3-F.3). However, the standard deviation of 𝑣 is significantly 

larger (3.05 ±1.4), this standard deviation was defined by the 95% confidence interval 

calculated by Eq. 5.9. The large variation in 𝑣 resulted in two identified optima, which is clearly 

observed in the shift of the final salt concentration (Figure 5.6D.4). The first solution finds an 

optimal final salt concentration between 320 – 400 mM. The shift to the second optimal 

solution occurs when 𝑣 is greater than 3.6, finding the final salt concentration at around 800 

mM. Remarkably, both optimal final salt concentrations are close to the set boundaries. As 

the characteristic charge increases, the component is expected to elute at a higher salt 

concentration and thus at a later moment during the gradient. This results in a greater overlap 

between conalbumin and the other impurities. Such a shift was not observed for the initial 

salt concentration, where most optimal conditions were found between 10 and 30 mM (Figure 

5.9C.4). The effect of 𝑣 is also reflected in the purity and the yield (Figure 5.9E.4 and 5.9F.4 

respectively). Until 𝑣 is 2.2, the purity is around 75% and the yield almost 100%, while above 

this value of 𝑣, the purity increases rapidly and the yield drops to about 95%. From this point, 

increasing 𝑣 results in a decreasing purity and increasing yield. However, the range of the 

purity is broader, 50 – 85% than that of the yield, which only fluctuates between 95% and 

99%. This broader range in the purity is probably due to a combination of the shift in retention 
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time resulting from variation of 𝜈, and the optimization function Eq. 5.11. In the function, the 

yield is prioritized, representing a capture step optimization. Therefore, during challenging 

separation processes, the compromise on the yield is always less compared to purity. Despite 

the greater uncertainty in the determined 𝑣 in the QSPR-method, only two optima were 

identified, and one of them corresponds to the optimum found in the experimental-based 

method. 
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Figure 5. 9. Joint plots of scatter and hist plots between the adsorption isotherm parameters (e.g., the 
characteristic charge and the equilibrium constant) and the optimized variables (e.g., lower and upper 
cut point and the initial and final salt concentrations, and the purity and the yield). Left: experimental-
based method results. Right: QSPR-based method results. 
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Furthermore, this optimization approach is applicable for defining the operating window of 

certain variables. The method employed for varying the adsorption isotherm parameters can 

also be used to vary other variables and assess the optimized result. In this way, the initial 

process design space for CPP can be defined, which is part of the QbD concept [60]. The 

mechanistic modeling outcomes provide knowledge on the process, therefore the number of 

wet-lab experiments to define the real process design space can be reduced in comparison to 

performing a wet-lab DoE from scratch. For the QSPR-based method, no wet-lab experiments 

are needed to determine the adsorption isotherm parameters and therefore the total number 

of experiments are even more reduced compared to the experimental-based method. For a 

new protein, only the protein-structure is needed to perform this optimization and make an 

estimation of the operating window for each optimizing variable. To illustrate, using the results 

from the QSPR-based method in this study, we can already narrow down the number of wet-

lab DoE required to define the process design space. The final salt concentration only has to 

be evaluated around two main values (e.g., around 320 mM and 800 mM, see Figure 5.9D.4), 

while only one point of the initial salt concentration has to be assessed (e.g., 20 mM). 

Ultimately, the QSPR-based method offers an added advantage by allowing the incorporation 

of additional data over time. This not only enhances the model’s accuracy, but also enables 

the application to other process designs, provided that the same conditions are used. 

5.4. Conclusion 

In this work, we demonstrated a holistic modeling approach, where we combined QSPR and 

chromatographic MM to optimize a CEX capture step. For an unseen protein, only the protein 

structure was needed to determine the adsorption isotherm parameters and predict the 

chromatographic retention behavior with MM. We assessed that the uncertainties in the 

determined adsorption isotherm parameters have a minimal and nearly equal impact for both 

the experimental-based and QSPR-based method.  

For the experimental-based method, we successfully regressed the adsorption isotherm 

parameters with an R2 minimum of 0.95. The standard deviation for the characteristic charge 

is within 1 – 6% of the corresponding regressed parameter value, and for the equilibrium 

constant, it ranges between 7 – 25% of the regressed parameter value. Moreover, the MM 

validation showed to be accurate with an average retention peak difference of 1.53% with 

respect to the gradient length.  

We successfully trained MLR-QSPR models with a minimum R2 of 0.88, even with a limited 

dataset composed of only five different proteins measured at four pH values. The MLR-QSPR 

models for predicting the characteristic charge and the retention times can be used to regress 

the equilibrium constant using the regression formula. A good agreement was obtained for 
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the MM validation for an unseen protein, conalbumin, showing only 0.2% retention peak 

difference with respect to the gradient length.  

Both the experimental-based and the QSPR-based methods demonstrated a consistent 

optimized CEX capture step. The same optimum was found by both methods and an additional 

optimum was identified using the QSPR-based method, due to the larger standard deviation 

in 𝑣 (3.05 ±1.4) compared to the experimentally predicted 𝑣 (2.37 ±0.12). Using in silico 

optimization results as a guide can substantially reduce experimental effort, requiring 

experimental validation only for promising conditions. Moreover, increasing dataset sizes 

enhances the QSPR model accuracy, diminishing uncertainty in adsorption isotherm 

parameters and therefore minimizing the variance in the identified operating window.  

This work highlights the value and applicability of multiscale modeling, capable to optimize a 

CEX capture step with only knowing the protein structure. Integrating QSPR, chromatographic 

MM, and optimization tools creates a versatile workflow relevant to industrial case studies. 

This approach enables determining initial optimal process conditions without preliminary 

experiments, which is especially beneficial for early phase process development when limited 

material and resources are available. Future applications involve extending this strategy to 

complex protein mixtures and broader type of chromatographic resins, offering a cost-

effective and time-saving alternative that enhances overall process understanding and 

efficiency.  
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6.1. Conclusions  

This work presents original research in the field of modeling and optimization of 

biopharmaceutical downstream processes. The developed chromatographic mechanistic 

modeling software enables to simulate different modes of chromatography and is flexible in 

adapting the mass transfer correlations, hydrodynamics and adsorptions isotherms. The 

integration of several mechanistic models allows to optimize the entire downstream process 

in silico, including chromatography and ultrafiltration / diafiltration steps. Moreover, we 

investigated the use of different modeling techniques, ANNs and mechanistic models, and 

optimization strategies to determine the most effective approach for complex flowsheet 

optimizations. Lastly, to reduce experimental efforts for determining adsorption isotherm 

parameters, QSPR modeling is applied in combination with mechanistic modeling to optimize 

a capture step.  The general conclusions of the research topics in this work are summarized in 

the following.  

In Chapter 2, a comprehensive overview is given of the present and future downstream 

process development strategies and tools utilized in the (bio)pharmaceutical industry and 

academia. The following conclusions are drawn:  

• The vaccine purification process development is highly experimentally driven. This 

highlighted the need for modernizing strategies in (protein subunit) vaccine process 

development, such as establishing a standardized approach or platform process, and 

enhancing the understanding of host cell impurities.  

• Modeling techniques can play a crucial role in reducing experimental effort and 

enhancing process understanding. The combination of diverse modeling techniques 

will advance the implementation of model-based process development approaches 

by mitigating the limitations associated with each individual modeling technique.  

• High Throughput Process Development is crucial for reducing the consumption of 

resource materials while allowing for extensive exploration of a large design space, 

particularly in the early stages of process development when product materials are 

limited.  

The assessment in Chapter 3 focused on employing ANNs instead of chromatographic 

mechanistic modeling during flowsheet optimization. This approach aimed to achieve greater 

time efficiency while still identifying the most optimal sequences. In summary, the following 

insights are gained:  
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• For a case study considering a maximum of three different chromatography 

operations in a sequence, it was demonstrated that using ANNs decreased the overall 

optimization time by 50%.  

• Based on the outcome of the global optimization, the most promising flowsheets can 

be pre-selected. This substantially reduces the number of flowsheets to be optimized 

during local optimization, resulting in a significant reduction in overall optimization 

time.  

• ANNs prove to be effective for global optimization, enabling decision-making on type 

and number of unit operations. 

In Chapter 4, we compared three optimization strategies during flowsheet optimization in 

terms of outcome, complexity, and time-efficiency. Each strategy (e.g., simultaneous, top-to-

bottom, and superstructure decomposition) is solved using both mechanistic models and 

ANNs to compare the influence of each modeling technique. This analysis leads to the 

following conclusions: 

• The overall weighted performance values, predicted within a similar range for both 

modeling techniques (e.g., mechanistic models and ANNs), confirm the accuracy of 

ANNs for complex flowsheet optimization, as discussed in Chapter 3.   

• All optimization strategies identified similar optimal flowsheets, each consisting of 

three steps and an orthogonal structure. In these optimized structures, salt conditions 

are adjusted to prioritize a dilution step over a diafiltration mode.  

• The superstructure decomposition method with MM is the most time-efficient. It 

enables to complete the optimization in less than 40 computational hours when 

utilizing multiple cores, meaning that a computer, containing multiple processing 

cores, can perform multiple simulations simultaneously.  

A multiscale modeling approach is presented in Chapter 5, where we combined QSPR and 

chromatographic mechanistic modeling techniques. This study yields the following key 

takeaways:  

• Through QSPR modeling and the regression formula, we obtained the adsorption 

isotherm parameters by only knowing the protein structure. With these in silico 

predicted isotherm parameters, the chromatographic retention behavior can be 

predicted using mechanistic modeling. The results demonstrate a strong agreement 

with the experimental data, revealing only 0.2% difference in retention peak values 

relative to the gradient length.  
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• An assessment was conducted to evaluate how the variability in adsorption isotherm 

parameters, determined through both experimental-based and QSPR-based methods, 

affects the optimization outcome. Both the experimental-based and the QSPR-based 

methods revealed a consistently optimized CEX capture step. The same optimum is 

found by both methods, the QSPR-based method identified an additional optimum 

due to a higher standard deviation in one of the isotherm parameters. 

• This multiscale modeling approach highlights the substantial reduction in 

experimental efforts achieved through in silico optimization. This enables the 

determination of initial optimal process conditions without the need for preliminary 

experiments.   

Due to an increasing population, intensified international traveling, and the resistance against 

antibiotics, emerging infectious diseases can even spread faster and become more harmful. 

In response, it is crucial to modernize the vaccine process development. The goal is to design 

a process within a short time frame that is efficient, robust and scalable for large-scale vaccine 

production. This thesis emphasizes the added value of modeling techniques in process 

development. As model-based approaches reduce experimental effort, enhance process 

understanding, and enable to screen the overall design space. This work is especially valuable 

for early phase process development when limited material and resource are available.  

 

6.2. Outlook 

For future prospect, several areas related to the modeling and optimization of 

biopharmaceutical downstream processes remain interesting for further exploration and 

advancement.  

Coupling the upstream and downstream processes in silico, using detailed mechanistic 

models, would enhance our understanding of the entire integrated process and enable 

optimization of the overall process. Moreover, this is interesting for advanced control 

strategies throughout the entire process, particularly in the context of continuous 

biomanufacturing as done by Gomis-Fons et al. for a mAb production process [1]. Recently, 

Wahlgreen et al. presented a numerical case study for the production of a mAb, where the 

fed batch reactor was connected to a chromatography capture step [2]. Although, this 

numerical connection of unit operations gives additional insight information, experimental 

validation is still lacking. Simultaneously optimizing the complete process in silico, followed by 

experimentally validating the optimized outcome, would be very valuable. This approach 

could substantiate the applicability and, ideally, the precision of modeling applied in process 
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development. Simultaneous optimization of upstream and downstream processes could 

balance the upstream-yield with the impurities produced that are consequently hard to 

remove downstream.  

Furthermore, it would be interesting to integrate the detailed mechanistic models with a 

process modeling software, such as gPROMS [3], AspenTech [4] or SuperPro Designer [5]. 

Particularly gPROMS and AspenTech software are more based on chemical processes and 

therefore lacking specifications or advanced options for biopharmaceutical processes. The 

advantage of process modeling software is the ability to model and directly visualize the 

complete process. It allows to easily adapt the connections between unit operations and 

provides flexibility to choose from various options. Although SuperPro Designer has more 

possibilities for biopharmaceutical processes compared to the other software, the integrated 

models are limited and primarily based on simplified mass or energy balances [6]. Integrating 

the detailed mechanistic models with available process modeling software would get the best 

out of both applications. As it reduces the complexity to model the entire process, while the 

details of the models are retained. A bottleneck is that these process modeling software are 

only commercially available. A follow-up step would be to make an (flowsheet) optimization 

code around the process modeling software. Another option would be to integrate the 

process modeling software with superstructure generation software such as super-O [7], P-

graph [8], or Pyosyn [9]. Adding an additional optimization layer poses a greater challenge and 

potentially slows down the optimization process when using different software. However, 

transforming this software into a more user-friendly software or combined with other 

available user-friendly software will increase its usability.  

For this work, we used a pre-defined generated superstructure, for which all possibilities were 

evaluated as our case studies did not involve that many different unit operations. For even 

more complex flowsheets involving additional constraints, such as considering seven different 

types of unit operations with specific restrictions on their positions in the sequence, creating 

a pre-defined generated superstructure can omit certain process options. For these reasons, 

exploring superstructure-free approaches, such as reinforcement learning, would be 

interesting [10, 11]. This method begins with one unit operation and then employs a random 

search for the next one. It makes decisions based on the outcome of each unit operation, 

determining whether to proceed or discontinue with a specific sequence. Ultimately, the goal 

is to find the optimal process through this iterative approach [12].   

The decomposition of the superstructure allows to apply different objectives to parts of the 

downstream process and would be interesting to study (Chapter 3). For example, applying a 

higher weight on the yield for the capture step, while making the purity more important 
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during the polishing steps. Moreover, the way of formulating the multi-objective optimization 

could be further explored. In this work, we assumed the weights in the multi-objective in 

advance. However, to find a solution that optimally balances the conflicting objectives, a 

multiple-criteria decision making method can be employed. This approach involves 

determining the optimal weights in the multi-objective function through the use of an 

algorithm [13, 14]. In addition, the type of optimization solvers to perform the optimization 

can also be studied into more depth. This could potentially make the optimization more time-

efficient.  

Combining different modeling techniques can bring great benefits, such as the multiscale 

modeling approach as presented in Chapter 5. As a follow-up, this multiscale modeling 

approach can be applied to a complex mixture considering numerous proteins using mass 

spectrometry as analytical technique, to interrogate adsorption and retention behavior. This 

database can be used to train, validate, and test QSPR models. Alternatives for QSPR models 

can also be investigated, such as Graph Neural Networks, which belongs to the class of ANNs 

[15]. Moreover, in this work a Deep Neural Network, which is an ANN with multiple hidden 

layers, was used as surrogate model for the mechanistic model. However, it would be 

advantageous if the same or improved accuracy can be achieved requiring less data, therefore, 

it would be interesting to explore various ANN classes. Combinatorial modeling approaches 

that may be interesting to further study depend on the mechanistic model’s applications. For 

example, when creating a digital twin, exploring hybrid modeling is of interest to improve the 

accuracy [16]. While physics informed neural networks could be relevant if parameters are 

unknown or to develop a reduced order model [17]. 

Furthermore, as modeling applications and big data are emerging rapidly, the efficient use and 

sustainability of software, as well as the efficient processing of big data, have become crucial. 

Therefore, standardizing code-writing would be beneficial, especially when collaborating 

within a project or group. Platforms like GitLab or GitHub are convenient tools for sharing and 

collaborating on codes. This also applies for processing big data, a structured code that is 

easily accessible via a platform is beneficial for everyone involved. This demands for a 

structural organization of software/codes and involvement of software engineers. 
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Appendix  - Chapter 3 

Appendix 3.A 

Table 3.A.1. Overview of required Python libraries 

Library Version 

python  3.8.5 
scipy 1.7.3 
numpy 1.19.2 
spyder  4.1.5 
pandas 1.2.3 

matplotlib 3.3.4 
openpyxl 3.0.7 
notebook 6.2.0 
Ipywidgets 7.6.3 
Tensorflow 2.10.1 
Keras-
appplications 

2.10.0 

Dataclasses 0.8 

 

Appendix 3.B 

We used the linear multicomponent mixed-mode isotherm, as formulated by by Nfor et al. 

[1], to calculate the equilibrium concentration in the liquid phase: 

𝑞𝑖

𝐶𝑖
=  𝐾𝑒𝑞,𝑖

(𝑣𝑖+𝑛𝑖)(𝑧𝑠𝑐𝑠)−𝑣𝑖𝑐𝑣
−𝑛𝑖𝛾𝑖  

Eq. 3.A.1 

where subscripts 𝑖 denotes the protein component. 𝑛𝑖  is the hydrophobic interaction 

stoichiometric coefficient and 𝑣𝑖  is the stoichiometric coefficient of salt counter ions, 

calculated by dividing the effective binding charge of the protein (𝑧𝑝) with the charge on the 

salt counter ion (𝑧𝑠), 𝑣𝑖 = 𝑧𝑝 𝑧𝑠⁄ .   is the ligand density of the mixed mode resins, 𝑐𝑠 is the 

salt concentration in the liquid phase, 𝑐𝑣 is the molarity of the solution in the pore volume, 

and 𝛾 is the activity coefficient of the protein solution. Often, either one of the interaction 

modes is dominant and therefore the equation can be simplified by setting 𝑛 = 0, in case of 

ion-exchange chromatography and 𝑣 = 0 for HIC chromatography. Details of the isotherm and 

resin parameters for each chromatography mode and all proteins are given in Table 6. The bed 

porosity was assumed to be 0.27 and the total porosity 0.95. 

Table 3.B.1. Details of the isotherm and resin parameters used for the chromatography model [2], 
protein 1 = mAb, protein 2 = Moesin, protein 3 = Chitotrisidase, protein 4 = Legumain, and protein 5 = 
Thioredoxin reductase. 

 CEX AEX HIC 

Resin Mono S Mono Q Source PHE 
Particle diameter (µm) 30 30 15 
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S 

Pore diameter (nm) 40 40 83.4 
Ligand density () 135 320 40 
Column volume  1 mL 1 mL 1 mL 
Flowrate  150 cm/h 150 cm/h 150 cm/h 
Keq Protein 1 8.5 0.5 9.3 
 Protein 2 500.8 0.5 1.6 
 Protein 3 604.2 0.9 10.4 
 Protein 4 0.0 3.9 9.3 
 Protein 5 8.5 3.9 1.6 
𝒗 (𝒐𝒓 𝒏)  Protein 1 2.6 4.0 9.3 
 Protein 2 2.5 4.0 1.6 
 Protein 3 2.6 1.7 10.4 
 Protein 4 0.0 2.9 9.3 
 Protein 5 2.6 2.9 1.6 
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throughput isotherm determination and thermodynamic modeling of protein adsorption on mixed 

mode adsorbents, Journal of Chromatography A 1217(44) (2010) 6829-6850. 

https://doi.org/https://10.1016/j.chroma.2010.07.069. 

[2] B.K. Nfor, T. Ahamed, M.W.H. Pinkse, L.A.M. van der Wielen, P.D.E.M. Verhaert, G.W.K. van Dedem, 

M.H.M. Eppink, E.J.A.X. van de Sandt, M. Ottens, Multi-dimensional fractionation and characterization 

of crude protein mixtures: Toward establishment of a database of protein purification process 

development parameters, Biotechnology and Bioengineering 109(12) (2012) 3070-3083. 

https://doi.org/https://doi.org/10.1002/bit.24576 
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Appendix 3.C 

Hyperparameters evaluations (e.g., batch size, and the number of epochs, hidden layers, and 

neurons) for each chromatography mode (e.g., CEX, AEX, and HIC). 

CEX 

Protein 1 Protein 4 Protein 5 
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Figure 3.C.1. Boxplots of CEX for proteins 1, 4, and 5, showing the accuracy (R2 and RMSE) for several 
hyperparameters (e.g., batch size, and the number of epochs, hidden layers, and neurons). Proteins 2 
and 3 were not considered for the hyperparameter evaluation as these proteins were never present in 
the product and therefore showed a very low R2.  
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Appendix 3.D 

CEX 

        Protein 2     Protein 3   

 
  

Figure 3.D.1. Residual figures of the CEX mode for proteins 2 and 3, and the salt concentration and volume. 

AEX 

Protein 1 Protein 2 Protein 3 Protein 4 Protein 5 

  

     

Figure 3.D.2. AEX mode, upper figure: Prediction capabilities for the normalized ANN outcome 
of mass against the outcome of MM. Lower figure: Residuals showing the difference between 
predicted mass values by the ANN and the MM. Both plots show unseen test-data (1493 
points) for the proteins 1 to 5. 
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Lower cut point Upper cut point Volume Salt concentration 

    

    

Figure 3.D.3. AEX mode, upper figure: Prediction capabilities for the normalized ANN outcome 
against the outcome of MM for the product pool volume and salt concentration, and both cut points. 
Lower figure: Residuals showing the difference between predicted values by the ANN and the MM. 
Both plots show unseen test-data (1493 points) for the product pool volume and salt concentration, 
and both cut points. 
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HIC 

Protein 1 Protein 2 Protein 4 Protein 5 

  

 
 

 
 

 
 

 
 

Figure 3.D.4. HIC mode, upper figure: Prediction capabilities for the normalized ANN outcome 
of mass against the outcome of MM. Lower figure: Residuals showing the difference between 
predicted mass values by the ANN and the MM. Both plots show unseen test-data (1462 
points) for the proteins 1, 2, 4, and 5 for the HIC mode. 
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Figure 3.D.5. HIC mode, upper figure: Prediction capabilities for the normalized ANN outcome 
against the outcome of MM for the product pool volume and salt concentration, and both cut points. 
Lower figure: Residuals showing the difference between predicted values by the ANN and the MM. 
Both plots show unseen test-data (1493 points) for the product pool volume and salt concentration, 
and both cut points. 

 

Appendix 3.E 

Function evaluations to assess if the plateau has been reached. Figure 3.E.1. shows the 

function evaluations for the sequence of AEX – HIC for both the MM and the NN. Figure 3.E.2. 

shows the function evaluations of the ANN for the sequence of three unit operations.  

MM    ANN 

  
Figure 3.E.1. Function evaluations of the global optimization against the number of iterations for the 
MM (left) and ANN (right).  
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Figure 3.E.2. ANN function evaluations for the sequence of AEX – CEX – HIC, left showing the y-scale 
between 0 and 20 and right between 0 and 100. 
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Appendix  - Chapter 4 

Appendix 4.A 

Details of the isotherm and resin parameters for each chromatography mode and all proteins 

are given in Table 4.A.1. The bed porosity was assumed to be 0.27 and the total porosity 0.95. 

Table 4.A.1. Details of the isotherm and resin parameters used for the chromatography model [1]. 

 CEX AEX HIC 

Resin Mono S Mono Q Source PHE 
Particle diameter (µm) 30 30 15 
Pore diameter (nm) 40 40 83.4 
Ligand density () 135 320 40 

 

HIC column gradient experiments  

Additional column gradient experiments (5, 10, and 15 CV) were performed on a HIC resin 

(PhenylFF) at pH = 7.0. The initial BSA concentration was 10 mg/mL using an injection loop of 

500 µL and a flowrate of 1 mL/min. The initial buffer was a 3 M NaCl with 20 mM sodium 

phosphate buffer going to the final buffer of MilliQ. The experimental results are shown in 

Figure 4.A.1. BSA eluted in two peaks, one during the gradient and one after the gradient. The 

peak during the gradient was more critical as it is closer to the elution of the product of 

interest. As protein 3 (Chitotriosidase) also elutes at the end of the gradient, for simplicity, we 

assumed the same isotherm parameters for BSA.  

 

Figure 4.A.1.  Experimental chromatograms of BSA on PhenylFF resin (HIC) eluting during the 
gradient lengths of 5 CV (blue), 10 CV (green), and 15 CV (orange). The dashed lines indicate the 
buffer and the solid lines the BSA solution in mAU. 

[1] B.K. Nfor, T. Ahamed, M.W.H. Pinkse, L.A.M. van der Wielen, P.D.E.M. Verhaert, G.W.K. van 

Dedem, M.H.M. Eppink, E.J.A.X. van de Sandt, M. Ottens, Multi-dimensional fractionation and 

characterization of crude protein mixtures: Toward establishment of a database of protein 

purification process development parameters, Biotechnology and Bioengineering 109(12) (2012) 

3070-3083. https://doi.org/https://doi.org/10.1002/bit.24576. 
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Appendix 4.B 

The transmembrane pressure is defined as 

∆𝑃𝑇𝑀 =  
𝑃𝑓𝑒𝑒𝑑 +  𝑃𝑟𝑒𝑡𝑒𝑛𝑡𝑎𝑡𝑒

2
− 𝑃𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒  . 

Eq. 4.B.1 

The osmotic pressure, 𝜋, in non-ideal solution is as follows: 

𝜋 =  𝑅 ∗ 𝑇 ∗ 𝐶 𝑖,𝑤 ∗ (
1

𝑀
+ 𝐵22 ∗ 𝐶𝑖,𝑤 … ),   

Eq. 4.B.2 

where 𝑅 is the gas constant, 𝑇 the temperature, 𝐶𝑖,𝑤 is the solute wall concentration, and 𝑀 

is the molecular weight of the solute. The second virial coefficient, 𝐵22, is generally sufficient 

to describe the osmotic pressure for low protein concentrations present in biopharmaceutical 

processes [3]. 𝐵22 values (𝑚𝐿 ∗ 𝑚𝑜𝑙/𝑔2) were fitted to a second order polynomial function 

as function of the pH and salt concentration as 

𝐵22 =  𝑎1 + 𝑎2 ∗ 𝑝𝐻 + 𝑎3 ∗ 𝐶𝑠 + 𝑎4 ∗ 𝑝𝐻 ∗ 𝐶𝑠 + 𝑎5 ∗ 𝑝𝐻2 + 𝑎6 ∗ 𝐶𝑠
2. Eq. 4.B.3 

Data from Ma et al. [4] for Bovine Serum Albumin (BSA) under various pH and NaCl strengths 

was used to fit the constants; 𝑎1 = 6.801𝑒−4,  𝑎2 = −2.215𝑒−4,  𝑎3 = −9.696𝑒−4,  𝑎4 =

1.075𝑒−4,  𝑎5 = 1.913𝑒−4,  𝑎6 = 1.804𝑒−3.  

The Sherwood number is used to determine the initial mass transfer coefficient, 𝑘0, as 

𝑆ℎ =
𝑘0 ∗ 𝑑ℎ

𝐷
= 𝑎𝑅𝑒𝑏𝑆𝑐𝑐 (

𝑑ℎ

𝑙
)

𝑑

, 
Eq. 4.B.4 

where the Reynolds number is defined as 𝑅𝑒 = 𝜌𝑣𝑑ℎ/𝑢, the Schmidt number as 𝑆𝑐 = 𝜇/𝜌𝐷, 

in which 𝜌 denotes the density, 𝑣 is the cross-membrane velocity, and 𝑑ℎ is the hydraulic 

diameter. The diffusion coefficient, 𝐷, is determined by the Young correlation for global 

proteins [5]. The cross-membrane velocity, depending on the specific geometry of the system, 

is defined as 𝑣 = 𝑄/(𝑎𝑐𝜀𝑠), where 𝑎𝑐 is the ratio of the feed channel area to membrane area 

and 𝜀𝑠 is the porosity of the spacer. In this work Screen type C was used for which (𝜀𝑠  = 0.63, 

𝑎𝑐 = 0.0018)[6]. The constants, 𝑎, 𝑏, 𝑐, and 𝑑, of the Sherwood number relation (Eq. B.4) are 

empirical and determined based on the system configuration, in this work a rectangular 

channel with spacer (𝑎 = 0.664, 𝑏 = 1/2, 𝑐 = 1 3⁄ , and 𝑑 = 1/2) [7]. The hydraulic 

diameter, 𝑑ℎ, is also system geometry dependent and defined as  

𝑑ℎ = 4ℎ 
𝜀𝑠

1 +  
2(1 − 𝜀𝑠)ℎ

𝑟

 , 
Eq. 4.B.5 

where ℎ is the half-height of the channel and 𝑟 is the fibre radius, for a Screen type C spacer 

the values are ℎ = 0.026 𝑐𝑚 and 𝑟 = 0.014 𝑐𝑚 [6].  
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The solution viscosity is calculated through the Mooney’s equation, which is often used for 

biophysical purposes, and given as follows [8, 9]: 

𝜇 =  𝜇0 𝑒
(

[𝜇] 𝐶𝑖

1− 
𝐶𝑖

𝐶𝑚𝑎𝑥

)

, 

Eq. 4.B.6 

where [𝜇] is the intrinsic viscosity at low volume fractions, estimated at 8·10-3 m3/kg, and 𝑐𝑚𝑎𝑥 

is the maximum protein concentration, assumed to be 600 kg/m3 [8]. A relation for the mass 

transfer coefficient as function of the protein concentration results from combining Eq. 18  

and Eq. B.6 as 

𝑘 = 𝑘0 𝑒

(−
1
6

  
[𝜇] 𝐶𝑝

1− 
𝐶𝑝

𝐶𝑚𝑎𝑥

)

. 

Eq. 4.B.7 

 

Filtration experiments 

The filtration experiment was performed as tangential flow filtration applying an ultrafiltration 

with variable volume diafiltration (UFVVD) mode [10]. An 88 cm2 Millipore Pellicon 3 Ultracel 

10 kDa membrane cassette was used, inside a membrane cassette holder (Merck Millipore). 

The schematic experimental set-up is shown in Figure 4.B.1. An Äkta Pure 25 system coupled 

with the Unicorn 7.0 software (Cytiva Life Sciences) was used to continuously monitor and 

collect data of the pH, conductivity, UV, and pressure before and after the membrane. The 

feed solution was pumped into the membrane unit, where the proteins were retained by the 

membrane and recycled back to the feed tank, while the water and salts could permeate. To 

perform the UF and or DF experiment, the diluent buffer was added to the feed tank using an 

additional HPLC pump (Shimadzu, UFLC/LC-20AD). Before each experiment, the retentate was 

recirculated for 15 minutes with a closed permeate stream to create a stable polarization layer. 

Scales were placed under the feed tank and permeate tank to confirm the mass balance of 

the volumes (Mettler Toledo). 
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Figure 4.B.1. Schematic representation of the experimental UF/DF set-up using the Äkta Pure 25 system 
with Unicorn 7.0 for measuring the pH, conductivity, UV, and pressure. The blue lines indicate the flow 
streams, while the dashed yellow lines are the data streams. 

The filtration model was validated for an UF/DF operation with a 0.3 mg/mL BSA solution 

(Sigma Aldrich) exchanging from sodium phosphate buffer (10 mM, pH = 7), containing 175 

mM NaCl to a 0 mM NaCl potassium phosphate buffer (10 mM, pH = 6.5). The flowrate was 

20 mL/min, as this was the maximum flowrate possible in an Äkta Pure 25 system. UV 

measurements were conducted at a wavelength of 280 nm. All buffer solutions were filtered 

with a MediaKap 0.2 µm pore-size hollow fibre media filter to remove undissolved salts and 

afterwards degassed using a Branson ultrasonic bath. 

Membrane resistance 

Through water flux experiments at a flowrate of 20 mL/min, the water permeate flux, 𝐽𝑤, was 

determined at 19.7∙ 10−6 m/s. Subsequently, the initial membrane resistance was calculated 

to be 7.6 ∙ 1012 𝑚−1  using the following formula:  

𝑅𝑚 =  
𝛥𝑃

𝜇𝑤∗𝐽𝑤
, Eq. 4.B.8 

where 𝜇𝑤 is the viscosity of water, and the applied transmembrane pressure, 𝛥𝑃, was 0.15 

MPa. 

 

[3] R. van Reis, E.M. Goodrich, C.L. Yson, L.N. Frautschy, R. Whiteley, A.L. Zydney, Constant Cwall 

ultrafiltration process control, J Membrane Sci 130(1) (1997) 123-140. 

https://doi.org/https://doi.org/10.1016/S0376-7388(97)00012-4. 

[4] Y. Ma, D.M. Acosta, J.R. Whitney, R. Podgornik, N.F. Steinmetz, R.H. French, V.A. Parsegian, 

Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic 

strength by composition-gradient multi-angle static light scattering, Journal of Biological Physics 41(1) 

(2015) 85-97. https://doi.org/10.1007/s10867-014-9367-7. 

[5] M.E. Young, P.A. Carroad, R.L. Bell, Estimation of diffusion coefficients of proteins, Biotechnology 

and Bioengineering 22(5) (1980) 947-955. https://doi.org/10.1002/bit.260220504. 
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[6] H. Lutz, 3 - Modules, in: H. Lutz (Ed.), Ultrafiltration for Bioprocessing, Woodhead Publishing, 

Oxford, 2015, pp. 31-43. https://doi.org/https://doi.org/10.1016/B978-1-907568-46-6.00003-3. 

[7] L.J. Zeman, A.L. Zydney, Microfiltration and Ultrafiltration: Principles and Applications, 1996. 

https://doi.org/https://doi.org/10.1201/9780203747223. 

[8] M. Zidar, P. Rozman, K. Belko-Parkel, M. Ravnik, Control of viscosity in biopharmaceutical protein 

formulations, Journal of Colloid and Interface Science 580 (2020) 308-317. 

https://doi.org/https://doi.org/10.1016/j.jcis.2020.06.105. 

[9] M. Mooney, The viscosity of a concentrated suspension of spherical particles, Journal of Colloid 

Science 6(2) (1951) 162-170. https://doi.org/https://doi.org/10.1016/0095-8522(51)90036-0. 

[10] G.A. Foley, Membrane Filtration: A Problem Solving Approach with MATLAB, 2013. 
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Appendix 4.C 

Optimized flowsheet results from the global optimization for each optimization strategy (e.g., 

simultaneous, top-to-bottom, decomposition) using MMs or ANNs are shown in Table 4.C.1. 

– 4.C.6. Each element in a flowsheet, second column in each table, is an integer number 

between 1 to 5, which in this study represents the considered unit operations; CEX, AEX, HIC, 

dilution, and filtration.  

Table 4.C.1. Global optimization results of the simultaneous strategy using MMs. Host cell proteins are 
indicated as HCP.  

Simultaneous Purity 
(%) 

Yield (%) HCP level 
(ng/mgprod

uct) 

HCP 
clearance 

(%) 

Product 
concentra
tion (g/L) 

Buffer 
consumpt

ion 
(L/gproduct) 

WOP 

0 [1] 34.54 92.96 1895250.0 64.76 10.18 1.28 65 

1 [1-4-2] 91.03 89.13 98598.90 98.24 2.85 5.65 91 

2 [1-4-2-4-3] 98.01 95.14 20316.00 99.61 11.33 10.92 95 

3 [1-4-2-5-3] 98.92 92.10 10967.00 99.80 8.81 9.02 95 

4 [1-4-3] 79.78 75.11 253482.00 96.19 8.88 5.81 81 

5 [1-4-3-4-2] 99.65 90.28 3523.37 99.94 3.82 8.70 95 

6 [1-4-3-5-2] 99.51 93.68 4945.04 99.91 3.36 11.43 96 

7 [1-5-2] 90.37 84.66 106550.00 98.20 7.48 3.14 90 

8 [1-5-2-4-3] 99.87 83.13 1326.59 99.98 7.72 7.17 93 

9 [1-5-2-5-3] 99.79 87.74 2140.07 99.96 6.52 11.01 94 

10 [1-5-3] 81.20 68.42 231556.00 96.83 8.59 4.55 80 

11 [1-5-3-4-2] 99.66 95.98 3366.35 99.94 8.71 8.59 97 

12 [1-5-3-5-2] 98.57 92.17 14477.10 99.73 4.72 8.47 95 

13 [2] 41.54 99.84 1407350.0 71.90 1.66 3.25 70 

14 [2-4-1] 91.64 85.45 91218.90 98.44 8.19 7.31 90 

15 [2-4-1-4-3] 99.44 85.44 5611.53 99.90 13.04 6.10 94 

16 [2-4-1-5-3] 98.30 95.55 17261.00 99.67 5.60 8.43 96 

17 [2-4-3] 62.20 100.00 600092.00 88.00 7.70 5.99 80 

18 [2-4-3-4-1] 99.86 85.73 1382.80 99.98 6.08 6.61 94 

19 [2-4-3-5-1] 99.71 79.26 2882.19 99.95 5.69 7.28 92 

20 [2-5-1] 91.10 81.89 97718.50 98.40 8.67 3.34 89 

21 [2-5-1-4-3] 98.62 80.29 14033.90 99.77 10.43 4.35 93 

22 [2-5-1-5-3] 99.66 91.74 3443.40 99.94 11.68 8.11 96 

23 [2-5-3] 62.02 100.00 600235.00 88.00 9.78 3.11 80 

24 [2-5-3-4-1] 99.86 89.30 1391.22 99.98 5.72 6.48 95 

25 [2-5-3-5-1] 98.82 87.84 11990.80 99.79 4.80 8.25 94 

26 [3] 29.97 100.50 2336510.0 53.04 10.76 1.26 65 

27 [3-4-1] 78.11 81.13 280324.00 95.45 13.67 2.51 83 

28 [3-4-1-4-2] 99.70 74.89 3014.04 99.95 9.15 6.75 91 

29 [3-4-1-5-2] 97.91 89.16 21305.60 99.62 3.79 5.10 95 

30 [3-4-2] 61.90 96.60 615597.00 88.11 4.50 4.35 79 

31 [3-4-2-4-1] 99.68 87.65 3203.55 99.94 3.17 7.70 95 

32 [3-4-2-5-1] 99.82 80.81 1810.59 99.97 8.25 6.33 93 

33 [3-5-1] 79.74 73.97 254082.00 96.24 10.58 5.02 81 
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Simultaneous Purity 
(%) 

Yield (%) HCP level 
(ng/mgprod

uct) 

HCP 
clearance 

(%) 

Product 
concentra
tion (g/L) 

Buffer 
consumpt

ion 
(L/gproduct) 

WOP 

34 [3-5-1-4-2] 99.51 82.64 4970.18 99.92 6.70 8.31 93 

35 [3-5-1-5-2] 99.44 82.47 5608.53 99.91 6.43 5.08 93 

36 [3-5-2] 61.88 90.95 616000.00 88.80 4.49 6.05 77 

37 [3-5-2-4-1] 99.39 86.45 6168.08 99.89 1.88 9.60 94 

38 [3-5-2-5-1] 99.36 73.75 6458.24 99.90 5.23 6.71 90 

 

Table 4.C.2. Global optimization results of the top-to-bottom strategy using MMs. Host cell proteins are 
indicated as HCP. 

Top-to-bottom Purity Yield HCP level 
(ng/mgpro

duct) 

HCP 
clearance 

(%) 

Product 
concentra

tion 
(g/L) 

Buffer 
consumpt

ion 
(L/gproduct) 

WOP 

0 [1] 34.83 92.68 1871500 65.31 10.59 1.84 65 

1 [1-4-2] 86.60 92.45 154736.0 97.14 4.32 4.41 90 

2 [1-4-2-4-3] 92.73 93.81 78444.90 98.53 9.58 5.39 93 

3 [1-4-2-5-3] 92.73 93.81 78444.90 98.53 9.58 5.39 93 

4 [1-4-3] 69.55 92.95 437905.0 91.86 9.39 2.40 82 

5 [1-4-3-4-2] 92.71 92.27 78677.70 98.55 10.63 7.63 93 

6 [1-4-3-5-2] 92.70 87.66 78691.40 98.62 10.00 3.49 92 

7 [1-5-2] 86.60 87.85 154714.0 97.28 4.07 4.00 89 

8 [1-5-2-4-3] 92.73 92.75 78350.20 98.55 9.09 4.41 93 

9 [1-5-2-5-3] 92.73 92.75 78350.20 98.55 9.09 4.41 93 

10 [1-5-3] 69.54 88.27 437946.0 92.27 9.11 2.53 81 

11 [1-5-3-4-2] 92.73 88.14 78372.90 98.62 3.35 3.82 92 

12 [1-5-3-5-2] 92.73 83.72 78385.40 98.69 3.20 3.87 91 

13 [2] 41.32 98.89 1419880 71.92 1.58 2.31 70 

14 [2-4-1] 90.77 89.36 101701.0 98.18 10.52 19.06 88 

15 [2-4-1-4-3] 98.82 89.50 11981.60 99.79 9.08 20.26 92 

16 [2-4-1-5-3] 98.82 85.05 11980.50 99.80 8.68 21.36 91 

17 [2-4-3] 62.37 100.00 600007.0 88.00 10.67 3.47 80 

18 [2-4-3-4-1] 99.28 95.69 7224.94 99.86 3.50 5.77 97 

19 [2-4-3-5-1] 99.31 90.86 6910.50 99.87 3.32 5.86 96 

20 [2-5-1] 90.95 85.01 99513.40 98.31 9.99 5.44 90 

21 [2-5-1-4-3] 98.74 84.95 12755.50 99.78 8.51 6.72 94 

22 [2-5-1-5-3] 98.74 84.95 12755.50 99.78 8.51 6.72 94 

23 [2-5-3] 62.37 100.00 600007.0 88.00 10.67 3.47 80 

24 [2-5-3-4-1] 99.20 95.70 8056.44 99.85 3.57 5.78 97 

25 [2-5-3-5-1] 99.26 90.77 7461.59 99.86 3.44 5.94 96 

26 [3] 29.91 98.81 2343730 53.69 11.19 1.38 64 

27 [3-4-1] 78.48 80.89 274155.0 95.56 11.49 3.40 83 

28 [3-4-1-4-2] 97.85 80.51 22024.90 99.65 6.51 8.57 91 

29 [3-4-1-5-2] 97.84 76.50 22037.90 99.66 6.19 4.77 91 

30 [3-4-2] 62.32 98.49 604715.0 88.09 5.62 3.60 80 
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Top-to-bottom Purity Yield HCP level 
(ng/mgpro

duct) 

HCP 
clearance 

(%) 

Product 
concentra

tion 
(g/L) 

Buffer 
consumpt

ion 
(L/gproduct) 

WOP 

31 [3-4-2-4-1] 98.08 94.45 19562.70 99.63 2.23 5.69 96 

32 [3-4-2-5-1] 99.18 89.33 8234.36 99.85 2.46 5.70 95 

33 [3-5-1] 78.96 76.99 266473.0 95.90 10.91 3.12 82 

34 [3-5-1-4-2] 97.70 76.10 23491.00 99.64 8.78 4.62 91 

35 [3-5-1-5-2] 97.71 72.36 23486.50 99.66 8.34 4.12 90 

36 [3-5-2] 62.32 93.57 604630.0 88.68 5.34 2.81 79 

37 [3-5-2-4-1] 98.74 89.43 12740.60 99.77 3.57 5.45 95 

38 [3-5-2-5-1] 99.07 84.98 9357.07 99.84 3.62 5.12 94 

 

Table 4.C.3. Global optimization results of the decomposition strategy using MMs. Host cell proteins 
are indicated as HCP. 

Decomposition Purity Yield HCP level 
(ng/mgpro

duct) 

HCP 
clearance 

(%) 

Product 
concentra
tion (g/L) 

Buffer 
consumpt

ion 
(L/gproduct) 

WOP 

0 [1] 34.52 93.28 1897250 64.61 10.58 1.59 65 

1 [1-4-2] 92.08 85.81 86032.80 98.52 3.11 3.99 91 

2 [1-4-2-4-3] 98.11 92.60 19232.10 99.64 9.41 4.89 96 

3 [1-4-2-5-3] 98.11 92.60 19232.10 99.64 9.41 4.89 96 

4 [1-4-3] 80.28 76.69 245586.0 96.23 11.32 3.34 82 

5 [1-4-3-4-2] 97.46 76.13 26044.50 99.60 4.14 5.11 91 

6 [1-4-3-5-2] 97.46 72.33 26046.10 99.62 3.92 5.03 89 

7 [1-5-2] 92.40 81.29 82251.50 98.66 2.44 5.25 90 

8 [1-5-2-4-3] 99.05 88.93 9637.28 99.83 9.20 6.00 95 

9 [1-5-2-5-3] 99.05 88.93 9637.28 99.83 9.20 6.00 95 

10 [1-5-3] 77.91 81.54 283451.0 95.38 8.64 2.85 83 

11 [1-5-3-4-2] 99.22 81.40 7909.04 99.87 4.37 5.02 93 

12 [1-5-3-5-2] 99.22 77.32 7902.60 99.88 4.17 4.73 92 

13 [2] 41.49 99.56 1410340 71.92 1.83 3.05 70 

14 [2-4-1] 90.09 89.03 110042.0 98.04 9.87 7.15 90 

15 [2-4-1-4-3] 98.30 89.78 17334.00 99.69 9.05 8.24 94 

16 [2-4-1-5-3] 98.30 89.78 17334.00 99.69 9.05 8.24 94 

17 [2-4-3] 61.86 100.00 600000.0 88.00 9.86 4.14 80 

18 [2-4-3-4-1] 99.07 96.17 9345.88 99.82 2.87 6.04 97 

19 [2-4-3-5-1] 99.19 91.26 8184.55 99.85 2.81 6.22 96 

20 [2-5-1] 93.33 78.97 71420.20 98.87 11.65 3.29 90 

21 [2-5-1-4-3] 99.32 79.18 6882.03 99.89 8.40 3.99 93 

22 [2-5-1-5-3] 99.32 75.24 6881.85 99.90 7.88 4.21 91 

23 [2-5-3] 62.38 100.00 600000.0 88.00 11.44 3.49 80 

24 [2-5-3-4-1] 99.08 96.18 9307.90 99.82 2.09 5.72 97 

25 [2-5-3-5-1] 99.12 91.29 8848.74 99.84 2.00 5.94 96 

26 [3] 29.94 99.71 2339510 53.34 10.45 1.60 65 

27 [3-4-1] 78.66 80.00 271281.0 95.66 12.44 3.49 83 

28 [3-4-1-4-2] 98.02 79.27 20160.10 99.68 5.39 5.23 92 
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Decomposition Purity Yield HCP level 
(ng/mgpro

duct) 

HCP 
clearance 

(%) 

Product 
concentra
tion (g/L) 

Buffer 
consumpt

ion 
(L/gproduct) 

WOP 

29 [3-4-1-5-2] 98.02 75.29 20179.60 99.70 5.11 4.80 91 

30 [3-4-2] 62.10 94.14 610333.0 88.51 10.06 2.71 79 

31 [3-4-2-4-1] 98.47 90.70 15512.70 99.72 3.03 5.16 95 

32 [3-4-2-5-1] 99.10 85.83 9109.09 99.84 3.17 5.26 94 

33 [3-5-1] 81.53 70.48 226555.0 96.81 10.19 4.04 81 

34 [3-5-1-4-2] 98.31 70.33 17198.30 99.76 3.18 5.42 89 

35 [3-5-1-5-2] 98.31 66.81 17190.10 99.77 3.10 5.48 88 

36 [3-5-2] 62.38 92.44 603106.0 88.85 3.41 3.86 78 

37 [3-5-2-4-1] 98.69 87.63 13321.80 99.77 3.21 6.43 94 

38 [3-5-2-5-1] 99.24 83.12 7625.05 99.87 3.36 6.42 93 

 

Table 4.C.4. Global optimization results of the simultaneous strategy using ANNs. Host cell proteins are 
indicated as HCP. 

Simultaneous Purity Yield HCP level 
(ng/mgpro

duct) 

HCP 
clearance 

(%) 

Product 
concentra
tion (g/L) 

Buffer 
consumpt

ion 
(L/gproduct) 

WOP 

0 [1] 37.75 100.00 1649240 67.02 23.52 1.03 69 

1 [1-4-2] 87.66 98.48 140750.0 97.23 13.72 3.01 93 

2 [1-4-2-4-3] 99.60 100.00 4046.83 99.92 14.08 6.90 98 

3 [1-4-2-5-3] 99.36 100.00 6452.30 99.87 18.74 7.74 98 

4 [1-4-3] 71.19 100.00 404615.0 91.91 19.64 4.96 85 

5 [1-4-3-4-2] 98.87 98.10 11383.50 99.78 9.38 7.29 97 

6 [1-4-3-5-2] 99.36 98.59 6429.60 99.87 6.12 8.43 98 

7 [1-5-2] 87.35 93.54 144796.0 97.29 8.76 4.88 91 

8 [1-5-2-4-3] 99.72 97.17 2798.96 99.95 16.23 9.43 97 

9 [1-5-2-5-3] 99.23 91.03 7778.06 99.86 11.04 8.98 95 

10 [1-5-3] 82.58 77.66 210956.0 96.72 10.60 5.52 83 

11 [1-5-3-4-2] 95.86 100.00 43145.90 99.14 10.51 7.01 97 

12 [1-5-3-5-2] 99.08 89.62 9316.75 99.83 4.87 9.53 95 

13 [2] 46.29 100.00 1160110 76.80 16.28 1.02 73 

14 [2-4-1] 90.95 100.00 99540.70 98.01 12.71 6.09 94 

15 [2-4-1-4-3] 99.43 99.14 5755.11 99.89 17.31 8.04 98 

16 [2-4-1-5-3] 99.56 100.00 4387.61 99.91 15.83 8.52 98 

17 [2-4-3] 80.25 100.00 246093.0 95.08 19.27 7.27 89 

18 [2-4-3-4-1] 99.64 100.00 3606.33 99.93 11.68 7.23 98 

19 [2-4-3-5-1] 99.53 89.57 4753.26 99.91 3.89 8.82 95 

20 [2-5-1] 84.92 87.78 177549.0 96.88 6.60 6.09 88 

21 [2-5-1-4-3] 99.60 96.46 3988.93 99.92 11.99 10.59 97 

22 [2-5-1-5-3] 99.74 83.78 2610.75 99.96 12.32 10.30 93 

23 [2-5-3] 78.78 98.93 269351.0 94.67 18.74 7.39 88 

24 [2-5-3-4-1] 99.52 100.00 4872.64 99.90 15.23 7.82 98 

25 [2-5-3-5-1] 98.28 93.96 17483.60 99.67 3.84 9.13 96 
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Simultaneous Purity Yield HCP level 
(ng/mgpro

duct) 

HCP 
clearance 

(%) 

Product 
concentra
tion (g/L) 

Buffer 
consumpt

ion 
(L/gproduct) 

WOP 

26 [3] 39.65 100.00 1521850 69.56 17.74 1.42 70 

27 [3-4-1] 81.43 99.16 228056.0 95.48 12.05 4.58 90 

28 [3-4-1-4-2] 99.69 100.00 3114.43 99.94 7.56 6.96 98 

29 [3-4-1-5-2] 98.85 94.99 11653.70 99.78 6.45 7.22 96 

30 [3-4-2] 77.52 100.00 289954.0 94.20 7.88 3.20 88 

31 [3-4-2-4-1] 99.60 100.00 3991.65 99.92 6.69 7.60 98 

32 [3-4-2-5-1] 97.45 87.52 26177.20 99.54 3.55 6.34 94 

33 [3-5-1] 84.82 64.64 178914.0 97.69 10.31 6.17 81 

34 [3-5-1-4-2] 98.62 84.44 13946.50 99.76 9.17 7.53 93 

35 [3-5-1-5-2] 99.01 83.53 9955.00 99.83 3.01 9.66 93 

36 [3-5-2] 73.57 91.65 359284.0 93.41 5.35 3.59 84 

37 [3-5-2-4-1] 99.19 88.97 8196.73 99.85 4.58 8.52 95 

38 [3-5-2-5-1] 96.93 78.81 31639.60 99.50 2.59 8.61 90 

 

Table 4.C.5. Global optimization results of the top-to-bottom strategy using ANNs. Host cell proteins 
are indicated as HCP. The flowsheet [2-4-1] could not be optimized as the dilution step after the first 
unit operation caused an out-of-range parameter value for the loading factor of the subsequent unit 
operation, therefore Not-a-number (Nan) appeared. The flowsheets [2-4-1-4-3] and [2-4-1-5-3] depend 
on the outcome of the previous result from [2-4-1], as no solution was found, these two flowsheets 
could not be optimized either.  

Top-to-bottom Purity Yield HCP level 
(ng/mgpro

duct) 

HCP 
clearance 

(%) 

Product 
concentra
tion (g/L) 

Buffer 
consumpt

ion 
(L/gproduct) 

WOP 

0 [1] 36.70 100.00 1724570 65.51 23.44 1.05 68 

1 [1-4-2] 81.97 100.00 219984.0 95.60 16.96 2.10 91 

2 [1-4-2-4-3] 89.68 100.00 115034.0 97.70 13.68 3.94 94 

3 [1-4-2-5-3] 89.57 93.94 116386.0 97.81 12.91 4.20 92 

4 [1-4-3] 70.10 100.00 426636.0 91.47 12.51 3.26 84 

5 [1-4-3-4-2] 89.65 100.00 115500.0 97.69 13.03 4.20 94 

6 [1-4-3-5-2] 89.41 92.73 118398.0 97.80 12.51 4.45 92 

7 [1-5-2] 81.60 92.69 225513.0 95.82 17.06 2.05 88 

8 [1-5-2-4-3] 89.45 92.69 117945.0 97.81 11.72 4.13 92 

9 [1-5-2-5-3] 89.45 88.06 117998.0 97.92 11.17 4.35 90 

10 [1-5-3] 70.00 94.56 428668.0 91.89 11.84 3.43 83 

11 [1-5-3-4-2] 89.60 94.56 116118.0 97.80 11.06 4.72 92 

12 [1-5-3-5-2] 89.25 86.66 120451.0 97.91 10.65 5.02 90 

13 [2] 46.80 100.00 1136730 77.27 21.09 1.11 73 

14 [2-4-1] Nan Nan Nan Nan Nan Nan 0 

15 [2-4-1-4-3] Nan Nan Nan Nan Nan Nan 0 

16 [2-4-1-5-3] Nan Nan Nan Nan Nan Nan 0 

17 [2-4-3] 77.22 100.00 294985.0 94.10 13.26 4.50 88 

18 [2-4-3-4-1] 98.33 100.00 17002.50 99.66 2.57 8.70 97 

19 [2-4-3-5-1] 98.64 92.90 13835.10 99.74 2.44 7.87 96 
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Top-to-bottom Purity Yield HCP level 
(ng/mgpro

duct) 

HCP 
clearance 

(%) 

Product 
concentra
tion (g/L) 

Buffer 
consumpt

ion 
(L/gproduct) 

WOP 

20 [2-5-1] 86.09 85.80 161565.0 97.23 21.87 2.07 88 

21 [2-5-1-4-3] 99.05 85.80 9546.57 99.84 11.30 4.51 94 

22 [2-5-1-5-3] 99.05 81.51 9603.52 99.84 10.77 4.74 93 

23 [2-5-3] 76.70 95.00 303709.0 94.23 12.61 4.72 86 

24 [2-5-3-4-1] Nan Nan Nan Nan Nan Nan 0 

25 [2-5-3-5-1] 98.09 88.66 19479.90 99.65 1.87 8.65 94 

26 [3] 36.57 100.00 1734280 65.31 30.98 1.02 68 

27 [3-4-1] 75.28 97.93 328322.0 93.57 23.04 1.71 87 

28 [3-4-1-4-2] 97.02 97.93 30717.00 99.40 10.86 3.03 97 

29 [3-4-1-5-2] 96.82 87.25 32837.50 99.43 10.39 3.17 94 

30 [3-4-2] 73.69 100.00 357070.0 92.86 8.62 3.20 86 

31 [3-4-2-4-1] 97.96 100.00 20830.20 99.58 2.58 6.97 98 

32 [3-4-2-5-1] 98.51 92.73 15081.30 99.72 2.38 6.31 96 

33 [3-5-1] 76.76 88.25 302690.0 94.66 21.04 1.95 84 

34 [3-5-1-4-2] 97.30 88.25 27723.20 99.51 5.00 4.65 94 

35 [3-5-1-5-2] 97.15 79.43 29349.10 99.53 4.70 4.98 91 

36 [3-5-2] 72.92 92.81 371351.0 93.11 8.09 3.72 84 

37 [3-5-2-4-1] Nan Nan Nan Nan Nan Nan 0 

38 [3-5-2-5-1] 97.96 83.10 20827.00 99.65 4.69 7.21 92 

 

Table 4.C.6. Global optimization results of the decomposition strategy using ANNs. Host cell proteins 
are indicated as HCP. 

Decomposition Purity Yield HCP level 
(ng/mgprod

uct) 

HCP 
clearance 

(%) 

Product 
concentra
tion (g/L) 

Buffer 
consumpt

ion 
(L/gproduct) 

WOP 

0 [1] 36.69 100.00 1725650.0 65.49 23.21 1.05 68 

1 [1-4-2] 87.80 97.72 138981.00 97.28 10.74 3.29 93 

2 [1-4-2-4-3] 97.47 100.00 25953.80 99.48 12.36 5.12 98 

3 [1-4-2-5-3] 97.47 100.00 25953.80 99.48 12.36 5.12 98 

4 [1-4-3] 70.58 92.08 416888.00 92.32 14.92 2.56 82 

5 [1-4-3-4-2] 87.04 92.08 148886.00 97.26 11.10 3.90 90 

6 [1-4-3-5-2] 86.59 84.13 154897.00 97.39 10.52 4.16 88 

7 [1-5-2] 87.78 92.35 139224.00 97.43 6.58 4.14 91 

8 [1-5-2-4-3] 96.92 98.01 31743.40 99.38 11.72 6.38 97 

9 [1-5-2-5-3] 96.92 98.01 31743.40 99.38 11.72 6.38 97 

10 [1-5-3] 68.01 95.36 470287.00 91.03 14.92 5.55 82 

11 [1-5-3-4-2] 90.18 95.36 108947.00 97.92 13.28 6.70 92 

12 [1-5-3-5-2] 89.63 85.42 115640.00 98.02 12.39 7.36 89 

13 [2] 44.42 100.00 1251280.0 74.97 5.25 3.01 72 

14 [2-4-1] 90.44 100.00 105713.00 97.89 14.23 5.70 94 

15 [2-4-1-4-3] 99.22 100.00 7876.76 99.84 13.64 7.60 98 

16 [2-4-1-5-3] 99.22 100.00 7876.76 99.84 13.64 7.60 98 
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Decomposition Purity Yield HCP level 
(ng/mgprod

uct) 

HCP 
clearance 

(%) 

Product 
concentra
tion (g/L) 

Buffer 
consumpt

ion 
(L/gproduct) 

WOP 

17 [2-4-3] 81.04 100.00 233934.00 95.32 18.75 7.52 89 

18 [2-4-3-4-1] 97.34 100.00 27366.90 99.45 2.23 10.76 97 

19 [2-4-3-5-1] 97.60 94.57 24610.30 99.53 2.08 11.01 95 

20 [2-5-1] 87.85 85.28 138318.00 97.64 7.90 6.26 88 

21 [2-5-1-4-3] 97.71 87.82 23443.10 99.59 10.21 8.34 94 

22 [2-5-1-5-3] 97.71 87.82 23443.10 99.59 10.21 8.34 94 

23 [2-5-3] 79.32 99.95 260652.00 94.79 20.19 6.54 88 

24 [2-5-3-4-1] 97.25 99.95 28308.50 99.43 2.17 11.11 96 

25 [2-5-3-5-1] 98.13 93.03 19052.10 99.65 1.96 10.54 95 

26 [3] 42.62 99.75 1346510.0 73.14 23.19 1.37 71 

27 [3-4-1] 84.11 98.45 188961.00 96.28 23.50 4.28 91 

28 [3-4-1-4-2] 99.57 98.45 4289.14 99.92 7.91 6.04 98 

29 [3-4-1-5-2] 99.55 90.79 4495.57 99.92 7.59 6.42 96 

30 [3-4-2] 77.49 99.40 290569.00 94.22 12.07 4.60 88 
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Appendix  - Chapter 5 

Appendix 5.A 

Dead volume and dwell volume 

The volume of the tubing was determined by excluding the column and using 1 M sodium 

chloride with a 100 μL sample loop. A schematic overview of the tubing in the Äkta system is 

shown in Figure 5.A.1, in which the dead volume is indicated from the numbers 2 to 4 and the 

dwell volume from 1 to 3. 

 

Figure 5.A.1. Schematic representation of the Äkta system, the dead volume is defined from point 2 to 
4 and the dwell volume from point 1 to 3. The injection valve is indicated with the dashed line and not 
considered in the dead volume and dwell volume. Created with Biorender.com. 

The dead volume (𝑉𝑑𝑒𝑎𝑑), tubing 3 and 4, is calculated according to Schmidt-Traub et al. 

(2012) as follows [1]:  

𝑉𝑑𝑒𝑎𝑑 = 𝑉𝑅,0 −  
𝑉𝑖𝑛𝑗

2
− 𝑉5, 

Eq. 5.A.1  

where 𝑉𝑅,0 is the retention volume measured including the injection volume (𝑉𝑖𝑛𝑗), which is 

therefore subtracted to only obtain the dead volume. 𝑉5 is the tubing between the UV-

detector and the conductivity (indicated with number 5), from the internal diameter, 0.50 

mm, and the length, 170 mm, it was calculated to be 0.033 mL. 

The dwell volume is needed for the calculations in the regression formula and is equal to the 

volume from point 1 to 3 (Figure 5.A.1). The tubing before point 1 is already filled prior to 

elution. The dwell volume was determined by introducing buffer B, containing 1 M sodium 

chloride as a pulse for 5 CV, followed by subtracting the 𝑉𝑑𝑒𝑎𝑑 and  𝑉5. 
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Porosity calculations 

The total porosity (𝜀𝑡) was determined using 1 M sodium chloride, as salt can enter the pores, 

and calculated as follows:  

𝜀𝑡 =
𝑉𝑚 + 𝑉𝑝𝑜𝑟𝑒

𝑉𝐶
 Eq. 5.A.2  

𝑉𝑚 + 𝑉𝑝𝑜𝑟𝑒 =  𝑉0,𝑟𝑒𝑡 −  𝑉𝑑𝑒𝑎𝑑 Eq. 5.A.3  

 

where 𝑉𝑚 is the interstitial volume of the fluid phase also known as the column void volume, 

𝑉𝑝𝑜𝑟𝑒 is the volume of the pore system, and  𝑉𝐶 is the total volume of the packed column. 𝑉0,𝑟𝑒𝑡 

is the measured retention volume from which the dead volume is subtracted to only consider 

the retention volume in the column. The external porosity, 𝜀𝑏 = 𝑉𝑚 𝑉𝐶 ,⁄  was determined using 

a solution of 10 mg/mL Dextran (DXT1740K, American Polymer Standards Corporation, USA) 

with a volume of 250 μL. 𝑉𝑚 was determined using Eq. 5.A.3. Subsequently, the total and 

external porosity are used to determine the internal porosity (𝜀𝑝) as 

𝜀𝑝 =
𝜀𝑡 −  𝜀𝑏

1 − 𝜀𝑏
 . Eq. 5.A.4 

[1] H. Schmidt-Traub, M. Schulte, A. Seidel-Morgenstern, H. Schmidt-Traub, Preparative chromatography, Wiley 

Online Library2012. 
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Appendix 5.B 

Regression plots of each protein at pH 3.5, 4.3, 5.0, and 7.0 corresponding to the Figures 5.B.1 

– 5.B.4 respectively.  

  

  
Figure 5.B.1. Fitted regression curves at pH 3.5 (grey line) of the experimental data (dark blue dots) and 
the test data point (ligth blue dot) at 58.2 mL, equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R2 

of 0.999 and an RMSE of 0.08, 0.11, 0.11, and 0.09 for chymtrypsinogen, cytochrome C, lysozyme, and 
RNase respectively.  

 

   

  

 

   

Figure 5.B.2. Fitted regression curves at pH 4.3 (grey line) of the experimental data (dark blue dots) and 
the test data point (light blue dot) at 58.2 mL, equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R2 
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of 0.999 and an RMSE of 0.07, 0.22, 0.10, 0.10, and 0.09 for albumin, chymtrypsinogen, cytochrome C, 
lysozyme, and RNase respectively.  

 

   

   
   
Figure 5.B.3. Fitted regression curves at pH = 5.0 (grey line) of the experimental data (dark blue dots) 
and the test data point (light blue dot) at 58.2 mL, equal to 60 CV as 1 CV is 0.97 mL. All fits obtained 
an R2 of 0.999 and an RMSE of 0.01, 0.05, 0.06, 0.06, 0.07, and 0.08 for albumin, chymotrypsinogen, 
cytochrome C, lysozyme, RNase, and conalbumin respectively.  

 

  

  
Figure 5.B.4.. Fitted regression curves at pH 7.0 (grey line) of the experimental data (dark blue dots) 
and the test data point (light blue dot) at 58.2 mL, equal to 60 CV as 1 CV is 0.97 mL. All fits obtained 
an R2 of 0.999, except for RNAse that has an R2 of 0.95. The RMSE values are 0.03, 0.002, 0.04, and 0.04 
for cytochrome C, chymtrypsinogen, RNAse, and lysozyme respectively. 
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Appendix 5.C 

Additional data for the mechanistic model validated at pH 7.0. For all proteins at pH 7.0, the 

maximum retention peak difference is 1.01 CV and the average difference is 0.86 CV, which is 

1.68% and 1.43% with respect to the gradient length (60 CV). To assess the concentration 

agreement between the modeled and experimental results, we compared the difference 

between the peak width at half of the peak maximum and the peak concentration. RNAse was 

left out of this comparison for the peak width difference, as determining half of the peak 

maximum is not possible for the experimental data. The maximum peak width difference is 

2.07 CV, equal to 2.23% relative to the gradient length (60 CV). The average peak width 

difference is 0.81 CV, equal to 1.35% relative to the gradient length (60 CV). The peak 

concentration differs maximally by 0.04 mg/mL, which deviates about 7.8% to the initial 

concentration. The average difference in the peak concentration is 0.01 mg/mL, equal to 3.1% 

relative to the initial concentration. 

  

  
Figure 5.C.1. Chromatographic mechanistic model validation for gradient length of 60 CV, equal to 58.2 
mL, at a pH of 7.0. Blue line indicates the MM predicted concentration of the protein, while the red 
dotted line indicates the experimental concentration. The black dotted line indicates the salt 
concentration. The initial concentrations are chymotrypsinogen: 0.46 mg/mL, cytochrome C: 0.80 
mg/mL, lysozyme: 0.55 mg/mL, and RNase: 0.39 mg/mL. 
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Appendix 5.D 

Calibration lines for each protein at pH 5.0 and 7.0, shown in Figure 5.D.1 and 5.D.2 

respectively.  

   

   
   

 

  

Figure 5.D.1. Calibration lines (blue dotted line) for each protein at pH 5, the blue dots indicate the 
experimental data. The concentrations are measured at an absorbance of 280 and 400 nm. 400 nm 
absorbance is specifically needed to quantify  cytochrome C.   

 

   

  

 

   
Figure 5.D.2. Calibration lines (blue dotted line) for each protein at pH = 7.0, the blue dots indicate the 
experimental data. The concentrations are measured at an absorbance of 280 and 400 nm. 400 nm 
absorbance is specifically needed to quantify  cytochrome C. 
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Appendix 5.E 

The consistency of the optimization case study was evaluated by running the same 

optimization five times. The QSPR-based and experimental-based method results are shown 

in Table 5.E.1 and 5.E.2 respectively.  
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List of abbreviations 

Abbreviation Definition 

AEX Anion exchange chromatography 

AI Artificial intelligence 

ANN Artificial neural networks 

BSA Bovine Serum Albumin 

CEX Cation exchange chromatography 

CPP Critical process parameters 

CQA Critical quality attributes 

CV Column volume 

D Dilution 

DF Diafiltration 

DoE Design of experiments 

EP Electrostatic potential  

HCP Host cell protein 

HIC Hydrophobic interaction chromatography 

HT High throughput 

HTE High throughput experimentation 

HTPD High throughput process development 

IEX Ion exchange chromatography 

LGE Linear gradient experiments 

LHS Liquid handling station 

mAbs Monoclonal antibodies 

MLR Multi linear regression 

MM Mechanistic modeling 

Nan Not-a-number 

ODE Ordinary differential equation 

OFAT One-factor-at-a-time 

PAT Process analytical technologies 

PDE Partial differential equation 

QbD Quality by design 

QSAR Quantitative structure activity relationship 

QSPR Quantitative structure property relationship 

ReLU Rectified linear unit 

RL Reinforcement learning 

RMSE Root mean squared error 

RSM Response surface methodology 

TFF Tangential flow filtration  

UF Ultrafiltration 

UF/DF Ultrafiltration and diafiltration 
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UFVVD ultrafiltration with variable volume diafiltration 

VLP Virus-like particles 

WOP Weighted overall performance 
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