
Sailing+, Dynamic Water Animation and Interaction through Hybrid Wave Model

Luc Jonker
Supervisor(s): Mark Winter, Elmar Eisemann

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Figure 1: Geometric wave surface using Gerstner waves calculated in the GPU

Abstract

For mobile augmented or virtual reality applica-
tions with limited processing power, representing
realistic water geometry is a challenge. Many ex-
isting solutions are simulations that can only run at
interactive rates on desktop computers. This paper
presents a lightweight approximative approach to
water representation achieved through mesh LOD
via clip-mapping, lightweight Gerstner wave cal-
culations, and approximative texture-based effects
for boat-geometry interaction. The foundational
method is extensible to many applications model-
ing water geometry, or even landscapes, at a low
performance cost.

1 Introduction
Water graphical representation often represents water as a
mesh that gets modified using methods such as noise func-
tions, displacement mapping, etc. While these methods can
often lead to fast and relatively pleasing results, they lack a
critical dynamic element of water in which it is affected by
and reacts to geometry in the environment. Finding such a
representation that can convincingly represent said dynamic
element while also being able to run efficiently with limited
processing power is considerably more difficult to do.

In general, water simulation techniques can be divided into
two main subtypes: spectral methods represent ocean geog-
raphy by superimposing waves of different frequencies based
on oceanographic models while physically-based methods
simulate water behavior with physical simulations relying on
solving NSE [Navier-Stokes Equations] [1]. Spectral meth-
ods tend to produce realistic results through representing the
ocean via a superposition of sines and cosines, while physi-
cally based models are somewhat more flexible and allow for
object interaction. Spectral methods do not allow interactions
with complex boundaries or obstacles, and physically based
models can be more computationally expensive with visible
detail seen in the waves being strongly correlated to the reso-
lution of the underlying mesh [2].

For an application involving limited processing power (e.g.
a mobile application), many of these models are inappropri-
ate. They tend to emphasize simulation, where as a mobile

application can get away with representing a convincing ap-
proximation of water for the sake of increased performance.

One such application is Sailing+, which is an aug-
mented/virtual reality (AR/VR) app designed to experience
sailing regattas. Users can project a virtual ocean into their
living room, and use their phone to watch the sailing race
from whichever perspective they like.

The task of this research is finding and/or creating a rep-
resentation for the ocean water geometry for this application
which is both aesthetically pleasing and more realistic. In ad-
dition, the application is designed for use with augmented /
virtual reality hardware in mind, necessitating strict perfor-
mance requirements.

More specifically, the research questions are:
1. What are methods for representing dynamic water ge-

ometry that support interaction with other meshes such
as boat wakes, foam at shorelines, splashes, etc?

2. What techniques can be explored to optimize the repre-
sentation to reach good real-time performance on mo-
bile, AR/VR hardware?

Solving this problem could provide a basis for computer
graphics developers who wish to implement aesthetically
pleasing, realistic water effects at a low performance cost.
Applications with speed as a priority could take and adapt
this method to suit their own needs.

This paper presents a hybrid wave model inspired by
‘wavelet’ approaches [2]. The model combines spectral ap-
proaches for macro wave generation with water surface ef-
fects calculated via approximation techniques to give a con-
vincing result at the micro scale.

The structure of this paper is as follows. Section 2 de-
scribes the methodology chosen to represent the water. Sec-
tion 3 provides results both with performance metrics and
commentary on the visual appeal. Section 4 discusses the
results and methods chosen, giving some motivation for the
choices made. In addition it describes some limitations of the
chosen methods. Lastly, Section 5 provides a summary of the
research, along with paths forward for extension of the work
described in this paper.

2 Methodology
The goals of the geometric water representation place pri-
ority on two major factors, performance and visual appeal.

Methods were chosen with these priorities in mind, striking
a balance between low performance impact with somewhat
realistic and visually appealing results.

The water representation can be split into three distinct
subsections which come together to form the overall water ge-
ometry technique. First is mesh generation, then static macro
wave geometry representation, and lastly dynamic ‘micro’
water effect representation.

2.1 Mesh Generation
Mesh generation forms the basis of the geometric water rep-
resentation. The underlying mesh must have a high enough
resolution to represent high frequency wave components [2].
However with higher mesh resolution comes higher perfor-
mance impact. One could simply make a large high resolu-
tion mesh, but the resulting performance overhead makes this
solution undesirable given current phone hardware. There-
fore, a Level of detail (LOD) approach was chosen to balance
visual fidelity with performance.

The chosen mesh generation technique is a clip-map ap-
proach [3]. This method represents geometry as a series of
expanding meshes at lowering levels of detail as the mesh ex-
pands away from the camera, as can be seen in Figure 2.

Figure 2: Clip-map mesh generation with vertex density lowering
away from the center (darker area) where the camera is located. At
the edge of the play area, the pixels are culled using the UV coordi-
nates to maintain a clear boundary

The mesh follows the camera as it moves, maintaining a
higher level of detail close to the viewer.

As the mesh is moved around, the UV coordinates of the
vertices are dynamically offset to give the appearance of
movement, as the water effects are calculated using the UV
coordinates. This is done by using the clip-map’s relative po-
sition to the play area as an offset to the UV coordinates. In
that sense, the clip-map acts as a blanket that moves with the
camera over the play area to maintain high mesh resolution
near the user while maintaining the illusion of a ‘static’ sur-
face.

Furthermore, the UV offset allows for automatic detection
of when a section of the clip-map no longer overlaps with the
play area, in which case it can be hidden. Figure 2 shows how
the clip-map mesh looks, and demonstrates how the parts of
the mesh not overlapping with the play area are culled.

If the clip-map moves too far away, such that it doesn’t
overlap the play area, a low resolution underlying mesh is

revealed. This mesh won’t be able to support the high reso-
lution effects, but if the user is at such a distance then it isn’t
noticeable.

2.2 Static Macro Wave Geometry
The ocean in the real world features large swells that move
through it over long distances. Representing this macro wave
movement adds much more authenticity to the final result.
For this application, emphasis on customizability and perfor-
mant calculation was a priority.

To that end, macro wave geometry is represented via super-
imposed trochoidial Gerster waves [4]. Unlike a simple sine
wave, Gerstner waves approximate water motion by having a
given point move in a circular motion as opposed to just up
and down, as shown in Figure 3.

Figure 3: Motion of the vertex in a sine wave versus in a trochoidial
wave, vertices bunch up in crests and spread out in troughs. Source:
adapted from J. Flick. [5]

The equations to model such behavior should describe a
sinusoidal movement for the point not only on the y axis, but
on the x and z axes as well.

The Gerstner wave equations for this application are
adapted from J. Tessendorf [6] and J. Flick [5]. To define a
given wave to superimpose, one need only provide a four di-
mensional ‘wave vector’ W containing the direction, ‘steep-
ness’ (0 ≤ Ω ≤ 1), and wavelength.

W = (Dx, Dy,Ω, λ)

Then the x0 = (x, z) and y offsets are calculated by1:

x′0 = x0 + D · (A cos (k · (D • (l · (uv))− tc))) (1)

y = A sin (k · (D • (l · (uv))− tc)) (2)
Where A = Ω/k represents the amplitude, k = 2π/λ is the
wave number, D = (Dx, Dy) is the (normalized) ‘direction
vector’ indicating wave direction, uv is the UV coordinate
of the vertex, l is the total length of the play area, and c =√

9.8/k is the speed.
These waves are computed on the GPU per vertex, us-

ing the UV coordinates of the vertex as opposed to posi-
tion for the wave calculation (hence scaling the UV value by
the length of the field). The final wave surface can be cus-
tomized by superimposing multiple Gerstner waves with dif-
ferent wave vectors W. Combining these values in different
ways leads to a considerable variety in the final visual result,
with a simple example seen in Figure 1.

1• denotes dot product and · denotes scalar multiplication

An important feature of the water in Sailing+ is that the
state of the ocean should be able to be found analytically with
time. That is, one should be able to input the time, and have
as output the state of the ocean at any given time-point in the
simulation. This is because the user of the application has the
option to move through the timeline of a race. For the macro
waves, this is as easy as using the simulation time of a given
race as the input time t used in the Gerstner wave equations.

2.3 Dynamic Micro Water Effects
Apart from the large scale motion of the ocean, there is also
naturally water interaction occurring at a small scale as ob-
jects such as boats move across the surface. Small wakes will
be produced as boats move across the surface. Attempting a
full simulation of the water surface is difficult to achieve in a
performant manner on a mobile device. Thus, a technique to
emulate the effects of a full simulation was chosen.

Real boat wakes form a pattern called the ”kelvin wake”,
in which the superimposed waves form a distinct V shape be-
hind the boat, as seen in Figure 4.

Figure 4: Distinct chevron formed from a boats ‘kelvin wake’.
Source: adapted from J. Wang et al. [7]

This wake effect can be approximated by taking advantage
of information about the boats in the race, such as the direc-
tion and UV coordinates of the boat relative to the field. This
information about a given competitors past n positions is used
to superimpose rings which fade out and widen the older they
become.

The calculations take place on a compute shader on the
GPU, which allows for parallel computation. For each boat
point Pn containing the direction and UV coordinates, the
radius r of the circle is calculated for that point. Using the
radius, a square of pixels of size 2r× 2r centered on the boat
position is determined. The strength of the jth circle for the
ith pixel is given by:

lerp(1, 0, |Pd
j • li|)a

b|r2 − (li • li)|2 + jc
(3)

In which li = puvi − Puv
j is the direction vector from the

boat position to the ith pixel calculated by the difference
between the pixel position in UV coordinates and the boat
UV coordinates. Pd

j is the direction of the jth point, and

lerp(x, y, z) represents a linear interpolation between x and
y based on z.

The coefficients a, b, and c change the behavior of the cir-
cles. Changing a impacts the strength of the circle overall,
changing b impacts the strength of the blur around the circle,
and changing c affects how much circles blur as they age.

The linear interpolation has the effect of dimming pixels on
parts of the circle pointing in the same direction as the boat,
while in the denominator the strength of the circle at the pixel
is calculated and offset by the age of the point to achieve a
fade over time effect.

By calculating these values for many rings and superim-
posing them, a wake-like effect is produced, an example can
be seen in Figure 5. The resulting values are written to a tex-
ture to be sampled in the vertex and fragment shaders. In the
vertex shader a displacement is applied to the geometry, and
in the fragment shader the value is used to create a white foam
effect.

Figure 5: Approximated wake shape for a turning boat and a boat
moving straight, formed by superimposing expanding circles at
given time points, stored only in the red channel

Because the calculation only relies on the past n-positions
of a given boat (to superimpose n rings), the state of the boat
wakes at any given time can be found, and thus also conforms
to users ability to scrub through the race timeline.

3 Results
The combined result creates a geometrically appealing ocean
surface, with a reasonably small impact on performance. The
performance tests were done on a Pixel 2 XL smartphone, and
as such is representative of current or somewhat older phone
hardware at the time of writing. An important note is that
the application currently supports a maximum frame-rate of
60 frames per second (FPS), and the reported values are the
mean between the maximum and minimum frame-rates.

3.1 Clip Map Analysis
The clip-mapping approach attempts to bridge the gap be-
tween mesh resolution and visual fidelity in the underlying
ocean mesh. To that end, the implementation supports a large
variety of resolutions at different sizes to support the needs of
the various races, and updating hardware capabilities.

At maximum resolution, the clip-map mesh resolution is
able to support small scale effects around dynamic elements
such as boats, seen in Figure 6. In contrast, the maximum
resolution of the naive solution (a single mesh at the maxi-
mum resolution supported by Unity) still left boats sitting on
individual triangles, as shown in Figure 7.

Figure 6: Maximum resolution of mesh using the clip-map, boats sit
on a large amount of triangles which allows for small scale defor-
mations

Figure 7: Mesh resolution of single mesh at highest resolution sup-
ported by Unity (65536 vertices) in which whole boats still sit on
individual triangles

The performance tests were done with 2, 6, and 10 clip-
map levels at a resolution of 50, 100, and 150 per clip-map
level, without using any wave effects. The FPS values can
be found in Table 1. Having just the basic Unity plane, as a
control, resulted in a mean of 34 FPS.

Levels Res: 50 Res: 100 Res: 150

2 34 FPS 27.5 FPS 20.5 FPS
6 26 FPS 21.5 FPS 16 FPS

10 19 FPS 15.5 FPS 14.5 FPS

Table 1: Mean FPS values of clip-map at different number of levels
and different resolution per level

The triangle counts for the different resolutions can be
found in Table 2. An important note is that the mesh was
being fully rendered, no culling occurred.

Levels Res: 50 Res: 100 Res: 150

2 142820 565620 1268420
6 390868 1541668 3452468

10 638916 2517716 5636516

Table 2: Number of triangles that make up the clip-map for a given
resolution and number of levels

3.2 Macro Wave Analysis
The macro wave simulation makes the surface dynamic, and
the customizability allows for a large variety in how the waves

end up looking. Figure 8 shows multiple waves in the same
direction, which could represent a hard wind. While Figure
9 displays a calmer, more uniform ocean surface being dis-
placed.

Figure 8: Waves aligned with higher amplitudes, representing a
strong wind in a given direction

Figure 9: Calmer ocean surface, with swells and some smaller dis-
turbances, representing a less intense wind

The performance impact of the macro wave generation
is also remarkably small. Table 3 shows different numbers
of superimposed waves. These tests were performed on a
clipmap mesh with 6 levels and a resolution of 80. Having
no waves, as a control, resulted in a mean FPS of 36.

Num Waves: 1 Num Waves: 2 Num Waves: 3

36 FPS 36 FPS 36 FPS

Table 3: Mean FPS values of different number of superimposed Ger-
stner waves

The superposition of more waves results in no noticeable
performance impact given their parallel calculation in a vertex
shader.

3.3 Micro Water Effect Analysis
The micro water effects result in a more dynamic ocean ap-
pearance shown in Figure 10.

The performance depends on two factors, the number n of
historical boat points to consider, and the resolution of the
output texture. Naturally it also depends on the number of
competitors in a given race, but this is somewhat analogous

Figure 10: Wake left behind by competitors, in which geometry is
displaced and a white foam color is added based on the texture val-
ues

to changing n. For these tests a race was used with 35 com-
petitors. A performance comparison between n and texture
resolution can be found in Table 4.

Num Points n Res: 2048 Res: 4096 Res: 6144

2 28 FPS 13.5 FPS 7.5 FPS
6 28 FPS 12.5 FPS 7 FPS
10 25.5 FPS 12 FPS 7 FPS

Table 4: Mean FPS values of different number of historical points n
output to different resolution textures. For a visual comparison see
Appendix B

The performance, especially on mobile, depends much
more heavily on texture resolution than the number of points,
and thus optimizations that can lower the required texture res-
olution would have a higher impact.

3.4 Desktop Performance
For applications that target a desktop user, this method also
performs remarkably well. For this test, a Desktop with a
Ryzen 5 5600X CPU at 3.7 GHz, 16GB of RAM, and an RTX
3600 was used to test performance. The same race was used
as the one on mobile. The clip-map was at a resolution of
150 with 8 levels. Three superimposed Gerstner waves were
used. And lastly the dynamic effect texture had a resolution
of 32768x32768, with 15 historic points.

With these settings, the application ran at an average of
215 FPS. Dropping the texture resolution to 8192x8192 with
6 clip-map levels results in an average of 288 FPS.

4 Discussion
The final result manages to be both visually appealing as well
as largely performant. The heavy emphasis on mobile perfor-
mance proved to be difficult, as many ’real time’ techniques
only performed well on desktop computers.

The clip-map and Gerstner waves make the water feel con-
siderably more dynamic and interesting, and have minimal
performance costs on both desktop and mobile. The dynamic
water effects are what produce the most overhead.

A ‘fully dynamic’ solution was initially implemented to
represent the micro dynamic water effects, modeled as a wave

height field in which subsequent values were computed iter-
atively based on previous values [8]. This method performed
remarkably poorly on mobile hardware despite being a two
decade old method, though this could be due to poor imple-
mentation.

The gap to fill was finding how a similarly convincing ef-
fect could be approximated while staying within the process-
ing budget of a mobile device. An early implementation of
the texture based water effects ran reasonably on desktop,
with an average of 50-60 FPS on a 6k texture. On mobile
however it could only manage 3FPS, with a 256 by 256 tex-
ture. The new ‘pixel square’ method resulted in an exponen-
tial increase on both desktop and mobile, but mobile still re-
mains somewhat slower than hoped.

An important note about the FPS values reported. It may
appear that it is relatively low overall (even 34 FPS for the
default mesh). This is due to ‘events’ taking place during
races. When an event occurs, effects such as a highlight and
sphere are generated which cause a large FPS drop resulting
in a lowering of the mean. For comparisons however, it is still
an appropriate metric.

Furthermore, an interesting question may be, how was per-
formance better during the Gerstner wave test at a resolution
of 80 and 6 levels, than even the resolution 50 clip-map test.
The likely answer is that the shader that performs the Ger-
stner wave calculations, also discards pixels at the edge of
the play area, as seen in figure 2. During the clip-map tests,
this wasn’t the case, and the entire mesh was rendered, which
could result in a more noticeable performance drop.

4.1 Limitations
An important limitation to note with this technique is that
it is assuming a bounded, preset “ocean area”. While clip-
mapping could support a larger mesh along with macro Ger-
stner waves, the small scale wave surface works on a precise
“play area” and would need work to be extended to boundless,
or procedurally generated surfaces. However this is certainly
possible and could prove to be a remarkable application of
the technique.

Clipmapping also assumes a flat ocean mesh. For most ap-
plications such a flat mesh is desirable, however in the even
that one would want a water volume of sorts in which the
ocean mesh bent (i.e. to form other 3D objects besides a plane
such as a cube or sphere) work would need to be done to as-
sure that the mesh resolution would be high enough at points
where the mesh strayed away from the basic plane shape.

While Gerstner waves can support a large variety of con-
vincing and appealing water surfaces, it as a periodic function
does inevitably repeat in a periodic manner. This behavior
can be mitigated and may even be desirable depending on the
application.

Lastly, the dynamic water effects make some assumptions
about boat behavior. Firstly it takes the previous boat posi-
tion always a set time earlier for each point. This results in
circle spacing which works well on some races, but when the
boat moves more quickly, the effect is diminished. Solving
this would involve using the boat velocity as a factor in de-
termining the previous time point to use. Next, if the boat is
sitting somewhat still or moving slowly, the circles stack in an

unrealistic manner. If the number of historic points also dy-
namically changed based on boat velocity this could lead to
more realistic results. Lastly the wakes are designed with the
boats being at their smallest scale, however if the user moves
away the boats scale up and occlude the wake. Solving this
would involve scaling the wake texture simultaneously with
the boat models.

5 Conclusions and Future Work
Representing a dynamic, visually pleasing geometric water
surface with high performance on mobile hardware is a chal-
lenging task. Phone hardware is quite limited in comparison
to their desktop cousins. In addition, most techniques that
exist for dynamic water representation involve simulations
or complicated solutions to water dynamics equations. The
technique described in this paper largely succeeds in striking
a balance between these two opposing priorities.

Using a clip-map as an LOD technique serves to effec-
tively provide detail close to the user while not putting too
much strain on performance. Superimposed Gerstner waves
as a macro scale ocean behavior representation serves to pro-
vide an aesthetically pleasing, customizable, and efficient ap-
proach. And the texture based dynamic water for the micro
scale adds a level of authenticity and visual appeal, while be-
ing broad enough to be applied to and extended upon in many
applications.

There are a handful of exciting and interesting extensions
to this research as well. Extending this approach to a bound-
less surface by making the clip-map the entire surface and
modifying textures to provide the underlying displacement
and effects extends the applications for this method dramati-
cally to many kinds of games emphasising performance. The
clip-mapping technique could also potentially be expanded to
support other basic mesh shapes besides a plane.

The texture based effects have large versatility in what in-
formation is stored and used for what kind of effects. For
example at the moment, only the red channel of the texture
is used. One could store directional information in two other
channels to create some other effect. And it is possible that
with optimizations and future mobile hardware that a more
physically accurate wave simulation could be integrated for
water-geometry interactions.

The dynamic water wake effect works well and is a nice
approximation of boat wakes, but on mobile still performs
somewhat poorly at resolutions needed for the effect to be
as pleasing as possible. Since the performance of the boat
wakes relied more heavily on texture resolution than num-
ber of history points, techniques like signed-distance fields
could potentially provide massive performance increases [9].
In addition the dynamic effect is only implemented for boat
wakes, but in theory could be extended to support wakes
around buoys by expanding full circles around a buoy’s posi-
tion, and possibly shoreline wave behavior using something
like geodesic distance mapping to inform wave shapes [10].

This technique serves as a strong base for developers, and
its versatility and customizability ensures it could be useful
in a broad variety of applications wishing for performant wa-
ter geometry generation. Furthermore, nothing is limiting the

foundational method from being used for other applications,
such as modeling landscapes with dynamic effects (e.g. mov-
ing grass around the player). This is especially true if the ap-
plication needs to run well on weaker hardware, or is trying
to optimize heavily, such as a virtual reality game. Overall
with its relative simplicity and versatility, this technique can
find a place in all manner of applications.

References
[1] E. Darles, B. Crespin, D. Ghazanfarpour, and J. C. Gon-

zato, “A survey of ocean simulation and rendering tech-
niques in computer graphics,” Computer Graphics Fo-
rum, vol. 30, 2011.

[2] S. Jeschke, T. Skřivan, M. Müller-Fischer, N. Chen-
tanez, M. Macklin, and C. Wojtan, “Water surface
wavelets,” ACM Transactions on Graphics, vol. 37,
2018.

[3] A. Asirvatham and H. Hoppe, “Terrain rendering
using gpu-based geometry clipmaps,” GPU Gems 2,
2005. [Online]. Available: https://developer.nvidia.
com/gpugems/gpugems2/part-i-geometric-complexity/
chapter-2-terrain-rendering-using-gpu-based-geometry

[4] L. M. Lachman, “An open programming architecture for
modeling ocean waves,” 2007.

[5] J. Flick, “Catlikecoding unity wave implementation.”
[Online]. Available: https://catlikecoding.com/unity/
tutorials/flow/waves/

[6] J. Tessendorf, “Simulating ocean water,” SIG-
GRAPH’99 Course Note, p. 7, 01 2001.

[7] J. Wang, Z. Min, J.-L. Chen, and Z. Cai, “Application
of facet scattering model in sar imaging of sea surface
waves with kelvin wake,” Progress In Electromagnetics
Research B, vol. 67, pp. 107–120, 01 2016.

[8] M. DeLoura, “Game programming gems,” Interactive
simulation of water surfaces, pp. 187–194, 2000.

[9] C. Green, “Improved alpha-tested magnification for
vector textures and special effects,” 2007.

[10] S. Liu, X. Jin, C. C. L. Wang, and J. X. Chen, “Water
wave animation on mesh surfaces,” Computing in Sci-
ence Engineering, vol. 8, pp. 81–87, 2006.

https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-2-terrain-rendering-using-gpu-based-geometry
https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-2-terrain-rendering-using-gpu-based-geometry
https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-2-terrain-rendering-using-gpu-based-geometry
https://catlikecoding.com/unity/tutorials/flow/waves/
https://catlikecoding.com/unity/tutorials/flow/waves/

A Responsible Research
For research to be robust, regardless of the results, it should
be conducted such that the research and methods are ethical,
reproducible, and presented without bias. This research was
conducted with these principles in mind.

A.1 Ethics
Ethical research should keep in mind the impacts this research
may have on others. In the case of developing wave represen-
tation for an AR/VR application, there is not much that must
be considered ethically speaking. The exception to this would
be making certain that it is clear what code I have written is
my own, and what takes inspiration from others. To that end
I have made sure to leave comments in the code, such as in
Figure 11, which highlight the contributions of others on the
implementation side of this research, as to avoid plagiarism.

Figure 11: In-code references to resources that assisted with Unity
implementation of concepts

A.2 Reproducibility
Reproducible research must be transparent, the steps taken
should be traceable and and the methods used and where they
came from should be clear. To that end, I have maintained
a daily logbook2 of my activities during the research project
that is open to the public. In said logbook I keep track of what
project related tasks were worked on each day. Furthermore,
it provides links to web resources such as YouTube videos
that were watched either for inspiration or to learn relevant
tools such as Unity.

In addition, I keep a full reference list of papers, books,
and conference proceedings along with some web resources
using the reference management software Mendeley3. This
list contains all references used for this paper along with any
others I have investigated. If the reader wishes to view this
list for research or peer review purposes, they may send an
email.

Lastly, the code produced via this research project by me
has been published to a public GitHub repository 4 for those
who wish to view the concrete implementation.

A.3 Integrity
To fulfill integrity the presentation of research must not allow
bias from the researcher color the results. This is important
if the results are to be of use to those who wish to build upon
said research, or to inform research in the future. Thus, when
presenting results, a conscious effort has been made not to
exclude results that reflect poorly on either the research or I
as the researcher. Poor results such as the failure of the initial

2https://seasoned-wind-8dd.notion.site/
Logbook-50fbda9ad4b043969f7b2b5a1f994936

3https://www.mendeley.com
4https://github.com/lucjonker/water-animation-interaction-CSEBEP

dynamic water representation system and the still sub-par per-
formance of the texture based approach have been explained
such that future researchers are informed on how and why
certain methods were unsuccessful. The hope being that they
may make the optimal choices for their future potential ex-
tensions to this research.

https://seasoned-wind-8dd.notion.site/Logbook-50fbda9ad4b043969f7b2b5a1f994936
https://seasoned-wind-8dd.notion.site/Logbook-50fbda9ad4b043969f7b2b5a1f994936
https://www.mendeley.com
https://github.com/lucjonker/water-animation-interaction-CSEBEP

B Wake Resolution Results
B.1 2048x2048 Texture

Figure 12: Two historic points

Figure 13: Six historic points

Figure 14: Ten historic points

B.2 4096x4096 Texture

Figure 15: Two historic points

Figure 16: Six historic points

Figure 17: Ten historic points

B.3 6144x6144 Texture

Figure 18: Two historic points

Figure 19: Six historic points

Figure 20: Ten historic points

	Introduction
	Methodology
	Mesh Generation
	Static Macro Wave Geometry
	Dynamic Micro Water Effects

	Results
	Clip Map Analysis
	Macro Wave Analysis
	Micro Water Effect Analysis
	Desktop Performance

	Discussion
	Limitations

	Conclusions and Future Work
	Responsible Research
	Ethics
	Reproducibility
	Integrity

	Wake Resolution Results
	2048x2048 Texture
	4096x4096 Texture
	6144x6144 Texture

