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SUMMARY

The Newton-Raphson method (N-R) has been widely used in nonlinear FEM

analysis of quasi brittle materials, such as masonry, concrete and reinforced and

prestressed concrete. However, the robustness of the N-R method is still a serious

issue when bifurcation, snap-back or divergence problems arise. In order to en-

hance the robustness of solving non-linear problems, a total approach with secant

stiffness and an“event-by-event” damage model was introduced by sequentially

linear analysis (SLA). The incremental-iterative procedure, adopted in nonlinear fi-

nite element analysis, is replaced by a sequence of scaled linear finite element anal-

yses with decreasing secant stiffness, corresponding to local damage increments.

However, SLA has difficulties in dealing with non-proportional loading as well as

the cases in which the displacement history matters, such as geometrically non-

linear analysis, transient analysis and cyclic analysis with plastic unloading, since

the damage history is traced in SLA rather than the displacement history.

SLA is improved in this thesis, and an orthotropic damage model has been in-

troduced for SLA based on the rotating smeared crack model to eliminate the diffi-

culty of choosing a proper shear retention function. A new algorithm for applying

non-proportional load has been implemented in SLA, which is naturally suitable for

different element types (2D and 3D) and failure criteria without extra modifications.

In this work, a new method, incremental sequentially linear analysis (ISLA), is

proposed and based on a combination of the N-R method and SLA. This method is

incremental, as each increment starts and ends with an equilibrium state. The so-

lution search path follows damage cycles sequentially with secant stiffness, which

traces both damage history (explicit) and displacement history (implicit). A utilisa-

tion value is determined at the local level by the stress state and the failure surface

of an element with the elastic material properties. A utilisation function µ is defined

as the largest utilisation value of all elements, which is a function of the load factors

and the stiffness matrix K at the global level. An equilibrium is reached when µ≤ 1.

xi



xii SUMMARY

Due to the stiffness reduction, the internal forces are updated based on the displace-

ments of the previous load step and the algorithm reaches a temporary equilibrium

state. Afterwards, the incremental load is applied, and a linear analysis is performed

for the current load step. Three control methods have been proposed: load control,

damage control and load and damage control. In load control, every load step can

contain one increase or decrease of the load and several reductions of Young’s mod-

ulus of various elements; in damage control, every load step can contain one reduc-

tion of Young’s modulus and several changes of the load; and, in load and damage

control, every load step can contain several changes of the load and several reduc-

tions of Young’s modulus of various elements. It is suggested to use the load control

method for the displacement loads and the load and damage control method for the

force loads to trace the post-peak behaviour. The currently proposed version of ISLA

uses two types of material models: the damage model (secant unloading) and the

coupled damage-plastic model (plastic unloading). Furthermore, it employs the ro-

tating smeared crack model (the damage model) and the Mohr-Coulomb criterion

with tension cut-off.

A first advantage of ISLA is that it is better suited to handle cases of non-

proportional loading, due to the incremental approach. This is demonstrated by

four examples of non-proportional loading: a concrete beam with both prestress

and vertical load; out-of-plane bending of a masonry wall with overburden; a dif-

ferential settlement test on a pre-loaded masonry façade and a 3D pushover anal-

ysis of a masonry house. The results of ISLA are discussed and compared against

SLA, the total approach of which is known to have more difficulties in handling non-

proportional loads.

Apart from the non-proportional loading, ISLA can be naturally extended from

geometrically linear analysis to geometrically non-linear analysis due to the incre-

mental procedure. Indirect displacement control with the control point is intro-

duced in load and damage control to avoid or pass localized failure process zones

for geometrically non-linear analysis. This is demonstrated by the example of out-

of-plane bending of a masonry wall, which is pushed post-peak until full failure.

Additionally, ISLA is extended to transient analysis. Due to the stiffness sensi-

tivity in transient analysis, a modified damage control method in which the equilib-

rium states are searched for every stiffness reduction until the load factor reaches
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the value of the current load step is introduced. The potential of ISLA for transient

analysis is then indicated for a simple multi-degree of freedom concrete problem.

In addition, there is potential for extending ISLA to cyclic analysis. Two types

of unloading paths are considered, namely unloading with the secant stiffness (the

damage model) and with the non-secant stiffness (the plastic model). These are

demonstrated by the examples of cyclic (unloading with the secant stiffness) and

repeating (unloading with the non-secant stiffness) loading of a notched concrete

beam. However, non-proportional loading is not considered. ISLA determines only

loading and unloading state changes at the global level to avoid iterations at the

local level, which may cause divergence or bifurcations.

ISLA is robust since all physical non-linearity is linearized in damage cycles

with the explicit secant stiffness of the damaged elastic material model (saw-tooth

model). This has been demonstrated by checking that the performance of the load

control, damage control and load and damage control methods have been tested

at the structural level for the cases of proportional and non-proportional loading

mentioned above. For the snap-backs in the quasi-static brittle problems, the load

control and load and damage control methods have both been shown to perform

successfully. For the displacement history, the load control method jumps over

snap-backs while the load and damage control method follows snap-backs. For

the damage history, both methods trace the damage process cycle-by-cycle during

snap-backs. This proposed method can be easily implemented into commercial

software.





SAMENVATTING

De Newton-Raphson methode (N-R) wordt algemeen gebruikt in niet-lineaire

eindige-elementenberekeningen van quasi brosse materialen, zoals metselwerk,

beton, gewapend beton en voorgespannen beton. Echter, de robuustheid van de N-

R methode is nog steeds een belangrijk probleem in het geval van bifurcaties, snap-

back of divergentie. Voor het verbeteren van de robuustheid van het oplossen van

niet-lineaire problemen is de sequentiële lineair analyse (SLA) geïntroduceerd met

een niet-incrementele aanpak, secant-stijfheid en een schademodel gebaseerd op

opeenvolgende gebeurtenissen. De incrementeel-iteratieve procedure toegepast bij

niet-lineaire eindige-elementenberekeningen, is vervangen door een opeenvolging

van geschaalde lineaire eindige-elementenberekeningen met afnemende secant-

stijfheid, overeenkomend met lokale schade-incrementen. Echter, SLA kan moeil-

ijk omgaan met belastingen die na elkaar optreden en met situaties waarin de ver-

plaatsingsgeschiedenis een rol speelt, zoals geometrisch niet-lineaire berekeningen,

dynamische berekeningen en cyclische berekeningen met plastisch ontlasten. Dit

wordt veroorzaakt doordat de schadegeschiedenis wordt bijgehouden in plaats van

de verplaatsingsgeschiedenis.

In dit proefschrift is SLA verbeterd en is orthotrope schade geïntroduceerd in

SLA gebaseerd op het roterende uitgesmeerde scheurmodel. Dit laatste voorkomt

het probleem dat een geschikte functie moet worden gekozen voor de schuifspan-

ning in de scheuren (shear retention). Een nieuw algoritme voor belastingen die na

elkaar optreden is geïmplementeerd in SLA welke van nature geschikt is voor ver-

schillende elementtypen (2D en 3D) en faalcriteria zonder extra aanpassingen.

In dit werk is een nieuwe methode, genaamd incrementele sequentiële lineaire

analyse (ISLA) voorgesteld die gebaseerd is op een combinatie van de N-R-methode

en SLA. Deze methode is incrementeel waarbij elk increment begint en eindigt in

een evenwichtstoestand. Opeenvolgende cycli met reducties van secantstijfheden

produceren een pad dat zowel de schadegeschiedenis (expliciet) als de verplaats-

xv
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ingsgeschiedenis (impliciet) volgt. Een benuttingswaarde is bepaald op materiaal-

niveau op basis van de spanningstoestand en het grensspanningsoppervlak van

een element met elastische materiaaleigenschappen. Een benuttingsfunctieゼ is

gedefinieerd als de grootste van de benuttingswaarden van alle elementen. Deze

functie hangt af van de belastingfactoren en de stijfheidsmatrix K van de draagcon-

structie. Evenwicht is bereikt wanneerゼ≤ 1.

De stijfheidsreducties zorgen ervoor dat de interne krachten worden bijge-

werkt uitgaande van de verplaatsingen van de vorige belastingstap waardoor het

algoritme een tijdelijke evenwichtstoestand bereikt. Vervolgens wordt een belast-

ingstap aangebracht en wordt een lineaire berekening uitgevoerd voor de huidig be-

lastingstap. Drie sturingsmethoden worden voorgesteld: belastingsturing, schade-

sturing en belasting-en-schadesturing. Bij belastingsturing bevat elke belastingstap

een toename of afname van de belasting en een aantal reducties van de elas-

ticiteitsmoduli van een aantal elementen. Bij schadesturing bevat elke belast-

ingstap een reductie van een elasticiteitsmodulus en een aantal veranderingen van

de belasting. Bij belasting-en-schadesturing bevat elke belastingstap een aantal

veranderingen van de belasting en een aantal reducties van de elasticiteitsmod-

uli van een aantal elementen. Het advies is om belastingsturing te gebruiken

voor opgelegde verplaatsingen en belasting-en-schadesturing te gebruiken voor

opgelegde krachten zodat het constructiegedrag na de lastpiek kan worden gevolgd.

De huidige versie van ISLA gebruikt twee materiaalmodellen: ontlasten volgens

de secantstijfheid (schademodel) en ontlasten volgens een andere dan de secant-

stijfheid (gekoppelde schade-plasticiteitsmodel). Bovendien maakt het gebruik van

roterende uitgesmeerde scheuren (schademodel) en het faalcriterium volgen Mohr-

Coulomb met een extra begrenzing van de trekspanning (tension cut-off).

Het eerste voordeel van ISLA is dat het vanwege de incrementele aanpak

geschikter is voor belastingen die na elkaar optreden. Dit is gedemonstreerd met

vier voorbeelden: een betonnen ligger met zowel voorspanning als een verticale

belasting, een muur van metselwerk met zowel een bovenbelasting in het vlak als

een verticale belasting uit het vlak, een gevel van metselwerk met zowel een boven-

belasting als een zettingsverschil van de fundering en de driedimensionale situatie

van een huis van metselwerk belast door zowel eigengewicht als een langzame hor-

izontale verplaatsing die het omver duwt, om de weerstand tegen aardbeving-en
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te onderzoeken (push-over analysis). De resultaten van ISLA zijn besproken en

vergeleken met die van SLA. Van de laatstgenoemde niet-incrementele aanpak is

bekend dat het minder geschikt is voor belastingen die na elkaar optreden.

Naast belastingen die na elkaar optreden, kan ISLA uitgebreid worden zo-

dat geometrisch niet-lineaire berekeningen kunnen worden gemaakt. Dit is een

natuur-lijke eigenschap van de incrementele procedure. De methode belasting-

en-schadesturing is uitgebreid met een sturingspunt (indirecte verplaatsingsstur-

ing) waarmee gelokaliseerde scheurvorming kan worden vermeden of gevolgd in

geometrische niet-lineaire bereken-ingen. Dit is geïllustreerd met een metselwerk

muur die uit het vlak belast wordt voorbij de lastpiek tot volledig bezwijken op-

treedt.

Ook is ISLA uitgebreid naar dynamische berekeningen in het tijdsdomein. Het

blijkt dat de dynamische responsie zeer gevoelig is voor stijfheidsreducties. Daarom

is een methode geïntroduceerd (gemodificeerde schadesturing) waarbij voor elke

stijfheidsreductie de evenwichtstoestand wordt gezocht waarbij de belastingfactor

de waarde van de huidige belastingstap heeft. De toekomstige mogelijkheden voor

dynamische berekeningen met ISLA zijn onderzocht met een eenvoudig voorbeeld

van een betonnen staaf gemodelleerd met een aantal massa’s en niet-lineaire veren.

Daarnaast bestaat de mogelijkheid om ISLA uit te breiden naar cyclische

berekeningen. Twee typen van ontlasten zijn beschouwd, namelijk ontlasten vol-

gens de secantstijfheid (schademodel) en niet volgens de secantstijfheid (plastisch

model). Deze typen zijn gedemonstreerd door voorbeelden van cyclische belast-

ing (ontlasten volgens de secantstijfheid) en herhalende belasting (ontlasten niet

volgens de secantstijfheid) van een betonnen ligger met een inkeping. Echter, in

deze voorbeelden werden geen belastingen na elkaar aangebracht. In ISLA wordt de

omschakeling in het materiaalmodel tussen belasten en ontlasten bepaald op het

niveau van de draagconstructie in plaats van op materiaalniveau. Hierdoor wordt

vermeden dat extra iteraties op het materiaalniveau leiden tot divergentie of bifur-

caties.

ISLA is robuust doordat alle fysische niet-lineariteiten worden gelineariseerd

in schadestappen met de expliciete secantstijfheid van het beschadigde elasti-

sche materiaalmodel (zaagtandmodel). De robuustheid is gedemonstreerd door de

prestaties van de belastingsturing, schadesturing and belasting-en-schadesturing te
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controleren op het niveau van de draagconstructie voor belastingen die tegelijker-

tijd en na elkaar, zoals hierboven vermeld, worden aangebracht. Met betrekking

tot snap-backs in quasi-statische brosse situaties is gedemonstreerd dat zowel

belastingsturing als belasting-en-schadesturing uitstekend presteren. Met be-

trekking tot de verplaatsingsgeschiedenis springt belastingsturing over de snap-

backs terwijl belasting-en-schadesturing de snap-backs volgt. Met betrekking tot

de schadegeschiedenis volgen beide methoden het schadeproces in opeenvolgende

stappen gedurende de snap-backs. ISLA kan eenvoudig geïmplementeerd worden

in commercieel beschikbare software.
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ROMAN SYMBOLS

c Cohesion of the Mohr-Coulomb criterion

C Variable in the Mohr-Coulomb criterion with tension cutting-off to calculate the

load factor in SLA

[C ] Material compliance matrix

E Young’s modulus. E0 is the initial value of Young’s modulus. Ei represents Young’s

modulus in the orthotropic model, where i can be 1,2,3

f
′

c Damaged compressive strength of the Mohr-Coulomb criterion

f t Tension strength

f
′

t Damaged tension cutting-off strength

f t2 Fictitious tensile strength of the Mohr-Coulomb criterion calibrated to obtain

the correct shear failure

f t s Updated tension strength based on Saw tooth model

Fcur Current load

Fi ni Initial load

Fr Unbalance forces of control points in Load scaling

Fr e f Reference load

G Shear modulus. G0 is the initial value of shear modulus. Gi j represents shear

modulus in the orthotropic model, where i and j can be 1,2,3

G f Mode-I fracture energy

xix
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h Crack band width

K Current stiffness matrix

[M ] Principal direction cosine matrix

q Load reduction factor in ISLA

r Convergence tolerance of µ in ISLA

rr Convergence tolerance of unbalance forces control points in Load scaling

[R] Rotation matrix of the stress tensor to the principal directions

S t Saw tooth factor in the Saw tooth model

t Stiffness reduction factor

[T ] Rotation matrix of the strain tensor to the principal directions

u Imposed displacements of control points in Load Scaling

v Initial load factor for non-proportional loading in SLA

GREEK SYMBOLS

βi j Corresponding principal direction cosine

ε
′

Uniaxial strain used to compute the principal direction Young’s modulus

ε1 Maximum principal strain

ε3 Minimum principal strain

εu Ultimate tensile strain

εus Updated ultimate tensile strain based on Saw tooth model

λ Load factor in SLA

λcur Load factor of current load in ISLA

λi ni Load factor of initial load in ISLA

µ Utilisation function which is the largest utilisation value of all elements in ISLA
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ν Poisson’s ratio. ν0 is the initial value of Poisson’s ratio. νi j represents Poisson’s

ratio in the orthotropic model, where i and j can be 1,2,3

σ Normal stress in the Mohr-Coulomb criterion

σ1 Maximum principal stress

σ3 Minimum principal stress

τ Shear stress in the Mohr-Coulomb criterion

φ Internal friction angle of the Mohr-Coulomb criterion

ABBREVIATIONS

CITA Continuous incremental-only tangential analysis

DOF Degree of freedom

IMPL−EX Implicit-explicit approach

ISLA Incremental sequentially linear analysis

GFEM Generalized finite element method

LATIN The large time increment method

MM Meshless method

MPM Material point method

NIEM Non-iterative energy based method

NR Newton–Raphson method

SDA Strong discontinuity approach

SLA Sequentially linear analysis

SUR Smooth unloading-reloading function approach

X−FEM Extended finite element method





1
INTRODUCTION

1.1. OVERVIEW

To determine whether a designed engineering structure is safe, we compute its

response due to loading. Modern computers and software can perform this compu-

tation quickly and with little human assistance. For example, the response of steel

frame structures due to extreme wind load is routinely computed, including second-

order effects, the formation of plastic hinges, buckling of members and, eventually,

the beginning of collapse. Another example is the response of a reinforced con-

crete high-rise building due to an earthquake. To compute the response, dynamic

non-linear analysis with beam elements and a hysteretic model of the beam-column

joints is used.

However, for structures constructed of unreinforced masonry, unreinforced

concrete or other quasi-brittle materials, the computation of response is very dif-

ficult. The classical constitutive models for quasi-brittle materials are plasticity

models, damage models and coupled damage-plastic models, which are described

later [1]. The classical algorithm for solving non-linear mathematical equations is

the Newton-Raphson method (see Section 2.2). This method is robust if the load-

displacement curve is continuous and smooth. However, for quasi-brittle materials,

1
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many cracks occur and grow at every load increment, which creates many small,

sharp peaks in the load-displacement curve. There is no consideration of the phys-

ical description of quasi-brittle materials, but the stress-strain equations are well-

defined and the size effect is included. The problem is that algorithms for solving

these equations often fail to find a solution. The negative tangent stiffness causes

an ill-conditioned stiffness matrix when brittle material softens [2] [3][4]. In ad-

dition, two physical phenomena sometimes occur in non-linear analysis, namely

that the solution can lack uniqueness and can be split into equally possible realities.

This split is called a bifurcation. The solution to an increment can be a reduction

in load and displacement, which is called snap-back. These phenomena need to

be simulated correctly. The engineer responsible for such an analysis must steer the

software to obtain accurate results. Computation is slow when crack explosive prop-

agation, snap-back and bifurcation arise, and the results typically do not continue

beyond the onset of failure. Moreover, the results are often unreliable.

Many improved solution methods have been proposed, divided by incremen-

tal and total approaches, such as the modified Newton-Raphson method with ini-

tial stiffnesses [5], the LATIN method [6][7][8] and sequentially linear analysis (SLA)

[9]. SLA is an alternative to the Newton-Raphson method when bifurcation, snap-

back or divergence problems arise. The incremental iterative procedure, adopted in

non-linear finite element analysis, is replaced by a sequence of scaled linear finite

element analyses with decreasing secant stiffness, corresponding to local damage

increments, to find a solution to the equations for masonry and unreinforced con-

crete structures. The local damage increments are discretized "event-by-event" in

the saw-tooth softening model [10][11].

In static structural analysis, loads are often applied together (proportional

loading). However, the load order can be important, for example first prestress on

a concrete beam and subsequent removal of the formwork, which activates self-

weight. Other examples are pushover loading of a masonry wall with permanent

overburden and wind load after snow load on a roof structure. In general, non-

proportional loading is a situation in which some loads are kept constant while oth-

ers vary over time. Unfortunately, original SLA can be used only when all loads are

applied at the same time (proportional loading). Non-proportional loading was first

and partly accomplished in 2008 [12]. Other limitations of the method are that it
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cannot be easily used for large displacements (second-order effect), plastic defor-

mation or dynamic behaviour due to the total approach of SLA. Therefore, incre-

mental sequentially linear analysis (ISLA) is formulated in this thesis and in [13][14]

to extend SLA to an incremental approach. ISLA is an incremental procedure with

an iterative scheme and begins and ends with an equilibrium state. The solution

search path follows damage steps sequentially with secant stiffness. A utilisation

value is defined, which is determined at the local by the stress state and the failure

surface of an element with the elastic material properties. A utilisation function is

defined as the largest utilisation value of all elements (the utilisation value of the

critical element), which is a function of the load factors and the stiffness matrix.

When the utilisation function is larger than 1, the material is overloaded. When

the utilisation function is smaller than 1, the material can carry more load. In this

dissertation, SLA and ISLA have been programmed on top of the finite element pro-

gram ANSYS. ANSYS has a scripting language APDL that can be used to run analy-

ses, process results, modify stiffness, and continue with more analyses. This made

it possible to explore many materials and loading ideas from which ISLA evolved.

Until recently, the computation of unreinforced masonry response was not an

urgent problem because unreinforced masonry or unreinforced concrete were not

used for structures that need to carry large loads. However, since 1986, earthquakes

have occurred in East Groningen, the Netherlands due to gas extraction from deep,

porous rocks. Gas extraction began in 1959 and considerable subsidence of the sur-

face has occurred, but it was unexpected that parts of the porous rock would sud-

denly compact. Most houses, schools and churches in East Groningen are made of

unreinforced masonry, which must now withstand Magnitude 4 earthquakes. This

has created an urgent need for robust software to compute the response of unrein-

forced masonry and unreinforced concrete, not just in the linear design stage but

up to failure and near-collapse.

1.2. RESEARCH OBJECTIVES

The aim of this thesis is to develop a robust approach for non-linear analy-

sis that includes bifurcation, snap-back and convergence. This approach should be

suitable for all types of materials, including quasi-brittle materials and plastic mate-

rials. The approach should be applicable for different element types (e.g., plane ele-
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ments, shell elements and solid elements) and load cases (i.e., proportional or non-

proportional loading). In addition, the approach should be easily extendible from

static analysis to geometrically non-linear analysis and transient analysis. More-

over, the approach should consider not only damage but also plasticity . Last but

not least, this approach must be validated on a simple, elemental level and on a

complicated, structural level.

1.3. RESEARCH CONTRIBUTIONS

The contributions of this thesis are divided into improvements to SLA and the

development of ISLA as well as plastic behaviour.

Improvements to SLA include:

• Introduction of a saw-tooth model governed by the stiffness reduction rather

than the saw-tooth number.

• Introduction of an orthotropic damage model for SLA based on the rotating

smeared crack model.

• Introduction of multiple failure criteria for SLA, so that the combination of

tension, compression or shear failure can be modelled.

• Implementation of a new algorithm of SLA for analysing non-proportional

load. The algorithm is a pre-procedure modification in original SLA rather

than a post-procedure modification in [12]. It is naturally suitable for different

element types and failure criterion without extra extensions. This algorithm

can be easily programmed into any commercial software.

Development of ISLA includes:

• Formulation of ISLA, which follows an incremental procedure and ensures ro-

bustness. The solution search path follows damage steps sequentially with

secant stiffness. An equilibrium is determined at the local by the stress state

and the failure surface of an element with elastic material properties.

• Development of extended control procedures in ISLA, which is comparable

with the arc-length method. These procedures consist of load control, dam-

age control and the combination of these. In addition, indirect displacement



1.4. THESIS OUTLINE

1

5

control loading has been implemented into ISLA. The procedures also pre-

serve robustness.

• Extension of ISLA to geometrically non-linear analysis, transient analysis and

proportional cyclic loading of quasi-brittle materials.

• Validation of ISLA at the large-scale structural level. For snap-back, the load

control method and the load and damage control method both perform suc-

cessfully.

• Introduction of a coupled damage-plastic model in ISLA and preliminary im-

plementation of plasticity in cyclic loading.

1.4. THESIS OUTLINE

Chapter 2 presents the state-of-the-art of fracture mechanics, damage theories

and computational methods for quasi-brittle materials. The development of SLA

and other related methods are described in terms of improvements of the standard

Newton–Raphson method.

Chapter 3 describes improvement of the constitutive properties in SLA. A saw-

tooth model governed by stiffness reduction is developed for the softening material,

and an orthotropic damage model based the multi-directional smeared crack is im-

plemented. In addition, multiple failure criterion is formulated using the improved

procedure to allow a combination of tension, compression and/or shear.

Chapter 4 proposes an algorithm for non-proportional loading in SLA. The

constant-load factor is applied and adjusted in the pre-procedure 1. This algorithm

is validated on a prestressed beam with point loading.

Chapter 5 presents ISLA, which is an incremental procedure with an iterative

scheme that begins and ends with an equilibrium state. The solution search path

follows damage steps sequentially with secant stiffness. An equilibrium is deter-

mined at the local level by the stress state and the failure surface of an element with

the elastic material properties. The history of displacement and forces on the global

level is described during the ISLA procedure. This method is tested on a notched

beam (proportional loading).

1The target is to keep the constant-load constant after the mapping back procedure, therefore the constant-load factor

is not constant
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Chapter 6 elaborates load scaling control in ISLA, which includes the dam-

age control method and the load and damage control method. Different searching

strategies are proposed and compared in terms of computational accuracy and ef-

ficiency. The functions in this method are optimized, governed by utilisation values

of ISLA.

Chapter 7 shows and demonstrates the principle, algorithms and search paths

of ISLA on a simply supported concrete notched beam (proportional loading).

Three methods are compared, namely the load control method, damage control

method and load and damage control method.

Chapter 8 validates ISLA using a highly prestressed beam test (non-

proportional loading), for which SLA suffers divergence problems. Global harden-

ing behaviour and branch cracks are observed with a softening material model.

Chapter 9 validates ISLA using geometrically non-linear analysis. ISLA is com-

pared with the Newton–Raphson method using a masonry wall out-of-plane bend-

ing test. Crack propagation and ultimate displacement are observed by ISLA.

Chapter 10 validates ISLA using transient analysis. A multiple degree-of-

freedom system is used for testing. Several ways of updating the stiffness are in-

vestigated and compared between ISLA and the Newton–Raphson method. Sev-

eral stiffness adjusting solutions are proposed and compared with the results of the

Newton–Raphson method.

Chapter 11 validates ISLA at the structural level, including the aspect of non-

proportional loading. Two structural examples tested in the laboratory are selected,

namely a masonry facade settlement test and a full-scale masonry house pushover

test, which are compromise cases for SLA for the simulation of initial damage. This

chapter compares the load control method and load and damage control method as

well as the isotropic damage model and the orthotropic damage model.

Chapter 12 summarizes key features of improved SLA and ISLA and proposes

further work related to this method.

Appendix A validates ISLA using proportional cyclic loading of a quasi-brittle

material, where a structure is governed by tensile failure and unloading behaviour

follows secant stiffness. The correlative damage model is described and tested to

simulate reverse loading behaviour between tension and compression.

Appendix B combines plasticity behaviour with the damage model (saw-tooth
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model) in ISLA. This method is validated by an element compressive loading-

unloading test and a notched beam tension loading-unloading test. Unloading with

plastic deformation is combined with reverse loading at the element level.

Figure 1.1 shows the structure of the chapters of this thesis.

1. Introductions

2. Literature review

Improvements to SLA

3. Improvements of the constitutive properties
4. Extended non-proportional loading in SLA

Development of ISLA

5. Formulation of ISLA
6. Elaboration of  Load scaling control in ISLA
7. Validation of ISLA for proportional loading
8. Validation of ISLA for non-proportional loading
9. Extension of ISLA to geometrical non-linearity
10. Extension of ISLA to transient non-linearity
11. Application of ISLA at the structural level

A. Extension of ISLA to proportional cyclic loading for 
brittle materials
B. Formulation of Coupled damage-plastic model in ISLA 
for proportional loading

12. Conclusions and future work

Figure 1.1: Structure of the chapters of this thesis





2
LITERATURE REVIEW

Non-linear finite element analysis has become a common tool for studying

the behaviour of masonry, reinforced concrete and prestressed concrete. Over the

years, techniques for non-linear analysis have been enhanced significantly by im-

proved constitutive models, improved solution procedures and extended finite ele-

ment techniques. However, the robustness of the algorithms remains a serious is-

sue, especially when cracking and crushing in real-world structures are being anal-

ysed.

This chapter presents the state-of-the-art of numerical modelling of fracture in

quasi-brittle materials. Research on quasi-brittle materials can be divided into con-

stitutive descriptions of failure and proposals for solving the governing non-linear

equations. Section 2.1 discusses descriptions of failure and Sections 2.2 to 2.5 dis-

cuss solving the non-linear equations. A general framework can be found in [15].

2.1. FAILURE MECHANICS

2.1.1. CRACKING CONCEPTS IN FINITE ELEMENT ANALYSIS

For quasi-brittle materials, there are three ways of representing cracks via finite

element configurations, namely discrete crack models, smeared crack models and

9
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lattice models.

In the discrete crack model [16][17], a crack occurs when the nodal force nor-

mal to the element boundaries is larger than the maximum tensile strength. New

degrees of freedom (DOFs) at the location of this node are created, which discon-

nects the elements. The crack is regarded as a geometrical entity [18]. The main

limitation is that the crack propagation is restricted to the mesh lines. Discrete crack

models are improved with the possibility of remeshing [17] and the use of interface

elements as predefined cracks [18].

In contrast, in smeared crack models [19], a cracked solid is regarded as a con-

tinuum and described by a stress-strain relation. One possibility is fixing the direc-

tion of the crack upon its initiation. This is called a fixed crack model. A recent fixed

crack model is the crack band model [20], which was developed for mode-I frac-

ture and extended with mode-II shear retention. Fracture energy was introduced in

[21] and was used to obtain mesh-independence in [20]. A threshold angle has been

introduced, which allows new cracks to form only when the angle between the cur-

rent direction of the major principal stress and the normal direction to the existing

cracks is exceeded, to avoid an ill-conditioned stiffness matrix [2][3][4].

As an alternative, the rotating smeared crack model was introduced [22]. This

model allows cracks to rotate and describes the behaviour in terms of the rotating

principal axes rather than the fixed crack axes. It eliminates the difficulty of choos-

ing a proper shear retention function. It uses an implicit shear formulation that

guarantees coaxiality between principal stress and principal strain [15]. The rotat-

ing crack model can be regarded as a fixed multiple crack model for a zero threshold

angle [18].

In lattice models [23][24][25][26][27], the continuum is represented by a lat-

tice of truss or beam elements. The micro structure of the material is simulated by

assigning different properties to different truss or beam elements. An element is re-

moved when a failure criterion is reached in the brittle material. SLA has similarities

to the discretized lattice model method.

Afterwards, three developments have taken place, namely meshless methods,

the extended finite element method (X-FEM) and strong discontinuity approaches

(SDA). The main concept of these methods is that crack propagation is not re-

strained by the element mesh. The disadvantage of these methods is that they are
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not as convenient as smeared approaches. Crack continuity algorithms become

complex in 3D.

Meshless methods (MMs) have been described in [28][29]. In MMs, the approx-

imation is constructed from nodes, only to overcome the difficulties of building ap-

proximation related to mesh dependency [29]. The element-free Galerkin method

[30] is the first method developed on a global weak form, which requires only nodal

data but is suitable for arbitrary shapes. The element-free Galerkin method is widely

used for fluid, elasticity and heat conduction problems. The partition of unity fi-

nite element method (PUFEM) combines MMs and finite element methods, the

shape function of which are based on Lagrange polynomials [31]. The generalized

finite element method (G-FEM) enables a different partition of unities to be used for

the usual approximation and so-called enrichment[32]. The material point method

(MPM) [33][34][35] is also a Lagrangian particle-based method like MM, but it em-

ploys the grid as a temporary computational scratch pad instead of nodal data in

MM.

X-FEM has been described in [36][37][38][39]. The displacement jump is in-

corporated as a discontinuous partition of unity so that the strain on both sides of

a stress-free crack are fully decoupled and there are no incompatibilities between

elements [40]. X-FEM can also be used to model reinforcements for quasi-brittle

materials.

There is a family of methods called strong discontinuity approaches (SDAs).

SDAs were introduced in [41][42][43][44]. The displacement jump is embedded in

elements, which depends on the local stress or strain field instead of a priori defined

paths [45]. Discontinuity, as an incompatible mode in the strain field, is included in

the elements based on enhanced assumed strain (EAS) [46]. The discontinuity is de-

fined by an internal element node in EAS. The method in [43] is extended from 2D

to 3D for brittle fracture in [47]. In [45], shape functions are employed as partitions

of unity to incorporate the discontinuity with extra DOFs at existing nodes. There-

fore, this method is suitable for different types of elements and renders discontinu-

ity continuous across element boundaries. Embedded discontinuity elements are

adopted to simulate mode-I and mixed-mode fracture in [48]. Discontinuity can

be non-homogeneous in each element by the formulation in [49]. Discontinuity

is linked to the continuum constitutive model as a traction-displacement jump in
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the continuum strong discontinuity approach (CSDA) [50][51][52]. Discontinuity is

incorporated as a rigid body motion in the discrete strong discontinuity approach

(DSDA) [53]. The corresponding stretching of discontinuity is also considered in the

generalized strong discontinuity approach (GSDA) [54]. The distinction between

X-FEM and SDAs were described in [40][55][56].

2.1.2. CONSTITUTIVE MODELS

The constitutive models of quasi-brittle materials describe softening for ten-

sion, hardening or softening for compression and cohesion softening, and Coulomb

friction for shear. These can be divided into plasticity models, damage models, cou-

pled damage-plasticity models [1] and total-strain-based models.

Plasticity models adopt the concept of the split of the total strain into elastic

strain and accumulated plastic strain. Several plasticity models have been intro-

duced based on distinctive yield functions, hardening and flow rules and can be

found in [57]. The drawbacks of plasticity models are that they cannot describe stiff-

ness reduction and recovery due to the opening and closing of cracks [58]. For con-

crete, softening plasticity models were developed by a composite yield function in

[59][60]. For masonry, softening plasticity models were developed based on discrete

concepts in [61] and smeared concepts in [62].

In continuum damage models, the elastic stiffness of the unloading branch is

degraded. The degradation is composed of changes in the material at the micro

structural level by scalar or tensor internal variables [63]. The models have been

used for softening brittle materials [64]. The damage can be defined as one scalar

variable [65][66][67], two scalar variables (tension and compression)[68][69][58], a

vector [70] and a tensor (second-order [71] and higher order [72]). Continuum dam-

age models vary in their definition (local and non-local damage models) and in ways

of representing degradation (isotropic and orthotropic models).

In a local damage model, the description of the material response is based on

one integration point. Isotropic damage models [68][73] assume the stiffness re-

duction is isotropic. Two scalar variables have been introduced to describe the

tensile and compressive behaviours of brittle materials separately. Orthotropic

damage models have been introduced to consider realistic damage behaviour.

Microplane models consider the splitting in terms of volumetric and deviatoric
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components[74][75]. The smeared crack model can be regarded as a form of an

orthotropic local damage model with one scalar variable.

In a non-local damage model, the material response at a certain point is in-

fluenced by the stress in the surrounding region [76]. Non-local models have been

used [77] to prevent element size dependency [78] of local damage models. A type

of non-local model is gradient enhanced damage, in which the stress depends on

the strain and the gradient of the strain [79]. Rather than the gradient damage mod-

els, phase field models [80] are adopted for fracture in a mathematically consistent

manner with a small, but finite zone with sharp gradients [81]. The gradient dam-

age models and the phase field models have been compared [82]. The issue of the

broadening of the damage zone in the gradient damage models does not exist in the

phase field models, however the computational robustness and the mode-II frac-

ture simulation still need to be further investigated in the phase field models.

Coupled damage-plasticity models consider both stiffness degradation (dam-

age theory) and irreversible deformations (plasticity theory). The plasticity model

was combined with the isotropic damage model in [83][84] and with the orthotropic

damage model in [85][86][87][88].

Total-strain-based models do not decompose the strain into an elastic part

and a crack part, instead starting from the total strain and describing the material

in terms of engineering stress-strain relations in either fixed crack axes or rotating

principal axes [89]. Standard smeared crack models are based on total-strain con-

cepts. The total strain is decomposed into a part of the crack and a part of the solid

material to consider plasticity in [90][15][2].

2.1.3. MULTISCALE MODELLING

Multiscale approaches provide possibilities to link crack propagation at the

macro level to failure behaviours at the meso or micro level for quasi-brittle materi-

als [91][92][93]. A general framework to connect material properties at two physical

levels was introduced in 1984 [94]. Multiscale methods consist of homogenisation

methods and concurrent methods. Homogenisation methods are divided into an-

alytical homogenisation, numerical homogenisation (unit-cell method), computa-

tional homogenisation (F E 2 method) and space-time computational homogenisa-

tion.



2

14 2. LITERATURE REVIEW

Computational homogenisation [95][96][97][98][99][100] connects different

levels by averaging computations at different levels, down-scaling of strains and

up-scaling of stresses, and the tangent stiffness based on the Hill-Mandel condi-

tion [101][102]. The unit cell of the upper level (macro or meso) has been referred to

as a representative volume element (RVE). The boundary value problem has been

investigated and solved as the periodic boundary [95][96]. Existence and size deter-

mination of RVE was investigated in [103]. A failure zone averaging scheme has been

introduced in terms of the size objectivity [104]. Similar with continuum damage

models, local models (first-order) [95][105] and non-local models (second-order)

[106][107] have been introduced in multiscale modelling.

2.2. INCREMENTAL ITERATIVE SOLUTION PROCEDURES

Non-linear equations can be solved by incremental iterative computational ap-

proaches based on the Newton–Raphson (N-R) method [5]. In the N-R method,

the applied load is divided into small increments, and the displacement increment

within each load increment is calculated by the tangent stiffness matrix as summa-

rized in, for example [108][5][109]. The internal force can be computed from ac-

cumulated displacement, and the residual force vector can be determined by the

difference between external and internal forces. When both the residual force and

residual displacements errors are less than specified tolerances measured by Eu-

clidean norms (L2), convergence is reached. If convergence criteria are not satisfied,

the residual force vector is re-evaluated, the stiffness matrix is updated and thus a

new iteration is performed. This iterative procedure continues until the solution

converges and then the next load increment is applied [109].

The standard N-R scheme suffers from divergence problems for quasi-brittle

materials. The load-displacement curves of quasi-brittle materials have many small

peaks related to the initialization and growth of numerous cracks. These peaks are

only visible if one zooms in on a curve that is computed with very small load incre-

ments. Further, sharp peaks may occur associated with the sudden development

of major cracks or major crushing zones. Consequently, the tangent stiffness in the

neighbourhood of these peaks has extreme variations and can lead to the divergence

of N-R iterations at any load increment. The negative local tangent stiffness due to

softening may give rise to ill-conditioning of the global system. Variations of the
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scheme have been proposed to save computing time and to accelerate and improve

robustness. These include the modified N-R method, the quasi N-R method, the

accelerated N-R method and the line search algorithm [110] [5] [111]. The meth-

ods vary in robustness and efficiency. The modified N-R method computes and de-

composes the tangential stiffness matrix only in the first iteration at the beginning

of every load step while the full N-R method sets up and decomposes the tangent

stiffness matrix in every iteration. The global tangent stiffness in the N-R method

can be based on true negative softening stiffness at the local level or on the posi-

tive secant stiffness at the local level. The quasi N-R method updates the tangent

stiffness matrix using the existing one, such that the stiffness in the subsequent it-

eration is computed based on a multi-dimensional secant approximation. A disad-

vantage of any variant of the N-R method is its limited radius of convergence. To

enlarge this convergence radius, line search applies an improvement to the incre-

mental displacement vector by scaling it with a multiplier so that the point of lowest

potential energy along the search direction is obtained [110]. In the accelerated N-R

method, the target function is modified from a linear approximation to a high-order

approximation in such a way that it yields a faster rate of convergence.

In the standard N-R method, load increments are applied by prescribed forces

or displacements, which is called load control. The arc-length control method is

a modification of load control to trace post-failure behaviour numerically when a

structure softens or snaps back [112][113][114][115]. The load increment parameter

is regarded as an additional variable. The value is governed by a constraint equation

on the incremental displacement [15]. The norm of the incremental displacement

was adopted as the constraint equation in [116], which was linearised from a "spher-

ical arch" to a "normal plane" in [117]. In the case of strong localization, the iterative

plane in the standard arc-length method has been constructed from only a selected

number of com¬ponents to trace limit points and even very sharp snap-backs as-

sociated with localized failure instead of all DOFs [118][119]. A new constraint has

been developed based on the energy release rate in terms of geometrically linear

damage, geometrically linear plasticity and geometrically non-linear damage to im-

prove the robustness of the arc length method in [120].
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2.3. SNAP-BACK AND BIFURCATION POINTS

The N-R method may suffer from divergence at the global level due to softening

and negative tangent stiffness, independent of the local constitutive model adopted

[121]. This divergence often occurs at snap-back or bifurcation points.

Snap-back is a reduction of both load and displacement in the global load-

displacement diagram. Studying fracture shows that a crack initiates, propagates

and may either snap to a free surface or be arrested by reinforcing steel, where

stresses are redistributed and a new crack or crushing may start. This is accom-

panied by decreases in the quasi-static load–displacement response [122]. It can

be observed that after reaching a valley, a new ascending path may be found up to

a new local peak when redistribution capacity is available. These peaks cannot be

missed as they may be the global peak for structural failure. This abrupt changing

response (snap-back) is difficult to trace although arc length and indirect control

schemes provide possibilities [118]. Snap-backs have been successfully traced with

examples of detailed meshes on relatively small specimens [15][123][124]. Further,

fractures of indirect displacements have been reported with very brittle sharp snap-

backs for large-scale structures such as a masonry faCcade subjected to settlement

in [125][9][126] and for reinforced concrete problems in [121][127].

A bifurcation point is the point at which more equilibrium paths begin in the

load-displacement solution domain [119][110]. The inclusion of non-linear terms

in the kinematic description or the non-linearity of material models brings about

bifurcations and alternative branches in many engineering fields[110]. Constitutive

models have multiple equilibrium states for softening materials [110]. The existence

of bifurcation points and multiple equilibrium branches results from a problem for

the N-R procedure, in either its unmodified or its modified form [110]. [128] re-

ported that an unperturbed analysis of the full specimen causes a bifurcation point

with two post-bifurcation solutions (a symmetric one and a non-symmetric one).

When alternative equilibrium states occur, the correct lowest equilibrium path can

only be traced with an incremental iterative approach with imperfections and very

small load steps [128].
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2.4. SEQUENTIALLY LINEAR ANALYSIS

Sequentially linear analysis (SLA) is an alternative to the N-R method when bi-

furcation, snap-back or divergence problems arise [9]. The incremental iterative

procedure, adopted in non-linear finite element analysis, is replaced by a sequence

of scaled linear finite element analyses with decreasing secant stiffness, correspond-

ing to local damage increments. A saw-tooth model discretizes material softening

driven by damage and recomputes the load via scaling at the local level. The crit-

ical element is defined as the element for which the stress-strain state is closest to

the failure surface. The load factor λ is defined as the ratio of the current strength

and stress of the critical element. A linear analysis is conducted, the critical ele-

ment is tracked, the stiffness and strength of the element are reduced according to

the saw-tooth curve, scaling is performed by λ and the process is repeated. Com-

pared to non-linear smeared crack models in incremental iterative settings, SLA has

been shown to be robust and effective in predicting localizations, crack spacing and

crack width as well as brittle shear behaviour [9]. The main features of SLA are a

total approach with secant stiffness (load-unload method) at the global level and an

“event-by-event” damage model (saw-tooth constitutive law) at the local level.

Different constitutive formulations, saw-tooth curves and strategies for non-

proportional loading have been proposed in SLA. The saw-tooth model has been

improved to make the results independent of the magnitude of the stiffness reduc-

tion in a step [10][11]. A regularization scheme provides mesh-size objectivity of the

saw-tooth model, either saw-tooth tension softening for unreinforced material or

saw-tooth tension stiffening for reinforced material. The scheme is similar to the

one commonly used in the smeared crack framework, but both the initial tensile

strength and the ultimate strain are rescaled. In this way, the dissipated fracture en-

ergy is invariant with respect not only to the mesh size, but also to the number of

saw teeth adopted to discretize the softening branch.

The fixed smeared crack model has been implemented in SLA [12][129][130].

The crack orientation is fixed when the crack is initiated. Subsequently, the stiffness

orthogonal to the fixed smeared crack (En) is reduced while the elastic stiffnesses

parallel to the crack (E t and Es) are kept unaltered. The second and, in 3D, third

cracks may occur orthogonal to the fixed crack. Poisson’s ratios are assumed to be
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reduced at an equal rate as the corresponding E-moduli:

νsn = νtn = ν0
En

E0
νns = νt s = ν0

Es

E0
νnt = νst = ν0

E t

E0
(2.1)

For shear behaviour, a constant or a variable shear retention relation can be in-

cluded. A constant shear retention factor can result in stress locking [15] and un-

expected large shear forces. The structural response can then be too strange and

too stiff because of large shear planes, even when the crack is almost fully opened.

These are not always correct and thus SLA with fixed smeared cracking has been im-

proved with variable shear retention decreasing along with Young’s modulus to re-

duce the mesh-directional bias for fixed smeared cracking [12][129][130]. Variable

shear retention, which directly depends on the crack width and reduced material

properties, is a better choice. In this way, completely opened cracks can no longer

transfer shear forces. The possibility for variable shear retention is assumed to re-

duce the shear stiffness at a rate equal to the minimum of the corresponding Young’s

Moduli:

Gns = mi n(En ,Es)

2(1+ν0
mi n(En ,Es )

E0
)

Gst = mi n(Es ,E t )

2(1+ν0
mi n(Es ,Et )

E0
)

G tn = mi n(E t ,En)

2(1+ν0
mi n(Et ,En )

E0
)

(2.2)

In addition, Coulomb friction laws have been introduced in SLA as a tension-

shear failure criterion for interface elements[131].

Various methods have been proposed to perform SLA with non-proportional

loading. The method in [9][12] has been explained in combination with the fixed

smeared crack model, and the method in [132] has been explained in combination

with the rotating smeared crack model. The difficulty is to keep the initial-load con-

stant when the current load is scaled.

In [9][12], non-proportional loading is described by the application of two load

cases, an initial load Fi ni that should be kept constant and a current load Fr e f that

is to be scaled according to damage propagation. Most of the procedure is the same

as that for the proportional loading case, but specifically is as follows:

1. Apply the first load Fi ni , calculate the stresses σi ni and then remove load one.

2. Apply the second load Fr e f as a reference load and calculate the stresses σr e f .

3. Calculate the load multipliersλ, at which the maximum principal stress result-

ing from the combination of the first and second load such that (σi ni +σr e f λ)

equals the current tensile strength f +
t i .
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4. Determine the critical integration point and calculate λcr i t .

5. Apply the critical load combination by scaling the reference Fr e f with the criti-

cal load multiplier λ from (σi ni +σr e f λcr i t ) and obtain the current stress-strain

state.

6. Remove all loads and update the stiffness and strength properties of the criti-

cal integration point according to the saw-tooth constitutive model.

7. Repeat this cycle of steps continuously, updating the properties of a single in-

tegration point after each cycle.

The non-proportional loading method in [9][12] has been improved by a con-

strained optimization suitable for large variety of non-proportional loading cases

[131]. The strategy in [131] is that either the initial load is scaled or the last "success-

ful" combination of the initial and reference load is scaled when an empty load fac-

tor is obtained, which means the initial load cannot be fully applied without damage

initiation or extension. Recently, SLA has been extended to 3-D stress state for the

fixed smeared crack model [133].

In [132], a factor v was introduced for the initial load Fi ni . In every load cycle,

the initial load is divided by v after which linear elastic analysis is performed and the

total load, which includes the scaled initial load Fi ni /v and the current load Fr e f , is

scaled by the load factor λ. The variable v is adjusted until v = λ, so at the end of

each load cycle the initial load remains constant. The algorithm in [132] is suitable

for both 2D and 3D stress state, which is also proposed in Chapter 4 of this thesis.

Compared with these two strategies of non-proportional loading, the algorithm

selects the critical integration point, to which a damage increment is applied by ex-

tra stresses [9][12] or a varying initial-load factor [132].

Although the results of these methods are encouraging, non-proportional load-

ing has limitations. The stresses may temporarily not satisfy the constitutive equa-

tions in [12]. It has been shown that the method fails when a large initial overburden

force is applied [134]. In [131], the initial load was temporarily reduced, which can

be regarded as switching from non-proportional loading to proportional loading. In

[132], the initial-load factor was not obtained for certain cases, which are discussed

in Chapter 4 and 8. Another limitation in [12] is that the work does not consider
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the actual damage state caused by the current load for the initial load; however, the

algorithm in [132] does consider this.

Due to difficulties with SLA, it has been extended to an incremental approach

called incremental sequentially linear analysis (ISLA) [13].
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2.5. OTHER METHODS TO IMPROVE ROBUSTNESS FOR

QUASI-BRITTLE NON-LINEAR ANALYSIS

In addition to developing SLA, many other research directions are being ex-

plored to improve robustness and efficiency when solving non-linear problems with

quasi-brittle materials.

The LATIN method [6][7][8] is a non-incremental iterative computational strat-

egy applied over the entire time interval. Its main features are the separation of pos-

sibly non-linear local equations in space and time and possibly linear global equa-

tions in the spatial variable, a two-step iterative approach and an ad-hoc space-

time global approximation. A difficulty is defining the search paths in the two-step

scheme, which is currently guided by numerical parameters that do not have a clear

physical meaning.

In the implicit–explicit approach (IMPL-EX), an explicit (non-iterative) scheme

and implicit (iterative) scheme are combined [135][136]. IMPL-EX combines an im-

plicit scheme of the stresses in the constitutive model with an explicit extrapolation

of the involved internal variables. IMPL-EX consists of two stages. In a first stage,

the stresses and the stress-like variable are explicitly calculated based on the stresses

and the extrapolated values of the strain-like internal variable of the previous time

step. In a second stage, the stresses and the extrapolated values of the strain-like

internal variable are implicit. The length of the time step influences the accuracy of

this method [109].

The predictive smooth unloading-reloading (SUR) approach is a non-linear in-

cremental iterative N-R method [137]. The SUR approach employs a target function

and a smooth unloading–reloading function related to a damage evolution param-

eter. The SUR function is used to compute an approximate tangent stiffness matrix.

The damage evolution parameter governs the SUR function and is updated for ev-

ery iteration from the last converged increment in each load or displacement incre-

ment. A converged value of the damage parameter is computed from the predictive

function. The predictive SUR approach has been reported to be more efficient than

the total load-unload method, but the convergence characteristics of the model are

significantly affected by the form of the SUR function. Currently, this method uses

an isotropic damage model.
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Another method to improve robustness was developed in combination with

the strong discontinuity approach [138]. Here, either a loading phase or an unload-

ing phase is defined for each increment based on the assumption that the crack

state is frozen when cracks suddenly propagate through several elements in one in-

crement. An unloading phase is performed with the frozen crack state each time a

segment of the crack is added in an element. In the case that the failure criterion is

reached simultaneously in more than one element, the crack is added in the critical

element.

Other improved approaches are the non-iterative energy-based method

(NIEM) [139] and CITA [140], both of which adopt piece-wise linear continuum laws.

NIEM employs tangent stiffness to scale global load increments according to

local discontinuity in the multi-linear stress-strain diagram[139][141]. When a bi-

furcation point is reached, it allows switching from an incremental to a total ap-

proach. The total approach is performed with the secant material stiffness when-

ever a critical bifurcation point is reached because it is impossible to incrementally

determine the effective path. This secant stiffness is decreased by a constant stiff-

ness reduction factor as in SLA. A disadvantage is that this stepwise reduction of the

secant stiffness must be defined in advance without a clear meaning. To avoid this,

the switch between an incremental and a total approach has been based on the use

of an energy dissipation criterion rather than a predefined number of reductions of

the secant stiffness. When NIEM switches to a total approach, the non-proportional

loading issue remains. Recently, NIEM has been improved to deal with the non-

proportional loading, and a fully incremental approach has been proposed to avoid

this issue [142].

In continuous, incremental-only, tangential analysis (CITA) for the New-

ton–Raphson method [140], stiffness is calculated based on a piece-wise linear

stress-strain curve tangential, which includes parts with negative values. The entire

concrete softening failure procedure, including crack propagation, can be obtained

because CITA introduces damage in steps. The CITA method limits the damage

level to a single event to control the energy dissipation of a failing concrete struc-

ture when concrete is damaged due to tension softening, which is similar to the

SLA method. However, CITA incrementally continues the analysis to the next event

rather than completely unloading and reloading the structure after each event us-
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ing the current and subsequently updated secant stiffness as in SLA. Like NIEM, this

method is thus primarily incremental and driven by tangent stiffness, rather than by

total secant stiffness. CITA traces the displacement history and has been reported

to be more efficient than the load-unload method. A negative tangent stiffness may

still cause divergence problems, for example in the case of snap-backs and bifurca-

tions.

The force-release method [143] extends saw-tooth constitutive laws to an in-

cremental and non-iterative procedure, which has been proposed with a particular

emphasis on non-proportional loading. The force-release method is based on re-

leased stress redistribution and keeps each step linear. After damage of the critical

element, the force-release method involves conducting a sequentially linear redis-

tribution process of stress release until a static equilibrium state is reached. The

energy is redistributed with imposed displacement or force control loading. There-

fore, the method does not follow snap-backs because the load increments are pre-

scribed. In an attempt to follow snap-backs, the force-release method is combined

with the load-unload method by introducing external load velocity and a ratio be-

tween out-of-balance forces and the external load increment [144]. The result is a

range of possible solutions that depend on the choice of the introduced parameters.

In addition, the difficulty of non-proportional loading remains when combining the

load-unload method.
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2.6. DISCUSSION

This chapter investigates many material models and solution methods for

quasi-brittle materials. The three main problems considered in the literature dis-

cussed in the review are size dependency, mesh dependency and ill-conditioning

related to softening. Three main objectives of previous research relate to accuracy,

robustness and efficiency. Material models vary in terms of discrete versus con-

tinuum, local versus non-local, isotropic versus orthotropic, and plasticity versus

damage. Solution methods range from incremental to total and from implicit to

explicit schemes. The material models and solution methods are discussed inde-

pendently but in fact they are dependent since some solution methods fit certain

material models much better than others. They also influence the development of

each other. Based on various assumptions, it can be seen that a new method often

brings disadvantages along with advantages. From the author’s point of view, none

of these is perfect and the appropriate choice depends on the particular problems

considered.

Although a number of related research directions have been recently explained

to improve the robustness of quasi-brittle analysis, such as SLA, the LATIN method

and IMPL-EX, there is a need to better combine the advantages of total approaches

and incremental approaches while incorporating the features of orthotropic dam-

age, softening and effects of permanent strains on unloading/reloading at the con-

stitutive level. Various strategies focus on non-proportional loading in total ap-

proaches, but there is room for improvement. The incremental approach (incre-

mental sequentially analysis) is developed based on experience with total-based

SLA. The advantage of an incremental approach is the natural inclusion of non-

proportional loading, effects of permanent strains on unloading/reloading, geomet-

rically non-linear effects or transient effects. The final goal is to provide a general,

robust and accurate solution for structural problems of quasi-brittle materials. The

methods developed are validated against results from lab tests for both concrete and

masonry. The examples focus on numerical stability and robustness, and aspects of

size dependency and computation efficiency are of less concern.
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IMPROVEMENTS TO SLA

SLA has been implemented by many authors. The mathematical details vary

from case to case. In this chapter, new equations for SLA are proposed. The mate-

rial model is extended to Mohr-Coulomb with a tension cut-off. Both the tensile and

compression strength can soften, and the softening relations are extended to piece-

wise linearities. The crack direction can rotate, instead of being fixed as previously

assumed in SLA. The saw-tooth formulation is generalized to facilitate various op-

tions for stiffness reductions to obtain an accurate and smooth displacement-force

diagram.

In this chapter, the implementation of SLA is elaborated from a fundamental

point of view. This chapter is limited to proportional loading, and non-proportional

loading is considered in the next chapter.

3.1. SLA PROCEDURE

The concepts and definitions have been explained in Section 2.4. The basic

algorithm of SLA [11] is:

1. Apply a reference load Fr e f to the structure.

2. Perform a linear elastic analysis.

25
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3. Consider all elements and find the critical element and the load factor λ (this

will be elaborated in section 3.4, 3.5, 3.7).

4. Reduce the stiffness and strength of the critical element based on the saw-

tooth model (this is elaborated in section 3.6).

5. Scale all output results linearly by λ.

6. Restart at step 1 with the reduced stiffness and strength from the current cycle.

3.2. SAW-TOOTH MODEL

The local damage increments are discretized "event-by-event" in the saw-tooth

softening model [10][11]. Each time the secant stiffness is reduced, the strength is

also reduced at the local level. Figure 3.1 shows different shapes of the saw-tooth

model. The objectivity of the saw-tooth model was shown in [10]. The initial tensileSaw-tooth shape A: 
Stiffness E reduced by fixed factor 

(a) Stiffness reduced by a fixed fac-

tor

Saw-tooth shape B: 
Strength reduced in portions 

(b) Strength reduced in por-

tions

New saw-tooth shape C: 
Ripple of fixed strength range 

at 

(c) Ripple of fixed strength range

Figure 3.1: Saw-tooth models

strength or the ultimate strain are rescaled such that the fracture energy is invariant

with respect not only to the mesh size but also to the number of saw teeth adopted

to discretize the softening branch, which can make the fracture energy for SLA the

same as that of a physical non-linear analysis and also improves computational ef-

ficiency [10].

In this section, a new formulation is proposed based on stiffness reduction,

which is important for the rotating smeared crack model implemented in Section

3.6. Another advantage of this formulation compared to others is that a smooth

diagram can be obtained. Eq. (3.1) is used to determine ultimate strain for different
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element sizes. E = 30000 MPa , f t = 1.43 MPa and εu = 0.002 are used as an example.

The area under the diagram in Figure 3.2 represents the fracture energy G f divided

by the crack band width h, which is a discretization parameter associated with the

size, orientation and integration scheme of the finite element. The saw-tooth model

is adopted to determine the consecutive strength reduction in SLA.

G f = f tεuh

2
(3.1)

As it is linear analysis, each cycle’s fracture energy in SLA is written as

G f = εu f t (K −K t )h

2K
(3.2)

where K is current stiffness and t is the stiffness reduction factor, 1 which determines

next cycle’s stiffness.

The area representing the step reducing strength from B to D in Figure 3.3 is

S ABC instead of S ABD , which indicates less fracture energy for SLA.

0
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Figure 3.2: Material properties of concrete

To make SLA’s fracture energy the same as with non-linear analysis (Figure 3.3),

S AEF = S ABD (3.3)

S ABD = m2

m1
S ABC (3.4)

S AEF =
(

m′
1

m1

)2

S ABC (3.5)

1Note that the value of the stiffness reduction factor is between 0 and 1. A large value of the stiffness reduction factor

means a small stiffness reduction.
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Figure 3.3: Saw-tooth model implementation

S t =
m′

1

m1
=

√
m2

m1
(3.6)

where S t is the saw-tooth factor for one scaling, which is the ratio of the saw-tooth

strength and the original material strength of a cycle. Eq. (3.6) provides an elegant

way of implementing the saw-tooth model. It can be applied to any stiffness and

stiffness reduction, which means it is versatile and essential to the present work.

The saw-tooth model can be simplified for the constant strength (concrete

compressive plateau strength and steel material model without hardening be-

haviour),

m2 = n2

K t
= fc

K t
(3.7)

m1 = n1

K
= fc

K
(3.8)

so the saw-tooth factor is constant for each scaling cycle

S t =
m′

1

m1
= 1p

t
(3.9)

For a non-linear stress-strain function n = f (m), a similar formula can be obtained

by removing the area of arch BID (Figure. 3.4).

SB I D = SGBD H −SGB I D H (3.10)

SGBD H = (m2 −m1)(n2 +n1)

2
(3.11)

SGB I D H =
∫ m2

m1

f (m)dm (3.12)
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Figure 3.4: Saw-tooth model implementation

S ABC = m1n1 (1− t )

2
(3.13)

SB I D = (m2 −m1) (n2 +n1)−2
∫ m2

m1
f (m)dm

m1n1 (1− t )
S ABC (3.14)

S AB I D = S ABD −SB I D

= m2n1 (1− t )− (m2 −m1) (n2 +n1)+2
∫ m2

m1
f (m)dm

m1n1(1− t )
S ABC (3.15)

S t =
m′

1

m1
=

√
m2n1 (1− t )− (m2 −m1) (n2 +n1)+2

∫ m2

m1
f (m)dm

m1n1(1− t )
(3.16)

For instance, the saw-tooth model for linear tension softening is shown in Figure

3.5. A 50% and 10% stiffness reduction are shown in the figure. The maximum

strength for 50% stiffness reduction is 1.999 MPa while that for 10% stiffness reduc-

tion is 1.505 MPa. The saw-tooth factor S t becomes increasingly smaller. The factor

is almost 1 when the strain meets the ultimate strain. This also indicates that there

is almost no overshoot when the stiffness reduction is sufficiently small. However,

the small stiffness reduction influences calculation efficiency, so the concept of the

saw-tooth factor is still worthwhile.

According to research results from [10], increasing only the strength for the

saw-tooth model would overestimate the peak load while increasing only the ulti-

mate strain would underestimate it. The best option is to increase both the strength

as well as the ultimate strain for the saw-tooth model. The method to convert the

original saw-tooth model to an optimized one is simple. Multiplying both strength
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Figure 3.5: Saw-tooth model for tension softening comparing two reduction factors

and ultimate strain by
p

S t instead of S t , which is the original saw-tooth factor, keep

G f the same as the original (Eq. (3.17)).

G f =
(
S t f t

)
εu

2h
=

(p
S t f t

)(p
S tεu

)
2h

(3.17)

To make the saw-tooth factor equal to
p

S t and leave G f unchanged, both strength

and ultimate strain need to be updated. The new equations are obtained by follow-

ing Eqs(3.18) and (3.19).

f t s = f t

√
S t (3.18)

εus = εu

√
S t (3.19)

where f t s and εus are the updated strength and ultimate strain based on the saw-

tooth model. S t is derived from Eq (3.6).

The optimized saw-tooth model is shown in Figure 3.6.

3.3. MATERIAL MODEL

The previous SLA adopts a fixed crack model [11][12][129]. In a fixed crack

model, the cracking directions are recorded at the onset of cracking and not up-

dated during computations. The directions are n, s, t with n the normal direction to

the crack and s, t the tangential directions to the fixed crack. Stiffnesses Enn ,Ess ,E t t

related to the cracking directional stresses σnn ,σss ,σt t are recorded and reduced

whenever the integration point is critical. In the present study, a rotating crack

model is adopted in which the cracking directions are not recorded but recomputed
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Figure 3.6: Optimized saw-tooth model for tension softening compared with the original model

during each cycle based on the principal directions. Stiffnesses E1,E2,E3 related

to continuously rotating principal directional stresses are recomputed and reduced

whenever the integration point is critical.

The reason for choosing a rotating crack formulation is that it reduces stress

locking and possible stiff response. Such behaviour has been reported for fixed

smeared cracks in the incremental iterative analysis, depending on the choice for

shear retention along with the fixed crack plane. Another reason for choosing this

model is to account for the possibility that the cracking direction can change based

on principal directions. For the saw-tooth model of the rotating smeared crack, the

stiffness and the strength are updated based on the recomputed principal direc-

tions.

3.4. FAILURE CRITERION

SLA can work for any failure criterion. In this work, two failure criteria are ap-

plied, firstly the Mohr-Coulomb criterion for a combination of compression and

shear and secondly, the tension cut-off criterion for tensile cracking. Both of these

are suitable for 3D stress situations. Figure 3.7 shows the failure surface of the Mohr-

Coulomb criterion with tension cut-off, both in the τ, σ plane (Figure 3.7(a)) and in

the principal stress space (Figure 3.7(b)). The stresses are ordered σ3 < σ2 < σ1 in

principal directions. Stresses σ1 and σ3 are the maximum and minimum principal

stresses. Therefore,σ2 direction is not shown in Figure 3.7(b) for 3D stress situations

because the failure surface cannot reach in this direction. For 2D stress situations,

σ2 is zero. In the τ, σ plane (shear stress and normal stress), the Mohr-Coulomb
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criterion is described by the parameters c and φ, namely cohesion and the angle

of the internal friction. In the 3D principal stress space, the Mohr-Coulomb cri-

terion can be characterized by the parameters f
′

c and f t2. In addition, the tension

cut-off criterion is introduced and described by the "true" tensile strength f
′

t . f t2

can be regarded as the fictitious tensile strength of the Mohr-Coulomb criterion,

regarding the physical parameters c and φ, and does not correspond to the actual

tensile strength f
′

t . Therefore, a tension cut-off criterion is added, as indicated in

the two figures, described by the true tensile strength f
′

t . For biaxial tension, the

failure surface is determined by the tension cut-off criterion. For biaxial compres-

sion, the failure surface is determined by the Mohr-Coulomb criterion. For tension-

compression, the failure surface is determined by the Mohr-Coulomb criterion or

the tension cut-off criterion.

(a) In the τ, σ plane (b) In the principal stress space

Figure 3.7: Failure surface of the Mohr-Coulomb criterion with tension cut-off

The Mohr-Coulomb criterion reads

τ≤ c −σ tanφ (3.20)

where

σ= σ1 +σ3

2
+ σ1 −σ3

2
sinφ (3.21)

τ= σ1 −σ3

2
cosφ (3.22)

The substitution of (3.21) and (3.22) in (3.20) gives

σ1
1+ sinφ

2c cosφ
−σ3

1− sinφ

2c cosφ
≤ 1 (3.23)
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If we define f
′

c and f t2 as:

f
′

c =
2c cosφ

sinφ−1
(3.24)

f t2 = 2c cosφ

sinφ+1
(3.25)

Then, the Mohr-Coulomb criterion can be written as

σ1

f t2
+ σ3

f ′
c

≤ 1 (3.26)

The tension cut-off criterion reads

σ1

f
′

t

≤ 1 (3.27)

The inclusion of load factor λ in (3.26) and (3.27) for the Mohr-Coulomb crite-

rion with tension cut-off in SLA gives

λσ1

f t2
+ λσ3

f ′
c

= 1 (3.28)

λσ1

f ′
t

= 1 (3.29)

The parameter f t2 of the Mohr-Coulomb criterion is assumed to be constant.

The cut-off tension f
′

t and compression part f
′

c (negative value) of the Mohr-

Coulomb criterion are not constant during a computation. They are updated based

on the saw-tooth model of the rotating smeared crack model. Stiffnesses E1 and E3

are the maximum and minimum principal directional stiffnesses related to σ1 and

σ3. The maximum principal directional stiffness E1 is reduced when an element be-

comes critical with respect to the tension cut-off criterion. The minimum principal

directional stiffness E3 is reduced when an element becomes critical with respect to

the Mohr-Coulomb criterion. The tensile strength f
′

t of the tension cut-off criterion

is updated based on E1 and the material tensile stress-strain curve. The compressive

strength f
′

c of the Mohr-Coulomb criterion is updated based on E3 and the material

compressive stress-strain curve. A bilinear hardening and linear softening curve is

used for compression. This is an example of multi-linear stress-strain representa-

tion in SLA, which is detailed further in Section 3.5.

The tensile strength f t2 of the Mohr-Coulomb criterion is a fictitious value cal-

ibrated to obtain the correct shear failure.
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f t2

f ′
c

= sinφ−1

sinφ+1
(3.30)

f t2

f
′

t

= sinφ−1

ρ(sinφ+1)
(3.31)

where ρ is the ratio of tensile and compressive strength.

In this study, ρ and φ are assumed as -0.1 and 42o , reflecting concrete and

concrete-like materials, which implies that two times the tensile strength has been

used for f t2.

3.5. THE CRITICAL ELEMENT AND LOAD FACTOR

Scaling is defined here as reducing or enlarging the applied reference load by a

factor λ to make the stresses just fulfil the material strength condition (unity check).

The critical element is the element with the smallest λ of a cycle in SLA. Below are

the equations for the intersection of two lines, derived with elementary mathemat-

ics.

e = (bc −ad)m

(c −a)n − (d −b)m
, f = (bc −ad)n

(c −a)n − (d −b)m
(3.32)

n

f
= c −a

bc −ad
n − d −b

bc −ad
m (3.33)

In Figure 3.8, coordinate (m,n) represents a computed principal direction Young’s

Figure 3.8: Elementary mathematics for calculating λ= f
n
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modulus from an SLA cycle for some material point. The ratio of n
m or f

e is the prin-

cipal direction Young’s modulus. We define ε
′
1 = σ1

E1
etc. as uniaxial strain. Line

(a,b)− (c,d) represents a part of a multi-linear material failure curve. Intersection

(e, f ) represents the failure situation. Ratio
f

n
represents the load factorλ. The com-

puted strain-stress is scaled to the failure strain-stress. Equation (3.33) is used to

calculate λ.

For the Mohr-Coulomb criterion, there are two situations in compression,

namely branch 1 and branch 2 (Figure 3.9). For the tension criterion, there is only

one softening branch to be considered (Figure 3.10).

Figure 3.9: Scaling for the Mohr-Coulomb criterion

For compression of branch 1, the Mohr-Coulomb criterion (Eq. (3.28)) is eval-

uated by computing Cc1, which is
1

λ
for branch 1. Eq (3.33) is used to obtain

Cc1 = σ1

f t2
+ c1σ3 + c2ε

′
3 (3.34)

where c1 = εc0−εc00

fc00εc0− fcεc00
and c2 = fc00− fc

fc00εc0− fcεc00
.

For compression of branch 2 , the Mohr-Coulomb criterion (Eq. (3.28)) is eval-

uated by

Cc2 = σ1

f t2
+ c3σ3 + c4ε

′
3 (3.35)
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where c3 = εc−εc0

fcεc
and c4 = fc

fcεc
.

The largest
1

λ
of branch 1 and branch 2 is the correct one,

Cm−c = max(Cc1,Cc2) (3.36)

Figure 3.10: Scaling for tension cut-off

For tension, the tension cut-off criterion (Eq. (3.29)) is evaluated by computing

C t

C t = t1σ1 + t2ε
′
1 (3.37)

where t1 = εt−εt0

ft εt
and t2 = ft

ft εt
.

The correct
1

λ
is the largest of the Mohr-Coulomb value Cm−c and the tension

cut-off value C t .

Note that the formulas for calculating the Mohr-Coulomb criterion can be used

to include bilinear tension stiffening behaviour. Actually, the procedure for multi-

linear behaviour is the same as for bilinear behaviour except for

Cm−c = max(Cc1,Cc2,Cc3...) (3.38)

3.6. STIFFNESS REDUCTION OF ORTHOTROPIC DAMAGE

In an isotropic damage model, stiffness is reduced in all directions, which is

easy to implement but physically unrealistic. In contrast, in an orthotropic damage
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model, stiffness in the fixed (fixed smeared crack) or the principal directions (rotat-

ing smeared crack) can be reduced to different degrees. To this end, the stiffness

matrix needs to be transformed to the fixed or the principal directions, reduced and

transformed back. In a publication [130] on orthotropic damage, as soon as load

increments cause the principal stress to violate the tensile strength, a crack was

initiated perpendicular to the direction of the critical principal stress. After crack

initiation in this critical integration point, the crack direction is fixed (fixed crack

model). However, in the present new orthotropic model, damage in each step is in

one of the principal directions of the critical element, which means it can still carry

loads in the other directions. The damage direction changes along with the princi-

pal direction step-by-step (rotating crack model). Below is the procedure to reduce

one of the principal direction’s Young’s moduli and update relevant shear moduli

and Poisson’s ratios.

At any time, the following data can be retrieved through analysis. These are the

critical element’s stress state (σx , σy , σz , σx y ,σy z and σxz ) and material properties(
Ex , Ey , Ez , vx y , vy x , vy z , vz y , vxz , vzx , Gx y , Gy z and Gxz

)
.

Further, the principal direction cosine matrix [M ] can be obtained for the stress

state. The rows of this matrix are principal direction vectors.

[M ] =


β11 β12 β13

β21 β22 β23

β31 β32 β33

 (3.39)

The rotation matrix [R] can be derived from the direction matrix [M].

[
σi ′ j ′

]= [M ]
[
σi j

]
[M ]T (3.40)

where σi ′ j ′ is the stress tensor in the principal directions and σi j is the stress tensor

in the global direction. This can be written in Voigt notation as

σ1

σ2

σ3

0

0

0


= [R]



σx

σy

σz

σx y

σy z

σxz


(3.41)



3

38 3. IMPROVEMENTS TO SLA

where [R] is evaluated as



β11
2 β12

2 β13
2 2β11β12 2β12β13 2β11β13

β21
2 β22

2 β23
2 2β21β22 2β22β23 2β21β23

β31
2 β32

2 β33
2 2β31β32 2β32β33 2β31β33

β11β21 β12β22 β13β23 β11β22 +β21β12 β12β23 +β22β13 β11β23 +β21β13

β21β31 β22β32 β23β33 β21β32 +β31β22 β22β33 +β32β23 β21β33 +β31β23

β11β31 β12β32 β13β33 β31β12 +β11β32 β32β13 +β12β33 β11β33 +β31β13


(3.42)

and [R]−1 is evaluated as



β11
2 β21

2 β31
2 2β11β21 2β21β31 2β11β31

β12
2 β22

2 β32
2 2β12β22 2β22β32 2β12β32

β13
2 β23

2 β33
2 2β13β23 2β23β33 2β13β33

β11β12 β21β22 β31β32 β21β12 +β11β22 β31β22 +β21β32 β31β12 +β11β32

β12β13 β22β23 β32β33 β22β13 +β12β23 β32β23 +β22β33 β32β13 +β12β33

β11β13 β21β23 β31β33 β21β13 +β11β23 β31β23 +β21β33 β31β13 +β11β33


(3.43)

A similar procedure can be carried out for the strain tensor.

[
εi ′ j ′

]= [M ]
[
εi j

]
[M ]T (3.44)

where εi ′ j ′ is the strain tensor in the principal directions and εi j is the strain tensor in

the global direction. This matrix equation can also be written in engineering form.



ε1

ε2

ε3

0

0

0


= [T ]



εx

εy

εz

γx y

γy z

γxz


(3.45)

The shear strains (γx y , γy z and γxz ) are the engineering shear strains, which are twice
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the tensor shear strains. [T ] is evaluated as

β11
2 β12

2 β13
2 β11β12 β12β13 β11β13

β21
2 β22

2 β23
2 β21β22 β22β23 β21β23

β31
2 β32

2 β33
2 β31β32 β32β33 β31β33

2β11β21 2β12β22 2β13β23 β11β22 +β21β12 β12β23 +β22β13 β11β23 +β21β13

2β21β31 2β22β32 2β23β33 β21β32 +β31β22 β22β33 +β32β23 β21β33 +β31β23

2β11β31 2β12β32 2β13β33 β31β12 +β11β32 β32β13 +β12β33 β11β33 +β31β13


(3.46)

and [T ]−1 is evaluated as

β11
2 β21

2 β31
2 β11β21 β21β31 β11β31

β12
2 β22

2 β32
2 β12β22 β22β32 β12β32

β13
2 β23

2 β33
2 β13β23 β23β33 β13β33

2β11β12 2β21β22 2β31β32 β21β12 +β11β22 β31β22 +β21β32 β31β12 +β11β32

2β12β13 2β22β23 2β32β33 β22β13 +β12β23 β32β23 +β22β33 β32β13 +β12β33

2β11β13 2β21β23 2β31β33 β21β13 +β11β23 β31β23 +β21β33 β31β13 +β11β33


(3.47)

Consequently, the element coordinate system is converted from the global direction

to the principal directions.

The constitutive relation in the x, y, z directions is

εx

εy

εz

γx y

γy z

γxz


= [C ]



σx

σy

σz

σx y

σy z

σxz


(3.48)

where [C ] is the compliance matrix, which is written as

1
Ex

− vx y

Ex
− vxz

Ex
0 0 0

− vy x

Ey

1
Ey

− vy z

Ey
0 0 0

− vzx

Ez
− vz y

Ez

1
Ez

0 0 0

0 0 0 1
Gx y

0 0

0 0 0 0 1
Gy z

0

0 0 0 0 0 1
Gxz


(3.49)
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The substitution of (3.41) and (3.45) in (3.48) gives

[T ]−1



ε1

ε2

ε3

0

0

0


= [C ][R]−1



σ1

σ2

σ3

0

0

0


(3.50)

which can be written as 

ε1

ε2

ε3

0

0

0


= [T ][C ][R]−1



σ1

σ2

σ3

0

0

0


(3.51)

Consequently, the compliance matrix [C ]
′

in the principal directions is

[C ]
′ = [T ] [C ] [R]−1 (3.52)

which is written as

[C ]
′ =



1
E1

− v12

E1
− v13

E1
0 0 0

− v21

E2

1
E2

− v23

E2
0 0 0

− v31

E3
− v32

E3

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G23

0

0 0 0 0 0 1
G13


(3.53)

The principal direction Young’s moduli are reduced in [C ]
′

by dividing C
′
[1,1] or

C
′
[3,3] by the stiffness reduction factor 2.

In every calculation step, the most loaded element is selected. Young’s modu-

lus of this element is reduced to, for example, 90% of its previous value. Elements

with a stiffness smaller than a certain value, for example 0.01 N/mm2, are no longer

2Note that the value of the stiffness reduction factor is between 0 and 1. A large stiffness reduction factor value means

a small stiffness reduction.
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considered to prevent the same element stiffness from being reduced in every step.

Data on the failure type is recorded for each computational step.

The reduced compliance matrix [C ]
′′

is rotated back to the element coordinate

system by

[C ]
′′′ = [T ]−1 [C ]

′′
[R] (3.54)

The elements of matrix [C ]
′′′

are used to update the element material properties.

It can occur that the smallest and the largest principal stress value are almost

the same. In this case either of these directions is the critical direction. The algo-

rithm picks only one of these directions; it picks the one that is slightly larger. It

can also occur that the principal directions interchange between the beginning and

the end of a load step. This can happen if the principal stresses are approximately

the same. If a purely rotating crack model were used, the material directions would

rotate 90o , which clearly is not realistic. The proposed algorithm does not have this

problem because it does not relate the stiffness to the local principal directions as

in a purely rotating crack model. In every load step the algorithm makes updates to

the stiffnesses in the global x, y, z coordinate system.

In addition, the fixed smeared crack model can be also used in this method.

In this case, the damage direction is rotated at the initial damage stage. After the

certain damage stage based on the maximum principal direction’s angle or Young’s

moduli, [T ] and [R] are no longer updated. Therefore, the damage direction is fixed.

Young’s moduli are updated following the previous procedure, but Poisson’s ratios

and shear moduli are updated according to Eq (2.1) and (2.2) by a reduced shear

retention factor. A constant shear retention factor can be also adopted. Below is a

discussion of Eq. (2.1).

In [12][129], it is assumed that
v21 = v31 = v0

E0
E1

v12 = v32 = v0

E0
E2

v13 = v23 = v0

E0
E3

(3.55)

where E0 and v0 are the initial Young’s modulus and Poisson’s ratio.

In the material model used in this dissertation, only diagonal terms such as
1

E1
are reduced to represent damage. All off-diagonal terms such as − v21

E1
are kept

constant. From this, it can be derived that
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
v21 = v31 = v0

∏n
i=1

E1(i )

E
′
1(i )

v12 = v32 = v0
∏n

i=1
E2(i )

E
′
2(i )

v13 = v23 = v0
∏n

i=1
E3(i )

E
′
3(i )

(3.56)

where E
′
1(i ) , E

′
2(i ) , E

′
3(i ) are the principal direction Young’s moduli of the current step

i before updating in [C ]
′
(i ) and E1(i ) , E2(i ) , E3(i ) are the updated principal direction

Young’s moduli of the current step i in [C ]
′′
(i ).

It is assumed that the principal directions change gradually step-by-step in the

rotating crack model, which means that the principal direction Young’s moduli (E
′
1(i ) ,

E
′
2(i ) , E

′
3(i ) ) of the current step before updating are approximately the same as the

principal direction Young’s moduli (E1(i−1) , E2(i−1) , E3(i−1) ) of the previous step after up-

dating. These are evaluated to
v21(n) = v31(n) = v0

∏n
i=1

E1(i )

E
′
1(i )

≈ v0
∏n

i=1
E1(i )

E1(i−1)
= v0

E0
E1(n)

v12(n) = v32(n) = v0
∏n

i=1
E2(i )

E
′
2(i )

≈ v0
∏n

i=1
E2(i )

E2(i−1)
= v0

E0
E2(n)

v13(n) = v23(n) = v0
∏n

i=1
E3(i )

E
′
3(i )

≈ v0
∏n

i=1
E3(i )

E3(i−1)
= v0

E0
E3(n)

(3.57)

Poisson’s ratios in the updated principal compliance matrix (C
′′
[1,2], C

′′
[1,3],

C
′′
[2,1], C

′′
[2,3], C

′′
[3,1] and C

′′
[3,2]) agree with calculations by Eq (3.55). The ap-

proximation may be less accurate for large crack rotations (i.e., large stiffness reduc-

tions). However, this needs to be further investigated. Eq (3.55) seems reasonable

for the situation in which when a crack rotates 90 degrees, then v21 changes from a

damage value to the initial value.

In the fixed smeared crack model, the fixed direction Young’s moduli (E
′
n(i ) , E

′
s(i ) ,

E
′
t (i ) ) of the current step before updating in [C ]

′
(i ) are always the same as the fixed

direction Young’s moduli (En(i−1) , Es(i−1) , E t (i−1) ) of the previous step after updating in

[C ]
′′
(i−1). Therefore, Eq (3.55) is absolutely correct.

3.7. APPROXIMATION OF PRINCIPAL DIRECTION YOUNG’S

MODULI

During an SLA computation, the values of σ1,σ2,σ3 are readily available for

each integration point. However, the principal direction Young’s moduli E1,E2,E3
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need to be recomputed for the rotating crack in Section 3.6. This computation is

expensive and needs to be performed for all integration points and for every SLA cy-

cle. In this section, Eq. (3.55) is used to calculate an approximate principal direction

stiffness to accelerate the procedure for selecting the critical element. However, the

selection procedure can also be based on the accurate stiffness of principal direc-

tions computed by the rotation matrix in Section 3.6. Note that the Young’s moduli

of the critical element in principal directions are still computed by the rotation ma-

trix in Section 3.6 after the critical element has been chosen.

The relation between the stiffness and strength follows from the stress-strain

curve. Typically, stress-strain curves are determined in uniaxial experiments (Figure

3.11(a)).

During SLA, the three-dimensional stress-strain state of a material point has

three principal directions, three principal stresses (σ1,σ2,σ3) and three principal

strains (ε1,ε2,ε3). The largest principal stress and the corresponding strain govern

tension failure. The point (ε1,σ1) can be plotted on the graph of the stress-strain

curve (Figure 3.11(b)). In general, this point is not on the line of the reduced stiff-

ness. This is due to the stresses in the other principal directions and the correspond-

ing lateral contraction. Occasionally, the strain ε1 can even be negative, which forces

the point (ε1,σ1) completely left of the curve.

(a) Material stress-strain curve (b) Stress-strain state

Figure 3.11: Material stiffness

In SLA, the reference load and associated stresses are scaled such that the fail-
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ure criterion is fulfilled. Figure 3.11(b) shows that linearly scaling the stresses and

strains does not produce a correct point on the damaged material curve. In some

situations, the point scales to the origin, which is clearly unrealistic. If we do not

know the current stiffness, we do not know the strength. If we do not know the

strength, we cannot scale the load.

The solution is to remove the lateral contraction due to the stresses in the other

principal directions. This changes the strain ε1 into ε
′
1, and then the stress-strain

point (ε
′
1,σ1) is on the line of reduced stiffness (Figure 3.11(b)). This solution is not

just a computational strategy; it is an important part of the description of material

behaviour.

Hooke’s law of an orthotropic material reads
ε1 = σ1

E1
− v12

E2
σ2 − v13

E3
σ3

ε2 = −v21

E1
σ1 + σ2

E2
− v23

E3
σ3

ε3 = −v31

E1
σ1 − v32

E2
σ2 + σ3

E3

(3.58)

The substitution of (3.55) in (3.58) gives
ε1 = σ1

E1
− v0

E0
σ2 − v0

E0
σ3

ε2 = −v0

E0
σ1 + σ2

E2
− v0

E0
σ3

ε3 = −v0

E0
σ1 − v0

E0
σ2 + σ3

E3

(3.59)

From (3.59), the stiffness is solved
E1 = σ1

ε1+ v0
E0
σ2+ v0

E0
σ3

E2 = σ2

ε2+ v0
E0
σ1+ v0

E0
σ3

E3 = σ3

ε3+ v0
E0
σ1+ v0

E0
σ2

(3.60)

It can be seen that Young’s modulus in a certain direction depends not only on

the stress and strain in the current direction but also on other directions as well as

the initial ratio of Young’s modulus and Poisson’s ratio.

From Eq. (3.60), ε
′
1 = σ1

E1
etc. are solved

ε
′
1 = ε1 + v0

E0
σ2 + v0

E0
σ3

ε
′
2 = ε2 + v0

E0
σ1 + v0

E0
σ3

ε
′
3 = ε3 + v0

E0
σ1 + v0

E0
σ2

(3.61)

The uniaxial strains ε
′
1 and ε

′
3 are used to compute principal direction Young’s mod-

uli in Section 3.5.
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3.8. DISCUSSION

The main advantage of SLA is its robustness; the algorithm is damage driven

and via a sequence of critical events, it finds the correct load-displacement path.

Disadvantages of SLA are the considerable computation time required, sensitivity

to the size of stiffness decrements and difficulties with non-proportional loading.

Several improvements are presented in this chapter. Multiple failure criteria are

available for SLA to consider the situation of tension, compression or shear. The or-

thotropic damage model is formulated based on the rotating smeared crack model.

An improved saw-tooth model is proposed, which is governed by the stiffness re-

duction factor rather than the saw-tooth number.





4
IMPROVEMENTS TO

NON-PROPORTIONAL LOADING IN

SLA

In static structural analysis, loads are often applied together (proportional

loading). However, the load order can be important, for example first prestress on

a concrete beam and subsequent removal of the formwork, which activates self-

weight. Other examples are pushover loading of a masonry wall with permanent

overburden and wind load after snow load on a roof structure. In general, non-

proportional loading is a situation in which some loads are kept constant while oth-

ers vary in time.

SLA has difficulties with non-proportional loading due to the total approach. In

non-proportional SLA, the first strategy attempted was adding the extra stresses of

the initial load into a proportional SLA scheme [12]. Instead, the applied single load

Fr e f in proportional SLA is replaced by a combination of the initial load Fi ni and

the current load Fcur in this chapter, which has been published in [132]. A major

difference from the previous approach is that the initial stresses are recomputed for

the damaged stiffness rather than the initial undamaged stiffness.

47
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The algorithm of this chapter works well for the prestressed, simply supported,

concrete-beam test in [12]. However, it failed to find a solution after certain SLA

cycles when the prestress was increased from 1 MPa to 5 MPa and subsequently

to 10 MPa. In addition, geometric non-linearity cannot be considered due to the

total approach. Therefore, SLA is extended to an incremental approach in Chapter

5. Nevertheless, the algorithm of this chapter is promising because it is simple and

relatively more robust than the conventional N-R method with standard arc-length

control based on the tests. From a mathematical point of view, this algorithm can

be perfected for non-proportional loading in SLA.

4.1. ALGORITHM PRINCIPLE

In proportional SLA, there is a single load that is the same in every analysis step.

After the step, it is scaled by a factor λ, which is determined by the failure criterion

for the most critical element. For example, the current load Fcur =λFr e f , where Fr e f ,

is a reference load. In non-proportional SLA, an extra initial load Fi ni is applied

simultaneously with Fr e f . The total load is Ft = λFr e f +Fi ni . The target is to keep

Fi ni constant while Fr e f is scaled. This can be written as Ft = λ(Fr e f +Fi ni /λ). At

the beginning of a load cycle, λ is unknown; therefore, it is estimated by v (λ of the

previous cycle or 1 for the first cycle), which is consequently Ft = λ1(Fr e f +Fi ni /v1).

After one linear elastic analysis, a better estimate of v can be made v2 =λ1. It will be

shown that the exact solution can be found in just two linear elastic analyses by an

interpolation procedure such that v andλ become almost the same and the solution

to a cycle is found.

Summarizing, in every load cycle the initial load is divided by a variable v, after

which linear elastic analysis is performed and the total load is scaled by a factor λ.

This procedure is repeated until at the end of each load cycle v = λ, such that the

initial load remains constant.

4.2. PROPOSED NON-PROPORTIONAL LOADING PROCEDURE

IN SLA
Consider a structure with two loads, Fi ni and Fcur . The loads are applied one

after the other. Load Fi ni is applied first and kept constant while load Fcur is subse-
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quently added and increased.

1. Apply loads Fi ni /v1 and Fr e f to the structure, replacing the previous loading.

v1 is estimated, for example, by λ of the previous cycle or 1 for the first cycle

(this is elaborated in section 4.3).

2. Perform linear elastic analysis.

3. Consider all elements and find the critical element and the load factor λ (this

is elaborated in section 3.4, 3.5, 3.7).

4. Apply loads Fi ni /v2 and Fr e f to the structure, replacing the previous loading.

v2 =λ1 (this is elaborated in section 4.3).

5. Perform linear elastic analysis.

6. Consider all elements and find the largest stress. The load factor λ2 is basically

failure stress over largest stress.

7. Compute the final λ of the load step. λ3 = v3 = −v1λ2 v2+λ1λ2 v2+λ1 v1 v2−λ1 v1λ2

v1λ2−λ1 v2
(this is

elaborated in section 4.3).

Now the situation is that if we multiply the load by λ3, then the structure is

loaded such that the material just fails at a certain location and the first load

is Fi ni and the second load is λ3Fr e f .

8. Reduce the stiffness and strength of the critical element based on the saw-

tooth model (this is elaborated in section 3.6).

9. Scale output results by λ3.

10. Restart at step 1 with the reduced stiffness and strength from current cycle.

4.3. CALCULATION OF INITIAL-LOAD FACTOR V

In every SLA computation step, there is a linear relation between the force mag-

nitudes and relevant stresses and strains.

This can be written as

F =λ1

(
aFi ni

v1
+bFr e f

)
(4.1)
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where F is a cross-section force at some location of the structure and a and b rep-

resent the structure. F is equal to the local capacity so that the correct λ is applied.

The equation can be rewritten.

1

λ1
= 1

F

(
aFi ni

v1
+bFr e f

)
(4.2)

where 1/λ and 1/v have a linear relation (Figure 4.1). Just two calculation steps are

sufficient to solve λ and v .

Figure 4.1: Function of initial-load factor v related to scaling factor λ

The next step is similar, so

1

λ2
= 1

F

(
aFi ni

v2
+bFr e f

)
(4.3)

where a, b and F are not changed since Young’s moduli are not modified. Fi ni re-

mains the same during the scaling back step when

λ3 = v3 (4.4)

Therefore,
1

λ3
= 1

F
(

aFi ni

v3
+bFr e f ) (4.5)

From Eqs. (4.2), (4.3) and (4.5), λ3 and v3 can be solved.

λ3 = v3 = −v1λ2v2 +λ1λ2v2 +λ1v1v2 −λ1v1λ2

λ1v2 − v1λ2
(4.6)
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If it happens that λ2 is almost equal to v1, there is no need to sub-calculate λ3. The

condition for this is ∣∣∣∣λ2 − v1

v1

∣∣∣∣ ¿ 1% (4.7)

The equation can be simplified for special situations when all forces are applied at

the same position and in the same direction.

1

λ1
= a

F

(
Fi ni

v1
+Fr e f

)
(4.8)

where F is real total failure force for this step. Therefore, just one calculation step is

needed to obtain the final λ and v.

λ2 = v2 =
Fr e f λ1v1 +Fi niλ1 −Fi ni v1

Fr e f v1
(4.9)

4.4. TEST CASE OF A SIMPLY SUPPORTED CONCRETE BEAM

An experiment by Hordijk [124] is used for testing, which is a simply supported

concrete beam with two point loads at the top (Figure 4.2). The original specimen

is a symmetric notched beam of total length 500 mm; span 450 mm; height 100

mm; thickness 50 mm and notch depth 10 mm. The distance between the loading

points in the symmetric four-point loading scheme is 150 mm. However, the notch

is removed and prestress on both ends of the beam is applied during analysis to test

the non-proportional loading algorithm of SLA. This was also used in [12] [132]. The

analysis is performed in ANSYS and ABAQUS. The concrete element is plane183, the

size of which is 5 mm.

Figure 4.2: Test model dimensions

Three load cases are considered.

1. A vertical initial load D at the top. This is applied as two-point loads of 1 kN.
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2. A horizontal initial load H at both ends of the beam. This is also applied as a

stress of 1 MPa over the total area of the beam ends.

3. A vertical current load L at the top. This is applied in the same way as load D.

The magnitude of this load is increased to failure and afterwards reduced.

Two load combinations are considered (Figure 4.3).

1. Initial load D plus current load L (both in the same direction at the same loca-

tion) in Figure 4.3(a).

2. Initial load H and current load L (in different directions and at different loca-

tions) in Figure 4.3(b).

(a)

(b)

Figure 4.3: FEM model with load combinations
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4.5. MATERIAL PROPERTIES AND FEM MODEL

This test considers softening for tension (Figure 4.4). The concrete properties

are Young’s modulus E = 32000 MPa, Poisson’s ratio ν = 0.2, tensile strength f t = 3

MPa and fracture energy G f = 0.06 N/mm. The compressive behaviour is elastic. Eq.

(4.10) [11] is used to determine ultimate strain εu for different element sizes. Figure

4.4 shows the colour range of the maximum principal strain contours.

εu = 2G f

f t h
(4.10)

where the crack band width h is related to the element size. Eight-node plane-stress

elements are used. The element size is 5 mm. For the square linear finite elements

of the present example, h is suggested as being equal to the length of the size of

the finite element. The plane element used in ABAQUS is CPS8R [145], which is

an eight-node biquadratic plane-stress quadrilateral with reduced integration. The

plane element used in ANSYS is PLANE183 [146]. It is a higher-order, 2-D, eight-

node element. The integration point scheme for both element types is 2x2, however

ANSYS averages the stress and strain of these four integration points as one element

result in the post-processing. The stiffness reductions in SLA apply to the whole

element. Therefore, the ultimate tensile strain of the ANSYS model is half that of the

ABAQUS model.

Figure 4.4: Tensile stress-strain curve and contour colour range for the concrete

Figure 4.5 shows the stiffness reductions when Young’s modulus is sequentially

reduced to 90% of the previous value.
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Figure 4.5: Sequentially reduced stiffness to 90% of the previous value

Analyses were performed by 1) standard N-R with arc length control in ABAQUS

and 2) SLA in ANSYS [132]. The same material properties, element sizes (5 mm)

and structural model were used in all analyses (Figure 4.4). In SLA and ISLA, the

rotating smeared crack model was used. In N-R, the concrete damaged plasticity

model was used to simulate concrete behaviour. The parameters inputted for this

model are: dilation angle is 30◦, eccentricity is 0.1, f b0/f c0 = 1.16, K = 0.667, and

viscosity parameter is 0, which are default values [145].

4.6. ANALYSIS AND COMPARISON OF THE RESULTS

The two load combinations were analysed. For combination one, two SLA anal-

yses with different loads were performed, and the results were compared. For the

second combination, SLA and an arc- length control analysis were performed, and

the results were compared.

Two analyses were performed. In the first analysis, the beam was loaded only

by force L at the top, which was increased until collapse. In the second analysis, the

beam was first loaded by force D =1 kN at the top. Subsequently, force L was added

to D at the top. L was increased until collapse.
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The total force-displacement curves are almost identical (Figure 4.6), and the

maximum error of total load is less than 1%.
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Figure 4.6: Initial load D and current load L were applied at the same position in the same direction (load combination

one). The curves are on top of each other.

The horizontal pressure H at the end of the beam is 1 MPa. The resultant cur-

rent load L is in the vertical direction, and the horizontal pressure H is in the hor-

izontal direction. The SLA results fit well with arc-length control analysis results

before the peak (Figure 4.7). The differences after the peak mainly result from dif-

ferent material models between SLA and arc-length control analysis as well as using

average element results and the saw-tooth model’s strength overshoot in SLA. Af-

ter the peak, arc-length control analysis suffers divergence problems while SLA still

remains robust. The prestress is "constant", ranging from 0.99 to 1.01 MPa (Figure

4.8). Further, the initial-load factors v vary together with the current load factors

λ, with almost the same values (Figure 4.9). Compared with the no prestress result

in Figure 4.6, the prestress improves the structural stiffness and its capacity. It can

be observed that the displacement is reduced at the same reaction force before the

peak, and the ultimate capacity increases from around 4.7 kN to 6.0 kN (Figure 4.10).

This is caused by failure behaviour combined with bending and shear. In addition,

prestress enhances the shear capacity.

In Figure 4.11, it can be seen that cracks are concentrated around the middle

of the beam. The structure meets the maximum load when cracks extend to the

middle height of the beam and one element’s maximum principal strain goes to the

green zone. The two cracks are almost symmetrical. However, after the peak, only
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Figure 4.7: Load-displacement curves of load combination two

Figure 4.8: Prestress in the steps of SLA
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Figure 4.9: Constant-load factor v and live-load factor λ comparison. The curves overlap.
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Figure 4.10: Prestress comparison for midspan point on concrete beam test
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the right-hand cracks continue developing. A reaction force plateau occurs in Figure

4.7 when the bottom part of the crack meets the ultimate strain. The crack patterns

align well with arc-length control results at the peak load (Figure 4.12). Neverthe-

less, the arc-length control cracks remain symmetrical after the peak while the SLA

cracks localize at one side, which is more realistic compared with the experiment.

This is because in reality, there is no absolutely symmetrical structure and structures

always have imperfections. Eventually, cracks develop to the top of the beam, which

prevents the structure from carrying more load. Moreover, there is no compressive

damage during the whole loading procedure, which also demonstrates that the or-

thotropic model works well. The damages basically develop only in the horizontal

direction (Table 4.1). The shear modulus is also reduced automatically due to the

decrease of Young’s modulus.

(a) Maximum principal strain at the peak

Element 316

(b) Maximum principal strain after the peak

Figure 4.11: Maximum principal strain contour of SLA
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Ex Ey Ez Gxy 
32000 32000 32000 13333.333 

28800.001 32000 32000 13333.333 
28851.541 31999.714 32000 13311.414 
26018.092 31999.386 32000 13286.824 
23467.793 31999.005 32000 13259.025 
21166.375 31998.65 32000 13230.901 
19094.763 31998.222 32000 13198.575 
17224.998 31997.809 32000 13165.293 
15537.75 31997.4 32000 13130.599 

14019.009 31996.887 32000 13089.959 
12648.471 31996.36 32000 13046.887 
11411.927 31995.807 32000 13000.723 
10296.483 31995.212 32000 12950.716 
9290.454 31994.559 32000 12895.991 
8383.255 31993.826 32000 12835.517 
7565.312 31992.986 32000 12768.055 
6826.449 31992.151 32000 12698.017 
6160.586 31991.153 32000 12618.358 
5559.447 31990.104 32000 12533.506 
5016.936 31988.97 32000 12441.952 
4526.734 31987.863 32000 12348.025 
4084.211 31986.706 32000 12248.514 
3684.041 31985.682 32000 12151.351 
3322.575 31984.708 32000 12053.153 
2996.529 31983.658 32000 11947.531 

2703.5 31982.047 32000 11812.801 
 

Table 4.1: Example of the stiffness reduction of element 316 marked in Figure 4.11
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(a) Maximum principal strain at the peak

(b) Maximum principal strain after the peak

Figure 4.12: Maximum principal strain contour of the arc-length method

4.7. TEST CASE OF INCREASED PRESTRESS

This section employs the same FEM model as previous tests, but the applied

prestress is increased from 1 MPa to 5MPa and subsequently to 10 MPa.

When the prestress of the test case increases from 1 MPa to 5 MPa, at the be-

ginning, the initial-load factor v can be adjusted to almost equal to the current load

factor λ, as shown in Figure 4.13. However, after several cycles, the initial load fac-

tor v cannot be adjusted to equal the live load factor λ, as shown in Figure 4.14. It

appears that the algorithm of non-proportional loading in SLA [132] as well as [12]

is suitable only for weakly non-linear situations.

Similar results can be seen when the prestress is increased to 10 MPa. Com-

pared with the prestress adjustment procedure before SLA fails to continue in Fig-

ure 4.15, the ratio between prestress factor v and live-load factor λ cannot meet 1

for SLA, as shown in Figure 4.16.

However, the proposed algorithm is still better than the N-R method with arc-

length control. Figure 4.17 shows the force-displacement diagrams for 5 MPa pre-

stress of N-R arc-length control and SLA. N-R arc-length control stops at a displace-
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Figure 4.13: Prestress adjusting ratio v/λ for SLA analysis: The first 100 cycles are shown as an example of convergence

to the correct value.
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Figure 4.14: Prestress adjusting ratio v/λ for SLA analysis: 41 cycles are shown. All shown cycles fail to converge. (The

peak has no particular meaning.)
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Figure 4.15: Prestress adjustment ratio v/λ for SLA analysis: The first 100 cycles are shown as an example of conver-

gence to the correct value.
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Figure 4.16: Prestress adjustment ratio v/λ for SLA analysis: 41 cycles are shown. All shown cycles fail to converge.(

The peak has no particular meaning.)

ment of 1.1 mm while N-R arc length control can continue up to 1.8 mm. Figure

4.18 shows the reaction force-displacement diagrams for 10 MPa prestress of SLA

and N-R arc-length control. They overlap in the beginning of the curves, but N-R

arc length still diverges before SLA. Detailed results can be seen in Chapter 8.

Figure 4.17: Reaction force-displacement diagrams for 5 MPa prestress test

4.8. DISCUSSION

This chapter focuses on non-proportional loading. The proposed algorithm

for SLA of static non-proportional loading is simple, accurate, realistic and efficient.

Since only an extra initial load is added to the original proportional loading SLA in

[132], this algorithm can be easily applied to any element type (solid, plate, shell),

failure criterion, load case (wind, snow, self-weight) or load combination. For non-
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Figure 4.18: Reaction force-displacement diagram for 10 MPa prestress

proportional loading, each SLA cycle can be determined with just two linear analy-

ses. It correctly predicts that just one crack will occur in an unreinforced beam while

the N-R method needs a notch or imperfection at the correct location to prevent bi-

furcations and to trigger localization.

Compared with two strategies of non-proportional loading[12][132], the algo-

rithm selects the critical integration point to which a damage increment is applied

by extra stresses [9][12] or a varying initial-load factor [132]. In the proposed al-

gorithm, a combination of the initial load and the current load is always applied

on a structure, and a sequence of linear elastic analysis is performed with damaged

secant stiffness. Therefore, the stresses of the initial load and the current load are re-

computed from each damaged state. However, only the stresses of the current load

are recomputed from each damaged state in the algorithm [12]. The stresses of the

initial load are computed only from the initial undamaged state and then added into

the expression of the stress state by the current load. One advantage of the proposed

algorithm is that the stresses of the initial load are evaluated based on a correct dam-

aged state for each cycle. Another advantage is that it is unnecessary to compute the

expression of stress state for different element types and failure criteria. The scaling

procedure of non-proportional loading is the same as that of proportional loading.

This proposed algorithm of non-proportional loading in SLA has some limita-

tions, however. The initial load cannot be very large or should have little influence
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on the critical element position due to the assumption that initial-load factor v and

current load factor λ have a linear relationship, otherwise a positive initial-load fac-

tor, which should equal the current load factor, cannot be obtained. In addition,

geometric non-linearity cannot be considered in this algorithm due to the total ap-

proach. Therefore, SLA is extended to an incremental approach in Chapter 5.

However, this algorithm is still suitable for weak non-linear problems that take

more steps to render v equal to λ. For strong non-linear problems, the potentially

improved solution is to simply estimate v by λ of the previous trial instead of calcu-

lating v via the interpolation procedure. Further research is needed.



5
INCREMENTAL SEQUENTIALLY

LINEAR ANALYSIS (ISLA)

In this chapter, a new algorithm is proposed that combines the advantages of

the N-R method and SLA. The author proposes the algorithm be called incremental

sequentially linear analysis (ISLA) [13][14]. The method is incremental; each incre-

ment begins and ends with an equilibrium state. The solution search path follows

damage cycles sequentially with secant stiffness, tracing both damage history (ex-

plicit) and displacement history (implicit). The method is robust because all physi-

cal non-linearity is included in these cycles.

5.1. INTRODUCTION

The idea behind the proposed method is performing an incremental analysis

with N-R iterations and linear elastic material behaviour with load or displacement

control. As soon as the stress at some point is too large, the Young’s modulus of the

considered element is reduced, and the load is reduced or increased just to the level

at which the stress is not too large.

In the proposed method, loads are directly applied onto the structure, which

means the initial load Fi ni and the current load Fcur are included instead of the ref-
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Figure 5.1: Loading schedule examples that can be applied in the new SLA

erence load Fr e f in SLA. The loads can be defined in a loading schedule, for example

hysteretic loading or monotonic loading (Figure 5.1).

Suppose that a structure is loaded by Fi ni and Fcur , the first with an initial-

load factor λi ni and the second with a current load factor λcur . This is referred to

as non-proportional loading. Here, λcur can be incremented (5.2 Load control) or

first incremented and then automatically decremented (5.3 Load scaling control).

In proportional loading, there is only λcur and no λi ni .

Just as in SLA, a utilisation value is defined. The utilisation value is determined

at the local level by the stress state and the failure surface of an element with elastic

material properties. Utilisation values are computed for each element. A utilisation

function µ is defined as the largest utilisation value of all elements, which is a func-

tion of the load factors and the stiffness matrix K at the global level. The material is

in equilibrium if

µ (λi ni , λcur , K ) ≤ 1 (5.1)

which means that the stresses or strains of the critical element (i.e., the element that

is the closest to the first or the next damage event) lie either on or within the failure

surface.

An explicit application of the untilisation function is given in Chapter 6 for one

element. A notched beam example with 9 elements which can be critical is shown

in Chapter 7. The remainder of Chapter 5 is on the formulations and algorithms of

ISLA.
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5.2. LOAD CONTROL

For load control, λi ni is fixed for all load steps and λcur is incremented. Note

that λcur is fixed within a load step. The load factor λcur is applied to imposed forces

or imposed displacements. Suppose that after load step n, the failure surface is

reached somewhere.

µn =µ (λi ni , λcur , Kn) = 1 (5.2)

where the subscripts on µ and K refer to a load step. For the next load step, λcur is

increased to λ
′
cur . If

µ1
n+1 =µ

(
λi ni ,λ

′
cur , K 0

n+1

)> 1 (5.3)

where K 0
n+1 = Kn .It is then restarted from µn , which means that the displacements

are reset to the values at the end of step n. Subsequently, the stiffness is reduced.

µ2
n+1 =µ(λi ni ,λ

′
cur , K 1

n+1) (5.4)

where K 1
n+1 means that the Young’s modulus of the critical finite element is reduced

in the stiffness matrix for this event, which is based on the rotating smeared crack

with a constant stiffness reduction factor t 1. In this model, the Young’s modulus in

principal directions of the critical finite element is reduced. An event in which the

stiffness is reduced is called a cycle. The superscripts on µ and K refer to the cycle

number within a load step.

The process is restarted fromµn and reduction of the stiffness matrix continues

until

µm+1
n+1 =µ(

λi ni ,λ
′
cur , K m

n+1

)≤ 1 (5.5)

where K m
n+1 means the stiffness matrix is reduced m times for the critical element

within a load step.

A routine with the name“Find µ” is defined in Figure 5.2. Figure 5.3 shows

the program structure diagram for the imposed loading. The structure state refers

to the displacements, velocities and accelerations of the nodes. The parameter r is

defined as the material equilibrium convergence tolerance value, which indicates

how close the stress of the critical element satisfies the constitutive law.

1Note that the value of the stiffness reduction factor is between 0 and 1. A large stiffness reduction factor value means

a small stiffness reduction.
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Perform a non-linear analysis (Newton-Raphson)
For all elements

Calculate the utilisation value
Store the maximum utilisation value as µ and the critical element number

Figure 5.2: Program structure diagram for finding µ

Save structure state

Save structure state
For all load steps

Find µ

Output results 
Find µ

Repeat if |µ-1|�r 
Reduce the stiffness of the critical element
Load structure state

Figure 5.3: Program structure diagram for load control

Therefore, for load control of ISLA, the solution is to reduce the stiffness cycle-

by-cycle when the load factors are fixed for each load step.

This algorithm has some drawbacks, however. For example, when the loading

schedule is defined by force, µ cannot become 1 simply by reducing the stiffness

when a global peak in the load-displacement behaviour is presented. Therefore, a

technique like arc-length control needs to be introduced so the peak can be passed

and snap-throughs or snap-backs can be followed. In the following section, this

technique is referred to as "load scaling control". However, an imposed displace-

ment can be applied to avoid the need for such a control method for a number of

problems.

5.3. LOAD SCALING CONTROL

For load scaling control, λi ni is fixed and λcur is incremented or decremented

depending on the capacity of the structure, which is based on µ. Two control meth-

ods are introduced below for load scaling control. Chapter 6 shows how the load

factors are scaled.
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5.3.1. DAMAGE CONTROL METHOD

Suppose that after load step n the failure surface is reached somewhere.

µn =µ (λi ni , λcur , Kn) = 1 (5.6)

For the first cycle in the next load step, if

µ1
n+1 =µ

(
λi ni ,λ1

cur , K 0
n+1

)> 1 (5.7)

where λcur
1 is an increased λcur and K 0

n+1 = Kn and the superscript on λ refers to the

cycle number of a load step, the Young’s modulus of the critical element is subse-

quently reduced and the process is restarted from µn

µ2
n+1 =µ

(
λi ni ,λ1

cur , K 1
n+1

)
(5.8)

where K 1
n+1 is the stiffness with reduced Young’s modulus of the critical element.

If µ is still larger than 1, then the process is again restarted from µn

µ3
n+1 =µ

(
λi ni ,λ2

cur , K 1
n+1

)
(5.9)

where λ2
2 is a reduced λ1

2 based on a constant reduction q or a function q(µ) (λ2
2 =

qλ1
2 orλ2

2 = q(µ)λ1
2). Parameter q is smaller than 1 but larger thanλ2/λ1

2(e.g., λ2/λ1
2 is

0.9 and q is 0.95). Parameter q can be adjusted by a decreasing function q(µ) where

q(1) = 1.

If µ is still larger than 1, then the process is repeated, restarting from µn until

µm+1
n+1 =µ(λi ni ,λm

cur , K 1
n+1) ≤ 1 (5.10)

where λm
cur means that λcur is adjusted m times, which is a reduced λm−1

cur based on a

constant reduction q or a function q(µ).

Figure 5.4 shows the program structure diagram for the load scaling control.

In this thesis, this method is called the damage control method because Young’s

modulus of just the critical element is reduced once and remains unchanged during

load factor adjustment iterations. As with SLA, only one element is damaged in each

load step of the damage control method.

Therefore, to obtain softening behaviour by force loading in ISLA, the solution

is to adjust load factors cycle-by-cycle when the stiffness is reduced only once at the

beginning for each load step.
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Find µ 
If µ�1

No Yes
Reduce the stiffness of the critical element
Load structure state
Find µ 
Repeat until |µ-1| ≤ r

Load structure state

Find µ

Save structure state
Increase λ until it becomes almost zero

Output results
Save structure state

Reduce the load

Figure 5.4: Program structure diagram of the damage control method for load scaling control

5.3.2. LOAD AND DAMAGE CONTROL METHOD

Compared with SLA, the damage control method has more calculation cycles

since several extra cycles are necessary (interpolation procedure) for each stiffness

reduction to reach an equilibrium state. To improve the efficiency of the damage

control method, the stiffness is reduced rather than fixed during load factor adjust-

ment iterations. Consequently, the total number of cycles still equals the number of

stiffness reductions. In other words, the total number of cycles is not increased by

the load factor scaling procedure.

To this end, equations (5.9) and (5.10) are adjusted. The stiffness matrix is re-

duced during iterations instead of being reduced only once and then fixed.

If µ is larger than 1, then the process is restarted from µn

µ3
n+1 =µ

(
λi ni , λcur

2, K 2
n+1

)
(5.11)

If µ is still larger than 1, then the process is again restarted from µn

µm+1
n+1 =µ(λi ni , λcur

m ,K m
n+1) ≤ 1 (5.12)

where λm
2 is a reduced λm−1

2 based on a constant reduction q or a function q(µ). The

program structure diagram is shown in Figure 5.5.

Therefore, to guarantee efficiency by the load scaling control in ISLA, the so-

lution is to introduce a function for λcur and continue reducing the stiffness during
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Find µ 
If µ�1

No Yes
Reduce the stiffness of the critical element
Load structure state
Find µ 
Repeat until |µ-1|≤ r

Reduce the stiffness of the critical element
Load structure state
Reduce the load 
Find µ

Output results
Save structure state

Save structure state
Increase λ until it becomes almost zero

Figure 5.5: Program structure diagram of the load and damage control method for load scaling control

cycles.

To summarize, if the incremental load is prescribed in load steps, it is referred

to as the load control method. Here, load can be both a prescribed force load in-

crement or a prescribed displacement load increment. If the incremental load is

scaled based on the reduced stiffness, it is referred to as the load and damage control

method. The latter is especially suitable in case the problem cannot be handled in

displacement control to obtain the post-peak behaviour. In addition, there is a third

algorithm called the damage control method. Here, the stiffness is reduced only

once in the first cycle no matter how many cycles the load step has. Since the stiff-

ness remains unchanged after the first cycle, the scaling procedure follows a linear

interpolation procedure to search for the suitable load factors. This is quite similar

to SLA in that the algorithm reaches an equilibrium state for each damage step and

the load factors are governed by the utilisation value. However, the difference is that

in ISLA, each equilibrium state search starts from the equilibrium state of the previ-

ous“load step”, which indeed is the previous damage step, instead of restarting

from the origin in the total scheme of SLA. However, in the load and damage control

method, the stiffness continues to be reduced each cycle. Accordingly, the number

of stiffness reductions is the same as the number of cycles in the load step.
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5.4. UNIFIED FRAMEWORK

ISLA comprises the load control method and the load scaling control method

as a combination of the damage control method and the load and damage control

method, which depends on how many times the stiffness can be adjusted during

cycles. For the load control method (Section 5.2) and the load and damage control

method (Section 5.3.2), the stiffness can be reduced several times cycle-by-cycle in

one load step. However, the stiffness can be reduced only once in one load step

for the damage control method (Section 5.3.1). Actually, all methods can apply dis-

placements or forces, which is shown in Section 5.5.

As a matter of fact, a unique framework can include all three algorithms by

following the algorithm below:

1. Save the structure state (displacement of all nodes is initially zero).

2. Load the structure state.

3. Apply load increment to the structure. (For the load control method, the load

increment is based on the loading schedule. For the damage control method,

the initial-load increment can be the unity load and is thus determined by the

utilisation value similar to SLA. For the load and damage control method, the

load increment can be prescribed based on a loading schedule at the begin-

ning and then scaled especially for the post-peak.)

4. Perform an N-R analysis (the two involved procedures are explained in Section

5.5).

5. Consider all elements and calculate µ.

6. Store µmax , the maximum µ and the critical element number.

7. If µmax is smaller than 1, save the structure state and go to step 2 with the next

load step.

8. For the load control method or load and damage control method, reduce the

stiffness of the critical element. For the damage control method, the stiffness

remains unchanged when it has already been reduced in this load step, other-

wise the stiffness of the critical element is reduced.
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9. For the load control method, go to step 2 with the same load increment as

for this load step. For the load scaling control method, go to step 2 with a

prescribed or a scaled load increment for this load step based on the utilisation

value.

Follow this loop until all load steps are applied or the stiffness of the structure

is extremely small.

Steps 2 to 9 comprise one cycle. The differences between these three algo-

rithms are the way the load increment is applied in Step 3 and the way the next

equilibrium state is reached with the procedure in Step 8 (stiffness changes) and

Step 9 (load changes).
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5.5. COMPUTATION PROCESS

In this section, the algorithms are illustrated by studying the incremental pro-

cess. Figure 5.6 shows the restart procedure 2 of the implicit algorithm. It is im-

portant to save and load the structure state. Only when |µ−1| is smaller than r will

the structure state be saved and overwritten. Consequently, the analysis is restarted

with the structure state of the last cycle of the previous load step. Without the restart

command, the algorithm would continue with the structure state of the previous cy-

cle, which would be incorrect. This restart procedure ensures that the calculation of

each load step is based on the correct structure state and stiffness.

Figure 5.6: Restart procedure of the algorithm

Eq. (5.13) shows how the displacement history is saved and updated incremen-

tally.

u
′ = u +∆u

′

F
′ = F +∆F

(
K ,K

′)+K
′
(∆u

′ −∆u
(
K ,K

′)
) (5.13)

Below is the interpretation of this equation with displacement states. F and F
′

are

the internal force of the current and the next equilibrium state. ∆u
′

is the incre-

mental displacement between these two equilibrium states, which means that it is

2ANSYS restart cannot reuse the factorized stiffness matrix, which causes low efficiency of the stiffness regeneration.
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an incremental procedure. ∆F (K ,K
′
) and ∆u(K ,K

′
) are the varying force and dis-

placement caused by the stiffness change (a function of the previous stiffness and

the new stiffness), which is an N-R procedure to reach a new equilibrium state due

to the stiffness change. Figure 5.7 shows how the N-R procedure works. From Load

step n-1 to Load step n, either displacements or forces can be applied. The green

lines are the possible ∆F and ∆u determined by different load types, so the green

dots are the possible temporary states before a new equilibrium state is reached.

K
′
(∆u

′ −∆u
(
K ,K

′)
) is the extra force resulting from the load factor change (either

displacements or forces), which is an N-R procedure with a constant positive secant

stiffness. Accordingly, the procedure follows the pink line to reach the new equi-

librium state (from the red dot to the pink dot)in Figure 5.7. The N-R procedure

with a constant positive stiffness ensures the robustness of the computation. Mean-

while, the N-R procedure with the stiffness change, but without any load increment,

is also essential and significant. Actually, the N-R procedure with a constant positive

secant stiffness cannot find the solution without the stiffness change, especially for

the softening behaviour. In other words, ∆F and ∆u make it possible to always use

a constant positive stiffness to search for a new equilibrium state, even for softening

behaviour.

Figure 5.7: Generic searching path of the Newton-Raphson procedure in this algorithm with the displacement states

for Load step n-1 and n

Figure 5.8 illustrates the search paths of the imposed loading of force control
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(a) Displacement control loading (b) Force control loading

Figure 5.8: Searching path for load control

and displacement control separately. F and U represent the force vector and dis-

placement vector. The blue line is the target curve. The green dotted lines present

the load steps. The red dashed lines present the current stiffness, which has been

reduced from the previous value based on the stiffness reduction. The solid black

arrow lines are the procedure paths for each cycle. The pink solid arrow lines are the

output paths for all the cycles in one load step. The solid dots are the equilibrium

states, and the open dots are the temporary trial states. It should be noted that the

paths of the dashed black lines result from internal force change along with stiffness

reduction. The N-R procedure was performed to update the internal force based on

the current displacements and the reduced stiffness. When an equilibrium state is

reached, a load increment is applied for the next load step. If µ is smaller than 1,

the next load increment is applied (Step 1→ 2 → 3 in Figure 5.8(a)). Otherwise, the

procedure restarts from the structure state of the previous load step, which means

that the displacements are reset to the values of the previous load step. Below, two

procedures of one cycle are described:

• Firstly, the secant stiffness of the critical element of the previous cycle is re-

duced by the defined stiffness reduction factor, which is the same as for SLA. It
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is noted that the damage procedure is irreversible, which means that all stiff-

ness reductions of the previous cycles are repeated before the current cycle

in this load step. Due to these stiffness reduction procedures, the internal

forces are updated based on the displacements of the previous load step and

the algorithm reaches a temporary equilibrium state, which is automatically

calculated by the non-linear implicit scheme with N-R iterations. Eq. (5.14)

is adopted to update a temporary equilibrium state for force control load-

ing while Eq. (5.15) is employed for displacement control loading. One N-R

iteration is enough for a geometrically linear analysis, but geometrical non-

linearity may require several iterations.

K
′
∆u = Fext −Fi nt (5.14)

K
′
∆u =−Fi nt (5.15)

where ∆u is an increment displacement, K
′

is the reduced stiffness, Fi nt is the

updated internal forces due to the reduced stiffness and Fext is the external

forces for force control loading.

• Secondly, the incremental load is applied, and a linear analysis is performed

for the current load step.

For instance, an equilibrium state begins at Step 8 and ends at Step 12 (a load

step). A new load increment is applied at Step 9. Subsequently, the stiffness is re-

duced sequentially from Step 10 to Step 12 (cycles). The search path of this load step

is Step 8→9→8→8a→10→8→8b→11→8→8c→12.

Figure 5.9 shows the algorithm path of the damage control method and the load

and damage control method for applying a force load.

Figure 5.10 shows a step-by-step example of the load control method with im-

posed displacement for either proportional loading or non-proportional loading

from load step n-1 to load step n. The solid red line represents the correct stiffness

for a certain equilibrium state while the dashed line stands for the estimated stiff-

ness for the imbalance state. The orange dashed line is defined as a load step. The

solid green arrow line denotes the actual calculation procedure while the dashed ar-

row line demotes the nominal outputting procedure. When |µ−1| > r for load step

n, the stiffness is reduced. Meanwhile, the procedure is restarted from load step n-1.
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(a) Damage control method (b) Load and damage control method

Figure 5.9: Search path of arc-length control

This procedure continues until the proper stiffness has been found when |µ−1| ≤ r .

Due to linear analysis with reduced stiffness, the post-procedure for result scal-

ing is allowed when µ is larger than 1. Therefore, snap-back behaviour can still be

obtained for imposed displacement control loading. Figure 5.11 shows the scaling

procedure when µ is larger than 1. The pink line indicates the scaling procedure.

However, it supports only proportional loading because of the post-procedure, oth-

erwise the initial load is also scaled with the current load for non-proportional load-

ing.

The load and damage control method involves a similar procedure as the load

control method shown in Figure 5.12. The major disparity is that the force as well as

the stiffness needs to be scaled to makeµ≤ 1. The dashed orange line represents the

load scaling procedure. Since the procedure is controlled by the load scaling control

method, snap-back behaviour can be obtained without the post-procedure of result

scaling whether it involves proportional loading or non-proportional loading.

In the damage control method, "event-by-event" [11] damage cycles can be fol-

lowed and represent the case that only one element is damaged once for each load
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10: A step-by-step example for the load control method with imposed displacement
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(a) (b)

(c) (d)

Figure 5.11: Scaling procedure of the load control method for proportional imposed displacement loading to obtain

snap-back behaviour
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: A step-by-step example of the load and damage control method with force loading
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step. The damage control method is more accurate but also more time-consuming.

Figure 5.13 shows the damage control method with force loading. Actually, the dam-

age control method can also be used for the displacement loading shown in Figure

5.14.
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(a) (b)

(c) (d)

(e)

Figure 5.13: A step-by-step example of the damage control method with force loading
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: A step-by-step example of the damage control method with displacement loading
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5.6. COMPARISON OF SLA AND ISLA
Sequentially linear analysis (SLA) and incremental sequentially linear analysis

(ISLA) have several features in common. Young’s modulus of the material around a

critical integration point is reduced. The critical integration point is defined as the

point with the largest utilisation factor. The load is adjusted to make the largest util-

isation factor equal to one. In other words, all integration points pass the utilisation

factor check.

On the other hand, there are differences between SLA and ISLA, which are

shown in Table 5.1.

Table 5.1: Differences between SLA and ISLA

ISLA
proportional loading non-proportional loading [8]

unit load is mapped back linearly load factor is solved in 3 cycles load factor is incremented or decremented
displacements are saved

one linear elastic analysis several linear elastic analyses
in each load step in each load step

several nonlinear analyses in each load step

displacements are not saved

SLA

5.7. DISCUSSION

The new algorithm extends SLA to classical non-linear implicit analysis with

N-R iterations. The name we propose for this solution method is incremental se-

quentially linear analysis (ISLA): the words“sequentially” and“linear” refer to

the established sequentially linear analysis from which the method is derived; the

word incremental refers to the incremental procedure, which is new compared to

SLA that uses a total approach.

The proposed method is highly robust, similar to SLA. The solution search path

follows damage cycles sequentially with secant stiffness, which is based on physi-

cal parameters (damage history and displacement history) instead of numerical pa-

rameters. The equilibrium state is updated based on stiffness reductions of critical

elements and load increments. Damage is also correctly introduced to the structure

at the corresponding displacements. The algorithm does not switch between meth-

ods and thus does not depend on the values of switch parameters. The method is

an incremental procedure and can be easily extended to geometrically non-linear

analysis and transient analysis, as demonstrated later.
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Indeed, an implicit scheme is chosen in this thesis (N-R iterations). However,

an explicit scheme can also be used in the algorithm. The main difference in an ex-

plicit scheme is that the algorithm with an explicit scheme continues searching from

the current state, which may not be an equilibrium state, to update incremental dis-

placements, rather than restarting from the previous equilibrium state, as with the

implicit scheme.

The following are important definitions for ISLA. The new algorithm has two

types of calculation steps: load steps and cycles. The load steps follow a loading

schedule or a scheme of scaled loads. A cycle is a step in which the stiffness is re-

duced. The structure state is the displacements, velocities and accelerations of the

nodes. Parameter r is defined as the equilibrium convergence tolerance value. The

equilibrium state is defined as the stresses or strains of the critical element equal

to or smaller than the failure surface at the local level, which is a function of the

stiffness and load factors at the global level. The main procedure is to start at an

equilibrium state, damage the stiffness and reach a new equilibrium state until all

load steps are applied.

In the load control method, each load step can contain one increase or de-

crease of the load and several reductions of Young’s modulus of various elements.

In the damage control method, each load step can contain one reduction of Young’s

modulus and several changes of the load. In the load and damage control method,

each load step can contain several changes of the load and several reductions of

Young’s modulus of various elements. Table 5.2 outlines the differences of these

methods.

Table 5.2: Changes in load and Young’s modulus within one load step

For imposed displacement loads, it is recommended that the load control

method be used. For force loads, this method can also be used, but the post-peak re-

sponse cannot be obtained. The damage control method and the load and damage

control method can be used to determine the post-peak behaviour and snap-back
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behaviour of structures. The load and damage control method is much faster than

the damage cycle method. It is also robust and provides the same results. Based on

efficiency, the load control method and the load and damage control method are

suggested for large structures.

In addition, the load control method and the load scaling control method are

recommended for a total approach such as SLA for non-proportional loading. Com-

pared with SLA in Chapter 3, the load applied to a structure is the actual load instead

of a reference load. Hereby, it is not necessary to scale the results by λ. Indeed, λ

in SLA describes both the structural capacity and the material utilisation while λ in

ISLA describes the structural capacity and µ describes the material utilisation. With

the introduction of this new constraint µ into SLA, the equilibrium is determined by

the utilisation function µ rather than a unit load with the load factor λ in standard

SLA. Compared with the non-proportional loading algorithm in Chapter 4, the main

advantage of the load scaling control method is that the solution search direction is

certain, which makes µ equal to or smaller than 1. When the load factor contin-

ues to be reduced based on µ, this target can always be achieved for the problems

mentioned in Chapter 4.





6
ELABORATION OF LOAD SCALING

CONTROL IN ISLA

Structures can be loaded by imposed forces and imposed displacements. Each

is multiplied by a load factor λ, which is increased in small steps and, after the peak

load, is reduced in small steps. The reduction steps should be such that further

damage occurs, otherwise it would be just unloading. In traditional non-linear anal-

ysis, a technique called arc-length control is used to determine the correct reduction

steps. In ISLA, it is not convenient to use arc length, so another method has been

developed to obtain the same effect. We refer to this as load scaling control.

The aim of this chapter is to elaborate load scaling control for ISLA to obtain

the after-peak behaviour of structures loaded by forces or displacements. Load scal-

ing control should make the load meet the current structure capacity, such that the

utilisation function µ is almost 1 (based on the material equilibrium convergence

tolerance value r in Chapter 5).

Two types of control methods are elaborated and validated based on the dam-

age control method and the load and damage method and demonstrated in several

applications. In the damage control method, the stiffness is reduced in one cycle

and the load is subsequently reduced in several cycles. Here, load scaling control

89
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is similar to an extrapolation procedure with fixed stiffness. In the load and dam-

age control method, the load is scaled, and the stiffness is reduced simultaneously.

Therefore, the utilisation function µ is determined by both the stiffness K and the

load factor λ. It can be expected that the utilisation function is not smooth in λ

due to the ongoing stiffness reduction, which excludes all common root-finding al-

gorithms. Therefore, a new root-finding strategy is proposed that scales the load

factor λ by a decreasing function until µ is almost 1.

In this chapter, first, the root-finding strategy in the damage control method is

explained (Section 6.1). Second, the root-finding strategy in the load and damage

control method is explained for one load step and one element (Section 6.2). For

the latter method, a parameter study is performed (Section 6.3). In Section 6.4, the

two methods are tested for several load steps and one element. In the last section

6.5, the parameters are optimized to improve accuracy and efficiency.

6.1. DAMAGE CONTROL METHOD

In the damage control method, the stiffness is reduced once and afterwards

remains fixed. When the stiffness is fixed, the situation can be regarded as linear

or weakly non-linear. Therefore, the relationship between the load factor and the

utilisation function can be solved by an extrapolation procedure (in fact, it is the

first step of the N-R method using the secant for finding roots). Equations 5.7 to

5.10 can be written as

µ1
n+1 =C0 (6.1)

µ2
n+1 =C0 +C1 (∆E)+C2λ

1
cur (6.2)

µ3
n+1 =C0 +C1 (∆E)+C2λ

2
cur (6.3)

where C0 represents the value of µ with a new load factor of Load step n +1, ∆E is

the stiffness reduction, C1 represents a non-linear function of ∆E and µ, and C2λ

represents a linear relation of λ and µ when the stiffness is fixed. The superscripts

on µ and λ refer to the cycle number within a load step. The value of the utilisation

function µ should be 1, therefore,

1 =µ4
n+1 =C0 +C1 (∆E)+C2λ

3
cur (6.4)
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From which λ3
cur can be solved.

λ3
cur =λ1

cur + (λ2
cur −λ1

cur )
1−µ2

n+1

µ3
n+1 −µ2

n+1

(6.5)

The load factor λ2
cur can be any value close to but different from λ1

cur . The algorithm

uses less iterations if λ2
cur is defined as λ1

cur over µ2
n+1. Therefore,

λ3
cur =λ1

cur

(2µ2
n+1 −1−µ2

n+1µ
3
n+1)

µ2
n+1(µ3

n+1 −µ2
n+1)

(6.6)

Equation (6.6) in fact scales the load to the level at which the most loaded element

is loaded just up to its strength, which is typical for SLA as well.

Similar to SLA, the equilibrium state of proportional loading can be reached by

scaling λ2
cur due to the way λ2

cur is defined. On the other hand, λ3
cur is needed to

obtain the equilibrium state for non-proportional loading.

Moreover, a strongly non-linear situation can also be supported by introducing

iterations of Equation (6.6). Hereby, Parameter p is defined as an adjusted value that

varies depending on µ to render |µ−1| smaller than r. Actually, p is smaller than 1

when µ is larger than 1, and vice versa.

λm
cur = λ1

cur

(2µ2
n+1 −1−µ2

n+1µ
3
n+1)

µ2
n+1(µ3

n+1 −µ2
n+1)

pm−3 (6.7)

where m is current number of cycles. After several loops, µ can be almost 1. In

addition, the stiffness reduction factor should be set close to 1 for accuracy. Figure

6.1 shows the program structure diagram for the damage control method with load

scaling control.

6.2. LOAD AND DAMAGE CONTROL METHOD

This section explains how the load factor is reduced within a load step in the

load and damage control method, the algorithm of which is shown in Figure 5.9. The

principle is to reduce the load factor and the stiffness simultaneously until the stress

of the critical element becomes equal to the strength of this element. Two simple

load reduction functions are selected, so the load can descend cycle-by-cycle. One

is a linear function:

λm
cur =λ1

cur (n
′ −m)/n

′
(6.8)
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Find µ , µ
1 = µ

 µ1≤1
Yes No

Reduce the stiffness of the critical element
Load structure state
Find µ , µ

2 = µ

No
Load structure state
Divide the load by µ2 and apply the new load
Find µ , µ

3 = µ

No
Load structure state

and apply the new load
Find µ , µ

4 = µ
Repeat until |µm-1| ≤ r

Load structure state

and apply the new load
Find µ , µ

m = µ

|µ3-1|�r
Yes

Save structure state
Increase λ until it becomes almost zero

|µ2-1|�r
Yes

Save structure state

Multiple the load by 

Output results

Multiply the load by   
2"# − 1− "&"#
"#("& − "#)

2"# −1 − "&"#
"#("& − "#) )*+&

Figure 6.1: Program structure diagram of load scaling control for the damage control method
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where m represents the cycle number and n
′

is maximum number of cycles. The

other is an exponential function:

λm
cur =λ1

cur qm−1 (6.9)

where q is the load reduction factor, which should be smaller than 1.

Figure 6.2 shows the stress-strain curve of the saw-tooth model for concrete

with linear softening of 1.43 MPa tensile strength and 0.002 ultimate strain. The

strength can be described in cycles rather than strain. Below is the function of the

strength for a certain cycle in a certain load step.

Figure 6.2: Stress-strain curve of the saw-tooth model

f (m) = f tεuEt m t m
′(

εu − ft

E

)
Et m t m′ + f t

(6.10)

where E is Young’s modulus, f t is the tensile strength, and εu is the ultimate strain for

linear softening. Et m
′
is the initial stiffness for a certain load step. The initial value

for m
′

is 0 for the undamaged state. The decreasing rate of strength depends on the

stiffness reduction factor t. This function is derived from a linear softening diagram

as in Figure 6.2.

For the load to meet the capacity, the decreasing rate of the load factor has to

be larger than that of the stiffness. The rates depend on the values of n, q in the

decreasing function and the stiffness reduction factor t.

A one element example has been studied (concrete with linear softening of 1.43

MPa tensile strength and 0.002 ultimate strain). The initial stiffness reduction factor
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t is 0.95, n is 100 and q is 0.95. Only one load step is considered, and there is no

damage beforehand. The initial stresses vary due to different load factors. These

two functions have been checked for robustness of three initial stresses. Figure 6.3

(Eq. (6.8)) and Figure 6.4 (Eq. (6.9)) show how the capacity and load decrease in

cycles, which are represented by the strength and stress of the critical element. The

solid line (Eq. (6.10)) represents the strength, which becomes lower due to the stiff-

ness reduction. The strength drops to almost 0 MPa around Cycle 150. The other

lines show the decreasing stress caused by the load reduction procedure with differ-

ent initial stresses. An equilibrium state is reached when the curves of strength and

stress meet at an intersection. For the first function (Figure 6.3), the stress can reach

strength after several cycles, even though it is set very high via a loading schedule.

A similar result can be obtained for the second function in Figure 6.4. From these

figures, it can be concluded that both the linear and exponential functions can pro-

vide equilibrium states regardless of how large the initial-load factor is, which is a

prerequisite for robustness of the method. Nevertheless, the values of n and q must

be chosen correctly. In addition, it can be seen that the exponential function re-

quires fewer cycles than the linear function.

Figure 6.3: Strength function (Eq. (6.10)) and stress due to the linear load function (Eq. (6.8)) for different initial

stresses
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Figure 6.4: Strength function (Eq. (6.10)) and stress due to the exponential function (Eq. (6.9)) for different initial

stresses

6.3. PARAMETER DETERMINATION FOR LOAD AND DAMAGE

CONTROL

In this section, a sensitivity study is performed for the stiffness reduction fac-

tor t, the linear function parameter n and the exponential function parameter q to

provide suggestions for the parameter values. Only one load step and one critical

element are considered, and there is no initial damage.

6.3.1. STIFFNESS REDUCTION FACTOR STUDY

In this subsection, Eq. (6.10) is studied. Figure 6.5 shows how the tensile

strength changes in cycles when the stiffness reduction factor t is set to 0.5, 0.9 and

0.95. It can be seen that the strength drops to almost zero around 50, 100 and 150,

respectively. In Figure 6.6, the cycle strength curve changes when the beginning

stiffness of a certain load step decreases from the undamaged state to certain levels

when t is 0.95. The beginning point of the strength curve shifts to right gradually,

along with the stiffness reduction. In other words, the initial strength for a certain

load step is the final damaged strength of the previous load step. It can be seen that

the strength decreases increasingly faster when the beginning stiffness of a certain

load step decreases. Therefore, n, q and t should be optimized based on stiffness
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reduction levels.

Figure 6.5: Cycle strength curves Eq. (6.10) for different stiffness reduction factors

Figure 6.6: Cycle strength curves Eq. (6.10) for different initial stiffnesses

6.3.2. LINEAR FUNCTION PARAMETER STUDY

The decreasing rate of the linear function Eq. (6.8) is determined by n, as shown

in Figure 6.7, when n
′

is 50, 100 and 200. The initial load factor is set to the value the

makes element stress equal to 2 MPa.
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Figure 6.7: Cycle-stress curves for different maximum numbers of cycles n (linear function Eq. (6.8))

The second-order derivation of Eq. (6.10) is written below.

d 2

dm2
f (m) = −El n(t )2εu f t

2(Et 2mεu − t m f t − t 2m f t t )

(Et mεu − t m f t + f t )3 (6.11)

The initial suggested number for n
′

is the value when d 2

d x2 f (m) is zero. For in-

stance, n
′

is 5, 35 and 72 when t is 0.5, 0.9 and 0.95, respectively. Accounting for ac-

curacy, the minimum stiffness reduction factor t is 0.75 when n
′
is 13 to ensure the

maximum number of cycles greater than 10, otherwise the structure is unloaded too

much. For an extreme situation, the maximum value n can be 369 if t is set to 0.99,

which nevertheless involves costly calculations in terms of time. Actually, n
′

needs

to be reduced when the beginning stiffness for the certain step becomes increas-

ingly smaller. If the calculation efficiency is compromised, using a smaller stiffness

reduction factor t when the value of the utilisation function µ is lower than a cer-

tain number has a better effect on improving accuracy than adjusting the maximum

number of cyclesn.

6.3.3. EXPONENTIAL FUNCTION PARAMETER STUDY

The decreasing rate of the exponential function Eq. (6.9) is determined by the

stiffness reduction factor q, as shown in Figure 6.8, when q is 0.9, 0.95 and 0.98.

According to Figure 6.8, it takes roughly 50, 100 and 200 cycles for the load to drop

to almost zero, respectively. The load needs to decrease faster than the capacity;
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therefore, the cycle number when the load is almost zero needs to be smaller than

when the capacity is almost zero. Consequently, the suggested default number for q

is 0.95 when t=0.9 while it is 0.98 when t=0.95. Similarly, q also needs to be reduced

when the beginning stiffness for a certain load step becomes increasingly smaller.
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Figure 6.8: Cycle-stress curves for different load reduction factors q(the exponential function Eq. (6.9))

6.4. SINGLE ELEMENT UNIAXIAL TENSILE TEST FOR A LOAD-

ING SCHEDULE

In this section, the damage control method and the load and damage con-

trol method with the linear load reduction function and exponential load reduction

function are investigated for a single element uniaxial tensile test with a loading

schedule rather than one load step as in the previous sections. One beam element

with length of 3 m and a cross-section of 0.00784 m2 is considered. One node is fixed

while a point load is applied at the other node in the beam direction, as in Figure 6.9.

The loading schedule for load steps is monotonic loading, and the initial load is 11

kN in Figure 6.10, which determines the load factor of the first cycle of each load

step. After the first cycle, the load factor is scaled cycle-by-cycle. Concrete prop-

erties with linear softening are selected for testing. Young’s modulus is 30000 MPa,

and Poisson’s ratio is 0.2. The tensile strength is 1.43 MPa, and the ultimate strain is

0.002. Compressive behaviour is elastic, and the stiffness reduction factor is 0.9.
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Figure 6.9: FEM model of the tensile test

Figure 6.10: Loading schedule of the tensile test

6.4.1. DAMAGE CONTROL METHOD TEST

Only one cycle of load scaling is necessary since proportional static analysis is

used. To test the second load scaling procedure, non-proportional loading is intro-

duced by first applying a constant force (10 kN). It can be seen that both results align

well with the material properties in Figure 6.11. The maximum stress and strain are

both 1.4165 MPa and 0.002. There is slightly lower stress than the tensile strength

due to Poisson’s ratio. According to Table 6.1and 6.2, non-proportional loading takes

one additional cycle to achieve a utilisation value of 1. Due to the constant force ap-

plied first, the load-step factor curve for non-proportional loading shifts vertically

down from that for proportional loading in Figure 6.12.
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Table 6.1: Utilisation values along with load steps and cycles for proportional loading

Load step 1 2 3 3 4 4 5 5 6 6
Cycle 1 1 1 2 1 2 1 2 1 2
Utilisation value 0.991 1 1.009 1 1.026 1 1.045 1 1.069 1
Load step 7 7 8 8 9 9 10 10 11 11
Cycle 1 2 1 2 1 2 1 2 1 2
Utilisation value 1.098 1 1.133 1 1.178 1 1.236 1 1.31 1
Load step 12 12 13 13 14 14 15 15 16 16
Cycle 1 2 1 2 1 2 1 2 1 2
Utilisation value 1.406 1 1.533 1 1.701 1 1.922 1 2.218 1
Load step 17 17 18 18 19 19 20 20 21 21
Cycle 1 2 1 2 1 2 1 2 1 2
Utilisation value 2.611 1 3.137 1 3.84 1 4.782 1 6.045 1
Load step 22 22 23 23 24 24 25 25 26 26
Cycle 1 2 1 2 1 2 1 2 1 2
Utilisation value 7.738 1 10.009 1 13.057 1 17.148 1 22.638 1
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Figure 6.11: Stress-strain curves for proportional loading and non-proportional loading. Both overlap with the mate-

rial property

6.4.2. LOAD AND DAMAGE CONTROL

LINEAR LOAD REDUCTION FUNCTION TEST

Two extreme situations in which the stiffness reduction factors are 0.75 at the

lowest and 0.99 (close to 1) are added to the test, as well as a default value of 0.9. The

maximum number of cycles n
′

for 0.99 is 100, which is sufficiently accurate with a

maximum allowance of 369. n
′

is 35 when t is 0.9, while n
′

is 13 when t is 0.75. The

stress-strain curve is nearly the same as the material property when the reduction

factor is 0.99 (Figure 6.13). For both situations, when t is 0.9 and 0.75, there are some
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Table 6.2: Utilisation values along with load steps and cycles for non-proportional loading

Load step 1 1 1 2 2 2 3 3 3 4 4 4
Cycle 1 2 3 1 2 3 1 2 3 1 2 3
Utilisation value 1.891 1.424 1 1.915 1.434 1 1.944 1.445 1 1.98 1.46 1
Load step 5 5 5 6 6 6 7 7 7 8 8 8
Cycle 1 2 3 1 2 3 1 2 3 1 2 3
Utilisation value 2.025 1.479 1 2.083 1.504 1 2.157 1.536 1 2.253 1.578 1
Load step 9 9 9 10 10 10 11 11 11 12 12 12
Cycle 1 2 3 1 2 3 1 2 3 1 2 3
Utilisation value 2.38 1.633 1 2.546 1.706 1 2.765 1.802 1 3.055 1.93 1
Load step 13 13 13 14 14 14 15 15 15 16 16 16
Cycle 1 2 3 1 2 3 1 2 3 1 2 3
Utilisation value 3.442 2.1 1 3.956 2.326 1 4.642 2.626 1 5.558 3.026 1
Load step 17 17 17 18 18 18 19 19 19 20 20 20
Cycle 1 2 3 1 2 3 1 2 3 1 2 3
Utilisation value 6.781 3.558 1 8.416 4.267 1 10.602 5.211 1 13.527 6.47 1

Figure 6.12: Scaled load factor comparison for proportional and non-proportional loading
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errors, especially when the stiffness is very small, as in Figure 6.14 and 6.15. A vis-

ible error occurs just after the peak when t is 0.75. This is because µ is not exactly

1 for each load step. Table 6.3 provides an example that shows the exact unit check

value when the stiffness reduction factor is 0.9. However, due to proportional static

analysis, a post-scaling procedure of results is allowed. In this case, the errors are

nearly gone in Figure 6.14 and 6.15. After several tests, apart from directly increas-

ing the stiffness reduction factor to almost 1, no clear clues are found in regard to

improving the accuracy by only defining the suitable maximum number of cycles

n
′

for each load step. This is especially tricky because the maximum number is not

constant and needs to be reduced when the beginning stiffness of the load steps is

being reduced.
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Figure 6.13: Stress-strain curves for linear function Eq. (6.8) when the stiffness reduction factor is 0.99

Table 6.3: Utilisation values for linear function Eq. (6.8) when the stiffness reduction factor is 0.9

Load step 1 2 3 4 5 6 7 8 9 10 11 12
Utilisation value 0.991 1 0.982 0.994 0.98 0.997 0.991 0.998 0.995 0.961 0.881 0.992
Load step 13 14 15 16 17 18 19 20 21 22 23 24
Utilisation value 0.889 0.895 0.899 0.901 0.902 0.903 0.903 0.903 0.903 0.903 0.903 0.903
Load step 25 26 27 28 29 30 31 32 33 34 35 36
Utilisation value 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903

The accuracy can be improved by increasing the stiffness reduction factor

when the unit check number becomes smaller than a certain value, such as 1.05.

In this case, the stiffness reduction factor would be set to 0.995 when the utilisation
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Figure 6.14: Stress-strain curves for linear function Eq. (6.8) when the stiffness reduction factor is 0.9 with and without

post-scaling

Figure 6.15: Stress-strain curves for linear function Eq. (6.8) when the stiffness reduction factor is 0.75 with and

without post-scaling
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value is lower than 1.05. Figure 6.16 shows the accuracy is improved by this proce-

dure. The effort is noticeable when the stiffness is small, which nevertheless costs

more cycles.
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Figure 6.16: Stress-strain curves for linear function Eq. (6.8) with a stiffness reduction factor that is initially 0.9 and

0.995 when then unit check value is lower than 1.05

EXPONENTIAL LOAD REDUCTION FUNCTION TEST

Since the stiffness reduction factor is 0.9, the exponential load reduction func-

tion factor is 0.95. The curve in Figure 6.17 shows good alignment with the material

properties. To be more exact, the utilisation value for each load step is 0.977, which

is the constant and has a smaller error, rather than a fluctuating and larger error

from the linear load reduction function. Speaking of efficiency, the exponential load

reduction function costs more cycles than the linear one when the beginning stiff-

ness of a certain load step is high (Load step 3). However, the same number of cycles

remains afterwards, while the cycle number for the linear load reduction function is

augmented, as well as errors (Load step 21).

Table 6.4: Utilisation value change in cycles for different functions for Load step 3

Cycle 1 2 3 4 5 6 7 8
Linear function 1.009 0.982
Exponent function 1.009 1.016 1.008 1.2 1.14 1.083 1.029 0.977
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Figure 6.17: Stress-strain curves for exponential function Eq. (6.9) when the stiffness reduction factor is 0.9

Table 6.5: Utilisation value change in cycles for different functions for Load step 21

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Linear function 5.064 1.231 1.26 1.287 1.31 1.328 1.339 1.342 1.334 1.312 1.275 1.217 1.136 1.025 0.881
Exponent function 6.045 7.679 1.77 1.2 1.14 1.083 1.029 0.977

6.5. OPTIMIZATION

This section focuses on the optimization of load scaling control. Since the utili-

sation value µ represents the relationship between the structure capacity and loads,

an optimized scheme is proposed based on µ to ensure accuracy and efficiency.

In general, when µ is larger than a value such as 2, the load factor is multiplied

by a function related toµ, such as 1.2/µ, for both methods. This situation means that

the applied load is too large compared with the current capacity of the structure.

Actually, it is recommended that an initial-load factor amplitude like λn+1
2 = 1.1λn

2 is

applied to the load increment for a load step rather than following a loading sched-

ule.

For stiffness reduction, the residual stiffness is set to improve the efficiency,

which can be 0.1% of the initial stiffness or the ratio of the residual stress and the

ultimate strain. Subsequently, the stiffness can be reduced by a large stiffness re-

duction factor or directly set as an extremely small value, which can be determined

by the ratio of the residual stress and the strain related to the crack band and the

maximum crack width.
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As for the damage control method, only an initial load factor amplitude e larger

than 1 and a stiffness reduction factor t smaller than 1 are necessary for optimiza-

tion since load scaling control is based on an extrapolation procedure. Figure 6.18

shows the optimized scheme for the damage control method, in which x and j con-

trol e and t separately. Indeed e and t are supposed to be reduced by x and j sepa-

rately when µ increases to a certain value like a.

e=e*x
t=t*j

No
λ2=λ2*e

 µ is larger than a
Yes No

It is Cycle 1
Yes

For all load steps

Figure 6.18: Optimized load scaling control for the damage control method

For the load and damage control method, the exponential load reduction func-

tion is adopted based on test results from the previous section. It can be seen that

the exponential load reduction function is more robust and accurate than the linear

load reduction function although it is less efficient than the linear load reduction

function when the stiffness is nearly unchanged. Apart from the initial load fac-

tor amplitude e and stiffness reduction factor t, the load scaling control procedure

should also be optimized. Figure 6.19 shows the optimization scheme for the load

and damage control method. Four variables smaller than 1 (f, g, h and i) are intro-

duced to replace q in the exponential function (6.9), which depends onµ. Actually, q

needs to be increasingly closer to 1 when u becomes increasingly closer to 1, which

is determined by the boundaries b, c and d. However, q cannot be extremely close to

1 because the decrease rate for load factors must be greater than the decrease rate

for stiffness, otherwise µ would be always larger than 1. In addition, these four vari-

ables should also be decreased by y (smaller than 1) when µ of the initial load factor

is larger than a.

Moreover, a similar scheme can also be introduced to increase the load factor

when µ is smaller than a certain value, for instance 0.9, to prevent a situation in

which the load factor is reduced too much.
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f=f*y  g=g*y
h=h*y i=i*y
t=t*j

µ is larger than c

λ2=λ2*h λ2=λ2*i

e=e*x
λ2=λ2*g

λ2=λ2*fYes No
Yes

µ is larger than d
Yes No

No

Yes No

For all load steps
It is Cycle 1

No
µ is larger than b

µ is larger than a

Yes
λ2=λ2*e

Figure 6.19: Optimized load scaling control for the load and damage control method

6.6. DISCUSSION

In this chapter, load scaling control is elaborated for ISLA. Consequently, the

after-peak behaviour can be obtained by force control loading. ISLA with the load

scaling control method has the possibility of being robust for quasi-brittle materials

with force control loading. In addition, load scaling control can be also employed

with displacement control loading.

For the damage control method, an extrapolation procedure is employed. This

strategy is accurate but requires extra cycles for one stiffness reduction.

For the load and damage control method, the exponential load reduction func-

tion Eq. (6.9) is adopted rather than the linear load reduction function Eq. (6.8) due

to the balance of efficiency and accuracy. An optimized scheme is implemented

based on values of the utilisation function. This load and damage control method is

robust and does not increase computation costs because the total number of cycles

equals the number of times the stiffness is reduced for all damaged elements. How-

ever, its accuracy and efficiency need to be improved. In addition, the accuracy of

the linear load reduction function can be improved by lowering the stiffness reduc-

tion factor when the utilisation value is smaller than a certain number. For further

research, it is recommended that the linear load reduction function and exponen-

tial load reduction function be combined based on stiffness reduction to improve

the accuracy and efficiency.





7
VALIDATION OF ISLA FOR

PROPORTIONAL LOADING

To validate ISLA [13][14] and compare the different methods in the approach,

an experiment [124] is used for testing, which involves a simply supported concrete

beam with a notch in the middle (Figure 7.1).

Figure 7.1: Test model of notched beam

For the load control method, a four-point loading scheme is applied in two

ways as prescribed displacements and prescribed forces. For the damage control

method and the load and damage control method, scaled forces are applied by the

load scaling control method.

109
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7.1. MATERIAL PROPERTIES AND FEM MODEL

The example considers softening for tension (Figure 7.2). The concrete proper-

ties are E=32000 MPa, Poisson’s ratio v = 0.2, tensile strength f t = 3 MPa and fracture

energy G f = 0.06 N/mm. The compressive behaviour is elastic. Eq. (7.1) is used to

determine the ultimate strain εu of the tensile strain-softening diagram, as a func-

tion of the crack band width. Figure 7.2 shows the colour range of the horizontal

tensile strain contours.

εu = 2G f

f t h
(7.1)

where the crack band width h is related to the element size. Four-node plane-stress

elements are used. The element size is 10 mm 1. For the square linear finite elements

of the present example, h is suggested to be equal to the length of the size of the finite

element.

Figure 7.2: Tensile stress-strain curve and contour colour range for concrete

Figure 7.3 shows the stiffness reduction when Young’s modulus is sequentially

reduced to 90% of the previous value. The default residual stiffness is set as 0.1% of

1In all beam analyses, the element size is 5 mm except for the analysis in this chapter, where it is 10 mm. The ex-

planation for this is as follows. The 10-mm elements with one integration point match the 10-mm notch. As a

consequence, the damage is distributed over the width of the notch and can be interpreted to occur in the middle of

this width. This situation is symmetrical with respect to the stress trajectories. The symmetrical crack pattern can be

well understood. In addition, ISLA is programmed on ANSYS, in which the material properties can be changed at the

element level instead of the integration point. Therefore, to investigate the stress-strain behaviour of the integration

point, the quadratic elements with four integration points used in other chapters are replaced by the linear elements

with one integration point. However, a 5-mm mesh produces essentially the same results as quadratic elements.
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the initial stiffness, compared with 0.001% of the initial stiffness. Subsequently, the

stiffness is set as 0.12 MPa, the corresponding crack width of which is 10 mm.
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Figure 7.3: Sequentially reduced stiffness to 90% of the previous value

Just one integration point is used in the elements above the notch while the

other elements have four integration points. Only the elements above the notch can

be damaged, and others are kept elastic. Figure 7.4 identifies nine elements above

the notch. For Elements 1, 3, 6 and 8, detailed results are shown.

Figure 7.4: Finite element mesh and element numbers ahead of the notch
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7.2. DAMAGE CONTROL FOR THE SCALED FORCE TEST

In this section, a scaled force loading test is performed by the damage control

method, as elaborated in Figure 5.13, to trace post-peak behaviour. Two-point loads

are applied, as shown in Figure 7.1. Results are outputted until the loading position

displacement is 0.5 mm. The stiffness reduction factor is 0.9, and residual stiffness

is compared to 0.1% and 0.001% of the initial stiffness.

Figure 7.5 shows the force-displacement diagrams of the damage control for

the loading position and midspan separately with different residual stiffnesses. It

can be seen that the two diagrams overlap each other, indicating good accuracy

for both residual stiffnesses. However, the total number of cycles dramatically in-

creases from 1,605 for 0.1% residual stiffness to 4,146 for 0.001% residual stiffness.

The number of cycles is three for all load steps. For non-proportional loading, the

number of cycles for all load steps increases to four. There is no error for the utili-

sation function, so the diagram of the damage control is used to compare this with

other methods in terms of accuracy.



7.2. DAMAGE CONTROL FOR THE SCALED FORCE TEST

7

113

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

To
ta

lf
or

ce
(k

N
)

Loading position displacement (mm)

0.001% residual stiffness

0.1% residual stiffness

(a) Displacements selected from the loading position

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

To
ta

lf
or

ce
(k

N
)

Midspan displacement (mm)

0.001% residual stiffness

0.1% residual stiffness

(b) Displacements selected from the bottom of the beam midspan

Figure 7.5: Load-displacement diagrams of damage control with different residual stiffnesses
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7.3. LOAD CONTROL FOR THE IMPOSED DISPLACEMENT

TEST

In this section, an imposed displacement loading test is performed by the load

control method, as elaborated in Figure 5.10. Two-point loads are applied, as shown

in Figure 7.1. Figure 7.6 indicates the step size of imposed displacements.
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Figure 7.6: Loading schedule with imposed displacement load steps of 0.01(2), 0.001(180) and 0.01(30) mm

Figure 7.7 shows the force-displacement diagrams obtained from 212 load

steps for the damage control method and load control method (midspan and load-

ing position separately). It can be seen that the two diagrams overlap each other,

indicating good accuracy for both methods. The only difference is that the dam-

age control method has traced snap-backs while the displacement from the load

control method increases monotonically. The selected steps are indicated for post-

processing. When the displacement increment is amplified by magnitudes of 2 and

5, Figure 7.8 shows the comparison of different load increments in the load control

method. It can be seen that the objectivity of load increments is achieved in for load

control.

Figure 7.9 shows the deformation and damage for six values of the displace-

ment load. It can be observed that the crack starts at the notch and slowly grows

upwards. The horizontal tensile strain contour shows the damage process.
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Figure 7.7: Load-displacement diagrams of the notched beam test for the load control and the damage control meth-

ods: (a) total force versus midspan displacement and (b) total force versus loading position displacement
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Figure 7.8: Load-displacement diagrams of the notched beam test for different displacement increments in the load

control method
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(a) Load step 16 and midspan displacement of 0.04 mm (b) Load step 39 and midspan displacement of 0.07 mm

(c) Load step 59 and midspan displacement of 0.12 mm (d) Load step 79 and midspan displacement of 0.17 mm

(e) Load step 100 and midspan displacement of 0.22 mm (f) Load step 194 and midspan displacement of 0.60mm

Figure 7.9: Horizontal tensile strains (x-direction, strain contour) for six positions marked in Figure 7.7 (imposed force

loading)

Figure 7.10 shows the principal tensile stress-strain results for element 1. The

blue dots show the principal stress and principal strain in the element integration

point for all 212 load steps. Strains larger than 0.005 are not displayed. The red

line is the defined envelope of the material tensile stress-strain curve. The dots are

sometimes below the curve because the crack grows in small jumps, which causes

local unloading. If the load steps and stiffness reductions were infinitely small, then

all the blue dots would be exactly on the red curve. In real tests, the cracks also grow

in small jumps, but this is related to material inhomogeneity instead of step size of

computational stiffness. The boxes labelled a to d are zoomed-in in Figures 7.11 to

7.14.

Figures 7.11 to 7.14 shows the development of cycles in the four load steps (in-

dicated by a to d) on the stress-strain curve in Figure 7.10. The figure shows how

the present algorithm works by going from one equilibrium state to another cycle-

by-cycle. Figure 7.14 shows the stress redistribution procedure and the difference

between a stiffness reduction in element 1 and a stiffness reduction in another ele-

ment or multiple other elements. When element 1 is the critical element, the stiff-
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Figure 7.10: Principal tensile stress versus principal tensile strain of element 1 for the load control method with im-

posed displacement loading

ness of element 1 is reduced and its stress decreases. When another element is crit-

ical, the stiffness of element 1 remains constant and its stress increases. This can be

observed in Figure 7.11 (one reduction), Figure 7.13 (one reduction) and Figure 7.14

(three reductions), while Figure 7.12 shows no reduction for element 1. In a similar

way, the results of elements 3, 6 and 8 are shown in Figures 7.15 to 7.17, respectively.

Note that when the damaged element is not critical in current cycle, the stress and

strain of this element are below the target softening curve due to the failure criterion

that the critical element is on the target softening curve.

Figure 7.18 shows the stress and strain situations of the considered elements

at the six load steps marked in Figure 7.10. It can be observed that the damage

progresses correctly and sequentially along the material curve. These figures are

consistent with the crack strain patterns in Figure 7.9.

Figure 7.19 shows the number of cycles for all load steps, the total of which is

749. It can be seen that Load step 59 has the maximum number of cycles (71). This

load step corresponds to a significant redistribution and crack growth just beyond

the peak. The critical element number fluctuates from 1 to 6, as shown in Figure

7.20, for Load step 59. Element 1 remains critical in most cycles (19), followed by

Element 6 (14). Figure 7.21 shows errors of the utilisation function for all load steps
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Figure 7.15: Principal tensile stress versus principal tensile strain of element 3 for the load control method with im-

posed displacement loading
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Figure 7.16: Principal tensile stress versus principal tensile strain of element 6 for the load control method with im-

posed displacement loading
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Figure 7.17: Principal tensile stress versus principal tensile strain of element 8 for the load control method with im-

posed displacement loading

of the load control method due to the utilisation function being not exactly 1, but

smaller than 1. The maximum error is 3.80%. However, the displacement-force di-

agrams of the load control method and damage control method overlap each other

in Figure 7.7. This is because the load steps adjacent to the load steps with relativity

large errors of the utilisation function have small errors, which immediately corrects

the error. Figure 7.22 shows the displacement (midspan and loading position) ver-

sus total reaction force curve, including results of all cycles, for Load step 59. The

reaction force continues to decrease while the midspan displacement increases in

Figure 7.22(a) and the displacement at the loading position remains the same.
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Figure 7.18: Results for four elements and six different load steps, indicated as the position along the material stress-

strain curve
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indicated in Figure 7.19 (imposed displacement loading))
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Figure 7.21: Errors of the utilisation function for all load steps of the Load control method when the stiffness reduction

factor is 0.9 (imposed displacement loading)

7.4. LOAD CONTROL FOR THE IMPOSED FORCE TEST

An imposed force loading test is also performed for the same model. Two-point

loads are applied, as shown in Figure 7.1. Imposed forces have been applied in 300

total steps of the fixed step size (0.02 kN). The elements selected for output are the

same as those for imposed displacement loading.

Figure 7.23 shows the midspan displacement-total force diagrams for the im-

posed displacement loading (previous section) and the imposed force loading. The

selected steps for post-processing are indicated . It can be seen that the two curves

overlap each other before the peak, but the curve of force control loading stops at

Load step 191 as there is no solution for a load higher than 3.8 kN. Because the load

and damage control method is not used, post-peak behaviour cannot be traced.

Figure 7.24 shows the cycle number of all load steps. The final Load step 190 has

the maximum number of cycles (14). Figure 7.25 shows how the critical element

number changes from cycle to cycle in Load step 190. Figure 7.26 shows how this

algorithm reaches a new equilibrium state (µ ≈ 1) during cycles at the peak. The

midspan displacement remains constant and then decreases periodically while the
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total reaction force is kept the same.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

To
ta

lf
or

ce
(k

N
)

Midspan displacement (mm)

Imposed displacements Imposed forces

Load step 148

Load step 130

Load step 178

Load step 190

Figure 7.23: Comparison of displacement-reaction force diagrams for imposed displacement loading and imposed

force loading

Figure 7.27 shows the deformation and damage for four values of the load. It

is observed that the crack starts at the notch and slowly grows upwards. Only four

elements are damaged. The displacement-total force diagram reaches the peak at

the moment when the strain of the first element goes into the dark green zone and

the fourth element is damaged, as shown in Figure 7.27(d).

Figures 7.28 to 7.30 show stress-strain results, which are similar to those of dis-

placement control loading.
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Figure 7.24: Number of cycles of all load steps for the load control method (imposed force loading)

1

2

3

4

0 2 4 6 8 10 12 14

C
rit
ic
al
el
em
en
tn
um
be
r

Cycle

Figure 7.25: Critical element number of every cycle in Load step 190 (imposed force loading)
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Figure 7.26: Enlargement of the peak in Figure 7.23 (imposed force loading)

(a) Load step 130 and maximum displacement of 0.043

mm

(b) Load step 148 and maximum displacement of 0.050

mm

(c) Load step 178 and maximum displacement of 0.066

mm

(d) Load step 190 and maximum displacement of 0.084

mm

Figure 7.27: Horizontal tensile strain contour for different load steps marked in Figure 7.23 (imposed force loading)
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Figure 7.28: Principal tensile stress versus principal tensile strain of element 1 for the load control method with im-
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Figure 7.30: Results for four elements in Load step 190, indicated as the position along the material stress-strain curve

7.5. LOAD AND DAMAGE CONTROL FOR THE SCALED FORCE

TEST

In Section 7.3, an imposed displacement loading is applied, which enables

tracing all pre-peak and post-peak behaviour. In the previous section, an imposed

force loading test was applied. This load control method cannot pass the peak. In

this section, a scaled force loading test is performed for the same model by the load

and damage control method, as elaborated in Figure 5.12, to trace the post-peak

behaviour. Again, two-point loads are applied, as shown in Figure 7.1. Results are

outputted until the loading position displacement is 0.5 mm, which is equal to the

last situation for imposed displacement loading (Figure 7.6). The default stiffness

reduction factor is still 0.9, which is compared with a value of 0.5. The initial value

of the load scaling factor is 1.1 and continues to be reduced.

Figure 7.31 shows force-displacement diagrams for the loading position and

midspan separately for the load and damage control method with load scaling con-

trol and compares the results with results of the load control method with imposed

displacement loading and the damage control method. It can be seen that these

diagrams overlap each other, indicating good accuracy for all methods. Figure
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7.32 shows the number of cycles for all load steps of the load and damage control

method. It can be seen that Load step 88 has the maximum number of cycles (22).

This load step corresponds to the moment when the total reaction force drops to

zero and the midspan displacement is 0.427 mm. The corresponding crack pattern

is shown in Figure 7.33. It can be observed that the x direction strain of element 8

goes to the red zone while elements 1 to 7 are fully damaged. The exponent function

used in the load and damage method is not efficient when the load is close to zero.

The total number of all cycles of all load steps is 614 for the load and damage

control method and 749 for the load control method. This is because for several

load steps, there was no damage to any element in the load control method. Figure

7.34 shows errors of the utilisation function for all load steps of the load and damage

control method, the maximum of which is 4.30%. However, these errors have little

influence on the displacement-force diagram. The reason for this is explained in

Section 7.3.

However, when the stiffness reduction factor decreases from 0.9 to 0.5, large

differences can be observed in the displacement-force diagrams for stiffness reduc-

tion factors of 0.9 and 0.5 as shown in Figure 7.37. Figure 7.35 and Figure 7.36 show

the number of cycles and the error of the utilisation function for every load step of

the load and damage control method. Although the maximum number and the to-

tal number of cycles drop to 13 and 88 compared to 2 and 614, the maximum error

of the utilisation function increases from 4.30% to 18.00%. The stiffness reduction

factor cannot be small, such as 0.5, otherwise there are not enough saw teeth to en-

sure accuracy. The solution is to add extra saw teeth below the residual stiffness or

to choose a larger stiffness reduction factor to improve accuracy. However, the ob-

jectivity of the stiffness reduction is still achieved in the load and damage control for

this coarse stiffness reduction factor.

At the global level, in the previous section (Figure 7.22), the results of cycles are

shown when the reaction force decreased from 3.17 kN in Load step 58 to 2.356 kN

in Load step 59 for the load control method. In this section, the force-displacement

diagrams from Load step 42 to Load step 52 marked in Figure 7.31 are selected for

the load and damage control method, as shown in Figure 7.38, for the same pe-

riod as the load control method. In general (Figure 7.38(a)), displacement increases

from 0.093 mm to 0.098 mm and the total reaction force decreases from 3.18 kN to
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Figure 7.33: Horizontal tensile strain contour of Load step 82 marked in Figure 7.31 (Load and damage control

method)
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Figure 7.36: Errors of the utilisation function for all load steps of the load and damage control method when the
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2.35 kN. Snap-backs are traced in Figure 7.38(c) while the displacement increases in

Figure 7.38(b) and remains unchanged in Figure 7.38(d). In all figures, the load in-

creases in the first cycle and then continually decreases until the utilisation function

is smaller than 1, whereas the stiffness is reduced continuously.

At the local level, Figure 7.39 shows the stress-strain results for element 1. The

blue dots show the principal stress and principal strain in the element integration

point. Strains greater than 0.005 are not displayed. The orange line is the defined

envelope of the material tensile stress-strain curve. It can be seen that almost all the

blue dots are on or below the orange line. Figure 7.40 shows the stress-strain results,

including all cycles from load step 42 to 52. When element 1 is critical, its stiffness is

reduced, which causes a faster decrease of stress than of strain, for example in Figure

7.41 from Load step 45 to 46. The strain increases even when the stress decreases in

Figure 7.42. Otherwise, the stress and strain are scaled at the same rate as the secant

stiffness when element 1 is not critical in all figures.
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Figure 7.38: Force-displacement diagrams, including results of cycles
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Figure 7.39: Principal tensile stress versus principal tensile strain of element 1 for the load and damage control

method
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7.6. LOAD CONTROL FOR SNAP-BACK BEHAVIOUR TEST

To test the load control method and obtain snap-back behaviour for the pro-

portional imposed displacement loading, as elaborated in Figure 5.11, the tensile

strength is doubled while the ultimate strain is halved. Consequently, the fracture

energy remains identical, as shown in Figure 7.43. Meanwhile, the notch is removed

while only monotonic loading is applied, as shown in Figure 7.44. All elements were

permitted to undergo damage. Otherwise, the displacement-force diagram does

not exhibit snap-back behaviour. The loading schedule consists of 14 displacement

steps of 0.01 mm each.
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Figure 7.43: Original softening behaviour versus modified softening behaviour

Figure 7.44: Modified model without notch for snap-back behaviour test

Figure 7.45 shows the load-displacement diagrams for the modified material

properties with and without the post-scaling procedure in the load control method.

Due to the implicit method, the load step can still be very large without losing accu-

racy. The post-scaling procedure in the load control method can still obtain snap-

back behaviour from Load step 11 to Load step 12 for proportional imposed dis-

placement loading. Figure 7.46 indicates the principal tensile strain contour from
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Load steps 11 to 13, with failure behaviour changes from distribution to localization

shown in Figure 7.46(a) and 7.46(b). The localized crack continues to propagate

after the capacity peak. This phenomenon is realistic because there is no purely

symmetrical structure without imperfections. The structure becomes unstable and

begins to rotate seriously at Load step 13 because of the large stiffness distinction

between the left and right of the structure caused by the cracks on the left. As a mat-

ter of fact, the material under the loading point is damaged shown in Figure 7.46(c).

Figure 7.45: Displacement-reaction force curves for the modified material property with and without the scaling

procedure in the load control method

(a) (b)

(c)

Figure 7.46: Principal tensile strain contour for the last three load steps
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7.7. DISCUSSION

The principle, algorithms and search paths of ISLA are shown and demon-

strated in this chapter. This method is incremental; each increment begins and

ends with an equilibrium state. The solution search path follows displacement his-

tory and damage cycles sequentially with secant stiffness rather than being guided

by numerical parameters. The effectiveness of the scheme with cycles is illustrated

in detail for a number of typical prescribed load steps for the load control method

and scaled load steps for the load scaling control method. Plots of the number of

cycles per load step, element criticality and stress-strain jumps illustrate the search

path. The stiffness is reduced in all methods (load control method, damage control

method, and load and damage control method), whereas the load is prescribed in

the load control method but scaled in the damage control method and the load and

damage control method. When the stiffness is reduced, the stress is reduced at the

local level, and the total force is reduced at the global level. Strain and displacement

can increase or decrease based on the load. For the damage control method and

load and damage control method, scaling control is conducted with fixed positive

secant stiffness for an incremental load such that the stress and strain at the local

level and total force and displacement at the global level are scaled with the secant

stiffness. For the example considered, the method is highly robust, as with SLA.

Three methods are compared in this chapter, namely the load control method,

damage control method, and load and damage control method. The load control

method is suitable for imposed displacement loading. Post-peak behaviour cannot

be traced by the load control method for imposed force loading. For the load scaling

control method, the damage control method is accurate but time-consuming, while

the load and damage control method balances accuracy and efficiency. Although

the load and damage control method has some errors, which result in underesti-

mation for certain load steps, in the next load step, the structure can be reloaded

to states with a utilisation function closer to 1. Locally, the stress and strain may

deviate from the target softening curve due to the failure criterion that the criti-

cal element is on the target softening curve, which means other damaged but not

critical elements are below the curve. Globally, there is little underestimation of the

displacement-force response. The displacement-force curves of the damage control

method and the load and damage control method overlap with each other. There-
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fore, it is recommended to optimize the stiffness reduction and load scaling fac-

tors in the load and damage control method rather than to use the damage control

method, which requires almost triple the number of cycles as the load and dam-

age control method for proportional loading and four times the number for non-

proportional loading. When the stiffness reduction factor is enlarged, the total num-

ber of cycles increases.

In addition, for proportional imposed displacement loading, snap-back be-

haviour still can be obtained by a post-scaling procedure. However, for non-

proportional loading, force loading is essential to obtain snap-back behaviour.



8
VALIDATION OF ISLA FOR

NON-PROPORTIONAL LOADING

Chapter 4 shows that it is challenging to analyse non-proportional loading by

SLA. On the other hand, non-proportional loading can be naturally analysed by ISLA

[13] without modifications because it is an incremental approach. The example in

this chapter focuses on the robustness of this method for non-proportional loading

[13]. To this end, the notched beam mentioned in Chapter 4 is re-used and sub-

jected to the combination of a horizontal prestress P at both ends of the beam and

a vertical load L at the top, as illustrated in Figure 8.1. The geometry and proper-

ties are adapted from Hordijk’s experiment [124]. P is applied as a stress of 1, 5 or

10 MPa over the total area of the beam ends instead of only 1 MPa as previously

done [12] [132]. Here, the prestress is varied from low to high to illustrate aspects

of non-proportional loading. L is applied as two-point loads up to and beyond the

peak. The analyses are performed by 1) standard N-R with force control in ABAQUS,

2) standard N-R with arc-length control in ABAQUS, 3) SLA in ANSYS [132] and 4)

ISLA in ANSYS. The same material properties, element sizes (5 mm) and structural

model are used in all analyses (Section 4.5). The algorithm from Chapter 4 is used

for non-proportional loading in SLA. All the material properties, the colour range of

145
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the maximum principal strain contours, geometry dimensions and FEM model are

the same as in Section 4.5.

Figure 8.1: Test model dimension and load combination
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8.1. COMPARISON FOR LOW PRESTRESS

First, a relativity low prestress of 1 MPa is used for comparison between the load

and damage control method of ISLA and SLA, which is the same as the original FEM

model [12] to introduce non-proportional loading in SLA. Figure 8.2 shows ISLA and

SLA deliver almost the same force-displacement diagram. Moreover, for both meth-

ods, one crack is localized and propagates to the top of the beam, as shown in Fig-

ures 8.4 and 8.3. Actually, the plateau of the curve extends to more than 10 mm (not

shown). Neither method has a divergence issue.
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Figure 8.2: Reaction force-displacement diagrams for 1 MPa prestress

Figure 8.3: Maximum principal strain contour when the midspan displacement is 0.3 mm by SLA for 1 MPa prestress
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Figure 8.4: Maximum principal strain contour when the midspan displacement is 0.3 mm by ISLA for 1 MPa prestress

8.2. COMPARISON FOR MEDIUM PRESTRESS

Figure 8.5 shows the force-displacement diagrams for 5 MPa prestress of SLA,

ISLA, N-R and N-R arc-length control with marked deviation points of SLA, N-R and

N-R arc-length control. The SLA analysis stops at a displacement of 1.8 mm while

ISLA can continue up to 2.2 mm and further. The cracks have already propagated

to the top of the beam at the displacement of 2.2 mm in ISLA. Hence, ISLA results

beyond this point are not shown. The diagram of SLA is quite similar, but the N-R

method fails earlier. The reason that the SLA algorithm stops at 1.8 mm displace-

ment is explained in Section 4.7.

Figure 8.5: Reaction force-displacement diagrams for the 5 MPa prestress test

Figure 8.6 shows the crack propagation calculated by ISLA at five stages, which

are marked in Figure 8.5. Initially, symmetrical ductile cracks occur at the bottom

of the beam, and the maximum principal strain of two symmetrical critical ele-
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ments goes into the green zone in Figure 8.6(a). At this moment, the displacement-

reaction force diagram meets the end point of the initial slope. Afterwards, the right

critical crack propagates much faster than the left crack until the displacement-

reaction force diagram reaches the first peak shown in Figure 8.6(b). Subsequently,

the displacement-reaction force diagram drops slightly and then rises to a second

peak when the left critical crack catches up with the right one in Figure 8.6(c). Then,

the development of the left critical crack surpasses the right one in Figure 8.6(d).

Finally, the main cracks bifurcate, with branch cracks forming and extending to the

top of the beam in Figure 8.6(e). There is no further damage due to the elastic com-

pressive capacity. Similar crack propagation is obtained by SLA, for which the final

crack pattern is shown in Figure 8.7. The spacing of cracks is governed by the posi-

tions of the critical elements, which have the largest ratio of the maximum princi-

pal stress versus strength in a cycle. Initially, multiple elements can be critical, and

cracks start in a distributed manner. Eventually, however, only two dominant cracks

survive while other elements are unloaded. An advantage of SLA and ISLA are their

ability to handle bifurcations properly. For a four-point loaded beam, two dominant

cracks are beneath the loading positions.

(a) (b)

(c) (d)

(e)

Figure 8.6: Maximum principal strain contours of crack propagation by ISLA for the 5 MPa prestress test
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Figure 8.7: Maximum principal strain contour of final crack pattern by SLA for the 5 MPa prestress test

Figure 8.5 shows that the reaction force-displacement diagrams of N-R analysis

reach only the end point of the initial slope although the structure shows overall

hardening behaviour. The value of the initial slope is the same as with SLA and ISLA.

The N-R crack pattern is also similar to SLA and ISLA, but there are fewer cracks

(Figure 8.8).

Figure 8.8: Maximum principal strain contour of final crack pattern by N-R force control analysis for the 5 MPa pre-

stress test

Only extremely small load steps (10−7 at the end) with N-R arc-length control

can find the hardening part of the reaction force-displacement diagram shown in

Figure 8.5. The first peak is lower than in SLA and ISLA, but they align well after

the second peak. After this, they both have a similar hardening slope. As shown in

Figure 8.9, the ultimate crack pattern is similar to that of ISLA and SLA while there

are fewer cracks at the end point of the initial slope and at the first peak, which

results in lower capacity than SLA and ISLA.
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Figure 8.9: Maximum principal strain contours of crack propagation by N-R arc-length control analysis for the 5 MPa

prestress test

8.3. COMPARISON FOR HIGH PRESTRESS

Figure 8.10 shows the reaction force-displacement diagrams for 10 MPa pre-

stress of SLA, ISLA, N-R and N-R arc length control with marked deviation points of

SLA, N-R and N-R arc length control. They overlap in the beginning of the curves.

SLA fails to continue earlier than the 5 MPa prestress test and does not reach the

final hardening slope. N-R arc length control diverges before N-R force control.

Figures 8.11 and 8.12 show the crack patterns for ISLA and SLA, the positions of

which are marked in Figure 8.10. In SLA, the numerical procedure stops at the stage

of two major symmetrical cracks. ISLA continues and also shows the formation of

branch cracks. The main difference in terms of crack development in the 5 MPa pre-

stress test is that two dominant cracks simultaneously. This is caused by the higher

prestress having a greater effect on preventing cracks from propagating to the top of

the beam.

The reaction force-displacement diagram of the Newton-Raphson method

with force control is in a good agreement with SLA and ISLA from the initial slope

to the final hardening slope (Figure 8.10). The hardening behaviour can be ob-

tained without arc-length control. Figure 8.13 also shows symmetrical crack de-

velopment in N-R force control until the branch crack moment whereas ISLA has

random branch cracks.

Figure 8.14 shows the number of cycles of each load step in ISLA. For the 5

MPa prestress test, the total number of cycles in ISLA is 13,047 while the number in

SLA before divergence is 20,688. The total number of increments for N-R arc-length

control is 258,958. A very small arc length has to be employed to reach convergence,
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Figure 8.10: Reaction force-displacement diagram for 10 MPa prestress

Figure 8.11: Maximum principal strain contour of the final crack pattern by SLA for the 10 MPa prestress test
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(a) (b)

(c) (d)

(e)

Figure 8.12: Maximum principal strain contours of the crack propagation by ISLA for the 10 MPa prestress test

Figure 8.13: Maximum principal strain contours of the crack propagation by N-R force control analysis for the 10 MPa

prestress test
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with each increment having several iterations. The maximum number of cycles of a

load step in ISLA is 23. For the 10 MPa prestress test, the total number of cycles in

ISLA is 18,936 while the number in SLA before divergence is 7,519. The total number

of cycles in SLA for the 10 MPa prestress test is smaller than the number in ISLA be-

cause SLA diverges very early. The maximum number of cycles of a load step in ISLA

is 21. From these numbers, it is clear that ISLA requires the lowest number of com-

putation steps. Nevertheless, it is recommended to further improve the efficiency of

ISLA by reducing the number of cycles.

(a) 5 MPa prestress test (b) 10 MPa prestress test

Figure 8.14: Numbers of cycles of each load step in ISLA

The strength limit of the beams can be calculated by hand from equilibrium

due to the linear elastic compression zone. The limit strength is

F = 1

2
P

h −d

a
(8.1)

where P is the prestress force (uniformly applied), h is the beam depth, d is the el-

ement size and a is the horizontal distance between a load and a support reaction.

The computational results comply with this hand calculation.

8.4. DISCUSSION

The results show that ISLA is more robust than SLA and N-R arc-length control.

Non-proportional loading can be analysed without modifications in ISLA due to the

incremental approach. The principle, algorithms and search paths demonstrated

for proportional loading in Chapter 7 are the same as those for non-proportional

loading in ISLA. There is no restriction on the load definition; load cases can be
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applied and removed simultaneously or separately. Non-proportional SLA as pro-

posed in Chapter 4 does not converge for medium and high prestresses on the spec-

imens analysed in this chapter. ISLA, on the other hand, does converge.

The bending cracks in the specimens branch into multiple cracks. For accu-

rate computation of the crack branches, the N–R method with arc-length control

requires a very small step size and a great deal of computation time. ISLA also re-

quires significant computation time but is still faster than the N–R method with arc-

length control. However, the number of cycles required for ISLA needs to be reduced

to improve its efficiency. There are certainly opportunities for this.

Large prestress values prevent softening of the force-displacement relation

while the stress-strain relation does soften. The cracks of SLA and ISLA grow one

after the other intermittently, whereas the cracks grow simultaneously in the non-

linear N-R method with arc-length control. The point at which the bending cracks

branch into multiple cracks is higher for 5 MPa prestress than for 10 MPa prestress.

For even higher prestress values, the crack branching starts directly at crack initi-

ation. On the other hand, for low prestress values like 1 MPa, this point is higher

than the beam height, which results in no branch cracks and a softening force-

displacement curve.





9
EXTENSION OF ISLA TO

GEOMETRICAL NON-LINEARITY

In Chapter 5 and 6, the algorithm of ISLA is explained. In Chapter 8, the algo-

rithm is demonstrated on the physical non-linear behaviour of plain concrete. In

this chapter, geometrically non-linearity is extended to ISLA. Often, in many con-

crete and masonry structures, the geometrical non-linearity is relatively small and

can be analysed robustly by kinematic descriptions (total Lagrangian, updated La-

grangian and corotational) with N-R iterations. However, the physical non-linearity

is large and can be robustly analysed by ISLA.

The implementation principle is to consider geometric non-linearity by the

kinematic descriptions while physical non-linearity is considered in damage cycles

with reduced secant stiffness. ISLA is an incremental procedure and thus geomet-

ric non-linearity can be naturally included in ISLA. When geometric non-linearity

is considered, the B matrix (the strain-displacement relation) and geometric non-

linear matrix (which is related to the 2nd Piola-Kirchhoff stress) are updated in each

increment by the kinematic descriptions [110]. Only the material matrix is updated

by ISLA.

157
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9.1. INDIRECT DISPLACEMENT CONTROL IN LOAD AND

DAMAGE CONTROL

In standard arc-length control [113][114][116] the arc parameter works prop-

erly for problems related to geometric non-linearities but often fails due to material

instability, which leads to localized failure process zones [118][119][120]. The so-

lution is to select only the DOFs involved in the failure process instead of all DOFs

[118][119][15]. A new constraint has been developed based on the energy release

rate and does not need to predict and select the DOFs related to the localized failure

process zones [120].

Similar to arc-length control, indirect displacement control is introduced in the

load and damage control method to avoid or pass localized failure process zones. If

the current load is a concentrated nodal force, the solution is to apply imposed dis-

placement with the load control method to replace the nodal force with the load and

damage control method. However, if varying forces are applied to multiple nodes

(e.g., in case of pressure or other forms of distributed loadings), direct displacement

control is impossible. To this end, the concept of a control point in the load and

damage control method is defined for indirect displacement control to avoid or pass

localized failure process zones.

A control point is a selected node at a critical position (e.g., midspan of a simply

supported beam or plate). It is assumed that the displacement of the control point is

always increasing. Therefore, the control point is loaded by imposed displacement,

which can be defined by a loading schedule or a function such as un = un−1 +∆u,

where ∆u is an incremental displacement, instead of a force. The unbalance nodal

force factor λr of the control point is defined as the difference of the nodal force be-

tween the control point loaded by the imposed displacement and the node loaded

by the current load, the factor of which is λ2. λr of the control point can be obtained

after a cycle. The current load factor λ2 is adjusted according to the unbalanced

force (λm
2 = λm−1

2 −λm−1
r ). This procedure is repeated until λr is smaller than a tol-

erance value rr and then the next incremental imposed displacement is applied.

Figure 9.1 shows the algorithm for indirect displacement control in the load and

damage control.
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No
Reduce the stiffness of the critical element

No
λ2=λ2- lr

Load structure state
Apply u  for the control point and λ2 for rest loaded nodes 
Find µ including the Kinematic description
Obtain lr

Save structure state
u =u +�u  for the control point

|µ-1|�r
Yes

Find µ including the Kinematic description
Obtain lr  of the control point
Repeat until |µ-1|≤r  and |F r |≤r r

Output results
Save structure state

|F r |�r r

Yes

Figure 9.1: Program structure diagram of indirect displacement control of the control point in the load and damage

control method

9.2. MASONRY WALL OUT-OF-PLANE BENDING TEST

9.2.1. MODELLING APPROACH

A test [147][148] was performed at TU Delft on a wall (1.4 metres long and 2.75

metres high), loaded out-of-plane . This specimen was a single-wythe wall con-

structed of calcium silicate units (214 mm x 71 mm x 102 mm). The masonry prop-

erties were E=3500 MPa, Poisson’s ratio v = 0.21, tensile strength f t = 0.15 MPa and

fracture energy G f = 0.015 N/mm. The compressive behaviour was elastic. The wall

was subjected to a constant overburden load of 0.2 MPa and subsequently subjected

to a uniform face pressure load via airbags. The wall was fully clamped at its base.

For the top boundary, the horizontal in-plane and out-of-plane translations were

fixed, as well as all rotations, but the top boundary was free to displace vertically.

The two side supports are free. Figure 9.2 shows the experiment setup used for the

out-of-plane test. At phase one, a -30 kN line load corresponding to 0.2 MPa over-

burden was applied at the top beam in the Y direction. Then, at phase two, lateral

pressure was applied to the whole wall.

The analyses were performed by 1) geometrically linear and physically non-
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Figure 9.2: Scheme of the test setup used for the out-of-plane test
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linear N-R analysis with arc-length control [113] in ABAQUS, 2) geometrically and

physically non-linear N-R analysis with arc-length control in ABAQUS, 3) geometri-

cally linear and physically non-linear SLA in ANSYS and 4) geometrically and phys-

ically non-linear ISLA in ANSYS. In ISLA, the control point was the central node of

the wall and the stiffness reduction factor was 0.75.

The same material properties, element sizes (0.1m x 0.1m) and structural

model were used in all analyses. Masonry is modelled by eight-node quadrilateral

shell elements, which have nine integration points in the thickness direction 1. The

FEM model is shown in Figure 9.3. The top and bottom layer of the wall are marked.

Figure 9.4 shows the colour range of the principal tensile strain contours.

The aim is to validate ISLA with geometrically non-linearity by gaining the out-

of-plane mechanism of masonry walls and characterizing the post-peak behaviour

after the first crack.

1ANSYS can only update the material properties at the element level. Nine layers of shell elements with section offset

were used in ISLA
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Figure 9.3: FEM model

Figure 9.4: Contour colour range



9.2. MASONRY WALL OUT-OF-PLANE BENDING TEST

9

163

9.2.2. TEST RESULTS

Figure 9.5 shows the total lateral force versus midspan displacement diagram

for ISLA with geometrical non-linearity. The total lateral load meets the peak 10 kN

at 2.6 mm, and the peak plateau remains stable until the displacement is 5.6 mm.

Then, the total load drops below 8 kN when the midspan displacement increases

to 9 mm. Subsequently, the total load becomes almost zero when the ultimate dis-

placement is approximately 100 mm (98 mm). Figures 9.6 and 9.7 show maximum

principal strain contours from the peak until the displacement meets at around 100

mm, the positions of which are marked in Figure 9.5 for ISLA. The total force is at

the peak when maximum principal strain at both edges reaches the ultimate strain

in Figure 9.6(a) and cracks occur at the midspan of the wall in Figure 9.6(b). After-

wards, the damage is localized in one row of elements in Figure 9.6(e). The plateau

was stable until the midspan crack extended from the edges to the middle of the

wall in Figure 9.6(h). This was followed by the moment that the maximum princi-

pal strain of one row of elements reached ultimate tensile strain while other rows of

elements unloaded, as in Figure 9.7(b). Figure 9.7(e) depicts the maximum princi-

pal strains of the elements, which are not located at the midspan unloading, from

the value marked in green to the value marked in light blue. Figure 9.7(i) shows the

crack patterns in the thickness direction when the total lateral force is almost zero.

Meanwhile, the crack patterns at the edges of the wall are similar to those shown in

Figure 9.6(a) during the damage procedure from Figure 9.6(b) to Figure 9.7(i). The

major distinction is that more layers of the elements are damaged, the maximum

principal strains of which reach ultimate tensile strain.

Figure 9.8 shows the utilisation values and the unbalanced load factors of the

control point of cycles for the load steps at positions e and f. It can be seen that an

equilibrium state is not reached until the utilisation valueµ is smaller than 1 and the

unbalanced force factor λr of the control point is smaller than 1. For the load step

at position e, µ is 0.971 and λr is 0.184 when an equilibrium state is reached at cycle

13. For the load step at position f, µ is 0.995 and λr is 0.009 when an equilibrium

state is reached at cycle 6.

Figure 9.9 shows midspan displacement versus total lateral force diagrams for

ISLA, SLA and the N-R method with arc-length control. The deviation points of N-R

and SLA are marked in Figure 9.9. It can be observed that the peak capacities agree
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Figure 9.5: Total lateral force versus midspan displacement curve for ISLA with geometrical non-linearity

well for these four analyses. However, the post-peak behaviour is different. The

geometrically linear analyses from both SLA and the N-R method show a plateau

and slight hardening behaviour. They do not exhibit post-peak softening. This con-

firms at geometrical non-linearity is essential for this problem. Geometrically non-

linearity governs post-peak softening behaviour. ISLA can trace the total load to po-

sition f when it becomes almost zero and midspan displacement is approximately

100 mm. However, the N-R method with arc-length control [113] diverges close to

position e when the midspan displacement is roughly 50 mm. This divergence is

related to the localized failure process zones, which are shown later. Possible solu-

tions for arc-length control [113] are to select only the DOFs involved in the failure

process [118][119][15] or a new constraint based on the energy release rate[120].

Figure 9.10 shows the crack patterns at the edges and midspan by the N-R

method with geometrical non-linearity, the positions of which are marked in Fig-

ure 9.9. The edge and midspan cracks are reliable when the capacity meets the peak

shown in Figures 9.10(a) and 9.10(b). Figures 9.10(c) and 9.10(d) depict midspan

crack development after the peak, showing a discontinuous contour of several ele-

ments. The geometrical and physical non-linearity cause localized failure process
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(a) Top layer, position a (b) Bottom layer, posi-

tion a

(c) Thickness direction

of position a

(d) Top layer, position

b

(e) Bottom layer, posi-

tion b

(f) Thickness direction

of position b

(g) Top layer, position

c

(h) Bottom layer, posi-

tion c

(i) Thickness direction

of position c

Figure 9.6: Damage procedure shown by maximum principal strain contour from position a to position c by ISLA with

geometrical non-linearity
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(a) Top layer, position

d

(b) Bottom layer, posi-

tion d

(c) Thickness direction

of position d

(d) Top layer, position

e

(e) Bottom layer, posi-

tion e

(f) Thickness direction

of position e

(g) Top layer, position f (h) Bottom layer, posi-

tion f

(i) Thickness direction

of position f

Figure 9.7: Damage procedure shown by maximum principal strain contour from position d to position f by ISLA with

geometrical non-linearity
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Figure 9.8: Cycle versus the utilisation value and the unbalanced load factor of the control point
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Figure 9.9: Midspan displacement-force curves for comparison of ISLA, SLA and the N-R method with arc-length

control

zones, which is an unrealistic equilibrium state. The damage procedure thus cannot

be traced properly.

Figure 9.11 shows the maximum principal strain contour when the total reac-

tion force drops to around 8 kN from SLA, the positions of which are marked in

Figure 9.9. The crack patterns are similar to those from ISLA. However, SLA exhibits

hardening behaviour after this due to the lack of geometrical non-linearity in the

current version of SLA.

9.3. DISCUSSION

ISLA exhibits robustness and accuracy when geometrical non-linearity is con-

sidered. The displacement-force diagram can extend to the load step when the total

load is zero. Crack propagation has been correctly and smoothly traced. In the wall

out-of-plane test, geometrical non-linearity influences not only structure deforma-

tion but also ductility (post-peak behaviours).

Indirect displacement control of the control point is introduced to the load and

damage control method in ISLA to avoid or pass the localized failure process zones
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(a) Top layer, position b (b) Bottom layer, posi-

tion b

(c) Bottom layer, posi-

tion c

(d) Bottom layer, posi-

tion between position c

and d

Figure 9.10: Damage procedure at the edges and midspan by the N-R method with geometrical non-linearity

(a) Top layer, position d (b) Bottom layer, posi-

tion d

(c) Thickness direction

of position d

Figure 9.11: Maximum principal strain at the edges and midspan and in the thickness direction at the beginning point

of the hardening part (position d) by SLA
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caused by geometrical and physical non-linearity. Without indirect displacement

control, ISLA cannot trace the post-peak softening behaviour. Although the con-

trol point is selected at the critical position of the wall, the control point can be

any loaded node since the nodal forces of all loaded nodes are adjusted based on

the control point, which has a similar advantage as the improved arc-length control

[120]. In Chapter 11, the control point is selected at the loading position, which is

not a critical position.

The standard arc length [113][114][116] diverges due to localized failure pro-

cess zones. The possible solutions are to select only the DOFs involved in the failure

process [118][119][15] or a new constraint based on the energy release rate[120].
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EXTENSION OF ISLA TO

TRANSIENT ANALYSIS

In this chapter, ISLA is extended to transient analysis. ISLA is an incremental

procedure; therefore, transient non-linearity can be naturally included in it. The im-

plementation principle considers transient non-linearity by the Newmark time in-

tegration scheme while physically non-linearity is considered in damage cycles with

reduced secant stiffness. The damage control method for static analysis (Chapter 5)

is modified and used for transient analysis.

ISLA is validated for concrete in a multiple degree of freedom system. The ma-

terial model of ISLA is the saw-tooth model, which follows the reduced secant stiff-

ness for unloading globally or locally.

10.1. IMPLEMENTATION

The Newmark time integration scheme and the N-R method can be used for

implicit non-linear transient analysis as implemented in ANSYS. Eq. (10.8) is used

to solve increment displacements [110].

K̂ t = K t + c0M (10.1)

171
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f̂ = f t+∆t
e +M(c1u̇ t + c2ü t )− f t

i (10.2)

K̂ u∆t
1 = f̂ (10.3)

ü t+∆t
i = c0u∆t − c1u̇ t − c2ü t (10.4)

K̂ t+∆t
i = K t+∆t + c0M (10.5)

r t+∆t
i = f t+∆t

e +Mü t+∆t − f t+∆t
i (10.6)

K̂ t+∆t
i du∆t

i+1 = r t+∆t
i (10.7)

u∆t
i+1 = u∆t

i +du∆t
i+1 (10.8)

where the coefficients are given by

c0 = 1

β∆t 2
, c1 = 1

β∆t
, c2 = 1

2β
−1 (10.9)

and K is the non-linear material stiffness matrix. The matrix K̂ and f̂ are called

the dynamic stiffness matrix and the effective load vector. It can be concluded that

the transient effect can be naturally implemented in ISLA since the change of the

material stiffness matrix K in ISLA has no influence on the extra component c0M in

the dynamic stiffness matrix and the effective load vector f̂ .

In ISLA, the acceleration and internal force vector are updated in the Newmark

time integration scheme and the N-R method while the non-linear material stiff-

ness matrix is linearised by the saw-tooth model. The details of ISLA are elaborated

in Chapter 5. In this dissertation, the N-R method is used as part of ISLA as well

as independently of ISLA. In the remainder of this chapter, the term N-R method

refers to the independent method that has been used to check ISLA. The main dif-

ference between ISLA and the N-R method is the computation of the incremental

displacement ∆t . In the N-R method, ∆t is computed by multiple du∆t in Eq. (10.8)

with the updated K (positive or negative). In ISLA, ∆t is computed with one du∆t

with the fixed reduced K (always positive). Due to the fact that transient analysis

is sensitive to stiffness change, ISLA should follow both load steps (the relationship

between time and acceleration) and damage cycles (stiffness reduction). That is

to say, the proposed method needs to reach a dynamic "equilibrium" state [110]

for each stiffness reduction in a cycle, which is the principle of the damage con-

trol method, while the stiffness continued to be reduced in the load control method

and the load and damage control method. Meanwhile, the equilibrium state should
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also be reached for each load step defined by the load schedule. A modified dam-

age control method is introduced based on the version for static analysis, which has

two main distinctions. One is that time is adjusted along with the scaled accelera-

tion during cycles since the load is time-dependent in transient analysis. The other

is each a load schedule is added. Equilibrium states are searched for after every stiff-

ness reduction. This search is repeated until the load factor reaches the value of the

current load step. Subsequently, the next load step is applied.

Suppose that after a load (acceleration) step n, somewhere the failure surface

is reached. The second λ,n and m below represent the current load factor, the load

step and the cycle number, respectively.

µn =µ (λi ni , λn , Kn) = 1 (10.10)

For the first cycle in the next load step, if

µ1
n+1 =µ

(
λi ni ,λ0

n+1, K 0
n+1

)> 1 (10.11)

where λn+1
0 is an updated λn based on the loading schedule, K 0

n+1 = Kn , and the

superscript on λ refers to the cycle number of a load step, subsequently reducing

the Young’s modulus of the critical element and restarting from µn

µ2
n+1 =µ

(
λi ni ,λ1

n+1, K 1
n+1

)
(10.12)

where K 1
n+1 is the stiffness with reduced Young’s modulus of the critical element.

If µ is still larger than 1, then the procedure is again restarted from µn

µ3
n+1 =µ

(
λi ni ,λ2

n+1, K 1
n+1

)
(10.13)

where λ2
n+1 is a reduced λ1

n+1.

If µ is still larger than 1, then the procedure is repeated, restarting from µn until

µm
′+1

n+1 =µ(λi ni ,λm
′

n+1, K 1
n+1) ≤ 1 (10.14)

where λm,

n+1 means that λcur is adjusted m , times, which is a scaled λm
′−1

n+1 .

The above procedure is continued with the dynamic "equilibrium" µm
′+1

n+1 , λ0
n+1

from the loading schedule and the reduced stiffness K 1
n+1

µm
′+2

n+1 =µ(
λi ni ,λ0

n+1, K 1
n+1

)
(10.15)
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µm
′′+1

n+1 =µ(λi ni ,λm
′′

n+1, K 2
n+1) ≤ 1 (10.16)

This loop is followed with K 2
n+1,K 3

n+1,K 4
n+1...until

µm
n+1 =µ

(
λi ni ,λ0

n+1,K w
n+1

)≤ 1 (10.17)

where w means the stiffness is reduced w times.

Figure 10.1 shows the program structure diagram of the modified damage con-

trol method for transient analysis in ISLA. There are m cycles for Load step n. The

load step will not be updated from n to (n + 1) until the scaled λm
n is equal to λn .

During m cycles, w dynamic "equilibrium" are reached based on µ and the corre-

sponding reduced stiffness. In this algorithm, the incremental time t is adjusted by

Eq. (10.18).

t m
n = λm

n −λn−1

λn −λn−1
∆t (10.18)

where ∆t is the defined time increment of a load step.

Due to the transient effects, the factorλ cannot be scaled only by the extrapola-

tion procedure as shown in Figure 6.1, which is based on the assumption that λ and

µ have a linear or a weakly non-linear relationship. Therefore, it is recommended

that λ is scaled by the extrapolation procedure in the first ten cycles and that λ is

then scaled by the bisection method (Eq. (10.19)). Note that λm
n cannot be smaller

than λn−1, otherwise the time increment becomes negative. Therefore, the extrapo-

lation procedure is replaced by the bisection method when λm
n is smaller than λn−1

even though m is smaller than 10.

λm
n = λu +λl

2
(10.19)

where λu is the upper boundary of λ and λl is the lower boundary of λ. The initial

value of λu is λn while that of λl is λn−1. λu is updated by λm
n when µ is larger than 1.

λl is updated by λm
n when µ is smaller than 1.

The default tolerance r is 0.1%. Note that the utilisation value µ cannot be 1

for the certain stiffness K due to the transient effect. When m is larger than 9 and

µ is smaller than 1.001, an equilibrium is assumed to be reached since extra dam-

age can be introduced into the system with a constant stiffness reduction factor 1.

1Note that the value of the stiffness reduction factor is between 0 and 1. A large stiffness reduction factor value means

a small stiffness reduction.
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When m is larger than 20, the algorithm restarts from the previous equilibrium state

and searches for the next equilibrium state of K
′

in which the stiffness of the crit-

ical element is reduced. The reason why an equilibrium cannot be found is that if

a structure snaps back, the load needs to be reduced, which leads to a time decre-

ment. For a static analysis, damage control method can always find an equilibrium

state for the certain stiffness when µ is exactly 1 (Chapter 7).

The strategies mentioned above guarantee computational robustness mathe-

matically. In general, a dynamic "equilibrium" can be reached with the extrapola-

tion procedure within 10 iterations if no extra damage is introduced by the constant

stiffness reduction factor.

Comparing the modified damage control method in ISLA and the N-R method,

the stiffness is based on du∆t in the N-R method whereas the time and the accel-

eration are scaled based on the fixed and reduced stiffness with a constant stiffness

reduction factor in the modified damage control method.

Save structure state
For all time and load steps

Repeat until  λm equals to λn

Find µ including the Newmark scheme
If µ�1

No Yes
Reduce the stiffness of the critical element
Load structure state
Find µ including the Newmark scheme
Repeat until |µ-1| ≤ r

Load structure state

Adjust incremental time !t based on λ
Find µ

Scale the load facor λ

Output results
Save structure state

Figure 10.1: Program structure diagram of the modified damage control method for transient analysis in ISLA
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10.2. FEM MODEL AND MATERIAL PROPERTIES

A multiple DOF system was used to test the algorithm. Four beam elements

were considered with 6 m length in total and a square-section (the section data was

0.2 X 0.2) in Figure 10.2. The left node of Element 1 was subjected to an acceler-

ation in the horizontal direction. Concrete properties with linear softening were

considered to validate the robustness and the accuracy for brittle materials. Young’s

modulus is 30000 MPa, and Poisson’s ratio is 0. The tensile strength is 1.43 MPa, and

the ultimate strain is 0.002. Compressive behaviour is elastic. The values of point

masses and acceleration were exaggerated to ensure the material would yield. The

loading schedule consists of 50 load steps of 0.3 m/s2 and the time of every load

step is 0.02 s. There are four-point masses of 8000 kg. The selected stiffness reduc-

tion factors are 0.95 and 0.99. The tolerance value of ISLA is 0.1%.

Figure 10.2: FEM model of the multiple degree of freedom system with element number



10.3. TEST RESULTS

10

177

10.3. TEST RESULTS

Figure 10.3 shows time versus strain of element 1 before cracking. It can be

seen that only one wave vibration occurred before the concrete softens. A similar

phenomenon can be seen for the displacement result at the global level, as shown

in Figure 10.4. The inertia force of the acceleration is large enough for the transient

effect, otherwise when the acceleration load is halved, multiple wave vibrations can

be observed when the concrete is still elastic, as shown in Figure 10.5.
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Figure 10.3: Time versus strain of element 1 for the N-R method
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Figure 10.4: Time versus right node displacement of element 4 for the N-R method
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Figure 10.5: Time versus strain of element 1 for the N-R method when the acceleration is halved

Figure 10.6 shows time versus top node displacement for N-R and ISLA, and it

can be seen that they overlap each other. However, not visible in Figure 12.6 is that

the small stiffness reduction factor results in extra damage. Figure 10.7 shows the

relative differences of ISLA compared with the N-R method for different stiffness

reduction factors. The maximum value of the relative difference is 7.01% for the

stiffness reduction factor of 0.95 while it is 1.27% for the stiffness reduction factor

of 0.99. The starting moments of the difference are related to crack initiation (0.14

s and 0.16 s for the stiffness reduction factors of 0.95 and 0.99, respectively). For

both stiffness reduction factors, the difference increases to the peak at 0.2 s and

then continues to decrease.

Figure 10.8 shows time versus stress of different elements for the N-R method

and ISLA. Damage is localized in Element 1. When Element 1 begins to soften,

other elements unload rather than become damaged. After the stress of Element

1 drops to zero, stresses of other elements fluctuate. ISLA aligns well with the N-R

method for all elements when the stiffness reduction factor is 0.99, in Figure 10.8 (a).

However, the stiffness reduction factor of 0.95 causes slightly lower stress, especially

when the damage is initialized for Element 1 in Figure 10.8 (b). Similarly, the time-

strain curves of Element 1 for the N-R method and ISLA overlap each other in Figure

10.9 (a). However, the difference from the stiffness reduction factor of 0.95 can be

observed when the curves are zoomed-in until 0.24 s, at which point the strain of
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Element 1 just exceeds the ultimate strain, as shown in Figure 10.9 (b). Figure 10.10

shows the relative differences of strain between the N-R method and ISLA with dif-

ferent stiffness reduction factors. The maximum value of the relative difference is

8.59% at 0.18 s for the stiffness reduction factor of 0.95 while it is 1.76% at 0.16 s for

the stiffness reduction factor of 0.99. For both stiffness reduction factors, the differ-

ence does not accumulate monotonically with the acceleration increase. The larger

differences result from extra damage from the stiffness reduction factor of 0.95. The

extra damage is especially serious when the stiffness changes abruptly. This is why

the moment when the material begins to soften has relatively larger errors. The ex-

tra damage can be quantified as the error of the utilisation value µ in ISLA, as shown

in Figure 10.11. The error is defined as the relative difference between µ and 1 The

error starts when the damage is initialized for Element 1 at 0.14 s for both stiffness

reduction factors. The maximum error for the stiffness reduction factor of 0.99 is

0.9% while that for the stiffness reduction factor of 0.95 is 4.8%. Note that there is no

error ofµ in the damage control method for static analysis in Chapter 7. Figure 10.12

shows time versus number of stiffness reductions. The stiffness reduction factor of

0.99 needs five times the number needed for 0.95 for each time increment. A large

stiffness reduction factor such as 0.99 is unnecessary and not efficient when strain

reaches the ultimate strain. Figure 10.13 shows stiffness reduction versus number

of cycles for different stiffness reduction factors. When the number of cycles is 10, it

indicates that the utilisation value is smaller than 0.999, the extra damage of which

may influence the computational accuracy. The number of cycles does not exceed

10, which means a dynamic "equilibrium" (the utilisation value is not larger than 1)

is reached for each stiffness reduction by the extrapolation or interpolation proce-

dure. Due to the non-linearity caused by the transient effect, more than three cycles

are needed to reach a dynamic "equilibrium".
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10.4. DISCUSSION

In this chapter, ISLA is extended to transient analysis. The transiently loaded

bar example shows that the analysis is robust due to the saw-tooth model for brittle

materials.

The analysis is also accurate provided that the stiffness reduction factor 2 is

large. It is hypothesized that the latter is caused by the concrete material model,

which includes a dramatic change in tangent stiffness at crack initiation. Extra dam-

age can be introduced by a small constant stiffness reduction factor and exaggerated

by the transient effect. In this transient analysis, relatively small stiffness reductions

cause too much damage, which results in errors in the utilisation values. Such er-

rors do not occur in the damage control method for static analysis (see Chapter 7).

In future development, a varying stiffness reduction factor may overcome this prob-

lem. A large stiffness reduction factor may be used when the damage is initialized;

a small stiffness reduction factor may be used when the ultimate strain is reached.

ISLA and the N-R method have different ways of updating the stiffness. Updat-

2Note that the value of the stiffness reduction factor is between 0 and 1. A large stiffness reduction factor value means

a small stiffness reduction.
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ing the stiffness in ISLA is based on the damage history with secant stiffness while in

N-R, it is based on the displacement history with tangent stiffness. The N-R method

employs the current stiffness at the end of the current iteration for the next itera-

tion while SLA and ISLA use the damaged stiffness, which is based on the saw-tooth

model, at the end of the current cycle for the next cycle. The passive and proactive

updating procedure results in the fact that SLA and ISLA have relatively smaller stiff-

nesses for the same displacements after one iteration. Furthermore, extra damage

may be introduced when a small stiffness reduction factor is used, which can cause

different equilibrium states to be found. In addition, the stress and strain are re-

distributed due to the stiffness reduction before applying the load increment of the

next load step in ISLA whereas they are not split in N-R, which may lead to different

equilibrium states. Apart from that, in SLA and ISLA, critical elements are chosen

cycle-by-cycle, which means that for each cycle, only one critical element is chosen,

whereas in the N-R method, the stiffnesses of multiple elements is updated simul-

taneously. Moreover, due to the failure criterion of SLA and ISLA that the stress-

strain state of the critical element is on the material curve, the stress-strain states

of other damaged elements are below the curve. Over all, SLA and ISLA have more

flexible results than the exact solution while N-R has stiffer results than the exact

solution. However, it is undetermined which method has a higher capacity because

SLA and ISLA have smaller stiffnesses, for which the saw-tooth model is introduced,

but stress and strain redistribution causes more elements to carry the load. These

stiffness differences may cause large effects in transient analysis. As a result, ISLA

and the N-R method may obtain different equilibrium states.

Although reinforced concrete is not studied in this chapter, it is expected that

this material can also be analysed by transient ISLA. The saw-tooth model for brit-

tle materials follows the secant stiffness for unloading, whereas the plastic material

model for reinforcement follows the initial stiffness for unloading. Even when the

acceleration increases monotonically at a global level, damaged elements may still

unload at a local level. When the saw-tooth model is used for ductile materials,

the incorrect unloading path may cause an unrealistic response. ISLA can be ex-

tended to search for a non-secant unloading path (see Appendix B). However, the

implementation may cause divergences of ISLA due to the non-linearity of the plas-

tic material model [83]. Consequently, this has not yet been solved.
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APPLICATION OF ISLA AT THE

STRUCTURAL LEVEL

In this chapter, ISLA is validated at the structural level, including the aspect

of non-proportional loading. Two structural examples tested in the laboratory are

selected, a masonry facade settlement test and a full-scale masonry house pushover

test.

11.1. MASONRY FACADE SUBJECTED TO DEAD LOAD AND

SETTLEMENT

Due to underground construction, existing buildings may suffer settlement

damage. A laboratory test was carried out on a scaled masonry facade subjected

to tunnel-induced settlement [149]. SLA was used to simulate this experiment

[134][131]. However, it was necessary to make compromises due to the non-

proportional loading. The problem is that the initial dead load cannot be kept on

the structure with a factor 1.0 when scaling the settlement load. To partially solve

this, the settlement load scaled as well as the combination of settlement load and

dead load were scaled [134][131]. This, however, resulted in only 20% dead load on

187
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the structure, which is unrealistic. In addition, it was not possible to determine the

ultimate capacity of the settlement load by SLA. In general, the initial load cannot

be fully applied [9][12] and difficulties are encountered in SLA in determining the

initial-load factor [132] when the initial load and the current load can both damage

a structure. On the other hand, ISLA can compute this case well. The objective of

this chapter is not only to show the robustness of ISLA but also to compare the load

control method and the load and damage control method as well as the orthotropic

damage model and the isotropic damage model at the structural level.

11.1.1. MODELLING APPROACH

The experimental setup is shown in Figure 11.1(a). Positions A, B and C are

selected for monitoring in Figure 11.1(b). The facade is scaled to 1/10 of the real di-

mensions. The quantities involved in the experiment follow the equations of the di-

mensional analysis [150]. The aim of the experiment is to keep the material strength

and the stress conditions as close as possible to the prototype ones. To reproduce

the real stresses, the material-specific weight of the model should be 10 times larger

than that of the prototype material. Therefore, several point loads are applied before

settlement loading. Figure 11.2 depicts the geometry and the positions of the initial

point loads and the settlement load. The dimensions and force values are shown in

Table 11.1. The settlement load is applied by vertical displacement of 0.5(23) mm at

the left support of a steel beam. The steel beam is 60 mm deep and has 50-mm-wide

flanges. The flanges as well as the web have a thickness of 5 mm. The facade was

built on a base interface layer with a thickness of 5 mm. Table 11.2 shows the ma-

terial properties. Beam elements are used for the wood lintels and the steel beam.

Plane-stress elements are used for masonry, which are higher-order 2-D, eight-node

elements. The integration point scheme is 2x2. The finite element size is 10.5 mm x

13.3 mm, and the crack band width was estimated as the square root of the element

area, 11.8 mm.

For ISLA analyses, the stiffness reduction factor was taken as 0.25. Figure 11.3

shows the corresponding saw-tooth model, and Figure 11.4 shows the colour range

for the principal tensile strain contours used for post-processing. The incremental

displacement is 0.01 mm for each load step for the load control method. The results

of the load control method are compared with those of the load and damage control
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method. Both an orthotropic damage model (the rotating smeared crack model)

and an isotropic damage model were used in the computations.

(a) front view of the experimental

setup.

(b) Position of dial indicators A, B and C for displacement

monitoring [149]

Figure 11.1: The experiment model, Whittemore strain gauges for crack width monitoring and grid of markers for

photogrammetric measurements (dimensions in mm)

Table 11.1: Model’s geometrical dimension and applied load values

11.1.2. TEST RESULTS FOR THE LOAD CONTROL METHOD

Figures 11.5 and 11.6 show the vertical displacement of B and horizontal dis-

placement of C, respectively, related to the prescribed displacement at A, and com-

pare the load control method and the experiment. The numerical results align well

with those of the experiment. The load control method jumps over snap-backs ro-

bustly due to the saw-tooth model. Both displacements of B and C have linear re-

lationships with A. The increasing rate of the vertical displacement at B is slightly

smaller than 1 while the horizontal displacement at C is slightly larger than 1, com-

pared to the prescribed vertical displacement at A. In addition, the vertical displace-
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Figure 11.2: Geometric dimension of the scaled masonry facade (dimensions in mm). The thickness of the facade,

lintels and interface is 50 mm [134]

Table 11.2: Material parameters for the numerical model
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ment of A from the experiment is 11.5 mm. In ISLA, the maximum vertical displace-

ment of A is approximately 20 mm (20.675 mm) when the structure cannot carry the

initial point loads. On the other hand, in the case of SLA [131], the vertical displace-

ment of A reaches only 2 mm when the factor of the initial load cannot be 1.

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25

Ve
rt

ic
al

di
sp

la
ce

m
en

to
fB

(m
m

)

Vertical displacement of A (mm)

Experiment Load control

Figure 11.5: The relationship between the vertical displacement of A and B for the experiment and the load control

method

Figure 11.7 shows the experimental crack pattern when the vertical displace-

ment of A is 10 mm. The numbered cracks are selected and named for post-

processing. Figure 11.8 shows the crack propagation first after the initial loads and

then for the vertical displacement of A at 2.5 mm, 5 mm, 7.5 mm, 10 mm and 15

mm, respectively. The point loads result in initial damage without the settlement

load. This initial load potentially caused divergence when searching for a suitable v

for non-proportional loading of SLA in Chapter 4 because the point load and the set-

tlement load both govern the damage process. ISLA does not have such problems

due to the incremental approach. Figure 11.9 shows the result of the load control

method for the ultimate displacement of A. Apart from the cracks marked according

to the experiment, additional cracks are marked in Figure 11.9. Speaking of crack

propagation, cracks are localized initially at Crack 1, then at Crack 2 and, finally, at

Crack 3, which are major cracks. In contrast, Cracks 4 to 8 are relatively small. When

the displacement of A increases above 10 mm, Cracks 9 and 10 can be observed. Fig-

ure 11.10 shows the crack propagation of different positions. Cracks 1 and 2 open at
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displacement of 2 mm while Cracks 3 and 4 open at displacement of 5 mm. Crack

9 starts to open at displacement of 9 mm. Unloading and crack closure can be ob-

served for Crack 8. It can also be observed that the behaviour of Crack 2 is different

from that in the experiment results due to the mesh-directional bias. Crack 2 tends

to follow the mesh lines of the straight rectangular mesh and does not jump to the

free surface of the window. The vertical initial load may influence the cracks to ex-

pand vertically and not jump to the free surface of the window. Moreover, the dis-

connections between the lintels and masonry are ignored, which may affect details

of crack propagation. In addition, the extra damage is introduced to the rectangular

element at the corner of the opening when the stiffness is updated at the element

level. Triangle elements may solve this issue. This aspect of mesh-directional bias

has not been studied here, but improvements can be achieved [151][152][153]. Apart

from this aspect, the ISLA load control method is able to capture cracking behaviour

and non-proportional loading in a reasonable manner. The initial load can be kept

at 1.0. On the other hand, SLA can trace crack propagation only until 2 mm when

the factor of the initial load cannot be 1 [131].
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Figure 11.7: Crack patterns of the experiment when the displacement of A is 10 mm

11.1.3. TEST RESULTS FOR THE LOAD AND DAMAGE CONTROL METHOD

For displacement history, the load control method jumps over snap-backs

while the load and damage control method follows snap-backs. For the stiffness

damage history, both methods trace the whole damage process, including snap-

backs.

Compared with the load control method, the load and damage control method

has similar crack patterns. Figure 11.11 shows the results of the two methods for the

ultimate displacement of A. Snap-back behaviour can be seen from the curves of the

load and damage control method in Figures 11.12 and 11.13. These snap-backs can

also be deduced from Figure 11.14, which shows the load step versus displacement

of Position A. Four positions are marked for post-processing. The snap-backs are

related to explosive crack propagation, especially when cracks are initialized at new

positions. Figure 11.15 shows the development of the maximum crack width with

increasing vertical displacement. It can be seen that cracks develop dramatically at

certain vertical displacements of A, for example the stage at 4.92 mm. Figure 11.16

shows two snap-back moments for which the displacement decreases to zero, the

positions of which are marked in Figure 11.14. Moreover, it can be seen in Figure

11.17 that cracks continue developing, especially at the left part of the facade when

the displacement of A reaches the ultimate value at stage d.

Although the displacement history of snap-backs cannot be followed by the
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(a) Initial point loads
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(b) A displacement of 2.5 mm
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(e) A displacement of 10 mm (f) A displacement of 15 mm

Figure 11.8: The maximum principal strain contours with different vertical displacements of A for the load control
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Crack 9

Crack 10Crack 10

Figure 11.9: Maximum principal strain contours of the load control method when the displacement of A is the ulti-

mate displacement of 20 mm

load control method, the fluctuation of utilisation values during cycles illustrates

the snap-back phenomenon. The utilisation value reaches 1 after a long search pro-

cess. For instance, Figure 11.18 shows the utilisation value fluctuation during cycles

when the vertical displacement of A jumps from 4.92 mm to 4.93 mm, the peak of

which indicates the maximum snap-back moment and the corresponding displace-

ment.
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Figure 11.10: Crack propagation at different positions along with the displacement of A for the load control method
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Figure 11.11: The maximum principal strain contours of the load control method and the load and damage control

method when the displacement of A is the ultimate displacement of 20 mm
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and damage control method
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Figure 11.15: The relationship between the vertical displacement of A and the maximum crack width

(a) Position a marked in Figure 11.14 (b) Position b marked in Figure 11.14

Figure 11.16: The maximum principal strain contour when the displacement of A is zero for the load and damage

control method
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(a) Position c marked in Figure 11.14 (b) Position d marked in Figure 11.14

Figure 11.17: The maximum principal strain contours after the moment when the displacement of A is the ultimate

displacement for the load and damage control method
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Figure 11.18: The utilisation value of cycles for the load step when the vertical displacement of A jumps from 4.92

mm to 4.93 mm. The load control method starts with a utilisation value of 1 and ends with a utilisation value of 1.

Equilibrium is found in 214 cycles.
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11.1.4. COMPARISON OF ORTHOTROPIC AND ISOTROPIC DAMAGE MODELS

The analyses of the previous section were re-performed with the isotropic dam-

age model instead of the orthotropic damage model. Here, the structure cannot

carry the settlement load when the vertical displacement of A is only 1.7 mm for the

load control method and the load and damage control method. Figure 11.19 shows

utilisation values of cycles for the last load step for the load control method. No

equilibrium state can be reached for this load step. Figure 11.20 shows how the fa-

cade loses the capacity to carry the initial vertical load cycle-by-cycle. Actually, the

facade cannot carry the vertical load when the settlement load is decreased to zero

by the load and damage control method in Figure 11.21. The reason for this prema-

ture collapse is that parts in the right side of the wall are tensioned and perpendicu-

larly compressed. When the masonry cracks in tension, it also fails in compression

due to the isotropic damage model.
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Figure 11.19: The utilisation values of cycles for the last load step of the load control method with the isotropic damage

model (The utilisation value presents material equilibrium state. When µ is 1, it is an equilibrium state.)

Consequently, this illustrates the capacity to resist non-proportional loads and

the details of the constitutive model. The orthotropic damage model, which is more

realistic, has the capacity for compression or tension along with crack direction

when a crack is fully developed.
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(a) Cycle 200 (b) Cycle 400

(c) Cycle 800 (d) Cycle 1600

Figure 11.20: The maximum principal strain contours of the results of cycles of the last load step, which cannot reach

an equilibrium state.(µ is larger than 1) for the load control method with the isotropic damage model
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Figure 11.21: The maximum principal strain contour of the cycle of the last load step for the load and damage control

method with the isotropic damage model when the displacement of A drops to zero and cannot reach an equilibrium

state.

11.2. MASONRY HOUSE SUBJECTED TO DEAD LOAD AND

PUSHOVER

Buildings in the Netherlands were not designed for earthquake loading because

earthquakes did not occur until some 15 years ago. The reason for recent earth-

quakes is the extraction of natural gas from deep, porous rock layers. Gas has been

extracted for approximately the last 50 years, and the gas fields are partially empty,

so the porous rock layers sometimes partially collapse. This causes earthquakes up

to Magnitude 3.2 on the Richter scale, with the possibility for higher magnitudes

in the future, which buildings have not been designed to withstand. Consequently,

large engineering efforts have been made in regard to the following subjects: pre-

dicting future earthquake magnitudes, predicting the strength and ductility of tra-

ditional building types, and developing retrofitting methods.

A two-storey assemblage, calcium silicate, brick masonry building with con-

crete floors was tested in the Stevin Lab (TU Delft) on behalf of NAM, with a view to

validating models for assessing the seismic capacity of Groningen houses [154]. A

quasi-static cyclic pushover test was performed using a steel reaction frame to apply

the load at the floor levels.
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11.2.1. MODELLING APPROACH

A sketch of the test setup is shown in Figure 11.22. The facades of the specimen

as shown in Figure 11.23 have a length of 5.4 m and a depth of 5 m. The total height

of the specimen is 5.4 m. The south and north facades, which are identical, are rep-

resented by only two piers, which are connected to the transversal walls. Two pier

sizes were selected: on the western side, the wide piers P1 and P3 have a width of

1.1 m, while on the eastern side, the narrow piers P2 and P4 have a width of 0.6 m.

The thickness of the masonry is 100 mm while that of the concrete floors is 165 mm.

Small calcium silicate brick units with dimensions of 210x71x100 mm were used. A

running bond pattern was adopted, allowing for the interlocking of the bricks at the

corners of the transversal walls and the piers. The masonry properties are E=2710

MPa, Poisson’s ratio v = 0.2, tensile strength f t = 0.14 MPa and tensile fracture energy

G f = 0.01 N/mm. The elastic modulus of the masonry is taken as the average value

in the directions perpendicular and parallel to the bed joints. The tensile strength

is taken as the minimum value of out-of-plane masonry flexural strength perpen-

dicular and parallel to the bed joint. The compressive strength fc is taken as -5.84

MPa. Linear softening is considered for tension while softening is not considered for

compression (i.e., ideal elastic-plastic behaviour in compression is assumed). The

concrete properties are elastic with E=38000 MPa and Poisson’s ratio v = 0.2.

At the first-storey level, the floor is connected horizontally to the piers by an-

chors 6 mm in diameter, which are cast in the floor and masoned in the piers. The

narrow piers are connected by three anchors and the wide piers by five anchors.

These anchors are commonly used as horizontal buckling or wind load support of

piers, and they are not designed to withstand any vertical load. At the second-storey

level, the floor is laid on both the loadbearing transversal walls and the piers. The

boundary condition and connections are simplified in the FEM model. Half the

specimen is considered, making use of symmetry. The specimen is hinged at the

ground floor. The transversal walls are clamped to the piers. The first floor is hinged

to the transversal walls and connected horizontally to the piers. The second storey

is hinged to the transversal walls and the piers.

A quasi-static cyclic pushover test was performed in the lab. The masonry

structure was loaded by four actuators (Figure 11.22b), two per each floor, posi-

tioned at approximatively 1.1 m inwards from the facades. A displacement was im-
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posed at the second storey while the force ratio was kept as 1:1 at the two floor levels

(F1 + F3 = F2 + F4). To impose a constant ratio between the forces at the two floor

levels, the forces in the actuators No. 1 and 3 at the second storey were mechanically

coupled to the forces at the first storey level (F1 = F3, F2 = F4). In the FEM model,

monotonic pushover was applied with the indirect displacement control loading

(Chapter 9).

For ISLA, the element size is taken as 200 mm x 200 mm, and the stiffness re-

duction factor is taken as 0.25. The crack band width is assumed to be 200 mm.

The corresponding saw-tooth model is shown in Figure 11.24. Masonry is modelled

by eight-node quadrilateral shell elements, which have three layers in the thickness

direction for the transversal walls and one layer in the thickness direction for the

piers1.

(a) (b)

Figure 11.22: Test setup

11.2.2. TEST RESULTS

Figure 11.25 compares the results of ISLA and the experiment in terms of to-

tal shear force versus displacement at the second storey. The positions from a to

h are marked for post-processing. ISLA traces the whole diagram robustly, the dis-

placement of which is more than the ultimate value of the experiment. The part of

1The current ISLA implementation in ANSYS can only update the material properties at the element level instead of

the integration point level. Layers of shell elements with section offset are used in ISLA
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(a) (b)

(c) (d)

Figure 11.23: Test specimen: (a) Front view (southern side); (b) Top view of ground floor in section A-A; (c) Side view

(western side); (d) Construction details.
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Figure 11.24: Saw-tooth model for the pushover test

the curve for displacements larger than 100 mm is not shown in Figure 11.25. ISLA

successfully jumps over snap-backs. The jump-overs cause explosive crack prop-

agation, the damage of which is reflected as the number of cycles in Figure 11.26.

There are 2,223 cycles when ISLA jumps over from e to f at the displacement of

41 mm. It can be seen that the peak and the initial slope of ISLA are smaller than

those of the experiment, due to two reasons. Firstly, the boundary condition and the

connections are considered as hinges instead of initially clamped connections with

non-linear springs or non-linear interface elements, which causes the FEM model

to be more flexible than the specimen. Secondly, the material properties are taken

to be relatively conservative. The tensile strength is taken as the minimum value of

out-of-plane masonry flexural strength perpendicular and parallel to the bed joint.

The fracture energy can be larger. The residual shear force of ISLA is larger than

that of the experiment quantitative, which may be due to different loading condi-

tions (monotonic loading for ISLA and cyclic loading for the experiment). The dam-

age from loading in the other direction (cyclic loading) is not considered in ISLA.

A more realistic FEM model and material properties can be calibrated for a better

quantitative alignment between ISLA and the experiment. The main goal here is

to demonstrate that ISLA, in a qualitative sense, is able to produce post-peak be-

haviour, including the drops reflecting brittle processes, and that the initial dead

load can be kept on the structure while the second load is incremented.

Figures 11.27 and 11.28 show the main damage and crack pattern for the ex-
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periment. The failure mechanism is mainly governed by the in-plane damage of the

piers at the ground floor. Figure 11.29 shows the crack pattern from position a to

position h, as marked in Figure 11.25. In the analysis, the flange effect was not in-

cluded [155], and the running bond allows a strong connection between the piers

and the transversal walls. As a result, in the experiment, cracks propagate among

the almost whole area of the transversal walls while in the analysis, cracks are local-

ized at the edges adjacent to the piers. Except for this, the crack pattern for ISLA is

realistic compared with that of the experiment. The rocking of piers is successfully

localized in the ISLA analysis, the diagonal crack of which governs the failure mech-

anism. The cracks are initialized at the bottom and top of piers when the capacity

reaches the peak capacity in Figure 11.29(a). Afterwards, ISLA successfully jumps

overs snap-backs, including four pairs ((a & b, c & d, e & f, g & h)). The snap-backs

are caused by the diagonal crack on the wide pier at the ground floor. The capacity

drops sharply when the wide pier is split by the diagonal crack in Figure 11.29(f).

Meanwhile, the cracks propagate dramatically at the bottom of the narrow pier and

the top of the wide pier. Finally, the edge of the transversal wall is pushed out by the

wide pier at the corner of the first storey in Figure 11.29(h). Figure 11.30 shows the

crack pattern in the x, y, z global coordinate system, instead of the principal direc-

tion, as depicted in Figure 11.29(h), in the global coordinate. It can be seen that the

failure mechanism is governed by the in-plane vertical or diagonal cracking of the

wide pier.

The utilisation values of all load steps are determined by the tension compo-

nent instead of the compression component for this case. The compression crush

can be indirectly regarded as tension splitting in the other direction.
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Figure 11.27: Main damage in the wide piers at the ground floor for the experiment

Figure 11.28: Crack pattern for the experiment
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11.29: Maximum principal strain contours for ISLA from position a to position h marked in Figure 11.25
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(a) x direction (b) y direction

(c) z direction

Figure 11.30: Global strain contours for Figure 11.29(h)
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11.3. DISCUSSION

11.3.1. MASONRY FACADE SUBJECTED TO DEAD LOAD AND SETTLEMENT

For the non-proportionally loaded masonry facade, ISLA is more robust than

SLA. The load-displacement diagram of ISLA can be continued much further than

that of SLA. The initial load can be always kept at 1.0 in ISLA due to the incremental

approach. The challenge from non-proportional loading in tests is that the initial

load causes damage. The damage can be fully considered during the whole process

with ISLA, while the initial load cannot be fully applied in SLA[9][12] and difficulties

may be experienced with SLA in determining the initial-load factor in [132] when

the initial load and the current load can both damage a structure.

For snap-backs, the load control method and the load and damage control

method both perform successfully. For displacement history, the load control

method jumps over snap-backs while the load and damage control method follows

snap-backs. For the damage history, both methods trace the whole damage process

of snap-backs. According to the test results, the load control method delivers almost

the same results as the load and damage control method, which means that dam-

age history matters more than displacement history in the settlement test. However,

displacement history cannot be ignored, such as the sequence of the point load and

the settlement load, otherwise the problems of non-proportional loading in SLA re-

main.

Regarding constitutive modelling, the rotating smeared crack model (or-

thotropic damage model) was implemented in ISLA. This model plays an impor-

tant role in the situation in this chapter in which the crack direction varies due to

the point load and the settlement load. Fixed smeared crack models may be par-

tially responsible for the fact that the initial load cannot be kept at 1.0 in SLA [131].

There are indications that fixed smeared crack models may induce stress locking,

while rotating smeared crack models more smoothly accommodate principal stress

rotations for non-proportional loads.

Mesh objectivity is an important topic in fracture mechanics. The theory of the

crack band width addresses the mesh-size dependency, but the mesh-directional

bias remains. This aspect of mesh-directional bias has not been studied here, but

improvements can be achieved [151][152][153]. In this masonry settlement prob-
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lem, the mesh bias may cause an unrealistic crack pattern at the corner of the open-

ing. Random meshes with triangular elements [156] may partially solve this issue.

Other reasons for the masonry settlement problem may relate to limitations of the

smeared crack model, which is based on Mode-I fracture, to the lack of contact be-

haviour between the lintel and the masonry, or to the fact that in the current imple-

mentation, the material stiffness update is handled at the element level instead of

the integration point level.

11.3.2. MASONRY HOUSE SUBJECTED TO DEAD LOAD AND PUSHOVER

ISLA robustly traces the whole crack propagation. The displacement of the

diagram for ISLA overpasses the ultimate displacement of the experiment. The

load control method with indirect displacement control loading robustly jumps over

snap-backs. The in-plane vertical and diagonal cracks of the wide pier at the ground

floor are successfully localized in ISLA, which governs the failure mechanism. The

cracking mechanism, along with rocking of the masonry piers, determines the post-

peak quasi-brittle response. There is no compression failure in ISLA for this case.

This matters when implementing interface elements into ISLA, which provides

the possibility to consider realistic boundary conditions and connections.

The running bond is common and significant for masonry, which allows for a

strong connection between the piers and the transversal walls, providing the flange

effect. However, current ISLA analysis does not consider the running bond. ISLA

fails to localize the cracks of the transversal walls. Possible solutions are to make

discrete models with interface elements available in ISLA, to extend it to full 3D

solid models that more accurately represent corner and flange effects as compared

to shell elements, or to improve constitutive models, which can consider flange ef-

fects.





12
CONCLUSIONS AND FUTURE

WORK

12.1. CONCLUSIONS

Non-linear FEM analysis has been widely applied for quasi-brittle materials

such as masonry, concrete and reinforced and prestressed concrete. However,

the robustness of the algorithms remains a serious issue. The classical algorithm

for solving non-linear mathematical equations is the N-R method. This method

is robust if the load-displacement curve is continuous and smooth. The load-

displacement curves of quasi-brittle materials have many little peaks related to ini-

tiation and propagation of numerous cracks. These peaks are only visible if one

zooms in on a curve that is computed with very small load increments. Conse-

quently, the tangent stiffness in the neighbourhood of these peaks has extreme vari-

ations and can lead to divergence of the N-R iterations. To enhance the robust-

ness of solving non-linear problems, a total approach with secant stiffness and an

“event-by-event” damage model is introduced by SLA, which is an alternative to

the N-R method when bifurcation, snap-back or divergence problems arise. The in-

cremental iterative procedure, adopted in non-linear finite element analysis, is re-

placed by a sequence of scaled linear finite element analyses with decreasing secant

217
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stiffness, corresponding to local damage increments. However, SLA has difficulties

in dealing with non-proportional loading as well as cases in which the displace-

ment history matters, such as geometrically non-linear analysis, transient analysis

and cyclic analysis with plastic unloading, since the damage history is traced in SLA

rather than the displacement history.

To deal with the difficulties in SLA, this thesis improves SLA and proposes an

incremental approach based on SLA called incremental sequentially linear analysis

(ISLA).

Improvements to SLA:

A simplified saw-tooth model is introduced, which is governed by the stiffness

reduction factor. To make the fracture energy for SLA the same as that of a physi-

cal non-linear analysis, the initial tensile strength or the ultimate strain are rescaled

[10]. In the simplified saw-tooth model, the rescaled strength of each cycle can be

automatically computed based on the stiffness reduction factor used in the cycle.

The proposed saw-tooth model provides the possibility to use varying stiffness re-

duction factors in cycles to balance the computational accuracy and efficiency.

An orthotropic damage model is introduced for SLA based on the rotating

smeared crack model. Hereby, the difficulty of choosing a proper shear retention

function is eliminated in this damage model compared with the previous damage

model, which is based on fixed smeared cracks[129].

A new algorithm [132] for applying non-proportional load is implemented in

SLA. An initial-load factor v is introduced to make the initial-load constant after

scaling in each cycle. The stresses and strains caused by the initial load and the cur-

rent load are computed based on the load combination of Fr e f and Fi ni /v for each

damaged stiffness. The initial-load factor v is adjusted based on an interpolation

or extrapolation procedure and applied in the pre-process to make v equal to λ.

Instead of calculating the stresses from the initial load and the current load sepa-

rately [12][131], they are computed simultaneously by the load combination [132].

In [132][131], the main difference from [12] is that the initial stresses are recom-

puted for the damaged stiffness rather than the initial undamaged stiffness. With-

out adding extra stresses in the post-process as in [12][131], the proposed algorithm

is naturally suitable for different element types and failure criterion without addi-

tional modifications. This algorithm is demonstrated in non-proportional loading
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of a 2D prestressed concrete beam and out-of-bending of a 3D masonry wall with

overburden. This algorithm can be easily programmed in any commercial software

since it only changes the load factor in pre-processing instead of operations on the

fundamental code level in post-processing. Due to the interpolation or extrapola-

tion procedure, the algorithm is not suitable for strong non-linear problems, which

means the initial load cannot be very large or should have little influence on the

critical element position.

Development of incremental sequentially linear analysis:

This thesis proposes ISLA. This method provides robust and accurate solutions

for simulating the behaviour of structures based on damage cycles and load incre-

ments (Chapters 7, 8 and 9). The method is incremental; each increment begins

and ends with an equilibrium state. The solution search path follows damage cycles

sequentially with the secant stiffness, which traces both damage history (explicit)

and displacement history (implicit). Note that the damage procedure is irreversible.

Due to the stiffness reduction, the internal forces are updated based on the displace-

ments of the previous load step, and the algorithm reaches a temporary equilibrium

state. Afterwards, the incremental load is applied, and a linear analysis is performed

for the current load step. ISLA is robust because all physical non-linearity is lin-

earised in damage cycles with the explicit secant stiffness of the reduced elastic ma-

terial model.

Just as in SLA, a utilisation value is defined. The utilisation value is determined

at the local level by the stress state and the failure surface of an element with elastic

material properties. Utilisation values are computed for each element. A utilisation

function µ is defined as the largest utilisation value of all elements, which is a func-

tion of the load factors and the stiffness matrix K at the global level. An equilibrium

is reached when the stresses or strains of the critical element (i.e., the element that

is the closest to the first or next damage event) lie either on or within the failure

surface. Considering the calculation efficiency, the utilisation value of a material

equilibrium state in ISLA is not purely 1 but has a tolerance (the stresses or strains

of the critical element lie within the failure surface). In static analysis, this toler-

ance does not influence the results. After the structure slightly unloads due to the

tolerance, it reloads with the next load increment.

ISLA employs the rotating smeared crack model (the damage model) and the
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Mohr-Coulomb criterion with tension cut-off. The stiffness updating procedure is

governed by damage. This damage follows the principal direction of the critical el-

ement of the current load step. The stiffness is reduced by a constant reduction

factor. The default stiffness reduction factor is 0.9 for static analysis, which means

that after an element becomes critical, its Young’s modulus in the principal direc-

tion is reduced to 90% of the previous value. For one element, a stiffness reduction

factor larger than 0.75 can guarantee accuracy. For a structure, a smaller stiffness re-

duction factor can be used, which depends on the number of potentially damaged

elements in the structure. For the facade and the house tested in the thesis, the util-

isation function is not sensitive, with a stiffness reduction factor of 0.25. Extra dam-

age may be introduced when a small stiffness reduction factor is used for transient

analysis. The stiffness reduction factor should be closer to 1, such as 0.99. However,

a large stiffness reduction factor requires a large number of cycles in total. The crack

band model based on the fracture energy is used to obtain mesh-independence.

Three control methods are proposed, namely the load control, damage control,

and load and damage control methods. In the load control method, each load step

can contain one increase or decrease of the load and several reductions of Young’s

modulus of various elements. In the damage control method, each load step can

contain one reduction of Young’s modulus and several changes of the load. In the

load and damage control method, each load step can contain several changes of the

load and several reductions of Young’s modulus of various elements. The load and

damage control method is optimized based on the utilisation values of ISLA. For the

imposed displacement loads, the load control method is recommended. For force

loads, this method can also be used, but the post-peak response cannot be obtained.

The damage control method and the load and damage control method can be used

to determine post-peak behaviour and snap-back behaviour of structures. The load

and damage control method is much faster than the damage cycle. It is also robust

and provides the same results. Based on efficiency, the load control method and the

load and damage control method are suggested for large structures. For the notched

beam test, objectivity has been achieved for these three methods. The results are not

sensitive with different load steps and damage cycles.

Due to the different ways of updating the stiffness, ISLA does not deliver ex-

actly identical results compared with the N-R method. Stiffness updating in ISLA
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is based on the damage history while in the N-R method, it is based on the dis-

placement history. The N-R method employs the current stiffness at the end of the

current iteration for the next iteration while SLA and ISLA use the damaged stiff-

ness, which is based on the saw-tooth model, at the end of the current cycle for the

next cycle. In addition, the stiffness of a critical element is reduced cycle-by-cycle

in ISLA while the stiffnesses of all damaged elements are updated simultaneously

in the N-R method. Moreover, due to the failure criterion of SLA and ISLA that the

stress-strain state of the critical element is on the failure surface, the stress-strain

states of other damaged elements are within the failure surface. Therefore, ISLA

has relatively smaller stiffness than that of the N-R method. For static analysis, the

difference between ISLA and the N-R method is small. For transient analysis, the

difference may be large.

The N-R method employs the current stiffness at the end of the current itera-

tion for the next iteration while SLA and ISLA use the damaged stiffness, which is

based on the saw-tooth model, at the end of the current cycle for the next cycle.

The passive and proactive updating procedure results in the fact that SLA and ISLA

have relatively smaller stiffness for the same displacements after one iteration. Fur-

thermore, extra damage may be introduced when a small stiffness reduction factor

is used, which can cause different equilibrium states to be found. In addition, the

stress and strain are redistributed due to the stiffness reduction before applying the

load increment of the next load step in ISLA, whereas they are not split in N-R, which

may lead to different equilibrium states. Apart from this, in SLA and ISLA, critical el-

ements are chosen cycle-by-cycle, which means that for each cycle, only one critical

element is chosen, whereas the N-R method simultaneously updates the stiffnesses

of multiple elements. Moreover, due to the failure criterion of SLA and ISLA that the

stress-strain state of the critical element is on the material curve, the stress-strain

states of other damaged elements are below the curve. Over all, SLA and ISLA have

more flexible results than the exact solution while N-R has stiffer results than the

exact solution. However, it is undetermined which method has a higher capacity

because SLA and ISLA have smaller stiffnesses, for which the saw-tooth model is in-

troduced, but stress and strain redistribution result in more elements carrying the

load. These stiffness differences may cause large effects in transient analysis. As a

result, ISLA and the N-R method may obtain different equilibrium states.
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ISLA follows an incremental approach. The issue of non-proportional loading

in SLA does not occur in ISLA since the initial load factor is not scaled. ISLA can

also include geometrically non-linear effects because of the incremental approach.

The proposed method can be easily implemented in commercial software. ISLA

is validated for non-proportional loading of a prestressed concrete beam, out-of-

plane bending of a masonry wall, settlement test of a masonry facade, and pushover

of a masonry house. ISLA is demonstrated to be robust at the structural level. For

snap-backs, the load control method and the load and damage control method both

perform successfully. For the displacement history, the load control method jumps

over snap-backs while the load and damage control method follows snap-backs. For

the damage history, both methods trace the whole damage process of snap-backs.

Geometrical non-linearity can be included in ISLA due to its incremental pro-

cedure. When geometrical non-linearity is considered, the B matrix (the strain-

displacement relation) and geometrically non-linear matrix (which is related to the

2nd Piola-Kirchhoff stress) are updated in each increment by the kinematic descrip-

tions [110]. Only the material matrix is updated by ISLA in damage cycles with re-

duced secant stiffness. Similar to arc-length control, indirect displacement control

is introduced in the load and damage control method to avoid or pass localized fail-

ure process zones when varying forces are applied to multiple nodes, for example

in the case of pressure or other forms of distributed loadings. A control point is a

selected node at a critical position (e.g., midspan of a simply supported beam or

plate), the displacement of which is assumed to be always increasing. The unbal-

anced nodal force factor λr of the control point is defined as the difference of the

nodal force between the control point loaded by the imposed displacement and the

node loaded by the current load, the factor of which is λ2. The current load factor λ2

is adjusted according to the unbalanced force. This procedure is repeated until λr is

smaller than a tolerance value rr , and then the next incremental imposed displace-

ment is applied. ISLA is robust for the out-of-plane bending of a masonry wall with

overburden. Strong geometrical non-linearity may cause divergence.

Transient non-linearity can be included in ISLA due to its incremental pro-

cedure. Transient non-linearity is considered by the Newmark time integration

scheme while physical non-linearity is considered in damage cycles with reduced

secant stiffness. Due to the fact that transient analysis is sensitive with the stiffness
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change, ISLA follows both load steps (the relation between time and accelerations)

and damage cycles (stiffness reductions). A modified damage control method is in-

troduced, in which time is adjusted along with scaled acceleration during cycles,

and a load schedule is added. The equilibrium states are searched for during each

stiffness reduction until the load factor reaches the value of the current load step.

Afterwards, the next load step is applied. The current load factor is scaled by the

extrapolation procedure in the first 10 cycles and then by the bisection method in

the next 10 cycles due to the strong non-linearity of the transient effect. Note that

the utilisation value µ cannot be 1 for the certain stiffness K . Extra damage can be

introduced into the system with a constant stiffness reduction factor (µ is smaller

than 1). In addition, if a structure snaps back, the load needs to be reduced, which

leads to a time decrement (µ is larger than 1). When the number of cycles is larger

than 20, the algorithm restarts from the previous equilibrium state and searches

for the next equilibrium state of K
′
, in which the stiffness of the critical element is

reduced. For static analysis, the damage control method can always find an equilib-

rium state for the certain stiffness when µ is exactly 1. ISLA is validated for concrete

in a multiple DOFs system. Note that ISLA follows the reduced secant stiffness for

unloading while plastic material models follow the initial elastic stiffness. To this

end, it is recommended that the reduced elastic material model is employed for brit-

tle material to follow the secant stiffness for unloading, whereas the plastic material

model should be used for ductile materials to follow the initial stiffness for unload-

ing. However, ISLA cannot guarantee the robustness when a plastic material model

is involved.

In Appendices A and B, ISLA has been extended for proportional cyclic anal-

ysis to demonstrate its possibility. Two types of unloading paths are considered,

namely unloading with the secant stiffness (the damage model) in Appendix A and

with the non-secant stiffness (the plastic model) in Appendix B. Firstly, the tensile

unloading behaviour is simplified to follow the secant stiffness for the cyclic loading

of quasi-brittle materials. Note that although tensile unloading can be simplified

by following the secant stiffness, it is unrealistic to follow the secant stiffness for

compressive unloading. Nevertheless, it is still worthwhile for the tensile failure of

brittle materials, in which the compressive behaviour is elastic in FEM models due

to the simplicity. Independent or correlative damage behaviour is considered for
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reverse loading between tension and compression. Currently, this algorithm is suit-

able only for proportional loading since the stresses are assumed to be zero for the

transition of tension and compression. Secondly, plastic unloading behaviour is in-

troduced in ISLA and combined with reverse loading. The coupled damage-plastic

material model is implemented in ISLA rather than the elastic material model to

consider irreversible deformations. This is especially important for the unloading

behaviour of metal materials and the compressive unloading behaviour of quasi-

brittle materials. ISLA follows the damage model for loading while ISLA follows the

plastic model for unloading. Plastic strain is recomputed when the reduced elastic

modulus is changed to the unloading modulus for unloading. The damage model

with reduced secant stiffness ensures computational robustness while the plastic

model provides the possibility of unloading with non-secant stiffness. The unload-

ing stiffness is defined as a constant value or a function to validate the algorithm,

which needs to be adjusted based on the experiment. For repeating loading, the

structure can be accurately unloaded to the state for which the total force is zero for

proportional loading. However, for non-proportional repeating loading and cyclic

loading, accuracy and robustness cannot be guaranteed when the load is reversed

for a structure. The stresses of damaged elements are not reversed simultaneously

at the state for which the total force is zero due to the residual stress. The solution is

to perform iterations to update the stiffness, which results in the bifurcation that the

stiffnesses of the damaged elements can be reduced by the damage of the loading,

updated due to the unloading or updated due to the reverse loading. In addition,

the isotropic hardening model used for unloading may cause divergence in ISLA.

12.2. FURTHER WORK

The following subjects for further research are suggested:

The saw-tooth model is employed in SLA and ISLA to represent the soften-

ing material model used in the N-R method. It is observed that ISLA and the N–R

method do not produce identical results, especially for transient analysis. This is

caused by the linearisation procedure of solving non-linear equations, in which one

stiffness represents and replaces the varying stiffness over a period. When a con-

stant stiffness reduction factor is used in SLA or ISLA, extra damage or imperfec-

tion may be introduced to the structure, which may cause the underestimation of a
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structure. In addition, the utilisation function is not exactly 1 (i.e., smaller than 1).

Although the difference is hardly observed at the global level (the load-displacement

diagram), the distinctions can be seen at the local level (the stress-strain curve). Ac-

cording to the stress-strain curve, the capacity of non-critical elements is even more

underestimated than the critical element based on the failure criterion used in SLA

or ISLA. An improved saw-tooth model should be proposed for the stiffness reduc-

tion procedure. Investigation of a more realistic representative stiffness is suggested

for non-linear problems. A possible solution may be to introduce a varying stiff-

ness reduction factor based on the energy dissipation or the stiffness change rate.

The improved saw-tooth model should be tested in not only static analysis but also

transient analysis.

In this research, a local damage material model is used. Mesh objectiv-

ity should be further investigated, including mesh-size dependency and mesh-

directional bias. Strange results are observed at the boundaries of forces and dis-

placements of the facade and the house since connections or boundaries in the FEM

model are simplified to enhance calculation efficiency. However, this simplification

may cause mistakes in determining a critical element, which is more significant in

ISLA than in other methods. Therefore, the definition of the critical element is sug-

gested to include the influence of surrounding elements apart from the stress state

itself (non-local damage model) in order to minimize the accuracy impact of certain

strange stress states due to model simplification. Another solution is to implement

ISLA in a strong discontinuity method, X-FEM or G-FEM. Further, the influence of

different stiffness reduction factors to the critical element on the results should be

investigated. Normally, a small stiffness reduction factor is chosen to boost calcu-

lation efficiency, but it may cause extra imperfections and unrealistic damage paths

by reducing stiffness of one element by too much.

ISLA is programmed in ANSYS. The restart functionality in ANSYS is convenient

for implementing ISLA. Other finite element programs do not have this versatile

functionality. However, ANSYS restart cannot reuse the factorized stiffness matrix,

which causes low efficiency of the stiffness regeneration. In other words, ANSYS

needs to assemble the global stiffness matrix several times each cycle, specifically

the same number of times as the number of damaged elements, which causes low

efficiency for a large structure with a lot of damage. Therefore, the efficiency of the
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ANSYS restart should be improved for assembling and updating the stiffness matrix.

In addition, in ANSYS the material properties can be changed only at the element

level, not at the integration point level. Several layers of shell elements with section

offset are used to consider out-of-plain behaviour, which causes low efficiency. It is

important to extend ISLA to update the stiffness at the integration point level.

ISLA can be used for not only continuum models as in this thesis but also dis-

crete models such as interface elements or the lattice model, which are also based

on damage cycles. The discrete crack model with interface elements is significant in

simulating the behaviour of masonry structures. The smeared crack model cannot

consider the behaviour of sliding or may overestimate the capacity of a structure,

especially in the situation when cracks occur at the edges of structures. The discrete

crack model with interface elements is suggested for implementation in ISLA, espe-

cially for the contact analysis, to consider sliding behaviour. Moreover, ISLA can be

implemented to multiscale analysis, in which different scales are connected, aver-

aged and transferred by a secant stiffness, which is governed by damage instead of

tangent stiffness. Therefore, ISLA is proposed to combine the lattice model for mul-

tiscale analysis to improve the accuracy and robustness of multiscale analysis. The

implementation algorithms should be tested on different types of FEM models and

analyses.

When geometrical non-linearity, transient non-linearity and plastic non-

linearity are included in ISLA, the Lagrange descriptions, the Newmark time inte-

gration scheme and isotropic hardening model are used, respectively. ISLA is ro-

bust for the examples tested in the thesis. However, further investigation should

be conducted for more complicated examples. An orthotropic plastic model is sug-

gested for implementation in ISLA, which is compatible with the orthotropic dam-

age model in ISLA.

It is necessary to include robust iterations to determine loading and unload-

ing states at the local level. In this thesis, ISLA considers only loading and un-

loading state changes at the global level to avoid iterations, which may cause di-

vergences or bifurcations. In addition, ISLA is validated only for simple examples.

Non-proportional loading is not considered. Cyclic loading with plastic unloading

behaviour is tested for one element. Only repeating loading is tested for a beam.

Cyclic loading has not yet been tested for a structure due to residual stresses. That
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is to say, the reversing moment of each element cannot be predicted for a struc-

ture. The stresses of some elements are not reversed although the load is reversed at

the global level. Meanwhile damage of some elements may begin when the stresses

of other elements have not yet reversed. The algorithm for the structure level pro-

posed in this thesis should be optimized to balance accuracy and efficiency. The

major challenge is to define enough and proper unloading steps with iterations to

change the stiffness of damaged elements when the stresses are reversed. Structural

level tests are required to validate the algorithm.

In this thesis, the coupled damage-plastic model is employed for ISLA to con-

sider unloading with the non-secant stiffness. However, the modified plastic model

is simpler. The robustness and the accuracy of the modified plastic model are

worthwhile for further investigation.
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A
EXTENSION OF ISLA TO

PROPORTIONAL CYCLIC LOADING

FOR BRITTLE MATERIALS

ISLA employs the smeared crack model with the secant stiffness. At the local

level, an elastic material model is used to ensure computational robustness. This

behaviour is realistic for the tensile unloading of brittle materials. However, it is un-

realistic to continue to follow the secant stiffness when the loading state switches

from tensile unloading to compressive loading for the cyclic loading. Normally,

a damage-plastic model is used for the cyclic loading, but the robustness issue

remains[83]. In this chapter, two damage models, namely the correlative damage

model and the correlative-independent damage model, are proposed to consider

the stiffness change of the loading state switch in the cyclic loading. Although these

two models still follow the secant stiffness for unloading, they are simple, robust

and realistic for the cyclic loading of brittle materials with the tensile failure due to

the elastic compressive behaviour used in FEM models.

This chapter merely shows the possibilities of ISLA for cyclic loading. Only pro-

portional loading is considered to avoid iterations, so the transition of tension and
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compression of all elements is the moment when the load factor is zero at the global

level. If non-proportional loading is considered, iterations are necessary to deter-

mine the transition of tension and compression at the local level with iterations,

which may induce difficulties when determining the proper stiffness of each ele-

ment.

MATERIAL MODEL

In both damage models, the secant stiffness is reduced for loading when µ is

larger than 1. The secant stiffness is followed for both tensile and compressive un-

loading, which is the same as the standard damage model. Nevertheless, the stiff-

ness is changed when the loading state switches from tension to compression, or

vice versa. Two stiffnesses are considered for each element, namely d t Del
0 for the

tensile stiffness and d c Del
0 for the compressive stiffness, instead of one stiffness dDel

0

in the standard damage model of ISLA, where Del
0 is the initial (undamaged) elas-

tic stiffness of the material and d is the scalar stiffness degradation variable for the

isotropic damage model, the value of which is between 0 and 1. For the orthotropic

damage model, d is the tenser stiffness degradation variable based on the principal

directions of the rotating smeared crack model or the fixed smeared crack model,

which can be computed by

d = [T ]−1 (En/E0) [R] (A.1)

where [T ] is the rotation matrix of the strain tensor to the principal directions, [R] is

the rotation matrix of the stress tensor to the principal directions, En is the Young’s

modulus of the maximum principal direction for tensile failure or the minimum

principal direction for compressive failure, and E0 is the initial Young’s modulus

(Section 3.6).

In the correlative damage model, the stiffness is changed by a certain func-

tion related to the previous stiffness when the loading state switches. The stiffness

degradation variables in the correlative damage model are

d t
n = f (d c

n−1) (A.2)

d c
m = g (d t

m−1) (A.3)

where n is a load step in which the loading state switches from the previous com-

pressive unloading to the current tensile loading and m is a load step in which the



loading state switches from the previous tensile unloading to the current compres-

sive loading. f (.) and g (.) are two functions to describe the stiffness change due to

the loading state switch and are explained in the next section.

In the correlative-independent damage model, the damage to compression is

independent, while the damage to tension is influenced by both tension and com-

pression. The stiffness degradation variables in the correlative-independent dam-

age model are

d t
n = mi n(d t

n′ ,d c
n−1) (A.4)

d c
m = d c

m′ (A.5)

where n′ is the last load step of the tensile loading before n and m′ is the last load

step of the compressive loading before m.

Figures A.1 and A.2 show different loading paths of the original damage model,

the correlative damage model and the correlative-independent damage model

when the loading state switches. In Figure A.1, all models follow the secant stiffness

for tensile unloading. The stiffness recovers to the initial stiffness in the correlative-

independent damage model and to the value between the secant stiffness and initial

stiffness in the correlative damage model while the compressive loading still follows

the secant stiffness in the original damage model. In Figure A.2, all models also

follow the secant stiffness for compressive unloading, which indeed is unrealistic.

However, it is realistic for brittle materials if there is no compressive damage. The

stiffness follows the secant stiffness for the tensile loading in the original damage

model and the correlative-independent damage model while the stiffness is reduced

in the correlative damage model. Note that if the secant stiffness of the last tensile

load step is smaller than the secant stiffness of the last compressive load step, the

stiffness follows the secant stiffness of the last tensile load step in the correlative-

independent damage model.



Figure A.1: Different compressive loading paths of the original damage model, the correlative damage model and the

correlative-independent damage model when the loading state switches from tension to compression

Figure A.2: Different tensile loading paths of the original damage model, the correlative damage model and the

correlative-independent damage model when the loading state switches from compression to tension



FUNCTION STUDY FOR THE CORRELATIVE DAMAGE MODEL

In correlative damage model, the stiffness is changed by a certain function re-

lated to the previous stiffness when the loading state switches. Therefore, the dam-

age due to the loading of the other direction is considered in this model. For in-

stance, the stiffness is reduced to consider the influence of the compressive damage

to tensile loading when the loading state of the certain element changes from com-

pression to tension. Permanent strain is still ignored owing to the limitation of the

damage model. Nevertheless, the correlative damage model is realistic and applica-

ble for tensile failure of concrete and masonry.

The second-order polynomial function (y = ax2+bx+c) is used to describe the

stiffness change.

d t
n = f

(
d c

n−1

)= a(d c
n−1)2 +b(d c

n−1)+ c (A.6)

where f (0) = 0 and f (1) = 1

d c
m = g

(
d t

m−1

)= a(d t
m−1)2 +b(d t

m−1)+ c (A.7)

where g (0) = 0 and g (1) = 1, so for both function f (.) and g (.)

c = 0

a +b = 1

When the loading state switches from compression to tension, the stiffness should

decrease monotonically and sharply, which means

− b

2a
≤ 0

a ≥ 0

So

0 ≤ a ≤ 1

The function can be defined as

d t
n = f

(
d c

n−1

)= (d c
n−1)2 (A.8)

When the loading state switches from tension to compression, the stiffness

should monotonically and dramatically increase, which means

− b

2a
≥ 1



a ≤ 0

So

−1 ≤ a ≤ 0

The function can be defined as

d c
m = g

(
d t

m−1

)=−(d t
m−1)2 +2(d t

m−1) (A.9)

A more realistic way is to regress from the experiment results.

Similarly, the function f (.) for the stiffness change from compression to ten-

sion can be also defined by higher-order polynomial functions. When the function

is, for example d t
n = f

(
d c

n−1

) = (d c
n−1)4, the tensile stiffness drops faster due to the

compressive damage.

Importantly, when one function is defined, whether it is from tension to com-

pression or the other way around, the other function is determined, which actually

must be the inverse function. For example, when the loading state switches from

tension to compression, the stiffness increases. However, when the loading state

switches back to tension again without compressive damage, the tensile stiffness

should be the same as the previous tensile stiffness. Two groups of inverse func-

tions are tested in the next section.

Firstly, if the stiffness change function g (.) (from tension to compression) is

d c
m = g

(
d t

m−1

)=−(d t
m−1)2 +2(d t

m−1) (A.10)

the stiffness change function f (.) (from compression to tension) is

d t
n = f

(
d c

n−1

)= 1−
√

1− (d c
n−1) (A.11)

Secondly, if the stiffness change function f (.) (from compression to tension) is

d t
n = f

(
d c

n−1

)= (d c
n−1)4 (A.12)

the stiffness change function from tension to compression is

d c
m = g

(
d t

m−1

)= (d t
m−1)1/4 (A.13)



UNIAXIAL TEST FOR CONCRETE

All damage models are tested with the identical FEM model in Section 6.4 for

the cyclic loading test. Apart from the same tensile behaviour, the non-linear com-

pressive behaviour is considered with strength of -14.3 MPa and ultimate strain of -

0.01 (Figure A.3). The loading schedule of the nodal imposed displacement is shown

in Figure A.4, the exact displacement factors of which are shown in Table A.1.
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Figure A.3: Concrete tensile and compressive material model
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Figure A.4: Loading schedule a (imposed displacement)

Initially, the original damage model is tested for comparison. The stress-strain

curve for the cyclic analysis is shown in Figure A.5. It can be seen that the tensile



Load step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Imposed displacement (m) 0.0001 0 -0.0001 0 0.0001 0.0002 0 -0.0002 -0.0004 0 0.0004 0.0008 0 -0.0008 -0.0012
Load step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Imposed displacement (m) 0 0.0012 0.0016 0 -0.0016 -0.002 0 0.002 0.0024 0 -0.0024 -0.0028 0 0.0028 0.0032
Load step 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Imposed displacement (m) 0 -0.0032 -0.0036 0 0.0036 0.004 0 -0.004 -0.0044 0 0.0044 0.0048 0 -0.0048 -0.0052
Load step 46 47 48 49 50 51 52
Imposed displacement (m) 0 0.0052 0.0056 0 -0.0056 -0.006 0

Table A.1: The exact values of imposed displacements

stress and strain align well with the linear softening behaviour of 1.43 MPa tensile

strength and 0.002 ultimate strain while the stiffness for compressive loading fol-

lows the secant stiffness of the previous tensile load step. Due to large load steps,

the stress-strain curve is discontinuous. However, it can be continuous by post-

scaling to include the results of cycles when the utilisation function is larger than

1 (Figure A.6), which is allowed because of the proportional static analysis. It also

indicates how overshot results get corrected cycle-by-cycle to compare the curves

with and without post-scaling. For compressive loading, there is no further damage

from compression due to the tension damage. Compressive loading and unloading

follow the secant stiffness of the previous tensile load step. As for non-proportional

analysis, post-scaling cannot be performed. Sufficient numbers of load steps are

required to obtain a continuous curve.
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Figure A.5: Stress-strain curve for concrete cyclic analysis
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Figure A.6: Stress-strain curves for concrete cyclic analysis, including all cycle results with and without post-scaling

CORRELATIVE DAMAGE MODEL

In the correlative damage model, the stiffness is changed by a certain func-

tion related to the previous stiffness when the loading state switches. Two groups of

functions are used for testing. Group one is Eq. (A.10) and Eq. (A.11). Group two is

Eq. (A.12) and Eq. (A.13).

GROUP ONE OF THE INVERSE FUNCTIONS

Figure A.7 shows the stress-strain curve for the same loading schedule, which

indicates that there is no further compressive damage after the stiffness recovers

from the previous tensile loading. The tensile curve is continuous since there is no

compressive damage. To be exact, the tensile stiffness changes back to that of the

previous tensile load step shown in Table A.2, in which the results of only the first

and last cycles are outputted after load step 10 and the results of load steps from 27

to 50 are hidden. Moreover, compressive stiffness is larger than the previous tensile

stiffness due to triggering of the recovery function. In addition, the initial stiffness

remains if there is no damage when the loading state switches.

The reason why the structure cannot go to a compressive damage state is that

the capacity of concrete for compression is much higher than that of tension. Even

though the stiffness is increased, the stress cannot exceed the strength of the current

compressive stiffness when concrete is pulled to the same displacement value for
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Figure A.7: Stress-strain curve of the correlative damage model (Group one), including all cycle results with scaling

procedure for the loading schedule b

Load step 1 2 3 4 5 6 6 6 6 6
Load state tension tension compression compression tension tension tension tension tension tension
Stress 1 0 -1 0 1 1.42959257 1.42630745 1.42230026 1.41690962 1.41650638
Strain 3.3333E-05 0 -3.333E-05 0 3.3333E-05 4.7653E-05 5.2826E-05 5.8531E-05 6.4788E-05 6.5424E-05
Stiffness 30000.3 30000.3 30000.3 30000.3 30000.3 29999.85 26999.865 24299.8785 21869.8907 21651.1917

Load step 6 6 7 8 9 10 11 11 12 12
Load state tension tension tension compression compression compression tension tension tension tension
Stress 1.41623984 1.414696 0 -1.82871 -3.657419 0 1.41611211 1.359878 1.36671206 1.262215
Strain 6.6072E-05 6.6667E-05 0 -6.667E-05 -0.0001333 0 6.6733E-05 0.00013333 0.000134 0.00026667
Stiffness 21434.6828 21220.3339 21220.3339 27430.5128 27430.7111 27430.7111 21220.4931 10199.1105 10199.076 4733.30033

Load step 13 14 15 16 17 17 18 18 19 20
Load state tension compression compression compression tension tension tension tension tension compression
Stress 0 -2.325281 -3.487922 0 1.26898257 1.169515 1.17156499 1.070245 0 -2.068901
Strain 0 -0.0002667 -0.0004 0 0.0002681 0.0004 0.0004007 0.00053333 0 -0.0005333
Stiffness 4733.30033 8719.79285 8719.805 8719.805 4733.305 2923.7875 2923.7887 2006.71063 2006.71063 3879.1918

Load step 21 22 23 23 24 24 25 26 … …
Load state compression compression tension tension tension tension tension compression … …
Stress -2.586126 0 1.07281957 0.970209 0.97426862 0.870188 0 -1.708825 … …
Strain -0.0006667 0 0.00053462 0.00066667 0.00066946 0.0008 0 -0.0008 … …
Stiffness 3879.18706 3879.18706 2006.708 1455.31277 1455.31375 1087.735 1087.735 2136.03125 … …

Load step 51 52 53 53 54 55 56 57 58 59
Load state compression compression tension tension tension compression compression compression compression compression
Stress -0.209086 0 0.09770433 0.012199 0 -0.041002 -0.057403 -0.073804 -0.090204 -0.106605
Strain -0.002 0 0.00186755 0.00198333 0 -0.0033333 -0.0046667 -0.006 -0.0073333 -0.0086667
Stiffness 104.543 104.543 52.3169836 6.15075734 6.15075734 12.3006012 12.300642 12.3006667 12.300546 12.3005764

Load step 60 60
Load state compression compression
Stress -0.12219 -0.029769
Strain -0.0099337 -0.0099833
Stiffness 12.3006014 2.98186988

Table A.2: Stiffness change procedures for the correlative damage model (Group one)



pushing. Therefore, a new loading schedule is applied to the structure, in which

the compressive imposed displacements are exaggerated, as shown in Figure A.8.

Meanwhile, apart from changing the loading schedule, the compressive stress may

overpass the strength by following Group two of functions to dramatically recover

the stiffness from tension to compression.
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Figure A.8: Loading schedule b for concrete compressive failure test with increased imposed compressive displace-

ment

Figures A.9 and A.10 show the stress-strain curves of the correlative damage

model for loading schedule b, which align well with the material properties. It can

be seen that the curves of both tensile and compressive parts are discontinuous be-

cause damages occur in both loading states. As a matter of fact, the stiffness cannot

be fully recovered when the structure is damaged in the opposite loading. Table A.3

shows parts of stiffness change procedures, in which the results of only the first and

the last cycles are outputted after load step 10 and the results of load steps from 22

to 41 are hidden. For both tension and compression, the stiffness is lower than the

value of the previous load step, which has the same loading state because of dam-

age from the opposite loading. Meanwhile, the tensile stiffness is smaller than the

previous compressive value while the compressive stiffness is larger than the previ-

ous tensile value. In addition, the stiffness remains unchanged if there is no damage

from the opposite loading.

GROUP TWO OF THE INVERSE FUNCTIONS

When loading schedule b (Figure A.8) is applied, Figure A.11 shows the stress-

strain curve for the correlative damage model (Group 2). The enlargement results
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Figure A.9: Stress-strain curve of the correlative damage model (Group one), including all cycle results with the scaling

procedure for the loading schedule b
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Figure A.10: Enlargement results of tension part for Figure A.9



1 2 3 4 5 6 6 6 6 6
tension tension compression compression tension tension tension tension tension tension

1.00 0.00 -5.00 0.00 1.00 1.43 1.43 1.42 1.42 1.42
3.33E-05 0.00E+00 -1.67E-04 0.00E+00 3.33E-05 4.77E-05 5.28E-05 5.85E-05 6.48E-05 6.54E-05
30000.30 30000.30 29999.94 29999.94 30000.30 29999.85 26999.87 24299.88 21869.89 21651.19

6 6 7 8 9 9 9 9 9 9
tension tension tension compression compression compression compression compression compression compression

1.42 1.41 0.00 -9.14 -14.31 -14.31 -14.31 -14.31 -14.30 -14.32
6.61E-05 6.67E-05 0.00E+00 -3.33E-04 -5.22E-04 -5.80E-04 -6.44E-04 -6.50E-04 -6.57E-04 -6.64E-04
21434.68 21220.33 21220.33 27430.67 27430.63 24687.57 22218.81 21996.62 21776.66 21558.89

9 10 11 11 12 12 13 14 15 15
compression compression tension tension tension tension tension compression compression compression

-14.23 0.00 1.39 1.36 1.37 1.26 0.00 -11.60 -14.32 -14.16
-6.67E-04 0.00E+00 1.00E-04 1.33E-04 1.34E-04 2.67E-04 0.00E+00 -1.33E-03 -1.65E-03 -2.00E-03
21343.30 21343.30 13884.81 10171.31 10171.27 4720.39 4720.39 8698.06 8698.06 7079.73

16 17 17 18 18 19 20 21 21 …
compression tension tension tension tension tension compression compression compression …

0.00 1.23 1.16 1.17 1.07 0.00 -10.30 -12.22 -11.88 …
0.00E+00 3.25E-04 4.00E-04 4.02E-04 5.33E-04 0.00E+00 -2.67E-03 -3.17E-03 -3.33E-03 …
7079.73 3777.72 2909.99 2909.99 1997.24 1997.24 3861.51 3861.51 3563.19 …

42 42 43 44 45 45 46 47 47 48
tension tension tension compression compression compression compression tension tension tension

0.39 0.29 0.00 -2.90 -3.01 -2.37 0.00 0.23 0.19 0.19
1.47E-03 1.60E-03 0.00E+00 -8.00E-03 -8.31E-03 -8.67E-03 0.00E+00 1.68E-03 1.73E-03 1.73E-03
263.82 181.89 181.89 362.68 362.68 273.72 273.72 137.18 112.20 112.20

48 49 50 51 51 52 53 53
tension tension compression compression compression compression tension tension

0.10 0.00 -0.97 -0.99 -0.59 0.00 0.06 0.01
1.87E-03 0.00E+00 -9.33E-03 -9.45E-03 -9.67E-03 0.00E+00 1.92E-03 1.98E-03
52.27 52.27 104.45 104.45 61.32 61.32 30.67 6.14

Table A.3: Stiffness change procedures of the correlative damage model (Group one) for loading schedule b



for the tensile loading part are shown in Figure A.12. Compared to the curve in Fig-

ure A.9, the compressive loading cycles are continuous rather than discontinuous

while the gaps between the tensile loading cycles become larger and there is no

damage in several tensile loading cycles. Table A.4 shows the stiffness change proce-

dure for the correlative damage model (Group 2). Even though the tensile stiffness

is damaged to 4,708 MPa in load step 12, the initial compressive stiffness recovers

to 18883 MPa in load step 14, which is close to the last compressive stiffness (21,353

MPa) in load step 9. On the other hand, the initial tensile stiffness is damaged to 85

MPa in load step 17 from the last tensile stiffness (4,708 MPa) in load step 12 due to

the compressive damage in load steps 14 and 15, which causes no damage in load

steps 17 and 18.

Figure A.11: Stress-strain curve of the correlative damage model (Group two), including all cycle results with scaling

procedure for the loading schedule c

CORRELATIVE-INDEPENDENT DAMAGE MODEL

In the correlative-independent damage model, the tensile damage has no in-

fluence on compressive loading, which means the stiffness fully recovers to the

value of the last compressive loading state when the loading state switches from

tension to compression. On the other hand, there is no recovery and there even

be further damage when the loading state switches from compression to tension,

which means the tensile stiffness is the minimum value of the previous compres-



Figure A.12: Enlargement results of the tension part for Figure A.11

Load step 1 2 3 4 5 6 6 6 6 6
Load state tension tension compression compression tension tension tension tension tension tension
Stress 1 0 -5 0 1 1.41643059 1.41287284 1.40869565 1.40462428 1.40410506
Strain 3.3333E-05 0 -0.0001667 0 3.3333E-05 4.7215E-05 5.2329E-05 5.7971E-05 6.4226E-05 6.4851E-05
Stiffness 30000.3 30000.3 29999.94 29999.94 30000.3 29999.85 26999.865 24299.8785 21869.8907 21651.1917
Load step 6 6 6 7 8 9 9 9 9 9
Load state tension tension tension tension compression compression compression compression compression compression
Stress 1.40371906 1.40346825 1.400549 0 -9.147809 -14.304627 -14.30587 -14.318309 -14.31342 -14.309895
Strain 6.5488E-05 6.6138E-05 6.6667E-05 0 -0.0003333 -0.0005212 -0.0005792 -0.0006441 -0.0006504 -0.0006568
Stiffness 21434.6828 21220.3339 21008.13 21008.13 27443.4544 27443.4133 24699.0717 22229.1639 22006.873 21786.8036
Load step 9 9 10 11 12 12 13 14 14 15
Load state compression compression compression tension tension tension tension compression compression compression
Stress -14.307759 -14.235505 0 1.026671 1.32559264 1.255677 0 -14.313345 -14.281055 -14.319239
Strain -0.0006634 -0.0006667 0 0.00013333 0.00017215 0.00026667 0 -0.000758 -0.0013333 -0.0013369
Stiffness 21568.9362 21353.2468 21353.2468 7700.05175 7700.02662 4708.78286 4708.78286 18882.8845 10710.7939 10710.791
Load step 15 16 17 18 19 20 20 21 21 22
Load state compression compression tension tension tension compression compression compression compression compression
Stress -13.842082 0 0.033992 0.045323 0 -13.939659 -12.795099 -12.805343 -11.599141 0
Strain -0.002 0 0.0004 0.00053333 0 -0.0020141 -0.0026667 -0.0026688 -0.0033333 0
Stiffness 6921.041 6921.041 84.98 84.9806781 84.9806781 6921.04001 4798.16153 4798.16268 3479.74265 3479.74265
Load step 23 24 25 26 26 27 27 28 29 30
Load state tension tension tension compression compression compression compression compression tension tension
Stress 0.00362 0.004344 0 -11.628211 -10.40336 -10.445141 -9.300923 0 0.000545 0.000623
Strain 0.00066667 0.0008 0 -0.0033417 -0.004 -0.0040161 -0.0046667 0 0.00093333 0.00106667
Stiffness 5.42999729 5.43 5.43 3479.74225 2600.84 2600.83996 1993.05479 1993.05479 0.58392878 0.58406232
Load step 31 32 32 33 33 34 35 36 37 38
Load state tension compression compression compression compression compression tension tension tension compression
Stress 0 -9.3079046 -8.14561 -8.1456107 -6.952115 0 0.00008 0.000089 0 -6.9653499
Strain 0 -0.0046702 -0.0053333 -0.0053333 -0.006 0 0.0012 0.00133333 0 -0.0060114
Stiffness 0.58406232 1993.05519 1527.30197 1527.302 1158.68583 1158.68583 0.06666667 0.06675002 0.06675002 1158.68589
Load step 38 39 39 40 41 42 43 44 44 45
Load state compression compression compression compression tension tension tension compression compression compression
Stress -5.801636 -5.8069154 -4.626679 0 0.000009 0.000009 0 -4.6347897 -3.479847 -3.4809178
Strain -0.0066667 -0.0066727 -0.0073333 0 0.00146667 0.0016 0 -0.0073462 -0.008 -0.0080025
Stiffness 870.245356 870.245494 630.910801 630.910801 0.00613636 0.005625 0.005625 630.91075 434.980875 434.980829
Load step 45 46 47 48 49 50 50 51 51
Load state compression compression tension tension tension compression compression compression compression
Stress -2.327081 0 0 0 0 -2.3269155 -1.155863 -1.1566609 -0.580604
Strain -0.0086667 0 0.00173333 0.00186667 0 -0.008666 -0.0093333 -0.0093398 -0.0096667
Stiffness 268.509336 268.509336 0 0 0 268.509438 123.842469 123.842478 60.0624807

Table A.4: Stiffness change procedures of the correlative damage model (Group two) for the loading schedule c



sive and tensile stiffnesses.

When loading schedule b is applied (Figure A.8), Figure A.13 shows the stress-

strain curve. When the loading state switches, no stiffness change is observed since

the tensile stiffness is damaged faster than the compressive stiffness.

Figure A.13: Stress-strain curve of the correlative-independent damage model, including all cycle results with the

scaling procedure for loading schedule b

In loading schedule c (Figure A.14), the imposed negative displacement is twice

as large as that in loading schedule b (Figure A.8) for the same load step until the dis-

placement increases to 0.0295 m to validate the compression damage to the tensile

stiffness. Figure A.15 shows the stress-strain curve of the correlative-independent

damage for loading schedule c, the enlargement results of which for the tensile load-

ing part are shown in Figure A.16. It can be observed that the compressive loading

part is continuous even though there are several cycles of tensile damage. For the

tensile loading part, it can be seen that the results are discontinuous and even re-

main linear for several loading cycles. Table A.5 shows the detailed stiffness change

procedure. Only the results of the first and the last cycles are shown after load step

12, and results after load step 31 are not displayed. The compressive stiffness re-

covers to the initial value in load step 8 although the tensile stiffness is damaged to

21,008 MPa in load step 6. On the other hand, the beginning tensile stiffness in load

step 11 follows the final compressive stiffness in load step 9 rather than the stiffness

of the last tensile loading step (load step 7). Similar phenomena can be observed

in the subsequent load steps. For example, the initial compressive stiffness in load



step 14 (10,252 MPa) is the same as the last one in load step 9, and initial tensile

stiffness (2,619 MPa) in load step 17 is the same as the compressive stiffness in load

step 15 rather than the last tensile stiffness in load step 12. There is even no tensile

damage due to the previous compressive damage in load steps 17, 23 and 24.

Figure A.14: Modified loading schedule d for concrete compressive failure test with increased imposed compressive

displacement



Figure A.15: Stress-strain curve of the correlative-independent damage model, including all cycle results with the

scaling procedure for loading schedule d

Figure A.16: Enlargement results of the tension part for Figure A.15



Load step 1 2 3 4 5 6 6 6 6 6
Load state tension tension compression compression tension tension tension tension tension tension
Stress 1 0 -10 0 1 1.41643059 1.41287284 1.40869565 1.40462428 1.40410506
Strain 3.3333E-05 0 -0.0003333 0 3.3333E-05 4.7215E-05 5.2329E-05 5.7971E-05 6.4226E-05 6.4851E-05
Stiffness 30000.3 30000.3 30000.3 30000.3 30000.3 29999.85 26999.865 24299.8785 21869.8907 21651.1917
Load step 6 6 6 7 8 8 8 8 8 8
Load state tension tension tension tension compression compression compression compression compression compression
Stress 1.40371906 1.40346825 1.400549 0 -14.306152 -14.306152 -14.308426 -14.310954 -14.308145 -14.305451
Strain 6.5488E-05 6.6138E-05 6.6667E-05 0 -0.0004769 -0.0004769 -0.0005299 -0.0005889 -0.0006542 -0.0006607
Stiffness 21434.6828 21220.3339 21008.13 21008.13 29999.85 29999.85 26999.865 24299.8785 21869.8907 21651.1917
Load step 8 9 9 9 9 9 9 9 9 10
Load state compression compression compression compression compression compression compression compression compression compression
Stress -14.2899 -14.311317 -14.313689 -14.316388 -14.319313 -14.313893 -14.313825 -14.315174 -13.6696 0
Strain -0.0006667 -0.0006677 -0.000742 -0.0008246 -0.0009164 -0.0010178 -0.0011309 -0.0012567 -0.0013333 0
Stiffness 21434.7428 21434.8286 19291.3232 17362.2434 15625.9891 14063.4352 12657.0316 11391.3285 10252.2256 10252.2256
Load step 11 11 12 12 12 12 12 12 12 12
Load state tension tension tension tension tension tension tension tension tension tension
Stress 1.35476611 1.353289 1.35396648 1.34432726 1.3327228 1.32156463 1.30861164 1.29409555 1.27856622 1.26174269
Strain 0.00013214 0.00013333 0.0001334 0.00014717 0.00016211 0.00017861 0.00019651 0.00021592 0.00023704 0.00025991
Stiffness 10252.2181 10149.6929 10149.6586 9134.69233 8221.22347 7399.10075 6659.18918 5993.27251 5393.94451 4854.54893
Load step 12 12 12 13 14 14 15 15 16 17
Load state tension tension tension tension compression compression compression compression compression tension
Stress 1.26017994 1.25871726 1.256099 0 -14.321215 -12.6879 -12.77302 -10.4746 0 1.047463
Strain 0.00026221 0.00026455 0.00026667 0 -0.0013969 -0.0026667 -0.0026846 -0.004 0 0.0004
Stiffness 4806.00524 4757.9453 4710.36536 4710.36536 10252.1872 4757.95655 4757.95 2618.65 2618.65 2618.6575
Load step 18 18 19 20 20 21 21 22 23 24
Load state tension tension tension compression compression compression compression compression tension tension
Stress 1.13638568 1.054409 0 -10.477269 -8.08277 -8.115261 -5.81699 0 0.581699 0.698038
Strain 0.00043396 0.00053333 0 -0.004001 -0.0053333 -0.0053548 -0.0066667 0 0.00066667 0.0008
Stiffness 2618.66039 1977.01811 1977.01811 2618.66414 1515.52032 1515.52424 872.548064 872.548064 872.548064 872.5475
Load step 25 26 26 27 27 28 29 30 31 …
Load state tension compression compression compression compression compression tension tension tension …
Stress 0 -5.8169833 -3.47448 -3.4783181 -0.57787 0 0.055794 0.063765 0 …
Strain 0 -0.0066667 -0.008 -0.0080088 -0.0096667 0 0.00093333 0.00106667 0 …
Stiffness 872.5475 872.5475 434.31 434.30985 59.7796346 59.7796346 59.7793071 59.7796688 59.7796688 …

Table A.5: Stiffness change procedures of the correlative-independent damage model for loading schedule d



CYCLIC LOADING TEST FOR THE NOTCHED CONCRETE BEAM

The experiment by Hordijk [124] is used for testing and simply involves a sup-

ported concrete beam with a notch in the middle (Figure A.17). All the material

properties are the same as in Section 4.5. The test setup is modified for the applica-

tion of cyclic loading.

Figure A.17: Test model

The load schedule is shown in Figure A.18. The negative imposed displace-

ments are applied at the position of Load A while the positive ones are added at the

position of Load B. When the load is applied at either Load A or Load B, the previous

load at the other position is removed. Therefore, two types of boundaries can be

seen in Figure A.19.
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Figure A.18: Load schedule for the cyclic loading test of the notched beam



Figure A.19: FEM model

As for reverse loading, two models are considered: the correlative-independent

damage model and the correlative damage model (group one of inverse func-

tions). Due to the elastic compressive behaviour, the compressive stiffness of the

correlative-independent damage model is kept initial for all load steps. Here, un-

loading stiffness recovery of tension is ignored since the unloading stiffness is al-

most the secant stiffness for tensile unloading. If group 2 of inverse functions is used

in the correlative damage model, the behaviour is similar to that of the correlative-

independent damage model.



TEST RESULTS OF THE CORRELATIVE-INDEPENDENT DAMAGE MODEL

It can be seen in Figure A.20 that the slope changes instead of following the

secant stiffness when the load is reversed. Actually, the slope recovers to the initial

state if there is no damage in the loading of this direction. Afterwards, the slope

changes back to the previous value of this direction when the structure is loaded

again in this direction. That is to say, step 4 does not follow the secant stiffness

of step 3 (green line) while step 7 follows the secant stiffness of step 3 instead of

the secant stiffness of step 6 (orange line) in Figure A.21. The capacity for negative

loading is slightly smaller than for positive loading due to the notch at the bottom.
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Figure A.20: Displacement-reaction force curve for cyclic behaviour of the concrete beam with a notch (independent

damage)

Figure A.22 indicates the whole process of loading and unloading in the nega-

tive and positive directions. In general, only brittle failure can be seen for the nega-

tive loading due to the notch. However, the structure suffers from ductile to brittle

failure since the influence of the notch is smaller for positive loading. As for the

negative loading, the structure cracks earlier for the same imposed displacement.

Subsequently, two columns of elements crack before the reaction force meets the

peak. However, cracks develop in only one column of elements while the others are

closed after the peak. A similar procedure can be seen in the positive direction. The

major distinction is the cracks occur only along the notch for the negative loading

whereas cracks occur at nearly whole parts of the top of the beam midspan before

the peak for the positive loading. As a matter of fact, the cracks along the notch are

still larger than others for the positive loading.



Figure A.21: One loop of the notched beam cyclic loading test

TEST RESULTS OF THE CORRELATIVE DAMAGE MODEL

Figure A.23 shows the load-displacement diagram of the correlative damage

model while the maximum principal strain contours can be seen in Figure A.24.

Since the initial loading is in the negative direction, the damage in this direction is

dominant for the structure. As a matter of fact, the damage of this direction causes

an even lower capacity of the positive direction than that of the negative direction

whereas it is higher for the correlative-independent damage model. In addition,

the curve gaps between adjacent loading loops result from the damage of the previ-

ous loading steps, which are in the other direction. When the load is reversed, the

stiffness cannot fully recover, determined by the reversing load function of the cor-

relative damage model. The major distinction for the two directions is that there are

several “slides” in the positive loading direction. A slide is a sudden reduction

of the stiffness. This is due to the fact that cracks in the negative loading direc-

tion develop faster than in the other direction. The reason for this is that the load

schedule starts from the negative loading direction and the notch also has a larger

influence. When cracks develop to the mid-height of the beam, some elements will

convert from compression to tension. Nevertheless, the stiffness cannot recover to

the initial state due to the heavy damage in the other direction. Therefore, an abrupt

change can be seen when the stiffness of the element close to mid-height is smaller

than that of the element near the bottom. Speaking of the negative loading direc-



Figure A.22: Maximum principal strain contours of the cyclic loading test for the correlative-independent damage

model: (a) before the peak of the reaction force, b) at the peak, c) after the peak and d) at the final step in the negative

and positive directions)



tion, these curves are much smoother than those in the positive loading direction

because of the slower crack development in the negative loading direction. In other

words, the stiffness of the damaged element closer to the bottom is basically always

smaller than the stiffness near mid-height. Moreover, the final crack length in the

positive loading direction is much shorter than in the other direction. This is also

due to the heavier damage in the negative loading direction.
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Figure A.23: Displacement-reaction force curve for cyclic behaviour of the notched concrete beam (correlative dam-

age)



Figure A.24: Subsequent maximum principal strain contours: a) before the peak of the reaction force, b) at the peak,

c) after the peak and d) at the final step in the negative and positive directions (the correlative damage model)



DISCUSSION

The correlative damage model and the correlative-independent damage mode

are introduced to consider cyclic loading in ISLA. The stiffness change in two models

are validated by a uniaxial test. Compared with the correlative-independent dam-

age model, the correlative damage model is more realistic. More realistic and com-

plicated functions can be implemented, but the two functions for both sides must

be inverse. The correlative-independent damage model is similar to the correlative

damage model with group 2 of inverse functions when the compressive behaviour

is elastic in FEM models.

For the cyclic loading test of the notched beam, the correlative-independent

damage model and the correlative damage model are robust and accurate. It is

shown that full open and closure of cracks can be traced in ISLA. Meanwhile, the

correlative damage model can also consider mutual impacts for cyclic loading.

Note that although the tensile unloading can be simplified by following the se-

cant stiffness, it is unrealistic to follow the secant stiffness for the compressive un-

loading. Nevertheless, it is still worthwhile for the tensile failure of brittle materi-

als, as the compressive behaviour is elastic in FEM models due to the simplicity. In

Chapter B, the unloading behaviour with the non-secant stiffness is considered in

ISLA, but limitations remain.

Currently, this algorithm is suitable only for proportional loading since the

stresses are assumed to be zero for the transition of tension and compression.

The load control method is used in this chapter. Basically, the load scaling con-

trol method is designed for cases in which the N-R method with arc-length control

is used. However, it is still possible to use the load scaling control method in cyclic

loading analysis by changing the loading direction. The solution is to define several

unit loads, positive and negative, determined by the loading schedule. Some condi-

tions can be set to trigger the algorithm to run the next unit load when the current

load factor meets certain values in the loading schedule. The stiffness should also

be changed when the loading state switches.

In addition, it is possible to implement the load control method for a total ap-

proach such as SLA since the unloading behaviour still follows the secant stiffness.

The only difference from the algorithm in ISLA is that the procedure is restarted

from the origin for every load step rather than the previous load step. The equilib-



rium is determined by the utilisation functionµ rather than a unit load with the load

factor λ in the standard SLA.



B
COUPLED DAMAGE-PLASTIC

MATERIAL MODEL IN ISLA FOR

PROPORTIONAL LOADING

In Appendix A, the material model is unloaded to the origin of the stress-strain

curve (the elastic material model with the secant stiffness). This material model

can describe the damage procedure but is not allowed for unloading with the non-

secant stiffness, which is a limitation of the damage model and the smeared crack

model. However, in the plastic model, the plastic modulus cannot drop below a

critical value based on effective stress, which may diverge, and may not be negative

based on nominal stress [83]. The damage model has been coupled with the plastic

model for the N-R method [83][84][85][86][87][88].

In this appendix, the coupled damage-plastic material model rather than the

elastic material model is implemented in ISLA to consider irreversible deforma-

tions, which can be applied for modelling materials such as metals and also cyclic

loaded concrete and masonry. ISLA follows the damage model for loading and the

plastic model for unloading. Plastic strain is recomputed when the reduced elastic

modulus is changed to the unloading modulus for unloading. The damage model
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with reduced secant stiffness ensures computational robustness while the plastic

model provides the possibility of unloading with the non-secant stiffness.

Note that iterations are not considered to determine loading or unloading at

the local level. Non-proportional loading is also not considered. The coupled

damage-plastic material model still follows the secant stiffness for possibly local

unloading when a structure is globally loaded. In the discussion section, a material

model called the modified plastic model is proposed, which follows the non-secant

stiffness for possible local unloading when a structure is globally loaded. However,

both material models need to be further investigated compared with experimental

results.

MATERIAL DEFINITION

Figure B.1 shows a concrete compressive stress-strain curve with three load cy-

cles, which is used to explain the material model. It has the same material properties

for monotonic loading as Figure 3.9. Initially, there is no stress and no strain. Curve

A shows that the material is first linearly elastic without plastic strain. After damage,

the stress-strain curve follows Curve B for unloading. Subsequently, the load is in-

creased again, and Curve B is followed up to Curve C, at which moment unloading

occurs again. Finally, the load is increased again, and the material follows Curve C

until no strength is left.

The reduced linear elastic stiffness is used to represent the damage for ISLA

in previous chapters. If the elastic modulus of the element is still used to define

the damage, when the damaged structure is loaded again after unloading, the ori-

gin should be shifted by the plastic strain. For calculation of the utilisation func-

tion, Figure B.1 indicates that there are three types of stress-strain curves of material

properties (A, B and C), which are marked as three colours when the plastic strain

augments. Actually, material property values of all damaged elements may be totally

distinctive from each other because of various plastic strains, even for the same type

of stress-strain curve. It is not convenient to calculate the utilisation function in this

way.

Instead, the total strain εto is used to represent the damage (Figure B.2(a)). Only

in this way are the material properties for distinguished elements fixed. Although

only the elastic modulus Eel can be defined and modified, the virtual total modulus



Figure B.1: Material properties based on different plastic strains

E to is also changed along with Eel . However, when the unloading procedure of con-

crete has passed the transition point of tension and compression, the origin should

be shifted by the plastic strain εpl such that (εto−εpl ) is used to represent the damage

in the other direction (Figure B.2(b)).

MATERIAL MODELLING

To consider plastic deformations and ensure robustness of the algorithm, the

elastic material model is replaced by a plastic material model (isotropic hardening

model) for all materials, regardless of whether they are metal or a brittle material

such as concrete or masonry. The Following is the implementation of the algorithm.

The algorithm consists of the loading procedure and the unloading procedure. Ini-

tially, the loading procedure is performed. The yield stress is set to a very large value

such as 100 times the strength. Therefore, the loading procedure is basically the

same as ISLA for the elastic material model without unloading (Figure B.3). The

dots above the stress-strain curve are scaled cycle-by-cycle onto the curve by reduc-

ing the elastic modulus. The dashed red arrow line represents the elastic modulus

of the current cycle. The dashed green line represents the virtual total modulus E to ,



(a)

(b)

Figure B.2: Damage definition and the origin updating procedure



which is the same as the elastic modulus when there is no plastic strain. The in-

cremental cycle-by-cycle procedure is shown in Section 5.5, which is hidden in this

figure due to a concise indication.

Figure B.3: Initial loading procedure of sequentially non-linear iterative implicit method before unloading

When the algorithm detects that the next load step is unloading, the unloading

procedure is activated. The yield stress of the material model is set to the stress of

the last cycle in the current load step for all damaged elements whereas the elastic

modulus (the solid orange arrow line) is defined as the unloading modulus (the dot-

dash blue arrow line) of the next load step, which can be any value (not only the

initial Young’s modulus) or derived from a certain function. The material model of

Route A is converted to that of Route B, as shown in Figure B.4. Therefore, part of

the elastic strain is converted to plastic strain.

It is important to change the material model before the unloading load step

to guarantee the accuracy of the unloading result. In ISLA, the elastic modulus is

reduced to increase elastic strain rather than plastic strain in order to render total

strain the same as that of the plastic material model from non-linear N-R analysis

to avoid divergence problems. From Eq. (B.1), the plastic strain from ISLA would

be smaller than that from the non-linear N-R analysis due to various elastic moduli.



Figure B.4: Procedure for ISLA when the algorithm detects that the next step is unloading

Without unloading, there is no plastic strain for ISLA. Therefore, it is important to

correct elastic and plastic strain before the unloading load step so that the loading

procedure is connected with the unloading procedure at an identical strain state

without an abrupt change at the beginning of the unloading load step. Otherwise,

the curve unloads to the incorrect position.

εto = ε′
to

εel +εpl = ε′
el +ε

′
pl (B.1)

As for the tangent modulus of the material model, it should be sufficiently small,

otherwise the unloading path may be like Route D instead of Route C (Figure B.5). It

can be seen that part of the elastic strain (Part E) is converted to plastic strain when

unloading, which also causes a stress value (σ
′′
3) larger than the correct one (σ

′
3). The

unloading procedure performs the unloading load step after changing the model’s

yield stress, elastic modulus and tangent modulus.

Subsequently, when the algorithm detects the next load step is loading, the

loading procedure is activated, and the yield stress of all damaged elements is in-

creased to a very large value. If the material model remains the same as that in Route



Figure B.5: The unloading procedure of ISLA during unloading

B and C, the loading path will continue in Route F rather than Route G (Figure B.6).

Consequently, the utilisation function will be mistakenly smaller than 1 for the next

load step because the stress of Route F is not larger than the strength of the material

properties. This mistake may also occur for steel behaviour but not for the softening

part of concrete or masonry behaviour. However, for the softening part, this change

in material properties is still necessary for the next loading procedure.

When the utilisation function is larger than 1, the algorithm restarts from the

last cycle of the previous load step (equilibrium state). Afterwards, elastic modu-

lus reduction is performed as part of the loading procedure the until the utilisation

function is not larger than 1 (Figure B.7). The beginning elastic modulus is equal

to the unloading modulus, which is larger than that of the previous loading step.

However, there is no recovery from the damage due to the increase of plastic strain.

Actually, the damage is identical and is measured by E to if the curve is reloaded to

the same position before unloading.

It is recommended that the algorithm restarts from the state where the stress

is zero during loading, otherwise the plastic strain can be negative when the elastic

modulus is reduced to Route J (Figure B.8).

When the algorithm detects that the next step is unloading, the unloading pro-

cedure previously explained is activated. Otherwise, the algorithm performs the



Figure B.6: The loading procedure of ISLA when the algorithm detects that the next step is loading

Figure B.7: The loading procedure of ISLA during loading



Figure B.8: The restart point of the equilibrium state for loading

loading procedure.



ALGORITHM IMPLEMENTATION

"Find the origin" is defined to ensure the structure unloads to the moment

when the total reaction force is zero. The program structure diagram for this is

shown in Figure B.9. Figure B.10 shows the program structure diagram to consider

plastic unloading behaviour. Not until all the load steps are finished or the whole

structure totally fails is this algorithm terminated. Compared with the algorithm for

secant unloading behaviour, the main disparities are that several condition checks

are added, and the corresponding material model updates to convert from "basi-

cally" elastic material (very high yield strength) to a plastic material model.

Restore the reaction force Fr 0

Define an origin step, the load decrement of which is s  (small enough)
and then add to the load schedule for the next load step
Load structure state and Find µ 
Restore the reaction force Fr 1

Repeat until  Fr m  = 0

Load structure state and Find µ 
Restore the reaction force Fr m

Save structure state

Update the load decrement by ! −#$%
#$&'( − #$%

Figure B.9: Program structure diagram of "Find the origin"

When reverse loading is included in ISLA, the major distinction is that the start

point of the material property curve should be moved instead of the origin due to

the plastic unloading strain from loading in the other direction. For example, the

new origin shifts left by εpl to consider tensile damage after compressive unloading

in Figure B.2(b).

At the local level, the shifting distance of the origin is clear, which is the plastic

strain of loading in the other direction. However, it is complicated at the global level.

Due to the residual stress, not all damaged elements are reverse loaded simultane-

ously. Hereby, it is impossible to define a certain reversing moment to change the

stiffness for all damaged elements. To be exact, there is a reversing period instead

of a reversing moment for the global level. The start point of this reversing period

is the moment when the reaction force becomes zero. There is no damage when



Initiate all elements by isotropic hardening model with the yield strength large enough

No

which is at least larger than material strength
Load structure state

No

Load structure state, Find µ and save structure state
Find the origin

Save structure state

For all load steps
If next step is loading

Yes

Repeat until |µ-1| ≤ r
Reduce the stiffness of the critical element or reduce the load
Load structure state
Find µ

For all damaged elements
Update yield strength by a  value

Find µ

For all damaged elements
Update yield strength by current stress
Update tangent modulus by a closed zero value
Update elastic modulus by the unloading modulus

Save structure state
If next step is unloading

Yes

Figure B.10: Program structure diagram of ISLA with the coupled damage-plastic material model, including plastic

unloading



unloading and thus the moment of no reaction force is predictable. Then origin can

be updated for the damaged elements, the stresses of which are almost zero. Mean-

while, the stiffness is also updated by the reversing function introduced in Chapter

A. However, for the elements with the residual stress, the solution is to ensure the

load increment is small enough so the moment when the reaction force is zero the

origin is updated and the stiffnesses change, which leads to inaccuracy. Figure B.11

shows the program structure diagram of ISLA with the coupled damage-plastic ma-

terial model for the combination of plastic unloading and reverse loading. This PSD

is suitable for brittle materials and metal materials. However, for metal materials, it

is unnecessary to define a group of reverse loading steps since the stiffness does not

change during reversing.

In addition, when plastic unloading stiffness is a non-linear function instead of

a certain value, presently the solution is to define sufficiently small load increments

from the moment of starting unloading to the moment when the reaction force is

zero. Therefore, the stiffness is adjusted at certain load steps when the stress is lower

than the certain value determined by the defined non-linear function.



Initiate all elements by isotropic hardening model with the yield strength large enough

No

which is at least larger than the strength
Load structure state and Find µ 

No

Load structure state, Find µ and save structure state
Find the origin

No
Update the origin
Define a group of reversing loading steps, which starts from the origin
step and ends with next original load step, then add to load schedule
Load structure state and Find µ 
For  the elements, the stresses of which is reversed

Update elastic modulus by the reversing modulus 
Update yield strength by a  value at least larger than the strength

Load structure state, Find µ and save structure state
Repeat until |µ-1| ≤ r

Reduce the stiffness of the critical element or reduce the load
Load structure state
Find µ

Save structure state

If next step is reversing loading
Yes

If next step is unloading 
Yes

For all damaged elements
Update yield strength by current stress
Update tangent modulus by a closed zero value
Update elastic modulus by the unloading modulus

Repeat until |µ-1| ≤ r
Reduce the stiffness of the critical element or reduce the load
Load structure state
Find µ

Save structure state

Save structure state

For all load steps
If next step is loading

Yes
For all damaged elements

Update yield strength by a  value

Figure B.11: Program structure diagram of ISLA with the coupled damage-plastic material model for the combination

of plastic unloading and reverse loading



COMBINATION TEST OF PLASTIC UNLOADING AND REVERSE

LOADING FOR STEEL

Consider one element test for steel. The yield strength is 429 MPa, Young’s

modulus is 210 GPa and Poisson’s ratio is 0.3. The elastic modulus is set back to the

initial Young’s modulus for unloading. The geometric dimensions and FEM model

are the same as in Section 6.4. The load schedule is designed in Figure B.12 based

on steel’s plastic behaviour. The main purpose is to test the unloading procedure

when the stress is lower than the yield stress. Except for Load step 1 (elastic step)

and Load steps 2 and 6 (loading steps), the others are all unloading steps.
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Load step 1 2 3 4 5 6 7
Imposed displacement (mm) 5 20 15 0 -2 -15 0

Figure B.12: Loading schedule for testing steel’s plastic behaviour

It can be seen in Figure B.13 that the whole loading damage process can be

obtained by post-scaling. The results of this process show that the utilisation func-

tion is larger than 1 and the corresponding utilisation value, which is the same as

in SLA. Compared with non-linear analysis in Figure B.14, ISLA can include plastic

behaviour when unloading instead of going back to the origin zero. Currently, re-

sults of four quadrants can be obtained by ISLA. A missing corner can be seen at the

third quadrant when total strain is scaled, which demonstrates that the origin needs

to be updated when the load is reversed. Meanwhile, it is notable that there is still



stress for two load steps with zero strain (Load steps 4 and 7). Speaking of the error

of the selected load steps, ISLA is accurate of which errors are almost zero, as shown

in Table B.1. The reason why the error of Load step 7 is relatively large is because

the utilisation value of Load step 6 is not exactly 1. The difference of 3 MPa is rela-

tively much larger for 96 MPa than for 429 MPa. Figure B.15 shows that elastic strain

follows with the loading schedule while plastic strain nearly remains, with the ex-

ception of two loading steps. The abrupt strain change at two damage steps due to

increased elastic strain by reducing the elastic modulus is converted to plastic strain

at the end of the loading step to prepare for the next unloading step.
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Figure B.13: Stress-strain curves for the cyclic analysis of steel without and with post-scaling, including all cycle results

Table B.1: Stress comparison for the cyclic analysis of steel

Load step 1 2 3 4 5 6 7
ISLA 175.00001 428.069678 253.069678 -271.93032 -341.93032 -425.58356 99.416438
N-R 175 429 254 -271 -341 -429 96
error 0.00% 0.22% 0.37% 0.34% 0.27% 0.80% 3.56%
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Figure B.14: Stress-strain curves for the cyclic analysis of steel comparing ISLA and N-R analysis
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PLASTIC UNLOADING BEHAVIOUR TEST FOR CONCRETE

Consider one element test of steel. All the material properties, geometric di-

mensions and FEM model are the same as in Section 6.4. The unloading elastic

modulus is set as 20,000 MPa which is 2/3 of the initial Young’s modulus. Twelve

points are selected from the concrete compressive stress-strain curve, for which the

unloading procedure enables the stress to drop to zero (Figure B.16). Figure B.17

shows the imposed displacements for every load step. Note that the imposed dis-

placements for unloading are adjusted by the algorithm to ensure the stress is zero.

The designed strain of unloading is compared with the strain when the stress un-

loads to zero.
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Figure B.16: Selected points from compressive material properties

Figure B.18 shows the stress-strain curves of ISLA and the designed curve. It

can be seen that the curve of ISLA with post-scaling and the designed curve overlap

with each other while the point of Load step 3 from the curve of ISLA without post-

scaling is lower than that of the designed curve. According to Table B.2, the stress

error of Load step 3 is 4.34% (maximum) followed by Load step 5 (1.43%) while the

rest are lower than 1%. This is because the utilisation function of Load step 3 is not

exactly 1 but 0.956, which can be corrected by post-scaling. The error of Load step

3 also causes the strain of Load step 4 (unloading procedure) to be larger than the

strain of the point on the designed curve whereas errors of the others are almost

zero, as shown in Table B.3. Therefore, the errors do not accumulate. As for the
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Load step 1 2 3 4 5 6 7 8 9 10
Imposed displacment (mm) -1.430 0.000 -2.860 -0.715 -5.720 -3.575 -9.684 -7.868 -14.642 -13.269
Load step 11 12 13 14 15 16 17 18 19 20
Imposed displacment (mm) -19.679 -18.756 -23.767 -23.210 -26.522 -26.212 -28.154 -27.989 -29.048 -28.963
Load step 21 22 23 24
Imposed displacment (mm) -29.516 -29.473 -29.756 -29.734

Figure B.17: Loading schedule for testing concrete plastic unloading behaviour (imposed displacements)

unloading elastic modulus, the errors are less than 0.01%, as shown in Table B.4.

Further, elastic strain fluctuates along with the material properties in Figure B.19,

which means it increases with the reduction of elastic modulus during loading and

then decreases to zero during unloading. Eventually, the elastic strain drops to zero.

In addition, Figure B.20 shows the plastic strain remains unchanged during loading

and unloading but abruptly ascends at the transition point of loading and unload-

ing. Finally, the plastic strain augments to the ultimate strain when the elastic strain

is zero.

Based on two tests, it can be seen that elastic strain represents the relationship

between the loading procedure and structure capacity while plastic strain indicates

the position of the origin for load steps. The proper stiffness for the plastic model

in the sequentially non-linear iterative implicit method is obtained by a sub-step

iteration procedure. Overall, the sequentially non-linear iterative implicit method

combines ISLA with a plastic unloading procedure.
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Figure B.18: Stress-strain curves for the repeating analysis of concrete comparing ISLA and material properties

Table B.2: Stress comparison for the repeating analysis of concrete

Load step 1 2 3 4 5 6 7 8 9 10
Designed stress (MPa) -14.300 0.000 -14.300 0.000 -14.300 0.000 -12.105 0.000 -9.151 0.000
Actual stress (MPa) -14.300 0.000 -13.679 0.000 -14.096 0.000 -12.093 0.000 -9.110 0.000
Error 0.00% -4.34% -1.43% -0.10% -0.45%

Load step 11 12 13 14 15 16 17 18 19 20
Designed stress (MPa) -6.150 0.000 -3.714 0.000 -2.072 0.000 -1.100 0.000 -0.567 0.000
Actual stress (MPa) -6.094 0 -3.684 0 -2.064 0 -1.096 0 -0.565 0
Error -0.91% -0.80% -0.39% -0.34% -0.41%

Load step 21 22 23 24
Designed stress (MPa) -0.288 0.000 -0.145 0.000
Actual stress (MPa) -0.286 0 -0.144 0
Error -0.78% -0.89%

Table B.3: Strain comparison for the repeating analysis of concrete

Load step 1 2 3 4 5 6 7 8 9 10
Designed strain (10^3) -0.477 0.000 -0.953 -0.238 -1.907 -1.192 -3.228 -2.623 -4.881 -4.423
Actual strain (10^3) -0.477 0.000 -0.953 -0.269 -1.907 -1.202 -3.228 -2.623 -4.881 -4.425
Error 0.00% 0.00% 0.00% 13.02% 0.00% 0.86% 0.00% 0.02% 0.00% 0.05%

Load step 11 12 13 14 15 16 17 18 19 20
Designed strain (10^3) -6.560 -6.252 -7.922 -7.737 -8.841 -8.737 -9.385 -9.330 -9.683 -9.654
Actual strain (10^3) -6.560 -6.255 -7.922 -7.738 -8.841 -8.737 -9.385 -9.330 -9.683 -9.654
Error 0.00% 0.05% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Load step 21 22 23 24
Designed strain (10^3) -9.839 -9.824 -9.919 -9.911
Actual strain (10^3) -9.839 -9.824 -9.919 -9.911
Error 0.00% 0.00% 0.00% 0.00%



Table B.4: Unloading modulus comparison for the repeating analysis of concrete

Load step 2 4 6 8 10 12
Designed unloading modulus (MPa) 30000 20000 20000 20000 20000 20000
Actual unloading modulus (MPa) 29999.979 19999.6491 19999.9149 19999.5369 19999.3414 20001.5098
Error 0.000% -0.002% 0.000% -0.002% -0.003% 0.008%

Load step 14 16 18 20 22 24
Designed unloading modulus (MPa) 20000 20000 20000 20000 20000 20000
Actual unloading modulus (MPa) 19997.8287 19995.9311 20007.6672 20007.7906 20000 19988.8951
Error -0.011% -0.020% 0.038% 0.039% 0.000% -0.056%
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Figure B.19: Elastic strain versus load step for the repeating analysis of concrete
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Figure B.20: Plastic strain versus load step for the repeating analysis of concrete



COMBINATION TEST OF PLASTIC UNLOADING AND REVERSE

LOADING FOR CONCRETE

In this section, one element test starts from tensile damage to compressive

damage. All the material properties, geometric dimensions and FEM model are

the same as in Section 6.4. Eq. B.2 is used to define the tensile plastic unload-

ing behaviour, which is the relationship of the secant stiffness and unloading stiff-

ness. When the test goes to compression, the stiffness recovers to the initial stiffness

(30000 MPa).

y = f (x) =−x2 +2x (B.2)

where y and x are the relative unloading and secant stiffness to the initial stiffness,

respectively, which is between 0 and 1.

The imposed displacements are defined in Figure B.21. Load step 5 is a nom-

inal zero step. Actually, it is the moment when the reaction force is zero, which is

automatically calculated and replaced with the corresponding displacement by the

proposed method.

-25 

-20 

-15 

-10 

-5 

0

5

0 1 2 3 4 5 6 7 8

Im
po
se
d	
di
sp
la
ce
m
en
t
(m

m
)

Load	step

Load schedule

Figure B.21: Load schedule of the imposed displacements

Figure B.22 shows the stress-strain curve for this cyclic loading schedule. Com-

pared with the material properties, the tensile elastic and softening parts overlap,

and those for compressive behaviour are shifted right. The shifting value is the plas-

tic strain caused by tensile plastic unloading. Table B.5 shows the detailed results of

these seven load steps. It can be seen that the stiffness is damaging from 30,030.03

MPa to 724.86 MPa during tensile loading, then recovers to 1,432.21 MPa. The stiff-



ness recovery value is correct based on Eq. B.2. Moreover, the imposed displace-

ment is adjusted to 1.482 mm when the reaction force is zero for Load step 5. Sub-

sequently, Load steps 6 and 7 are compression damage steps. Table B.6 shows parts

of cycle results from Load steps 4 through 6. It is important to mention three cycles.

First, there is no stiffness damage at cycle 16 of Load step 4 because this transition

cycle is used to convert part of the elastic strain to plastic strain to prepare for plastic

unloading. Second, cycle 1 of Load step 5 is used to calculate the global stiffness, so

the reversing moment can be predicted for the next load step. Third, the stiffness

recovers to the initial stiffness 300,000 MPa at cycle 1 of Load step 6. Finally, the

stiffness is damaged to 2,809.52 MPa, as shown in table B.5.
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Figure B.22: Stress-strain curve for one-element cyclic loading test

Table B.5: Stress-strain curve for one-element cyclic loading test

Load step Strain Stress (MPa) Stiffness (MPa) Imposed displacement (mm)
1 3.33E-07 0.01 30030.03003 0.001
2 0.00033333 1.203609 3610.830611 1
3 0.00066667 0.965828 1448.741276 2
4 0.001 0.72486 724.8607249 3
5 0.00049389 0 1432.206973 1.482
6 -0.0033333 -10.752656 2809.522005 -10
7 -0.0066667 -4.936075 689.3438638 -20



Table B.6: Stress-strain curve for one-element cyclic loading test

Load step Cycle Strain Stress (MPa) Stiffness (MPa)
4 14 0.000995 0.728538308 732.181
4 15 0.001 0.72486 724.86
4 16 0.001 0.72486 724.8607249
5 1 0.0009 0.581639 1432.206228
5 2 0.0004939 0 1432.206228
6 1 1.672E-05 -14.30914357 29987.94656
6 2 -3.632E-05 -14.3103325 26990.39154
6 3 -9.519E-05 -14.31011232 24292.35567
6 4 -0.0001607 -14.31280404 21863.93431

NOTCHED BEAM TEST, INCLUDING PLASTIC UNLOADING

All the material properties, geometric dimensions and FEM model are the same

as in Chapter 7. Two types of unloading modulus are defined, namely a constant

value of 20,000 MPa (the initial Young’s modulus is 32,000 MPa) and the secant stiff-

ness. The monotonic loading schedule in Chapter 7 is modified to a repeating load-

ing schedule, as shown in Figure B.23.
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Figure B.23: Loading schedule for repeating loading of the notched beam

Figure B.24 shows the displacement-force diagrams for the midspan and the

loading position separately. Three load steps are marked for post-processing. The

backbones of two types of unloading modulus align well with the curve of the mono-



tonic loading with the damage control method. When the secant stiffness is used,

the beam is unloaded to the origin without any permanent deformation for all un-

loading steps. Afterwards, the beam can be reloaded to the position of the previous

loading step. On the contract, when the constant stiffness (20,000 MPa) is used, the

permanent deformation related to the plastic strain accumulates step-by-step and

can be regarded as permanent damage. In addition, the beam cannot be reloaded to

the position of the previous loading step due to the permanent damage. The peaks

of the two curves align well with each other, and the total forces of both are 3.87 kN.

Figure B.25 shows the crack patterns of the pre-peak, the peak and the post-

peak marked in Figure B.24 when the beam is unloaded by the secant stiffness. The

crack starts from the notch and propagates to the top of the beam. The beam meets

the peak when the three elements are damaged. The total force drops to nearly zero

when eight elements are damaged. The beam is unloaded to the states where there

is nearly no strain (less than 1e-9). Figure B.25 shows the crack patterns when the

beam is unloaded by the constant stiffness (20000 MPa). For position a, the beam is

unloaded to the state where there is no crack. For positions b and c, the crack almost

remains when the beam is unloaded to the state for which the total force is zero.
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Figure B.24: Load-displacement diagrams of the notched beam for the repeating loading test: (a) total force versus

midspan displacement and (b) total force versus loading position displacement



(a) Loading step of position a (b) Unloading step of position a (the maximum strain

value is less than 1e-13)

(c) Loading step of position b (d) Unloading step of position b (the maximum strain

value is less than 1e-12)

(e) Loading step of position c (f) Unloading step of position c (the maximum strain

value is less than 1e-9)

Figure B.25: Horizontal tensile strains (x-direction, strain contour) for the loading and unloading of the three positions

marked in Figure B.24 when the secant stiffness is used for unloading



(a) Loading step of position a (b) Unloading step of position a

(c) Loading step of position b (d) Unloading step of position b

(e) Loading step of position c (f) Unloading step of position c

Figure B.26: Horizontal tensile strains (x-direction, strain contour) for the loading and unloading of the three positions

marked in Figure B.24 when the constant stiffness (20.000 MPa) is used for unloading

DISCUSSION

To sum up, the coupled damage-plastic material model has been implemented

in ISLA, as shown in Figure B.27, which is a varying isotropic hardening model that

includes yield strength, elastic modulus and tangent modulus. ISLA consists of the

loading procedure and unloading procedure. It should be noted that the dashed red

arrow line represents the reduced elastic modulus and the dashed green line repre-

sents the virtual total modulus, but the actual incremental path is shown in Section

5.5. When the loading procedure is performed, the reduced elastic modulus is "basi-

cally" determined by the standard ISLA to obtain the correct virtual total modulus,

the procedure of which still reduces the stiffness or scales the load cycle-by-cycle

(the double dot-dash green arrow line) from one equilibrium state to another un-

til the utilisation function is not larger than 1. Here, "basically" means the original

elastic material model in ISLA is replaced by the isotropic hardening model with

very large yield strength. When the next load step is unloading, the unloading pro-

cedure is performed. It is important that after the elastic modulus of the loading

procedure has been reduced, the plastic strain is corrected based on the unload-



ing modulus (the dot-dash blue arrow line) of the next load step for all damaged

elements. The yield strength is determined by the stress of the current load step,

and the elastic modulus, which can be certain constant values or functions and is

not restrained by initial Young’s modulus (the solid orange arrow line), depends on

the unloading recovery behaviour. Here, an almost zero tangent modulus is recom-

mended to ensure the accuracy of the unloading stress. When the next load step is

loading, the loading procedure is performed. The yield strength is set to a very large

value.

For the proportional repeating loading, the structure can be accurately un-

loaded to a state at which the total force is zero. The unloading stiffness can be a

constant stiffness, the secant stiffness or a function. However, for non-proportional

repeating loading and cyclic loading, accuracy and robustness cannot be guaran-

teed when the load is reversed for a structure. The stresses of damaged elements are

not reversed simultaneously at the state for which the total force is zero due to the

residual stress. The solution is to perform iterations to update the stiffness, which

results in the bifurcation that the stiffnesses of the damaged elements can be re-

duced by the damage of loading, updated due to the reverse loading, or updated

due to the unloading.

Another possible material model, called the modified plastic model (Figure

B.28), considers plastic unloading. In this model, for loading, the yield strength is

continually reduced until the utilisation function is equal to or is smaller than 1,

rather than the elastic modulus in the coupled damage-plastic material model. The

elastic modulus is determined by the unloading modulus. The advantage is that

the material model does not need to switch from the "basically" damage model to

the plastic model for unloading. The modified plastic model follows the non-secant

stiffness for possible local unloading when a structure is globally loaded. For the

previous test, the elastic modulus is constant, the material model of which is shown

in Figure B.29. The modified plastic model aligns well with the designed curve for

the one-element test (Figure B.30) while the peak and post-peak behaviour of the

backbone in the modified plastic model do not fit well with the curve of monotonic

loading in the damage control method for the notched beam test (Figure B.31). In

the modified plastic model, when the yield strength of the critical element is re-

duced, the stresses of other elements also become smaller since the stiffness does



not change. On the other hand, in the coupled damage-plastic model, when the

elastic modulus of the critical element is reduced, the stresses of other elements in-

creases. Based on comparison of the one-element test and the notched beam test,

although the modified plastic model is simple, the coupled damage-plastic model

is more reliable. Moreover, the damage model and the smeared crack model are

widely used and are accepted in solid mechanics. Therefore, the coupled damage-

plastic model was chosen for ISLA. The principle, robustness and accuracy of the

modified plastic model need to be further investigated.

Figure B.27: Coupled damage-plastic material model in ISLA



Figure B.28: Modified plastic model in ISLA with varying unloading modulus

Figure B.29: Modified plastic model in ISLA with constant unloading modulus
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Figure B.30: Comparison of the coupled damage-plastic model and the modified plastic model for the one-element

test
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