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A Two-Stage Approach for a Mixed-Integer
Economic Dispatch Game in Integrated Electrical

and Gas Distribution Systems
Wicak Ananduta and Sergio Grammatico , Senior Member, IEEE

Abstract— We formulate for the first time the economic
dispatch problem among prosumers in an integrated electrical
and gas distribution system (IEGDS) as a game equilibrium
problem. Specifically, by approximating the nonlinear gas-
flow equations either with a mixed-integer second-order cone
(MISOC) or a piecewise affine (PWA) model and by assuming
that electricity and gas prices depend linearly on the total
consumption, we obtain a potential mixed-integer game.
To compute an approximate generalized Nash equilibrium
(GNE), we propose an iterative two-stage method that exploits
a problem convexification and the gas-flow models. We quantify
the quality of the computed solution and perform a numerical
study to evaluate the performance of our method.

Index Terms— Economic dispatch, generalized mixed-integer
games, integrated electrical and gas systems (IEGSs).

NOMENCLATURE

Sets
C Coupling constraint set.
Ee Set of electrical lines.
Eg Set of gas pipelines.
H Set of discrete time indices.
I Set of prosumers.
L Local feasible set of a prosumer.
N Ch Set of child buses of a bus.
N e Set of neighbors of a bus in electrical

network.
N g Set of neighbors of a node in gas network.
U Global feasible set of the game.

Indices, Parameters, and Other Symbols

i , j Index of prosumers.
(i, j) Index of links/power lines/gas pipelines.
h Discrete time index.
(ℓ) Iteration index of Algorithm 1.
m Index of PWA regions.
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ε Approximation bound to a GNE.
H Time horizon.
ρ Penalty weight of Algorithm 1.
τ Level of gas-flow violation.
·̂ Outcome of first stage.
·̃ Outcome of second stage.
·, · Upper and lower bounds.

Variables and Functions

α, β, γ Auxiliary binary variables in PWA model.
dgu Gas consumption of gas-fired generation units.
δ Binary variable indicating gas-flow direction.
gs Gas bought from a source.
ℓ Squared current on an electrical line.
ν Auxiliary continuous variables for gas-flow

models.
pch, pdh Charging and discharging power of the storage

units.
pdg Power generated by dispatchable generators.
peg Power bought from the main electrical grid.
pl Real power line of two neighboring buses.
φ Gas flow in a pipeline.
ψ Squared pressure.
σ e Aggregate of active load on the main electrical

grid.
σ g Aggregate of gas load on the main gas network.
v Squared voltage magnitude.
ξ State-of-charge of a storage unit.
x Collection of electrical network decision vari-

ables.
y Collection of gas network decision variables.
z Collection of binary variables for gas-flow

models.
f ngu Cost of the non-gas-fired dispatchable units.
f e Cost of buying power from the electrical grid.
f g Cost of buying gas from the gas network.
f st Cost of the storage units.
J Total cost function of each prosumer.
J̃ Total cost function with a penalty term.
Jψ Cost function of the second stage.
F Pseudogradient function of the game.
P Potential function.
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I. INTRODUCTION

ONE of the key features of future energy systems is
the decentralization of power generation [1], [2], where

small-scale distributed generators (DGs) will have a major
contribution in meeting energy demands. Furthermore, the
intermittency of renewable power generation might necessitate
the coexistence of nonrenewable yet controllable DGs to
provide enough supply and offer flexibility [1, Sec. 3]. In this
context, gas-fired generators, such as combined heat and power
(CHP) [3], [4], can play a prominent role due to their efficiency
and infrastructure availability. Consequently, electrical and gas
systems are expected to be more intertwined in the future and
in fact, this integration has received research attention in the
control systems community [5], [6], [7], [8], [9].

Several works, e.g., [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], particularly study the tertiary control
problem for an integrated electrical and gas system (IEGS),
i.e., the problem of computing optimal operating points for the
generators. In these papers, the economic dispatch problem is
posed as an optimization program where the main objective is
to minimize the operational cost of the whole network, which
includes electrical and gas production costs, subject to physical
dynamics and operational constraints. Differently from these
papers where a common objective is considered, when DGs
are owned by different independent entities (prosumers),
the operations of these DGs depend on several individual
objectives. In the latter case, to compute optimal operating
points of its DG, each prosumer must solve its own economic
dispatch problem. However, these prosumers are coupled with
each other as they share a common power (and possibly gas)
distribution network. Their objective functions can also depend
on the decisions of other prosumers, such as via an energy
price function [20], [21]. Therefore, the economic dispatch
problem of prosumers in an IEGS is naturally a generalized
game [22]. When each prosumer aims at finding a decision
that optimizes its objective given the decisions of others,
we obtain a generalized Nash equilibrium (GNE) problem,
i.e., the problem of finding a GNE, a point where each player
has no incentive to unilaterally deviate.

For a jointly convex game, i.e., when the cost function of
each player is convex with respect to the player’s strategy and
the global feasible set is convex, efficient algorithmic solutions
to solve a GNE problem are available, e.g., [23], [24], [25],
and [26]. However, the economic dispatch problem in an IEGS
system is typically formulated as a mixed-integer optimization
program due to the approximation methods commonly used
for nonlinear gas-flow equations. For instance, [14], [15], [16],
and [17] consider mixed-integer second-order cone (MISOC)
gas-flow models whereas [10], [11], [12], [13] use mixed-
integer linear ones. On account of mixed-integer nature of
the problem, the GNE seeking methods in [23], [24], [25],
and [26] are not applicable and in fact, there are only a few
works that propose GNE-seeking methods for mixed-integer
generalized games, e.g., [27], [28], [29], [30].

In this article, we formulate an economic dispatch problem
in an integrated electrical and gas distribution system (IEGDS)
as a mixed-integer generalized game (Section II). Specifically,
we consider prosumers, i.e., the entities that own active

components, namely, DGs and storage units, as the players
of the game. Aside from consuming electricity and gas, each
prosumer can produce and/or store electrical power as well as
buying power and gas from the main grid, where the prices
depend linearly on aggregate consumption. Furthermore, our
formulation can incorporate a piecewise affine (PWA) gas-
flow approximation, yielding a set of mixed-integer linear
constraints, or a classic MISOC relaxation. The game-theoretic
formulation is the main conceptual novelty of this article
compared to the existing literature in IEGDSs. To the best of
our knowledge, there are only a few works, e.g., [31], [32], that
discuss the dispatch of IEGDS systems as a (jointly convex)
generalized game, but under a substantially different setup,
i.e., a two-player game between the electrical and gas network
operators, subject to a perfect-pricing assumption.

Then, we propose a novel two-stage approach to compute
a solution of the economic dispatch game, namely, a(n)
(approximate) mixed-integer GNE (MI-GNE) (Section III).
In the first stage, we relax the problem into a jointly
convex game and compute a GNE of the convexified
game. Next, in the second stage, we recover a mixed-
integer solution, which has a minimum gas-flow violation,
by exploiting the gas-flow models and by solving a linear
program. Furthermore, we can refine the computed solution
by iterating these steps. In these iterations, we introduce an
auxiliary penalty function on the gas-flows to the convexified
game and adjust its penalty weight. Consequently, we can
provide a condition when our iterative algorithm obtains
an (approximate) MI-GNE and measure the solution quality
(Theorem 1). Differently from other existing MI-GNE seeking
methods [27], [28], [29], [30], our method allows for
a parallel implementation and does not solve a mixed-
integer optimization. We also remark that existing distributed
parallel mixed-integer optimization algorithms, e.g., [33], [34],
only deal with linear objective functions; therefore, they
are unsuitable for our case. In Section IV, we show the
performance of our algorithm via numerical simulations of
a benchmark 33-bus-20-node distribution network. We note
that in the preliminary work [35], we only consider the PWA
gas-flow model and implement the two-stage approach without
the refining iterations to compute an approximate solution to
the economic dispatch problem of multiarea IEGSs [13], [16],
[19], which is an optimization problem with a common and
separable cost function, instead of a noncooperative game.

Notation: We denote by R (N) the set of real (natural)
numbers. We denote by 0 (1) a matrix/vector with all elements
equal to 0 (1). The Kronecker product between the matrices
A and B is denoted by A ⊗ B. For a matrix A ∈ Rn×m , its
transpose is A⊤. For symmetric A ∈ Rn×n , A ≻ 0 (≽ 0)
stands for positive definite (semidefinite) matrix. The operator
col(·) stacks its arguments into a column vector whereas
diag(·) (blkdiag(·)) creates a (block) diagonal matrix with its
arguments as the (block) diagonal elements. The sign operator
is denoted by sgn(·), i.e.,

sgn(a) =


1, if a > 0
0, if a = 0
−1, if a < 0.
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II. ECONOMIC DISPATCH GAME

In this section, we formulate the economic dispatch game of
a set of N prosumers (agents), denoted by I := {1, 2, . . . , N },
in an IEGDS. Each prosumer seeks an economically efficient
decision (optimal references/set points) to meet its electrical
and gas demands over a certain time horizon, denoted by H ;
let us denote the set of time indices by H := {1, . . . , H}.
First, we provide the model of the system, which consists of
two parts, the electrical and gas networks.

A. Electrical Network

To meet the electrical demands, denoted by de
i ∈ RH

≥0, gas-
fueled or nongas-fueled. We denote the set of agents that have
a gas-fueled unit by Igu

⊂ I whereas those that have a nongas-
fueled unit by Ingu

⊂ I. We note that Idg
:= Igu

∪ Ingu
⊆ I.

For each i ∈ Idg, let us denote the power produced by its
generation unit by pdg

i ∈ RH
≥0, constrained by

1H pdg
i

≤ pdg
i ≤ 1H pdg

i (1)

where pdg
i
< pdg

i denote the minimum and maximum power
production. Specifically for the prosumers with nongas-fueled
DGs, we consider a quadratic cost of producing power, i.e.,

f ngu
i (pdg

i ) =

{
qngu

i

∥∥pdg
i

∥∥2
+ lngu

i 1⊤ pdg
i , if i ∈ Ingu

0, otherwise
(2)

where qngu
i > 0 and lngu

i are constants. On the other hand,
for the prosumers with gas-fueled DGs, we assume a linear
relationship between the consumed gas, dgu

i , and the produced
power, as in [17, eq. (24)], i.e.,

dgu
i =

{
η

gu
i pdg

i , if i ∈ Igu

0, otherwise
(3)

where ηgu
i > 0 denotes the conversion factor.

Each prosumer might also own a controllable storage
unit, whose cost function, which corresponds to reducing its
degradation, is denoted by f st

i : R2H
→ R:

f st
i

(
pch

i , pdh
i

)
=
(

pch
i

)⊤
Qst

i pch
i +

(
pdh

i

)⊤ Qst
i pdh

i (4)

where Qst
i ≽ 0. The variables pch

i = col((pch
i,h)h∈H) and

pdh
i = col((pdh

i,h)h∈H) denote the charging and discharging
powers, which are constrained by the battery dynamics and
operational limits [4, eqs. (1)–(3)]

ξi,h+1 = ηst
i ξi,h +

Ts

ecap
i

(
ηch

i pch
i,h −

(
1
ηdh

i

)
pdh

i,h

)
ξ

i
≤ ξi,h+1 ≤ ξ i

∀i ∈ Ist

∀h ∈ H

pch
i ∈

[
0, pch

i

]
, pdh

i ∈
[
0, pdh

i

]
∀i ∈ Ist

pch
i = 0, pdh

i = 0 ∀i ∈ I\Ist (5)

where ξi,h denotes the state-of-charge (SoC) of the storage
unit at time h ∈ H, ηst

i , η
ch
i , η

dh
i ∈ (0, 1] denote the

leakage coefficient of the storage, charging, and discharging
efficiencies, respectively, while Ts and ecap

i denote the sampling
time and the maximum capacity of the storage, respectively.
Moreover, ξ

i
, ξ i ∈ [0, 1] denote the minimum and maximum

SoC of the storage unit of prosumer i , respectively, whereas

pch
i ≥ 0 and pdh

i ≥ 0 denote the maximum charging and
discharging powers. Finally, we denote by Ist

⊆ I the set of
prosumers that own a storage unit.

These prosumers may also buy electrical power from
the main grid, and we denote this decision by peg

i :=

col((peg
i,h)h∈H) ∈ RH

≥0, where peg
i,h denotes the decision at

time step h. We consider a typical assumption in demand-side
management, namely that the electricity price follows Nash-
Cournot competition model [20], [36], [37], [38], [39] and
depends on the total consumption of the network of prosumers,
which is usually defined as a quadratic function [20, eq. (12)],
i.e.,

ce
h

(
σ e

h

)
= qe

h

(
σ e

h

)2
+ le

hσ
e
h

where σ e
h denotes the aggregate load on the main electrical

grid, i.e., σ e
h =

∑
i∈I peg

i,h and qe
h, l

e
h ≥ 0 are constants.

Therefore, by denoting σ e
= col((σ e

h )h∈H), the objective
function of agent i associated with the trading with the main
grid, denoted by f eg

i , is defined as

f e
i

(
peg

i , σ
e)

=

∑
h∈H

ce
h

(
σ e

h

) peg
i,h∑

j∈I peg
j,h

=

∑
h∈H

qe
h ·

∑
j∈I

peg
j,h

 · peg
i,h + le

h . (6)

Moreover, we impose that the aggregate power traded with the
main grid is bounded as follows:

1H σ
e
≤

∑
i∈I

peg
i ≤ 1H σ

e (7)

where σ e > σ e
≥ 0 denote the upper and lower bounds. Note

that the lower bound might be required to be positive in order
to ensure the continuous operation of the main generators that
supply the main grid.

Next, we describe the physical constraints of the electrical
network, which has a radial structure. For ease of exposition,
we assume that each agent is associated with a bus (node) in
an electrical distribution network, which can be represented
by an undirected graph Ge

:= (I+, Ee), where I+
= I ∪ {0},

with bus 0 being the root node, and Ee denotes the set of
power lines, where both (i, j), ( j, i) ∈ Ee represent the line
between buses i and j . Therefore, we denote by N e

i the set
of neighbor buses of i , i.e., N e

i := { j | (i, j) ∈ Ee
}. Due to

the tree structure of the network, we can denote by π(i), the
(unique) parent node of i , from which power is delivered to
node i , and N Ch

i the set of child nodes of i , to which power is
delivered from node i . Thus, N e

i = {π(i)}∪N Ch
i . Furthermore,

let us denote by vi ∈ RH the (squared) voltage magnitude of
bus i ∈ I and by pl

(i, j), ℓ(i, j) ∈ RH the active power and
(squared) current of line (i, j) ∈ Ee. We consider bounds on
vi and l(i, j), i.e.,

vi 1 ≤ vi ≤ vi 1 ∀i ∈ I (8a)

ℓ(i, j)1 ≤ ℓ(i, j) ≤ ℓ(i, j)1 ∀(i, j) ∈ Ee (8b)

where vi ≤ vi (ℓ(i, j) ≤ ℓ(i, j)) denote the minimum and
maximum voltages (currents).

Authorized licensed use limited to: TU Delft Library. Downloaded on January 03,2024 at 12:47:54 UTC from IEEE Xplore.  Restrictions apply. 



ANANDUTA AND GRAMMATICO: TWO-STAGE APPROACH FOR A MIXED-INTEGER ECONOMIC DISPATCH GAME IN IEGDSs 89

The power balance equation, which ensures equal produc-
tion and consumption, at each bus can be written as

de
i = pdg

i + peg
i + pdh

i − pch
i ∀i ∈ I. (9)

Furthermore, we use a second-order cone (SOC) model of the
power-flow equations [40, eqs. (2)–(5)]

peg
i = pl

(i,π(i)) −
∑

j∈N Ch
i

(
pl
(i, j) − R(i, j)ℓ(i, j)

)
∀i ∈ I

(10a)

vi − vπ(i) = 2R(i, j) pl
(i,π(i)) − R2

(i, j)ℓ(i,π(i)) ∀i ∈ I (10b)

ℓ(i,π(i)),hvi,h ≥
(

pl
(i,π(i)),h

)2
∀h ∈ H, i ∈ I (10c)

pl
(i, j) = pl

( j,i), ℓ(i, j) = ℓ( j,i) ∀(i, j) ∈ Ee (10d)

where R(i, j) denotes the resistance of line (i, j). We introduce
the additional constraints in (10d) for ease of problem
decomposition. We note that even though we only consider
real power in our formulation for simplicity of exposition,
extending to the complex power case is straightforward.
Finally, let us now collect all the decision variables of agent
i associated with the electrical network by

xi := col
(

pdg
i , pch

i , pdh
i , peg

i , vi , dgu
i ,
{

pl
(i, j), ℓ(i, j)

}
j∈N e

i

)
with dimension of nxi = H(6 + 2|N e

i |), for each i ∈ I.

B. Gas Network
Beside consuming dgu

i ∈ RH
≥0 for its gas-fired generator,

we suppose that prosumer i has an undispatchable gas demand,
denoted by dg

i ∈ RH
≥0. The total gas demand of each prosumer

is satisfied by buying gas from a source, which can either be
a gas transmission network or a gas well. These prosumers
are connected in a gas distribution network, represented by an
undirected graph denoted by Gg

= (I, Eg), where we assume
that each agent is a different node in Gg and denote by Eg the
set of pipelines (links), where both (i, j), ( j, i) ∈ Eg represent
the pipeline between nodes i and j . If node j is connected to
node i , then node j belongs to the set of neighbors of node i
in the gas network, denoted by N g

i := { j ∈ I | (i, j) ∈ Eg
}.

Therefore, the gas-balance equation of node i ∈ I can be
written as

gs
i − dg

i − dgu
i =

∑
j∈N g

i

φ(i, j) (11)

where gs
i ∈ RH

≥0 denotes the imported gas from a source,
if agent i is connected to it. We denote the set of nodes
connected to the gas source by Igs. Moreover, φ(i, j) :=

col((φ(i, j),h)h∈H) ∈ RH denotes the flow between nodes i and
j from the perspective of agent i , i.e., φ(i, j),h > 0 implies the
gas flows from node i to node j . We formulate the cost of
buying gas similar to that of importing power from the main
grid as these prosumers must pay the gas with a common price
that may vary. With the per-unit cost that depends on the total
gas consumption, the cost function, for each i ∈ I, is

f g
i

(
dgu

i , σ
g)

=
∑

h∈H
(
qg

h · σ
g
h ·
(
dgu

i,h + dg
i,h

)
+ lg

h

)
(12)

where qg
h > 0 and lg

h ∈ R are the cost parameters whereas
σ g

= col((σ g
h )h∈H) with σ

g
h =

∑
i∈I(d

gu
i,h + dg

i,h), which

denotes the aggregated gas demand. In addition, the following
constraints on the gas network are typically considered.

1) Weymouth gas-flow equation for two neighboring nodes

φ(i, j),h = sgn(ψi,h − ψ j,h)cf
(i, j)

√
|ψi,h − ψ j,h | (13)

for all h ∈ H, j ∈ N g
i , and i ∈ Ig, where ψi,h ∈ R≥0

is the squared pressure at node i , and cf
(i, j) > 0 is some

constant. We define ψi = col((ψi,h)h∈H). By assuming a
sufficiently large sampling time, we consider static gas-
flow equations in [14], [15], [16], and [17], instead of
dynamic ones such as [8] and [9].

2) Bounds on the gas flow φ(i, j) and the pressure ψi

−1H φ(i, j) ≤ φ(i, j) ≤ 1H φ(i, j) ∀ j ∈ N g
i , i ∈ I (14)

1H ψ i
≤ ψi ≤ 1H ψ i ∀i ∈ I (15)

gs
i = 0 ∀i ∈ I\Igs (16)

where φ(i, j) denotes the maximum flow of the link
(i, j) ∈ Eg whereas ψ

i
and ψ i denote the minimum and

maximum (squared) gas pressure of node i , respectively.
The constraint in (16) ensures that gas only flows
through the nodes that are connected to a gas source.

3) Bounds on the total gas consumption of the network Gg

1Hσ
g

≤

∑
i∈N g

(
dg

i + ddg
i

)
≤ 1Hσ

g (17)

where σ g (σ g) denotes the minimum (maximum) total
gas consumption of the distribution network Gg.

C. Approximation Models of Gas-Flow Equations

The gas-flow equations in (13) are nonlinear and in fact
introduce nonconvexity to the decision problem. In this
work, we consider two models that are commonly used
in the literature, namely, the MISOC relaxation and the
PWA approximation. In the former, the gas-flow equation is
reformulated and relaxed into inequality constraints, whereas
in the latter it is approximated by a PWA function. Both
models require the introduction of auxiliary continuous and
binary variables, collected in the vectors yi and zi , for each
i ∈ I, respectively. For ease of presentation, we represent the
two models as a set of equality and inequality constraints

hcpl
i (yi , {y j } j∈N g

i
) = 0 ∀i ∈ I (18)

hloc
i (yi , zi ) = 0 ∀i ∈ I (19)

gcpl
i (yi , zi , {y j } j∈N g

i
) ≤ 0 ∀i ∈ I (20)

gloc
i (yi , zi ) ≤ 0 ∀i ∈ I (21)

where (18) and (20) are coupling constraints since hcpl
i and

gcpl
i depend on the decision variables of the neighbors in N g

i
while (19) and (21) are local constraints.

We now briefly explain the MISOC and PWA models and
introduce their auxiliary variables.

1) MISOC Model: We can obtain the MISOC model
by relaxing the gas-flow constraints in (13) into inequality
constraints, introducing a binary variable to indicate each flow
direction, and using the McCormick envelope to substitute the
product of two decision variables with an auxiliary variable,
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denoted by ν(i, j) ∈ RH , for each j ∈ N g
i and i ∈ I (the

detailed derivation is given in Appendix I-A). For this model

yi := col(ψi , gs
i , {φ(i, j), ν(i, j)} j∈N g

i
) ∈ Rnyi

with nyi = H(2 + 2|N g
i |), concatenates the physical variables

of the gas network, i.e., ψi , gs
i , and φ(i, j), for all j ∈ N g

i , with
the auxiliary variables ν(i, j), whereas

zi := col({δ(i, j)} j∈N g
i
) ∈ {0, 1}

nzi

with nzi = H |N g
i |, collects the binary decision vectors that

indicate the flow directions. The coupling constraints for this
model are affine. Furthermore, this model includes a set of
convex SOC local constraints and does not have any local
equality constraints. We note that if the gas-flow directions
(binary variables) are known, then the model becomes convex.
Furthermore, when the SOC local constraints of the MISOC
model are tight, the original gas-flow constraints in (13)
are satisfied. However, we cannot guarantee the tightness
of the SOC constraints in general, although one can use a
penalty-based method [16] or sequential cone programming
method [16], [31] to induce tightness.

2) PWA Model: We obtain the PWA model by approx-
imating the mapping φ(i, j),h 7→ (1/cf

(i, j))
2φ2
(i, j),h , for each

(i, j) ∈ Eg, with r pieces of affine functions. Then, we can
use this approximation in (13). Furthermore, by utilizing the
mixed-logical constraint reformulation [41], we obtain an
approximated model of the gas-flow constraints as a set of
mixed-integer linear constraints, as detailed in Appendix I-B.
In this model, for each i ∈ I, we introduce some auxiliary
continuous variables ν

ψ

(i, j) ∈ RH , for all j ∈ N g
i , and

νm
(i, j) ∈ RH , for m = 1, . . . , r and all j ∈ N g

i , and define

yi := col
(
ψi , gs

i ,
{
φ(i, j), ν

ψ

(i, j),
{
νm
(i, j)

}r
m=1

}
j∈N g

i

)
∈ Rnyi

with nyi = H(2 + (2 + r)|N g
i |). The auxiliary variable

zi := col
({
δ(i, j),

{
αm
(i, j), β

m
(i, j), γ

m
(i, j)

}m
r=1

}
j∈N g

i

)
∈ {0, 1}

nzi

collects the binary decision vectors, with nzi = H(1+3r)|N g
i |.

The variable δ(i, j) is the indicator of gas-flow direction in
(i, j) ∈ Eg while the remaining variables define the active
region of the PWA approximation function. We note that,
in this model, all the constraints are affine, unlike in the
MISOC model. On the other hand, the latter requires a
significantly less number of auxiliary variables than the PWA
model. In addition, the approximation accuracy of the PWA
model can be controlled a priori by the model parameter r
(see [35, Sec. IV] for a numerical study).

D. Generalized Potential Game Formulation

We can now formulate the economic dispatch problem of an
IEGDS as a generalized game. The formulation is applicable
for both gas-flow models explained in Section II-C. To that
end, let us denote the decision variable of agent i by ui :=

(xi , yi , zi ) and the collection of decision variables of all agents
by u = (x, y, z), where x = col((xi )i∈I) ( y and z are defined

similarly). We can formulate the interdependent optimization
problems of the economic dispatch as follows:

∀i ∈ I


min

ui :=(xi ,yi ,zi )
Ji (x)

s.t. ui ∈ Li , zi ∈ {0, 1}
nzi

(7), (10d), (17), (18), and (20).

(22a)

(22b)
(22c)

The cost function of agent i in (22a), Ji , is composed by the
local function f loc

i and the coupling function f cpl
i , i.e.,

Ji (x) := f loc
i (xi )+ f cpl

i (x) (23)

f loc
i (xi ) := f ngu

i

(
pdg

i

)
+ f st

i

(
pch

i , pdh
i

)
(24)

f cpl
i (x) := f e

i

(
peg

i , σ
e(x)

)
+ f g

i

(
dgu

i , σ
g(x)

)
(25)

where σ e(x) and σ g(x) depend on the decision variables
of all agents. The local set Li ⊂ Rni in (22b), with
ni = nxi + nyi + nzi , is defined by

Li :=
{
ui ∈ Rni | (1), (3), (5), (8), (9), (10a)–(10c),

(11), (14), (15), (16), (19), and (21) hold} (26)

which is private information of prosumer i , determined by the
local parameters of prosumer i and the underlying networks.
Meanwhile, the equalities and inequalities stated in (22c)
define the coupling constraints of the game. By the definitions
of the constraints, including any of the gas-flow approximation
models, Li is convex. However, due to the binary variables,
zi , for all i ∈ I, the game in (22) is mixed-integer. Moreover,
let us consider the following technical assumption.

Assumption 1: The global feasible set

U :=

(∏
i∈I

Li

)
∩ C ∩ (Rnx +ny × {0, 1}

nz )

where Li is defined in (26) and

C := {u ∈ Rn
| (7), (10d), (17), (18), and (20)}

is nonempty. □
Remark 1: Assumption 1 is practical, e.g., it can imply

that the (gas and electrical) loads can be at least sufficiently
satisfied by the main grid by the design of the network. □

The game in (22) is a generalized potential game
[42, Def. 2.1]. To see this, let us denote by 4e

i , 4
g
i ∈

RH×Hnxi , for each i ∈ I, the matrices that select peg
i and

dgu
i from xi , i.e., peg

i = 4e
i xi and dgu

i = 4
g
i xi , and define

Qe
= diag((qe

h)h∈H) and Qg
= diag((qg

h )h∈H). Furthermore,
we let Di = (4e

i )
⊤ Qe4e

i + (4
g
i )

⊤ Qg4
g
i .

Lemma 1: Let Assumption 1 hold. Then the game in (22)
is a generalized potential game [42, Def. 2.1] with an exact
potential function

P(x) =
1
2

∑
i∈I

(
Ji (x)+ f loc

i (xi )+ x⊤

i Di xi
))
. (27)

□
We observe that P in (27) is convex and that the

pseudogradient of the game is monotone, as stated next.
Lemma 2: Let Ji be defined as in (23). The following

statements hold.
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1) The mapping col((∇xi Ji (x))i∈I) and thus, the pseudo-
gradient mapping of the game in (22)

F(u) := col
((

∇xi Ji (x)
)

i∈I, 0
)

(28)

are monotone.
2) The potential function P in (27) is convex. □
In this article, we postulate that the objective of each player

(prosumer) is to compute an approximate GNE, which is
formally defined in Definition 1.

Definition 1: A set of strategies u∗
:= (x∗, y∗, z∗) is an

ε-approximate GNE (ε-GNE) of the game in (22) if, u∗
∈ U ,

and, there exists ε ≥ 0 such that, for each i ∈ I

Ji
(
x∗

i , x∗

−i

)
≤ Ji

(
xi , x∗

−i

)
+ ε (29)

for any ui ∈ Li ∩ Ci (u∗

−i ) ∩ (Rnxi +nyi × {0, 1}
nzi ), where

Ci (u−i ) := {ui ∈ Rni | (ui , u−i ) ∈ C}, and u−i denotes the
decision variables of all agents except agent i . When ε = 0,
an ε-GNE is an exact GNE. □

Remark 2: We let the prosumers handle the physical
constraints so that the decision can be immediately accepted
by a system operator. Nonetheless, we can adapt our proposed
algorithm to the case where there exists a system operator,
considered as an additional player, that is responsible for
ensuring the satisfaction of physical constraints of the
networks, similar to [21]. □

III. TWO-STAGE EQUILIBRIUM SEEKING APPROACH

One way to find an ε-GNE of the game in (22) is by
computing an ε-approximate global solution to the following
problem [27, Th. 2]: {

min
u

P(x)

s.t. u ∈ U
(30)

which exists due to Assumption 1. However, solving (30) in a
centralized manner may be prohibitive since the problem can
be very large, U is nonconvex, and prosumers might not want
to share their private information such as their cost parameters
and local constraints.

Therefore, we propose a two-stage distributed approach to
solve the generalized mixed-integer game in (22). In the first
stage, we consider a convexified version of the MI game
in (22), which can be solved by distributed equilibrium-
seeking algorithms based on operator splitting methods. In the
second stage, each agent i ∈ I recovers the binary solution zi
and finds the pressure variable ψi that minimizes the error of
the gas-flow model by cooperatively solving a linear program.

A. Problem Convexification
Let us convexify the game in (22), by considering

zi ∈ [0, 1]
nzi , for all i ∈ I, i.e., the variable zi is continuous

instead of discrete

∀i ∈ I :


min

xi ,yi ,zi
Ji (x)

s.t. (xi , yi , zi ) ∈ Li , zi ∈ [0, 1]
nzi

(7), (10), (17), (18), and (20).

(31a)

(31b)
(31c)

By construction, the game in (31) is jointly convex [22,
Def. 3.6]. In addition, by Lemma 2.1, the game has a

monotone pseudogradient. Therefore, one can choose a
semidecentralized or distributed algorithm to compute an exact
GNE, e.g., [24], [25]. These algorithms specifically compute
a variational GNE, i.e., a GNE where each agent is penalized
equally in meeting the coupling constraints. In our case,
a variational GNE is also a minimizer of the potential function
over the convexified global feasible set, i.e.,{

min
u

P(x)

s.t. u ∈ conv(U)
(32)

where conv(U) := (
∏

i∈I Li )∩C∩(Rnx +ny × [0, 1]
nz ) denotes

the convex hull of U . Note in fact that the Karush–Kuhn–
Tucker optimality conditions of a v-GNE of the game in (31)
and that of Problem (32) coincide. For the next stage of the
method, let us denote the equilibrium computed in this stage
by û = (x̂, ŷ, ẑ), where x̂ = col({x̂ i }i∈I) ( ŷ and ẑ are defined
similarly).

Remark 3: By tailoring the proximal point algorithm [25,
Algorithm VI], we can obtain a semidecentralized algorithm
where, at each iteration, the prosumers must send peg

i , dgu
i ,

and dg
i to a coordinator, who then returns the aggregate

demands σ e and σ g along with dual variable iterates associated
with (7) and (17). The agents must also exchange partial
primal decision variables and dual variables associated with
local coupling constraints (10d), (18), and (20) with their
neighbors. □

B. Recovering Binary Decisions
In the first stage, since we relax the integrality constraint,

we cannot guarantee that we obtain binary solutions of ẑ. In
fact, if ẑi ∈ {0, 1}

nzi , for all i ∈ I, then û is an exact GNE
of the mixed-integer game in (22). However, we can recover
binary solutions via the logical implications of the computed
pressure and flow decisions.

For both gas-flow models, we recall that the variable
δ(i, j),h is used to indicate the flow direction in the link (i, j)
(according to (50) in Appendix I-B). Thus, given φ̂(i, j),h ,
we recompute δ(i, j),h as follows:

δ̃(i, j),h =

{
1, if φ̂(i, j),h ≥ 0
0, otherwise

(33)

for all h ∈ H, j ∈ N g
i , and i ∈ I. In addition,

for the PWA model, the rest of the binary variables
{α̃m
(i, j), β̃

m
(i, j), γ̃

m
(i, j)}

m
r=1} j∈N g

i
, which determine the active

regions in which the flow decisions are, can be recovered
via (68) as follows:

γ̃ m
(i, j),h =

{
1, if φm

(i, j)
≤ φ̂(i, j),h ≤ φ

m
(i, j)

0, otherwise,

− α̃m
(i, j),h + δ̃m

(i, j),h ≤ 0, −β̃m
(i, j),h + δ̃m

(i, j),h ≤ 0

α̃m
(i, j),h + β̃m

(i, j),h − δ̃m
(i, j),h ≤ 1 (34)

for m = 1, . . . , r , all j ∈ N g
i , and all h ∈ H.

C. Recovering Solutions of the MISOC Model
Let us now focus on the formulation that uses the MISOC

model and discuss the approach for the PWA one later.
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Since δ̃(i, j), for all (i, j) ∈ Eg, are binary decisions obtained
from Section III-B, the constraints of the MISOC model
in (55)–(58) (Appendix I-A) are equivalent to ν(i, j),h =

(2δ̃(i, j),h − 1)(ψi,h − ψ j,h), for all (i, j) ∈ Eg and h ∈ H.
Therefore, the relaxed SOC gas-flow constraint in (54) of
Appendix I-A can be written as(

2δ̃(i, j),h − 1
)(
ψi − ψ j

)
≥ φ2

(i, j),h

/(
cf
(i, j)

)2
(35)

for all h ∈ H and (i, j) ∈ Eg. When we set ψi = ψ̂ i , ψ j = ψ̂ j ,
and φ(i, j) = φ̂(i, j), (35) might not hold since δ̃(i, j) can be
different from δ̂(i, j), which is possibly not an integer.

Therefore, our next step is to recompute the pressure
variables ψi , for all i ∈ I. To that end, let us first
compactly write the pressure variable ψ = col((ψh}h∈H) and
ψh = col((ψi,h)i∈I), the binary variables δ̃ = col((δ̃h)h∈H),
δ̃h = col((δ̃(i, j),h)(i, j)∈Eg), and the flow variables φ̂ =

col((φ̂h)h∈H) and φ̂h = col((φ̂(i, j),h)(i, j)∈Eg). Let us now
define E(δ̃) := blkdiag((E(δ̃h))h∈H), where E(δ̃h) :=

col((E(i, j)(δ̃(i, j),h))(i, j)∈Eg) ∈ R|Eg
|×N has the structure of the

incidence matrix of Gg, since for each row (i, j) of E(δ̃h)

[E(i, j)(δ̃(i, j),h)]k =


(2δ̃(i, j),h − 1), if k = i
−(2δ̃(i, j),h − 1), if k = j
0, otherwise

(36)

where [E(i, j)]k denotes the kth component of the (row) vector
E(i, j), and since δ̃(i, j),h ∈ {0, 1}. Thus, E(δ̃)ψ equals to the
concatenation of the left-hand side of (35) over all (i, j) ∈ Eg

and h ∈ H. Furthermore, let us define the vector θ(φ̂) :=

col(((φ2
(i, j),h/c

2
(i, j))(i, j)∈Eg)h∈H) that concatenates the right-

hand side of (35). We can then formulate an optimization
problem that minimizes not only the violation of the above
gas-flow inequality constraints (35) but also of the original
gas-flow equation (13). By defining a slack vector τ :=

col((τ h)h∈H), where τ h := col({τ(i, j),h}(i, j)∈Eg), the desired
optimization problem parameterized by φ̂ and δ̃ is given as
follows:

(ψ̃, τ̃ ) ∈


min
ψ,τ

∥τ∥∞ + Jψ (ψ)

s.t. E(δ̃)ψ + τ ≥ θ(φ̂)

ψ ∈ [ψ,ψ], τ ≥ 0

(37a)

(37b)

(37c)

where the cost function

Jψ (ψ) := ∥E(δ̃)ψ − θ(φ̂)∥∞ (38)

indicates the maximum violation of the original gas-flow
equation in (13). In this problem, we relax (35) into (37b)
to ensure the existence of feasible points of Problem (37) and
indeed τ indicates the level of violation of (35). Moreover,
we introduce (38) to induce a solution that satisfies the
Weymouth equation. In addition, the constraints on ψ in (37c)
is obtained from (15), where ψ = 1|H| ⊗ col((ψ

i
)i∈I) and

ψ = 1|H| ⊗ col((ψ i )i∈I).
Remark 4: The problem in (37) can be either solved

centrally by a coordinator or semidecentrally, e.g., by resorting
to the dual decomposition approach [43], [44], since it can
be equivalently written as a multiagent linear optimization
problem. In the latter, the prosumers need to send their

pressure variable information ψi to a coordinator and receive
τ and the dual variable iterates associated with (37b) in return.
It is worth noting that the cooperation among agents in this
stage is justified by the fact that the pressure decisions do not
affect the cost values of all agents. □

Next, by using the pressure component of a solution
to (37), ψ̃ , the auxiliary variables of the MISOC model, i.e.,
ν = ((ν(i, j))(i, j)∈Eg), are updated as follows:

ν̃(i, j),h = (2δ̃(i, j),h − 1)(ψ̃ i,h − ψ̃ j,h) (39)

for all h ∈ H, j ∈ N g
i , and i ∈ I.

Let us now characterize the recomputed solution.
Proposition 1: Consider the ED game in (22) where the

gas-flow constraints (18)–(21) are defined based on the
MISOC model in Section II-C1. Let û = (x̂, ŷ, ẑ) be a
feasible point of the convexified ED game as in (31), z̃
satisfy (33) given φ̂, (ψ̃, τ̃ ) be a solution to (37), and ν̃

satisfy (39). Furthermore, let us define u⋆ = (x⋆, y⋆, z⋆),
where x⋆ = x̂, z⋆ = z̃, and y⋆ = col((y⋆i )i∈I), where y⋆i :=

col(ψ̃ i , ĝs
i , (φ̂(i, j), ν̃(i, j)) j∈N g

i
). The following statements hold.

1) The strategy u⋆ is a feasible point of the ED game in (22)
if and only if τ̃ = 0.

2) The strategy u⋆ is a GNE of the ED game in (22) if
τ̃ = 0 and û is a variational GNE of the convexified
ED game in (31).

3) The strategy u⋆ satisfies the original gas-flow equations
in (13) if Jψ (ψ̃) = 0. □

Based on Proposition 1.2, ideally we wish to find a solution
to (37) such that τ̃ = 0, because it means that we find an exact
MI-GNE of the game in (22). However, in general, this might
not be possible. Nevertheless, we guarantee that the solution
u⋆ = (x⋆, y⋆, z⋆), as defined in Proposition 1, satisfies all
constraints but the gas-flow equations. Furthermore, u⋆ is an
approximate solution with minimum violation and the value of
∥τ̃∥∞ quantifies the maximum error. In addition, if a solution
to (37) has Jψ (ψ̃) = 0, then essentially it solves the linear
equations

E(δ̃h)ψh − θh(φ̂h) = 0 ∀h ∈ H. (40)

We note a necessary condition on the structure of the gas
network that allows us to have a solution to the system of linear
equations (40), consequently, tight SOC gas-flow constraints.

Lemma 3: Let Gg be an undirected connected graph
representing the gas network. Then, there exists a set of
solutions to the systems of linear equations in (40) if and only
if Gg is a minimum spanning tree. □

D. Penalty-Based Outer Iterations

In this section, we extend the two-stage approach by
having outer iterations that can find a feasible strategy, i.e.,
an MI solution that satisfies all the constraints including the
gas-flow equations (44). According to the linear constraint
in (37b), a smaller φ̂ induces a smaller ∥τ∥∞ since θ ≥ 0 is
quadratically proportional to φ̂. To obtain a small enough
φ̂, instead of solving the continuous GNEP (31) in the first
stage, we solve an approximate (convexified) problem where
we introduce an extra penalty on the flow variables φ to the

Authorized licensed use limited to: TU Delft Library. Downloaded on January 03,2024 at 12:47:54 UTC from IEEE Xplore.  Restrictions apply. 



ANANDUTA AND GRAMMATICO: TWO-STAGE APPROACH FOR A MIXED-INTEGER ECONOMIC DISPATCH GAME IN IEGDSs 93

Algorithm 1 Iterative Method for Computing an Approximate
Solution to the Game (22)
Initialization.
Set ρ(1) = 0 and its bounds ρ(1) = 0, ρ(1) = ∞.
Iteration (ℓ = 1, 2, . . . )
Stage 1 (Computing a convexified game solution)

1) Compute (x̂(ℓ), ŷ(ℓ), ẑ(ℓ)), a variational GNE of the
approximate convexified game (42), where ρ = ρ(ℓ).

Stage 2 (Recovering a mixed-integer solution)
2) Obtain the binary variable, z̃(ℓ), from φ̂(ℓ) via (33).
3) Compute the pressure variable, ψ̃ (ℓ), and the slack

variable, τ (ℓ), by solving Problem (37), where
δ̃ = (δ̃ψ )(ℓ) and φ̂ = φ̂(ℓ).

4) Update the auxiliary variables, ν̃(ℓ) via (39) where
δ̃ = (δ̃ψ )(ℓ) and ψ̃ = ψ̃ (ℓ).

Solution and parameter updates
5) Update the solution ũ(ℓ) := (x̃(ℓ), ỹ(ℓ), z̃(ℓ)), where

x̃(ℓ) = x̂(ℓ), ỹ(ℓ) = col((ỹ(ℓ)i )i∈I), and ỹ(ℓ) is
defined as ỹ(ℓ) = col((ỹ(ℓ)i )i∈I), and ỹ(ℓ)i =

col(ψ̃ (ℓ)
i , (ĝ

s
i )
(ℓ), (φ̂

(ℓ)

(i, j), ν̃
(ℓ)

(i, j)) j∈N g).
6) Update the bounds of the penalty weight:{

ρ(ℓ+1)
= ρ(ℓ), ρ(ℓ+1)

= ρ(ℓ+1), If ∥τ (ℓ)∥∞ > 0,
ρ(ℓ+1)

= ρ(ℓ), ρ(ℓ+1)
= ρ(ℓ), Otherwise.

7) Update the penalty weight, i.e.,

ρ(ℓ+1)
∈ (ρ(ℓ+1), ρ(ℓ+1)).

cost function of each prosumer

J̃ i (x, {φ(i, j)} j∈N g
i
) := Ji (xi , x−i )+ ρ

∑
j∈N g

i

∥φ(i, j)∥∞ (41)

for all i ∈ I, where ρ ≥ 0 is the weight of the penalty term.
Therefore, the approximate jointly convex GNEP is written as

∀i ∈ I :


min

xi ,yi ,zi
J̃ i (x, {φ(i, j)} j∈N g

i
)

s.t. (xi , yi , zi ) ∈ Li , zi ∈ [0, 1]
nzi

(7), (10), (17), (18), and (20).

(42)

Since limρ→0 J̃ i = Ji , the iterations are carried out to find the
smallest ρ such that the second stage results in ∥τ̃∥∞ = 0,
implying feasibility of the solution [see Proposition 1.2].

Our proposed iterative method is described in Algorithm 1.
In Steps 6 and 7, carried out by a coordinator, ρ increases
when ∥τ∥∞ is positive and decreases otherwise, except for the
case ∥τ (ℓ)∥∞ = 0, where ρ(2) = ρ(1) = 0. In the latter case,
we find an exact GNE of the game (ε = 0) in the first iteration.
Next, we characterize the solution obtained by Algorithm 1 as
an ε-GNE, where ε is expressed in Theorem 1.

Theorem 1: Let us consider the ED game in (22) where
the gas-flow constraints (18)–(21) are defined based on the
MISOC model in Section II-C1. Let Assumption 1 hold
and let the sequence (ũ(ℓ)))ℓ∈N be generated by (Step 5 of)
Algorithm 1. Suppose that there exists a finite ℓ ∈

arg min ℓ{ρ
(ℓ) s.t.∥τ (ℓ)∥∞ = 0}. Then, the solution ũ(ℓ) is

ε-GNE of the game in (22) with

ε = P(x̃(ℓ))− P(x̃(1)) (43)

where P is defined in (27). □

Remark 5: In view of Proposition 1.3, an ε-GNE of the
mixed-integer ED game in (22) computed by Algorithm 1
that has Jψ = 0 is also an ε-GNE of the (continuous but
nonconvex) ED game with Weymouth gas-flow equations, i.e.,
when the constraints (18)–(21) of the ED game in (22) are
substituted with (13). □

Remark 6: The iterations of Algorithm 1 can be terminated
as soon as ∥τ (ℓ)∥ = 0 or when a predetermined maximum
number of outer iterations is reached. For the latter, we can
take into account the available computation time. □

E. Method Adjustment for the PWA Gas-Flow Model

In this section, we discuss how to modify our proposed
method when we consider the PWA gas-flow model. Following
the approach we use on the MISOC model, given the flow
decision computed from the first stage φ̂ (Section III-A) and
the binary decisions δ̃(i, j), γ̃ m

(i, j), for m = 1, . . . , r and all
(i, j) ∈ Eg (as discussed in Section III-B), we now recompute
the pressure decision variable ψ̂ by minimizing the error of
the PWA gas-flow approximation (64), restated as follows:

r∑
m=1

γ m
(i, j),h

(
am
(i, j)φ(i, j),h + bm

(i, j)

)
= (2δ(i, j),h − 1)ψi,h − (2δ(i, j),h − 1)ψ j,h (44)

for each h ∈ H, j ∈ N g
i , and i ∈ I. We can observe that

although ( ŷ, ẑ) satisfies (44), for all j ∈ N g
i and i ∈ I, ( ŷ, z̃)

might not.
By using the compact notations of ψ , δ̃, φ̂, as in

Section III-C as well as γ̃ = col((γ̃ h)h∈H), where
γ̃ h = col((γ̃ (i, j),h)(i, j)∈Eg), γ̃ (i, j),h = col((γ̃ m

(i, j),h)
r
m=1), we

recompute ψ by solving the following convex program:

ψ̃ ∈

arg min
ψ

J̃ψ (ψ) := ∥E(δ̃)ψ − θ̃(φ̂, γ̃ )∥∞

s.t. ψ ∈ [ψ,ψ]

(45a)

(45b)

where the objective function J̃ψ is derived from the
gas-flow equation (44) as we aim at minimizing
its error. Specifically, we define E(δ̃) as the
concatenated matrix as in (36), θ̃ = col((θh)h∈H) with
θ̃h(φ̂h, γ̃ h) = col((θ̃ (i, j),h(φ̂(i, j),h, γ̃ (i, j),h))(i, j)∈Eg) and
θ̃ (i, j),h(φ̂(i, j),h, γ̃ (i, j),h) =

∑r
m=1 γ̃

m
(i, j),h(a

m
(i, j)φ̂(i, j),h + bm

(i, j)),

which is equal to the concatenation of the left-hand side of
the equation in (44).

Finally, we can update the auxiliary variable ν :=

col(((νψ(i, j), (ν
m
(i, j))

r
m=1) j∈N g

i
)i∈I), where νψ(i, j) and νm

(i, j) satisfy
their definitions, i.e.,

ν̃
ψ

(i, j),h = δ̃(i, j),hψ̃ i,h

ν̃m
(i, j),h = γ̃ m

(i, j),hφ̂(i, j),h, m = 1, . . . , r (46)

for all h ∈ H, j ∈ N g
i , and i ∈ I.

Similar to Proposition 1, when we consider the PWA model,
the decision computed after performing the two stages is a
variational GNE if J̃ψ (ψ̃) = 0.

Furthermore, J̃ψ (ψ̃) = 0 can be obtained only if Gg

does not have any cycle (c.f., Lemma 3) since this condition
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guarantees the existence of solutions to the following (linear)
gas-flow equations:

E(δ̃h)ψh − θh(φ̂h, γ̃ ) = 0 ∀h ∈ H. (47)

Therefore, we can hope that the solution to (45) has 0 optimal
value only when Assumption 2 holds.

Assumption 2: The undirected graph Gg that represents the
gas network is a minimum spanning tree. □

In our case, this assumption is acceptable as a distribution
network typically has a tree structure. Note that, Assumption 2
is only necessary. When it holds, the system of linear
equations (47) has infinitely many solutions. Let us suppose
that ψ0

= col({ψ0
h}h∈H) is a particular solution to (47), which

does not necessarily satisfy the constraint in (45b). One can
compute such a solution by, e.g., [45, Ex. 29.17]

ψ0
h = (E(δ̃h))

†θh(φ̂h, γ̃ h) ∀h ∈ H (48)

where (·)† denotes the pseudo-inverse operator. Given a
particular solution ψ0, we can obtain necessary and sufficient
conditions for obtaining a solution to (45) with 0 optimal
value.

Proposition 2: Let Assumption 2 hold, ψ0 be a particular
solution to (47), and ψ̃ be a solution to (45). The optimal
value Jψ (ψ̃) = 0 if and only if

[ψ0
h] j − [ψ0

h]k ≤ ψ j − ψ
k

for all h ∈ H, where j ∈ arg min ℓ∈argmaxi∈I [ψ0
h ]i
ψℓ, and

k ∈ argmaxℓ∈argmini∈I [ψ0
h ]i
ψℓ. □

The condition given in Proposition 2 cannot be checked
a priori, that is, the condition depends on the outcome of the
first stage. Therefore, we can instead employ Algorithm 1
for finding an ε-GNE. By considering the approximated
problem (42), penalizing φ induces a small-norm particular
solution to (47), which is required to be sufficiently small
according to Proposition 2. We summarize the adaptation of
Algorithm 1 for the PWA model, as follows.

1) In Step 2, we compute z̃(ℓ) via (33) and (34).
2) In Step 3, we recompute the pressure variable ψ̃ (ℓ) by

solving (45).
3) In Step 4, we obtain the auxiliary variables ν̃ via (46).
4) In Step 5, the updated vector ỹ(ℓ) is defined as ỹ(ℓ)i =

col(ψ̃ (ℓ)
i ,(ĝ

s
i )
(ℓ),(φ̂

(ℓ)

(i, j), (ν̃
ψ

(i, j))
(ℓ),((ν̃m

(i, j))
(ℓ))rm=1) j∈N g).

5) In Step 6, the condition checked to update ρ is whether
J̃ψ > 0.

With this modification and the addition of Assumption 2,
the characterization of ε-GNE of the solution computed by
Algorithm 1 considering the ED game with the PWA model
is analogous to that in Theorem 1.

IV. NUMERICAL SIMULATIONS

In the following numerical study, we aim at evaluating
the performance of Algorithm 1. We use the 33-bus-20-
node network1 adapted from [18]. An interconnection between
the electrical and gas networks occurs when a prosumer
(bus) has a gas-fired DG, as shown in Fig. 1. We generate
100 random test cases where some parameters, such as the

1The data of the network and the codes are available at
https://github.com/ananduta/iegds

Fig. 1. Schematic of the 33-bus-20-node IEGDS.

Fig. 2. Box plots of the percentage of average ε/Ji , the required penalty
weight ρℓ, and the computational time of Algorithm 1 with different gas-flow
models.

gas loads, the locations of generation and storage units,
as well as the interconnection points, vary. For each test case,
we use the MISOC model and two PWA models with two
different numbers of regions, i.e., r ∈ {20, 45}, thus, in total
we have 300 instances of the mixed-integer game. We perform
the simulations in MATLAB on a computer with Intel Xeon
E5-2637 3.5 GHz processors and 128 GB of memory.

Fig. 2 shows the performance of Algorithm 1 with those
gas-flow models. We obtain the plots from the successful
cases, i.e., when Algorithm 1 finds an ε-MIGNE after at most
ten iterations, and they account for more than 50% of the
generated cases. From the top plot of Fig. 2, we can observe
that, for any gas-flow models, Algorithm 1 obtains high-
quality approximate solutions. In many cases, Algorithm 1
finds an exact MIGNE, i.e., ε = 0. The penalty values, ρℓ,
required to obtain (approximate) solutions are shown in the
middle plot. We observe the MISOC model requires slightly
larger ρ(ℓ̄) than the PWA model. The bottom plot shows the
average computational times of Algorithm 1. As expected,
Algorithm 1 needs a longer time to find a solution on the PWA
model with the larger r , as the number of decision variables
grows proportionally with r . Nevertheless, we can see that
our algorithm, with any gas-flow model, is computationally
practical for solving intraday or day-ahead problems.
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Fig. 3. Box plots of the average gas-flow deviations [(1/(H |Eg
|))∑H

h=1
∑
(i, j)∈Eg 1

φ

(i, j),h , where 1φ(i, j),h is as in (49)].

Next, we compare the approximation quality of the gas-flow
models with respect to the Weymouth equation based on the
deviation metric derived from (13), i.e.,

1
φ

(i, j),h =

φ̂(i, j),h − sgn(ψ̃ i,h − ψ̃ j,h)cf
(i, j)

√
|ψ̃ i,h − ψ̃ j,h |

sgn(ψ̃ i,h − ψ̃ j,h)cf
(i, j)

√
|ψ̃ i,h − ψ̃ j,h |

(49)

for all h ∈ H, j ∈ N g
i , and i ∈ I, as shown in Fig. 3.

As expected, for the PWA model, a larger r implies a
smaller deviation, hence a better approximation of the gas-
flow constraints. However, the MISOC model outperforms
the PWA models as Algorithm 1 with the MISOC model
can find a solution that satisfies the Weymouth equation in
many of the simulated cases (the case of Proposition 1.3
holds). We also compare the two mixed-integer models with
the standard convex SOC relaxation model, i.e., the MISOC
model with fixed binary variables (assuming known gas-
flow directions) [31], [32], resulting in a joint convex game.
We note that we set the gas-flow directions of the convex
model based on the solutions of Algorithm 1. Moreover,
we implement two approaches to reduce the gas-flow deviation
of the convex SOC model, namely, adding a penalty cost on
the auxiliary variable of the SOC model, ν, (SOC-pen) [16]
and the iterative sequential cone program (SOC-SCP) [16],
[31], which requires solving the game at each iteration, as in
Algorithm 1. As observed in Fig. 3, in terms of the gas-flow
deviation, the PWA models perform better than the convex
SOC relaxation while the MISOC model outperforms the
SOC-pen and performs as well as the SOC-SCP.

V. CONCLUSION

The economic dispatch problem in IEGDSs can be
formulated as a mixed-integer generalized potential game if
the gas-flow equations are approximated by a MISOC or by
a PWA model. Our proposed algorithmic solution involves
computing a variational equilibrium of the convexified
game and leveraging the gas-flow model. An a posteriori
characterization of the outcome of the algorithm is obtained
via the evaluation of the potential function. Numerical
simulations indicate that our algorithm, particularly if paired
with the MISOC model, finds approximate equilibria of very
high quality.

APPENDIX I
GAS-FLOW APPROXIMATION MODELS

In this section, we provide the two commonly considered
approximation models of the gas-flow equations in (13). For

ease of presentation and with a slight abuse of notation,
we drop the time index h of each variable.

A. MISOC Model
We summarize the MISOC relaxation of the gas-flow

equations in [16] with a reduced number of binary variables.
We use the binary variable δ(i, j) to define the flow direction
in the pipeline (i, j), i.e.,

[δ(i, j) = 1] ⇔ [φ(i, j) ≥ 0] (50)

resulting in the following constraint:
−φ(i, j)(1 − δ(i, j)) ≤ φ(i, j) ≤ φ(i, j)δ(i, j). (51)

Consequently, δ(i, j) also indicates the pressure relationship
between two connected nodes i and j , i.e.,

[δ(i, j) = 1] ⇔ [ψi ≥ ψ j ]. (52)

Therefore, by squaring (13) and including δ(i, j), we obtain an
equivalent representation of the gas-flow equation, as follows:

φ2
(i, j)/c

f
(i, j) = (2δ(i, j) − 1)(ψi − ψ j ) (53)

for each j ∈ N g
i and i ∈ I.

We use an auxiliary variable, denoted by ν(i, j) ∈ RH ,
to substitute the right-hand side of (53) and then relax (53)
into a convex inequality constraint. Furthermore, by the
McCormick envelope, we obtain linear relationships between
ν(i, j), δ(i, j), ψi , and ψ j . As a result, we obtain the following
MISOC model:

ν(i, j) ≥ φ2
(i, j)/c

f
(i, j) (54)

ν(i, j) ≥ ψ j − ψi + 2δ(i, j)(ψ i
− ψ j ) (55)

ν(i, j) ≥ ψi − ψ j + (2δ(i, j) − 2)(ψ i − ψ
j
) (56)

ν(i, j) ≤ ψ j − ψi + 2δ(i, j)(ψ i − ψ
j
) (57)

ν(i, j) ≤ ψi − ψ j + (2δ(i, j) − 2)(ψ
i
− ψ j ) (58)

for all j ∈ N g
i and i ∈ I.

Therefore, we can compactly represent the local constraints
in (51) and (54), for all j ∈ N g

i , as in (21) and the coupling
constraints in (55)–(58), for all j ∈ N g

i , as in (20). In addition,
we also include the reciprocity constraints

φ(i, j) + φ( j,i) = 0 ∀ j ∈ N g
i , i ∈ N g (59)

for all j ∈ N g
i , which can be rewritten as in (18). For

completeness, we define hloc
i = 0.

B. PWA Gas-Flow Model
In this section, we derive a PWA model of the gas-flow

equation in (13). First, let us introduce an auxiliary variable
ϕ(i, j) := (φ2

(i, j)/((c
f
(i, j))

2)) and rewrite (13) as follows:

ϕ(i, j) =

{
(ψi − ψ j ), if ψi ≥ ψ j

(ψ j − ψi ), otherwise.
(60)

Similar to the MISOC model, we use the binary variable
δ(i, j) ∈ {0, 1} to define the flow directions as in (50) and (52).
Therefore, we can rewrite (60) as

ϕ(i, j) = δ(i, j)(ψi − ψ j )+ (1 − δ(i, j))(ψ j − ψi )

= 2δ(i, j)ψi − 2δ(i, j)ψ j + (ψ j − ψi ). (61)

Authorized licensed use limited to: TU Delft Library. Downloaded on January 03,2024 at 12:47:54 UTC from IEEE Xplore.  Restrictions apply. 



96 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 1, JANUARY 2024

Now, we consider a PWA approximation of the quadratic
function ϕ(i, j) = (φ2

(i, j)/((c
f
(i, j))

2)) by partitioning the
operating region of the flow into r subregions and introducing
a binary variable γ m

(i, j), for each subregion m ∈ {1, . . . , r},
defined by

[
γ m
(i, j) = 1

]
⇔

[
φm
(i, j)

≤ φ(i, j) ≤ φ
m
(i, j)

]
(62)

with −φ = φ1
(i, j)

< φ
1
(i, j) = φ2

(i, j)
< · · · < φ

r
(i, j) = φ. Then,

we can consider the following approximation:

ϕ(i, j) ≈

r∑
m=1

γ m
(i, j)

(
am
(i, j)φ(i, j) + bm

(i, j)

)
(63)

for some am
(i, j), bm

(i, j) ∈ R, which can be obtained by using the
upper and lower bounds of each subregion, i.e.,

am
(i, j) =

(
φ

m
(i, j)

)2
−

(
φm
(i, j)

)2

(
cf
(i, j)

)2(
φ

m
(i, j) − φm

(i, j)

)
bm
(i, j) =

(
φm
(i, j)

)2
− am

(i, j)φ
m
(i, j)

for m = 1, . . . , r . By approximating ϕ(i, j) with (63), we can
then rewrite (61) as follows:

r∑
m=1

γ m
(i, j)

(
am
(i, j)φ(i, j) + bm

(i, j)

)
= 2δ(i, j)ψi − 2δ(i, j)ψ j + ψ j − ψi . (64)

Next, we substitute the products of two variables with some
auxiliary variables, i.e., νm

(i, j) := γ m
(i, j)φ(i, j), for m = 1, . . . , r ,

and νψ(i, j) = δ(i, j)ψi . Furthermore, for j ∈ N g
i , we observe that

δ(i, j) = 1−δ( j,i), and δ( j,i)ψ j = ν
ψ

( j,i), implying that δ(i, j)ψ j =

(1 − δ( j,i))ψ j = ψ j − ν
ψ

( j,i). Thus, from (64), we obtain the
following gas-flow equation, for each (i, j) ∈ Eg:

r∑
m=1

(
am
(i, j)ν

m
(i, j) + bm

(i, j)γ
m
(i, j)

)
= 2νψ(i, j) + 2νψ( j,i) − ψi − ψ j

(65)

which is linear, involves binary and continuous variables, and
couples the decision variables of nodes i and j . In addition
to (65), we include (51), (59), and the following constraints:

r∑
m=1

γ m
(i, j) = 1 (66)

since only one subregion can be active{
−ψi + ψ j ≤ −(ψ

i
− ψ j )(1 − δ(i, j))

−ψi + ψ j ≥ (−(ψ i − ψ
j
))δ(i, j)

(67)

which are equivalent to the logical constraint in (52)

φ(i, j) − φ
m
(i, j) ≤

(
φ(i, j) − φ

m
(i, j)

)(
1 − αm

(i, j)

)
φ(i, j) − φ

m
(i, j) ≥

(
−φ(i, j) − φ

m
(i, j)

)
αm
(i, j)

−φ(i, j) + φm
(i, j)

≤

(
φ(i, j) + φm

(i, j)

)(
1 − βm

(i, j)

)
−φ(i, j) + φm

(i, j)
≥

(
−φ(i, j) + φm

(i, j)

)
βm
(i, j)

−αm
(i, j) + γ m

(i, j) ≤ 0, −βm
(i, j) + γ m

(i, j) ≤ 0

αm
(i, j) + βm

(i, j) − γ m
(i, j) ≤ 1

(68)

for m = 1, . . . , r , which are equivalent to the logical
constraints (62) [41, eqs. (4e) and (5a)], with αm

(i, j), β
m
(i, j) ∈

{0, 1}, for m = 1, . . . , r, being additional binary variablesν
m
(i, j) ≥ −φ(i, j)γ

m
(i, j), νm

(i, j) ≤ φ(i, j) + φ(i, j)

(
1 − γ m

(i, j)

)
νm
(i, j) ≤ φ(i, j)γ

m
(i, j), νm

(i, j) ≥ φ(i, j) − φ(i, j)

(
1 − γ m

(i, j)

)
(69)

for all m = 1, . . . , r , which equivalently represent
νm
(i, j) = γ m

(i, j)φ(i, j) [41, eq. (5b)], and{
ν
ψ

(i, j) ≥ ψ
i
δ(i, j), ν

ψ

(i, j) ≤ ψi − ψ
i
(1 − δ(i, j))

ν
ψ

(i, j) ≤ ψ iδ(i, j), ν
ψ

(i, j) ≥ ψi − ψ i (1 − δ(i, j))
(70)

which are equivalent to the equality νψi
(i, j) = δ(i, j)ψi .

Thus, we can compactly write (59) and (65), for all j ∈ N g
i ,

as in (18); (66), for all j ∈ N g
i , as in (19); (67), for all j ∈ N g

i ,
as in (20); and (51), (68)–(70), for all j ∈ N g

i , as in (21).

APPENDIX II
PROOFS

A. Proof of Lemma 1
Based on the definition of generalized potential games in

[42, Def. 2.1], we need to show that 1) the global feasible set
U is nonempty and closed and 2) the function P in (27) is
a potential function of the game in (22). The set U , which is
nonempty by Assumption 1, is closed since it is constructed
from the intersection of closed half-spaces and hyperplanes as
we have nonstrict inequality and equality constraints.

Next, by the definition of Ji in (23), the pseudogradient
mapping of the game in (22) is

col((∇xi Ji (x))) := col((∇xi f loc
i (xi ))i∈I)+ Dx

where D is a symmetric matrix, i.e., its block component
(i, j) ∈ I × I is defined by

[D]i, j =

{
2
((
4e

i

)⊤ Qe4e
i +

(
4

g
i

)⊤ Qg4
g
i

)
, if i = j(

4e
i

)⊤ Qe4e
j +

(
4

g
i

)⊤ Qg4
g
j , otherwise.

On the other hand, by the definition of P in (27), it holds that

P(x) =
1
2

∑
i∈I

(
Ji (x)+ f loc

i (xi )+ x⊤

i Di xi
))

=

∑
i∈I

(
f loc
i (xi )

)
+

1
2

(
x⊤

i Di xi + f cpl
i (x)

))
=

∑
i∈I

f loc
i (xi )+

1
2

x⊤ Dx.
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Thus, ∇x P(x) = col((∇xi Ji (x))i∈I), implying that P is an
exact potential function of the game in (22).

B. Proof of Lemma 2
1) We have that col((∇xi Ji (x))) := col((∇xi f loc

i (xi ))i∈I)+
Dx, where D is as defined in the proof of Lemma 1.
The operator col((∇xi f loc

i (xi ))i∈I) is monotone since it
is a concatenation of monotone operators ∇xi f loc

i (xi )),
for all i ∈ I, [45, Prop. 20.23] as f loc

i , for each i ∈ I,
is differentiable and convex by definition. Furthermore,
D is positive semidefinite by construction. Therefore,
both col((∇xi Ji (x))i∈I) and F , which concatenates
col(∇xi Ji (x))i∈I) and 0, are monotone.

2) As in the proof of Lemma 1, ∇x P(x) =

col((∇xi Ji (x))i∈I), which is monotone by Lemma 2.1.
Hence, P is a convex function.

C. Proof of Proposition 1
1) Since û is a feasible point of the convexified game

in (31), then û satisfies all the constraints in the original
game (22) except possibly the integrality constraints
zi ∈ {0, 1}

nzi , for all i ∈ I. Therefore, by construction,
u⋆ = (x⋆, y⋆, z⋆) satisfies all the constraints but
the MISOC gas-flow constraints (55)–(58), equiva-
lently (35). By the definition of the inequality con-
straints (37b), a solution to Problem (37) satisfies (35)
if and only if τ̃ = 0.

2) From point (1), u⋆ is a feasible point of the original
game if and only if τ̃ = 0. Furthermore, we observe
that the cost functions in the original game (22) and
those in the convexified game (31) are equal and only
depend on x. By considering that û is a variational GNE
of the game in (31), implying that it is also a solution
to Problem (32), and that the optimal value of (32) is
a lower bound of (30), we can conclude that u⋆ is a
solution to (30) as P(u⋆) = P(û). Hence, u⋆ is an exact
GNE of the original game, i.e., the inequality in (29)
holds with ε = 0 [27, Th. 2].

3) When Jψ (ψ̃) = 0, which also consequently implies
that ∥τ̃∥∞ = 0, the SOC gas-flow constraint ν(i, j) ≥

φ2
(i, j)/c

f
(i, j), for each (i, j) ∈ Eg, is tight, i.e., satisfied

with an equality.

D. Proof of Lemma 3

A set of solutions to (40) exists if and only if
rank

([
E(δ̃h) θh(φ̂h)

])
= rank(E(δ̃h)), for all h ∈ H. Since

we assume Gg is connected, Gg is either a minimum tree
or is not a minimum tree. When Gg is a minimum tree,
|Eg

| = 2(N − 1), as we label an edge between node i and j
twice, i.e., (i, j) and ( j, i). Therefore, rank(E(δ̃h)) = N − 1.
Moreover,

[
E(δ̃h) θh(φ̂h)

]
∈ R|Eg

|×(N+1) and φ2
(i, j),h = φ2

( j,i),h ,
for all (i, j) ∈ Eg. Thus, rank

([
E(δ̃h) θh(φ̂h)

])
= N − 1.

E. Proof of Theorem 1

By Lemma 2.2, P(x) in (27) is a convex function.
Therefore, a variational GNE of the convexified game in (42)
with ρ = ρ(1) = 0 [or equivalently the game in (31)],

denoted by (x̂(ℓ), ŷ(ℓ), ẑ(ℓ)), is a solution to (32), which is
a convex relaxation of (30). Therefore, by denoting with
u∗

= (x∗, y∗, z∗) a solution to (30), which is an exact GNE
of the game in (22), we have that

P(x̃(1)) = P(x̂(1)) ≤ P(x∗) (71)

where the equality holds since x̃(ℓ) = x̂(ℓ) (see Step 4 of
Algorithm 1). Next, we observe from Proposition 1.1 that ũ(ℓ)
is a feasible point but is not necessarily a solution to (32) (nor
a GNE) since the cost functions considered in Step 1 is J̃ i ,
for all i ∈ I. Thus, it holds that

P(x∗) ≤ P(x̃(ℓ)). (72)

Since P is an exact potential function, it holds that,
for each i ∈ I and any (xi , yi , zi ) ∈ Li ∩ Ci (ũ(ℓ)−i ) ∩

(Rnxi +nyi × {0, 1}
nzi ), we have that

Ji (x̃(ℓ))− Ji
(
xi , x̃(ℓ)

−i

)
= P(x̃(ℓ))− P

(
xi , x̃(ℓ)

−i

)
≤ P(x̃(ℓ))− P(x∗)

≤ P(x̃(ℓ))− P(x̃(1)) = ε

where the first inequality holds since u∗ is an optimizer of (30),
and the second inequality is obtained by combining (71)
and (72).

F. Proof of Proposition 2

By the definition of the matrix E(δ̃h) and Assumption 2, its
null space is {1N }. Hence, for each h ∈ H, the solutions to (47)
can be described by ψ0

h +ξ1N , for any ξ ∈ R. Therefore, (45)
has at least a solution if and only if there exists ξ ∈ R such
that

col((ψ
i
)i∈I) ≤ ψ0

h + ξ1N ≤ col((ψ i )i∈I). (73)

Since for any ξ ∈ R, Jψ (ψ0
h + ξ1N ) = 0. For each h ∈ H, let

us now consider another particular solution

ψ̄0
h = ψ0

h − 1N min
i∈I

[
ψ0

h

]
i (74)

where ξ = − mini∈I[ψ
0
h]i . Hence, mini∈I[ψ̄

0
h]i = 0 and

maxi∈I[ψ̄
0
h]i = maxi∈I[ψ

0
h]i − mini∈I[ψ

0
h]i ≥ 0. Now,

let us consider the indices j and k as defined in
Proposition 2, i.e., j ∈ arg min ℓ∈argmaxi∈I [ψ0

h ]i
ψℓ, and k ∈

argmaxℓ∈argmini∈I [ψ0
h ]i
ψℓ, and let us substitute ψ0

h in (73) with
ψ̄0

h . Since ψ
i
≥ 0, for any i ∈ I, and mini∈I[ψ̄

0
h]i = 0, the

first inequality in (73) is satisfied if and only if ξ ≥ ψ
k

≥ 0.
Furthermore, the second inequality is satisfied if and only if
ξ ≤ ψ j − [ψ̄0

h] j . Hence, there exists ξ ≥ 0 if and only if

ψ
k

≤ ψ j −
[
ψ̄0

h

]
j ⇔

[
ψ̄0

h

]
j ≤ ψ j − ψ

k

⇔
[
ψ0

h

]
j −

[
ψ0

h

]
k ≤ ψ j − ψ

k

where the last implication follows the definition of ψ̄0
h in (74).
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