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Chair: Dr. ir. S. Giovani Pereira Castro
Project Duration: September, 2022 - June, 2023
Date: July 4, 2023
Student number: 4558944

Department of Aerospace Structures and Materials
Faculty of Aerospace Engineering
Delft University of Technology





Preface

Dear reader,

This report is the result of my master thesis and written in pursuit of the fulfillment to obtain the Master
degree at Delft University of Technology. The report is the result of a study into algorithms accelerated
by Graphical Processing Units that are applied to solid mechanics.

The study is performed at the Aerospace Structures and Materials department of the Aerospace Engineer-
ing Faculty at Delft University of Technology and explores how the simulation runtime of FEM simulations
can be increased for aerospace applications. Theoretical technical knowledge of the Finite Element Method
and solid mechanics are required, while prerequisite knowledge of Graphical Processing Units is not nec-
essary as it is covered in the report itself.

During this study I was supervised by Bianca Giovanardi and Sai Kubair Kota. To both of you I owe
many thanks for the great supervision and the constructive feedback I received to make the most of this
project. I also want to thank my family and friends for the constant support during this project.

Delft, June 2023

Sebastiaan van Paasen

i



Summary

Phenomena driven by Partial Differential Equations (PDEs) encompass a range of examples such as heat
transfer, electromagnetic potential and solid mechanics. When addressing problems associated with these
phenomena, computing the exact solution is often unfeasible [1]. One of the strategies to approximate the
solution of a PDE is Finite Element Analysis (FEA), which employs the Finite Element Method (FEM).
The FEM is applied to various solid mechanics applications in the aerospace industry, including component
design [2], topology optimization of components [3] and damage modeling [4], among others.

Modeling realistic applications utilizing the FEM is computationally intensive. A strategy to make sim-
ulation times attainable is to split the computing load among different processes running concurrently.
Such parallel computing is traditionally performed by clusters of Central Processing Units (CPUs). A
CPU prioritizes single-process performance and handling diverse computing tasks. However, when deal-
ing with large-scale FEA models, the overhead associated with inter-CPU communication within a CPU
cluster is detrimental for performance. In contrast to CPUs, Graphical Processing Units (GPUs) focus on
massive parallelization and have received increased interest for their utilization in general-purpose parallel
computations since the late 2000s. Although GPUs exhibit slower individual processing speed compared
to CPUs, due to their slower clock speed and the requirement of memory synchronization, they can run
thousands of processes concurrently. As a result, properly designed implementations enable GPUs to act
as co-accelerators alongside CPUs [5].

In order for a GPU to act as co-accelerator alongside a CPU, the steps in the FEM that are feasible to del-
egate to the GPU must be identified and adjusted to enable a GPU implementation. The objective of this
thesis is to explore various GPU implementations aiming to determine how GPUs can act as co-accelerators
alongside CPUs within a finite element calculation. The study is conducted based on the main research
question: “What speed up can be achieved in a FEA simulation applied to solid mechanics in an explicit
time scheme by using massive parallelization on a heterogeneous hardware architecture?”. To this end,
the algorithmic steps of a solid mechanics finite element solver were analyzed to identify those that best
lend themselves to GPU parallel computing. Consequently, two alternative GPU parallelization strategies
were proposed, each of which was benchmarked on three different representative material models (linear
elastic, Neo-Hookean, and orthotropic) with the aim of comprehensively evaluating the ramifications of
integrating a GPU-accelerated implementation. An in-depth examination was conducted utilizing code
profiling techniques to assess key performance metrics. These metrics served as quantitative indicators to
gauge the efficacy and efficiency of the GPU-accelerated implementation.

Optimizing the GPU implementation was explored in two consecutive stages. First, remaining agnostic to
the parallelization strategy and material model employed, ensuring that the achieved performance applies
to all benchmarks in this model-agnostic GPU implementation. In addition, this thesis presents effective
strategies to systematically optimize the CPU-GPU interaction in the context of FEA for solid mechanics.
Subsequently, making use of the specific characteristics of each material model the optimal model-specific
GPU implementations were obtained, exhibiting total computation speed-ups between 31.5× and 37.7×.

Exploring a multi-GPU setup with one CPU per GPU indicates that utilizing multiple GPUs is beneficial
for the total simulation time as for sufficiently large problems, doubling the number of GPUs will result
in half the original simulation time. It is observed that as the problem is partitioned over multiple
GPUs, the problem size allocated to each GPU becomes smaller. As a result, the benefits from the GPU
implementation are not fully extracted. This observation introduces a trade-off in terms of computational
resources, involving the ratio of the number of CPUs and GPUs. Evaluating the described trade-off in
terms of computational resources can leverage the inherent parallelism of GPUs more effectively and is
left as a recommendation for future research.
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1
Introduction

The mathematical modeling of numerous natural phenomena relies in part on Partial Differential Equa-
tions (PDEs). Phenomena driven by the understanding of PDEs encompass a range of examples such as
heat transfer, electromagnetic potential, fluid flow and solid mechanics. When addressing problems asso-
ciated with these phenomena, computing the exact solution is often unfeasible [1]. One of the strategies
to approximate the exact solution of a PDE is Finite Element Analysis (FEA). FEA employs the Finite
Element Method (FEM) that involves the subdivision of complex problems into smaller, more manageable
components referred to as finite elements. These finite elements are created by partitioning the domain
into a finite number of discrete elements.

A FEM implementation is computationally intensive when modeling realistic applications, for example
the complex mechanical behaviors such as fracture and plasticity that occur in solid mechanics, or when
multiple space- or time-scales are involved. A strategy to make simulations attainable in terms of comput-
ing time is parallel computing, which involves splitting up the computational workload in smaller parts
that can run concurrently. Traditionally, Central Processing Units (CPUs) have been employed in clus-
ters for parallel computing. CPUs prioritize single-process performance, versatility and handling diverse
computing tasks. However, utilizing a CPU cluster necessitates inter-CPU communication for memory
distribution and requires additional memory to support such communication. These factors contribute
to a performance saturation as illustrated in Figure 1.1. Regardless of the problem size, there exists a
threshold beyond which the addition of more CPUs does not yield an increase in performance.

Figure 1.1: Massive scalability of billion-element parallel simulations on up to 32,000 CPU processors.
As the computational domain is split among several processors, the computational workload assigned to
each processor becomes smaller. However, for each problem size the performance saturates, as it is evident
the 1-billion element curve, indicating the existence of a threshold at which inter-CPU communication
starts to outweigh the additional performance gained by increasing the number of processors.

Since the latter part of the 2000s Graphical Processing Units (GPUs) received increased interest for their
utilization in general-purpose parallel computations, driven by their improved speed and expanded memory
capacity compared to traditional configurations [6]. GPUs are significantly slower in terms of single-process
performance due to their lower clock speed and the necessity to synchronize memory between the CPU
and GPU. In order for the GPU to perform computations, input data needs to be transferred towards the
GPU prior to the computation. Subsequently, the results of the computation need to be transferred back
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to the CPU. These memory transfers show to be detrimental in terms of performance. However, in con-
trast to CPUs, GPUs offer massive parallelization and can run thousands of processes concurrently. Thus,
if the computation is properly designed and the performance decay due to memory synchronization can
be overcome, GPUs can act as co-accelerators alongside CPUs, specifically dedicated to highly parallelize
steps in the FEM suited for parallel computing [5]. Summarizing, CPUs can handle diverse computing
tasks and excel in single process performance, while GPUs demonstrate exceptional performance in parallel
processing, making them well-suited for computationally intensive tasks.

As a FEA problem grows in size, so do the corresponding memory requirements. For example, when
considering a mesh with one billion elements, the data structures necessary for the computation would
exceed the memory capacity of a single GPU. This highlights the significance of true scalability, which
encompasses both time and memory, creating the possibility to solve problems of arbitrary size given
sufficient computational resources. While a single GPU exhibits significant time scalability, its memory
scalability is limited. On the other hand, employing multiple GPUs not only enables time scalability but
also facilitates scalability in terms of memory capacity. However, utilizing both multiple CPUs and GPUs
creates a trade-off in terms of computational resources. Up to a large number of processors, Figure 1.1
shows that adding more CPUs results in an increase in performance. Consequently, the portion of the
problem size allocated to each CPU, and thus to each GPU, is reduced. If the reduction in problem size
reaches the point where the problem size assigned to each GPU becomes too small to fully benefit from
the GPU-accelerated implementation, adding more CPUs can actually result in a decay in performance
way before the saturation related to communication overhead, which was described above, occurs. Addi-
tionally, the utilized hardware weighs in as well, since each CPU and GPU has its own sweet spot in terms
of computational workload that results in the highest computational efficiency for that specific CPU or
GPU. This highlights the importance of taking the problem size and utilized hardware into account in
order to assess the suitable number of CPUs and GPUs to achieve the highest computational efficiency,
even if it sacrifices the performance of a single component.

Over the past decade, scientists from different scientific disciplines have shown interest in leveraging the
power of (multiple) GPUs to enhance the computational efficiency in FEA [7]. Particularly in fields such
as computational electromagnetics [8] and surgical modeling [9], the employment of (multiple) GPUs has
demonstrated the capability to approach near real-time solutions for large-scale FEA models [10]. In the
aerospace industry, FEA is utilized in various solid mechanics applications, including component design
[2], topology optimization of components [3] and damage modeling [4]. Near real-time solutions in these
aerospace solid mechanics areas can offer significant benefits. For instance, this would enable the as-
sessment of damage severity resulting from foreign object impact damage by analyzing it directly during
flight. Additionally, they can aid engineers in determining the necessary reinforcement and its exact loca-
tion to accelerate repair processes. Moreover, accelerating the FEA model execution time aligns with the
right-first-time principle followed in aerospace structural design cycles, thereby significantly expediting the
overall design process.

Examining the FEM in the context of solid mechanics and explicit dynamics, the evaluation of the material
model was determined to be a suitable candidate for the GPU part of the calculation. Consequently, the
objective of this thesis project is to explore GPU implementations of various material models, aiming to
evaluate the performance gain achievable and bridge the research gap as GPU-accelerated algorithms have
yet to be extensively used in solid mechanics. Based on the scope of this project, the following research
question is formulated:

Main research question

What speed up can be achieved in a FEA simulation applied to solid mechanics in
an explicit time scheme by using massive parallelization on a heterogeneous hardware
architecture?

2
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In order to answer the research question, several sub-research questions have been formulated. The sub-
research questions elaborate on a part of the main research question and are formulated as follows:

Sub-research question A

How can the low-level computations in the FEM be evaluated as efficiently as possible?

Sub-research question B

To what extent is the total simulation time of a GPU-accelerated FEA model decreased
compared to a single CPU FEA model?

Sub-research question C

What is the trade off, in terms of the number of CPUs and GPUs, in order to create the
hardware setup that makes the best use of the resources available for a given problem?

This thesis is structured in parts, which are in turn organized into chapters. Following this introduction,
the first part of the thesis covers the state of the art of GPU-accelerated Finite Element Analysis. The
part contains an overview of what GPU computing entails for general purpose computations in chapter 2.
Next, a concise description of recent literature for general purpose GPU computing for FEMs is given in
chapter 3. Subsequently, a part on the FEM formulation for solid mechanics follows. The main steps
of the employed finite element formulation are examined, and the governing equations are described in
chapter 4. In the formulation, different material models will be implemented to assess the influence of
material model complexity on computing performance. The equations for the different material models are
presented in chapter 5. The part closes with chapter 6, proposing two parallelization strategies based on
the described finite element formulation and examination of the main steps in the FEM for solid mechanics.
Continuing, the results for the different parallelization strategies are presented in the next part. First,
a model-agnostic optimization is performed in chapter 7, such that the obtained results hold for each
material model. Subsequently, chapter 8 presents the model-specific optimization, shifting the focus to
the various material models. The optimal implementation for each material model is integrated in a finite
element framework in chapter 9. The final part concludes on the thesis with a conclusion in chapter 10
and recommendations for future work in chapter 11, reflecting on the GPU-accelerated implementations,
the parallelization strategies that were employed, and the results that were obtained.
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Part I

State of the art on GPU-accelerated Finite Element Analysis
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2
The power of Graphical Processing Units

The first part of this thesis commences with a chapter that highlights different aspects of general purpose
computations performed on a GPU. First the key events in the GPU computing process are explained
in section 2.1. The reason to start with the main events is to familiarize the reader with the process
first, before discussing the events themselves. Next, the different events are explored in section 2.2 and
section 2.3, respectively. The scheduling of events is examined in section 2.4, followed by a brief conclusion
on the presented content regarding general purpose computations performed on a GPU in section 2.5.

2.1 Computing process on a GPU
This section describes the essential events comprizing a computing process utilizing GPUs. The events
are staged in chronological order, as depicted in Figure 2.1. It is important to emphasize that it is crucial
for developers to adhere to the prescribed sequence of the events to ensure the accuracy of the obtained
results. Neglecting any step within the process may engender erroneous outcomes and, in some cases,
lead to code failure. Throughout this thesis a GPU developed by NVIDIA is utilized. NVIDIA offers the
Compute Unified Device Architecture (CUDA) to execute code on a GPU. This Application Programming
Interface (API) has several features that are highlighted throughout this chapter.

Figure 2.1: The main events present in the GPU computing process. A GPU relies on code initialization
on the CPU, followed by transferring input data towards the GPU. Utilizing the input data, the GPU per-
forms the computation and subsequently transfers the results back to the CPU. Finally, the CPU continues
with its tasks and finishes the process.

Moving on, the shown chronological order in Figure 2.1 is explained. As mentioned in chapter 1, a GPU
functions as a co-accelerator within a computing process and is reliant on the CPU for its operation.
Consequently, the computing process invariably commences on the CPU. Initially, memory allocation for
variables, both on the CPU and GPU side, takes place. The memory allocation is possibly followed by
the execution of preliminary computations that do not lend themselves well for parallel execution on the
GPU. In the context of the FEM application, this entails tasks such as mesh setup and determination of
mesh connectivity, among others.

Subsequently, due to the discrete memory locations of CPUs and GPUs, particularly in the case of non-
integrated GPUs, the input data for GPU computations necessitates transmission to the GPU. This
transmission of data is represented by the “Transfer input data” event. Proceeding further, the computing
operations are conducted on the GPU in the “Compute” event. A more in-depth discussion regarding
this step will occur later in this chapter. Following the completion of the computations on the GPU, the
results are transferred back to the CPU in the “Transfer results” event. The second and fourth events
are further on referred to as interaction events, since they allow interaction between the CPU and GPU
through memory transmission. The third event contains the actual processing of the input data and is
therefore referred to as the processing event.
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Once all interactions between the CPU and GPU have been concluded, the code reaches its final stages of
execution on the CPU. Due to the asynchronous execution of the GPU, it is important to ensure synchro-
nization between the CPU and GPU. This synchronization guarantees that the GPU’s computations and
memory operations are finished before the CPU proceeds with its own tasks. As a result, the CPU can
safely continue with subsequent operations without the risk of accessing incomplete or inconsistent data.

2.2 Interaction between the CPU and GPU
This section aims to highlight the primary features of the second and fourth event of the computational
process, i.e. the interaction events. To provide a comprehensive understanding, subsection 2.2.1 offers a
concise explanation of the underlying hardware responsible for facilitating the memory transfer events.
Continuing the discussion, subsection 2.2.2 illustrates the specific memory locations on the GPU from
which the memory transfers originate. The insights of these subsections contribute to a comprehensive
understanding of the interaction events and their significance in CPU-GPU data exchange.

2.2.1 PCI-bus
The memory transmission process during CPU-GPU interactions is carried out by a dedicated hardware
component known as the Peripheral Component Interconnect (PCI) bus. The efficiency of the PCI bus
directly impacts the volume of memory that can be successfully transferred between the CPU and GPU
within a given time frame. It is crucial to acknowledge that the PCI-bus is inherently limited in its capacity
to perform concurrent memory transfers, accommodating only two transfers simultaneously, with one in
each direction. Consequently, it is impossible to transmit two distinct sets of data concurrently toward or
from the GPU. Further exploration of the functionalities of the PCI-bus extends beyond the scope of this
study. Therefore the PCI-bus is not further elaborated upon here.

2.2.2 Forms of off-chip memory
This subsection delves into off-chip memory and elaborates upon its role as the source of data being
exchanged during interaction events. Off-chip memory is located outside the GPU-chip and encompasses
three distinct forms: texture memory, constant memory, and global memory. Texture memory primarily
finds application in visual-oriented tasks and is unsuited for FEM applications. Consequently, a detailed
examination of texture memory is beyond the scope of this study and will not be elaborated upon further
Constant memory, on the other hand, is a specialized cache with read-only permissions, characterized
by a limited storage capacity. It is noteworthy that constant memory allows for the broadcasting of its
contents to all processing events simultaneously. Consequently, scalar variables are automatically stored
in constant memory to facilitate efficient data sharing among processing events. Further insights into
constant memory are outside the scope of this study and will not be further explored here since read-only
memory is unsuitable for the FEM application. Lastly, global memory represents the final form of off-chip
memory. The global memory on the GPU encompasses four distinct types, each presenting its own set of
advantages and disadvantages. These types are elaborated upon below:

• Unified global memory
Unified or managed global memory is the most user-friendly global memory type for programmers.
Unified memory eliminates the need for dedicated transmission instructions as it resides on both the
CPU and GPU. Consequently, utilizing unified global memory is very comprehensible and an easy
entry point for novice GPU-programmers.

Figure 2.2: Unified global memory allocates space for data on both CPU and GPU. The depicted array
is partitioned in several blocks in CPU memory as shown on the right. Once the GPU starts to compute
on a specific portion of the array, that portion is transferred from CPU to GPU. Figure credits: [11].
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The convenience comes at the cost of performance as illustrated below in Figure 2.2. Each single
memory transfer introduces overhead cost, which makes unified global memory unsuited in case a
large array needs to be transferred at once. Several methods exists to mitigate the performance
degradation of unified global memory. For example, assuming the user knows which portion of
memory shall be transferred next, the memory can be made ready to copy towards the GPU [11].
Yet, it should be noted that using unified global memory is never faster than manually copying data.

• Paged and Pinned global memory
For both paged and pinned global memory separate variables are allocated for the CPU and GPU
memory. Consequently, memory copies have to be made explicitly between the CPU and GPU.
The difference between both memory forms lies in the allocation of the CPU memory. Both paged
and pinned memory are allocated in the Random Access Memory (RAM) of the CPU. However,
pageable memory can be transferred from RAM to a Hard Drive or Solid-State Drive in case the
RAM becomes fully occupied. Pinned global memory can not be moved from RAM on the CPU
side. As a result, the memory transfers between the CPU and GPU differ between paged and pinned
memory as graphically depicted in Figure 2.3.

Figure 2.3: To transfer paged memory toward the GPU, it must first be converted to pinned memory to
assure the memory can not leave the RAM. In contrast, pinned memory is directly locked on allocation
such that it can not leave the RAM. As a result, a pinned memory transfer bypasses the additional transfer
step from pageable to pinned memory. Figure credits: [12].

While pinned global memory provides better performance, it is limited in size as it occupies a portion
of the CPU’s RAM. As the RAM of a CPU is limited in size, allocating too much pinned memory
can result in a shortage of pinned memory for the CPU which results in code failure. Paged global
memory, although slower, is only restricted in volume by the HD or SSD size.

• Mapped global memory
In contrast to paged and pinned global memory, mapped global memory does not require explicit
memory copies and is therefore referred to as zero-copy memory. Mapped global memory is allocated
as pinned memory on the CPU, i.e. it can not leave the RAM of the CPU. Subsequently, a variable
that is available on the GPU is requested, which directs the GPU to the location of CPU memory
that was allocated to the CPU variable. This way, the memory is available on both the CPU and
the GPU. Consequently, the results of GPU computations are directly stored on the CPU when
utilizing mapped global memory, hence the term “zero-copy memory”. In setups with integrated
GPUs, where the CPU and GPU share the same memory space, mapped global memory can yield
performance gains.

Global memory, regardless of its type, is accessible across all processing events on the GPU and offers
extensive storage capacity, along with read and write capabilities. It serves as the primary means for
memory transfers between the CPU and GPU.
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2.3 Processing on the GPU
In between the two interaction events, the actual processing takes place by means of the processing
event. All subsequent tasks discussed in this section are exclusively carried out in the processing event of
Figure 2.1. Focussing on the processing event, Figure 2.4 illustrates the tasks present in the processing
event. Together, the three illustrated tasks form a single process and a GPU is capable of running
thousands of these processes in parallel. Each single process gets its own unique thread assigned, which is
responsible for carrying out the tasks present in the process.

Figure 2.4: The tasks present in the GPU processing event. First the the thread fetches the input data
from the global memory. From the input data the thread computes its result which is subsequently stored in
the global memory of the GPU. The tasks are executed in sequential order. Note that this is only a simple
example for illustrative purposes.

The hierarchical order in which threads are assigned is discussed in subsection 2.3.1. Prior to the actual
compute task, threads first fetch the input data from the off-chip global memory and subsequently store
the input data locally in the on-chip memory. The various types of on-chip memory are discussed in
subsection 2.3.2. Lastly, an important note is made regarding the interaction between on- and off-chip
memory in the processing event in subsection 2.3.4.

2.3.1 Computing architecture
The computing architecture of a GPU is visualized in Figure 2.5. As described before, each thread is
responsible for carrying out the tasks present in the process it is assigned to. Threads within a GPU
operate according to the Single Instruction Multiple Threads (SIMT) principle [13]. According to this
principle, every thread executes the same code while operating on distinct values of data. Consequently,
rather than utilizing a conventional “for loop” construct, all individual iterations of the loop are executed
in parallel.

Figure 2.5: Representation of the computing architecture of a GPU. Multiple threads collectively form a
thread block. Several thread blocks combine to form a grid. The maximum number of thread blocks within
a grid is GPU-specific. The grid serves as the execution unit for code execution and employs as many
parallel executions of a function as there are threads in the grid. Figure credits: [13].
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Multiple threads collectively form a thread block. All threads within a individual thread block are parti-
tioned in groups of 32 threads called warps. Regardless of the number of threads within a block, the GPU
always allocates the smallest number of warps larger than the number of threads requested by the user.
Consequently, utilizing a thread block size that is a multiple of 32 is recommended [14]. Several thread
blocks combine to form a grid. The maximum number of thread blocks within a grid is GPU-specific. The
grid serves as the execution unit for code execution. A function executed on the GPU is called a kernel
and employs as many parallel executions of the function as there are threads in the grid.

Reflecting on the SIMT principle, the grid configuration holds information regarding the number of thread
blocks and size of each thread block. Moreover, each individual thread within a thread block is assigned
a distinct index within its respective thread block. By combining the information regarding the grid
structure and the thread’s index within its block, the possibility rises to give each thread a unique index.
Consequently, each individual thread can operate on a distinct value from the same array.

The rationale behind utilizing multiple thread blocks rather than a single grid with only one thread block
lies in the potential for cooperative behavior among threads within a thread block. Cooperation between
threads necessitates the utilization of shared memory, which is explained in subsection 2.3.2. Leveraging
thread cooperation can enhance computational speed and overall performance.

2.3.2 On-chip memory
The primary distinction of on-chip memory, in contrast to off-chip memory, is the fact that it resides within
the GPU chip itself. On-chip memory offers the advantage of low latencies for data fetching and storage
operations due to its proximity to the processing units. In fact, a drawback common to all forms of off-chip
memory is the location outside the GPU chip, leading to significant latency when fetching and storing
data in off-chip memory. Yet, on-chip memory can not communicate with the CPU and can therefore only
be used to accelerate the processing event on the GPU itself. A common strategy to optimize the memory
interaction of GPU computational processes is to have a single fetch and storage operation between on-
and off-chip memory and use on-chip memory as frequently as possible during the processing event. The
different forms of on-chip memory are visually represented inside the yellow boxes in Figure 2.6. The
previously discussed forms of off-chip memory are also displayed at the bottom of the figure for reference.

Figure 2.6: A map of the different off- and on-chip memory forms of a GPU. The different forms of off-
chip memory are shown by the large rectangular orange bars. Above it, closer to the threads and depicted
inside the thread blocks, the different types of on-chip memory are shown. Figure credits: [15].

Both registers and local memory within the GPU are exclusively accessible by individual threads. As a
consequence, registers are automatically employed to store variables initialized within GPU code. Once
a threads’s registers are filled, any additional variables are stored in the local memory. Although local
memory is slower than registers, local memory offers a larger storage capacity and remains considerably
faster than the off-chip global memory.
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A limitation of both registers and local memory is that it is exclusively accessible by individual threads.
In contrast, shared memory is available to all threads within a thread block. Therefore, shared memory
offers a larger accessibility, although this number of threads remains considerably small. Moreover, shared
memory is limited in size, permitting only sparing usage. To attain many concurrent accesses, shared
memory is partitioned in equally sized portions called memory banks [16]. All memory banks can be
accessed simultaneously. Nevertheless, if threads try to access the same memory bank, bank conflicts
arise. In this case, the accesses to the same memory bank are serialized, decreasing performance. To
minimize the amount of bank conflicts, it is crucial to have knowledge of the memory bank size and size
of variables stored inside the memory banks [16].

2.3.3 Computation execution
To facilitate the execution of tasks within the processing event, the allocated computation architecture
is assigned to the streaming multiprocessors (SMs) of the GPU. The SMs are a key component of the
GPU as they are responsible for thread scheduling and execution. The architecture of a SM is visually
represented in Figure 2.7.

Figure 2.7: A graphical representation of the streaming multiprocessor. When a function is executed, the
thread blocks of the grid are evenly partitioned among the available SMs. Each SM has its own on-chip
memory, represented by the shared memory/L1 cache at the bottom, and texture memory, represented by
the Uniform Cache. Global and constant off-chip memory is accessed via the Interconnect Network which
connects different SMs to the off-chip memory of the GPU. The thread blocks are further subdivided in
warps that are distributed over the Warp Schedulers. When the Warp Scheduler issues a warp to execute,
the Dispatch Unit take care of distributing the threads of the warp over the three different execution units.
Cores perform low level arithmetic operations, Load and Storage units (LD/ST) take care of memory
operations and Special Function Units (SFUs) are capable of handling special operations such as sin, cos
and exp. Important to note that the amount of cores, LD/ST’s and SFUs is GPU specific and serves here
only to illustrate how the SM works. Figure credits: [17].

The thread blocks of the grid are evenly partitioned among the available SMs, while further subdivision
is performed to subdivide the thread blocks in warps that are assigned to Warp Schedulers. During the
lifetime of the warp it stays on the assigned Warp Scheduler (WS). When the WS issues a warp to execute,
the Dispatch Unit take care of distributing the threads of the warp over the different execution units. At
each clock cycle, the WS can issue one instruction to a single warp [13]. Consequently, despite initializing
an entire grid for code execution, the number of threads instructed to actively perform a task within a
single clock cycle is significantly smaller than the total grid size. To illustrate this instruction process, a
visual representation is presented below in Figure 2.8.
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Figure 2.8: The instruction process on a streaming multiprocessor. Warp 0 is instructed in cycle 0,
indicated by the light-green background color, and returns in cycle 100 with the fetched input data, indicated
by the dark-green color. The SM observes that warp 0 is available and proceeds to issue a new instruction
to warp 0. Meanwhile, as warp 0 is engaged in the computation step, an increasing number of warps
finalize the fetching of their respective input values. These warps are promptly instructed to commence
their computations as well. This iterative process continues until all warps from all blocks conclude their
respective actions. Note that the number of cycles a warp is executing a task can differ between warps for
the same task. Finally, a similar series of steps is undertaken to store the resulting values back into the
primary memory of the GPU. The white space present for warp 3 in cycle 131 is undesired. Although the
warp is ready to be instructed, the SM is busy instructing warp 2. Consequently, warp 3 is stalled.

Throughout the code execution process, the WS continuously observes the status of its assigned warps,
identifying those that have completed their designated tasks and are ready to be re-instructed. The capa-
bility of the WS to issue an instruction to a warp in every clock cycle results in a substantial throughput
of instructions. However, as highlighted in Figure 2.8, the number of clock cycles it takes to execute a task
depends on the complexity of the task. Fetching and storing data in off-chip memory incur a substantial
latency compared to the computational operations themselves. Moreover, if each thread utilizes Special
Function units in its task and only 4 of these are present, referring to Figure 2.7, then 8 cycles are necessary
to process a single warp resulting in a small latency for the warp. A similar reasoning can be followed for
the amount of shared memory or number of registers [13]. Therefore, not only the complexity, but also
the amount of available resources on the SM plays an important role. In case of loading or storing data
in off-chip memory there are more load/storage units available. However, fetching or storing of data by
threads in the off-chip memory of the GPU requires a significantly larger number of clock cycles. Conse-
quently, these data transfer tasks result in a larger latency.

The conclusion of this subsection is the existence of a load balance problem in which the WS requires a
considerable number of available warps at all times to assure that instructions can be issued continuously
such that the GPU remains active and no idle time is present in the processing event.

2.3.4 Memory coalescence
An essential note regarding the interaction between on-chip and off-chip memory in GPUs is memory
coalescence. In recent GPU architectures, memory transfers are subdivided into 32-byte memory transac-
tions, regardless of the overall size of the memory transaction [14]. A memory transaction is deemed to
be coalesced if all accessed values in the off-chip memory are contiguous, leading to the minimum number
of memory transactions necessary to complete the overall memory transfer.

To illustrate the concept, consider Figure 2.9. If all 32 threads within a warp are tasked with fetching a
4-byte float value, the operation can be executed using four coalesced 32-byte memory transactions. In
cases where not all fetched float values are required, the entire transaction is still performed. This holds
true when multiple threads access the same float value or when a number of threads does not participate in
the access. Additionally, it is not necessary for the threads within a warp to access the floats in contiguous
order, as long as all requested values from memory are contiguous.
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Figure 2.9: If all 32 threads within a warp are tasked with fetching a 4-byte float value, the operation
can be executed using four coalesced 32-byte memory transactions as shown in the top. However, if the
requested memory is not aligned, an offset is present as illustrated in the bottom case. This implies that
the first requested value can reside at any address between 96 and 128, resulting in five 32-byte memory
requests due to the final address falling between addresses 224 and 256.

However, if the requested memory is not aligned, an offset is present. The offset’s size directly influences
the extent of the resulting performance penalty. A relatively small offset of 2 addresses leads to a drastic
reduction of over half the performance, highlighting the significant effect of offsets on the memory transfer
efficiency [14].

2.4 Event scheduling
Throughout the preceding sections, the various events occurring were executed serially. The resulting
process, together with the responsible hardware components are illustrated in Figure 2.10.

Figure 2.10: A graphical representation of the computational process, together with the hardware compo-
nents of the GPU responsible for each event. Both memory transfers are performed by the PCI-bus, while
the processing is distributed over the threads in the created grid. The colored bars on the bottom will be
used throughout the remainder of this report to express the occurrence of the specific event.

To facilitate an even higher level of concurrency, i.e. executing the three events involving GPU interaction
concurrently, e.g. sending input data while also computing and receiving results, NVIDIA GPUs offer the
stream functionality. The utilization of streams facilitates the concurrent execution of the two interaction
events, namely the memory transfers between the CPU and GPU, and the processing event on the GPU
itself. From a conceptual standpoint, a stream can be perceived as a conduit within the GPU that serves as
a channel to receive instructions originating from the CPU. Thus, it acts as a mechanism for asynchronous
communication between the CPU and GPU.

In the computational process discussed thus far, all events have occurred in a sequential manner, forming a
linear stream of operations, often referred to as the “head stream” as illustrated on the left in Figure 2.11.
However, it is important to recognize that not all input data exhibits interdependencies. Consequently, the
GPU remains idle, awaiting the availability of the complete input data before commencing the processing
event. This scenario presents an opportunity for optimization, as the GPU could potentially initiate the
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processing event as soon as a portion of the input data is present, rather than waiting for the entirety of the
data to arrive. An exemplification of the streaming functionality is presented in the middle of Figure 2.11.

Figure 2.11: Task concurrency by utilizing streams. On the left a general computational process is shown
without using streams. In this case, the transfer of input data, the computations andthe transferring of
the results occur one after the other. In the middle, three streams are used to split up the workload over
different streams, thus decreasing the total process time. Note that the space in between the different tasks
can not be removed since the PCI-bus allows only two memory transfers occurring simultaneously. As a
result, “white space” is present, indicating idle time for the GPU. On the right the ideal case is represented.
The computation takes up roughly the time it takes to compute results, making this the most efficient case.

This implementation deviates from the conventional approach of transmitting all input data at once, opt-
ing instead to transfer only a portion of the data to the GPU. Consequently, computations are performed
exclusively on the transferred segment, and the corresponding outcomes are returned to the CPU. While
computations are underway for the first segment, the input data for the subsequent portion is already
being dispatched to the GPU using a different stream. This mechanism effectively conceals the latency
associated with memory transfer between the CPU and GPU. Important to note that higher concurrency
can not be achieved since the PCI-bus allows only two memory transfers occurring simultaneously. As a
result, “white space” is present, indicating idle time for the GPU. Furthermore, it is crucial to acknowledge
that the feasibility of utilizing streams hinges upon the ability to disentangle the input data. If the interde-
pendencies among the data render it inseparable, the entirety of the input data must still be transmitted
to the GPU before any computation can commence, thus dissolving the benefits and any performance
enhancement of the utilization of streams.

It is worth noting that achieving optimal concurrency can be contingent upon the execution times of indi-
vidual kernels. The amount of kernels executed in parallel is solely limited by the GPU resources. In cases
where there is significant variation in the duration of kernels, it may be advantageous to further divide
the computations into multiple kernels that can be distributed across multiple streams. By doing so, the
potential for enhanced concurrency and improved performance can be realized.

In addition to the aforementioned limitations, it is crucial to maintain a comprehensive understanding
of the sequential order in which specific instructions need to be executed. Instructions issued to a single
stream are executed in the order they are issued in. However, among different streams there is no pre-
scribed ordering in the execution of instructions. Consequently, it is crucial to analyze interdependencies
between streams and monitor those to assure accurate results. By carefully managing the issuing order
of instructions and stream organization, both concurrency and correctness of results can be effectively
balanced, thereby optimizing the overall performance of GPU computing processes.

2.5 Conclusion
The aim of the current chapter was to familiarize the reader with the computing process that involves GPU
computing. The main events present in the computing process were presented in section 2.1, followed by
an elaborate description of both the responsible hardware components and the steps present in said events
in section 2.2 and section 2.3. Finally, the scheduling of events was highlighted in section 2.4, indicating
that the overlap of interaction and processing events can enhance the computing performance considerably.
However, a well-defined synchronization mechanism must be established, such that the overall integrity
and correctness of the computing process are upheld.
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3
A review of recent literature

Following the chapter on general purpose computations on a GPU, the aim of this chapter is to acquaint
the reader with the utilization of GPUs for accelerating FEMs. The primary focus is to highlight the
impact of using GPUs on both the algorithmic implementation and resulting performance. It is important
to note that this chapter is an abbreviated version of the literature review that was conducted by the
author before this thesis. For a complete overview of the literature review readers are referred to [18].
This chapter proceeds with discussing speed-up strategies employed in existing literature to enhance the
performance of FEMs utilizing GPUs in section 3.1. Subsequently, a detailed investigation into GPU-
accelerated FEMs applied in solid mechanics is presented in section 3.2. The added complexity associated
with high performance computing utilizing GPUs is discussed in section 3.3 and the literature study
concludes in section 3.4.

3.1 Speed-up strategies for GPU-accelerated FEA
This section presents the findings of speed-up strategies employed in existing literature to speed up FEA
through the utilization of GPUs. The discussion begins with an exploration of strategies that have a
localized influence, only affecting a single step in the full algorithms. Following that, strategies with a
broader impact on the algorithm to which they are applied are addressed.

3.1.1 Localized speed-up strategies
Strategies that have a localized impact on the FEM are focused on either the first or last step, i.e. the
discretization or solving step. Both steps are discussed sequentially. Since discretization is the first step,
it affects subsequent steps in terms of performance and memory demand. A distinction between two types
of finite element meshes is made:

• Structured meshes
Structured meshes have elements that are equal in size and are ordered regularly and the node
connectivity is predicted rather easily.

• Unstructured meshes
In an unstructured mesh, the elements are assigned in an order that suits the geometry of the
domain best, which results in elements of unequal size. The node connectivity can not be predicted
for unstructured meshes. As a result, additional memory is required to store the nodal connectivity.
Additionally, fetching values of a quantity through the nodal connectivity is more expensive since
an additional value, the index from the node connectivity, must be fetched from memory.

Structured grid meshes are interesting due to their relatively low memory demand. Extending this further,
a fixed grid FEM method (FG-FEM) was created that superimposes a fixed grid over the physical domain,
neglecting the physical boundaries that are present [19]. Figure 3.1 shows the procedure as the domain in
(a) is fixed-grid discretized in (b). In terms of memory, a FG-FEM simply requires preserving the elements
at the boundary, one inner element, and one outside element which results in a very small memory demand.
Although this method has existed for a long time already, more recent works by Jesús Mart́ınez-Frutos
and David Herrero-Pérez show that a speed-up of 8× to 20× can be achieved, depending on the hardware
architecture that is used [20].
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Figure 3.1: Fixed grid discretization over a physical domain. The body is discretized in equal fixed grid
squares, neglecting the physical boundary of the body. As all elements inside of the body are of the same
size, only one element needs to be stored, which holds for all elements outside the body as well. All elements
on the boundary, highlighted in orange, must be saved since all elements are different. Figure credits: [20].

A drawback is that the FG-FEM can only be applied to linear elastic constitutive models at the moment.
How to extend the fixed grid approach to nonlinear constitutive models is not clear as this extension would
require saving all elements again, which is currently the main benefit of the method. However, it can be
concluded that the fixed grid approach can handle significantly larger models as the memory demand is
very low.

Unstructured meshes offer a more broad application to irregular shapes. This is the main reason why
they are used more often in the found literature. A disadvantage is that, as the element size varies, so
do the geometric properties of each element. As a result, the material response differs per element as
well. The requirement of saving all geometric properties per element significantly increases the mem-
ory demand. On top of that, there is no regular sparsity pattern in the global system for unstructured
meshes. While the irregular pattern is an effect resulting from a choice in the discretization step, i.e. a
structured or unstructured mesh, it can be dealt with in the solving step by utilizing preconditioners,
a specific solver or a feasible storage format for the global matrix [21]. Preconditioners and solvers are
already widely used for parallel computing on CPUs and are just as relevant for GPUs since they aid in
decreasing the computing time on GPUs as well. Feasible storage formats can be considered even more rel-
evant for a GPU as the memory on a GPU is limited and should therefore be used as efficiently as possible.

Preconditioners can be used to adjust the linear system such that the solution is preserved while the eigen-
values of the solution are brought closer to each other. As a result, the system becomes easier to solve.
Direct preconditioners exist, such as the Jacobi and block-Jacobi preconditioners. Directly derived from
the global matrix, direct preconditioners are easy to construct and parallelize but show poor convergence
rates [21]. The block-Jacobi preconditioner is well suited for assembly-free systems as it can be used on
an element-level scale [1]. In the iterative domain, incomplete factorized preconditioners, such as ILU,
and sparse approximate inverse preconditioners are commonly used. The first shows lesser performance
when increasing the number of thread blocks as the number of couplings between thread blocks increases
as more thread blocks are used [22]. The latter utilizes sparse matrix-vector products, which are feasible
to compute on GPUs. However, results of sparse approximate inverse preconditioners show that they are
less robust [21].

In terms of solvers, iterative solvers are common due to the large sparse systems that arise in FEM [21].
Most often the Conjugate Gradient method is utilized. While the Conjugate Gradient method is mostly
used for positive definite matrices, it can be expanded to non-symmetric matrices [23] and to nonlinear
problems as well [24]. Another method is the dynamic relaxation algorithm, in which a convergence cri-
terion is based on the current iteration of the desired solution variable (e.g. the displacement in solid
mechanics). The dynamic relaxation algorithm is very flexible as the order of the steps in the calculation
is flexible to suit the hardware setup and application [5].

The sparse matrix-vector product is the most often occurring computation for globally assembled systems.
That is why the sparse matrix-vector product received increased interest in the literature. The broad
attention to sparse matrix-vector products has led to the development of different library packages that
can be used to optimize the sparse matrix-vector product computation such as MAGMA [25] and more
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recently HyMV [26]. Specialized storage formats aid in decreasing the required memory for large matrices.
Even though additional computations must be executed [27], the lower memory requirement results in a
significant decrease in computing time which makes simulations more feasible. Examples of storage formats
include the ELLPACK, COO and CSR formats. Another strategy is to utilize multiple storage formats to
reduce the number of variables that require storage space, which can result in significant speed-up results
[8]. Different options are explained by Vazquez that show applying the most feasible storage format for
the hardware resources available can lead to a speed-up of 30× [28].

The focus of the achieved speed-up will be on the computational steps before solving the system. This is
because the solving step is often handed to advanced software libraries that already do an excellent job
in terms of computational performance [21, 29]. However, the knowledge of preconditioners, solvers and
storage formats is included here to serve as background information on the solving step in general.

3.1.2 Global speed-up strategies
A lot of strategies in literature affect the FEM on a more global scale in their approach. In most cases the
computation of elemental contributions and assembly are the affected steps as both steps operate on the
same data. Both the computation of elemental contributions and assembly have a considerable memory
demand. Since a GPU offers several memory types, there are many different speed-up strategies. The
intensive use of memory is also the reason why broad attention is given to speeding up the computation
of elemental contributions and assembly step in literature.

The computation of elemental contributions always involves numerical integration of the shape functions
used to model the element geometry. As the nature of this step is on an element level, parallelization is
possible on multiple levels and in different ways. As a simple example take a relation between stress and
strain, which can be evaluated using Equation 3.1.∫

Ωe

BTCBdΩe (3.1)

Here B represents the shape function derivatives, C the tangent tensor to the constitutive stress-strain
relation and Ωe the element domain. To parallelize the calculation in Equation 3.1, one can loop twice
over the shape function derivatives, i.e. once over the quadrature points, and once over the elements for
the material properties. Kruzel and Banaś concluded that the computation of elemental contributions is
a straightforward procedure for low-order polynomial shape functions. However, it can become the domi-
nating step in terms of performance in case the approximation order becomes five or higher [30]. The main
conclusion from Kruzel and Banaś was that, from a performance point of view, it is best to compute shape
function derivatives beforehand and store them in global memory on the GPU compared to computing
them in the shared memory of the GPU. While global memory is much slower, it is also significantly
larger than shared memory. Komatitsch et al. adopted a similar approach by storing element data in the
global memory [31]. The time penalty taken was outweighed by the higher element order that was realized
since shared memory did not offer enough space to store all shape function derivatives. Still, a speed-
up of 25× was obtained compared to a single CPU implementation in the field of seismic wave propagation.

Executing element computations in shared memory is much faster and does not imply using a single
thread per element. Maciol proposed a technique allowing multiple threads to work on a single element
[32]. Threads in the same warp can access the same shared memory to store partial computations and
accelerate the computation. Recently, Kiran used the same principle by assigning a full warp to compute
a single element [33]. By assigning a warp to a single element, it is assured that enough shared memory
space is available for all elemental computations. Different implementations were tested and the largest
speed-up achieved was between 6.73× and 8.21×. Although shared memory was used in the computation
of elemental contributions step in the approaches by Maciol and Kiran, global memory is required for the
assembly step as shared memory does not offer the space necessary for this step. Dziekonski et al. exploited
the use of global memory with a streaming functionality [8]. The slow global memory transactions were
overlapped by the element computations that are performed in shared memory. The strategy of Dziekonski
led to a speed-up of 81× compared to a single CPU in the field of computational electromagnetics.
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A radically different approach is to solve the memory issue by dividing the computation over two different
kernels. Kiran showed a two-kernel approach as one of the possible implementations of assigning a warp
per element [33]. The first kernel computes geometrical parameters and the second kernel computes the
element stiffness matrices and accumulation into the global matrix. In the end, the two-kernel imple-
mentation was deemed the slowest since more kernels need to be launched. Dziekonski et al. used the
two-kernel approach differently by using it only in the assembly part [34].

From the previously discussed literature it can be concluded that the decision between partly using lo-
cal/shared and global memory or global memory only is one that comes forward very often in literature.
Furthermore, the bottleneck for using shared memory is its small size, while the high latency is the bot-
tleneck for utilizing global memory. Furthermore, it can be concluded that the most optimal strategy on
the GPU is depending on the problem size and available hardware as different applications show different
strategies to perform best. This conclusion is further supported by Cecka who proposed several memory
management strategies and came to a similar conclusion [35]. Finally, tracing back to the initial statement
by [30] that global memory is preferred over local shared memory, Banaś showed in [36] that for varying
approximation orders of the shape functions the best performing solution differs per hardware setup. In
fact, the total amount of threads available, in combination with the available memory, drives the perfor-
mance of a GPU algorithm. This highlights the influence of the problem size even more.

What all literature so far has in common is that global memory is used to store assembled parameters of
the model, which gives rise to a problem in the form of a race condition. The race condition occurs when
multiple threads handling different elements want to access data at the same memory address simultane-
ously. To avoid the race condition, a graph coloring method was applied by Komatitsch et al. [31]. The
graph coloring method creates distinct element sets such that elements handled in parallel have no under-
lying dependencies on each other. In general, the graph coloring method is found often in literature as it
is suited for unstructured meshes due to the unpredictable connectivity of the mesh [8, 32, 33]. Another
option is to use the “Addto” strategy proposed by Markall [37]. The Addto-strategy creates a direct link
between the local element matrix and the global matrix with a mapping function. The link is created by
either the use of the graph coloring method explained above or atomic updates, which handle attempts to
update the same global matrix entry sequentially. While this seems more computationally expensive at
first, the atomic update approach is preferred in literature [38].

To avoid the need to take the race condition into account an assembly-free FEM can be used which reduces
memory requirements. Additionally, this strategy has more coalesced memory transactions as the matrix-
vector products have regular-sized elemental matrices that result in a regular memory access pattern [7].
The difference in terms of assembly between regular and assembly-free FEM is illustrated in Figure 3.2.

Figure 3.2: Different forms of assembly of the global system. On the left a sparse matrix-vector product
is depicted. Only a small system is depicted to serve as an example. In larger system the percentage of
non-zero terms is much smaller resulting in a much more sparse system. On the right the matrix-vector
product is split up into smaller, denser parts that are subsequently summed. Figure credits: [21].

Assembly-free FEM exists in different forms including Element by Element (EbE) and Degree of freedom
by Degree of freedom (DbD) methods. For EbE methods, the domain is split into elemental subdomains
that do not have common degrees of freedom, removing the costly storage of large (sparse) global matrices
as explored by Kiss et al. [23].
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In the case of a DbD method, the contribution of different elements does not need to be tracked as each
thread is assigned to a single unknown, i.e. a degree of freedom [38]. More recently, an iterative DbD
approach was used by Pikle [7]. This approach launches multiple kernels that each take a certain amount
of columns from the local element matrices to update the global matrix, making sure that memory trans-
actions stay coalesced. Compared to a serial implementation, the DbD method achieved a 30× speed-up,
while a 90× speed-up was achieved with the iterative DbD method [7]. Interestingly, the observation by
Kiran in [33] that multiple kernel launches are an unfeasible option does not apply here, which can be
attributed to the absence of the assembly part in the iterative DbD method.

The literature on EbE and DbD methods is promising as the race condition is avoided. However, the load
balance over different subdomains is something that needs to be handled carefully as a load imbalance can
lead to very inefficient implementations. Additionally, as noted by Pikle et al. [21], preconditioners are no
longer easily implemented as preconditioners assume the global system to be assembled. In case the use of
a preconditioner is desired, the preconditioner needs to be developed as shown by Kiss et al. [23]. Finally,
EbE and DbD methods contain redundant computations as local element matrices need to be computed
for different subdomains.

3.2 Current state of the art in solid mechanics
Apart from the GPU-accelerated implementations in FEMs for general applications, a lot of knowledge
can be gained from GPU-accelerated implementations of FEMs applied specifically to solid mechanics.
Therefore the current section only highlights the global level of FEMs and more emphasis is laid on the
mechanics and the utlized constitutive material models.

3.2.1 Mechanical models on GPUs
First, a soft tissue modeling approach is analyzed. The underlying mechanical model is based on the Total
Lagrangian formulation that is used in combination with an explicit time domain method (TLED) [39].
Important to note is the use of the lumped mass approximation in conjunction with mass-proportional
damping. These assumptions yield diagonal matrices, allowing for the creation of a GPU implementation
based on the fact that nodal force contributions are derived from local stiffness matrices. The same is true
for nodal displacements, which are independent of one another. Based on these two facts, it is evident that
both computations for each element and subsequently each node may be done in parallel, as demonstrated
by Taylor et al. [10]. The algorithm is split into two computational kernels. The first kernel computes the
elemental nodal force contributions, while the second kernel computes the new nodal displacements. A
quasi-static approach is used for the loading in combination with the Neo-Hookean constitutive material
model. Although it is considered a simple nonlinear constitutive formulation, the model is able to capture
geometric non-linearities. In total, the GPU implementation was 16.8× faster compared to a serial CPU
implementation.

A year later this model was tested further for multiple constitutive formulations [9]. The new tests resulted
in a further 2.5× speed-up of the model which the authors attribute to memory access performance. More
recently, the aforementioned TLED is rewritten to a form that is purely based on the Jacobian in different
configurations [40]. This formulation contains strain- and time-invariant tensors that can all be computed
beforehand based on the constitutive formulation that is used. The revised implementation resulted in
a 1.42× speed-up compared to the original TLED algorithm. Comparing the computing time between
the GPU and serial CPU implementation, speed-ups of 120× for the tetrahedral elements and 90× for
hexahedral elements were obtained. A disadvantage is that both the stress and strain are now implicitly
defined, necessitating post processing operations in case these parameters are desired.

All aforementioned models employ an explicit time scheme. Therefore, it is interesting to investigate
implicit time scheme models such that a comparison can be made. Mafi and Sirouspour developed a
model using the Newmark implicit time scheme [24]. The implicit time scheme ensures the stability of
the model at the cost of solving a linear system of equations at each time step. From a mechanical point
of view, it is based on the Total Lagrangian formulation and compares the conventional Preconditioned
Conjugate Gradient(PCG) solver with an EbE implementation that is developed by the authors. Since the
PCG solver is iterative, the linear system needs to be solved multiple times at each time step to reach a
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converged solution. The GPU is in both methods used to compute element matrices, where each thread is
assigned to a single element. Afterward, the PCG uses CUDA libraries to assemble the global matrix and
subsequently compute the global sparse matrix-vector product and solve for the displacement. The EbE
implementation skips the assembly step and replaces the sparse matrix-vector product with three kernels.
The first kernel disassembles the external force vector, the second performs the element matrix-vector
product and the third assembles the solution vector that contains the displacement. While specific speed-
up numbers are absent, the results show that the EbE model is faster for small numbers of convergence
iterations at each time step. For large convergence iteration numbers, the EbE method is slower than the
conventional PCG solver.

Cai et al. developed a Node by Node (NbN) based conjugate gradient solver [41]. Due to the NbN fashion,
no preconditioner is applied and the model is assembly-free. In terms of GPU usage, threads are first
assigned to elements to compute elemental stiffness matrices. Next, each thread is assigned to a node
and serially computes all contributions of other nodes to its own node. For a 2D and 3D cantilever beam
speed-ups of 174× and 167× were obtained compared to a serial CPU implementation. It must be noted
that in case the number of elements is decreased, the speed-up will decrease as well.

Comparing the different models in solid mechanics, several conclusions can be made. First, it is observed
that in both implicit and explicit models the Total Lagrangian formulation is used. In contrast to the
Updated Lagrangian formulation and computing spatial derivatives with respect to the configuration of
a previous time step, the Total Lagrangian formulation computes spatial derivatives with respect to the
initial configuration. This strategy saves memory and decreases the number of computations. Moving
on, the EbE approach works for explicit time schemes regardless of the number of elements. For implicit
time schemes, the number of elements is of influence as it affects the number of iterations required by the
solver. Finally, the explicit models neither use preconditioners nor linear solvers. This significantly speeds
up the total computation and makes explicit schemes more suited for parallelized GPU implementations.
Consequently, a much larger speed-up with respect to a serial CPU implementation is anticipated in case
a GPU implementation is utilized in conjunction with an explicit time scheme.

3.2.2 Constitutive material models
The constitutive material formulation dictates the computational cost of the computation of elemental
contributions of the FEM for explicit dynamics. In implicit dynamics, the linear and nonlinear solvers of
the FEM can be the bottleneck as well. Therefore it is interesting to investigate which material formula-
tions are utilized in the literature.

Taylor included different hyper-elastic formulations ranging from isotropic to anisotropic versions [9, 10].
Additionally, a visco-hyper-elastic constitutive model was formulated. Incorporating visco-elasticity itself
showed to only have 4.5% additional computational cost, while both visco-elastic and anisotropic proper-
ties together resulted in 5.1% additional computational cost. The models utilizing a implicit time scheme
use a hyper-elastic material formulation, for which the additional cost of different implementations is not
explicitly mentioned. All these hyper-elastic formulations are based on the Neo-Hookean constitutive ma-
terial formulation [5], which is a hyper-elastic constitutive material formulation that captures geometric
non-linearities.

Summarizing, GPU-accelerated solid mechanics models utilizing Neo-Hookean constitutive material for-
mulations have been more widely studied in the literature. It is expected that larger speed-ups can be
achieved in case a more complex constitutive model is chosen as this increases the computational intensity
of the FEM [21]. Moreover, this can be combined with the observation of Banaś [36] presented in section 3.1
regarding the importance of the order of the shape functions. Combined with material non-linearities, a
higher-order shape function will significantly increase the computational cost of the part computing the
elemental contributions.
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3.3 High performance computing
In the context of true scalability, the findings of an exploration into high performance computing are pre-
sented in this section. The initial focus is primarily on the load balance for single GPU implementations in
case the memory demand exceeds the memory capacity of the GPU, which is often the case. Subsequently,
the focus shifts toward multi-GPU implementations and the added complexity associated with balancing
the load between different GPUs.

3.3.1 Single-GPU load balancing
Based on the prior performed investigations into GPU algorithms, it was found that the manner in which
loops are handled on a GPU is very important for the performance that is achieved. Two ways that are
frequently encountered in the literature regarding the utilization of loops in GPU algorithms are presented:

• Grid-strided looping
It often occurs that the computational demand is larger than can be handled in one single loop on the
GPU. The best strategy to work with this is by using a grid-strided loop, which means that after the
first loop iteration each thread shifts by the total number of threads that is utilized and performs the
same computation, only for the new memory address as explained in [34]. Such grid-strided looping
occurs when dealing with large arrays as well. The grid size is chosen such that one row of the array is
covered and the grid loops over the subsequent rows and performs the calculation.

• Loop unrolling
Ideally, to achieve the highest performance on a GPU, a thread should never have to wait on other
threads if the threads are in the same warp. However, conditional statements (e.g. if-statements or
switch-statements) give threads the option to choose a different path and diverge from each other.
Additionally, threads can follow a path in which variables are read or evaluated that will not influence
the final outcome of a computation. By unrolling loops the compiler can optimize conditional statements
such that threads can not diverge and threads that will not aid the outcome will not read variables or
store intermediate results [14].

Taking the aforementioned ways of looping into account is beneficial for the total computing time of the
computation and therefore aids in achieving a higher speed-up in comparison with a serial implementation.

3.3.2 Multi-GPU computing
Apart from single-GPU implementations, multiple GPUs can also be implemented together to speed up
the total computation. Using multiple GPUs is a relatively new topic in literature as it requires a lot of
synchronization and data transfer overhead between GPUs [21]. Still, attempts are made in different fields
of study to develop implementations for multi-GPU hardware setups.

Dziekonski et al. investigated the conversion of the FEM from an iterative single GPU implementation to
a parallel multi-GPU implementation [34]. The domain is decomposed into different subsets, which are
subsequently allocated to different GPUs. Through assuring the subsets are decoupled, all subsets can
be handled in parallel. For optimal performance, the CPU must always finish its tasks before the GPU
finishes the parallel computation such that the CPU can carry on with the computation. Utilizing multiple
GPUs decreases the GPU computing time significantly and can result in a situation in which the GPU has
a faster computing time than the CPU. If this situation occurs, the computing time of the CPU becomes
the main obstruction for a higher speed-up.

More recently, the overhead communication and load balance of using multiple GPUs was investigated [42].
GPU communication can be minimized by decomposing the domain over different GPUs directly after the
discretization step of the FEM. Letting each GPU compute the elementary contributions and assemble
its own subdomain results in an almost equal load balance between different GPUs. Using direct solvers
leads to a speed-up of 5× and 10× for a single and multi-GPU implementation. A decrease in speed-up
is observed for iterative solvers, in which case the single GPU implementation yields a 3.5× speed-up and
the multi-GPU implementation a 5× speed-up respectively.
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An important consideration regarding multi-GPU setups is that communication between GPUs should be
minimized. Additionally, the decomposition of the domain in different subsets should be handled carefully
since each GPU should get an equal load assigned. Based on the literature, it can be concluded that on
top of the speed-up that can be gained in a single-GPU implementation, using multiple GPUs will provide
another significant speed-up. This additional speed-up comes from the fact that a multi-GPU setup offers
true scalability as previously explained in chapter 1.

3.4 Conclusion
In this chapter, a brief overview was given regarding the current state-of-the-art GPU-accelerated imple-
mentations. First, speed-up strategies affecting a single step in the FEM were examined. It was determined
that structured meshes can provide significant speed-ups and handle large problems more easily than un-
structured meshes. The predictability of the node connectivity results in a much lower memory demand
for structured meshes. Furthermore, higher speed-ups can be achieved in case optimized storage formats,
preconditions and linear solvers are used. Regarding speed-up strategies affecting multiple steps, it is
concluded that the most optimal strategy for GPU-accelerated algorithms is depending on the problem
size and available hardware as different applications show different strategies to attain the highest speed-up.

For the application to solid mechanics, the Total Lagrangian formulation is most commonly used as it has
the lowest memory demand of the explored formulations. The low memory demand leads to the highest
speed-up in combination with an explicit time scheme. Formulations including the Neo-Hookean consti-
tutive material model have been more widely studied in the literature than other constitutive models.
The geometric non-linearities the Neo-Hookean material model is able to capture, in conjunction with
higher-order shape functions, can significantly increase the computational cost of the step that computes
the elemental contributions.

The exploration into high performance computing resulted in several observations. In single GPU imple-
mentations the memory demand often exceeds the memory capacity of a single GPU and several strategies
in literature exist to handle the resulting load-balancing problem. A multi-GPU setup offers true scal-
ability and has been successful in an application to computational electromagnetics. Therefore, it is a
promising approach to accelerate solid mechanics simulations as well.
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Part II

The Finite Element Method in solid mechanics
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4
Finite element formulation

Following the state of the art on GPU-accelerated FEA, the part on the FEM in solid mechanics commenes
with a chapter explaining the finite element formulation applied to solid mechanics. First, the main steps in
the finite element formulation for solid mechanics are examined in section 4.1. Subsequently, the governing
equations are presented in section 4.2 for the finite element formulation utilized. As the governing equations
in itself are continuous, the conversion to a discrete system of equations is described in section 4.3. Finally,
the integration through time is explained in section 4.4.

4.1 Review of the main FEM formulation steps
In general, the FEM can be split up into four distinct steps [21, 31, 32]. Each of these four steps is
separately discussed in this section. In solid mechanics, the system that is solved with the FEM, often
called the body, comprises of a set of algebraic equations that yield the motion of the body. The external
and internal forces acting on a body result in a inertial movement of the body in case of a dynamic system.
In case there is no inertia term, the system is quasi-static. An input to the FEM is the mesh. In the mesh,
the full domain of the body is discretized into smaller elements, each element consisting of a number of
so called discretization nodes at its edges. Each node has a number of degrees of freedom, collectively
representing the deformation of the body. Figure 4.1 illustrates the different steps of the finite element
method in solid mechanics. These steps are described in more detail below.

1. Shape function construction
The first step is to construct shape functions for the body under consideration. The shape functions
can be of any order, depending on the application and type of element. The input for this step is the
mesh of the domain. Based on the order of the shape functions, a certain number of integration points,
or quadrature points, is required in each element as shown in the enlarged element in Figure 4.1.
The solution on each element (e.g. the values of the deformation at the nodal degrees of freedom) is
then represented as a linear combination of these shape functions with unknown coefficients which
will be determined in subsequent steps. The construction of the shape functions is only computed
once at the beginning of the FEM, making the computational load of this step relatively small.

2. Computing elementary contributions
Based on the problem domain, the material parameters and the boundary conditions, a set of alge-
braic equations for the unknown coefficients can be assembled. For each element in the FEM, the
elementary contribution to the set of algebraic equations is evaluated using numerical integration,
graphically depicted by the enlarged element and the link to the quadrature rule and material model
in Figure 4.1. Depending on the order of the shape functions and the complexity of the material
model, this step can be computationally expensive. In fact, in contrast to the shape function con-
struction, this step must be performed at least once per time step. In addition, this computation
is performed for each quadrature point of each element. This results in a multiplier effect: In case
higher-order elements and complex material models are considered in combination with a fine mesh
comprising of many elements, the computational load becomes extremely high.
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3. Assembling the global system
Once all elementary contributions are evaluated, the partial results for each element can be assembled
in the global system of equations that represents the entire body. This step is necessary because
multiple elements may contribute to the algebraic equation for the same nodal degree of freedom. The
assembly is in Figure 4.1 shown by the assembler and the connectivity of the local and global nodes
for the enlarged element. The computational load of the assembly is similar to that of computing
the elementary contributions as the assembly is done for each element as well. A distinction can be
made between explicit and implicit time integration methods. For explicit time schemes, there is no
need to assemble the global matrix as the solution depends only on the previous time step, which is
not the case for implicit time schemes.

4. Solving the global system
The solution step is shown on the top left of Figure 4.1. Typically there is an inertia term present,
which makes the solving step more complex. Similar to the assembly step, a distinction can be made
between explicit and implicit time schemes. With explicit schemes, the solution of the next time
step is a function of the solution at the current time step, while for implicit schemes the solution of
the next time step is a function of the next and current time steps and requires the solution of a
(possibly non)linear system to perform the time update. Nowadays many different types of solvers
exist to solve large-scale linear systems. Therefore, finite-element codes typically delegate this step
to advanced open-source libraries for high-performance numerical linear algebra.

Figure 4.1: A graphical representation of the four main steps in the FEM applied to solid mechanics.
Starting from the discretized form of the domain, shape functions are constructed to form a linear combi-
nation that forms the solution. The coefficients of the linear combination are determined by first computing
the elementary contributions, which depend on the shape functions and material model employed. Subse-
quently, the elementary contributions are assembled, as multiple elements may contribute to the algebraic
equation for the same nodal degree of freedom. Following the assembly, the system is solved as depicted on
the top left. Note that, in the figure, a quasi-static system is considered as there is no inertia term present.
Figure credits: [43].

Based on the description of the four main steps in the FEM, it is clear that the highest computational load
arises in computing the elementary contributions and assembling the global system. Also, because this step
consists of evaluating expensive calculations for each quadrature point in the domain independently, this
step lends itself well to GPU parallelization. Consequently, the main focus in this study is to parallelize
the computations present in computing the elementary contributions and assembling the global system
as there the largest enhancement in performance is anticipated when utilizing a GPU-accelerated parallel
implementation.
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4.2 Governing equations
The current study utilizes the Total Lagrangian formulation. The choice to use the Total Lagrangian
formulation stems from the fact that Lagrangian measures of stress and strain are utilized. In these
measures, derivatives and integrals are obtained with respect to the Lagrangian material coordinates X.
Consequently, the mesh has the ability to follow material points through time and can deal with complex
boundaries. First the description of a Lagrangian formulation is presented in subsection 4.2.1, followed by
the explanation of the various balance principles the formulation adheres to in subsection 4.2.2. Finally,
the Strong Form of the balance principles are converted into the Weak Form in subsection 4.2.3, such that
the equations can be transformed into a discrete form for the FEM. The remainder of this chapter follows
closely Belytschko’s book on Nonlinear Finite Elements for Continua and Structures, which is summarized
here for the reader’s convenience [44].

4.2.1 Lagrangian description of the motion and measures
In solid mechanics, as the domain deforms in time, it is important to distinguish the current configuration
of the domain from a reference configuration. The state of the reference configuration is known and often
the initial domain is used as the reference configuration, which is the case in this study as well. The motion
of the body Ω is described by Equation 4.1. Here Xa indicates the starting configuration of the body and
Xb the final configuration of the body. The initial domain, depicted as X0, is the position of the body at
t = 0. The system is dynamic, hence there is a dependency on time in the motion of the body.

x = ϕ (X, t) , X ∈ [Xa,Xb] (4.1)

Moving on, the displacement u (X, t) is described by Equation 4.2 and equals the difference between the
current and initial position of the material point. Taking derivatives with respect to time, the expressions
for the velocity and acceleration are obtained as depicted in Equation 4.3 and Equation 4.4 respectively.

u (X, t) = ϕ (X, t)− ϕ (X, 0) = x−X0 (4.2)

v (X, t) =
∂u (X, t)

∂t
(4.3)

a (X, t) =
∂2u (X, t)

∂t2
(4.4)

The deformation gradient is defined as shown in Equation 4.5, which is the gradient of the current con-
figuration with respect to the reference configuration. Furthermore, the determinant of F is denoted by
JF and is computed according to Equation 4.6. The Jacobian serves as a link between the current and
reference configuration and transforms volume integrals from one configuration to the other, as shown by
the example function f in Equation 4.7.

F =
∂ϕ

∂X
=

∂x

∂X
= (∇0ϕ)

T
(4.5)

J = det (F) (4.6)∫
Ω

f(x, t)dΩ =

∫
Ω0

f(ϕ(X, t), t)JdΩ0 (4.7)

There are several conditions prescribed for the motion as listed below. The first condition ensures that
the compatibility is satisfied such that there are no gaps or overlaps in the deformed body. The second
requirement assures that there is a unique point in Ω for each point in Ω0. The second and third requirement
are related as the second conditions results in the fact that F is invertible, which is possible if and only if J
is not equal to zero. The fact that J must be larger than zero follows from the Balance of Mass presented
later on.

1. The function ϕ (X, t) is continuously differentiable.

2. The function ϕ (X, t) is one-to-one.

3. The determinat of F satisfies the condition J > 0.
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The measure of strain is defined by Equation 4.8, which shows that there is no strain in case there
is no deformation present as both the deformation gradient and its transpose are then equal to unity.
Furthermore, the equation for Green’s strain E can be written in a displacement format as well as depicted
in Equation 4.9.

E =
1

2

(
FT · F− I

)
(4.8)

E =
1

2

(
(∇0u)

T
+∇0u+∇0u · (∇0u)

T
)

(4.9)

The stress measures considered in a Lagrangian description are the first Piola-Kirchhoff stress tensor P and
the second Piola-Kirchhoff stress tensor S. The first Piola-Kirchhoff stress tensor expresses the traction in
terms of the area and normal of the reference configuration, which is the initial configuration in this study,
and is defined as shown in Equation 4.10. The second Piola-Kirchhoff stress has no physical meaning
and differs from the first Piola-Kirchhoff stress in the transformation of the force by F−1 as illustrated in
Equation 4.11. Due to this transformation, the second Piola-Kirchhoff is a symmetric tensor.

n0 ·PdΓ0 = t0dΓ0 (4.10)

n0 · SdΓ0 = F−1 · t0dΓ0 (4.11)

4.2.2 Balance principles
Following from the balance principles, the governing equations can be stated for the Total Lagrangian
Formulation. There are three balance principles which are subsequently discussed, starting with the the
Conservation of Mass in Equation 4.12.

ρ(X, t)J(X, t) = ρ0(X) (4.12)

From Equation 4.12 it follows that J must be larger than zero. The mass of the material domain has to
be constant since no material leaves the domain and mass to energy conversion is not considered. Moving
on, the conservation of linear momentum is depicted in Equation 4.13. The left hand side consists of two
terms. The first term represents the net internal force per unit volume of the initial configuration. The
second term consists of the external body forces, b, acting on the volume of the initial configuration. The
right hand side represents the change in momentum, often called the inertial term, as it is the product of
the initial density and acceleration.

∇0 ·P+ ρ0b = ρ0
∂v(X, t)

∂t
(4.13)

The third governing equation is the Conservation of Angular Momentum. The equation is obtained by
taking the cross-product of each term in Equation 4.13. Subsequently, it results in the fact that the
product of the deformation gradient and nominal stress tensor should adhere to the symmetry conditions
imposed by the balance of angular momentum on the Cauchy stress.

F ·P = PT · FT (4.14)

It is important to note that the current study only explores isothermal systems. Therefore, the equation
for the Conservation of Energy is left out. To complete the set of governing equations, the boundary
and initial conditions are described. The boundary conditions can be either a prescribed displacement
or traction. It is impossible to have both a prescribed displacement and traction at the same boundary
point, but one of both must be prescribed at each boundary point. The boundary of the body is indicated
with Γ, where a boundary displacement is represented by Γu and a traction boundary by Γt respectively.
The zero superscript indicates that the boundary of the initial configuration is considered. For a traction
boundary the product of the nominal stress and the outward normal of the undeformed body should equal
the imposed traction along the principal axes, as depicted in Equation 4.15. A displacement boundary is
simply the imposed displacement value itself as indicated by Equation 4.16.
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4.3 Semidiscretization

ei · n0 ·P = ei · t0 on Γ0
ti , (4.15)

ui = ui on Γ0
ui

(4.16)

Initially the body is undeformed and at rest. Consequently, the stress and the velocity of the body are
zero in the initial state as depicted by Equation 4.17 and Equation 4.18.

P (X, 0) = 0 (4.17)

v (X, 0) = 0 (4.18)

Finally, the internal continuity, shown in Equation 4.19 must be satisfied as well. The internal continuity
follows from the balance of linear momentum and dictates that there is no jump present in the stress
measure, which holds for the entire interior of the body, represented by the boundary Γint, in the initial
state.

Jn0
jPjiK = 0 on Γ0

int (4.19)

4.2.3 Derivation of the Weak Form
The described governing equations in the previous subsection are of the so-called Strong Form, meaning
that the equations are required to hold for each and every material point. However, in FEA the body is
discretized into a number of elements. A suitable Weak Form for FEA can be derived by multiplying the
balance of linear momentum with a virtual displacement. The application of such a virtual displacement
is called the principle of virtual work as shown in Equation 4.20. The different components of the virtual
work are listed below in Equation 4.21 up to Equation 4.22 respectively.

δW = δW int (δu,u)− δW ext (δu,u) + δW kin (δu,u) = 0 (4.20)

δW int = δuf int =

∫
Ω0

δFT : PdΩ0 (4.21)

δW ext = δufext =

∫
Ω0

ρ0δu · bdΩ0 +

nsD∑
i=1

∫
Γ0
ij

(δu · ei)
(
ei · t

0
t

)
dΓ0 (4.22)

δW kin = δufkin =

∫
Ω0

δu · ρ0üdΩ0 (4.23)

Important to highlight are the restrictions implied on the virtual displacement functions, which assure
continuity. The first condition is that the virtual displacement functions must be continuous functions with
piecewise continuous derivatives, pertaining to the continuity in X. Additionally, the virtual displacement
functions are required to vanish on displacement boundaries. If the above conditions are met, both
equilibrium and the described boundary conditions of the problem are satisfied.

4.3 Semidiscretization
To approximate the governing equations of the motion described in the previous subsection, the domain
is partitioned in a number of elements that encompass the whole domain. The motion itself is approx-
imated with the function shown in Equation 4.24 and the trial displacement by Equation 4.25. The
variations utilized in the principle of virtual work are not a function of time and can be written as shown
in Equation 4.26.

x (X, t) = xI (t)NI (X) (4.24)

u (X, t) = uI (t)NI (X) (4.25)

δu (X) = δuINI (X) (4.26)
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4.3 Semidiscretization

In the above equations N represents the shape functions, which are interpolants functions of space only.
Important to note is that indicial notation is employed, where all repeated indices are summed. Upper
case indices represent nodal values and are summed over all nodes of the element, while lower case indices
pertain to components and are summed over the number of dimensions. The shape functions satisfy the
condition shown in Equation 4.27, where δIJ is the Kronecker delta which equals one at I = J and zero
if I ̸= J . The subscript I ranges from zero to the number of nodes per element, while the subscript J
indicates the location of the node in its element.

NI (XJ) = δIJ (4.27)

Quadratic shape functions are examined, which require six nodal coordinates per element respectively.
The reason for considering quadratic shape functions is the fact that it is the lowest order that contains
multiple quadrature points per element, which will be elaborated upon later. The equations governing the
shape functions are shown in Equation 4.28 up to Equation 4.33 [45].

N1 = (1− ξ − η) (1− 2ξ − 2η) (4.28)

N2 = ξ (2ξ − 1) (4.29)

N3 = η (2η − 1) (4.30)

N4 = 4ξ (1− ξ − η) (4.31)

N5 = 4ξη (4.32)

N6 = 4η (1− ξ − η) (4.33)

With the description of the shape functions, the expression for the components of the deformation gradient
can be written as shown in Equation 4.34. Here B represents the partial derivative of the nodal shape
function with respect to the component of the initial deformation gradient. Transforming the equation
to tensor notation results in Equation 4.35. Similar, the variation of the deformation gradient can be
computed for a component according to Equation 4.36, which results in Equation 4.37 for the tensor
notation. Note that the upper case subscript represents the nodes of the element under consideration,
while the lower case subscripts are utilized for components of the tensor.

Fij =
∂xi
∂Xj

=
∂NI

∂Xj
xiI = B0

jIxiI (4.34)

F = xBT
0 where B0 = ∇0NI (4.35)

δFij =
∂NI

∂Xj
δxiI =

∂NI

∂Xj
δ (XiI + uiI) =

∂NI

∂Xj
δuiI (4.36)

δF = δuBT
0 (4.37)

The derivatives of the shape functions are defined with respect to the reference configuration in the
above equations. However, in the shape function expressions of ?? to Equation 4.33, the shape functions
are expressed in terms of natural coordinates. Consequently, a conversion is necessary to establish a
relationship between the shape function derivatives in the global coordinate system, denoted by (x, y), and
the natural coordinate system, denoted by (ξ, η). This conversion is achieved by employing the Jacobian
matrix, Jξ , that is obtained through the computation of Equation 4.38 [43]. It is important to note that
the Jacobian matrix captures the transformation between the global and natural coordinate systems, as
indicated by Equation 4.39, which transforms the nodal coordinates in the reference configuration between
the natural and global coordinate system.

Jξ =

[
∂NiI

∂ξ xi
∂NiI

∂ξ yi
∂NiI

∂η xi
∂NiI

∂η yi

]
(4.38)

B0 = ∇0NI = Jξ
−1∇ξNI (4.39)

As stated before, quadratic shape functions are examined, which require six nodal coordinates respectively.
Referring to Equation 4.40, it is determined that quadratic shape functions necessitate three quadrature
points, nq, per element. Note that each quadrature point has a different Jξ, and therefore B0, as the
coordinates of each quadrature point differ. The weights of the quadrature points and natural coordinates
of each quadrature point in terms of ξ and η have been obtained from [46].
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4.4 Time integration

nq = 2p− 1 (4.40)

Employing Gaussian quadrature, the influence of each nodal point on the respective quadrature point is
evaluated. Subsequently, summing the values of all elements contributing to a nodal degree of freedom by
summing the quadrature points of each element, the found expressions for the variation of displacement
and deformation gradient can be implemented in the expressions for the virtual work. Doing so for
Equation 4.21 up to Equation 4.23 results in Equation 4.41 up to Equation 4.43 as expressions for the
different force components, summed over the number of quadrature points of the element. Note that now
a component notation is used, opposed to the tensorial notation in Equation 4.21 up to Equation 4.23, to
clearly indicate the computation of a single component.

δW int
iI =

nq∑
q=1

∫
Ωe

δuiIB
0
jIPjiwqdΩe = δuiI

nq∑
q=1

∫
Ωe

B0
jIPjiwqdΩe

f intiI =

nq∑
q=1

∫
Ωe

B0
jIPjiwqdΩe (4.41)

δW ext
iI =

nq∑
q=1

(∫
Ωe

δuiINIρ0biwqdΩe +

∫
Γ0
ti

δuiINIt0iwqdΓ0

)
= δuiI

nq∑
q=1

(∫
Ωe

NIρ0bidΩe +

∫
Γe

NIt0i dΓe

)

fextiI =

nq∑
q=1

(∫
Ωe

NIρ0biwqdΩe +

∫
Γe

NIt0iwqdΓe

)
(4.42)

δW kin
iI =

∫
Ωe

δuiIρ0NINJ üjJdΩe = δuiIMijIJ üjJ where MijIJ = δij

∫
Ωe

ρ0NINJdΩe

fkiniI =MijIJ üjJ (4.43)

Important to highlight is the utilization of a diagonal, or lumped, mass matrix in Equation 4.43. Utilizing
a lumped mass matrix avoids the need to solve a linear system when integrating over time as each row
contains only a single non-zero entry. The non-zero entries are present on the diagonal of the matrix and
are calculated by summing the values in the entire row. Finally, the expressions for the various force
components for each node can be inserted in Equation 4.20. Shifting the term of the external force to the
right hand side, the equation to solve for each nodal degree of freedom becomes Equation 4.44.

fkiniI + f intiI = fextiI

MijIJ üjJ +

nq∑
q=1

∫
Ω0

B0
jIPjiwqdΩ0 =

nq∑
q=1

(∫
Ω0

NIρ0biwqdΩ0 +

∫
Γ0
ti

NIt0iwqdΓ0

)
(4.44)

4.4 Time integration
The equation to solve for each nodal degree of freedom has been derived. Subsequently, the integration
through time is discussed to present. In this study the explicit Newmark model is utilized to integrate
through time. Explicit methods are computationally efficient, but subject to stability constraints. Implicit
methods include a dependency on the solution at the next time step and have a increased computational
load due to the computation of tangent matrices. Although implicit methods guarantee unconditional
stability, which usually outweighs the more complex implementation, the focus in this study is on the
GPU implementation and therefore only explicit methods are considered. Explicit methods are restricted
in terms of stability by the critical time step, which is the largest possible time step that guarantees a
stable solution at the next time step. The critical time step is computed by computing Equation 4.45 for
each quadrature point of each element and selecting the smallest value. In Equation 4.45, h represents the
relevant element length and c represents the critical wave speed, which is material model dependent. The
equations for the critical wave speed are presented in chapter 5 for each material model respectively. .

∆t =
h

c
(4.45)
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With the time step known, the explicit Newmark model integrates the displacement and velocity through
time according to Equation 4.46 and Equation 4.47. The predictor step for the values of the displacement,
velocity and acceleration at each node. These predictions are made according to the following equations.
Note that v has been replaced by u̇ and a with ü.

un+1 = un +∆tu̇n +
∆t2

2
[(1− 2β) ün + 2βün+1] (4.46)

u̇n+1 = u̇n +∆t [(1− γ) ün + γün+1] (4.47)

The integration through time is split in two parts. First a so-called predictor step is taken by updating
the displacement and velocity based on the part of the equation that depends on the current configuration
of the body as shown below in Equation 4.48 and Equation 4.49. Subsequently, based on the values of
the displacement and velocity at the next time step, updated values of the internal and external force
contributions are computed. Utilizing Equation 4.44, the value of the acceleration at the next time step
is determined.

un+1
pred = un +∆tu̇n +

∆t2

2
(1− 2β) ün (4.48)

u̇pred
n+1 = u̇n +∆t (1− γ) ün (4.49)

Finally, the values for the displacement and velocity are corrected with the acceleration at the next time
step, as depicted in Equation 4.50 and Equation 4.51. In the current study the value of γ is equal to 0.5
and β is set to zero. Consequently, there is no corrector step present for the displacement.

un+1 = upred
n+1 +∆t2βün+1 (4.50)

u̇n+1 = u̇pred
n+1 +∆tγün+1 (4.51)

It is important to highlight that the framework presented here is still agnostic with respect to the specific
material constitutive behavior. The material constitutive behavior completes these equations by prescrib-
ing the relation between the kinetic quantities (in this case the Piola-Kirchhoff stress tensor) and the
kinematic ones (in this case the deformation). The material models utilized will be described in the next
chapter.
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5
Material models

The framework that was presented in the previous chapter remains agnostic with respect to the material
model. The material model prescribes a relation between a deformation measure (ε, F or E) and a stress
measure (σ, P or S). This chapter presents a comprehensive overview of the material models utilized
in this study. Each material model has a dedicated section describing the equations and underlying
assumptions that govern the behavior of the model. The various material models are ordered based on
computational complexity starting with the linear elastic material in section 8.1. Subsequently, the Neo-
Hookean material model is discussed in section 5.2. Finally, the orthotropic composite material model is
explained in section 8.3.

5.1 Linear material model
The linear elastic material model is perhaps te simplest material model in solid mechanics. The properties
of the material are the same in each direction, i.e. the material is isotropic. For this case the second
Piola-Kirchhoff stress can be described by Equation 5.1 [44].

S = λtr (ε) I+ 2µε (5.1)

ε = ∇0u+∇0u
T (5.2)

In the context of Equation 5.1, ε represents the linear strain part of Green’s strain E and is computed with
Equation 5.2. The parameters λ and µ are the first and second Lamé constants, respectively. Due to the
linear nature of the model, the Cauchy stress collapses with the second Piola-Kirchhoff stress, removing
the necessity of any additional transformation to the first Piola-Kirchhoff stress, P. Finally, the critical
wave speed can be computed with Equation 5.3. Utilizing the critical wave speed, the stable time step
can be determined with Equation 4.45 for the linear elastic material.

c =

√
λ+ 2µ

ρ
(5.3)

5.2 Neo-Hookean material model
The Neo-Hookean material model is a hyper-elastic material model featuring geometric nonlinearity. The
hyper-elastic behavior of the Neo-Hookean material model is characterized by an equation for the strain
energy w, or stored energy potential ψ . Consequently, the derivative of the stored energy potential can
be taken to yield the second Piola-Kirchoff stress tensor S, described by Equation 5.4 [44].

S =
∂w

∂E
= 2

∂ψ

∂C
(5.4)

The equation defining ψ can be observed in Equation 5.5. By differentiating ψ with respect to the right
Cauchy-Green strain C, the expression for S is obtained as depicted in Equation 5.6. The conversion of
S into the first Piola-Kirchhoff stress tensor P is accomplished by multiplication with F as illustrated in
Equation 5.7.

ψ (C) =
λ

2
(lnJ)

2 − µlnJ +
µ

2
(tr (C)− 3) (5.5)

S = (λlnJ − µ)C−1 (5.6)

P = FS (5.7)
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5.3 Orthotropic material model

The computational complexity is governed by the presence of the determinant of the deformation gradient
J , as it relies on all components of F. Moreover, the computation of the inverse of C and the multiplication
of F and S make the complexity rise further. Finally, the critical wave speed is computed according to
Equation 5.8. Comparing the equation with Equation 5.3, it can be observed that the formulation for the
Neo-Hookean material model is more complex.

c =

√
J
λ+ 2 (µ− λ log (J))

ρ
(5.8)

5.3 Orthotropic material model
The primary distinction between the orthotropic material model and the other models is the composite
nature of the material, which makes it no longer isotropic. A composite material is build up in layers. Such
a laminate contains different layers, or lamina, consisting of two different constituents. These constituents,
often referred to as matrix and reinforcement, are combined such that the specific individual properties
contribute to the overall performance of the material. The reinforcement, or fiber, has a high strength
along its axial direction, but can not take up load in transverse direction. The matrix serves as a continuous
medium that surrounds and binds the fibers, providing structural integrity and load transfer capabilities.
The fibers are typically carbon, glass or aramid fibers, while the matrix is most often a polymeric material.

An orthotropic composite exhibits different mechanical properties in three mutually perpendicular direc-
tions. The longitudinal direction of the fibers is often referred to as the “fiber direction” or “1-direction”.
The transverse direction, perpendicular to the fibers, is referred to as the “2-direction”, and the direction
perpendicular to both the fibers and the transverse direction is known as the “3-direction” or “thickness
direction”. By rotating the fiber direction through the different lamina, the properties of the laminate
can be tailored to a specific application. However, the variation of material properties across different
directions leads to a substantial increase in the computational workload. The stiffness of a single lamina
is called a local stiffness matrix, or Qlocal , and is depicted in Equation 5.9.

Qlocal =


q11 q12 q13 0 0 0
q21 q22 q23 0 0 0
q31 q32 q33 0 0 0
0 0 0 q44 0 0
0 0 0 0 q55 0
0 0 0 0 0 q66

 (5.9)

The components of Qlocal are governed by the material properties as illustrated by Equation 5.10 up to
Equation 5.17 [47]. Note that the matrix is symmetric.

q11 =
1− ν23ν32

E2E3∆
(5.10)

q12 =
ν21 − ν31ν23

E2E3∆
= q21 (5.11)

q13 =
ν31 − ν21ν32

E2E3∆
= q31 (5.12)

q22 =
1− ν13ν31

E1E3∆
(5.13)

q23 =
ν32 − ν12ν31

E1E3∆
= q32 (5.14)

q33 =
1− ν12ν21

E1E2∆
(5.15)

q44 = G23 = q55 = q66 (5.16)

∆ =
1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13

E1E2E3
(5.17)
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In order to combine the stiffness of different layers, the local stiffness matrix is transformed to the global
coordinate-system. The resulting global stiffness matrix, Qglobal is depicted in Equation 5.18.

Qglobal =


Q11 Q12 Q13 0 0 Q16

Q21 Q22 Q23 0 0 Q26

Q31 Q32 Q33 0 0 0
0 0 0 Q44 Q45 0
0 0 0 Q54 Q55 0
Q61 Q62 0 0 0 Q66

 (5.18)

The components of the global stiffness matrix of each layer, or ply, takes the ply angle, θ, into account
according to Equation 5.21 up to Equation 5.32. Here m and n are the cosine and sine of the ply angle as
illustrated in Equation 5.19 and Equation 5.20. Similar as for the local stiffness matrix, the global stiffness
matrix contains symmetric components.

m = cos (θ) (5.19)

n = sin (θ) (5.20)

Q11 = n4q11 + 2m2n2 (q11 + 2q66) + n4q22 (5.21)

Q12 = m2n2 (q11 + q22 − 4q66) +
(
m4 + n4

)
q22 = Q21 (5.22)

Q13 = m2q13 + n2q23 = Q31 (5.23)

Q16 = m3nq11 −mn3q22 +
(
mn3 −m3n

)
(q11 + 2q66) = Q61 (5.24)

Q22 = m4q11 + 2m2n2 (q11 + 2q66) +m4q22 (5.25)

Q23 = n2q13 +m2q23 = Q32 (5.26)

Q26 = mn3q11 −m3nq22 +
(
m3n−mn3

)
(q11 + 2q66) = Q62 (5.27)

Q33 = q33 (5.28)

Q44 = m2q44 + n2q55 (5.29)

Q45 = mn (q55 − q44) = Q54 (5.30)

Q55 = n2q44 +m2q55 (5.31)

Q66 = m2n2 (q11 + q22 − 2q12) +
(
m2 − n2

)2
q66 (5.32)

Although the mathematical operations involved are quite straightforward, the extensive number of com-
putations can lead to increased computational cost. Following the transformation, the stress tensor can
be computed by multiplication of the global stiffness matrix with the linear strain vector depicted by ε
in Equation 5.33. The different components of ε are illustrated in Equation 5.34. Linear strain is used
as solely small deformations are considered in compliance with the linear strain assumption for composite
materials. Furthermore, due to small deformations, there is no conversion from S to P as the two measures
are equivalent in the small-deformations regime.

S = QglobalC (5.33)

ε =
[
εxx εyy εzz 2εyz 2εxz2εxy

]T
(5.34)

Finally, the critical wave speed for the orthotropic material can be determined with Equation 5.35. Impor-
tant to highlight is that for the composite material, only the speed of sound across the fibers is considered.

c =
E1

ρ
(5.35)
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6
Parallelization strategies

Following the finite element formulation employed, the two parallelization strategies that are examined in
this study are presented. The first parallelization strategy focuses solely on the conversion of the strain
tensor into the stress tensor. In contrast, the second parallelization strategy incorporates additional steps,
enveloping the conversion from displacement to strain and subsequently from stress to internal force.
Consequently, the second parallelization strategy can be regarded as an extension of the first, as it entails
more calculations within the finite element formulation. Both strategies have been implementated and
results obtained with both will be presented in chapters chapter 7 and chapter 8.

6.1 Strain to stress
The first parallelization strategy encompasses only the computation of elementary contributions. Conse-
quently, there is no dependency between different quadrature points as the assembly of the global system
is still performed on the CPU. As a result, all the quadrature points present in the mesh can be evaluated
simultaneously. This clearly results in a relatively simple, embarrassingly parallel GPU implementation.

The input toward the GPU is the deformation gradient tensor F for each quadrature point at the current
time step. Subsequently, Green’s strain, E, is computed on the GPU and converted into the first Piola-
Kirchhoff stress tensor P. The relation between E and P is material dependent and the equations employed
for each material model were presented in chapter 5.

6.2 Displacement to internal force
As mentioned earlier, the second parallelization strategy represents an extension of the first. Instead of
considering only the computation of elementary contributions, the assembly of the global system is in-
corporated as well. As a result, there is a dependency between different elements and their quadrature
points since, as explained in section 4.1, different elements may contribute to the algebraic equation for the
same nodal degree of freedom. Consider the case in which two threads simultaneously want to update the
result for the same nodal degree of freedom. If both threads fetch the same value from global memory, the
contribution of one of the elements will be overwritten, leading to an incorrect result. Consequently, the
dependency between different elements should be taken account in the parallelization strategy on the GPU.

In the second parallelization strategy the input to the GPU changes to the value of the nodal degrees
of freedom at the current time step. As a result, both the shape function derivatives, B, and E can be
computed on the GPU. Subsequently, the first parallelization strategy is applied that computes P based on
E. Utilizing B and P, the internal force component of Equation 4.44 can be computed. This paralleliza-
tion strategy contains a considerably larger number of computations compared to the first parallelization
strategy at the advantage of lighter memory transfers between CPU and GPU. Both the input and out-
put consist of only a single value per nodal degree of freedom instead of a three-by-three tensor for each
quadrature point.
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Part III

Accelerating Finite Element Analysis with GPUs
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7
Model-agnostic optimization

The previous part of the report has provided the equations for the finite element formulation and the
material models that are considered. Additionally, the different parallelization strategies that will be ex-
amined have been explained. The third part of this report continues with optimizing the GPU-accelerated
implementations,starting with optimizing the GPU implementation in a general, model-agnostic, sense.
In section 7.1 the different GPU implementations are described, followed by the utilized performance met-
rics in section 7.2. The optimization of the CPU-GPU interaction is performed in section 7.3, exploring
different implementations utilizing various memory types and examining the event scheduling. Subse-
quently, a novel approach to reduce the idle GPU time is considered in section 7.4. Finally, based on the
aforementioned sections the optimal model-agnostic implementation is presented in section 7.5.

7.1 GPU-accelerated implementations
To determine the optimal GPU implementation for the different parallelization strategies, it is crucial to
first optimize the GPU computation process in a general sense. This section elaborates on the different
GPU implementations that were implemented and executed to assess their performance. To evaluate
the performance of various implementations, different approaches were employed in the context of the
strain-to-stress finite element implementation for the linear elastic material model. The selection of this
particular combination was motivated by its relative simplicity, allowing for a focused analysis of the
different implementation strategies. Importantly, the current optimization efforts remain agnostic to the
specific material model and finite element implementation, ensuring that the findings can be generalized
and applied to other constitutive material models and alternative finite element implementations.

For the GPU implementations, a Quadro RTX 5000 graphics card from NVIDIA was utilized. More in-
formation regarding the GPU can be found in Appendix A and in Appendix A for the CPU. A single
CPU is considered without utilizing distributed memory. This way, no inter-CPU communication has to
be performed for the GPU implementation, lowering the initial computational complexity of the imple-
mentation. If multiple CPUs were to be used with distributed memory, this would significantly increase
the initial complexity and make the development of a GPU implementation more difficult. As mentioned
before, NVIDIA offers the CUDA API. CUDA utilizes the C++ programming language to execute code
on GPUs. For the CPU portion of the code, the code developed by the research group, summit, is utilized
which is written in C++ as well.

Each of the following subsections provides a quick summary of one of the implementations evaluated.
Each implementation builds on the preceding one, such that each change to the implementation may
be evaluated separately in comparison to the prior one. The performance of a GPU implementation is
driven by the instruction process and event schedule which were highlighted in section 2.3 and section 2.4
respectively. Consequently, for each implementation a instruction schedule and an event schedule are
graphically illustrated. The instruction schedule indicates the number of instructions and order in which
the instructions are executed, while the event schedule depicts the order and number of events that is
executed.

7.1.1 GPU baseline implementation
The GPU baseline implementation involves the conversion of the CPU baseline implementation to a
GPU-based implementation. Following a similar memory layout as the CPU counterpart, the memory
organization within the GPU is arranged such that each deformation gradient tensor or stress tensor
follows sequentially after one another. This memory layout is illustrated below in Figure 7.1.
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Figure 7.1: A strided memory layout, where each color represents the components of a single deformation
gradient tensor stored. Aligned with the SIMT principle, each thread concurrently performs the same
task. Therefore, if each thread is assigned to a single quadrature point, all threads will first load the first
component of their respective deformation gradient tensor. In the strided memory layout, deformation
gradient tensors are ordered one after another. Consequently, eight memory addresses are present between
the values that the threads of a warp fetch.

Aligned with the SIMT principle, each thread concurrently performs the same task. Therefore, if each
thread is assigned to a single quadrature point, all threads will first load the first component of their
respective deformation gradient tensor. In the strided memory layout, deformation gradient tensors are
ordered one after another. Consequently, eight memory addresses are present between the values that the
threads of a warp fetch.

The purpose of the baseline implementation is to facilitate a direct comparison between the CPU and GPU
implementation. Such a comparison highlights the effect on the performance of utilizing a GPU compared
to a CPU. The event schedule and instruction schedule of the baseline implementation are graphically
visualized in Figure 7.2. No streams are utilized, hence the events are executed sequentially. The issuing
of instructions proceeds as follows: first all nine components of the deformation gradient tensor, F, are
fetched to local memory. Continuing, the trace of F is computed. Subsequently, each stress component is
computed and stored in global memory. These two events are repeated nine times to compute all stress
components.

Figure 7.2: A graphical representation of the GPU baseline implementation. The left image shows the
event schedule, while the right image shows the instruction schedule. No streams are utilized, hence the
events are executed sequentially. The issuing of instructions proceeds as follows: first all nine components of
the deformation gradient tensor, F, are fetched to local memory. Continuing, the trace of F is computed.
Subsequently, each stress component is computed and stored in global memory. These two events are
repeated nine times to compute all stress components.

7.1.2 Coalesced implementation
The objective of the coalesced implementation is to investigate the influence of the memory layout on the
performance of the implementation. The coalesced memory arrangement optimizes memory access pat-
terns by maximizing memory coalescence, thereby enhancing memory transfer efficiency. In the coalesced
memory layout, the individual components of the deformation gradient tensors are stored contiguously as
illustrated below in Figure 7.3. All other aspects of the implementation remain identical with the baseline
implementation. The event and instruction schedule remain as depicted in Figure 7.2.

Figure 7.3: A coalesced memory layout, where each color represents the components of a single defor-
mation gradient tensor stored. When fetching global memory utilizing the coalesced memory layout, the
values of the memory addresses that the threads of a warp visit are contiguous. Consequently, the time to
retrieve values from global memory is reduced.
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7.1.3 Overload implementation
The overload implementation introduces a new approach where the computation of a single quadrature
point is divided among nine threads, one for each component of the first Piola-Kirchhoff stress tensor, P.
The primary objective of this implementation is to assess whether subdividing the workload in smaller por-
tions, distributed over a larger number of threads, can lead to improved performance in the implementation.

The memory layout is kept as shown in Figure 7.3. Note that though the workload per thread is significantly
smaller, the number of allocated threads is significantly larger. Additionally, partitioning the workload
necessitates code branching using if-statements to ensure each thread computes the correct stress tensor
component. As discussed in chapter 3, code branching acts as a significant performance inhibitor. The
event and instruction schedule for this implementation are visualized in Figure 7.4. The event order is
in this implementation sequential. In terms of instructions each thread loads a single component of F to
local memory, computes the corresponding stress component and stores the value in global memory. Note
that the computation of the trace only occurs in case the thread is assigned to a diagonal component of a
quadrature point.

Figure 7.4: The visualization of the overload implementation. The left image shows the event schedule,
while the right image shows the instruction schedule. No streams are utilized, hence the events are executed
sequentially. In terms of instructions each thread loads a single component of F to local memory, computes
the corresponding stress component and stores the value in global memory. Note that the computation of
the trace only occurs in case the thread is assigned to a diagonal component of a quadrature point.

7.1.4 Decoupled implementation
Even within the constitutive update at a quadrature point, certain parts of the calculation are independent
of each other and can be decoupled. Consequently, the decoupled implementation focuses on adjusting
the order of tasks within the instruction schedule based on an examination of the tensor F. Equation 5.1
is repeated below for convenience.

S = λtr (ε) I+ 2µε (7.1)

Note that the equation can be simplified for the different components of S. For the diagonal components
Equation 7.2 can be extracted, while Equation 7.3 is valid for the off-diagonal components. Below the
equations the formulation of a single component is depicted to clarify the dependency

Sdiagonal = λtr (ε) + 2µεdiagonal (7.2)

Sii = λtr (ε00 + ε11 + ε22) + 2µεii

Soff−diagonal = 2µεoff−diagonal (7.3)

Sij = 2µεij = 2µ (∇0uij +∇0uji)

The components of the linear strain and displacement gradient correspond to the same components of F
that are required for the calculation. In Figure 7.5 the deformation gradient tensor for a single quadrature
point is represented as a three-by-three grid. The different colors illustrate the internal coupling that
can be distinguished between different components of the deformation gradient based on the above stated
simplified forms of Equation 7.1.
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Figure 7.5: A graphical representation of a deformation gradient tensor in terms of its components. The
different colors illustrate the internal coupling between the diagonal components to compute the respective
stress components. As a result, no diagonal stress component can be computed before all diagonal com-
ponents are fetched from global memory. A similar coupling is present between three pairs of off-diagonal
components.

Benefitting from the coupling in the deformation gradient tensor, while maintaining the coalesced memory
layout from Figure 7.3, the component implementation is visualized in Figure 7.6. Instead of fetching all
nine components of F, only the diagonal components are fetched initially. Subsequently, computation and
storage of the diagonal stress tensor components is performed. This process is then repeated sequentially
for the three off-diagonal pairs. Through this investigation, it is tested whether the order of tasks in the
processing event influences the performance of the implementation.

Figure 7.6: The event and instruction schedule for the component implementation. Instead of fetching all
nine components of F, only the diagonal components are fetched initially. Subsequently, computation and
storage of the diagonal stress tensor components is performed. This process is then repeated sequentially
for the three off-diagonal pairs.

7.1.5 Splitted implementation
The final implementation builds upon the previous implementation by further dissecting the processing
event, while also partitioning the event schedule. Separate kernels are created for the diagonal and off-
diagonal components, enabling the possibility to send a portion of the input data, subsequently followed
by the computation of that specific portion. A visual representation of the event and instruction schedule
is depicted in Figure 7.6 The sequence of tasks in the processing events remains identical to the previous
implementation. However, instead of sending all input data initially in a single memory transfer, the
input data is split up into four portions. Each portion contains the components of F that are represented
by the same color in Figure 7.5, i.e. first the diagonal components, followed by the three off-diagonal
pairs. Consequently, four kernel executions are present. The top instruction schedule represents the first
kernel computing the diagonal stress components, while the remaining three kernels utilize the bottom
instruction schedule.
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Figure 7.7: The event and instruction schedule for the splitted implementation. The event schedule is
partitioned based on the internal coupling of the deformation gradient tensor to first send and receive the
diagonal components, followed by the three off-diagonal pairs. Consequently, four kernel executions are
present. The top instruction schedule represents the first kernel computing the diagonal stress components,
while the remaining three kernels utilize the bottom instruction schedule.

The underlying objective of this implementation is to examine the impact of splitting computations across
multiple kernels on the overall performance of the implementation. Additionally, through the partitioning
of the interaction and processing events, streams can be utilized to perform the different events concurrently
as discussed in section 2.4.

7.2 GPU performance metrics
To evaluate the aforementioned implementations, three different performance metrics are considered which
will be utilized in the model-agnostic and model-specific optimizations in this study. Each of the perfor-
mance metrics is explained below:

• Total computation time
The computing time entails the CPU-GPU interaction, i.e. the memory transfers between CPU
and GPU, as well as the GPU processing of the data, containing the fetching, compute and storage
operations. The timing of results is performed via GPU profiling techniques that are explained in
Appendix A. Important to note is that memory (de)allocation is not included in the total com-
putation time. As de(allocation) occurs only once during the process, the effect on performance is
negligible, especially in case the number of time steps becomes considerably large.

• Total computation speed-up
Based on the total computation time, the total computation speed-up is computed with respect to
the original CPU implementation. For the CPU implementation the timing of results is obtained
through CPU profiling techniques described in Appendix B.

• Computing speed-up
The computing speed-up focuses solely on the speed-up achieved by the processing event with respect
to the CPU implementation. By disregarding the time spent on memory transfers, the performance
of the CPU and GPU computation can be compared.

The GPU and CPU implementations are examined across various problem sizes, ranging from 1 million
to 34 million computations of elementary contributions, where each computation belongs to a unique
quadrature point. The inclusion of different problem sizes is motivated by the significant impact of memory
transfers on GPU performance. For larger problem sizes, the performance can be heavily influenced by
the efficiency of memory transfers. The smallest problem size was chosen to ensure sufficient workload
for efficient GPU utilization, while the largest problem size was selected as a representative estimate of
the total number of computations of elementary contributions in a single time step for a large (FEM)
simulation. Each problem size was evaluated six times. The first run is used as a so-called “warm-up
run” for the GPU, followed by five iterations. The average of the five iterations was computed for each
performance metric to determine the performance at the evaluated problem size.
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7.3 Optimizing CPU-GPU interaction
To optimize the interaction between the CPU and GPU, the aforementioned implementations are evalu-
ated for each global memory type available on a GPU. First the performance of each global memory type
is assessed in subsection 7.3.1. Subsequently, overlapping events by utilizing streams is explored in subsec-
tion 7.3.2. From both examinations key findings are extracted to determine the optimal model-agnostic
GPU implementation.

7.3.1 Assessing memory transfer performance
The performance results for the unified global global memory type are depicted in Figure 7.8. Both the
CPU and GPU implementations show to scale according to a linear trend. Such scaling was expected
beforehand: i.e. when the problem size becomes twice as large, the computing time increases by a fac-
tor two as well. The findings demonstrate a significant improvement in performance compared to the
baseline implementation across all the tested problem sizes. However, for larger problem sizes, a slight
waviness can be observed for all implementations. This behavior can be attributed to the large number of
memory transfers that occurs as the GPU iterates over the problem size, as discussed in subsection 2.2.2.
Comparing the different implementations, both the coalesced and decoupled implementation exhibit the
best performance, with a total computation speed-up of approximately 2.85×. As unified global memory
resides on both the CPU and GPU, there is no distinction between the total computation speed-up and
computing speed-up as explicit memory transfers can not be identified.

Figure 7.8: Performance of the implementations utilizing unified global memory, demonstrating a signif-
icant improvement in performance compared to the baseline implementation across all the tested problem
sizes. For larger problem sizes, a slight waviness can be observed for all implementations. Comparing the
different implementations, both the coalesced and decoupled implementations exhibit the best performance,
with a total speed-up of approximately 2.85×.

The results for the implementations utilizing paged global memory are presented in Figure 7.9. At first
glance, there is no noticeable difference in performance among the various implementations. Furthermore,
the overall performance of the paged global memory is inferior to that of the unified global memory, as
the vertical difference between the CPU baseline implementation and GPU implementations is smaller.
Examining the computing speed-up, significant disparities among the implementations become evident.
The computing speed-up comparison highlights the substantial impact of memory coalescence, increasing
the computing speed-up from 75× to 102×. This observation emphasizes the importance of organizing
memory transactions in a coalesced manner such that the highest performance is achieved. Another
important observation to highlight is the fact that the lowest speed-up is demonstrated by the overload
implementation which is an indication that code branching is detrimental for performance. Analyzing the
figures, the total computation speed-up for paged global memory is 1.55×, while the computing speed-up
is approximately 102×.
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Figure 7.9: Performance of the implementations utilizing paged global memory, the left figure shows the
total computing time, while the right figure depicts the computing speed-up. At first glance, there is no
noticeable difference in performance among the various implementations. Examining the computing speed-
up, significant disparities among the implementations become evident. The computing speed-up comparison
highlights the substantial impact of memory coalescence, increasing the computing speed-up from approx-
imately 75× to 102×. Comparing the figures, the total computation speed-up for paged global memory is
1.55×, while the computing speed-up is approximately 102×.

Examining the results for the pinned global memory implementation in Figure 7.10 a similar trend to
the paged global memory implementation is observed. However, the vertical separation between the CPU
and GPU implementations is larger for pinned global memory, resulting in a larger speed-up equal to
3.43×. Moving on to the computing speed-up on the right, a strong similarity to the results for the paged
global memory becomes evident as the computing speed-up is equal to 102× as well, suggesting that the
performance of the computation itself remains unaffected by the choice of memory type.

Figure 7.10: Performance of the implementations utilizing pinned global memory, the left figure shows the
total computation time, while the right figure depicts the computing speed-up. Both the total computation
time and computing speed up show a strong similarity to the results for the paged global memory, suggesting
that the performance of the computation itself remains unaffected by the choice of memory type. The total
speed-up for pinned global memory is 3.43×, while the computing speed-up is approximately 102×.

Turning to the mapped memory implementation presented in Figure 7.11, it becomes apparent that the
strided implementation performs worse than the CPU implementation. The lesser performance of the
strided implementation can be attributed to the zero-copy nature of the mapped global memory as ex-
plained in subsection 2.2.2. Furthermore, the concurrent and splitted implementations show similar per-
formance in the mapped global memory scenario, suggesting that the order of tasks in the processing
event has less impact on performance compared to the influence of memory access patterns and code
branching when utilizing mapped memory. The total computation speed-up for mapped global memory
is approximately 3.66×. Similar as for the unified global memory, no distinction is present between the
total computation speed-up and computing speed-up due to the absence of explicit memory transfers.
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Figure 7.11: Performance of the implementations utilizing mapped global memory. The strided imple-
mentation shows lesser performance compared to the CPU implementation. The concurrent and splitted
implementations show similar performance in the mapped global memory scenario, suggesting that the or-
der of tasks in the processing event has less impact on performance compared to the influence of memory
access patterns and code branching when utilizing mapped global memory. The total computation speed-up
for mapped global memory is approximately 3.66×

Table 7.1 summarizes the best performing implementation for each global memory type. The coalesced
implementation exhibits the largest total computation and computing speed-up for the different global
memory types. However, it must be noted that the difference between the coalesced, concurrent and
splitted implementations is only marginal, both in terms of total computation speed-up and computing
speed-up. Overall, these findings highlight that the pinned and mapped global memory types show the
best performance for the different implementations utilizing a single stream.

Memory
type

Implementation
type

Computing
speed-up

Total computation
speed-up

Unified Coalesced 2.90× 2.90×
Paged Coalesced 102× 1.53×
Pinned Coalesced 102× 3.43×
Mapped Coalesced 3.66× 3.66×

Table 7.1: A summary of the speed-up results for different types of global memory, showing the best
performing implementation, total computation speed-up, including the CPU-GPU interaction, and com-
puting speed-up, excluding the CPU-GPU interaction. Both speed-up factors are with respect to the CPU
implementation. The coalesced implementation exhibits the largest speed-up for each global memory type.
Overall, these findings highlight that the pinned and mapped global memory types show the best performance
for the different implementations utilizing a single stream.

As the overload, concurrent and splitted implementation all utilize the coalesced memory layout, the
difference in the event and instruction schedule drive the differences observed in the performance between
the different implementations. Based on this observation, several conclusions can be drawn:

• Creating a larger grid to split the computation of a single quadrature point over multiple threads
yields a decrease in performance, as tested with the overload implementation.

• Issuing all memory fetching tasks first results in similar performance as spreading the memory
fetching tasks equally over the processing event. This is concluded based on the similar performance
of the coalesced implementation and the decoupled implementation.

• Splitting kernels in a single stream results in similar performance as executing a single kernel, as
indicated by the results of the splitted implementation.

43



7.3 Optimizing CPU-GPU interaction

7.3.2 Optimizing the event scheduling order
In the pursuit of further increasing the performance of the GPU implementations, streams are incorporated
to facilitate concurrency in the event schedule as highlighted in Figure 7.12. The exploration of streams
focuses specifically for the splitted implementation. As mentioned before, the splitted implementation
facilitates a relative ease to incorporate streams in the implementation. The event schedule on the right
indicates concurrent execution of the different events. As a result, the processing event commences at an
earlier stage, which leads in a gain in performance. The instruction schedule remains the same as for the
splitted implementation. The top instruction schedule represents the first kernel computing the diagonal
stress components, while the remaining three kernels utilize the bottom instruction schedule.

Figure 7.12: The stream implementation event schedule and instruction schedule. The event schedule on
the right indicates concurrent execution of the different events, facilitating an earlier start of the processing
event. The instruction schedule remains the same as for the splitted implementation. The top instruction
schedule represents the first kernel computing the diagonal stress components, while the remaining three
kernels utilize the bottom instruction schedule.

Unified and paged global memory can not be explored as both global memory types are incompatible with
concurrent operations and stream utilization [13]. The results of the evaluation are depicted in Figure 7.13,
where a slight distinction in performance is revealed between pinned and mapped global memory. The
explicit memory copies present for pinned memory ensure that the data required for kernel execution is
readily available. In contrast, mapped memory involves continuous swapping of data between the GPU and
CPU throughout the kernel computation. This dynamic data swapping process increases the computing
time and results in a reduced ability to hide latency compared to the pinned memory implementation. A
total computation speed-up of 4.79× and 3.68× is achieved by the pinned and mapped global memory,
respectively. The computing speed-up for pinned global memory is equal to approximately 98×.

Figure 7.13: The performance of the splitted implementation utilizing streams for pinned and mapped
global memory reveals a slight distinction in performance between the two. A total computation speed-up
of 4.79× and 3.68× is achieved by the pinned and mapped global memory, respectively. The computing
speed-up for pinned global memory is equal to approximately 98×.
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7.4 Reducing idle GPU time
Building forth on the concurrency facilitated by streams, this section defines a novel concept to reduce idle
GPU time. The reasoning behind the concept to reduce idle GPU time is presented in subsection 7.4.1
and the performance of the implementation is assessed in subsection 7.4.2.

7.4.1 Defining the concept
The exploration of streams established that overlapping interaction and processing events leads to optimal
performance. However, it is possible to further increase the level of overlap between events, thereby
reducing the time which the GPU is idle. To illustrate this concept, let us reconsider the example described
in subsection 2.3.3, with Figure 7.14 provided below.

Figure 7.14: The tasks present in the GPU processing event. First the the thread fetches the input data
from the global memory. From the input data the thread computes its result which is subsequently stored
in the global memory of the GPU. The tasks are executed in sequential order.

In the current approach, the total number of threads, i.e. the grid size, is determined based on the number
of quadrature points that needs to be evaluated. Yet, as explained in subsection 2.3.3 there is a limitation
on the number of warps that can be instructed per clock cycle, which is determined by the number of
Streaming Multiprocessors (SMs) available on the GPU. In each clock cycle an instruction is issued to a
number of warps equal to the number of SMs. Figure 7.14 indicates that the first set of warps completes
the fetching task, i.e. retrieving values from local memory, in approximately cycle 100. Consequently, the
threads that received their fetching instruction in the first cycle can already commence their computation
after 100 cycles.

In the current approach, all warps are first issued the instruction to fetch their values from memory be-
fore any warp is instructed to perform the computation task. As a result, the warps that received their
instructions in the first cycle are stalled until all other warps complete their fetching task. This situation
can be described as an excess of warps leading to idle GPU time. To fully utilize the capabilities of the
GPU and minimize idle time, it is necessary to determine the grid size required to ensure that each SM has
a sufficient number of warps to overcome the latency cycles of the initially instructed warps. Therefore,
instead of creating a grid consisting of a number of threads equal to the total number of quadrature points
that needs to be evaluated, a grid can be sized such that it contains enough threads to keep all SM’s busy
until the first warps complete their fetching task. After that, the SM can start issuing computational
instructions to the warps that have finished their fetching task.

If the problem size is bigger than the number of threads present in the grid, the whole process can be
repeated in a loop to process the entire problem size as illustrated in Figure 7.15. As a smaller grid is
utilized in this novel concept, the amount of memory that initially needs to be transferred to the GPU
is significantly reduced as highlighted in Figure 7.15. As a result, the computation commences earlier
and results can be transferred to the CPU at an earlier stage. Reducing the GPU’s idle time reduces the
latency between the start of computation and the receipt of results, contributing to improved performance
and efficiency of the GPU implementation. As a result, more overlap is created between the CPU-GPU
interaction, i.e. the memory transfers, and the computations performed on the GPU.
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Figure 7.15: By considering the amount of threads the GPU can instruct per clock cycle, the grid size is
reduced. Subsquently, the amount of memory that initially needs to be transferred to the GPU is significantly
reduced. As a result, the computation commences earlier and results can be transferred to the CPU at an
earlier stage. Reducing the GPU’s idle time reduces the latency between the start of computation and the
receipt of results, contributing to improved performance and efficiency of the GPU implementation.

7.4.2 Sensitivity analysis
In order to assess the impact of the grid size on the performance of the GPU implementation, a small
sensitivity analysis is conducted. By varying the grid size, the impact on the performance of the imple-
mentation can be observed. This analysis allows for the identification of the optimal grid size to reduce
idle GPU time and plays a role in assessing the memory type that should be used.

The results in Figure 7.16 show that the pinned memory outperforms the mapped global memory and
stream implementation in reducing the idle GPU time as the total computation speed-up reaches 5.80×,
leveling of to 5.43× for larger problem sizes. It is observed that for smaller problem sizes, the 400K grid
size results in better performance compared to the 800K grid size. This observation makes sense as the
800K grid requires two loops to process the entire problem size in which the second loop contains only a
small amount of quadrature points that still needs to be evaluated. Although the 400K grid requires more
loop iterations, the workload per loop is more balanced, resulting in a better overall performance. The
gain in performance associated with the concept to reduce idle GPU time demonstrates the effectiveness
in maximizing GPU utilization and minimizing idle GPU time. The same reasoning as for the stream
implementation in subsection 7.3.2 can be followed to explain the difference in results between the pinned
and mapped global memory. On top of that, memory transfers, though smaller in size, occur more
frequently, introducing more overhead cost. As a result, inconsistencies appear in the results for the
largest grid size that was evaluated for mapped global memory.

Figure 7.16: The results of the sensitivity analysis on the grid size in order to reduce idle GPU time.
The pinned memory outperforms the mapped global memory and stream implementation in reducing the
idle GPU time as the total computation speed-up reaches 5.80×, leveling of to 5.43×. Smaller memory
transfers that occur more frequently introduce more overhead cost, leading to inconsistencies for the largest
grid size that was evaluated for mapped global memory.

To implement the concept to reduce idle GPU time, a sensitivity analysis is performed for each material
model in the model-specific optimization in chapter 8. In such manner, the varying memory transfer
requirements and computational complexity can be taken into account, such the best performance for
each individual material model can be achieved.
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7.5 Conclusion
The evaluation of the different GPU implementations reveals several key findings. Firstly, all GPU im-
plementations, with the exception of the strided implementation using mapped global memory, exhibit
superior performance compared to the CPU implementation even after considering the time required by
the CPU-GPU interaction. Moreover, a consistent linear relationship between the total computation time
and problem size is observed across all GPU implementations. A notable difference in performance is ob-
served between the implementations utilizing pinned or mapped memory, and those employing unified or
paged memory. The implementations using pinned or mapped memory demonstrate a significantly lower
total computation time compared to the unified and paged memory implementations. This difference can
be attributed to the additional overhead associated with paged and unified global memory, as explained in
chapter 2. The findings align with the expectations, as paged memory and unified memory incur additional
memory transfers and exhibit limitations in terms of memory access efficiency.

Moving on to the optimization of the event scheduling order, the utilization of streams further increase
the performance of pinned and mapped memory. The difference in performance for both memory types
can be attributed to the inherent characteristics and handling of memory transfers within each approach.
Yet, the resulting difference in performance is only small. Moreover, the computing architecture of the
implementation is tailored to a specific grid size to minimize idle GPU time. Instead of executing a single
kernel that covers the entire problem size, the implementation loops over the problem size. As a result,
more overlap is created between the CPU-GPU interaction, i.e. the memory transfers, and the computa-
tions performed on the GPU.

In terms of verification, the results of the GPU-accelerated implementations have been compared with the
results of the CPU implementation and were found to be equivalent. This shows that the GPU-accelerated
implementations are capable of computing accurate results with enhanced performance compared to the
CPU implementation. The results utilizing the pinned memory, which is determined to be the best
performing type of global memory, across various implementations are summarized below in Table 7.2.

Implementation
type

Computing
speed-up

Total computation
speed-up

Baseline GPU 74.85× 3.39×
Coalesced 101.63× 3.43×

Splitted including streams 97.66× 4.79×
Splitted reducing idle GPU time 100.48× 5.45×

Table 7.2: The speed-up results for pinned global memory across different implementations. The optimal
GPU implementation utilizes pinned memory with a coalesced memory layout. Furthermore, streams and
the concept to reduce idle GPU time are utilized to further increase performance.

In conclusion, the optimal GPU implementation, which is agnostic to the material model, utilizes pinned
memory with a coalesced memory layout to maximize memory access efficiency and minimize data transfer
overhead. The use of pinned memory ensures faster data transfers compared to other memory types,
contributing to improved overall performance. The coalesced memory layout optimizes memory access
patterns by aligning the memory layout with the underlying hardware architecture. Finally, maximal
performance is achieved by tailoring the grid size to the computing architecture such that idle GPU time
is minimized.
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8
Model-specific acceleration

In the optimization of chapter 7, the GPU implementations have remained agnostic to the constitutive
material model utilized. However, it is recognized that each constitutive model possesses distinct charac-
teristics and potential benefits that can be leveraged to further optimize the kernels and memory transfers
associated with each particular model. This chapter follows the model agnostic optimization by incorpo-
rating additional improvements for each constitutive material model specifically. Sections section 8.1 up
to section 8.3 delve into the specifics of each material model and present the optimizations implemented to
enhance the performance of the GPU implementation for the two parallelization strategies that were pre-
sented in chapter 6. In conclusion, section section 8.4 presents a comprehensive analysis and comparison
of the performance achieved for each material model, highlighting the most effective GPU implementation
for each parallelization strategy for each material model.

8.1 The linear elastic model
In this section the results of the optimization process conducted specifically for the linear elastic material
model are presented. Both parallelization strategies are presented starting with the strain to stress strategy
in subsection 8.1.1, followed by the displacement to internal force strategy in subsection 8.1.2. For each of
these parallelization strategies the optimization starts with a sensitivity analysis to identify the optimal
grid size at which the idle GPU time is reduced. Subsequently, the different implementations that were
explored are explained and the results are presented.

8.1.1 Strain to stress parallelization strategy
To initiate the optimization process, the optimal grid size for the linear elastic material model in the
strain to stress parallelization strategy is determined. The results of the sensitivity analysis are depicted
in Figure 8.1. Based on the obtained results, the optimal grid size consists of 400K threads. This choice
strikes a balance between the improvement in performance and the additional computational resources
required as a larger number of threads only leads to a marginal increase in performance. Choosing a larger
grid size results in larger memory transfers, as the number of threads in the grid increases, which increases
the idle GPU time, while a smaller grid size would result in a substantial loss of performance for larger
problem sizes. Subsequently, this optimal value was employed for the subsequent implementations.

Figure 8.1: The results of the grid size analysis across different problem sizes for the strain to stress
parallelization strategy. Based on the obtained results, the optimal grid size consists of 400K threads.
This choice strikes a balance between the improvement in performance and the additional computational
resources required as a larger number of threads only leads to a marginal increase in performance.
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Continuing, four distinct implementations were tested for the strain to stress parallelization strategy. The
GPU implementation exhibiting superior performance in the model-agnostic optimization, as presented in
chapter 7, was employed as the foundation for these four implementations. Each of the different implemen-
tations is briefly described below. Similar as for the model-agnostic optimization, each implementation
builds forth on the previous one. In order to assess the increase in performance that is achieved solely by
the GPU, the GPU baseline implementation from chapter 7 is displayed in the results as well.

It is important to clarify the input and output data exchanged between the CPU and GPU in the various
implementations. In all cases, unless explicitly stated otherwise, the input to the GPU consists of the
deformation gradient tensor, F. Conversely, the result returned from the GPU to the CPU corresponds
to the first Piola-Kirchhoff stress tensor, P.

Diagonal splitted implementation
Considering the internal coupling of F, as indicated in Figure 7.5, an alternative approach can be employed
to improve computational efficiency. Instead of calculating all three diagonal components sequentially and
subsequently storing the results in global memory, each component of P can be computed independently
in separate streams on the GPU. This approach allows for concurrent execution of the computations
and independent storage of each component of P. The event and instruction schedule are illustrated in
Figure 8.2. The event schedule contains a larger initial memory transfer representing the three diagonal
components of F. Subsequently the top instruction schedule is executed three times to compute each
diagonal component of P, after which each computed component of P is transferred back to the CPU.
Afterwards, the off-diagonal components of F are transferred to the GPU, the corresponding components of
P are computed in pairs utilizing the bottom instruction schedule and the components of P are transferred
back to the CPU. The process is repeated in a looping fashion to cover the full problem size.

Figure 8.2: The event and instruction schedule for the diagonal splitted implementation. The event
schedule contains a larger memory transfer representing the three diagonal components of F. Subsequently
the top instruction schedule is executed three times to compute each diagonal component of P and transfer
the component back to the CPU. Afterwards, the off-diagonal components of F are transferred to the GPU,
the corresponding components of P are computed in pairs utilizing the bottom instruction schedule and the
components of P are transferred back to the CPU.

The present implementation investigates the potential performance improvement resulting from partition-
ing the calculation of the diagonal stress components into different streams. It is crucial to note that,
to guarantee accurate and reliable results, the computation can only commence once all three diagonal
components of F have been stored in the global memory of the GPU. Appropriate CUDA functions have
been utilized to assure this order in the event schedule.

Stress symmetry implementation
The second implementation capitalizes on the symmetry of the first Piola-Kirchhoff stress tensor P for the
linear elastic model as previously discussed in chapter 5, which allows to limit the memory transfer from
nine tensor components to six. It is anticipated that this implementation will yield an overall performance
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improvement compared to the previous implementation. The exploitation of symmetry not only reduces
the computational workload but also minimizes the size of the memory transfer, thus enhancing the
computational efficiency of the GPU implementation. The implementation is visualized in Figure 8.3.
Compared to the previous implementation the number of interaction events returning results has been
reduced. This reduction is visible in the the bottom instruction schedule as well since the number of tasks
is reduced.

Figure 8.3: The event and instruction schedule for the stress symmetry implementation. Compared to
the previous implementation the number of interaction events returning results has been reduced. This
reduction is visible in the the bottom instruction schedule as well since the number of tasks is reduced.

Double symmetry implementations
In this implementation, a symmetry benefit is explored by examining the effect of utilizing ε as the input
data instead of F. Prior to transferring data to the GPU, ε is precomputed from F on the CPU. Due
to the symmetric nature of ε, only six components need to be transmitted to the GPU, in contrast to
the nine components required when using F. The revised event and instruction schedule are depicted in
Figure 8.4. Due to the decrease in memory transfers towards the GPU, the event schedule becomes much
more compact as the second loop can start earlier in time. Additionally, the number of fetching tasks in
the bottom instruction schedule is decreased.

Figure 8.4: The event and instruction schedule for the double symmetry implementation. Due to the
decrease in memory transfers towards the GPU, the event schedule becomes much more compact as the
second loop can start earlier in time. Additionally, the number of fetching tasks in the bottom instruction
schedule is decreased.

The aim of this implementation is to investigate whether the prior computation of the symmetric strain
tensor ε leads to performance improvements. It is important to consider that if the computation time
required for ε exceeds the time needed for memory transfer of the additional three components of F, the
implementation may fail to deliver performance gains.

50



8.1 The linear elastic model

Implementation results
The outcomes of the implementations are depicted in Figure 8.5. From the 2.90× total computation speed-
up achieved by the baseline implementation, an increase to a speed-up of 5.76× is realized by utilizing the
characteristics of the linear elastic material model. Both the diagonal splitted and stress symmetry imple-
mentations show a significant increase in total computation speed-up reaching 5.55times and 5.76times,
respectively. The computing speed-up is constantly 74.8× for the diagonal splitted implementation and
86.3× for the stress symmetry implementation. A striking observation is the presence of distinct peaks
in the double symmetry implementation, which are attributed to the computation of ε on the CPU. The
amount of memory that is required on the CPU is determined based on the problem size. For certain
problem sizes a large stride exists resulting in a significant decrease in performance at those specific prob-
lem sizes. Even though the computing speed-up is significantly larger compared to other implementations,
the addition of the CPU computing time of the tensor ε results in a lesser overall performance for the
double symmetry implementation with a total computation speed-up of 4.45× on average and a computing
speed-up of approximately 171×.

Figure 8.5: Performance of the linear elastic model implementations. From the 2.90× total computation
speed-up achieved by the baseline implementation, an increase to a speed-up of 5.76× is realized. Both
the diagonal splitted and stress symmetry implementations exhibit a considerable increase in both total
computation speed-up and computing speed-up, with the total computation speed-up equal to 5.55× and
5.76× respectively. The computing speed-up is constantly 74.8× for the diagonal splitted implementation
and 86.3× for the stress symmetry implementation. The addition of the CPU computing time of the tensor
ε results in a lesser overall performance for the double symmetry implementation with a total computation
speed-up of 4.45× on average and a computing speed-up of approximately 171×.

Continuing, the visible difference between the diagonal splitted and stress symmetry implementation when
examining the computing speed-up almost completely vanish when examining the total computation time.
This observation can be ascribed to the linear elastic material model’s small computation demand relative
to the memory demand. Given that each memory transfer necessitates more time than the execution of a
computational kernel, the GPU often awaits the availability of new data, leading to limited performance
gains. This is highlighted in the event schedules presented for the different implementations by the large
amount of white space present between the different events. In the ideal implementation, no white space,
i.e. idle time, would be present as explained in section 2.4.

8.1.2 Displacement to internal force parallelization strategy
For the displacement to internal force strategy it is important to note that the equations are evaluated
for a 2D case. Since there exist nodal dependencies between different quadrature points, a simple finite
element solver was developed. To limit the time spent on the development of the finite element solver, as
that is not the scope of the current study, a 2D case was implemented for each material model utilizing
quadratic triangular elements following the shape function formulation described in chapter 4.

The results for the grid size analysis are shown below in Figure 8.6. Examining the results, the optimal
grid size is determined to be equal to 700K threads. Similar to the strain to stress strategy, this grid size
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provides a considerable increase in performance compared to smaller grid sizes for all problem sizes, while
not increasing the grid size too far. The optimal grid size is as almost twice as large as for the strain to
stress strategy, which can be attributed to the significantly larger number of computations present in this
parallelization strategy.

Figure 8.6: The results of the grid size analysis for the linear elastic material model in the displacement
to internal force strategy. Based on the results, the optimal grid size is determined to be equal to 700K
threads. Larger grid sizes do not yield a further increase in performance compared to the optimal value.

Three different implementations are examined for this parallelization strategy. Note that the implemen-
tation using the concept to reduce idle time is evaluated utilizing the optimal value that was previously
determined. However, a potential benefit of the displacement to internal force strategy is the option to
drastically decrease the memory demand, by transferring only the nodal displacements from CPU to GPU,
instead of a three-by-three tensor for each quadrature point of each element. As there exists a coupling
between different nodes, all nodes have to be send at once in order to assure all required nodal values are
present on the GPU. If only a single memory transfer is utilized, the benefit from the concept to reduce idle
GPU time vanishes since the loop would only contain the computation kernel and no memory transfers.
Consequently, implementations without the concept to reduce idle GPU time are evaluated as well.

An important note to make is the fact that several memory transfers are only made once during the entire
simulation in the displacement to internal force parallelization strategy. These memory transfers are not
taken into account for the total computation time. The reason for this is that the number of time steps
is envisioned large enough that the influence of the initial memory transfers becomes negligible. These
memory transfers include the shape function derivative values, B, the conversion jacobian, Jξ, of each
quadrature point and the weights of the quadrature points wq. Similar to the strain to stress strategy,
an implementation utilizing unified global memory with a strided memory layout is used as GPU baseline
implementation.

Reducing idle GPU time implementation
The first implementation that is examined contains the concept to reduce idle GPU time. In order
to apply the concept, the nodal displacements are structured in an array in such a way that for each
quadrature point of each element the nodal displacements are present. Consequently, the input data
toward the GPU consists of twelve nodal displacement values per quadrature point. The output data
retrieved from the GPU are the internal force components at each quadrature point for each element.
The event schedule and instruction schedule for this implementation are shown below in Figure 8.7. The
event schedule remains relatively simple with a single memory transfer in each direction for each loop.
Interpreting the instruction schedule, it is clear that the number of computations is significantly increased
for the displacement to internal force implementation. First the nodal displacement and shape function
derivative values are fetched from global memory. Subsequently, F and the corresponding P are computed.
Finally, after fetching Jξ and wq, P is contracted with the shape function gradient in order to obtain the
internal force, f , for the nodal degree of freedom at the quadrature point under consideration. The steps
starting from fetching Jξ are repeated for each nodal degree of freedom of the quadrature point.
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Figure 8.7: The event and instruction schedule for the reducing idle GPU time implementation. The
event schedule remains relatively simple with a single memory transfer in each direction for each loop.
Interpreting the instruction schedule, it is clear that the number of computations is significantly increased
for the displacement to internal force implementation. First the nodal displacement and shape function
derivative values are fetched from global memory. Subsequently, F and the corresponding P are computed.
Finally, after fetching Jξ and wq, P is contracted with the shape functions gradient in order to obtain the
internal force, f , for the nodal degree of freedom at the quadrature point under consideration. The steps
starting with fetching Jξ are repeated for each nodal degree of freedom of the quadrature point.

The goal of this implementation is to assess the performance of the concept to reduce idle GPU time in
the context of a parallelization strategy that in itself would require less memory to be transferred between
the CPU and GPU if the concept would not be utilized.

Reduced memory implementation
The second implementation does no longer utilize the concept to reduce idle GPU time. Instead, the
amount of memory that is transferred between the CPU and GPU is significantly reduced. A single
memory transfer is made initially to transfer the nodal displacements toward the GPU. In order to make
sure that for each quadrature point the correct nodal displacement is utilized, the element connectivity
matrix is transferred toward the GPU as well, such that each thread can access the nodal displacements for
its corresponding quadrature point via the connectivity array. Note that, since the element connectivity
is send only once before the first time step, it is regarded as an initial memory transfer and not taken into
account for the total computation time. The event and instruction schedule are illustrated in Figure 8.8
for this implementation. The amount of memory transferred in the event schedule is significantly reduced,
while the instruction schedule itself does not change. Through the significant reduction in memory transfers
it is evaluated whether such a reduction in memory is more beneficial for the total compared to the
implementation that reduces the idle GPU time.

Figure 8.8: The event and instruction schedule for the reduced memory implementation. A single memory
transfer is made to transfer the nodal displacements toward the GPU. Subsequently, the instruction schedule
is only executed once for a larger grid compared to the previous implementation.
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Concurrent implementation
The final implementation applies streams to concurrently execute different tasks to overlap memory trans-
fers with computations, with the goal to reduce the total computation time. The event and instruction
schedule are depicted in Figure 8.9. The transfer of the nodal displacements is split into two parts. First,
the nodal displacements in x-direction are transferred such that the deformation gradient components
depending on these displacements can already be computed. Subsequently the procedure is repeated for
the nodal displacements in y-direction. Similarly, the computation of the internal forces is split into two
parts to overlap the computation of the internal forces with transferring the memory toward the CPU. The
instruction schedule contains two parts, one for computing the components of F and one for computing
the components of the internal forces. Note that in the bottom schedule only six instead of twelve com-
ponents are computed compared to the previous implementation. Important to highlight is the fact that
the computation of internal forces in x-direction can only start once the components of F that depend on
the nodal displacements in y-direction have been computed. Consequently, there is a gap present in the
top stream in the event schedule.

Figure 8.9: The event and instruction schedule for the concurrent reduced memory implementation. The
transfer of the nodal displacements is split into two parts. First, the nodal displacements in x-direction are
transferred such that the deformation gradient components depending on these displacements can already
be computed. Subsequently the procedure is repeated for the nodal displacements in y-direction. Similarly,
the computation of the internal forces is split into two parts to overlap the computation of the internal
forces with transferring the memory toward the CPU. The instruction schedule contains two parts, one for
computing the components of F and one for computing the components of the internal forces.

Implementation results
Examining the results for the displacement to internal force strategy depicted in Figure 8.10, several
observations can be made. First, the gain in performance compared to the strain to stress strategy
is increased significantly. The total computation speed-up is approximately 32.5×, indicating that the
significantly larger amount of computations is beneficial for the GPU implementation. Furthermore, the
concept to reduce idle GPU time is not as effective as for the strain to stress strategy, with a total
computation speed-up of only 4.06× due to its larger memory demand compared to the other GPU
implementations. Comparing the concurrent and reduced memory implementations, it becomes evident
that overlapping events does not yield a gain in performance for the displacement to internal force strategy.
The separate computations of the deformation gradient components results in double the amount of
global memory transfers, resulting in a significantly slower processing event. As the computation of the
stress components only commences once all deformation gradient components have been computed, the
concurrent implementation is slower than the reduced memory implementation with a total computation
speed-up of 24.3× compared to 32.5× for the reduced memory implementation. The computing speed-up
levels off at approximately 89.4× for the reduced memory implementation and 31.5× for the concurrent
implementation. In between lies the reducing idle GPU time implementation, showing a computing speed-
up of 72.5×.
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Figure 8.10: Performance of the linear elastic model implementations for the displacement to internal
force strategy. The total computation speed-up is approximately 32.5× for the reduced memory implemen-
tation, while the concurrent implementation exhibits a total computation speed-up of 24.3×. Furthermore,
the concept to reduce idle GPU time is not as effective as for the strain to stress strategy, with a total
computation speed-up of 4.06×. The computing speed-up levels off at approximately 89.4× for the reduced
memory implementation and 31.5× for the concurrent implementation. In between lies the reducing idle
GPU time implementation, showing a computing speed-up of 72.5×.

8.2 The Neo-Hookean model
In continuation of the previous section on the linear elastic model, this section focuses on the optimization
specifically for the Neo-Hookean material model. The results of the strain to stress parallelization strategy
are presented in subsection 8.2.1. The different implementations that were tested are explained by dis-
cussing the event and instruction schedules. Afterwards, the displacement to internal force parallelization
strategy is discussed only in terms of results in subsection 8.2.2 as the tested implementations are the
same as for the linear elastic material model.

8.2.1 Strain to stress parallelization strategy
For the Neo-Hookean material model, a distinct approach is adopted compared to the linear elastic model.
Several important distinctions arise due to the nonlinear nature of the material model. Firstly, the com-
putational workload increases significantly, necessitating a higher number of computations compared to
the linear elastic model. Moreover, the stress tensor P is no longer symmetric, which leads to an increase
in memory transfers. Given the different computational and memory transaction requirements compared
to the linear elastic model, a new sensitivity analysis is performed to ascertain the optimal grid size. The
outcome of this analysis is depicted in Figure 8.11.

Figure 8.11: The Neo-Hookean model performance for different grid sizes across different problem sizes.
The gain in performance for larger grid sizes is considerably larger with respect to the smallest grid size.
It is determined that a grid size consisting of 800K threads yields the most optimal performance for the
Neo-Hookean constitutive model.
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Compared to the linear elastic material model the gain in performance for smaller grid sizes is considerably
larger with respect to the smallest grid size. It is determined that a grid size consisting of 800K threads
yields the most optimal performance for the Neo-Hookean constitutive model. Continuing, the three
different implementations that were tested are briefly described. For each implementation the input to
the GPU is the deformation gradient tensor, F. The computed result returned to the CPU is the first
Piola-Kirchhoff stress tensor, P. For the Neo-Hookean material model the computation of P involves the
determinant of F, rendering it impossible to overlap memory transfers from and toward the GPU as all
components of F are coupled with all components of P. As a result, all memory transfers toward the GPU
must be completed before any component of P can be computed. Similar as for the linear elastic material
model a GPU baseline implementation utilizing unified global memory and a strided memory layout is
used.

Reducing idle GPU time implementation
The goal of the first implementation is to reduce idle GPU time. The event and instruction schedule are
depicted in Figure 8.12. The implementation consists of only a single memory transfer in each direction
for each loop. The instruction schedule highlights the increased complexity compared to the computation
of the linear elastic material model. After fetching the components of F, a significantly larger number of
computations has te be evaluated before the stress can be computed. Based on F the right Cauchy-Green
strain tensor, C, is computed and subsequently its inverse. Next, the second Piola-Kirchhoff stress, S
is computed. Since S is a symmetric tensor, a potential avenue to explore is to transfer S directly to
the CPU instead of converting it to P and transfer P toward the CPU. In the first case, only six tensor
components need to be transferred to the CPU, compared to nine tensor components that need to be
send in case P is transferred to the CPU. However, results for the linear elastic model have shown that a
larger number of memory transfers takes a smaller amount of time compared to letting the CPU perform
additional calculations. Consequently, this avenue is not explored further. Therefore, S must be converted
to P by multiplication with F before the results are stored in global memory and subsequently returned
towards the CPU.

Figure 8.12: The event and instruction schedule for the reducing idle GPU time implementation. The
implementation consists of only a single memory transfer in each direction for each loop. The instruction
schedule highlights the increased complexity compared to the computation of the linear elastic material
model. After fetching the components of F, a significantly larger number of computations has to be evaluated
before the stress can be computed. Based on F the right Cauchy-Green strain tensor, C, is computed and
subsequently its inverse. Next, the second Piola-Kirchhoff stress, S, is computed and converted to P by
multiplication with F. Subsequently, the results are stored in global memory and returned towards the CPU.

Simplified computation implementation
Turning to the second implementation, as the input consists of F, the calculation of C is employed on
the GPU. However, multiple redundant computations are conducted during the processing event as the
symmetry of C and S is not utilized. The revised and reduced number of tasks due to these simplifications
are illustrated in Figure 8.13. Omitting redundant computations and minimizing the number of global
memory transfers is expected to enhance performance of the processing event.
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Figure 8.13: The event and instruction schedule for the simplified implementation. Note that the event
schedule remains the same as in Figure 8.12, while the number of tasks is slightly decreased in the instruc-
tion schedule. Specifically, the computations for C and S have been reduced.

Splitted implementation
The final implementations explores a similar concept to the linear elastic model by trying to split up the
computation in as many concurrent tasks as possible. The dissection of the processing event significantly
alters both the event and instruction schedule, increasing their complexity significantly. Therefore the
event and instruction schedule have been omitted for this implementation. Splitting up the interaction
and processing events significantly increases the number of events that can occur simultaneously. However,
the number of events occurring concurrently remains limited, which is highlighted by the fact that the
components of P are only computed after the last components of F has been sent toward the GPU. The
goal of this implementation is to explore whether splitting up the computing process across multiple events
and instruction schedules will result in an increase in performance.

Implementation results
Upon examining the results presented in Figure 8.14, several observations can be stated. First, the gain
in performance achieved by the baseline implementation is significantly larger compared to the gain that
was achieved for the linear elastic material model. The GPU baseline implementation exhibits a total
computation speed-up of approximately 3.11×, which increases slightly further to 3.82× for the splitted
implementation. The implementation reducing the idle GPU time and the simplified computation exhibit
similar performance with a total computation speed-up of approximately 7.82× and 7.94× respectively.
Turning to the computing speed-up, it can be seen that the splitted implementation shows a considerably
lower computing speed-up due to the large amount of different instruction schedules, necessitating a
significantly larger amount of global memory transfers. As a result, the computing speed-up converges to a
value of 11.4×, while the simplified computation and reducing idle GPU time implementations demonstrate
a computing speed-up of 66.5×. Furthermore, it can be observed that all three implementations show a
larger speed-up for small problem sizes. This can be related to the number of loops that increases with
the problem size and thus increases the number of instruction schedules executed.
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Figure 8.14: Performance of the NeoHookean material model specific implementations. The GPU base-
line implementation exhibits a total computation speed-up of approximately 3.11×, which increases slightly
further to 3.82× for the splitted implementation. The implementation reducing the idle GPU time and
the simplified computation exhibit similar performance with a total computation speed-up of approximately
7.82× and 7.94× respectively. Turning to the computing speed-up, it can be seen that the splitted implemen-
tation shows a considerably lower computing speed-up, converging to a value of 11.4×, while the simplified
computation and reducing idle GPU time implementations demonstrate a computing speed-up of 66.5×.

8.2.2 Displacement to Internal force implementation
For the displacement to internal force strategy, the same GPU implementations as for the linear elastic
material model are examined. The reason to keep the evaluated implementations the same is the fact
that the additional steps that are present for the displacement to internal force strategy are agnostic with
respect to the material model that is utilized. Consequently, the reader is referred to section 8.1 for more
information on the utilized GPU implementations.

A sensitivity analysis was performed to determine the optimal grid size for the Neo-Hookean material
model for the displacement to internal force strategy and is depicted in Figure 8.15. Compared to the
strain to stress strategy, there is no increase in computing time for larger grid sizes. The optimal grid size
is determined to contain 600K threads as the increase in performance for larger grid sizes is negligible,
while smaller grid sizes result in a lower performance for larger problem sizes.

Figure 8.15: The Neo-Hookean model results for different grid sizes across different problem sizes for
the displacement to internal force strategy. Compared to the strain to stress strategy, there is no increase
in computing time for larger grid sizes. The optimal grid size is determined to contain 600K threads as
the increase in performance for larger grid sizes is negligible, while smaller grid sizes result in a lower
performance for larger problem sizes.

Looking at the results for the different implementations in Figure 8.16, the following observations can be
made. First, the GPU baseline implementation exhibits a total computation speed-up of approximately
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2.30×, which increases slightly further to 4.64× for the reducing idle GPU time implementation. The
implementation reducing memory transfers and the concurrent implementation perform better with a
total computation speed-up of approximately 31.7× and 25.9× respectively. Turning to the computing
speed-up, it can be seen that the concurrent implementation shows a considerably lower computing speed-
up, converging to a value of 33.8×, while the reducing idle GPU time and reduced memory implementation
demonstrate a computing speed-up of approximately 74.4× and 73.9× respectively. The lower performance
of the concurrent implementation is attributed to the same reason as for the linear elastic material model,
which is a larger number of global memory transfers.

Figure 8.16: Performance of the NeoHookean material model specific implementations for the displace-
ment to internal force strategy. The GPU baseline implementation exhibits a total computation speed-up of
approximately 2.30×, which increases slightly further to 4.64× for the reducing idle GPU time implemen-
tation. The implementation reducing memory transfers and the concurrent implementation exhibit similar
performance with a total computation speed-up of approximately 31.7× and 25.9× respectively. Turning
to the computing speed-up, it can be seen that the concurrent implementation shows a considerably lower
computing speed-up, converging to a value of 33.8×, while the reducing idle GPU time and reduced memory
implementation both demonstrate a computing speed-up of approximately 74.4× and 73.9× respectively.

8.3 The orthotropic model
The last material that is discussed is the orthotropic material model. The strain to stress parallelization
strategy is examined in subsection 8.3.1, presenting the different implementations that were explored to
increase the performance of the GPU implementation. Subsequently, the results for the displacement to
internal force parallelization strategy are discussed in subsection 8.3.2. Note that, similar to the Neo-
Hookean material model, the explored implementations for the displacement to internal force strategy are
not explained when they are the same for each material model.

8.3.1 Strain to stress parallelization strategy
In the case of the orthotropic material model, a similar approach was undertaken as in the analysis of the
Neo-Hookean material model. Given the small deformations typically associated with composites, a linear
strain assumption, akin to the linear elastic model, was adopted. Consequently, the computation entails a
matrix-vector multiplication involving the stiffness matrix of the composite laminate and the linear strain
vector as explained in chapter 5. The performed sensitivity analysis for the concept of reducing idle GPU
time results in Figure 8.17 for the orthotropic material model. Particularly noteworthy is that, compared
to the other material models for the strain to stress strategy, the initial descent, or increase in performance,
is larger for the orthotropic material model. The optimal grid size was determined to consist of 400K
threads.
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Figure 8.17: The 3D orthotropic model performance for different grid sizes across different problem sizes.
Compared to the other material models for the strain to stress strategy, the initial descent, or increase in
performance, is larger for the orthotropic material model. The optimal grid size was determined to consist
of 400K threads.

Subsequently, the three implementations that were tested for the orthotropic material model are explained.
For each implementation the input data towards the GPU is the deformation gradient tensor, F, and
the returned result towards the CPU is the first Piola-Kirchhoff stress tensor, P. Similar as for the
displacement to internal force strategy in general, several memory transfers are only made once during the
entire simulation. In case of the orthotropic material model this entails the material properties, which is
not taken into account in the total computing time for similar reasons stated before. Finally, note that
again a baseline implementation utilizing unified global memory and a strided memory layout is used.

Reducing idle GPU time implementation
Similar as for the Neo-Hookean material model, the first implementation of the orthotropic material
model focuses on reducing the idle GPU time. In terms of the number of tasks in the processing event,
the orthotropic material model falls in between the linear elastic and Neo-Hookean material models. The
event schedule and instruction schedule are depicted in Figure 8.18. The event schedule consists of a single
memory transfer followed by a processing event and another memory transfer. This order is looped utilizing
the optimal grid size until the entire problem size is covered. Moving on to the instruction schedule, first
the material properties for the lamina are fetched from global memory to compute the stiffness of the
laminate. Next, F is fetched from global memory such that the strain and subsequently the stress can be
computed which is then stored in global memory.

Figure 8.18: The event and instruction schedule for the reducing idle GPU time implementation. The
event schedule consists of a single memory transfer followed by a processing event and another memory
transfer. This order is looped utilizing the optimal grid size until the entire problem size is covered. Moving
on to the instruction schedule, first the material properties for the lamina are fetched from global memory
to compute the stiffness of the laminate. Next, F is fetched from global memory such that the strain and
subsequently the stress can be computed which is then stored in global memory.
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Symmetry implementation
Similar as for the linear elastic model, the stress symmetry implementation leverages the symmetry of
the Lagrangian stress tensor due to the linear strain. Consequently, the amount of memory transferred
back toward the CPU decreases. Note that the computation remains in a single stream, resulting in the
event order as depicted in Figure 8.19. However, the gain in computing time only holds for the last loop
since the amount of memory transferred towards the GPU is too large to have increased performance for
each loop. Additionally, symmetry is utilized in the computation of the local and global stiffness matrices
of the laminate, resulting in a considerably lower amount of tasks in the processing event. Instead of 36
computations for both the local stiffness and global stiffness matrix of the laminate, only 9 computations
for the local and 13 computations for the global stiffness matrix have to be performed.

Figure 8.19: The event and instruction schedule for the symmetry implementation. Leveraging the
symmetry of P, the amount of memory transferred back to the CPU is decreased. However, the gain in
computing time only holds for the last loop since the amount of memory transferred towards the GPU is too
large to have increased performance for each loop. Additionally, symmetry is utilized in the computation
of the local and global stiffness matrices of the laminate, resulting in a considerably lower amount of tasks
in the processing event. Instead of 36 computations for both the local stiffness and global stiffness matrix
of the laminate, only 9 computations for the local and 13 computations for the global stiffness matrix have
to be performed.

Splitted implementation
The splitted implementation of the orthotropic material model aims to exploit the strain dependencies
present in the computation of the stress tensor, P. Examining Equation 5.18, two observations can be
made. First, it becomes apparent that the stiffness matrix can be divided into two distinct parts: one for
the axial components and in-plane shear component, and the other for the out-of-plane shear components.
Moreover, the computation of each stress component comes down on a summation of the row values of the
stiffness that are non-zero multiplied with a strain component. By splitting the matrix-vector product into
its individual components. Each component is computed separately as soon as its corresponding strain
component is transferred to the GPU as depicted in the event schedule in Figure 8.20.

The out-of-plane shear components can be returned earlier, as these only depend on four components
of F. For the remaining components of P two instruction schedules are executed. For the axial strain
components only a single component of F is needed to update the stress component. For the in-plane
shear component two components of F are required. After summing al four contributions, the last four
components of P can be returned towards the CPU. This implementation explores whether splitting the
different strain dependencies over different streams results in the optimal concurrency for the memory
transfers. Additionally, it is investigated whether a significantly larger number of executed kernels in
combination with a lower computational workload per kernel results in an increase in performance.
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Figure 8.20: The event and instruction schedule for the splitted implementation. The computation of
each stress component comes down on a summation of the row values of the stiffness that are non-zero
multiplied with a strain component. Consequently, the computation of each stress component can be split up
such that all computations are performed as soon as the necessary component of F is present on the GPU.
The out-of-plane shear components can be returned earlier, as these only depend on four components of F.
For the remaining components of P two instruction schedules are executed. For the axial strain components
only a single component of F is needed to update the stress component. For the in-plane shear component
two components of F are required. After summing al four contributions, the last four components of
P can be returned towards the CPU. This implementation explores whether splitting the different strain
dependencies over different streams results in the optimal concurrency for the memory transfers.

Finally, note that the computation of the local and global stiffness matrix of the laminate no longer occurs
on the GPU. Since the computation only needs to be executed once at the beginning of the simulation, the
influence on the total performance is negligible when distributed over multiple time steps. Consequently,
the computation and corresponding memory transfer to the GPU have been removed from the instruction
schedule.

Implementation results
The results for the orthotropic material model are presented in Figure 8.21. The findings indicate that
utilizing a GPU, even only the simple baseline implementation, already results in a speed-up of 4.86×.
Reducing idle GPU time further enhances performance to yield a speed-up of 9.57×, which is the largest
gain achieved by the reducing idle GPU time implementation. Subsequently, utilizing the stress symmetry
and overlapping memory transfers with kernel executions result in a decrease in total computation time.
The speed-up for the symmetry implementation is 10.2× while the splitted implementation reaches 12.2×.
Considering the computing speed-up, it is evident that utilizing the symmetry in the computations of the
laminate stiffness and the computations of the stress tensor result in a significant increase of computing
speed-up to approximately 205×. Furthermore, the larger number of kernel executions in the splitted
implementation results in more overhead and thus a lower computing speed-up of approximately 56.5×.
The same argument can be made for the reducing idle GPU time implementation, which shows a computing
speed-up of approximately 48.6×.
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Figure 8.21: Performance of the orthotropic model implementations. The findings indicate that the
utilizing a GPU results in a speed-up of 4.86× for the baseline implementation. Reducing idle GPU time
further enhances performance to yield a speed-up of 9.57×. Subsequently, utilizing the stress symmetry and
overlapping memory transfers and kernel executions result in a decrease in total computation time. The
speed-up for the symmetry implementation is 10.2× while the splitted implementation reaches 12.2×. Con-
sidering the computing speed-up, the symmetry implementation yields a significant increase in computing
speed-up to approximately 205×. Furthermore, the larger number of kernel executions in the splitted im-
plementation results in more overhead and thus a lower computing speed-up of approximately 56.5×. The
same argument can be made for the reducing idle GPU time implementation, which shows a computing
speed-up of approximately 48.6×.

8.3.2 Displacement to internal force parallelization strategy
Moving on to the displacement to internal forces strategy, the results of the sensitivity analysis are depicted
in Figure 8.22. Comparing to Figure 8.17, the behavior for the different parallelization strategies is almost
identical, except for the steeper initial decay for the displacement to internal force strategy. As a result,
the optimal result for the displacement to internal force strategy is also obtained with a grid size of 400K
threads.

Figure 8.22: The 3D orthotropic model results for different grid sizes across different problem sizes for
the displacement to internal force strategy. The behavior for the different parallelization strategies is almost
identical, except for the steeper initial decay for the displacement to internal force strategy. As a result,
the optimal result for the displacement to internal force strategy is also obtained with a grid size of 400K
threads.

The performance results for the displacement to internal force strategy are depicted in Figure 8.23. The
baseline GPU implementation shows a lower total computation speed-up of 2.36×, which is considerably
lower than the speed-up that was obtained by the GPU baseline implementation in the strain to stress
strategy. Reducing the idle GPU time, the total computation speed-up increases to 4.58× and the com-
puting speed-up levels of at approximately 81.6×. Reducing memory transfers in the reduced memory
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implementation results in a total computation speed-up of 37.7× and a computing speed-up that levels
off at 109×. Overlapping memory transfers and kernel executions yields a total computation speed-up of
28.8×, while the computing speed-up is equal to 37.9×.

Figure 8.23: Performance of the orthotropic model implementations. The baseline GPU implementation
shows a lower total computation speed-up of 2.36×, which is considerably lower than the speed-up that was
obtained by the GPU baseline implementation in the strain to stress strategy. Reducing the idle GPU time,
the total computation speed-up increases to 4.58× and the computing speed-up levels of at approximately
81.6×. Reducing memory transfers in the reduced memory implementation results in a total computation
speed-up of 37.7× and a computing speed-up that levels off at 109×. Overlapping memory transfers and
kernel executions yields a total computation speed-up of 28.8, while the computing speed-up is equal to
37.9×.

Compared to the reduced memory implementation, the concurrent implementation yields a slight decrease
in both performance metrics. It becomes apparent that utilizing more kernels results in too much overhead,
decreasing the computing speed-up and consequently the total computation speed-up as well. The reduced
memory implementation results in a considerable increase in total computation speed-up compared to the
reducing idle GPU time implementation, which was seen for both the linear elastic and Neo-Hookean
material model as well. Finally, note that the reduced memory implementation computing speed up keeps
increasing for a larger range of problem sizes compared to the other implementations. This makes sense
as for each problem size only one kernel is executed, resulting in minimal overhead. As there is no idle
time to reduce since there are only two memory transfers in the implementation, the only limiting factor
on the computing speed-up are the GPU resources. If the GPU resources are fully utilized during the
computational process, the computing speed-up can not increase further. This cross-over point is reached
at a problem size of approximately 23M .

8.4 Conclusion
Based on the results in previous sections, the most efficient implementation for each material model within
the considered parallelization strategies can be determined. This section concludes on the results that have
been obtained for each material model in the different parallelization strategies. Furthermore, a summary
of the optimal performance is given in Table 8.1 for each material model in the different parallelization
strategies.

Based on the two parallelization strategies and three material models that have been examined, there are
several general conclusions that can be drawn. These are summarized below:

• The amount of memory transfers should be limited as much as possible, as memory transfers are
taking up more than 70% of the total computation time. Overlapping memory transfers with compu-
tations by utilizing streams has exhibited the ability to hide the latency considerably. On the other
hand, referring to the double symmetry implementation for the linear elastic material, performing
portions of the implementation on the CPU to decrease the size of memory transfers has proven not
to be beneficial for the total computation time. The CPU time for performing the computations
increases the total computation time more than the memory transfers.
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• A distinction can be made between memory-driven and computation-driven implementations. The
performance of memory-driven implementations is heavily reliant on the amount of memory transfers
that are necessary. It is observed that there are too many memory transfers to overlap all with
computations as the amount of computations is not large enough for these implementations. In case
of computation-driven implementations, either the computations take too long to be overlapped with
memory transfers, or there exists a coupling between model parameters that results in computations
that must be executed sequentially.

Apart from general conclusions, some observations were made specifically for the different parallelization
strategies.

• For the strain to stress strategy, it is evident that the reducing idle GPU time implementation results
in the most significant gain in performance. Although other implementations yield a larger gain in
computing speed-up, reducing idle GPU time implementation focuses solely on overlapping as many
memory transfers with computations. Since the strain to stress strategy is memory-driven, this
approach leads to the largest gain in the total computation speed-up.

• It has been discovered that overlapping memory transfers and calculations are detrimental to perfor-
mance in the displacement to internal force strategy. Because of the overlap, the number of global
memory transfers increases, lowering performance.

• The coupling between nodal displacement and deformation gradient components results in a neces-
sary sequential order of a part of the computation. Hence, the displacement to internal force strategy
is computation-driven and a sequential order without utilizing streams shows the best performance.
This implementation exhibited the best performance for each material model, as can be seen in Ta-
ble 8.1, and does not build further upon the best performing model-agnostic GPU implementation.

Continuing with the different material models for the strain to stress strategy, the optimal performing
implementation for each material model in each parallelization strategy is briefly summarized:

• The optimal ipmlementation for the linear elastic material model in the strain to stress strategy
builds further on the model agnostic implementation by applying the symmetry of the stress tensor
and splitting of the diagonal stress component calculation across different streams. To reduce idle
GPU time, a grid size of 400K threads is utilized.

• In the context of the Neo-Hookean material model in the strain to stress strategy, the best performing
implementation turned out to be a combination of the reducing idle GPU time implementation for
small problem sizes and the simplified implementation for larger problem sizes. Splitting up the
constitutive model is decreasing performance rather than enhancing it, as all components of F are
coupled with all components of P. The optimal grid size was found to contain 800K threads.

• Concluding on the orthotropic material model utilized in the strain the stress strategy, the results
indicate that the orthotropic material model presents a combination of the optimization challenges
presented by the linear elastic and Neo-Hookean material models. On one hand the symmetry of the
stress tensor due to linear strain can be utilized to enhance performance. On the other hand, the
internal couling of some strain tensor components limit the overlap of different memory transfers. In
the end, the best performing implementation was the splitted implementation, utilizing a grid size
of 400K threads.

• For the displacement to internal force strategy, the optimal GPU implementation is the reduced
memory implementation for each material model. The enormous decrease in memory demand results
in a significantly faster computational process and thus a larger total computation speed-up.

Similar verification as in chapter 7 has been applied. The obtained results were again equivalent to the
CPU implementation, verifying that the results computed by the GPU-accelerated implementation are
correct.
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Finally, Table 8.1 summarizes the results of the model-specific optimization. For each implementation
it becomes clear that the computing speed-up is significantly larger compared to the total computation
speed-up. The strain to stress parallelization strategy shows a total computation speed-up ranging between
5.76x and 12.2x, while the range for the displacement to force parallelization strategy is 31.7x to 37.7x.
In the strain to stress strategy, the computing speed-up ranges between 56.5x for the orthotropic material
model and 86.3x for the linear material model. For the displacement to internal force strategy this range
starts at 73.9x up to 109x.

Material
Parallelization

strategy
Implementation

type
Computing
speed-up

Total computation
speed-up

Linear elastic
Strain to stress Stress symmetry 86.3x 5.76x

Displacement to force Reduced memory 89.4x 32.5x

Neo-Hookean
Strain to stress Symmetry computation 66.5x 7.94x

Displacement to force Reduced memory 73.9x 31.7x

Orthotropic
Strain to stress Stress symmetry 56.5x 12.2x

Displacement to force Reduced memory 109x 37.7x

Table 8.1: Performance summary of the model-specific optimization. The strain to stress parallelization
strategy shows a total computation speed-up ranging between 5.76x and 12.2x, while the range for the
displacement to force parallelization strategy is 31.7x to 37.7x. The computing speed-up ranges between
56.5x for the orthotropic material model and 86.3x for the linear material model in the strain to stress
strategy. For the displacement to internal force strategy this range starts at 73.9x up to 109x.
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9
Integration in a Finite Element Framework

Building upon the specific optimizations targeting each constitutive model in chapter 8, this chapter pro-
ceeds with the integration of the GPU-accelerated constitutive update within a Finite Element Framework.
The test case, formulated to facilitate a comprehensive comparison between the CPU and GPU-accelerated
implementations, is presented in detail in section 9.1. Subsequently, the results of the integration within
a single-GPU framework is examined in section 9.2. Furthermore, the integration is expanded to encom-
pass a multi-GPU implementation, exploring the potential performance gains achieved by increasing the
number of GPUs utilized in section 9.3. Finally, the findings and implications drawn from the integration
process are consolidated and summarized in section 9.4.

9.1 Testcase setup
The exemplary test case encompasses a 3D rectangular beam that undergoes elongation under a uniform
strain rate, while being clamped at one end. Along the longitudinal outer boundary of the beam Dirichlet
boundary conditions are prescribed, meaning that there the displacement value is fixed, while the lateral
boundaries are stress free. Based on the value of the displacement and the current time step, the velocity
and acceleration of the nodes belonging to the outer boundary are determined. In the interior of the beam
the displacement is obtained through the finite element formulation as described in chapter 4.

The beam is discretized using first order tetrahedral elements. The mesh size is adjusted by employing
a subdivision algorithm as depicted below in Figure 9.1 [48]. Along the edge of each tetrahedron the
midpoint of the edge is utilized as the new corner for a smaller tetrahedron. As a result, each large
tetrahedron element is partitioned into eight smaller tetrahedra. Note that this procedure can be re-
cursively performed an arbitrary number of times, thus enabling the evaluation of the CPU and GPU
implementations’ efficiency across different mesh sizes.

Figure 9.1: Subdivision of a tetrahedral element. Along the edge of each tetrahedron the midpoint of the
edge is utilized as the new corner for a smaller tetrahedron. As a result, each large tetrahedron element is
partitioned into eight smaller tetrahedra. Figure credits: [48].

To visually portray the test case, refer to the graphical representation presented in Figure 9.2. Furthermore,
the impact of augmenting the total simulation time by incorporating additional time steps is explored by
varying the number of time steps utilized in the analysis.
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9.1 Testcase setup

Figure 9.2: A visualization of the test case in Paraview. A rectangular beam is partitioned in multiple
tetrahedral elements, visible as triangular edges along the outer contour of the beam. Along the outer
longitudinal boundary of the beam Dirichlet boundary conditions are prescribed, while the lateral boundaries
are stress free.

The different mesh sizes that are considered in this study are depicted below in Table 9.1. As each
tetrahedron is subdivided in eight subtetrahedra, the number of elements increases exponentially per
subdivision. The nodal distance decreases as the mesh is subdivided further. The considered average
nodal distance is relevant for a realistic solid mechanics application.

Mesh subdivision Number of elements Average nodal distance [mm]
0 694 9.87
1 5552 4.93
2 44416 2.47
3 355328 1.23
4 2842624 0.61

Table 9.1: Information regarding the mesh for the utilized test case. The number of elements in the
mesh increases exponentially by the applied subdivision algorithm. The considered average nodal distance
is relevant for a realistic solid mechanics application.

The performance evaluation of the GPU-accelerated implementation encompasses two key metrics. These
are described as follows:

• Simulation wall time
The choice for the simulation wall time is motivated by its ability to reflect the overall speed-up
achieved of the simulation duration. This metric accounts for the performance impact resulting
from adjustments made to the memory layout pattern, including any associated effects on methods
outside the portion of the code affected by the parallelization strategy. The wall time measurement
is started just before the computation of the first time step commences. As a result, the generation
of the mesh, loading the material properties and setting up the initial and boundary conditions is
not taken into account in the simulation wall time. Once the calculation of the last time step has
finished the wall time measurement is stopped.

• Simulation constitutive time
The constitutive time is employed as a performance metric to specifically assess the efficiency of
the parallelization strategy in isolation. By focusing solely on this step, it provides insights into
the extent of improvement achieved in the portion of the code itself. The constitutive time is
measured utilizing the same profiling techniques as in chapter 7 and chapter 8. In line with the
model optimizations presented in chapter 7 and chapter 8, the (de)allocation time of memory is not
included in the performance metrics. This omission is again attributed to the fact that memory
(de)allocation transpires only once during the entire simulation process. Consequently, its impact on
the overall performance is considered negligible and does not necessitate inclusion in the performance
evaluation.
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Important to note is that no output results, such as the render in Paraview, have been generated during
the runs that were performed to measure performance, as writing results to output files can significantly
influence the results in terms of performance. Furthermore, in order to integrate the GPU implementation
in the finite element framework, a contribution has been made to the open source software Pyre [49].
Through the contribution in Pyre, GPU memory is facilitated within the finite element framework. As a
result, the GPU-facing data-structures can be allocated via CUDA functionalities in a coalesced memory
layout. Data-structures that are not GPU-facing remain allocated in a strided memory layout.

9.2 Single-GPU integration
The outcomes derived from the integration process are expounded upon separately for the different ma-
terial models. The detailed results of the integration pertaining to the linear elastic model can be found
in subsection 9.2.1, while the outcomes associated with the Neo-Hookean model are presented in subsec-
tion 9.2.2, followed by the results of the orthotropic material model in subsection 9.2.3.

9.2.1 Linear elastic results
The wall time for both GPUs is graphically illustrated in Figure 9.3 for the linear elastic material model.
The performance ranges between 676 and 714 seconds, showing a decrease in wall time of 2.6%. The
minor difference in wall time can be attributed to the small mesh sizes that were evaluated. The mesh
sizes evaluated in the model-agnostic and model-specific optimizations contained a considerably larger
amount of computations, ranging between 1M and 34M . Considering the time spend on the constitutive
time only, a discernible trend becomes visible for the different implementations. The GPU-accelerated
constitutive update exhibits improved performance that increases from 2.89× decrease in computing time
up to a 2.98× decrease in computing time after taking the memory transfers into account.

Figure 9.3: Simulation results utilizing the linear elastic material model. The performance ranges between
676 and 714 seconds, showing a decrease in wall time of 2.6%. The GPU-accelerated constitutive update
exhibits improved performance that increases from 2.89× decrease in computing time up to a 2.98× decrease
in computing time.

The mesh size has been varied in order to examine the effect of increasing the computational workload
on the performance of the different implementations. The results for different mesh sizes are summarized
below in Table 9.2 for the wall time. Examining the wall time, a decrease in wall time is only observed for
the larger numbers of subdivisions.

Mesh
subdivision

CPU wall
time [s]

GPU wall
time [s]

Percentual
difference [%]

0 1.32 1.45 +9.85
1 10.59 10.8 +1.98
2 84.9 84.4 -0.59
3 694 676 -2.60

Table 9.2: The wall time for different mesh sizes utilizing the linear elastic material model. A decrease
in wall time is only observed for the larger numbers of subdivisions.
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Table 9.3 depicts the results for different mesh sizes in terms of the constitutive time. As the number of
elements in the mesh increases, a significant improvement in constitutive update time can be observed.

Mesh
subdivision

CPU constitutive
time [ms]

GPU constitutive
time [ms]

Percentual
difference [%]

0 55 83 +50.9
1 470 192 -49.2
2 3170 1112 -64.9
3 25260 8475 -66.4

Table 9.3: As the number of elements in the mesh increases, a significant improvement in constitutive
update time can be observed.

9.2.2 Neo-Hookean results
The performance for Neo-Hookean material model is depicted in Figure 9.4. Compared to the linear elastic
material model, all GPU implementations perform better with respect to the CPU implementation. This
observation makes sense as the computational complexity for the Neo-Hookean material model is signifi-
cantly increased which is beneficial for the GPU implementation. The baseline implementation increases
performance by 3.2%, while the optimal implementation results in a 5.6% improvement in simulation wall
time. In terms of time spent in the constitutive time, the optimal GPU implementation is approximately
2.4× faster compared to the CPU implementation.

Figure 9.4: Simulation performance utilizing the Neo-Hookean material model. The baseline implemen-
tation increases performance by 3.2%, while the optimal implementation results in a 5.6% improvement of
performance.

Similar as for the linear elastic material model, the mesh size has been varied in order to examine the
effect of increasing the computational workload on the performance of the different implementations. The
results for different mesh sizes in terms of the wall time are summarized below in Table 9.4. For the
Neo-Hookean material a larger decrease in wall time is observed

Mesh
subdivision

CPU wall
time [s]

GPU wall
time [s]

Percentual
difference [%]

0 1.51 1.57 +3.97
1 9.00 11.4 +26.7
2 96.5 90.8 -6.00
3 772 731 -5.32

Table 9.4: The wall time for different mesh sizes utilizing the Neo-Hookean material model. For a finer
mesh a larger decrease in wall time can be observed compared to the linear elastic material.

The constitutive time for the different mesh sizes is summarized below in Table 9.5. The increase in
performance regarding the constitutive update time is comparable with the increase observed for the
linear elastic material model.
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Mesh
subdivision

CPU constitutive
time [ms]

GPU constitutive
time [ms]

Percentual
difference [%]

0 30 83.4 +178
1 320 192 -40.0
2 2395 1112 -53.6
3 19235 8474 -55.9

Table 9.5: The constitutive time for different mesh sizes utilizing the Neo-Hookean material model. A
significant increase in performance is observed for the constitutive time as the number of elements in the
mesh increases.

9.2.3 Orthotropic results
Important to highlight for the orthotropic material model is the fact that the code of the research group
currently only supports axial loading for composite materials. For the orthotropic material the performance
is illustrated in Figure 9.5. With respect to the other material models the obtained speed-up values are
considerably larger for the orthotropic material model as the optimal implementation increases performance
by 15.3%. Examining the results in terms of the constitutive time, it is observed that approximately 2.78×
less time is spent on the constitutive update compared to the CPU implementation.

Figure 9.5: Simulation performance utilizing the orthotropic material model. With respect to the other
material models the obtained speed-up values are considerably larger for the orthotropic material model
as the optimal implementation increases performance by 15.3%. Examining the results in terms of the
constitutive time, it is observed that approximately 2.78× less time is spent on the constitutive update
compared to the CPU implementation.

The variation of the mesh size resulted in Table 9.6. The decrease in wall time is significantly larger
compared to the other material models. In terms of the constitutive time the results for the orthotropic
material model align with the results of the other material models. The results are summarized below in
Table 9.7.

Mesh
subdivision

CPU wall
time [ms]

GPU wall
time [s]

Percentual
difference [%]

0 1.51 1.49 -1.13
1 11.8 10.47 -11.3
2 95.6 81.3 -15.0
3 774 656 -15.3

Table 9.6: The wall time for different mesh sizes utilizing the orthotropic material model. The decrease
in wall time is significantly larger compared to the other material models.
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Mesh
subdivision

CPU constitutive
time [s]

GPU constitutive
time [ms]

Percentual
difference [%]

0 70 62.6 -10.6
1 295 148 -48.9
2 1865 707 -62.1
3 15440 5546 -64.1

Table 9.7: The constitutive time for different mesh sizes utilizing the orthotropic material model. The
decrease in constitutive time aligns with the results of the other material models.

9.2.4 Verification
In order to ascertain the correctness of the computed results obtained through the GPU-accelerated simu-
lation, a meticulous verification process was undertaken by comparing the displacement of the rectangular
beam in Paraview. The comparative analysis yielded the depicted results illustrated in Figure 9.6. Upon
careful examination, it becomes evident that the magnitude of displacement along the longitudinal direc-
tion of the beam remains consistent and equivalent for both the CPU and GPU implementations.

Figure 9.6: The displacement for the simulation of the elastic material visualized in Paraview. The left
image shows the result of the standard CPU implementation, while the right image depicts the result for
the GPU-accelerated implementation. The displacement magnitude in the displayed x-direction is equal for
both simulations.

Furthermore, to provide further verification of the GPU-accelerated implementation, the reaction force at
the clamped end of the beam was computed by aggregating the internal force contributions from all nodes
located along the clamped edge. The resulting reaction forces for both the linear elastic and Neo-Hookean
constitutive models are illustrated in Figure 9.7. To ensure the utmost accuracy in the comparison of
results, the finest mesh evaluated was employed. As expected, there is no discrepancy between the two
implementations. Based on the identical magnitude of displacement and reaction force at the clamped
edge, it can be concluded that the GPU-accelerated implementation has been successfully verified.

Figure 9.7: A plot of the reaction force for the different implementations. For both material models the
resulting reaction force is identical. As a result, only one curve is visible in the plot.
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9.3 Extension to a Multi-GPU implementation
To expand the single GPU implementation to a multi-GPU implementation, the High Performance Cluster
Delft Blue is utilized. Delft Blue provides 10 GPU nodes, each consisting of 2 CPUs and 4 GPUs. Speci-
fications of the hardware can be found at [50]. Due to the limited availability of utilizing multiple GPUs
on Delft Blue, it was decided to operate with a single GPU per node for simplicity. Furthermore, the
results depicted consists of only a single run per mesh size. The main challenge to expand a single GPU
implementation to a multi-GPU implementation relies in the communication between different hardware
components. As the Summit finite-element framework already provides support for CPU communication,
there was no need to implement inter-GPU communication. Furthermore, by maintaining a one-to-one
ratio between the number of CPUs and GPUs, no further adjustments need to be made to the GPU
implementation as each CPU directly communicates with its own GPU.

Below, the performance for the single and multi-GPU implementation on the hardware setup of Delft
Blue are depicted in Figure 9.8 on a logarithmic scale. The computation time decreases from 831 to 423
seconds when increasing the utilized number of GPUs to two, which is approximately twice as fast. The
significant increase in performance makes sense as the amount of computational resources is doubled as
well. Increasing the number of GPUs further, the increase in performance quickly levels off. Adding
a fifth GPU only leads to a 18.2% improvement in performance. The small gain in performance can be
attributed to the fact that the problem size evaluated is still relatively small. Consequently, as the problem
is partitioned over multiple GPUs, the problem size allocated to each GPU is even smaller. As a result,
the benefits from the GPU implementation are not fully extracted.

Figure 9.8: The performance in terms of total simulation time for an increasing number of GPUs.
Initially the gain in performance is approximately 50%, which levels off to 18.2% for the largest GPU
amount that is evaluated.

9.4 Conclusion
Analyzing the results of the previous sections, the GPU implementation can be assessed for both the
single and multi-GPU setup. This section concludes on the results that have been obtained for the
different material models in the integrated GPU implementation. Examining the results of the single
GPU implementation for different hardware setups, the following conclusions can be drawn:

• The smaller effect on wall time compared to the change in constitutive time can be partially attributed
to the substantial adjustment required in the memory layout pattern due to the GPU implementation.
A coalesced memory layout as depicted in Figure 7.3 is utilized for efficient memory transfers between
CPU and GPU. Consequently, all parameters interacting with the GPU are stored according to the
coalesced memory layout, whereas in the CPU implementation these parameters are stored according
to the strided memory layout as illustrated in Figure 7.1. As a result, the performance of CPU code
outside the constitutive update step is affected.

• The computational complexity of the material model utilized drives the gain in performance of
the single GPU implementation. For the same mesh size and number of time steps the gain in
performance is larger for a computationally more expensive material model.
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The multi-GPU implementation was only evaluated for different mesh sizes for the largest number of time
steps considered. Investigating the results, it is observed that as the number of GPUs increases, the gain
in performance levels off earlier than expected. This can be attributed to the fact that the problem size
evaluated is still relatively small. Consequently, as the problem is partitioned over multiple GPUs, the
problem size allocated to each GPU is even smaller. As a result, the benefits from the GPU implementa-
tion are not fully extracted.

Important to note is the fact that a further expansion in terms of the number of CPUs and GPUs could
not be obtained due to the limited availability of computational resources. It is anticipated that at some
point increasing the number of GPUs will not lead to an increase in performance for two reasons. First,
the portion of the problem size allocated to each GPU can become too small to fully benefit from the
GPU-accelerated implementation. Additionally, communication overhead between the increased number
of CPUs can lead to a increase in simulation time that is larger than the gain in performance achieved by
adding more computational resources in terms of the number of GPUs utilized.
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10
Conclusion

Following the part on accelerating Finite Element Analysis with GPUs, this part concludes the thesis,
starting with a conclusion on the obtained results. In accordance with the primary and secondary research
questions presented in chapter 1, the overarching research objective of this study was formulated as follows:

Main research objective

To develop a GPU-accelerated implementation of the constitutive update in an explicit
time scheme and investigate the impact on simulation time upon integration within a
Finite Element Framework.

The present study has successfully accomplished the aforementioned research objective through the devel-
opment of a GPU-accelerated implementation of the constitutive update within an explicit time scheme
for different material models in the context of solid mechanics. Furthermore, each material model’s imple-
mentation has been seamlessly integrated into a Finite Element framework, allowing for a comprehensive
assessment of its influence on the overall simulation time. Finally, the implementation has been extended
to a multi-GPU setup, through which it was verified that adding additional computational resources in-
creases the total speed-up that can be achieved. The remainder of this chapter serves as a summary of
the results of this study, through which the sub-research questions are answered, followed by the answer
to the main research question.

Sub-research question A
How can the low-level computations in the FEM be evaluated as efficiently as possible?

The optimal evaluation of the constitutive update encompasses two distinct facets. Firstly, an exploration
of the GPU implementation that remained agnostic to the material model was undertaken in chapter 7.
From this model-agnostic optimization it was deduced that the most efficient GPU implementation entails
the utilization of pinned memory combined with a coalesced memory layout.

The second facet involves a targeted optimization process that primarily focuses on the specific material
model employed, as demonstrated in chapter 8. This model-specific optimization is intricately linked to
the nature of the particular material model. Subsequently, the constitutive model is thoroughly analyzed,
and its distinctive features are leveraged to further enhance performance.

Two different parallelization strategies were explored. For the strain to stress strategy the computing
architecture of the implementation is tailored according to the concept to reduce idle GPU time, defined
in section 7.4, to efficiently iterate over the problem size, thereby facilitating concurrency resulting in a
total computation speed-up ranging from 5.76× up to 12.2×. The displacement to internal force strategy
is less demanding in terms of memory transfers as it uses nodal data as opposed to quadrature point data.
However, because of the coupling between nodal degrees of freedom of different elements, this strategy
does not utilize the concept to reduce idle GPU time. Hence, all memory is transferred at the beginning
of the computation. The significantly lower memory demand resulted in a total computation speed-up
ranging from 31.7× up to 37.7×.

In terms of material models, the simplicity of the linear elastic material model results in a larger overlap of
memory transfers and computations. However, the low computational complexity results in the smallest
increase in performance for the strain to stress strategy. The Neo-Hookean material model shows a larger
increase in performance compared to the linear elastic material model in the strain to stress strategy
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due to its increased computational complexity. A further increase in speed-up is mainly limited by the
coupling between all components of the deformation gradient tensor F and the first Piola-Kirchhoff stress
tensor P. This becomes more evident from the results of the displacement to internal force strategy,
where the different material models have the same memory demand. For this parallelization strategy, the
increase in performance for the linear elastic material model is larger than for the Neo-Hookean material
model. This result highlights the detrimental effect of the coupling in the Neo-Hookean material model
as described above. The orthotropic material model has the largest increase in performance for both
parallelization strategies. The orthotropic material model benefits from the symmetry of the stress tensor,
enabling optimizations that decrease memory transfers. Additionally, the computation of the local and
global laminate stiffness matrices significantly increases the computational complexity for this material
model.

Answer sub-research question A

By harnessing the full potential of the underlying GPU functionalities and subsequently
tailoring the implementation to align with the distinct characteristic features inherent
to the specific material model the optimal GPU-accelerated implementation is obtained,
resulting in a total computation speed-up ranging from 5.76× to 12.2× for the strain to
stress strategy and from 31.2× up to 37.7× for the displacement to internal force strategy.

Sub-research question B
To what extent is the total simulation time of a GPU-accelerated FEA model decreased compared to a
single CPU FEA model?

The integration of the GPU-accelerated constitutive update implementation within the Finite Element
framework, as outlined in chapter 9, facilitates a comprehensive assessment of its impact on a complete
FEM simulation. Through the contribution to the open source software Pyre, GPU memory is facilitated
in the finite element framework. The alteration in memory access patterns resulting from the GPU im-
plementation impacts the performance of methods that rely on the data utilized by the GPU, thereby
influencing the overall simulation time.

The single GPU implementation exhibited a significant increase in performance in terms of the time spent
on the constitutive update. The time spent on the constitutive update itself is inherently tied to the
specific material model employed. As a result, the magnitude of the decrease in the total simulation time
varies for each material model.

In terms of total simulation time, a small increase in performance was achieved for the linear elastic and
Neo-Hookean material models. The gain in performance for the orthotropic material model was consider-
ably larger as that specific material model is more balanced in terms of computational complexity and the
required amount of CPU-GPU interaction compared to the other material models. However, the evaluated
simulations were not large enough to exhibit an increase in performance as obtained through the model-
agnostic and model-specific optimization. Through the adjustment in memory layout calculations outside
the constitutive update are affected and show lesser performance. The verification of results establishes
the capability of the GPU-accelerated implementation to generate identical results to the baseline single
CPU implementation, while decreasing the constitutive and wall time significantly.

Answer sub-research question B

The employed GPU-accelerated implementations demonstrate their ability to generate
accurate results within the context of a Finite Element Method (FEM) simulation. The
increase in performance in the constitutive update step is clearly visible. However, it
does not always translate to a significant gain in total simulation time due to the impact
of the GPU implementation on methods outside the constitutive update step.
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Sub-research question C
What is the trade off, in terms of the number of CPUs and GPUs, in order to create the hardware setup
that makes the best use of the resources available for a given problem?

The extension of the Finite Element framework to encompass a multi-GPU implementation offers the
potential for true scalability, as it enables the scaling in terms of both memory and time. By incorporating
multiple GPUs, it becomes possible to assess the trade-off between the number of CPUs and GPUs in order
to optimize the utilization of available computational resources. This trade-off analysis commences at the
single-GPU level, where the concept to reduce idle GPU time, as explained in section 7.4, indicates that
the performance for the GPU implementation becomes optimal for a relatively small grid size. Utilizing
larger grid sizes yield only a marginal improvement in performance.

Due to the limited availability of computational resources, only a small exploration into multi-GPU setups
was made. It was observed that as the number of GPUs increases, the gain in performance levels off earlier
than expected. This can be attributed to the fact that the problem size evaluated is still relatively small.
Consequently, as the problem is partitioned over multiple GPUs, the problem size allocated to each GPU
is even smaller. It is expected that in case larger problem sizes are evaluated a linear gain in performance
is realized as the number of GPUs increases.

It must be noted that, for an arbitrarily large number of GPUs, performance will eventually saturate
for two reasons. First, the portion of the problem size allocated to each GPU can become too small to
fully benefit from the GPU-accelerated implementation. Additionally, communication overhead between
the increased number of CPUs can lead to a increase in simulation time that is larger than the gain in
performance achieved by adding more computational resources in terms of the number of GPUs utilized.

Answer sub-research question C

The trade-off is contingent upon both the specific material model employed and the
size of the problem being solved. The problem size should be partitioned in portions
large enough to fully benefit from the GPU-accelerated implementation.

Main research question
What speed up can be achieved in a FEA simulation applied to solid mechanics in an explicit time scheme
by using massive parallelization on a heterogeneous hardware architecture?

Finally, the main research question is addressed. Gathering the findings that resulted in the answers to
the sub-research questions, the answer to the main research question can be formulated.

Main research question

The achieved speed-up is directly related to the constitutive model employed. Utilizing
the discovered optimal GPU-accelerated implementations in the displacement to inter-
nal force strategy, single-GPU performance is improved in the constitutive update, with
a total computation speed-up ranging from 31.7× to 37.7× and a computing speed up
that varies from 74× to 109×. The translation to a significant decrease in total simu-
lation time requires further investigation. Exploring a multi-GPU setup indicates that
utilizing multiple GPUs is beneficial for the total simulation time as for sufficiently large
problems, doubling the number of GPUs will result in half the original simulation time.
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Recommendations for Future Work

Based on the conducted research and the findings presented in this study, several recommendations can
be proposed for future research and development. These recommendations are organized according to the
order in which the research questions have been addressed in chapter 10. By addressing these recom-
mendations, future research and developments can further advance GPU-accelerated implementations in
FEA applied to solid mechanics and contribute to the optimization and efficiency of such finite element
simulations.

Optimization of low-level computations in the constitutive update
On the low-level computation scale, there are potential avenues for further optimization that could lead
to additional speed-ups in terms of computing speed. These optimizations include both computational
modeling and GPU functionalities.

• Tiling the problem size
The displacement to internal force parallelization strategy exhibited the largest enhancement in
performance. However, in the reduced memory implementation all nodal degree of freedom values at a
time step are transferred in a single memory transfer to assure the value of all nodal degrees of freedom
are available as a coupling exists between different nodes. However, an additional optimization
strategy that could be explored is the application of a tiling scheme. By determining which nodes
are coupled, a smaller portion of the problem size could be transferred to the GPU. Consequently, the
concept to reduce idle GPU time can be applied to enhance performance, resulting in an improved
GPU implementation.

• Utilizing shared memory
Further investigation into the utilization of shared memory in the GPU-accelerated implementation
is warranted to determine if the current implementation is indeed the most efficient approach. Cur-
rently, due to the limited cooperation between threads, shared memory is not extensively utilized.
However, given the significant impact of memory fetching tasks on processing events, it is worth
exploring if shared memory can be incorporated in a more effective manner. To explore the incorpo-
ration of shared memory, it is essential to analyze the memory access patterns and data dependencies
within the constitutive update algorithm. Additionally, proper synchronization mechanisms need to
be implemented to ensure data integrity and consistency among threads.

• Simplify arithmetic operations
The computational cost associated with various arithmetic operations can vary significantly, and
taking advantage of this knowledge can lead to performance improvements in the GPU-accelerated
implementation. One such example is the divide operation, which is relatively expensive compared to
other arithmetic operations. To mitigate the computational cost of division, alternative formulations
such as the co-factor formulation for tensors can be considered. By avoiding explicit divisions and
instead leveraging alternative mathematical formulations, the overall computational efficiency can
be enhanced. Furthermore, GPUs offer fused multiply-add instructions that can expedite both mul-
tiplication and summation operations. Fused multiply-add instructions allow for the simultaneous
execution of a multiplication and addition in a single instruction, reducing the number of separate
operations required and potentially improving performance. By leveraging fused multiply-add func-
tions provided by the GPU, multiple arguments can be multiplied and added together in a more
efficient manner, leading to faster computation. However, it is important to note that the effec-
tiveness of these optimizations may vary depending on the specific algorithms, data structures, and
hardware architecture involved. Thorough performance analysis and benchmarking are necessary to
evaluate the impact of these optimizations and ensure their suitability for the given problem.
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Extending the FEM modeling capacity
The current research focused primarily on accelerating the constitutive update across the whole domain,
while only considering explicit time schemes. The capacity of problems that can be modeled with the
GPU-accelerated implementation can be extended with the following recommendations:

• Implicit time schemes
Investigate the integration of implicit time integration schemes within the GPU-accelerated imple-
mentation. Implicit schemes offer superior stability properties and can efficiently handle larger time
steps, thereby enabling the simulation of more challenging problems. However, it is important to
carefully consider the additional computational requirements and algorithmic complexities associated
with implicit schemes, including the solution of large linear systems.

• Different material models
Explore additional material models beyond the linear elastic, Neo-Hookean, and orthotropic models
covered in this thesis to evaluate the generalizability and performance implications of the GPU-
accelerated constitutive update across a broader range of material models.

• Localized behavior
The current GPU-accelerated implementation does not incorporate plasticity or crack propagation,
as these phenomena typically occur at a more localized scale. However, a promising direction for
future research is to explore methods for incorporating these localized phenomena into the GPU-
accelerated implementation. Depending on the scale at which crack propagation or plasticity occurs,
the subsequent computations can be performed either on the GPU or the CPU, depending on what is
more efficient. Since these phenomena involve a significant change in material behavior, incorporating
them into the Finite Element framework would make it more comprehensive and capable of capturing
a wider range of material responses. Investigating methods to account for localized phenomena such
as plasticity and crack propagation, and determining the appropriate computational strategies to
handle these phenomena efficiently, would be valuable for extending the capabilities of the GPU-
accelerated implementation and enabling more comprehensive simulations.

• Other phenomena
In addition to phenomena occurring on a local scale, there are also global-scale phenomena that can
be considered for future research and development of the GPU-accelerated implementation. Two
such phenomena specifically highlighted here are contact and composite material failure:

– Contact algorithms play a crucial role in simulating the interaction between bodies or surfaces.
Integrating efficient contact algorithms into the GPU-accelerated implementation would enable
the simulation of interacting bodies, which is important in various engineering applications.
Developing specialized contact algorithms that can fully leverage the computational power of
GPUs would significantly enhance the applicability of the implementation in contact-rich sim-
ulations.

– Composite material failure is another global-scale phenomenon that can be explored within
the GPU-accelerated implementation. Incorporating material degradation mechanisms, such as
progressive damage or failure criteria, can be achieved with relative ease in the GPU imple-
mentation. By efficiently modeling and simulating composite material failure, the implemen-
tation can provide valuable insights into the behavior of composite structures under various
loading conditions. It is anticipated that the GPU acceleration would result in a substantial
performance improvement for simulations involving material degradation compared to a CPU
implementation.
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Extending the GPU utilization
From the profiling of the CPU implementation, it was observed that apart from the constitutive update
there are several other steps present in the FEM that can benefit from a parallel implementation. These
steps are listed below:

• Internal force computation
The computation of the internal force was already explored as a parallelization strategy. However,
it was not implemented in the finite element framework. As the CPU profiling indicated that the
step in which the internal forces are computed proves to be a bottle neck in the overall performance
of the code, it is recommended to perform the calculation of the internal forces in parallel as well.

• Computation of the stable time step
After taking a step in time in the simulation, the time increment for the next time step is determined
by evaluating the equation that determines the stable time step, which differs per material. As this
computation is evaluated for every element at every time step, it provides another opportunity to
apply a parallel implementation to increase the performance of the implementation further.

Parallelizing other steps that lend themselves well for parallel execution can result in a larger enhancement
in performance than is currently realized by parallelizing the constitutive update only.

Investigating the optimal heterogeneous hardware setup
Even though a multi-GPU implementation has been developed, the study was conducted with a lim-
ited amount of computational resources. The following recommendations can facilitate useful insights in
determining the optimal heterogeneous hardware setup:

• Extending the range of evaluated problem sizes
By extending the range of evaluated problem sizes two insights can be gained. First, by evaluating
larger problem sizes the scalability of the multi-GPU implementation can be investigated. For
example, whether the enhanced performance of adding additional GPUs levels off for a arbitrarily
large problem size. Exploring smaller problem sizes can result in the case where not all GPU
resources are used by the same kernel at the same time. This means that multiple kernels can
execute simultaneously, enabling a higher concurrency, and thus more performance. Important to
note is that, in order to be of effect, the model must be computation driven since executing multiple
kernels simultaneously does not yield an improved performance if the memory transfers are dictating
the performance.

• Varying the CPU to GPU ratio
The current study only employed a single CPU for each GPU. By exploring different combinations
of GPUs and CPUs, it is possible to identify the most efficient heterogeneous hardware setup that
maximizes the individual computational load and minimizes communication bottlenecks to achieve a
well-balanced and efficient multi-GPU system. Different CPU-to-GPU ratios significantly influence
the overall performance of the system. One avenue to explore is utilizing a single GPU in conjunction
with multiple CPUs. In a simulation the computational workload is partitioned among the number
of CPUs utilized. In chapter 9 it was observed that as the portion of the computational workload
is split over more GPUs the GPU performance saturates as well. If multiple CPUs are utilized in
conjunction with a single GPU, the GPU resources are utilized more efficiently, resulting in improved
overall performance. Referring to Figure 1.1, the number of CPUs should stay in the range of optimal
performance for the given problem size. In this range, the number of GPUs should be chosen such
that the GPU resources are efficiently utilized. In case of a low computational workload per CPU,
multiple CPUs should be used per GPU, while for a large computational workload per CPU, multiple
GPUs per CPU should be used. Important to note is that increasing the number of GPUs without
a proportional increase in CPU resources may lead to a higher demand on the CPU, potentially
resulting in resource contention and decreased performance. Evaluating the described trade-off in
terms of computational resources can leverage the inherent parallelism of GPUs more effectively.
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A
Graphical Processing Unit

This appendix contains information regarding the NVIDIA Quatro 5000 RTX Graphical Processing Unit
(GPU). The specifications of the GPU are presented in section A.1 which have been obtained from NVIDIA
[51]. Furthermore, information on GPU code profiling can be found in section A.2.

A.1 Specifications

Quadro RTX 5000   | D ata Sheet  |  Mar19

1 NVIDIA NVLink sold separately  |  2 Connecting two RTX 5000 cards with NVLink to scale performance and memory 
capacity to 32 GB is only possible if your application supports NVLink technology. Please contact your application 
provider to confirm their support for NVLink  |  3 In preparation for the emerging VirtualLink standard, Turing GPUs have 
implemented hardware support according to the “VirtualLink Advance Overview”. To learn more about VirtualLink, please 
see www.virtuallink.org  |  4 Via adapter/connector/bracket  |  5 Quadro Sync II card sold separately  |  6 Windows 7, 8, 8.1, 
10 and Linux  |  7 GPU supports DX 12.0 API, Hardware Feature Level 12_1  |  8 Product is based on a published Khronos 
Specification, and is expected to pass the Khronos Conformance Testing Process when available. Current conformance 
status can be found at www.khronos.org/conformance

© 2018 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, Quadro, nView, CUDA, and NVIDIA Turing are 
trademarks and/ or registered trademarks of NVIDIA Corporation in the U.S. and other countries. OpenCL is a trademark 
of Apple Inc. used under license to the Khronos Group Inc. All other trademarks and copyrights are the property of their 
respective owners.

REAL TIME RAY TRACING 
FOR PROFESSIONALS
Shatter the boundaries of what’s possible with the 
NVIDIA® Quadro RTX™ 5000, powered by NVIDIA Turing 
GPU to bring real-time ray tracing and accelerated AI 
to next-generation workflows. Creative and technical 
professionals can supercharge demanding design 
and visualization workloads and make more informed 
decisions faster than ever before. Equipped with 3072 
CUDA cores, 384 Tensor cores, 48 RT Cores and 16GB 
GDDR6 memory, Quadro RTX 5000 can render complex 
models and scenes with physically accurate shadows, 
reflections, and refractions to empower users with 
instant insight. Support for NVIDIA NVLink1 enables 
applications to scale memory and performance with 
multi-GPU configurations2. And with the industry’s 
first implementation of the new VirtualLink®3, Quadro 
RTX 5000 provides connectivity to the next-generation 
of high-resolution VR head-mounted displays to let 
designers view their work in the most compelling virtual 
environments possible. 

Quadro cards are certified with a broad range of 
sophisticated professional applications, tested by leading 
workstation manufacturers, and backed by a global 
team of support specialists. This gives you the peace of 
mind to focus on doing your best work. Whether you’re 
developing revolutionary products or telling spectacularly 
vivid visual stories, Quadro gives you the performance to 
do it brilliantly. 

FEATURES
>> Four DisplayPort 1.4 Connectors
>> VirtualLink Connector3 

>> DisplayPort with Audio
>> VGA Support4

>> 3D Stereo Support with Stereo 
Connector4

>> NVIDIA GPUDirect™ Support
>> Quadro Sync II5 Compatibility
>> NVIDIA nView® Desktop 
Management Software

>> HDCP 2.2 Support
>> NVIDIA Mosaic6 

SPECIFICATIONS
GPU Memory 16 GB GDDR6

Memory Interface 256-bit

Memory Bandwidth Up to 448 GB/s

ECC Yes

NVIDIA CUDA Cores 3,072

NVIDIA Tensor Cores 384

NVIDIA RT Cores 48

Single-Precision  
Performance

11.2 TFLOPS

Tensor Performance 89.2 TFLOPS

NVIDIA NVLink Connects 2 Quadro  
RTX 5000 GPUs1

NVIDIA NVLink bandwidth 50 GB/s (bidirectional)

System Interface PCI Express 3.0 x 16

Power Consumption Total board power: 265 W
Total graphics power: 230 W

Thermal Solution Active

Form Factor 4.4” H x 10.5” L,  
Dual Slot, Full Height

Display Connectors 4xDP 1.4, 1x USB-C

Max Simultaneous 
Displays

4x 4096x2160 @ 120 Hz,  
4x 5120x2880 @ 60 Hz,  
2x 7680x4320 @ 60 Hz

Encode / Decode Engines 1X Encode, 2X Decode

VR Ready Yes

Graphics APIs DirectX 12.07 
Shader Model 5.17,
OpenGL 4.68,
Vulkan 1.18

Compute APIs CUDA, DirectCompute, 
OpenCL™

THE WORLD’S FIRST RAY 
TRACING GPU 
NVIDIA QUADRO RTX 5000 

To learn more about the NVIDIA Quadro RTX 5000 visit www.nvidia.com/quadro
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A.2 Profiling

A.2 Profiling
NVIDIA offers several profiling tools that can be utilized to optimize GPU code. The current state-of-the
art profiling tools are shown in Figure A.1. The main analysis tool for GPU code is Nsight Systems, which
provides a detailed overview of the implementation and can be used to determine overall limitations for the
performance of code, identify slow functions or unbalanced workload divisions on the GPU. Streams can be
individually tracked, which allows the developer to easily optimize the overlap between kernel executions
and data transfers.

Apart from Nsight Systems NVIDIA offers other GPU analysis tools. While Nsight Graphics is more
applicable to graphical programs, Nsight Compute is relevant for the current project. The Nsight Compute
tool analyzes code on a kernel level, identifies the amount of registers used by each thread and shows line
by line the amount of cycles that is required to complete an instruction. The insight in the used resources
and their efficiency provides information to extract the last few percentages of performance. In general
however, the obtained additional performance by Nsight Compute is expected to be significantly smaller
compared to the optimization using Nsight Systems. Therefore, Nsight Compute will only be used as a
final check.

Figure A.1: Analysis tools offered by NVIDIA to analyze GPU code. The main analysis tool for GPU code
is Nsight Systems, which provides a detailed overview of the implementation and can be used to determine
overall limitations for the performance of code. Apart from Nsight Systems NVIDIA offers other GPU
analysis tools. While Nsight Graphics is more applicable to graphical programs, Nsight Compute can be
used to extract the last bits of performance.Figure credits: [52].
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B
Central Processing Unit

This appendix contains information regarding the AMD Ryzen Threadripper PRO 3975 WX, which is the
utilized Central Processing Unit (CPU). section B.1 contains specifications of the CPU, which have been
obtained from the AMD website [53]. The CPU code profiling process is explained in section B.2.

B.1 Specifications

B.2 Profiling
For CPU code Gprof is the standard profiler that comes with the gcc compiler. To obtain the profiling
report the code should be implemented using the -pg flag, which enables the compiler to perform line by
line profiling. In the profiling report information is present over each method that is called in the program.
The main limitation for Gprof is the timing resolution. Methods with a shorter execution time than 0.01s
can not be timed, which means that in case the computational complexity is low, there is a minimum
problem size required to actually time the CPU implementation. To use Gprof, the implementation should
first build and execute a single time. After that Gprof analyzes the executable that was ran and generates
the profiling report. Further documentation of Gprof can be found at [54].
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