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Health monitoring: a machine learning approach 
for anomaly detection in multi-sensor networks
Bram Hajee a, Kees Wisse a, Peyman Mohajerin Esfahani b 

a DWA, The Netherlands 

b Delft Center for Systems and Control, Delft University of Technology 

Abstract. Multi-sensor networks are becoming more and more popular in order to assess the 

post-occupancy performance of smart buildings, since they enable continuous monitoring with 

a high spatial resolution of the occupancy, thermal comfort and indoor air quality. An urgent, 

but poorly attended topic in this field is the automated detection of sensor anomalies. For 

example, CO2-sensors can perform auto-calibration, during which the data is not reliable. 

Without identifying the poor reliability of this data, any analysis based on it may be misleading. 

Automated detection and diagnosis of multi-sensor anomalies is a challenging task due to the 

complex characteristics of each data point, the variety of data points and the sheer number of 

data points. As a result, rule-based algorithms require an extensive expert-based set of rules, 

which makes them sensitive to threshold values and case specific exceptions. Machine learning 

algorithms can overcome these issues, but they require datasets with labelled sensor anomalies 

to do diagnosis. Acquiring such labelled datasets is labour intensive and therefore expensive. In 

this paper we show the potential of a transition from an unsupervised to a supervised machine 

learning approach. The unsupervised algorithm is used to detect anomalies and to identify 

anomaly classes of interest. This enables for labelling such classes efficiently in order to train 

classifiers for multiple classes of anomalies. The unsupervised and supervised algorithms are 

employed in parallel during the transition, allowing for the simultaneous detection of unknown 

anomaly classes and diagnosis of known anomaly classes. The improved performance of the 

combined classifier compared to unsupervised detection is shown by the precision-recall curve. 

Though the presented approach is rather generic, it does have some limitations. Because a 

window-based approach is used, only time windows can be detected as being anomalous, not 

the exact time. Also, we focus on the detection of sudden anomalies and the approach does not 

allow for detecting stationary or trend anomalies.  

Keywords.  Multi-sensor networks, anomaly detection and diagnosis, machine learning, HVAC
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1. Introduction

Health monitoring in buildings is, apart from Covid-
19, an important topic as people spend a lot of hours 
in the indoor environment. Evaluation standards are 
commonly based on samples that are taken from a 
selection of rooms in a limited time (see for example 
[1]). Multi-sensor networks enable the possibility to 
assess thermal comfort (temperatures), indoor air 
quality (CO2, TVOC, relative humidity), light and 
sound with a high spatial resolution using 
continuous monitoring. Together with occupancy 
measurements, it’s becoming a standard within so-
called smart buildings.  

Continuous monitoring with a high spatial 
resolution also opens new perspectives for 
continuous commissioning instead of periodic 
commissioning or initial commissioning after the 
construction phase [2].  

An urgent, but poorly attended topic in this field is 
the accuracy of the sensors and potential sensor 
anomalies. Applying sensors at such a large scale 
will lead to a preference for low-cost solutions with 
potential poor performance related to accuracy. The 
large scale applications also challenge the 
maintenance of the sensors.  
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Automated fault detection and diagnosis (FDD) for 
sensor networks is therefore inevitable. This is 
enhanced by the fact that sensors play also an 
important role in FDD on the HVAC system level. 
The consideration of sensor faults together with a 
component fault can increase the difficulty of FDD 
exponentially [3]. This can be the case especially for 
temperature, CO2 and humidity measurements as 
they can be involved in control loops of room supply 
of heating and cooling by variable air volume 
terminal units, chilled beams, ceiling panels etc. 
Specific anomaly detection focussed on sensors will 
strongly improve the FDD on the component and 
system level.    

1.1 Anomalies in multi-sensor networks 

Anomalies in sensors occur due to different causes. 
Examples are inaccurate measurement position of 
the sensor, connection losses to the data acquisition, 
blocking of sensors by objects and calibration 
issues. CO2 sensor calibrations degenerate over time 
and some CO2 sensors perform auto-calibration 
procedures with a possible erroneous outcome.  

To deal with the vast amounts of data, pre-
processing is often performed in the local sensor 
unit, which makes the performance also sensible to 
software updates. New versions of the pre-
processing software may for example not be 
compatible with the older versions of the hardware.  

In order to reduce the data transfer from local to 
central data processing systems may also use the 
change-of-value (CoV) principle. The local sensor 
unit only provides a new sample to the central 
system when the measured value is changed related 
to the previous measured value. On the level of the 
central system, it is difficult to distinguish between 
the regular missing values due to the CoV principle 
and temporal connection losses of the multi-sensor 
unit. Fig. 1 shows connection losses in temperature 
measurements. As can be seen, the connections 
losses are hard to identify by looking at the single 
sensor in isolation.  Alternatively, they are easily 
detected when looking at all sensors combined. 

Anomalies in temporal data are often categorized as 
either point, contextual or collective anomalies [4, 5, 
6]. A point anomaly is a single instance and a 
collective anomaly is a collection of instances that is 
anomalous as a whole (see Fig. 2). Furthermore, we 
can distinguish sudden, stationary and trend 
anomalies. Continuous blocking of a sensor for 
example will give a stationary error. Slowly 
degenerating CO2 sensors will give a trend error, 
while a CO2 sensor that performs auto calibration 
will give a sudden error. In this paper, we focus on 
sudden errors. 

Fig. 1 - Analysis of a single sensor (pink) in relation to 
its neighbouring sensors (black) for the detection of 
connection losses (blue).  

Fig. 2 - Point (pink) and collective anomalies (blue). 

1.2 Related work 

Fault detection and diagnosis for building systems 
and HVAC applications show a long history of 
techniques which already has been applied.  Kim 
and Katipamula provide an overview of the different 
methods with their applications, from quantitative 
as well as qualitative model-based diagnostic 
methods and process history-based methods [7].  

Process history-based and qualitative model-based 
methods are the most popular methods. 
Quantitative model-based methods desire an 
explicit mathematical expression of the system as 
well as accurate input parameters. For multi-
sensors, this should include thermal models, air 
quality models, light models and sound models. 
From the qualitative model-based models the rule-
based algorithms show the most extensive track 
record. However, they require an extensive expert-
based set of rules, which makes them sensitive to 
threshold values and case-specific exceptions. 

An overview of artificial intelligence-based FDD 
methods is given by Zhao, Li, Zhang et al. [3]. They 
divide the data-driven detection methods into 
classification based methods and unsupervised 
detection methods. From the unsupervised 
methods, principle component analysis is the most 
popular method, while from the classification based 
methods multi-class classification has received the 
most attention.  

Related work from other disciplines than HVAC can 
be found in the field of wireless sensor networks, 
see for example Chen, Li and Huang [8].  

 ar   ar  

 
em

 
er

at
 
re

  

2 of 8



1.3 State of the art and its limitations 

One common problem for the application of 
artificial intelligence-based FDD is the lack of 
labelled datasets.  Zhao, Li, Zhang et al. [3] indicate 
it as one of the main shortcomings of data-driven 
methods. The availability of normal data, separated 
from faulty data is often a prerequisite for applying 
the available methods which are described in the 
review [3]. However, in practical applications 
manufacturers of multi-sensors don’t  rovide 
‘normal’ datasets.  

This problem is not limited to HVAC applications. 
Also, Chen, Li and Huang mention this problem for 
wireless sensor network datasets in general and use 
anomaly insertion methods to test their detection 
methods [8].  

Acquiring labelled datasets is labour intensive and 
therefore expensive. Efficient labelling is a possible 
way out. Efficient labelling can be performed by 
starting with unsupervised learning followed by 
supervised learning for the most common faults or 
faults with a high impact.  

In this paper, we show the potential of a transition 
from an unsupervised to a supervised machine 
learning approach. The main contribution of the 
paper is the development of a systematic 
framework for this transition and a proof of concept 
in the application domain of multi-sensors using a 
real-world dataset. 

The unsupervised algorithm is used to detect 
anomalies and to identify anomaly classes of 
interest. This enables for labelling such classes 
efficiently in order to train classifiers for multiple 
classes of anomalies. The unsupervised and 
supervised algorithms are employed in parallel 
during the transition, allowing for the simultaneous 
detection of unknown anomaly classes and 
diagnosis of known anomaly classes.  

It will be shown how parallel operation of 
supervised and unsupervised provides a way of 
efficient labelling compared to conventional 
querying and labelling of datasets. Efficient 
labelling, however, can still lead to extensive 
datasets which have to be queried and labelled. 
Therefore we also show how limited querying and 
labelling performs when unsupervised and 
supervised learning are used in parallel.   

Results are shown for a real-world dataset from a 
case study: a Dutch office building utilized with 
multi-sensors.  

2. Research methods

2.1 Case study 

The case study comprises a Dutch office building in 
the Netherlands, which is utilized with BRT-35 
ceiling multi-sensors [9]. The following parameters 
are measured: occupancy of the room  (passive 
infrared detection), infrared temperature, CO2 
concentration, relative humidity, sound pressure 
level and light intensity. The data is processed by 
the local sensor unit, while the data is stored in the 
database of the building management system.  

The storage uses the change-of-value (CoV) 
principle, i.e. a value is only stored when it has 
changed within a certain resolution. The results of 
this paper are based on the averaged values on a 
time grid of 3 minutes. In this case study, the results 
are presented for the infrared temperature sensors. 
Due to CoV principle, connection loss is an 
important anomaly that is challenging to detect. 
This is one of the labelled anomaly classes and it is 
used in this paper to demonstrate the transition 
from unsupervised detection to supervised 
classification.  

Fig. 3 - The four categories for analyzing the data in a 
multi-sensor network. 

As illustrated by Fig. 3, the data analysis can be 
categorized into four categories. In the first 
category, each sensor at each location is analyzed in 
isolation on a purely temporal basis. In the second 
category, spatial relations are used as well, e.g. to 
compare a CO2 sensor to neighbouring CO2 sensors. 
In the third category, temporal and sensorial 
relations are used, e.g. to compare a CO2 sensor to a 
temperature sensor at the same location. In the 
fourth category, temporal, spatial and sensorial 
relations are used, e.g. to compare a CO2 sensor at a 
certain location to a temperature sensor at another 
location. For this paper, we mainly foc s on the first 
category, b t we also show the  otential benefit of 
adding the second category. Starting with the 
temporal basis allows also the application of the 
concept for other HVAC-applications like flow, 
electricity consumption etc. 

The dataset consists of data gathered from 57 multi-
sensors from February 20, 2020 until July 10th, 2020 
(139 days). Labelling is performed per day (see 
section 3.1), so we have 7923 day records available. 
With the manual labelling of the temperature 
sensors, the following numbers of labels apply: 
5434 unlabelled, 2489 anomalies. Of these 
anomalies, 1653 are labelled as connection loss and 
836 as other anomalies. 
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Furthermore, the labelling was done by an expert. 
For each window of a day, visually deviating 
patterns in the entire dataset of 57 sensors were 
labelled as being anomalous. Note that the deviating 
pattern was judged in the temporal context of the 
sensor itself. This process was performed for 
temperature all temperature sensors.  

2.2 Proposed framework 

In this section, the proposed framework for learning 
and labelling is further discussed. We aim to detect 
and diagnose anomalies coming from the sensor 
network such that the results can be visualized in a 
dashboard. As illustrated in Fig. 4 together with 
Tab.1, the framework can be divided into three 
sections; unsupervised querying, manual labelling 
and supervised classification. Likewise, the 
framework can be summarized with one equation 
for each section: 

𝑙𝑢 = 𝜏𝜃 (ℎ𝑢(Ф𝑢(𝑑))) (2.1) 

𝑙𝑚 = 𝑜𝑟𝑎𝑐𝑙𝑒(𝑑, 𝑙𝑢) (2.2) 

𝑙𝑠 = ℎ𝑠(Ф𝑠(𝑑), 𝑙𝑚, 𝑠) (2.3) 

Tab. 1 - Signal and function descriptions. 

Notation Name Domain 

𝑑 Raw data 𝑅𝑛 
𝑥𝑢 , 𝑥𝑠 Unsupervised, super-

vised instances in 
feature space 

𝑅𝑜 , 𝑅𝑝 

𝑙𝑢, 𝑙𝑚, 𝑙𝑠 Unsupervised, manual, 
supervised labels 

{0,1}, 𝑁, 
{0,2,3, … } 

𝑠 Anomaly score 𝑅+ 
Ф𝑢, Ф𝑠 Unsupervised, super-

vised feature mapping 
𝑅𝑛 → 𝑅𝑜 , 
𝑅𝑛 → 𝑅𝑝 

ℎ𝑢 Scoring function 𝑅𝑜 → 𝑅+

ℎ𝑠 Classifier 𝑅𝑝 × 𝑅+ × 𝑁
→ {0,2,3, … }

𝜏𝜃 Thresholding function 𝑅+ → {0,1} 
oracle Oracle 𝑅𝑛 × {0,1} → 𝑁 

For the unsupervised querying, the raw data 𝑑 is 
first mapped to 𝑥𝑢 in the feature space using the 
feature mapping function Φ𝑢 ∶ 𝑅𝑛 → 𝑅𝑜 , with 𝑜 ≪ 𝑛
for dimensionality reduction. A scoring function ℎ𝑢 
is then applied to 𝑥𝑢 to generate an anomaly score 𝑠. 
Lastly, a threshold function 𝜏𝜃 is applied to 𝑠 for a 
given threshold 𝜃 to generate labels 𝑙𝑢, where 𝑙𝑢 = 0 
implies normal data and 𝑙𝑢 = 1 implies anomalous 
data.  

The manual labelling is performed by a human 
expert, who provides manual labels 𝑙𝑚 for the 
instances where 𝑙𝑢 = 1. Data selected by the query 
algorithm is presented to the human expert for a 
single sensor and for the corresponding day within 
the context of all other days of that sensor. Visually 
deviating patterns are labelled as being anomalous 
within their corresponding class (𝑙𝑚 ∈  {1,2, … }) 
and are labelled normal otherwise (𝑙𝑚 = 0).  

For the supervised classification, the raw data 𝑑 is 
first mapped to 𝑥𝑠 in the feature space using the 
feature mapping function Φ𝑠 . A classifier ℎ𝑠 is then 
applied to 𝑥𝑠 using the anomaly scores 𝑠 and manual 
labels 𝑙𝑚 to generate supervised labels 𝑙𝑠 . Where 
𝑙𝑠 = 0 implies normal data and other values imply a 
specific class of anomalies. 

In practice, 𝑙𝑢 is used for unsupervised anomaly 
detection, while 𝑙𝑠 is used for supervised anomaly 
detection and diagnosis. The framework, therefore, 
allows us to transition from detection towards 
detection and diagnosis, by manually labelling 
instances where 𝑙𝑢 = 1 and using those manual 
labels 𝑙𝑚 for supervised classification.  

Assuming that 𝑙𝑢 is a good indication of 
anomalousness, the transition is more efficient 
compared to traditional querying. Additionally, the 
unsupervised nature of the querying allows us to 
query novelties. The latter is important as we need 
to label novelties to construct new supervised 
classification blocks for previously unknown 
anomalies. Note that once 𝑙𝑠 is available (i.e. ℎ𝑠 is 
trained using 𝑙𝑚), it can be used in parallel with 𝑙𝑢 to 
generate combined labels 𝑙𝑐 ∈ 𝑁, see equation 2.4. 

𝑙𝑐 = 𝑚𝑎𝑥(𝑙𝑢, 𝑙𝑠) (2.4) 

2.3 Performance metrics 

The performance of the proposed framework is 
evaluated in two ways. Firstly, the labelling 
efficiency is evaluated by comparing the fraction of 
anomalies queried with 𝑙𝑢-based querying to those 
queried with traditional querying. This is tested 
using the manually obtained labels for the entire 
dataset. As explained in section 2.1, these labels 
should not be confused with the labels obtained 
through 𝑙𝑢-based querying.  

Because 𝑙𝑢 depends on the chosen threshold 𝜃, the 
performance should be measures as a function of 𝜃. 
This is commonly done by ranking all instances by 
their anomaly score 𝑠 and subsequently applying 
the varying threshold 𝜃 to convert the scores to 
labels 𝑙𝑢 [4, 10].  

Fig. 4 - Framework for unsupervised querying (blue), manual labelling (grey) and supervised classification (pink). 
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Secondly, the detection performance is evaluated by 
comparing the combined labels 𝑙𝑐 to the 
unsupervised labels 𝑙𝑢. But this can not be done 
directly, because 𝑙𝑐 ∈ 𝑁 can be used for both 
detection and diagnosis while  𝑙𝑢 can only be used 
for detection. Thus, compare the detection 
performance of the two by transforming 𝑙𝑐 to 
combined detection labels 𝑙𝑐𝑑 ∈ {0,1}, see equation 
2.5. 

𝑙𝑐𝑑 = {
0, 𝑙𝑐 = 0
1, 𝑙𝑐 ≥ 1

(2.5) 

The labels are used to compute whether an instance 
is a true positive (𝑇𝑃), false positive (𝐹𝑃), true 
negative (𝑇𝑁) or false negative (𝐹𝑁) for each 
threshold. Subsequently, the precision (𝑃𝑅 =
𝑇𝑃 𝑇𝑃 + 𝐹𝑃⁄ ) and recall (𝑅𝐸 = 𝑇𝑃 𝑇𝑃 + 𝐹𝑁⁄ ) are 
computed to create a precision-recall curve. The 
area under the curve (𝐴𝑈𝐶) is computed and used 
as a performance measure for detection. However, a 
downside to using the 𝐴𝑈𝐶 is that it does not put 
emphasis on the precision. Precision is an important 
performance measure when addressing an 
important drawback of many rule-based systems: 
too many false positives, resulting in the loss of 
attention of users of the anomaly detection system. 
Therefore, the recall for a precision of 95% 
(𝑅𝐸𝑃𝑅=95%) and for a precision of 98% (𝑅𝐸𝑃𝑅=98%) 
are used as well.  

3. Framework application

The main contribution of this paper is the proposed 
framework, which can be exercised with various 
functions for Ф𝑢, ℎ𝑢, Ф𝑠 and ℎ𝑠 . These functions can 
be adapted to the application at hand and the 
functions used here are described in this chapter. 
Furthermore, this chapter starts with a description 
of the window-based approach that is applied to the 
framework.  

3.1 Window-based approach 

Anomaly detection methods are either prediction-
based or window-based [4, 5]. The window-based 
approach is applied in this paper. The main 
consideration for designing the window is that the 
raw data is periodic in nature, i.e. seasonal, weekly 
and daily. Daily windows are used because the 
number of seasonal and weekly cycles in the data is 
quite low and it allows for the detection of sudden 
anomalies, rather than trend or stationary 
anomalies. 

Consequently, the data 𝑑 is partitioned into non-
overlapping, equally sized data windows 𝑑𝑊𝑖

 such

that each day is represented by one window 𝑊𝑖 ⊆
𝑡 ∈  {1, … , 𝑇} with 1 ≤ 𝑖 ≤ 𝑤. This is done through 
the feature mapping functions Ф𝑢 and Ф𝑠. These 
functions respectively generate a single 𝑜- and 𝑝-
dimensional point in the feature space for each 
window. 

3.2 Unsupervised querying 

The unsupervised nature of the querying allows us 
to query novelties so that we can obtain manual 
labels for new anomaly classes and train a classifier 
on those labels. However, the unsupervised nature 
also makes automated feature learning and 
extraction challenging [4]. Therefore, Ф𝑢 is 
constructed using expert domain knowledge only, 
i.e. without knowledge of the querying performance. 
Ф𝑢 consists of a set of seven features 𝜑𝑢,1:7 and
thereby reduces the number of dimensions to seven. 
Tab. 2 gives mathematical descriptions of 𝜑𝑢,1:7.

Tab. 2 - Feature mapping function Фu. 

Feature Description 

𝜑𝑢,1:2(𝑊𝑖) min
𝑡∈𝑊𝑖

𝑑(𝑡), max
𝑡∈𝑊𝑖

𝑑(𝑡) 

𝜑𝑢,3(𝑊𝑖) ∑ 𝑑(𝑡)
𝑡∈𝑊𝑖

|𝑊𝑖|⁄  

𝜑𝑢,4(𝑊𝑖) min
𝑡∈𝑊𝑖

𝑑(𝑡) − 𝑑(𝑡 − 1)  

𝜑𝑢,5(𝑊𝑖) max
𝑡∈𝑊𝑖

𝑑(𝑡) − 𝑑(𝑡 − 1) 

𝜑𝑢,6(𝑊𝑖) |{𝑑(𝑡) ∶ 𝑡 ∈ 𝑊𝑖}| 

𝜑𝑢,7(𝑊𝑖) ∑ ‖𝑑(𝑡) −
1

𝑤
∑ 𝑑 (𝑡 + 𝑗

𝑇

𝑤
)

𝑤

𝑗=1
‖

𝑡∈𝑊𝑖

 

The textual descriptions of 𝜑𝑢,1:7 are respectively 
the minimum, the maximum, the average, the 
minimum first order difference, the maximum first 
order difference, the number of unique values and 
the Euclidean distance to the average window of a 
window 𝑊𝑖 . 

As we are interested in the detection at the 
individual sensor level, Ф𝑢 is applied to each sensor 
individually. However, the scoring function ℎ𝑢 and 
thresholding function 𝜏𝜃 are applied to all sensors 
combined so that the detection at the sensor level is 
done with the knowledge of the behavior of the 
other sensors. Note that all sensors are treated 
equally here and no information (e.g. spatial 
information) is used to group them. 

The unsupervised scoring function ℎ𝑢:  𝑅𝑜 → 𝑅+ first
scales the feature space using median-MAD scaling, 
as it is robust to anomalies and it centers the data 
around the origin [11, 12]. The median-MAD scaling 
function is given by equation 3.1, where 𝑥 is a vector 
containing a feat re’s val es in the feature space 
and 𝑥’ is the scaled version of that vector.  

𝑥′ =
𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)

 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)|)
(3.1) 

An unsupervised learning algorithm is then applied 
to the scaled feature space in order to generate 
scores 𝑠. Unsupervised learning algorithms for 
anomaly detection can broadly be categorized as 
statistical, proximity-based and information-
theoretic [4, 5, 6]. Two of the most established 
algorithms are the 𝑘𝑡ℎ nearest neighbour (𝑘𝑡ℎ-NN) 
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and the local outlier factor (LOF) algorithms [4, 10, 
13]. 𝑘𝑡ℎ-NN is better suited for finding global 
anomalies, while LOF is better suited for finding 
local anomalies [10]. Since we are mainly interested 
in global anomalies, we apply 𝑘𝑡ℎ-NN. 

Please note that the unsupervised 𝑘𝑡ℎ-NN algorithm 
should not be confused with the supervised 𝑘-NN he 
𝑘𝑡ℎ-NN algorithm finds the distance to an instances 
𝑘𝑡ℎ nearest neighbour and we use that distance as 
anomaly score 𝑠. For 𝑘, we use half the size of the 
dataset [14].  

3.3 Supervised classification 

For the supervised classification, two sets of the 
feature mapping function Ф𝑠 and the classifier ℎ𝑠 
are constructed to demonstrate the transition from 
detection towards detection and diagnosis. Both 
sets aim to detect and diagnose detection losses. 

Classification set 1: Ф𝑠,1 computes the longest 
period during which the values do not change for 
each sensor individually.  The classifier ℎ𝑠,1 is then 
applied to all sensors combined. 

Classification set 2: Ф𝑠,2 computes the longest 
period during which the values of all sensors do not 
change.  The classifier ℎ𝑠,2 is then applied to the 
resulting feature space. 

Two sets are constructed to demonstrate the 
strength of utilizing the sensor network for anomaly 
detection and diagnosis on a single sensor level for 
connection losses. Note that both ℎ𝑠,1 and ℎ𝑠,2 scale 
the feature space through median-MAD scaling, see 
equation 3.1. 

Though the proposed framework allows us to 
efficiently obtain positive manual labels, only a 
small subset of the data is generally labelled as such. 
Additionally, very few or no negative labels are 
obtained. Given these constraints and the need to 
distinguish classes of anomalies from the normal 
data, we are limited to a specific case of binary 
classification called positive unlabeled  (PU) 
learning [15]. In PU-learning, a learner only has 
access to positive and unlabeled instances. 

In order to obtain a binary classification problem, 
both positive and negative labels are required to 
train the classifier. As the oracle provides mostly 
positive labels, there is a lack of negative labels in 
the training set. But since normal data is abundant, 
we can leverage the anomaly score 𝑠 to select 
instances that are likely normal, i.e. instances with a 
low anomaly score. Those instances are then 
assumed to be normal and used to enrich the 
training set, see Fig. 5. This is done such that the 
normal of positive labels equals the number of 
negative labels. 

For the resulting classification problem, we use a 𝑘-
NN classifier, which is optimized with respect to the 
leave-one-out classification error. As described by 
equation 2.4, the output 𝑙𝑠 of the classifier overrules 
the output 𝑙𝑢 of the unsupervised detection. 

Fig. 5 - Selecting likely normal instances (grey) from 
unlabeled data (blue) to enrich the training set, which 
would otherwise consist of only manually labelled 
anomalous instances (pink). 

4. Results

4.1 Labelling efficiency 

As described in section 2.3, the labelling efficiency 
using 𝑙𝑢-based querying is compared to 
conventional querying. With conventional querying, 
a human annotator sequentially inspects the data 
day by day. The strategies are compared by 
comparing the percentage of anomalies labelled as a 
function of the percentage of instances queried for 
both query strategies, see Fig. 6.  

Fig. 6 - Labelling efficiency for anomalies using 𝑙𝑢-
based (blue) and conventional querying (pink). 

When querying 20% of all instances using 
conventional querying, 20% of all anomalies will be 
labelled. But when querying 20% of all instances 
using 𝑙𝑢-based querying, 62% of all anomalies will 
be labelled. Alternatively, to label 20% of all 
anomalies using 𝑙𝑢-based querying, only 6% of all 
instances need to be queried. 

Because supervised labels 𝑙𝑠 are generated for 
connection losses, as described in section 2.3, we 
also evaluate the labelling efficiency for this specific 
class of anomalies, see Fig. 7.  

When querying 20% of all instances using 
conventional querying, 20% of all connection losses 
will be labelled. But when querying 20% of all 
instances using 𝑙𝑢-based querying, 69% of all 
connection losses will be labelled. Alternatively, to 
label 20% of all connection losses using 𝑙𝑢-based 
querying, only 7% of all instances need to be 
queried. 
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Fig. 7 - Labelling efficiency for connection losses using 
𝑙𝑢-based (blue) and conventional querying (pink). 

The results show the improved labelling efficiency 
for labelling anomalies and a specific anomaly class 
(i.e. connection losses) using 𝑙𝑢-based querying 
compared to conventional querying. The improved 
efficiency allows the oracle to label more anomalies 
for a given number of queries. Or alternatively, it 
allows the oracle to reduce the number of queries to 
label a given number of anomalies and thereby 
reduce the resources required for human 
annotation. 

4.2 Detection performance 

As described in section 2.3, the combined 
performance is evaluated by comparing the 
combined detection labels 𝑙𝑐𝑑  to the unsupervised 
labels 𝑙𝑢 with precision-recall curves. Naturally, this 
performance is a function of the number of labelling 
instances. But though the labelling is done 
efficiently, the process could still be labour intensive 
if a large number of labels is required for 
classification.  

In this section, we show the combined performance 
when only 1% of all instances are queried, i.e. those 
with the highest anomaly scores 𝑠. This provides us 
with 27 labelled connection losses. Additionally, the 
27 instances with the lowest 𝑠 are selected to 
complete the training set, while assuming they are 
normal.  

For classification set 1, the feature mapping function 
Ф𝑠,1 is applied to the raw data and classifier ℎ𝑠,1 is 

trained on the training set. ℎ𝑠,1 is then applied to the 
remaining instances, i.e. the test set, to generate 
supervised labels 𝑙𝑠 . Fig. 8 shows the resulting 
performance when equation 2.4 and equation 2.5 
are applied. 

For classification set 2, we use the knowledge that 
connection losses often occur for all sensors 
simultaneously. So if we have a label for 1 sensor for 
a day, we assume all sensors have a connection loss 
and use that for training the classifier. Again, Fig. 8 
shows the resulting performance when equation 2.4 
and equation 2.5 are applied. 

The performance can now be measured by the 𝐴𝑈𝐶 
of the precision-recall curves, see Tab. 3. Though as 
stated in section 2.3, this metric does not put 
emphasis on the precision, which is important for 
preventing false positives. Therefore, we also take 
into account 𝑅𝐸𝑃𝑅=95% and 𝑅𝐸𝑃𝑅=98%.  

Fig. 8 - The precision-recall curve for unsupervised 
detection (grey), combined detection using 
classification set 1 (pink) and classification set 2 (blue). 

Tab. 3 - AUC, REPR=95% and REPR=98% for the different 
configurations. 

Configuration 𝐴𝑈𝐶 𝑅𝐸𝑃𝑅=95% 𝑅𝐸𝑃𝑅=98% 

Unsupervised 
detection 

87% 52% 43% 

Combined detection 
using class. set 1 

88% 70% - 

Combined detection 
using class. set 2 

90% 78% 76% 

Clearly, the combined detection using classification 
set 2 performs the best, as it scores the highest on 
all metrics. Whether the unsupervised detection is 
preferred over the combined detection using 
classification set 1 is depends on the application 
though. The latter does have a higher 𝐴𝑈𝐶 and 
𝑅𝐸𝑃𝑅=95%, but its main drawback is that it never 
achieves a precision higher than 97% (and therefore 
does not have a 𝑅𝐸𝑃𝑅=98%). This is due to the false 
positives generated by the supervised classification, 
which overrule the output of the unsupervised 
detection. 

5. Discussion and future direction

The proposed framework is rather generic in 
nature, but it does have two limitations resulting 
from the framework application. Firstly, the 
window-based approach results in the detection of 
anomalous windows. But if a short anomalous event 
occurs that renders the window anomalous, the 
detection is not able to single out the event itself 
within the window. Secondly, we focus on the 
detection of sudden anomalies and the approach 
does not allow for detecting stationary or trend 
anomalies. 

Furthermore, we have shown that an improvement 
in labelling efficiency can be achieved by querying 
instances with a high anomaly score. Though a 
drawback of this strategy is that it does not allow us 
to target edge cases for querying. Future research 
could focus on utilizing active learning methods to 
query edge cases for partially labelled anomaly 
classes.  

 nstances   eried  

 
o
n
n
. l
o
ss

es
 l
ab

el
le

d
  

 
o
n
n
. l
o
ss

es
 l
ab

el
le

d

 ecall  

 
re

ci
si
o
n
  

7 of 8



When instances are manually labelled by the oracle 
and they are used to train a classifier, we have seen 
that the false positives provided by the classifier 
limit the precision of the whole framework. This is a 
direct result of the supervised labels overruling the 
unsupervised labels through equation 2.4. It is 
therefore advised to use only supervised classifiers 
with high precision in combination with 
unsupervised detection. Furthermore, a specific 
feature mapping function and binary classifier need 
to be designed for each anomaly class. To reduce the 
required work associated with classifying multiple 
anomaly classes, it is worth investigating the usage 
of a multi-class classifier and automated feature 
extraction. 

Note that the unsupervised/supervised approach 
not only improves anomaly detection but also 
provides diagnosis for labelled classes.  

6. Conclusions

A common problem for the application of machine 
learning-based FDD is the lack of labelled data. In 
this paper, we have shown that the proposed 
framework allows us to efficiently obtain labels and 
use those labels to transition from unsupervised 
detection towards supervised diagnosis. This was 
shown using a real-world dataset of multi-sensors 
in an office building. 

Additionally, we have shown that the (mostly 
positive) labels can be used in combination with the 
anomaly scores to train a classifier using PU-
learning. This results in an improved precision-
recall curve, and additionally allows us to generate 
supervised labels for diagnosis. This has been 
shown for connection losses of the multi-sensor, an 
urgent topic when multi-sensors operate according 
to the CoV principle with its frequently missing 
values in the time series. 
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