
Improving Blockchain Anonymity Using Hop Changes with Partial Route
Computation

Rick de Boer1 , Satwik Prabhu Kumble1 , Stefanie Roos1
1TU Delft

Abstract
The Lightning Network aims to solve Bitcoin’s
scalability problem by providing a way to transact
with minimal use of the blockchain. Instead, pay-
ments are routed over payment channel networks.
This routing is done by LN clients, which use cost
functions to compute the optimal transaction path.
With the use of onion routing, LN tries to hide the
identity of transaction participants from each other.
However, the cost functions of these routing proto-
cols are currently too deterministic, making it pos-
sible for curious transaction participants to com-
prise the identity of sender and receiver by com-
puting the optimal path themselves.
Here we show that we can increase the anonymity
of this network by adding randomness to these
routing algorithms. More specifically, during path
computation we will randomly deviate from the
optimal path by hopping to a random node and
continue by computing a new optimal path from
there. The unpredictability of this process improves
the anonymity of the network, such that malicious
nodes can identify the sender and recipient of trans-
actions with negligible probability in most cases.

Keywords
Payment Channel Networks, Lightning, Routing, Anonymity

1 Introduction
Proof-of-work blockchains like Bitcoin have shown great
promise to be used as a decentralized electronic payment
method [12]. Although the implementations of their
consensus algorithms have proven to be quite slow and un-
sustainable, as they involve a large number of miners doing
difficult computations to validate even a single block [4].
This presents a scalability issue that will only become worse
as the number of users increases. Other digital payment
methods like Visa1 can sustain thousands of transactions per
second, while Bitcoin is currently able to sustain about ten

1https://usa.visa.com/content/dam/VCOM/download/corporate/
media/VisaInc factsheet 11012015%20(002).pdf

transactions per second [5].

One promising solution to Bitcoin’s scalability problem is
the Lightning Network (LN) [15]. LN is a payment chan-
nel network (PCN) built on top of Bitcoin as a separate layer
[5]. LN promises instant payments with low transaction costs
while holding on to the security provided by the Bitcoin
blockchain [17]. It accomplishes this by conducting its trans-
actions on the PCN and only using the main blockchain in
case of a dispute or during the opening/closing of a chan-
nel [5]. These transactions are often called ”off-chain”. Two
users can open a payment channel by locking collateral on
the blockchain [9]. From then on, these two users can trans-
act with each other by redistributing this collateral. Once a
user wants to close the channel, they can do so by publish-
ing the last agreed-upon state to the blockchain such that the
funds are correctly split [5]. Two nodes that aren’t directly
connected can still transact with each other when they are
connected via other nodes. The public topology of the PCN
makes it possible for the sender of a payment to find a route
that connects them to their desired recipient. This is called
source routing [5]. These routes are computed by LN clients,
which use cost functions to find an optimal path of payment
channels [9], also called the Transaction Path. Depending
on the used client, this optimality is based on criterions like
low transaction costs, time lock durations and channel relia-
bility. LN employs onion routing [2] in an attempt to prevent
information leakage to intermediary nodes. This way, an in-
termediary node will only be given knowledge of whom they
got the payment from, and to whom they should forward it
[7].

However, recent studies have shown that the network’s
deterministic path computation still allows malicious nodes
to uniquely identify the sender or receiver for about 70%
of observed transactions, thus diminishing the network’s
anonymity [9]. This work proposes a new routing algorithm
that improves this anonymity by adding a non-deterministic
element to the path computation. This new routing algorithm
involves randomly deviating from the optimal route by
adding a suboptimal node (hop change) to the path. When
such a hop change occurs, we continue by computing a new
optimal route starting from the hop. This way of routing
generates transaction paths that make it harder for malicious
nodes to find the sender and recipient of the payment, because

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

https://usa.visa.com/content/dam/VCOM/download/corporate/media/VisaInc_factsheet_11012015%20(002).pdf
https://usa.visa.com/content/dam/VCOM/download/corporate/media/VisaInc_factsheet_11012015%20(002).pdf

the randomness increases the number of potential sources
and destinations. However, these suboptimal paths come
with higher transaction fees and delays, so it is important
to limit the number of random hops such that we do not
undermine LN’s high performance and efficiency.

This paper is structured as follows. Section 2 gives a de-
tailed explanation of the inner workings of the Lightning Net-
work. Here we will cover topics like payment channel cre-
ation, transaction routing and LN clients. In section 3 we
will go over the attack strategy that adversaries can use to
undermine the anonymity of the network. Next, in section 4
we will go over the new algorithm that aims to solve these
anonymity problems with the use of random hops with par-
tial route computation. In section 5 we will see how this new
routing algorithm performs, by simulating it against custom
deanonymization attacks and comparing it with the contem-
porary routing protocol. In section 6 we will discuss the re-
sults of the simulation and judge whether we improved the
anonymity while still staying true to Lightning’s low transac-
tion costs and high performance. Next, in section 7 we reflect
on how responsibly the research was conducted. Finally, in
section 8 we will conclude and look if there is still room for
improvement.

2 The Lightning Network
The Lightning Network is a layer-2 protocol constructed on
top of the current Bitcoin protocol. This second layer pro-
vides a way to conduct off-chain transactions across the net-
work without having to trust intermediary nodes that are part
of the transaction [17]. The only time an LN user has to inter-
act with the blockchain is during a dispute or to open/close a
payment channel. LN is one of several other payment channel
networks that operate on the same principles, so the concepts
discussed here can also be applied to other PCNs. Being a
PCN, LN is comprised of many users who are connected via
payment channels. Here we model the Lightning Network as
a graph, where the nodes represent the users, and the edges
represent the payment channels.

2.1 Lightning Payment Channels
A Lightning payment channel can be opened by having two
users deposit bitcoins into a 2-of-2 multi-signature address,
such that any transaction would have to be signed by both of
them [7]. This is also called the Funding Transaction. The
coins that each user deposited represent their initial balance
in the channel, and the sum of these coins represents the
channel capacity. Users can spend coins as long as they have
a positive balance in the channel, and the maximum amount
of coins travelling through the channel can never exceed its
capacity. Before the funding transaction is broadcast to the
blockchain, each party has to sign a Revokable Commitment
Transaction (RCT), which permits the other party to unilater-
ally close the channel and extract their current balance [17].
This protects users against the loss of funds when the other
party becomes inactive. After the funding transaction has
been broadcast, users can redistribute the initial balance by
signing new RCTs. When a user decides to close the channel,

they have to publish the last agreed-upon RCT. Violating
this rule could result in the other party receiving all funds in
the channel [15]. This measure demotivates someone from
maliciously publishing an outdated RCT as an attempt to get
more coins.

Up until now, we have only discussed instances where two
users are directly connected via a payment channel, but more
often than not this is not the case. When two parties are not
directly connected, they have to route their payments through
the Lightning Network. LN has a public topography, mean-
ing that nodes are aware of other nodes on the network and
their payment channels. Nodes are identified by their public
key, and channels are associated with their channel identifier,
capacity, and transaction fee [7]. Nodes charge these transac-
tion fees whenever their channels are used as intermediaries.
This fee consists of a base fee plus a fee that is proportional
to the amount transferred:

fee = base fee+ fee rate ∗ amount

Nodes can charge different fees for their channels, and the
fees can also differ when using the channel from the oppo-
site direction. Based on this public knowledge, a sender can
decide how to route their payments to their desired recipient
(source routing). When routing a payment, the sender also
uses onion routing to hide their identity from other nodes on
the transaction path. A transaction is successful when ev-
ery intermediary node passes the payment to its successor on
the transaction path until the recipient is eventually reached.
However, transactions can fail and one should not have to
trust intermediary nodes on the transaction path. Thus, to
ensure the atomicity of transactions and compliance of in-
termediary nodes LN enforces the use of Hashed Time-lock
Contracts (HTLC)2.

Hashed Time-lock Contracts
The use of HTLCs enables a sender to lock their money on
the path of payment channels and only release it if they re-
ceive a certain secret only known by the receiver. The sender
can set a time frame for this, which is calculated by summing
the transaction delays of payment channels on the transaction
path. If the sender does not receive the secret within this time
frame, they can cancel the transaction and recover their funds.
Below is an example of a multi-hop-payment using the HTLC
protocol where Alice sends 1000 Satoshis to Bob, with Char-
lie being the intermediary node:

1. Bob sends an invoice to Alice, which contains the de-
sired amount of coins and a randomly selected secret
string hashed using the SHA256 hashing algorithm.

2. Alice computes a path to Bob and finds out that they are
both connected to Charlie.

3. Charlie charges a fee of 10 Satoshis to route the payment
from Alice to Bob, so Alice sends him a Sphinx packet
[3] with an HTLC containing 1010 Satoshis. Alice has
to make sure that the HTLC timelock is sufficiently high
for the transaction to be completed.

2https://en.bitcoin.it/wiki/Hash Time Locked Contracts

https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

4. Charlie subtracts the fee from the total amount and
sends Bob the packet with a new HTLC containing 1000
Satoshis. The new HTLC is made using the old one
with a lower timelock since Charlie will receive the pre-
image earlier than Alice.

5. Bob reciprocates by sending Charlie the pre-image of
the hash, who can then finalize their HTLC.

6. Charlie sends the pre-image to Alice such that Alice re-
leases the funds and the transaction is finalized.

2.2 LN Payment Routing
To conduct a transaction over the Lightning Network, one
first has to compute a route to their desired recipient. These
routes can be computed using a routing client. LN currently
has three active clients: Lightning Labs’ LND3, ACINQ’s
Eclair4, and Blockstream’s c-Lightning5. All three of these
clients use a variation of Dijkstra’s algorithm, where the costs
are computed by looking at transaction costs, channel capac-
ity, lock time and previous failures of the channel. Routes are
computed starting from the receiver, such that we can add the
growing transaction fees to the total amount for every sub-
sequent node. These routing clients have different cost func-
tions, meaning they have different priorities when judging the
optimality route. Below we will go over each client and their
cost functions:

LND: This is by far the most popular routing client used
within LN, as it is used by approximately 92% of the network
[9]. Its cost function is given by:

cost = amount ∗ timelock ∗ rf + fee+ bias

The amount equals the funds traveling through the channel,
and the timelock describes how long those funds will be
locked. rf is given by a constant risk factor of 15 ∗ 10−9,
and the bias is a value that is related to recent failures of the
channel.

c-Lightning: Similarly to LND, c-Lightning focuses
on minimizing the timelocks and fees, but also adds
some random fuzz to the calculation. This randomness
is introduced via a scaling factor, where scale = 1 +
random(−fuzz, fuzz). c-Lightning’s cost function is:

cost = (amount+ scale ∗ fee) ∗ timelock ∗ rf + bias

where rf and bias are related to the path length, initially set
to 10 and 1 respectfully. When the path length exceeds 20,
rf is set to a value close to 0, transforming the search into a
shortest path problem.

Eclair: Instead of looking for one optimal path like the
other clients, this client uses Yen’s k shortest path algorithm
[18] and randomly selects one of the results. This procedure
adds randomness to the computation in an attempt to confuse
attackers. As for its cost function, it first normalizes the time-
lock, capacity and age of channels (ntl, ncap, nage). It then
multiplies these values with default weights, resulting in the
following cost function:

cost = fee ∗ (ntl ∗ tlr + (1− ncap) ∗ capr + nage + ager)
3https://lightning.engineering/
4https://acinq.co/
5https://blockstream.com/lightning/

3 Attacking the Lightning Network
Now that we have a basic understanding of how the Lightning
Network operates, let us look into how some of its properties
can be exploited to undermine the network’s anonymity. First
we will define the goals and capabilities of an adversary in
the network, and then we will go over the attack itself.

3.1 Adversary Model
First, we assume that the network contains a set of evenly
spread adversaries with at least two active payment channels.
We do not consider private channels here, as they would not
be visible when using source routing. When such an adver-
sary participates in a transaction, it becomes their goal to
determine the sender and the receiver of the payment. Fur-
thermore, we assume that the adversaries are aware of the
LN topology and that they can use the HTLC payment infor-
mation, like timelocks and payment amount, to their advan-
tage. Because of onion routing, the adversaries only know
the previous and next nodes on the transaction path, let us
call them PRE and NEXT respectively. With this informa-
tion, the adversaries can rule out all of the nodes that can
not possibly be a sender or a receiver, ending up with an
Anonymity Set of potential senders and receivers. When the
sizes of the anonymity sets are low, this means that the net-
work has low anonymity, but the reverse is not necessarily
true [16]. We also assume that multiple adversaries will not
be able to use each other’s anonymity sets to narrow down
the potential senders and receivers, because the security of
HTLCs will eventually be improved such that you will not
be able to tell that you are part of the same transaction [10].
Finally, we assume that adversaries will not have any knowl-
edge of previous transactions, meaning that every node has
an equal probability of being a sender or receiver.

3.2 LN Attack Strategy
The attack [9] can be divided into the following two phases:

Phase I
During the first phase of the attack, we will use the informa-
tion inside the HTLC to rule out any nodes that can not be
reached with the remaining timelock and payment amount.
Then, we consider every possible loopless path, starting
from NEXT, and excluding the adversary node and PRE.
Here we start by considering every path with depth one,
incrementing until we find all of the combinations. Because
of the exponential growth of the attack’s time complexity, we
only allow a maximum depth of four for these paths. Now
for every path found we run phase II.
LN also supports Shadow Routing6, where the sender adds
an additional value to the total timelock. This procedure
makes it unreliable for an adversary to use the total timelock
to predict the destination of the payment. Consequently,
the timelock constraint is removed from the search when
this technique is applied, resulting in larger destination
anonymity sets.

6https://github.com/lightningnetwork/lnd/issues/1222

https://lightning.engineering/
https://acinq.co/
https://blockstream.com/lightning/
https://github.com/lightningnetwork/lnd/issues/1222

Phase II
Let P = {p1, p2, ..., prec} be a path found during phase I,
with prec being a potential receiver. We start by prepending
the adversary node and PRE to this path, resulting in path
P

′
= {PRE,A, P}. Next, we execute the following steps:

1. First we determine whether this path could be the result
of one of the routing clients, so we can include prec in
the destination anonymity set. We do this by using the
previously mentioned routing clients to compute opti-
mal paths from every node in the network to prec (When
using Eclair, we compute the 3 best paths). For every
node v, we check if it is part of P

′
. If so, we compare

v’s computed path P
′

with the subpath {v, ..., prec} of
P

′
. If these paths do not match we can conclude that P

′

could not have been computed by the routing client, so
we exclude prec from the destination anonymity set and
try phase II for another path.

2. Once we come across PRE during this pathfinding, we
again check if PRE’s computed path matches with P

′
.

If these do not match, it means that PRE could not
have been an intermediary. But we know for certain that
PRE is part of the transaction path, so we conclude that
PRE has to be the sender if prec is the recipient. This
conclusion can be made because a sender does not have
to pay fees for using their own channel, which could re-
sult in a different transaction path. If the paths do match
we just include PRE in the source anonymity set and
continue looking for other potential senders. When us-
ing Eclair, we conclude that PRE has to be the sender
when none of the 3 paths match with P

′
.

3. Once we have come across both PRE and A, we start
looking at new nodes differently. Now for every node
v that we visit, we check if Pv contains PRE. If so,
this means that v could have been the first intermediary
node, so we add all of v’s neighbors (except the ones in
Pv) to the source anonymity set. For Eclair, if any of the
3 paths contains PRE we add the neighbours of v to the
source anonymity set.

4 New Routing Algorithm
Thus, because of the deterministic nature of the current rout-
ing clients, transactions are easily traceable by adversaries.
c-Lightning and Eclair contain a bit of randomness in their
path computation, but their routes are still predictable in prac-
tice [9]. Here we will go over the proposed routing model
that aims to solve this issue. One of the goals of this new
model is that it holds up to the previously mentioned attack.
Furthermore, we assume that the adversaries are aware of the
new routing algorithm, so some features of the existing attack
have to be rewritten. Those changes will also be documented
here.

4.1 Routing Model
There are many ways one could go about adding a non-
deterministic element to LN routing [13; 6; 14; 8]. We will
approach this by adding (more) randomness to the path com-
putation. This randomness is added using the following pro-
cedure: we start by computing the optimal transaction path,
but during this process we randomly add a suboptimal node to
the path, called a hop change. After adding this hop change,
we restart the process by finding a new optimal route, start-
ing from the hop, until it is time for another random hop.
This partial route computation is repeated until we have suc-
cessfully connected the sender and receiver. When finding a
route, the chance of adding a hop change is related to the de-
gree of the node most recently added to the path. This results
in a larger variance of the possible paths, making the routing
even less predictable. In fig. 1 we compare this new model
with LN’s current way of routing on a small PCN where an
adversary happens to be part of both transactions.

Figure 1: Comparing LN’s current routing to the routing model

As expected, the adversary successfully comprises the
identity of the sender and receiver when using LN’s current
routing algorithms on this particular graph. However, the at-
tack fails when simulated with the new model. This happens
because the attack (from section 3) expects the payment to
follow the optimal path, so the use of this suboptimal path
results in the sender and receiver being excluded from the
anonymity set, which is exactly what we wanted. When an
adversary wants to attack this model, they would have to
change the original attack to be more inclusive when picking
potential senders and receivers, resulting in larger anonymity
sets.

4.2 The Algorithm
There are different ways to design an algorithm for this
model. One could argue for a simple approach, where for
every node that we add to the path, we have a chance to also
add one of this node’s unvisited neighbors to the path. This
approach would suit our needs, but it would have a pretty
severe impact on the performance, since this random node
could charge very high transaction fees or could come with
a large delay. Furthermore, this approach could motivate
an adversary to charge ridiculous fees in the hopes of their
channel being included as a random hop. The performance
results of such an algorithm can be found in appendix A.

As for the approach we are actually going to be using,
let us have a look at algorithm 1 and go through it step by
step. Keep in mind that this is a simplified version of the
real model7, but it should give you a general idea of how it
works. This pseudocode does not take transaction delays into
account, and it ignores the fact that senders do not have to pay
transaction fees when using their own channels.

Algorithm 1 Random Hops with Partial Route Computation

1: function ROUTING(G, source, target, amt)
2: paths← {}
3: visited← new Set()
4: pq ← new PriorityQueue() . Prioritize low costs
5: d← {} . Maintain distance to nodes
6: a← {} . Maintain amount + fees
7: paths[target]← [target]
8: d[target]← 0
9: a[target]← amt . Initialize

10: pq.add(0, target) . Start from receiver
11: while !pq.isEmpty() do
12: cost u, u← pq.get()
13: if u == source then
14: return paths[u] . Path found
15: end if
16: if cost u > d[u] then
17: continue
18: end if
19: visited.add(u)
20: for v in G.neighbours(u) do
21: if visited.contains(v) then
22: continue
23: end if
24: cost← d[u] + cost function(G, a[u], u, v)
25: if (random float(0, 1) ≤ 0.1
26: & len(paths[u]) ≤ 25) then
27: cost← cost ∗ 0.2

√
len(paths[v]) . Hop

28: end if
29: if cost < d[v] & capacity(u, v) ≥ a[u] then
30: pq.add(cost, v)
31: paths[v]← [v] + paths[u]
32: a[v]← fee(u, v) + a[u]
33: d[v]← cost . Update values
34: end if
35: end for
36: end while
37: return [] . No path found
38: end function

Like other routing protocols, this model uses Dijkstra’s al-
gorithm to find the shortest path starting from the receiver.
Here, Dijkstra’s path length is based on the results of a cost
function. This new routing model is designed to be backward
compatible with any of the other clients in the Lightning Net-
work, so the cost function on line 24 can refer to any client’s
cost function. When using Eclair, we execute this function
k times and pick a random result. The non-deterministic el-

7https://github.com/rejdeboerTU/LN-attack-simulation

ement is written on line 25. The way this works is that for
every unvisited node, we pick a random floating-point num-
ber between 0 and 1. If this number is smaller than 0.1, we
multiply the computed cost with a value related to the current
path’s length, starting from 0.2 and growing sublinearly. This
multiplication essentially constitutes a hop change, since it
will significantly reduce the computed distance to that node
and as a result, make it way more likely to be included in
the path. The relation to the path length is necessary be-
cause leaving it out would make long paths very random, dra-
matically increasing the delay and transaction costs. Like c-
Lightning, this method has a bias towards long paths. When
the path length becomes greater than 25, we stop applying
this multiplication because the multiplied value would else
become greater than 1, as 0.2 ∗

√
25 equals 1. The values 0.1

and 0.2 were found to be optimal after testing many different
combinations.

4.3 Modified Attack Model
Now let us revisit the attack from section 3 and adapt it to this
new routing model. We will be looking at each phase and see
what needs to change to counter the new model:
Phase I: For this phase we do not really need to change any-
thing, since this part of the attack does not exclude any nodes
from being a potential sender or receiver. Although depend-
ing on the used hardware, one might want to lower the max-
imum depth allowed for finding a path, since this new attack
will be considerably more computationally intensive than its
predecessor as we will soon discover.
Phase II: The old attack relied a lot on the assumption of
paths computed by the routing clients being (close to) opti-
mal. However, with the use of the new model this assumption
becomes invalid, requiring us to make the following changes
to this phase’s steps (the complete phase II modification can
be found in appendix B):

1. Previously we would exclude a node from being a po-
tential recipient when the path found in phase I did not
match with the path(s) found in phase II. This assump-
tion now becomes false, since paths found during phase
I do not have to be optimal anymore. Instead, we have to
continue and find potential senders for every path found
in phase I.

2. Here we would normally conclude that PRE was the
sender if Ppre did not match P

′
. This assumption also

becomes false, because now it is possible that the inclu-
sion of PRE could have been the result of a hop change.
Instead, we include both PRE and its neighbors (except
for A and NEXT) to the source anonymity set.

3. For this step it is no longer valid to require that PRE
is inside Pv , as this would rarely be the case consider-
ing the randomness. Instead, we make this requirement
more inclusive by making it sufficient for A or NEXT
to also be inside Pv .

Most of these changes entail getting rid of some properties
of the old attack. Previously, these properties allowed us to
greatly narrow down our potential senders and receivers, so
losing that ability will significantly increase the sizes of the

https://github.com/rejdeboerTU/LN-attack-simulation

anonymity sets. Furthermore, previously we were also able
to prematurely stop phase II. Now that we can not do this
anymore, this phase will take a lot more time, significantly
increasing the time complexity of the attack.
This modification will result in large anonymity sets, but it is
the best that we can do. One could make the argument for an
attack where we use the new routing model for finding paths
in phase II, but the randomness would result in a completely
different path being generated in the majority of cases. Using
a similar attack strategy like the one used against Eclair would
also not work, since the number of possible paths that the
model can generate is simply too large, requiring one to try
a lot of different routes which would take a lot of time while
also not even being effective.

5 Evaluation
The evaluation of this new model will be done as follows:
First we will go over the metrics that are used to measure
the performance and anonymity of the routing models. With
these metrics in mind, we will be able to go over the re-
sults and start reasoning whether this new model has im-
proved anonymity over the contemporary model, while still
maintaining high performance. In addition, this section will
contain information about the simulation framework and the
dataset that was used to generate the results.

5.1 Metrics
Anonymity Metrics

• PA: The percentage of transactions that were attacked
by at least one adversary.

• PS: The percentage of attacks where the adversary suc-
cessfully finds the sender and recipient pair.

• |As|: Average source anonymity set size.
• |Ad|: Average destination anonymity set size.
• Ss: The percentage of transactions where the source

anonymity set only contains the sender.
• Sd: The percentage of transactions where the destination

anonymity set only contains the recipient.
• fps: The percentage of attacks where the adversary did

not manage to link the source to the recipient, given that
the recipient was found (false positives).

• fpd: The percentage of attacks where the adversary did
not manage to find the recipient (false positives).

• Cors: The correlation between the size of the source
anonymity set and the distance between the sender and
adversary.

• Cord: The correlation between the size of the destina-
tion anonymity set and the distance between the adver-
sary and receiver.

Performance Metrics
• Havg: Average number of intermediary nodes per trans-

action.
• FRavg: Average fee percentage (fee / total amount).
• Davg: Average delay per transaction.
• fail: Percentage of failed transactions.

5.2 Dataset

The simulation uses a recent snapshot of the Lightning Net-
work8, which contains data from all publicly published nodes
and channels. The framework omits channels with no capac-
ity and nodes that do not publish their timelocks and trans-
action fees, resulting in a total of 4791 nodes and 28997
channels being considered. The adversary role is equally dis-
tributed to nodes based on their centrality. Having an adver-
sary set with varying centralities is important for generating
reliable results because the centrality of an adversary highly
influences their attack results. For instance, an adversary with
high centrality will be connected to more nodes, resulting in
them being an intermediary of more transactions. This means
that they would be able to perform more attacks than an ad-
versary with low centrality. On the other hand, being con-
nected to more nodes also means that there are more possible
routes that a payment could go, resulting in larger anonymity
sets. We calculate the centrality of a node based on the fol-
lowing four metrics: betweenness, eigenvector, closeness and
degree. For each of these metrics, the Networkx Python li-
brary9 was used to generate a list of data for every node. For
the simulation we consider a total of 20 adversaries, of which
10 are picked randomly, 5 have high centrality, and 5 have
low centrality.

5.3 Simulation Framework

The simulation framework10 is written in Python and provides
a way to test routing models on a snapshot of the Lightning
Network. The simulation differs from LN in the fact that it
assumes that transactions are instant, ignoring the impact that
locked collateral can have on the network. When the simula-
tion is run, it starts manually assigning the adversary role to
nodes according to their centrality. After selecting the adver-
saries, the simulator starts conducting transactions by pairing
two random nodes as the sender and receiver, followed by
the execution of the pathfinding algorithm using the sender’s
routing client. When using Eclair, the framework uses a more
general version of Dijkstra’s algorithm to find the k shortest
paths, because Yen’s algorithm is slower than Dijkstra when
we are not dealing with negative weights [9]. The transaction
amounts are exponentially distributed between 1 and 100000
Satoshis. These transactions can fail when the pathfinding al-
gorithm did not find a valid transaction path where the chan-
nel balances were sufficient to forward the payment. This
simulation does not take any of LN’s cryptographic features
into account, as it is not necessary for the results. For ev-
ery adversary on a transaction path, the simulation runs the
deanonymization attack. The results of these attacks, together
with the performance results of the transaction, are written to
a JSON file. A script can be run to read this file and convert it
to useful data, which can be used to evaluate both the routing
model and the modified attack model.

8https://ln.fiatjaf.com/
9https://networkx.org/documentation/stable/reference/algorithms/centrality.html

10https://github.com/SatwikPrabhu/Attacking-Lightning-s-
anonymity

https://ln.fiatjaf.com/
https://networkx.org/documentation/stable/reference/algorithms/centrality.html
https://github.com/SatwikPrabhu/Attacking-Lightning-s-anonymity
https://github.com/SatwikPrabhu/Attacking-Lightning-s-anonymity

5.4 Results
Below you can see the performance results gained by
simulating 5000 transactions. The left column enumerates
the earlier mentioned performance metrics, and the other
columns compare the values obtained from simulating the
old and the new routing algorithm.

Performance results

Metric Old routing New routing

Havg 2.43 11.95

FRavg 5.38% 6.52%

Davg 95.27 106.12

fail 8.73% 11.45%

The anonymity results were gained by simulating 1000 trans-
actions, which is considerably less than the performance re-
sults because of the longer simulation duration. The results
below are shown in a similar style to the performance results
except for the extra column on the right. This column shows
the results of simulating the new algorithm with the modified
attack model.

Anonymity results

Metric Old routing New routing New attack

PA 38.35% 66.94% 66.94%

PS 99.0% 8.38% 54.64%

|As| 298.36 8.12 1135.30

|Ad| 51.90 55.41 131.63

Ss 42.46% 3.51% 0.0%

Sd 57.82% 22.97% 22.84%

fps 0.0% 83.19% 24.48%

fpd 1.40% 68.65% 61.35%

Cors 0.82 0.04 0.33

Cord 0.40 0.04 -0.07

Performance Evaluation
When looking at the performance results, we observe the fol-
lowing: First of all, the hop changes increase the average
number of hops per transaction by a substantial amount. This
is caused by the fact that most hop changes originate from a
central node, which can not be revisited. So the lack of these
central nodes forces the pathfinder to use nodes with lower
centrality, increasing the hop count. We also observe a signif-
icant increase in transaction failures as a result of the added
hop changes. This happens because sometimes the pathfinder
will not be able to find a transaction route where every chan-
nel has sufficient balance to forward the payment. Luckily,
this new routing algorithm does not seem to dramatically im-
pact the transaction fees and delays.

Anonymity Evaluation
As expected, we see a large success rate when attacking the
old routing algorithm using the attack model from section 3.
This success rate dramatically plummets when using the new
routing algorithm. This happens because the old attack will
stop searching when encountering a suboptimal path, which
is not very effective when most of the paths found by the
new model are suboptimal. These results are also reflected
by the low anonymity set sizes when using the old attack.
With the use of the new attack, we observe that both average
anonymity set sizes increase by a lot. The new model also
considerably decreases the number of singular anonymity
sets, even getting rid of singular source anonymity sets. Be-
cause of the increase in the average number of hops, there is a
larger chance of an adversary participating in the transaction,
which increases the number of attacks.

We also see that the use of the new model increases the
number of false positives by a lot, even when using the new
attack. As for the old attack, the adversary makes false
conclusions in terms of the potential sender and destination
nodes. Although one would expect those false positives to
go down when using the new attack. The reason these false
positives did not decrease is because the adversary only tries
to find recipients that are at most 4 nodes away from them,
so the increase in average path length makes the recipient
unreachable in a lot of cases. Additionally, the increased
complexity of the attack makes it too hard to find all of the
potential sources within a reasonable timeframe, causing an
increase in the source false positives.

However, there are still relatively many attacks that end
up with a singular destination anonymity set, even after the
routing and attack change. This is bad, but making changes
to the routing model will not further decrease these numbers,
because an adversary will always be able to gain such a set
when they are the penultimate node on the transaction path.
In such a situation, it becomes trivial for them to conclude
that NEXT has to be the destination since they can use the
delay information inside the HTLC.

As for the correlation metrics, there is a decent correlation
between the size of the anonymity sets and the distance of
the sender and receiver from the adversary when using the
old routing model. This happens because short paths are rela-
tively easy to predict by an adversary, becoming increasingly
difficult as the path grows. The new routing completely nul-
lifies this correlation for the old attack, because the false as-
sumptions result in small and close to constant anonymity set
sizes. With the modified attack, we see a growth in the corre-
lation between source anonymity set size and adversary dis-
tance. This happens because the modified attack model gets
rid of the false assumption, resulting in anonymity sets that
become increasingly difficult to predict as the adversary dis-
tance increases. The modified attack also results in a slightly
negative correlation between the destination anonymity set
size and adversary distance. This is again caused by the fact
that most recipients are located outside of the adversary’s
reach, resulting in a smaller number of potential recipients
as the adversary distance grows.

6 Discussion
After evaluating these results, we can conclude that the use
of the new routing model brings both advantages regarding
and disadvantages. Here we will be putting these results in a
broader context by going over these positives and negatives
and giving some clarification where necessary.

6.1 The Drawbacks
The drawbacks of using this new routing algorithm become
immediately apparent after looking at the performance re-
sults. The increase in the average number of hops is a neg-
ative, because more intermediary nodes mean more poten-
tial points where a transaction could fail, and it increases the
amount of locked collateral on the network. Furthermore, it
raises the chances of an adversary participating in the trans-
action. Next, the increase in the number of payment failures
is also clearly negative, but there are ways to remedy this.
For instance, we could simply run the algorithm again in the
hopes of a valid route being found, or we could turn down
the randomness for the second run. Another way to combat
these failures would be to split your payment up into smaller
payments such that there is a higher chance of channels being
able to forward it. As for the other performance metrics, we
only see a small increase in the average transaction fees and
delay over the contemporary model.

6.2 The Benefits
However, what we lose in performance, we gain in
anonymity. The introduction of the new routing model had
a great impact on almost every anonymity metric. First of all,
we see a big increase in the anonymity set sizes, indicating
that it is now harder for an adversary to narrow down their
potential senders and receivers. Because of this, the source
anonymity set becomes pretty useless for an adversary, since
they are just too big to conclude anything from. This also hap-
pens in some cases for the destination anonymity sets, and
in other cases the recipient is too far away to be found by
the adversary. Even though there are still many cases where
the adversary uniquely identifies the correct recipient, there is
not really anything that we could change to the routing to fix
this. Using a technique like shadow routing, where we add
an additional value to the timelock, could prove useful here.
This would result in the adversary not being able to reliably
use the delay information, forcing them to be more inclusive
when picking potential recipients. This might bring down the
number of singular destination anonymity sets found by the
adversary, but it would also introduce some other problems.
The reason why shadow routing has not seen much use in LN
is because the additional timelock values increase the damage
that timing attacks can do to the network. This is where an
adversary intentionally lets payments fail at the end of the de-
lay timelock in an attempt to clog up the network with locked
collateral [11].

7 Responsible Research
Now let us reflect on this research and argue if it was con-
ducted responsibly. We will do this by going over some pri-
vacy and environmental issues correlated to this field, fol-
lowed by a section on the reproducibility of the research.

Environmental Issues
One of the main goals of the Lightning Network is to make
Bitcoin more scalable and sustainable by providing a way
to do off-chain transactions. Bitcoin’s current network traf-
fic mostly consists of on-chain transactions which have to be
validated by miners. This process costs a lot of power, thus
releasing tons of CO2 into the atmosphere. The Lightning
Network has a more sustainable approach where one would
only have to interact with the blockchain in case of a dispute,
or during the creature/closure of a payment channel. The in-
crease in anonymity by this routing algorithm might moti-
vate more people to start using the Lightning Network for
their Bitcoin transactions, decreasing the number of on-chain
transactions.
One could argue that increasing the number of intermediary
nodes for off-chain transactions would also increase the num-
ber of disputes. This would result in more on-chain trans-
actions, decreasing the earlier mentioned sustainability pro-
vided by LN. However, the number of blockchain transac-
tions caused by disputes is relatively small when looking at
Bitcoin’s network traffic as a whole, so the effect of this path
length increase can be seen as negligible.

Privacy Considerations
During this research we did not actually interact with the
Lightning Network. The transactions used for testing were
all simulated, so it did not cause any disruptions to the net-
work. Furthermore, the used snapshot contained data that
was already known to the public, so there was no usage of
any sensitive information.

Reproducibility of the Research
After reading this paper, one should have the necessary
knowledge to reproduce this research. With the code repos-
itory that was shared earlier in the paper, one will be able to
simulate the attack and come to the same conclusions. Every
transaction was simulated with the same set of adversaries,
which is defined in the code.
The only issue here is that running the simulation on the snap-
shot requires powerful hardware. The results of this research
were produced with the aid of DAS [1], a powerful supercom-
puter. Because few people have access to such a system, the
framework also offers a way to simulate attacks on smaller
graphs. These graphs posses some of LN’s properties, like
varying centrality, so simulations will produce results similar
to those of the snapshot.

8 Conclusions and Future Work
It can be concluded that this new routing model does indeed
improve the anonymity of the Lightning Network. The
model provides great resilience against deanonymization
attacks that would previously be very effective, and it even
holds up against attacks that are designed to counter it. Thus,
the added random hops make it infeasible for an adversary
to deanonymize the sender and the receiver in most cases.
Although this anonymity comes at the cost of some hits
in performance: besides the small increase in transaction
costs and delay, the longer transaction paths introduce more
potential points of failure, so one should ask themselves if

anonymity is worth the trouble of having to retry transactions.
Consequently, even though this routing model would be great
for someone who often conducts large-scale transactions and
wants to reduce the risk of being targeted by an attack, there
is no real need to use this model for small transactions that
do not require anonymity.

Future research should be conducted to resolve the two
main issues that this model possesses: the long transaction
paths and the vulnerability of a recipient when an adversary
is the last intermediary on the transaction path. As we know,
the increase in path length is a result of the random hops.
At the moment, it is almost guaranteed for a hop to happen
when encountering a central node because of its high degree.
When hopping from a central node, it forces the pathfinder to
use many less central nodes, resulting in a longer transaction
path. To fix this, one might want to reduce the chance of hop-
ping to a node, depending on the degree of the current node.
This way, there is still a chance that we follow a more optimal
path when the current node has a high degree.

The recipient vulnerability could potentially be solved with
shadow routing. With this technique, an adversary would not
be able to use the delay information inside the HTLC to con-
clude that their neighbour node has to be the recipient. Al-
though the additional delay value added by shadow routing
should not be too large, as that would expose a weakness to
other attacks.

References
[1] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuw-

poort, John Romein, Frank Seinstra, Cees Snoek, and
Harry Wijshoff. A medium-scale distributed system for
computer science research: Infrastructure for the long
term. 2016.

[2] Chen Chen, Daniele E. Asoni, David Barrera, George
Danezis, and Adrian Perrig. Hornet: High-speed onion
routing at the network layer. CCS’15: The 22nd ACM
Conference on Computer and Communications Secu-
rity, 2015.

[3] George Danezis and Ian Goldberg. Sphinx: A compact
and provably secure mix format. 2009 30th IEEE Sym-
posium on Security and Privacy, 2009.

[4] Arthur Gervais, Ghassan O. Karame, Karl Wüst,
Vasileios Glykantzis, Hubert Ritzdorf, and Srdjan Cap-
kun. On the security and performance of proof of work
blockchains. CCS ’16: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, 2016.

[5] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie
Roos, PatrickMcCorry, and Arthur Gervais. Sok: Layer-
two blockchain protocols. International Conference on
Financial Cryptography and Data Security, 2020.

[6] Joran Heemskerk, Stephanie Roos, and Satwik Prabhu
Kumble. Improving anonymity of the lightning network
using multiple path segment routing. 2021.

[7] George Kappos, Haaroon Yousaf, Ania Piotrowska,
Sanket Kanjalkar, Sergi Delgado-Segura, Andrew

Miller, and Sarah Meiklejohn. An empirical analysis
of privacy in the lightning network. 2020.

[8] Paolo Arash Kazemi Koohbanani, Stefanie Roos, and
Satwik Prabhu Kumble. Improving the anonymity of
layer-two blockchains adding random hops. 2021.

[9] Satwik Prabhu Kumble, Dick Epema, and Ste-
fanie Roos. How lightning’s routing diminishes its
anonymity. Proceedings of the 16th International Con-
ference on Availability, Reliability and Security, 2021.

[10] Giulio Malavolta, Pedro Moreno-Sanchez, Clara
Schneidewind, Aniket Kate, and Matteo Maffei. Anony-
mous multi-hop locks for blockchain scalability and in-
teroperability. 2019.

[11] Ayelet Mizrahi and Aviv Zohar. Congestion attacks in
payment channel networks. 2020.

[12] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008.

[13] Mehmet Emre Ozkan, Satwik Pradhu Kumble, and Ste-
fanie Roos. Improving the anonymity of blockchains:
The case of payment channel networks with length-
bounded random walk insertion. 2021.

[14] Mihai Plotean, Stefanie Roos, and Satwik Prabhu Kum-
ble. Improving the anonymity of the lightning network
using sub-optimal routes. 2021.

[15] Joseph Poon and Thaddeus Dryja. The bitcoin lightning
network: Scalable off-chain instant payments. 2016.

[16] Andrei Srjantov and George Danezis. Towards an in-
formation theoretic metric for anonymity. International
Workshop on Privacy Enhancing Technologies, 2002.

[17] Giovanni Di Stasi, Stefano Avallone, Roberto Canonico,
and Giorgio Ventre. Routing payments on the lightning
network. IEEE/ACM Int’l Conference on & Int’l Con-
ference on Cyber, Physical and Social Computing (CP-
SCom) Green Computing and Communications (Green-
Com), 2018.

[18] Jin Y. Yen. An algorithm for finding shortest routes from
all source nodes to a given destination in general net-
works. 1970.

A Alternative Routing Results

Performance results

Metric Results

Havg 4.70

FRavg 11.67%

Davg 122.44

fail 13.42%

As you can see, the performance is considerably worse
when using this routing method. The only advantage in per-
formance is that this approach has a lower average hop count.
However, this lower hop count also results in transaction
paths that are easier to attack, which has a negative impact
on the anonymity. Furthermore, since this approach has a
chance to ignore the transaction fee of a channel, it could
motivate malicious nodes to charge ridiculous routing fees,
further decreasing the performance.

B Complete Phase II Modification
1. We start by using the LN clients LND, Eclair and c-

Lightning to compute optimal paths from every node in
the network to prec (When using Eclair, we compute the
3 best paths). We keep computing these paths till we
have eventually visited PRE and A.

2. Once we come across PRE during this pathfinding, we
add both PRE and its neighbours, except for A and
NEXT , to the source anonymity set. We add these
neighbours, because PRE could have been a random
hop from any of those nodes. We also consider PRE to
be a possible sender, because A could have been the first
intermediary node.

3. Once we have come across both PRE and A, we start
looking at new nodes differently. Now for every node
v that we visit, we check if Pv contains PRE, A or
NEXT . If so, this means that v could have been the
first intermediary node, so we add all of v’s neigh-
bors (except the ones in Pv) to the source anonymity
set. For Eclair, if any of the 3 paths contains PRE, A
or NEXT , we add the neighbours of v to the source
anonymity set.

	Introduction
	The Lightning Network
	Lightning Payment Channels
	Hashed Time-lock Contracts

	LN Payment Routing

	Attacking the Lightning Network
	Adversary Model
	LN Attack Strategy
	Phase I
	Phase II

	New Routing Algorithm
	Routing Model
	The Algorithm
	Modified Attack Model

	Evaluation
	Metrics
	Anonymity Metrics
	Performance Metrics

	Dataset
	Simulation Framework
	Results
	Performance Evaluation
	Anonymity Evaluation

	Discussion
	The Drawbacks
	The Benefits

	Responsible Research
	Environmental Issues
	Privacy Considerations
	Reproducibility of the Research

	Conclusions and Future Work
	Alternative Routing Results
	Complete Phase II Modification

