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Summary

We are witnessing an era of rapid technological advancements, which led to an explosion

in the amount of genomic data collected. The field of comparative genomics, in parallel,

is expanding at an unrepentant rate. Comparative genomics explores the similarities and

differences in the genomes of various organisms, species or strains, and it is one of our

most useful tools today for unraveling the complexities of microbial biology. However,

despite growing interest in microbial genomics, there remains a significant gap in our

understanding of microbial diversity and function. The microbial dark matter remains

elusive, and we have a lot more to uncover.

This dissertation aims to leverage comparative genomics, and develop novel algorithms

tailored for microbial genomes to enhance our understanding of microbial biology and

address existing knowledge gaps. More specifically, it focuses on the representation

of microbial diversity and the functional annotation of poorly characterized taxa. By

harnessing large-scale genomic datasets, novel approaches and algorithms are designed to

uncover hidden traits in microorganisms.

We begin our journey at the smallest scale with viruses; our study of SARS-CoV-2

genomes in the Netherlands during the COVID-19 pandemic showcases the power of

genomic data to understand disease dynamics. The remainder of the dissertation concerns

bacteria. We explore pangenome graphs to represent bacterial populations. As I discuss

the limitations of current methods, I propose an ensemble approach to exploit graph repre-

sentations for structural variant calling. This work sets the stage for future developments

in pangenome graphs as a powerful framework to model bacterial populations and analyze

their genetic makeup.

Following recent developments in algorithms for eukaryotes, I draw inspiration from

natural language processing to predict gene functions in bacteria. I present SAFPred, a

novel tool in which I integrate bacterial synteny into the predictive model, and demonstrate

its use to identify variants of toxin genes in Enterococcus. The novelty of my approach lies

partly in how I incorporated bacterial synteny into the function prediction algorithm. Thus,

I also release our synteny database, SAFPredDB, that can facilitate various comparative

genomic analyses in the future.

Our journey comes to an end in our study of the Enterococcus genus through the largest

collection of genome assemblies. Here, I emphasize the importance of understanding

microbial diversity and antibiotic resistance mechanisms once again, and note the power

of large scale genomic analyses.

Overall, my main goal with this dissertation is to showcase the potential of comparative

genomics in unraveling the mysteries of microbial life and addressing pressing global

challenges in health, agriculture, and biotechnology. Through innovative methods and

large-scale data analysis, my work, first and foremost, offers valuable insights into microbial

biology and evolution, paving the way for future research in the field. And I hope it also

encourages further exploration and appreciation of the mighty world of microbes.
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Samenvatting

We leven in een tijd van snelle technologische ontwikkelen die hebben geleid tot een

explosieve toename van de hoeveelheid genomische data. Parallel aan deze toename, is

het veld van de vergelijkende genomica enorm aan het groeien aan het groeien. Dit veld

bestudeert de gelijkenissen en verschillen tussen de genomen van verschillende organismes,

soorten en stammen, en behoort tot de belangrijkste middelen voor het ontrafelen van de

complexiteiten van de microbiële biologie. Ondanks de groeiende interesse in microbiële

genomica, bestaat er een significant gat in onze kennis over microbiële diversiteit en

functies. Deze “microbiële donkere materie” blijft moeilijk te doorgronden, en er is nog

veel te ontdekken. Het doel van deze dissertatie is om vergelijkende genomica te gebruiken

en nieuwe algoritmes te ontwikkelen bedoeld voor microbiële genomen, om ons begrip van

microbiële biologie te versterken, en gaten in onze kennis hierover te vullen. In het bijzonder

focust deze dissertatie zich op de representatie van microbiële diversiteit, en de annotatie

van slecht gekarakteriseerde taxa. Door het gebruik van grootschalige genomische datasets

zijn nieuwe aanpakken en algoritmes in staat om verborgen eigenschappen van micro-

organismes te onthullen.

Onze eerste stap in deze reis begint op de kleinste schaal met virussen; onze studie van

SARS-CoV-2 genomen in Nederland tijdens de COVID-19 pandemie laat zien hoe genomi-

sche data kan worden gebruikt om de dynamiek van een ziekte beter te begrijpen. De rest

van deze dissertatie betreft bacteriën. We onderzoeken pan-genoom grafen om bacteriële

populaties te representeren. Ik beschrijf de tekortkomingen van bestaande methodes, en ik

stel een ensemble aanpak voor om graaf representaties te gebruiken voor het identificeren

van structurele varianten. Dit werk is een stap richting toekomstige ontwikkelingen op

het gebied van pan-genoom grafen die kunnen dienen als een doeltreffend kader voor het

modelleren van bacteriële populaties, en het analyseren van hun genetische samenstelling.

In navolging van recente ontwikkelingen in algoritmes voor eukaryoten haal ik inspi-

ratie uit natuurlijke taalverwerking om de functies van genen te voorspellen in bacteriën.

Ik presenteer SAFPred, een nieuwe tool waarin ik bacteriële syntenie integreer in een

voorspellend model, en ik demonstreer hoe dit model kan worden gebruikt om varianten

van giftige genen in het Enterococcus geslacht te voorspellen. De innovatie van mijn aanpak

zit hem deels in hoe ik bacteriële syntenie integreer in het algoritme dat functionaliteit voor-

spelt. Daarnaast stel ik onze syntenie database, SAFPredDB, beschikbaar zodat toekomstige

vergelijkende genomische analyses kunnen worden gefaciliteerd.

Onze reis komt tot een einde met een studie naar het Enterococcus geslacht door middel

van de grootste verzameling van genoomassemblages. Hier benadruk ik nogmaals hoe

belangrijk het is om microbiële diversiteit en mechanismen van antibioticaresistentie te

begrijpen, en wijs ik op de kracht van grootschalige genomische analyses.

Al met al is het doel van deze dissertatie om de potentie van vergelijkende genomica

voor het ontrafelen van de mysteries van microbieel leven aan te tonen, en de dringende

globale uitdagingen op het gebied van gezondheid, agricultuur en biotechnologie aan te
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kaarten. Door middel van innovatieve methodes en grootschalige data-analyses biedt mijn

werk allereerst belangrijke inzichten in microbiële biologie en evolutie, waarmee ik het

fundament leg voor toekomstig onderzoek in dit vakgebied. Tenslotte hoop ik dat het

verdere verkenning en waardering van de machtige wereld van microben aanmoedigt.
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Preface

"When you light a candle, you also cast a shadow."

— Ursula K. Le Guin

T
he devil is in the detail, as people often say. Regardless of whether the anonymous

author of this phrase had microorganisms in mind when she uttered these words, I

can not help but connect it to my own work, which has been a five-year-long quest to

uncover hidden traits in microorganisms, be it good or evil. Using the magnifying lens

of comparative genomics, we can get a glimpse of the inner workings of our most fearful

microbial adversaries, from the cause of the "white plague", Mycobacterium tuberculosis,
to the agent of the "black death", Yersinia pestis. But life is not black or white. We drink

their wine, we feast on their bread and we devour their cheese; microorganisms are an

indispensable part of life on earth and understanding their biology is essential for addressing

global challenges in health, agriculture, environmental sustainability, and biotechnology.

Each day, it is possible to sequence genomes more rapidly and cost-effectively, and we

have seen a massive increase in the amount of DNA sequences available. To make sense

of this trove of data, comparative genomics has advanced in parallel. However, a large

fraction of the efforts have been devoted to eukaryotic organisms, while prokaryotes had

to take a backseat. The Human Genome Project has been the fuel that ignited the growth

in genomics, research on prokaryotic genomes and microorganisms
1
was overshadowed.

Since eukaryotes, in particular humans, are of significant interest due to their relevance to

human health and disease, human genomics has been prioritized, leading to an increased

emphasis on eukaryotic genomics. Studying microbial genomes is crucial to understand

microbial life, their biology, population dynamics, ecology as well as human health. Not

to mention how rewarding it is; microbes are the most diverse and abundant forms of

life on Earth, yet much of this diversity remains unexplored. Comparative genomics

allows us to catalog and understand the genetic diversity within microbial communities,

uncovering new species, lineages, and functions. By studying the evolutionary history of

microbes, and understanding the mechanisms driving genome evolution, we gain insights

into the evolutionary relationships between different organisms, revealing patterns of

divergence, adaptation, and speciation over evolutionary time scales. In addition, microbial

genomics is central to many biotechnological processes; we can analyze microbial genes

that encode enzymes, pathways, and metabolic capabilities with potential biotechnological

applications. Finally, by studying microbial genomes, we can understand the genetic basis

of microbial pathogenicity, antibiotic resistance, and host-microbe interactions, leading to

the development of new strategies for disease prevention, diagnosis, and treatment.

1
I have to note here that yeast, Saccharomyces cerevisiae in particular, is an exception, it is one of the most studied

microorganisms. But it is an eukaryote.
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In my research, I attempted to bridge the gap between eukaryotic and prokaryotic

genomics; I applied novel methods and techniques developed for eukaryotes to prokaryotic

organisms, and I designed algorithms and bioinformatics pipelines tailored specifically

for bacterial genomes. I aimed to unlock the hidden potential of prokaryotic genomes

and uncover novel insights into their population dynamics, evolutionary history, genetic

diversity, and functional attributes.
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1
Introduction

"For now we see through a glass, darkly;
but then face to face: now I know in part;

but then shall I know even as also I am known."

— 1 Corinthians 13:12, King James Version
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4 1 Introduction

T
oday, the amount of genomic data compounds every second, and the field of compar-

ative genomics seems limitless as we flood the databases with more data every day.

Comparative genomics allows us to delve into the intricacies of microbial biology on a scale

never before imagined. Although our understanding of the microbial world has advanced

immensely, we have come to realize the impressive amount of microbial diversity waiting

to be cataloged and studied. Recognizing this untapped potential, this dissertation aims

to broaden our understanding of the microbial world through comparative genomics and

developing novel approaches and algorithms addressing the shortcomings of existing tools.

In this introductory chapter, I will start with an overview of microbial organisms, and

their general characteristics before going into more detail on the particular organisms that

I have studied, namely SARS-CoV-2, Acinetobacter baumanii and Enterococcus. After a brief
description of comparative genomics and their use on microbial organisms, I will conclude

with a summary of the remainder of this thesis, and explain the research questions and

challenges addressed.

1.1 Microbes: wherever we may roam
Small yet mighty, the microbial world is invisible to the naked eye. From the depths

of the seas and the damp dark corners of caves to the top of the highest mountains,

microorganisms are everywhere. We do not have to venture out to such extremes to be

aware of their profound influence, since microorganisms make up as much as half of the

cellular content in a human body [1]
1
. The hidden realm of the microbial world boasts a

remarkable diversity, encompassing bacteria, viruses, fungi, protists, and archaea. Their

collective impact on global ecology, human health, and biotechnology cannot be overstated.

Microorganisms span a wide range of forms, functions, and ecological niches. Bacteria

can be found in diverse environments, such as soil, water, air, and extreme conditions as

well as in symbiotic relationships with other living organisms [2]. Many plants rely on

their symbiotic relationship with nitrogen-fixing bacteria to fix nitrogen from the soil, in

exchange for carbon compounds. Nitrifying bacteria are a key player in the nitrogen cycle;

they convert ammonia to nitrite and nitrate. Similarly, cellulolytic bacteria are essential in

bioremediation as they break down plant cellulose in soil and digestive systems. Viruses

infect and occupy a wide range of host organisms, including bacteria (bacteriophages),

archaea, plants, animals, and humans [3]. There are many different types of viral genomes;

the genetic content of a virus can be either DNA or RNA, and the genome can be of different

lengths, structures as well as number of strands. Viruses also have an impact on global

carbon and oxygen cycles as they play an essential role in ocean ecosystems by controlling

algal blooms and nutrient cycling. Similar to bacteria and viruses, fungi and protists also

inhabit diverse habitats, including soil, water, air, and symbiotic associations with plants,

animals, and other microbes [2]. Fungi and protists have a large influence on soil and

aquatic ecosystems; plants often form mutualistic relationships with fungi where fungi

enhance nutrient uptake and plant growth. Similarly, predatory protists consume bacteria

and other protists to regulate microbial populations in the ecosystem.

Microorganisms play a complex yet indispensable role in human life. Our microbiota is

1
Contrary to the popular belief, we are not outnumbered by 10 to 1, neither in terms of the number of cells nor in

weight: the current estimate is 38:30 in favor of microorganism [1].
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a collection of trillions of microorganisms; gut, oral, skin, vaginal and urinary microbiota

are some examples of microorganism communities within the human body. [1]. Microbiota

are in close interaction with one another and the host, us, to maintain homeostasis, support

our physiological functions, and protect us against pathogens. Disruption in these microbial

communities often leads to various health conditions and diseases, such as inflammatory

bowel diseases, allergies, autoimmune disorders, and mental health disorders [4].

Microorganisms are widely used in a wide range of applications in biotechnology: from

industrial fermentation, biopharmaceutical and enzyme production to waste treatment
2
[5].

Bacteria and fungi are key components in industrial fermentation processes. Saccharomyces
cerevisiae is the yeast species that ferments sugars to produce alcoholic beverages. Similarly,

lactic acid bacteria ferment milk to produce many dairy products [7]. Biofuel production

relies on a variety of yeast and bacteria species to convert biomass to biofuels by fermenting

the sugar from corn, sugarcane or lignocellulosic materials [8].

1.1.1 Viruses
Following the recent COVID-19 outbreak, viruses have been put into the spotlight. Despite

the newfound popularity, viruses are more widespread than one might realize since they

have the ability to infect all life forms, from the smallest of all, microorganisms to animals

and plants [9]. For the longest time, viruses had been incorrectly associated with diseases

only, leading many to believe that viruses are an insignificant part of our environments.

However, today, it is estimated that there are 10
31
virus particles on earth, which is more

than an order of magnitude more than the number of cells, outnumbering bacteria 10 to

1 [10]. Nestled comfortably between living and nonliving, viruses can replicate only in

living cells, and they exist only as viral particles otherwise. These viral particles, or virions,

contain genetic material in the form of DNA or RNA; a capsid, a protein coating for their

genetic material, and sometimes a lipid outer layer. It is this dual nature of their life cycle
that confuses many biologists who have struggled to put a label on viruses; failing to tick

all boxes in the definition of a living organism, viruses are often referred to as "biological

entities" [11].

Their abundance and diversity make it even more difficult to untangle the origins

[12]. It is hypothesized that some viruses have evolved from fragments of DNA, such as

plasmids, or more complex organisms, titled the progressive and regressive hypotheses,
respectively. Being one of the biggest drivers of genetic diversity through horizontal gene

transfer (HGT), viruses could have arisen from such genetic material that gained the ability

to move not just within a genome, but also between cells, as proposed by the progressive

hypothesis [13]. The regressive hypothesis, on the other hand, suggests viruses to have

originated from organisms which lost their ability to replicate independently as the result

of a prolonged parasitic relationship [14]. In contrast to the progressive or regressive

hypotheses, both of which assume that cells existed before viruses, recently Koonin et al.

have put forth the idea of an "ancient virus world" which predates all living organisms.

Motivated by the advances in genomics and findings on virus-specific genes, the virus

world hypothesis is more compatible with the genomic data currently available [15].

2
I could go on for over and state millions of other industrial products we have to thank microbes for. But two of

the most interesting and overlooked ones are insulin and enzymes in detergents [5, 6].
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Figure 1.1: The most, if not the only, recognized virion structure to date: SARS-CoV-2 has embellished our

websites, newspapers and social media feeds [22].

Regardless of the debates on their origins, viruses are unanimously recognized as the

most genetically diverse entities on Earth, as they accompany every cell [10]. Thus, the

characteristics of viral genomes, vary considerably but are the result of the differences

in their genetic cycles, and their hosts [15]. The advances in genome sequencing have

greatly expanded our understanding of viruses at the molecule level, initially with real-time

PCR and whole-genome sequencing, and more recently through metagenomic sequencing

which allowed us to study virus species in uncultured communities [12]. Viral genetic

information can be encoded in either DNA or RNA, and the genome can be single or

double-stranded regardless of the nucleic acid type. Virus genomes can differ further in

their strandedness, positive sense or negative sense based on whether it is complementary

to the viral messenger RNA (mRNA) or not, in addition to having a linear, circular, or

segmented form [16]. Viral genomes can be as small as 2 kb in the circovirus genus [17], or
as big as 1 Mbp in the mimivirus, which is known to be one of the largest virus genera [18].

There are several known mechanisms which can change the genetic material in viruses

and lead to increased diversity, such as point mutation, recombination and rearrangement.

Point mutations are changes at the level of an individual base in the DNA or RNA; they can

be either silent, if the mutation does not affect protein encoding, or non-silent otherwise. On
a larger scale, viral genomes can acquire or lose genes, or segments of genetic material, in

addition to similar structural rearrangements within the genome itself [19]. If such genetic

change confers evolutionary advantages, it can lead to an antigenic shift with possible

implications for human health. For instance, the emergence of drug resistant HIV-1 species

through point mutations, or the geminivirus species with a broader host range [20, 21].

SARS-CoV-2
In the last four years there were seemingly neverending periods where we have heard the

name SARS-CoV-2 almost daily, in addition to "2019 novel coronavirus", "human coron-
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Table 1.1: Seven coronaviruses known to infect humans.

Genera Strain Discovery year

hCoV-229E 1966

Alphacoronavirus

hCoV-NL63 2004

hCoV-OC43 1967

hCoV-HKU1 2005

SARS-CoV 2003

MERS-CoV 2012

Betacoronavirus

SARS-CoV-2 2020

avirus" and the "COVID-19 virus", latter of which was adopted to avoid connotations to the

SARS outbreaks in 2003 [23]. SARS-CoV-2, a strain of the species severe-acute-respiratory-

syndrome-related coronavirus (SARSr-CoV), is classified under the coronaviruses family

within the virus taxonomy. Similar to the other members of the coronavirus family, SARS-

CoV-2 is a single-stranded, positive-sense RNA virus that infects vertebrates [23]. Within

the coronavirus family, SARS-CoV-2 is the seventh one observed to infect humans (Table

1.1) [24]. SARS-CoV-2 was shown to spread through airborne particles, and bind to the

angiotensin-converting enzyme 2 (ACE2) to enter the human cells [25]. Interestingly, there

were several reports on the transmission of SARS-CoV-2 from humans to animals, and back

to humans from animals, for cats, dogs, and minks [26–28]. Today, COVID-19 Dashboard

by the Center for Systems Science and Engineering at Johns Hopkins University reports

676,609,955 cases and 6,881,955 deaths from COVID-19 in total [29].

Although there is no clear consensus on the origins of SARS-CoV-2 yet, the most recent

studies show bat coronaviruses to be its closest relatives, sharing 96.1% of its sequence at

the whole-genome level [30]. In the absence of a confirmed intermediate host, it is not

possible to decide whether the virus was transmitted directly from a bat to a human host

or not. However, several studies have identified multiple sites of recombination on the

SARS-CoV-2 genome, suggesting that it has possibly emerged from a recombination event,

consistent with the general characteristics of the coronavirus family [23].

The interest in SARS-CoV-2 genomics was not only limited to uncovering its origins but

also studying its evolution, epidemiological surveillance, as well as developing newmethods

to diagnose and treat the disease caused by the virus [31–35]. Thanks to these efforts, and

building on top of the established work on coronaviruses, our understanding of SARS-CoV-

2 biology has expanded rapidly. SARS-CoV-2 is placed within the subgenus Sarbecovirus
(beta-CoV lineage B) [36]. Compared to other RNA virus families, coronaviruses have

the largest genomes and SARS-CoV-2 is one of the largest members of the family with

its 30,000 bp-long RNA sequence that mostly consists of protein-coding sequences [37].

The SARS-CoV-2 genome encodes 16 non-structural proteins: nsp1 to nsp11 in oRF1a, and

nsp12 to nsp16 in ORF1b, in addition to 4 structural and 6 accessory proteins [38]. The

polyproteins ORF1a and ORF1b occupy 70% of the entire genome. The structural proteins, S

(spike), E (envelope), M (membrane) and N (nucleocapsid) are involved in virion formation,

while the accessory proteins (3a, 6, 7a, 7b, 8 and 9b) have unknown function [31]. Among

all proteins, though, the spike protein has been the only one to reach the celebrity status
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since it is the protein that is directly involved in the attachment of the virus to the host

cell membrane [38].

As part of its evolutionary trajectory, SARS-CoV-2 has gone through mutations in its

genome that led to the emergence of variants. A variant of SARS-CoV-2 is a virus that

has significantly diverged from its original genome through random mutations as part of

its natural evolution. In general, RNA viruses evolve faster since the RNA molecule, due

to its chemical properties, is less stable than DNA; the evolution of coronaviruses can be

observed on timescales of as small as months. Having said that, there are external factors

affecting the evolution rate of SARS-CoV-2, such as the number of active infections, host

immunity and the reality of living in a world that has never been as interconnected as it

is today. An advantageous mutation that increases a pathogen’s fitness can spread the

mutation and become dominant. However, this spread is directly influenced by the host

mobility since the variant needs to be transmitted from one person to another to spread.

For instance, one of the earliest mutations observed in SARS-CoV-2, the "D614G" mutation,

was shown to increase transmissibility, and it rapidly became the established sequence.

Nevertheless, given the randomness of evolution, some mutations, even if they do not offer

any evolutionary advantage, can be passed on by luck [39].

The earliest variants detected were "A" and "B", the former being the ancestral type

that resembled the closest SARS-CoV-2 relatives, the bat and pangolin coronavirus strains.

The A type was mostly replaced by the B type which later produced, beta, gamma, delta

and omicron as well as the B.1 variant [36]. While there is no set value on the number

of mutations required to form a variant, the variants we observed later in the pandemic

from the B type had diverged significantly more, carrying at least 11 non-synonymous

mutations, compared to their predecessors [39]. In addition, these variants were labeled as

"variants of concern" (VOC)
3
since the mutations led to increased transmission, virulence

or a reduction in the vaccine efficacy. For instance, the alpha and delta variants were

reported to be more transmissible and the omicron variant was more efficient at replicating

within the host body [39].

Although there is still no clear consensus on what evolutionary events led to the

formation of these VOCs, currently there are three possible explanations: (i) inadequate

surveillance of SARS-CoV-2 genomes and their circulation in humans, (ii) circulation

of SARS-CoV-2 in animals, and (iii) immunocompromised individuals carrying chronic

SARS-CoV-2 infections. In practice, the answer is likely to be a combination of all three

of these factors; since the first day of the pandemic, genomic surveillance was conducted

successfully only in areas where genome sequencing could be afforded at large scale, leading

to a severely imbalanced view of the SARS-CoV-2 evolutionary landscape. Similarly, while

there have been reports of transmission from humans to minks and back from minks to

humans, with evidence of the virus mutating within their mink hosts, the epidemiological

surveillance of animals is not at the same level as it is of humans [28]. The third hypothesis,

on immunocompromised individuals being a source of new variants, stems from the studies

that show such individuals to shed viral particles for an extended period of time, and it is

also supported by the overlap of certain mutations observed in VOCs and the variants in

3
A term coined during the COVID-19 pandemic to designate SARS-CoV-2 variants of concern for public health;

although every health organization maintains its own list of VOCs, according to the WHO, only the Omicron

variant remains as a VOC.
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immunocompromised hosts [40]. Nevertheless, all three routes outlined here lead to the

emergence of VOCs, and they should all be given the utmost importance in our ongoing

fight with not just COVID-19, but also future infectious diseases. While it is not possible

to predict the next pandemic, we should keep our powder dry; it is not a matter of if but

when it will arrive.

1.1.2 Bacteria
Bacteria are single-celled organisms, with a cell wall to protect the cell from internal

pressure and external factors. Unlike other organisms, their cell wall contains peptidoglycan,

a polysaccharide molecule that defines the shape of the bacterial cell and provides rigidity.

Bacteria are classified into two main categories based on Gram staining; gram-positive

and gram-negative. Gram-positive bacteria have a thick cell wall, which leaves a purple

stain in the Gram stain. The cell wall in gram-negative bacteria, on the other hand, is

thinner and leaves a pink stain. For both types, the genetic material is usually made up

of the chromosome DNA and the plasmid DNA. While some bacteria can have multiple

chromosomes, the chromosome DNA is in most cases circular [41]. The plasmid DNA is

also circular; bacteria can carry different types of plasmids as well as multiple copies of

the same plasmid sequence. Plasmid DNA forms a crucial part of the bacteria, and it is

often included when we refer to a bacterial genome; we differentiate these two DNAs by

chromosome and plasmid, when we can.

A typical bacterial genome is much smaller than a eukaryotic genome, the E. coli
genome, for instance, is only 4.6 million base pairs (4.6 Mb) long compared to that of

Saccharomyces cerevisiae (yeast) with 12.1 Mb and the human genome with 3.1 billion base

pairs (3.1 Gb). Within the kingdom, symbiotic bacteria have the smallest genomes at 140

kilobases (140 kb), and some soil bacteria are almost 14 Mb long [42]. However, most of

the genome sequences (75%) fall below 4 Mb [43]. On average, 90% of the genome consists

of genes, or coding DNA; bacteria are considered to be gene-dense compared to other

organisms. The coding density, the proportion of the coding DNA to non-coding DNA, can

vary depending on the environment and ecology, although it remains high throughout the

kingdom [43].

In addition to high gene density, a defining feature of bacterial genomes is how these

genes are arranged on the chromosome. Synteny, first introduced by John H. Renwick in

1971, is a term derived from Greek, translating to "beads on a string". As the translation

suggests, it refers to the unique arrangement of genes on the same DNA, and it is found

across multiple organisms, conserved to a large extent [44]. While there is no strict

definition of the term, syntenic regions in bacteria are specific structures in which the

gene content as well as the order of these genes are consistent across multiple strains,

species or genera. Although each instance of such genome structures can vary from one

another at both the gene and sequence level, the non-random placement of genes in such a

manner has been widely studied as it has evolutionary implications [45, 46]. This structural

arrangement of genes can be functional; if the genes are localized in a syntenic region

due to functional constraints, i.e. near the origin of a replication site, or a regulon which

regulates the expression of all genes in the region. These functional regions are referred to

as operons, which comprise genes that function in the same biological pathway [47]. Since

genes in an operon can be directly linked to a specific pathway, it is possible to infer the
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function of a gene simply based on its location on the genome to a reasonable extent [46].

The stability of smaller genome structures in bacteria, is in contrast to the overall nature

of the genome. The bacterial genome is highly dynamic: it goes through gene loss and gain,

in addition to recombination. The driving force behind this dynamicity is horizontal gene

transfer (HGT). Genetic material of varying sizes is often transferred between bacteria and

other organisms in their environment. Genes, small genome structures, including syntenic

regions, as well as entire plasmids can be transferred in such manner. Plasmids play a

crucial role in HGT; they can mobilize accessory genes, and genes that confer survival

advantage in a given environment, such as antimicrobial resistance, virulence in addition

to ability to metabolizes molecules [48]. Any genetic material that can be mobilized and

transferred between bacteria are generally referred to as mobile genetic elements (MGE).

MGEs include, insertion sequences (ISs), integrative and conjugation elements (ICEs),

transposons and bacteriophages, all of which can be found in both the chromosomal DNA

and the plasmid DNA in a bacteria [49].

ESKAPE pathogens
Despite the advances in medicine and the development of novel therapies and antibiotics,

millions of people die from bacterial infections. The biggest factor fueling this growing

death rate is the emergence of highly virulent, antibiotic resistant pathogens, and the

rapid spread of these pathogenic traits in hospitals. Since the first use of penicillin to treat

bacterial infections in 1920, bacteria have shown an impressive ability to acquire resistance

against new antibiotics introduced, amassing multiples of such resistance traits in some

instances [50, 51]. Multi drug resistant (MDR) bacteria, in particular, were put into the

spotlight by WHO in 2015 when they established the list of ESKAPE pathogens, a group of

pathogenic bacteria that can readily escape many treatments we have currently available

[52]. ESKAPE pathogens include Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species,
while the acronym is sometimes extended to include Escherichia coli as well. ESKAPE
pathogens, scoring at the top of WHO’s list of 12 bacteria for which new treatments are

needed urgently. ESKAPE pathogens are the major cause of nosocomial, hospital acquired

infections worldwide, leading to increased mortality, infection severity and healthcare

costs [53]. It is estimated that ESKAPE pathogens make up as much as 15.5% of hospital

acquired infections [54].

The mechanisms of MDR varies widely from species to species, however, the ESKAPE

pathogens commonly exhibit three types: reduction of the antibiotic molecule concentra-

tion, modification of the antibiotic target site, or the inactivation of the molecule [54]. In

addition, biofilm formation plays an important role in the persistence of infections. All

these mechanisms associated with MDR are naturally found in bacteria to aid in their

survival in an environment where other microorganisms are also present and there is a

need to compete. These survival tactics are ancient and they predate the human use of

antibiotics. However, it is the recent use and abuse of antibiotics in healthcare settings,

as well as the agricultural sector that led to the selective pressure for MDR to spread [55].

Another important yet often overlooked factor is the increased healthcare use in general.

Following the improvements in medical technology, hospitals and medical care have be-

come more accessible to a larger population. While it has been immensely successful in

improving human health conditions as well as increasing average life expectancy, on the
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other side of the coin, we are faced with increased hospital associated infections due to

unnecessary hospital visits or prolonged hospital stays beyond needed [52].

It has been now recognized that an all-hand approach is required to address the threat

posed by ESKAPE pathogens. This includes raising awareness, and increasing support for

research to study these organisms and aid in developing new drugs. Raising awareness

to mobilize stakeholders, such as the policymakers, healthcare providers, as well as the

general public. We can increase the awareness of globally threatening consequences of

infections, and advocate for responsible antibiotic use through educational campaigns and

public health initiatives. In addition, healthcare providers should also be well equipped with

the knowledge and skills to mitigate ESKAPE infections particularly. Moreover, research

to advance our understanding of microbial pathogens and facilitate the discovery and

development of new antimicrobial agents should be supported. By leveraging genomic

data to identify drug targets, discover new antibiotics, elucidate resistance mechanisms,

and guide precision medicine approaches, researchers can accelerate the development of

effective antimicrobial therapies to address the global threat of antibiotic resistance.

Acinetobacter baumannii: a superstar pathogen
Acinetobacter baumannii4 is a Gram-negative bacterium that belongs to the genus Acineto-

bacter [57]. Acinetobacter comprises a diverse group of Gram-negative bacteria charac-

terized by their coccobacillary morphology and aerobic metabolism. Unlike other Acine-

tobacter species which are found in soil exclusively, A baumannii is often isolated from

hospitals, although its natural habitat remains unknown [58]. A. baumannii can survive in

diverse environmental conditions, including desiccation, nutrient limitation, and exposure

to disinfectants. This resilience contributes to its widespread presence in healthcare settings

and its role as an opportunistic pathogen. Being the "A" in the infamous group of "ESKAPE"

pathogens, it is one of the most successful pathogens, exhibiting extensive MDR [52].

Among the shortest bacteria, Acinetobacter baumannii, has punched above its weight

and emerged as a significant opportunistic pathogen in healthcare settings worldwide.

Its clinical impact spans a wide range of infections, including pneumonia, bloodstream

infections, urinary tract infections, and wound infections [57]. Particularly concerning is its

propensity to cause infections in immunocompromised patients and those with prolonged

hospitalizations, making it a formidable challenge for healthcare providers [59]. A. bau-
mannii thrives in environments where patients are exposed to invasive procedures, such

as intensive care units; prolonged hospitalization, mechanical ventilation, and immuno-

compromised status further elevate the risk of A. baumannii infections in ICU patients

[58].

The A. baumannii genome ranges from 3 to 4 Mbp in length, and it often includes

plasmid DNA in addition to its chromosome, in particular the MDR strains [57]. Its genome

is highly plastic; it can rapidly adapt to changing environmental conditions as HGT plays

a significant role in shaping the genomic diversity of A. baumannii. A. baumannii can
acquire new traits through HGT of antibiotic resistance genes, virulence factors, and other

genetic material that increase fitness [60].

4
It was named after the bacteriologist Paul Baumann [56]. It must be an honor to have your own species, but at
the same time I wonder if it is at all challenging to be associated with a notorious pathogen.
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Antibiotic resistance in A. baumannii is usually caused by genes which encode enzymes

that modify or degrade antibiotic molecules, efflux pumps that actively remove antibiotics

from the bacterial cell, and alterations in antibiotic targets that reduce their binding affinity.

A. baumannii is intrinsically resistant to many antibiotics including beta lactams, amino-

glycosides, fluoroquinolones, and trimethoprim-sulfamethoxazole. This intrinsic resistance

is due to the impermeable outer membrane, efflux pumps, and enzymatic inactivation

mechanisms [61]. In addition, A. baumannii can acquire resistance from its environment,

and the most clinically significant acquisition is usually plasmid-mediated. Resistance

genes are often carried on plasmids, and plasmids can harbor multiple resistance genes;

thus MDR can rapidly spread through such plasmids among bacterial populations. Several

studies had identified specific genetic loci and genomic regions associated with MDR on

both the chromosome and plasmid in A. baumannii, such as resistance islands and genomic

islands [60]. These regions often contain clusters of resistance genes and other MGE,

such as integrons, transposons and IS, which aid in mobilizing these genomic regions and

spreading antibiotic resistance within bacterial population [60].

Carbapenem resistance in A. baumannii is the most concerning trait since carbapenems

are often considered the last line of defense against MDR Gram-negative bacteria [62].

Resistance to carbapenems in A. baumannii is primarily mediated by the production of car-

bapenemases, enzymes that hydrolyze carbapenem antibiotics and render them ineffective

[63]. Carbapenemases of clinical significance in A. baumannii include Acinetobacter-

derived cephalosporinases (ADCs) and OXA-51, often found within the context of IS, and

it is usually transferred by HGT [64]. In addition to carbapenemases, A. baumannii can
exhibit carbapenem resistance through decreased permeability of the outer membrane; the

effectiveness of carbapenems are greatly reduced when the entry of antibiotic molecules

is limited. Similarly, efflux pump systems, such as AdeABC, AdeIJK, AbaR and AdeFGH,

actively remove carbapenems from the bacterial cell, further decreasing the concentration

of antibiotic molecule [61]. Similarly, mutations in the penicillin-binding proteins, the

targets of carbapenem antibiotics, can also reduce their binding affinity and efficacy [65].

A. baumannii has recently made the news during the COVID-19 pandemic when

patients with severe COVID-19 that required ICU and prolonged hospitalization, forming

the breeding ground for carbapenem resistant A. baumannii infections [66]. This was
compounded by the increased antibiotic usage in hospital settings; antibiotics, including

carbapenems were commonly prescribed to treat bacterial co-infections or secondary

infections in COVID-19 patients. Since hospitalized patients with severe COVID-19 were

often at increased risk of acquiring infections due to prolonged hospitalization, invasive

procedures, and compromised immune function, it put further strain on the healthcare

systemwhichwas already under the pressure of a global pandemic. This event demonstrated

the imminence of MDR bacteria outbreaks.

Enterococcus: a creature of survival
The enterococcus genus is a gram-positive, low-GC lactic acid bacteria within the taxonomic

class, Bacilli. Bacilli is one of the 11 classes within the phylum Bacillota, previously

named Firmicutes
5
, meaning "tough skin" in Latin, which remains the best description of

5
Firmicutes phylum was renamed to Bacillota in 2021; three years have passed already but as it is the case with

many things in science, the renaming holds its controversial status. In this thesis, I will follow the nomenclature
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enteroccus. The Enterococcaceae family within the lactic acid bacteria includes the closest

relatives of Enterococcus: Melissococcus, Pilibacter, Tetragenococcus, and Vagococcus. The
tough skinned enterococci stand out with their resistance and ubiquity; they can withstand

various harsh environmental conditions, and they are one of the most abundant species in

the gut microbiota across a wide range of terrestrial animals. They have established their

presence in the gut microbiomes of practically all animals on land: from insects, snails,

and reptiles to mammals, birds, and fish. They can also be found in water, soil, fermented

food, and plants. This innate hardiness contributes to their persistence in hospital settings,

and they have been frequently identified as one of the leading causes of antibiotic resistant

bacteria in hospitals as well as hospital acquired infections in humans. Enterococcus spp.,
is the first "E" in the infamous "ESKAPE" pathogens, which WHO has established as the

priority list of MDR pathogens to investigate [52].

Pathogenic enterococci have emerged as one of the most clinically relevant bacteria in

the last 25 years, causing bacteremia, urinary tract infections, meningitis, and endocarditis

and several other infectious diseases. E. faecium and E. faecalis are two species that have

been associated the most with infections globally and they are the most commonly found

species in the genus [67]. E. cecorum, E. gallinarum, and E. durans have been isolated

frequently from animal sources, while E. casseliflavus and E. mundtii are found in plants

and soil [48].

The genetic variation in enterococci is highly affected by its environment; as an in-

dispensable member of the animal gut microbiome, their genotype is shaped by the host-

microbe interactions. Some of the most diverse enterococci are found in arthropods even

though we have explored only the tip of the iceberg of their diversity [48]. Similarly,

enteroccal species in wild environments such as soil and water sources differ from those

isolated from fermented food or dairy [68, 69]. The enterococcal genome size ranges from

2Mb to 5Mb, and it contains 3000 genes on average. Recently, Schwartzman et al. reported

417 single copy core (SCC) genes in the enterococcus pangenome, and found 1336 genes

were shared by more than 80% of the species. Enterococci consists of four major clades,

which were initially introduced by Lebreton et al., then verified and expanded with novel

species and increased support for the branching [48].

As enterococci are quite versatile and adaptive in nature, they can readily acquire

new traits through gene gain, and their genome is subject to HGT events, increasing their

fitness to survive in their niche, perhaps even more so than most other bacteria. As one of

the leading causes of the spread of antibiotic resistance, this trait has allowed enterococci

to acquire resistance mechanisms against commonly used antibiotics and become one of

the most threatening MDR bacteria. Both vancomycin and tetracycline resistance were

acquired in the 1980s, until which point these drugs were established as a treatment for

enterococcal infections [71]. Vancomycin resistance is often carried by transposons, and

it is found in an operon; there are multiple such operons detected in enterococci, vanA
operon, which includes the VanA resistance gene, is the most common one in hospital

associated infections [72].

In addition to acquired resistance, enterococcus is known to be intrinsically resistant to

aminoglycosides, beta lactams, fluoroquinolones and lincosamides [73]. Intrinsic resistance

in enterococci is particularly alarming given their propensity to exchange genetic material

in NCBI and use Bacillota, unless I am referring to data retrieved before the renaming.
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with their environment, and it can lead to the spread of antibiotic resistance. Intrinsic

resistance, as it predates human use of antibiotics, plays an often overlooked role in

antibiotic resistance; enterococcal species from undersampled, wild environments, such as

insect guts or soil, harbor functional repertoire that is yet to be mined. For instance, most

enterococci are intrinsically susceptible to vancomycin and they rapidly acquired resistance

through the prolonged use of these antibiotics for treatment. However, E. gallinarum, an

undersampled species, is intrinsically resistant to vancomycin and it was put forth as a

potential pathogen since the resistance genotype could be transmitted although it was

observed in only limited quantities in clinical settings [74]. Later on, both E. faecalis and E.
faecium species were found to carry the E. gallinarum specific vancomycin operons [75].

Thus, sampling new species to discover intrinsic resistance genes, before they can make

their way into hospitals or even cause infections has the potential to contribute greatly to

combat the spread of antibiotic resistance.

Enterococci possess a large pool of virulence factors that can enhance their ability to

colonize a host, bypass the host’s immune system and establish infections [71]. Surface

adhesins, extracellular enzymes, cytolysin and quorum sensing systems are among some

enterococcal virulence traits in addition to biofilm formation [76]. For instance, cytolysins

are toxin proteins that were shown to increase death in infected patients five folds and the

extracellular surface protein gene mediates cell adhesion and evasion of host immunity

[71, 77]. Their highly adaptive, hardy nature, and their propensity to exchange virulence

traits and antibiotic resistance with their environment, in addition to their ubiquity in land

animals as well as the environment, put enterococci forth as one of the most important

bacterial species to investigate.

1.2 Computational comparative genomics to magnify
the microbial world

The first complete nucleotide sequence we obtained was an RNA virus; the complete

genome of a bacteriophage was sequenced at Ghent University in 1976. Growing in number

since then, we have more than 3 million complete nucleotide sequences on NCBI Virus

database today. Similarly, bacterial genome sequencing is also well established, going back

almost 30 years ago when the first complete genome sequence of Haemophilus influenzae
was obtained[78]. As the world of genomics moved from Sanger shotgun sequencing to

high-throughout next generation sequencing (NGS), and then single molecule long read

sequencing, the field of microbiology has followed along. Today, the vast majority of what

we know about microbial genomes comes from this ongoing "roller-coaster ride" [79]. The

new millennium brought in more genomes, more genes and more problems. NGS became

well established in 2005, and we were able to produce millions of reads in a short time

for a fraction of the price of older Sanger technologies. As we processed these reads and

assembled them into genomes with high coverage, we were faced with the stark reality

that not every E. coli genome is identical to one another, and the databases grew in size

every day [80].

This pivotal moment brought to attention the need for comparative genomics at a large

scale, as well as a growing interest in microbial genome sequencing. To store, share and

analyze such massive amounts of sequencing data, we need more advanced computational
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Table 1.2: Number of taxonomy nodes on the NCBI Taxonomy database (statistics retrieved on 13 April, 2024

from the NCBI Taxonomy database): our databases are still highly skewed towards eukaryotes, almost 95% of all

nodes on the NCBI Taxonomy database are from eukaryotes, the prokaryotic taxonomy remains unexplored [84].

Ranks: Higher taxa Genus Species Total

Archaea 705 299 994 1,998

Bacteria 6,823 5,275 26,345 39,408

Eukaryota 69,631 100,683 540,982 749,738

Viruses 2,266 2,795 5,976 11,831

All taxa 79,456 109,053 574,283 802,993

methods. The field of comparative genomics, as it emerged with the broader subject of

genomics, involves studying genomes in comparison to others, typically across species or

closely related individuals within a species. The primary goal of comparative genomics is to

identify similarities and differences in genomic content, organization, and function to gain

insights into evolutionary relationships, genetic variation, and biological diversity [81].

Comparative genomics allows researchers to infer evolutionary histories, identify conserved

genomic regions, and discover genes or genomic elements associated with specific traits or

phenotypes [82]. The field comprises an arsenal of tools and various analytical approaches,

including sequence alignment, phylogenetic analysis, synteny analysis, and functional

annotation, to interpret genomic data and understand the underlying biological mechanisms

shaping genome evolution [83]. The title of my thesis emphasizes the power of comparative

genomics and the added value of mining the ever expanding trove of genomic data as

a whole. With an emphasis on improving computational methods specifically to use on

microbial genomes, comparative genomics has been a central component of microbial

studies.

Comparative genomics for microbial genomes both helped fuel the growth of genome

data, as well as benefited from the established databases. Today, we have several databases

available for microbial genomes, although they are still lagging behind those of eukaryotes

in terms of both size and number. The main databases are the National Center for Biotech-

nology Information (NCBI), the European Bioinformatics Institute (EBI) and the DNA Data

Bank of Japan (DDBJ), although NCBI has taken over the latter two in content. In addition

to these, there are "meta databases" that retrieve microbe sequences and compile them in a

single database to aid bacteria-specific analyses. The Genome Taxonomy Database (GTDB)

and Genomes OnLine Database (GOLD) are such meta databases tailored to microbes.

Finally, the Global Initiative on Sharing All Influenza Data (GISAID) has received the most

attention among all microbial databases during the COVID-19 pandemic.

GTDB was established in 2018 to catalog the wealth of sequencing data on bacterial

and archaeal organisms [85]. GTDB provides a standardized, phylogeny-based approach

to taxonomic classification. The GTDB taxonomy uses genomic and metagenomic data

from Genbank and NCBI RefSeq databases, which then go through a quality check. Their

latest release (08-RS214 from 28th April 2023) contains 402709 genomes in total which

comprises 394932 bacterial genomes with 80789 species and 7777 archaeal genomes with

4416 species. Similarly, GOLD, an online resource that keeps track of sequencing projects,
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compiles information about genomic data available on public databases [86]. GOLD reports

433761 bacterial genomes, 27222 of which are type strains. Note the difference between

the number of species in these two databases: GTDB holds 80789 species compared to

27222 in GOLD. The GTDB species are essentially clusters of genomes represented by

a single genome, which is picked from genomes of the type strains if available. Only

14826 (17.4%) of these genomes are isolate type strains, and the remainder are cluster

representatives, mostly obtained from metagenome-assembled genomes (more than 75%).

This discrepancy highlights the benefits of harnessing data from metagenome-assembled

genomes (MAGs) where uncultured bacteria can provide invaluable information about the

microbial dark world. Finally, GISAID, to this day, is the biggest resource of SARS-CoV-2
genome sequences with over 15 million genome sequences in its inventory [87]. GISAID is

a science initiative established in 2008; upon renaming itself from the Global Initiative on

Sharing Avian Influenza Data, it has set the ground for rapid sequencing and sharing of

data related to pathogens of global concern [88]. The catalog of GISAID includes a wide

range of data, from genome sequences, metadata specific to a virus species to clinically

relevant data and epidemiological surveys. With its emphasis on open science, GISAID is

one of the strongest driving forces behind the relentless work on influenza viruses. During

the COVID-19 pandemic, we observed it accelerate the research on COVID-19 globally;

having access to epidemiological and genomic data from all around the world has led to a

better understanding of the SARS-CoV-2 evolution and the emerging variants [88].

The wide spread adoption of comparative genomics has transformed our understanding

of microbial genomics, with many applications to study their evolution, diversity and

genotype; as we became more familiar with the characteristics of microbial genomes, we

learned to hone our tools and methods in our arsenal. As I described before, the dynamic

nature of bacterial genome rewards them with an immense genomic diversity. For that

reason, bacterial evolution can be both more intriguing and tricky to investigate. We use

phylogenetic trees to study the evolution of an organism; the phylogeny is represented

with a tree data structure, where the branches are speciation events. New species form

when the genome has diverged sufficiently from a parent node in the tree. Since the major

driving force behind this dynamicity is HGT, it is often futile, if not incorrect, to build a

bacterial family tree [89]. Bacterial evolution is best described in the form of a network

instead of a tree, although they found only limited applications in the field [90]. There are

fewer methods and tools developed to accommodate a network-based phylogeny, and it

can be difficult to interpret a network structure for evolutionary insight since a tree is a

more intuitive way to understand the evolution of a species for us humans. Keeping the

caveats of a tree structure, as well as the dynamicity of a bacterial genome, phylogenetic

trees are useful to study bacteria and most commonly used.

For many bacteria, evolution at genome scale can be incompatible with the evolution

at the scale of a gene, leading to ambiguous species and further complicating the taxonomy

[89]. Thus, it is also useful to look at the evolution of a specific gene, as opposed to the

whole species. Similar to species taxonomy, we can group genes into clusters to relate one

gene to another in terms of its evolutionary history and/or its function. A gene family,
is a cluster of homologous genes often formed based on sequence similarity. Homolog

genes can be either orthologous or paralogous, the former necessitating a shared common

ancestor whereas the latter may be the result of a gene duplication. Identifying orthologous
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genes is one of the core aspects of studying evolutionary relationships, gene function, and

genome evolution across different microbial species. We can infer gene function, conserved

pathways and biological processes by studying gene families, as well as annotate novel

genes [91, 92].

Another important aspect of comparative genomics is the study of gene content and

genome organization. Due to the gene-dense nature of the genome, the presence of stable

genome structures, as well as its plasticity, it is useful to view bacterial genomes in a

modular way instead of nucleotide sequences. This view lends itself naturally to studying

bacterial evolution at different levels, such as the gene or a genomic region, and thus

analyzing the genome organization based on these genomic units. Identifying genes or

genome structures that are present or absent is one of the most trivial ways to compare

genome organization across species. Differences in genome organization between species

or strains can indicate nice adaptation, evolution, or HGT [48]. Since HGT is one of the

main sources of virulence and antibiotic resistance in pathogens, understanding HGT is

important to detect the emergence of novel pathogens or traits [75].

Since some species can vary as much as 50%, many researchers adopted the view of

a species as a collection of genomes as opposed to a single linear sequence. Coined by

Tettelin et al. first in 2005, pangenome is a collective way to represent this collection and

describe the shared genetic material as well as the variance. Although it was initially

proposed to study species, a pangenome can be constructed at any taxonomic level, such

as strains, genus and phyla. Pangenome can be broken down into a core genome and an

accessory genome at a coarse level. The core genome is conserved in at least 99% of the

genomes, and the accessory genome is broken further into soft-core (95-99%), shell (15-95%)

and cloud (less than 15%)
6
. Within the view of a modular bacterial genome, where the

smallest genetic unit is a gene, bacterial pangenomes are usually constructed from genes

directly [95]. Bacterial pangenomics has found several applications, and it is a growing

field as we sequence more genomes, discover new species and new genotypes to study

[96–98].

More recently, comparative genomics has been brought to public attention during

COVID-19 where it was proven instrumental in advancing our understanding of SARS-

CoV-2 biology, transmission dynamics, and host interactions, with important implications

for public health, disease surveillance, and the development of countermeasures against

COVID-19 [88]. Many researchers combined novel comparative genomics tools with

traditional epidemiological methods for genomic epidemiology [33]. This approach allowed

us to track the evolution of SARS-CoV-2 over time and across different geographic regions;

by identifying mutations, deletions, and insertions in the viral genome, we understood

their potential impact on viral transmissibility, virulence, and immune evasion [34, 99]. In

addition, beginning with the rapid sequencing of the first SARS-CoV-2 genome, comparative

genomics has informed the design and development of vaccines and antiviral therapeutics

for COVID-19 [35]. Understanding the genetic diversity of SARS-CoV-2 and its variants

helped researchers anticipate potential escape mutations and design vaccines that induce

broad and durable immune responses [24]. Finally, the compounding effects of comparative

genomics were also demonstrated during the COVID-19 pandemic where the insights

6
There is no established consensus on the definition of these partitions, however, in the context of this thesis I

will follow the soft-core threshold described in [94].
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gained previously from SARS outbreaks in 2003 were informative [23]. Thus, the recent

work on SARS-CoV-2 will prove beneficial in the future as newer pathogens emerge, and

are faced with another pandemic. In a world which grows more interconnected as time

passes, it is only natural to assume that the next pandemic is right around the corner.

1.3 Research objectives and contributions
Despite all the impressive methodological advances in microbial genomics that gave us

valuable insight into microbial biology, ecology and evolution, several gaps and challenges

remain. Since microbial genomics is of clinical concern, most of the sequencing efforts and

subsequent analyses are case-specific; they are limited in their scope, and often confined to

a single setting, such as a hospital outbreak, or they focus on an individual organism with

a particular pathogenic trait. We have significantly more to gain from adopting a wider

view in our work and exploiting the growing size of microbial genomic data. For instance,

the extensively diverse functional repertoire of microbial organisms can only be unraveled

through mining large genomics datasets. Especially for less studied organisms and poorly

characterized microbial taxa such as uncultivated bacteria, or the microorganisms from

distant ecologies, functional annotation remains a challenge [100]. The aptly named

microbial dark matter, the uncultured microbial populations, make up more than 80% of the

taxa and it is out there to be discovered [101]. Similarly, we have a limited understanding

of the origins and evolution of pathogenic traits in microbial organisms. While there are

several systems andmethods established for genomic surveillance of pathogens, we have yet

to discover the ecological niche and environmental conditions where many antimicrobial

resistance genes originated and further spread out to infect humans.

Fascinated by the remarkable diversity of microbial organisms, and encouraged by the

developments in the field of computational comparative genomics, this thesis is a journey

embellished with algorithms in the realm of microbial genomics. My goal is to bridge these

knowledge gaps in microbial genomics, to illuminate the microbial world, and to unravel

the mysteries of microbial life, through the magnifying glass of comparative genomics.

In Chapter 2, we begin at the smallest scale, with viruses. During the COVID-19

pandemic, we witnessed the exponential growth of SARS-CoV-2 genomes and we were

motivated tomine the trove of data accumulating to understand the introduction, population

dynamics and the ongoing evolution of SARS-CoV-2 genomes in the Netherlands. Several

studies investigated hospital outbreaks, case studies, or COVID-19 in animal farms in

the Netherlands, but there was no work analyzing SARS-CoV-2 genomes broadly in the

whole country. Thus, we amassed the largest collection of SARS-CoV-2 genomes in the

Netherlands, which allowed us to gain insight into the local dynamics of COVID-19, and

track its spread through monitoring variants. Our findings are valuable to initiate region-

specific measures to control outbreaks, design viral treatments, or develop vaccines. Our

work demonstrated the power of harnessing large scale genomics data using suitable

methods.

In Chapter 3, we are welcomed into the magnificent kingdom of bacteria. Amazed by the

population diversity, our work was motivated by the pitfalls of inadequate representations

that fail to account for the bacterial population diversity. In particular, the use of a single

linear reference sequence to represent the bacterial species, A. baumannii. This issue had
been highlighted in several studies in the literature, leading to the emergence of pangenome
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graphs to study bacterial populations, and the consequent development of methods to

build such pangenome structures [96, 98, 102]. Our goal in this study was to explore

these methods in depth and analyze their features since there was a lack of knowledge

of their practical use and applicability. In this work, we provided an overview of the

bacterial pangenomics landscape, and practical guidelines on how to use pangenomes to

study any bacteria. We also performed a small comparative study on a collection of A.
baumanni strains, where we developed an ensemble method to build pangenome graphs.

Our ensemble approach was proven effective for structural variant calling as we detected

a novel plasmid structure carrying MDR. Our findings show the clinical significance of

comparative genomics in studying bacteria.

Chapter 4 continues to develop novel methods tailored to bacteria. This time we were

influenced by the seemingly distant field of natural language processing (NLP). Recognizing

the glaring similarities between a genome sequence and sentences in human language,

many researchers adopted recent methods from NLP to study genomes and develop protein

language models. These models were incredibly powerful in studying gene sequences since

they allowed us to extract secondary and tertiary structures from the linear sequence alone,

and go beyond the sequence similarity [103]. However, there have been limited applications

on microbial organisms [104]. Given the extensive functional diversity of bacteria and

the fact that we know the function of only a small fraction of the bacterial genes, we

hypothesized that we had a lot to gain from using protein language models to understand

the diverse functional repertoire of bacteria. Thus, we developed SAFPred, a novel synteny-

aware gene function prediction tool based on protein embeddings from state-of-the-art

protein language models. Our work is novel in our emphasis on being bacteria-specific in

both the development and evaluation of our method; our method exploits bacterial synteny

in combination with protein embeddings representation, and we assessed the predictive

performance on benchmarks tailored to bacteria. SAFPred outperformed conventional

sequence-based bacterial genome annotation pipelines as well as a state-of-the-art deep

learning method. We also demonstrated SAFPred’s performance by predicting potential

novel toxin genes in Enterococcus species, which could have clinical implications. Chapter

4 is the climax of this thesis where we clearly showed the power of designing algorithms

tailored to bacteria.

Chapter 5 was initially an appendix to Chapter 4, which later spawned its own chapter

due to its added value independent of Chapter 4. SAFPred, presented in Chapter 4, exploits

bacterial synteny using SAFPredDB, a bacterial synteny database we have built. There

are only a handful of bacterial operon databases, most of which are limited in their scope

or out of date. To address the need to catalog bacterial synteny across a wide range of

species, we presented SAFPredDB, a comprehensive collection of bacterial operons and

syntenic regions found across the entire bacterial kingdom. In this chapter we explained

the purely computational, bottom-up approach we designed to build SAFPredDB which is

based on a synteny model we proposed, and we demonstrated the validity of our approach

by comparing it to existing databases. SAFPredDB deserved its own chapter as it is not only

a repository for SAFPred, but it is a valuable resource of genomic information, facilitating

comparative genomic analyses, evolutionary studies, and functional genomics research in

bacteria.

Chapter 6 is the culmination of the collective effort within microbial comparative
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genomics research. Within the genus Enterococcus, the two most common pathogens, E.
faecium and E. faecalis, have been studied extensively, however, there is relatively less effort

in analyzing the genus in its entirety, including those species isolated from rare ecologies

and geographies. Our goal in this chapter is to understand the incredibly complex and rich

world of the tough-skinned Enterococcus through comparative genomics, taking a holistic

view of the genus. We curated the largest, most diverse collection of Enterococcus genomes

publicly available. Our Enterococcus collection allowed us to clarify species boundaries

within the genus, and expand the known species labels to accommodate the recently dis-

covered species, in addition to increasing the support for the known clade definitions. Our

approach forms a solid foundation for future investigations into Enterococcus diversity
and evolution. We further mined the Enterococcus collection to explore AMR traits un-

constrained by any specific sampling location, setting, drug class, or species boundaries.

We described our systematic approach to identify AMR, distinguish between intrinsic and

acquired resistance, and illuminate the evolutionary trajectories of resistance traits within

Enterococcus populations. Our work contributed to our understanding of the mechanisms

and evolution of AMR in bacteria in general.
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2
Emergence of novel

SARS-CoV-2 variants in the
Netherlands

“If you want the present to be different from the past, study the past.”

— Baruch Spinoza

This chapter is based on  Aysun Urhan and Thomas Abeel. Emergence of novel sars-cov-2 variants in the

Netherlands. Scientific reports, 11(1):6625, 2021. [1].
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Abstract
Coronavirus disease 2019 (COVID-19) has emerged in December 2019 when the first case

was reported in Wuhan, China and turned into a pandemic with 27 million (September

9th) cases. Currently, there are over 95,000 complete genome sequences of the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing COVID-19, in public

databases, accompanying a growing number of studies. Nevertheless, there is still much

to learn about the viral population variation when the virus is evolving as it continues

to spread. We have analyzed SARS-CoV-2 genomes to identify the most variant sites, as

well as the stable, conserved ones in samples collected in the Netherlands until June 2020.

We identified the most frequent mutations in different geographies. We also performed

a phylogenetic study focused on the Netherlands to detect novel variants emerging in

the late stages of the pandemic and forming local clusters. We investigated the S and N

proteins on SARS-CoV-2 genomes in the Netherlands and found the most variant and stable

sites to guide development of diagnostics assays and vaccines. We observed that while

the SARS-CoV-2 genome has accumulated mutations, diverging from reference sequence,

the variation landscape is dominated by four mutations globally, suggesting the current

reference does not represent the virus samples circulating currently. In addition, we detected

novel variants of SARS-CoV-2 almost unique to the Netherlands that form localized clusters

and region-specific sub-populations indicating community spread. We explored SARS-CoV-

2 variants in the Netherlands until June 2020 within a global context; our results provide

insight into the viral population diversity for localized efforts in tracking the transmission

of COVID-19, as well as sequenced-based approaches in diagnostics and therapeutics. We

emphasize that little diversity is observed globally in recent samples despite the increased

number of mutations relative to the established reference sequence. We suggest sequence-

based analyses should opt for a consensus representation to adequately cover the genomic

variation observed to speed up diagnostics and vaccine design.

2.1 Introduction

I
n late December 2019, officials had reported the first case of coronavirus disease 2019

(COVID-19) in China, caused by a novel type of coronavirus named severe acute res-

piratory syndrome coronavirus 2, (SARS-CoV-2) [2]. COVID-19 has consequently led to

the global pandemic we are going through at the moment; according a situation report

released by the World Health Organization (September 9th) there are 27.4 million cases and

almost 900,000 deaths in total [3]. SARS-CoV-2 has been placed under the betacoronavirus

genus, closest relatives being bat and pangolin coronaviruses [4, 5].

Despite having major commonalities with recent outbreaks of betacoronaviruses, SARS

in 2002 and Middle East respiratory syndrome (MERS) in 2012, it is unprecedented not only

in its ease of spread but also in the collective effort of several international scientists to

investigate and understand the biology of the disease and the virus causing it since the day

the first complete SARS-CoV-2 genome sequence had been published [5–8]. Early studies

on the SARS-CoV-2 genome has shown its closest relative, in terms of sequence identity, to

be the bat coronavirus RaTF13 with over 93.1% match in the spike (S) protein and >96%

sequence identity overall [6, 9]. Immediately a reference sequence had been established

[10], paving the way for the exponential growth in both the number and the scale of studies
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on the SARS-CoV-2 genome [11–16].

At the moment, the GISAID database has established the SARS-CoV-2 population

consists of six major clades: G, GH, GR, L, S and V [17]. There is a growing number of

studies on the genetic variability of SARS-CoV-2 relative to the reference genome [18–21].

From previous viral outbreaks, it is known that as part of the natural evolution of a virus,

subpopulations of clades that can affect the severity of a disease emerge and alter the

trajectory of a pandemic [22]. It has been reported that while the two major structural

proteins, S and nucleocapsid (N) protein are rich in sites of episodic selection, ORF3a and

ORF8 had also been shown to carry a lot of mutations [23].

In this study, we investigate the genetic variability of SARS-CoV-2 genomes in the

Netherlands until mid-2020, in the context of global viral population with a particular

focus on the later stages of the first wave of the pandemic (from early April to the end

of May). We have identified the most variant proteins in the SARS-CoV-2 genome, as

well as the most frequent mutations in the Netherlands that also showed high dominance

in the rest of the world. We found relatively conserved regions in the S and N proteins

of SARS-CoV-2, as well as frequent mutations on the target regions of some RT-qPCR

diagnostic tests. Tracing the viral genome since its first introduction into the Netherlands,

we detected novel mutations unique to the Netherlands, and local clusters of distinct viral

sub-populations emerging in different provinces. Our work provides valuable insights into

the regional variance of SARS-CoV-2 populations in the Netherlands that would prove

beneficial for localized efforts in tracking routes of transmission through genetic variation,

primer/probe design in RT-qPCR tests targeting viral sub-populations. We recommend that

emergent variants are examined when developing sequence-based diagnostics, vaccines or

therapeutics against COVID-19. In order to do so, genomic surveillance needs to continue

at a sufficiently high level throughout the course of the pandemic.

2.2 Methods
Our study of SARS-COV-2 genomes in the Netherlands consists of three main steps: data

retrieval, preprocessing and multiple sequence alignment, phylogenetic tree construction

and sequence variation analysis. We have also analyzed the global phylogenetic tree of

SARS-COV-2 genomes using additional metadata on patients and travel history.

2.2.1 Dataretrievalandpreprocessing, andmultiple seqence
alignment

Complete, high quality (number of undetermined bases less than 1% of the whole sequence)

genome sequences of SARS-COV-2 that were isolated from human hosts only were obtained

from GISAID, NCBI and China’s National Genomics Data Center (NGDC) on June 13th

[17, 24, 25]. The dataset contained 29,503 sequences with unique identifiers in total,

including theWuhan-Hu-1 reference sequence (accession ID NC_045512.2). The “Collection

date” field was also extracted for all sequences, and it is referred to as “date” throughout this

work. The acknowledgment table for GISAID sequences can be found in Supplementary

file 2 and the full list of sequence identifiers for NCBI and NGDC records are provided in

Supplementary file 3.

All sequences were aligned against the Wuhan-Hu-1 reference using MAFFT (v7.46)
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with the FFT-NS-fragment option, and the alignment was filtered to remove identical

sequences to obtain 24,365 non-redundant genomes [26].

2.2.2 Seqence variation analysis
In order to determine mutations, the filtered multiple sequence alignment was trimmed

to remove gaps from the Wuhan-Hu-1 reference (accession ID NC_045512.2) and used

as input to the coronapp web application to obtain nucleotide variations [27]. Next, the

trimmed alignment was used to cluster genomes according to the nomenclature on GISAID

website. We assigned all 29,503 sequences to one of the clades S, L, V, G, GH and GR.

We retrieved primer/probe sequence sets released by US CDC, WHO, Institut Pasteur

and China CDC, and identified mutations which overlap with these sequences [28–31].

2.2.3 Phylogenetic tree construction
The maximum likelihood phylogenetic tree for the samples in the Netherlands (1338

genomes in total) was built using IQ-TREE (v2.05) with GTR model, allowing to collapse

non-zero branches, and ultrafast bootstrap with 1000 replicates [32]. A time tree was also

constructed for dating branches in IQ-TREE (v2.05) and the final tree was rooted at the

ancestral node of S clades in the tree using ETE Toolkit (v3.1.1) [33]. ETE was also used

for visualizing tree. Collection date and region (within the Netherlands) fields of each

sequence record (if available) were retrieved, and utilized to infer the spread of variants

within the Netherlands.

2.3 Results
The global SARS-CoV-2 dataset was filtered considering only the sequence quality, hence

we observe a large discrepancy in the distribution of genomes across different countries.

Initially, most sequencing effort was concentrated in China and other countries where

the outbreak had begun. However, at the time of data retrieval (June 13th) the dataset is

dominated by samples from the UK, the USA and Australia (Table 2.1 and Fig. 2.1).

Since we have not corrected for sampling differences, in this section, we will provide a

view of the current situation of pandemic mainly in Europe, focusing on the Netherlands,

where most of the viral genomes are available today (Fig. 2.1). While initially many genome

sequences were generated, by April virtually no sequences were determined.

2.3.1 Distinct genetic patterns in the SARS-CoV-2 population
emerge across the globe

In order to get a broad overview of the viral diversity throughout the pandemic, we

monitored changes in proportion of clades in time using the clade definitions proposed by

the GISAID database [17]. We observe the distribution of different clades in the Netherlands

resemble that of Australia where the first samples are genetically diverse and there is no

dominating variant (subplots in Fig. 2.2, see Fig. S2.3 for absolute number of genomes).

A similar pattern is seen in other European counties such as the UK and Belgium, while

the USA, Canada and Denmark have distinct trajectories with GH clade dominating the

population (Figs. S2.4 and S2.5). Also note that clade S has gradually faded out despite its
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Figure 2.1: Distribution of SARS-CoV-2 genomes across five continents: (A) total number of genomes is shown on

y-axis and the regions in x-axis, (B) the change in number of genomes collected over the course of pandemic,

x-axis shows the collection date. See (B) for colors of each continent.

Table 2.1: 20 countries with the largest number of genomes in the dataset.

Country Number of genomes

The UK 9641

The USA 7294

Australia 1398

The Netherlands 1338

Spain 886

India 710

China 651

Belgium 645

Denmark 581

Canada 560

Portugal 500

Iceland 481

France 376

Sweden 353

Switzerland 314

Singapore 285

Austria 247

Russia 218

Germany 209

Luxembourg 192
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Figure 2.2: Distribution of SARS-CoV-2 clades in a selection among the 12 most sampled countries in comparison

to the Netherlands: y-axis shows a 7-day moving average of the relative abundance of the six clades, and x-axis

shows the collection date. (See the legend for clade names and colors) Intervals with fewer than one genome per

day were discarded. See Fig. S2.3 for absolute number of genomes.

high prevalence before April in several countries, this is particularly noticeable in Australia,

China (Fig. 2.2), the USA, Spain and Canada (Figs. S2.4 and S2.5).

Viral diversity can be observed more clearly when put into context with less diverse

populations in other countries where the outbreak had begun the earliest. For instance,

China, Singapore and Italy had experienced the outbreak the earliest in the world, and

there are only few of the major clades circulating (Fig. 2.2, Italy not shown due to small

sample size, see Figs. S2.3 and S2.4 for other countries). China had opted for possibly the

most severe restrictions; similarly in Singapore, the initial cases of COVID-19 had been

followed up with strict precautions, preventing both the spread and new introduction of

the virus. While it is tricky to formulate any clear hypothesis since there has not been any

public data submission from these countries since April, it is certainly interesting to see

the contrast between them and countries where COVID-19 arrived at relatively late stages

of the pandemic, such as the Netherlands, the UK and Australia. However, more data is
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Figure 2.3: Number of mutations per sample per day over the course of pandemic in the Netherlands (green),

Europe (orange) and globally (blue): each point is the average number of mutations observed in samples collected

on the same date in the Netherlands (green), Europe (orange) and globally (blue), x-axis shows collection date.

Data points corresponding to days with fewer than five samples are colored transparently to indicate uncertainty.

needed to form a better understanding of the population structures.

2.3.2 Evolution of the SARS-CoV-2 genome and increased mu-
tation freqency in hotspot regions

To assess the mutational landscape and its impact as the pandemic progressed, we investi-

gated dominant mutations across time in the viral population. It is essential to monitor

these changes in the SARS-CoV-2 genome to identify conserved sites relevant for design-

ing therapeutics and vaccines, as well as to study the viral evolution during a pandemic.

Currently, each new sample has on average around ten mutation sites in total compared

to the Wuhan-Hu-1 reference (accession ID NC_045512.2) in the Netherlands where the

trajectory has been in parallel with those in Europe and the world (Fig. 2.3 shows number

of mutations per sample each day from December 2019 to June 2020). Clearly showing a

divergence away from the original reference.

In particular, the S and N proteins have both been reported as the most variant proteins

in the SARS-CoV-2 genome [23, 34]. S:D614G and N:RG203KR amino acid changes comprise

a large fraction of the mutation in these regions (Fig. 2.4); former being one of the mutation

that defines G, GR and GH clades. Apart from carrying the majority of mutations observed

in the populations, both proteins play an important role in RT-qPCR based diagnostic

tests as well as vaccine and drug development [35]. The S protein has been investigated

in great detail for its significance in binding to the host cell and a potential target for

COVID-19 treatment and vaccine design [36–38]. In a recent study, prior information on

the SARS-CoV S and N proteins, and their known epitopes were combined to identify

regions in the SARS-CoV-2 genome that could potentially serve as epitopes for B-cells

and T-cells [39]. In Fig. 2.4 we have highlighted the predicted epitope regions from [39]

with mutations using red rectangles on the x-axis. The authors confirmed that the most

abundant mutations in these regions, S:D614G in particular, should be taken into account

for vaccine design and development of treatments. We also note that the prevalence of
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A

B

Figure 2.4: Total number of nucleotide mutations in the S (A) and N (B) proteins in samples from the Netherlands

are displayed on y-axis; predicted epitope regions from [39] are shown with red rectangles on x-axis, and

conserved sites (free of mutations) on N protein are shaded in blue in (B). X-axis tick marks are labelled with the

corresponding amino-acid position to complement the mutation annotations.

S:D614G variant has steadily increased over the course of the pandemic: it is observed in

all the sequences sampled recently in the world (Fig. S2.6).

In order to determine the appropriate primers to use when diagnosing patients with RT-

PCR tests or when designing novel primer/probe sequences, variations in the nucleotide

sequence should be considered since it plays a crucial role in achieving accurate tests

[10, 20]. We have identified mutations on target regions of primer/probe assay sets most

used in the Netherlands. We found that assay sequences published by US CDC had fewer

than ten genomes with mutations, and those from WHO had fewer than 18 out of 1338

genomes. We have also checked the assay sets from China CDC and Institut Pasteur, even

though they are not in use in the Netherlands to our knowledge. We report 73 genomes

(5%) with mutations on ORF1ab and 771 genomes (57%) with mutations on N protein for

the sets released by China CDC, and fewer than six genomes for Institut Pasteur. Without

being too specific, amino-acid positions from 40 to 90, 160–170, 330–360 and 400–420

on N protein appear to be relatively conserved sites, free of any mutations and could

potentially be utilized as primer sequences (blue shaded regions in Fig. 2.4). The N protein

is recommended as a screening assay by the WHO as well, and is utilized in many countries

other than the Netherlands [29]. Further investigation of the location and frequency of

mutations indicate the existence of conserved regions and show a general preference for

non-silent changes in the genome (see “Supplemental Text”).
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Figure 2.5: Total frequency (% of genomes) of the top 15 mutations in the most-sampled countries in our dataset:

x-axes are the top 15 mutations and y-axes show the frequency (number of mutations per sample) of mutations.

Blue bars are mutations shared across all these countries in the top 15, while the red bars are unique to that

one country in the top 15 and the gray bars are non-unique and non-common variants where the mutation is

observed in more than one country.

2.3.3 Population of SARS-CoV-2 is dominated by four mutations
globally while emergence of locally distinct variants
indicates local outbreaks

To study the global SARS-CoV-2 population and viral diversity in more detail, and observe

the mutational landscape in the Netherlands within a global context, we have identified

the most abundant mutations in our dataset. In addition to S:D614G and N:RG203KR,

several other mutations, NSP12b:P314L, NSP3:F106F and 5’UTR:241 in particular, appear to

dominate the most frequent mutations in the world; Fig. 2.5 shows the 15 most dominant

SNPs in some of the most-sampled countries in our dataset. Due to over-representation of

few European countries, it is difficult to comment on the geographical dominance of any

mutations. However, four mutations, S:D614G, NSP12b:P314L, NSP3:F106F and 5’UTR:241

(blue bars in Fig. 2.5) are established within the global collection genomes, except for China

where these mutations have very low frequencies.

While we observe a diverse mutational landscape in Australia, India and Spain, the

viral population in China has remained relatively homogenous and with very few variants

compared to the Wuhan-Hu-1 reference. The most frequent mutation is ORF8:L84S, which

defines the S clade that appears to be fading out even though it had been circulating since

the beginning of the pandemic along with the L clade. Recently, a possible link between

two mutations, ORF8:L84S and NSP4:S76S, has been suggested, we also observed they

co-occur several times outside of Europe; in China, the USA, Australia and Canada [40].

While keeping in mind that we do not have any sequences collected after April from China,

we note a few region-specific mutations: first one being ORF8:L84S, which is more frequent
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Figure 2.6: Change in frequency of the top 15 mutations in the most-sampled countries in our dataset: y-axes

show mutation frequency (number of mutations per sample) averaged over a period of 7 days where periods

with fewer than one sample per day were removed and x-axes show the collection date. Line colors were kept

consistent with Fig. 2.5: blue lines are mutations shared across all these countries in the top 15, while the red

lines are unique to that one country in the top 15 and the gray lines are non-unique and non-common variants

where the mutation is observed in more than one country. Areas highlighted in yellow and blue as, mentioned in

text, to indicate pre-lockdown and post-lockdown.

in the USA and China and, second is NSP6:L37F which is frequent in in Australia and the

USA.

Considering the fluctuations in rate of sequencing, and over-representation of samples

from the USA, the UK and Europe in general, it is difficult to comment on the geographical

spread. Nevertheless, when we look into the frequency of the top four mutations, S:D614G,

NSP12b:P314L, NSP3:F106F and 5’UTR:241 over the course of pandemic, we see a steady

increase of their abundance in the viral population, regardless of the date of introduction

in each country (Fig. 2.6).

A common pattern emerges in how shared and rarer mutations change in frequency in

time: in the early phase of the pandemic, the viral population is diverse with relatively few

mutations shared among all countries (areas highlighted in yellow in Fig. 2.6: first 2 weeks

of March in the Netherlands, the UK, Australia, Canada and Spain [41–45], also late March

in the USA and India [46, 47]). From mid-March to end of April when strict measures

against travel were imposed universally, frequency of shared mutations increase more

rapidly. As the pandemic progresses, the four most abundant mutations shared across each

country (blue lines in Fig. 2.6) become well-established as part of the viral genome. In May,
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however, restrictions on domestic travel were slowly eased [48–52], which we presume

allowed for regional transmission, leading to again an increase in unique/rare mutations

(areas highlighted in blue in Fig. 2.6) as they spread and form local clusters of variants. In

addition, for most of the countries, number of sequences peaked in March or April, and

has been on decline since then, except for India (Fig. S2.7). Hence it does not appear to be

driving the changes in the frequency of rare/unique. Abundance of these unique variants

suggests community-driven spread, which can be elaborated by monitoring such variants

to detect super-spreading events.

To assess the impact of lockdown attempts to control the pandemic on the viral diversity

we investigated Dutch viral samples in detail. It is non-trivial to relate lockdown status to

the viral population diversity across countries; while all measures to control COVID-19

have been reported throughout the pandemic, it is highly likely that there are both national

and regional differences in their implementation as well as their impact on human behavior,

especially in federal governments such as the USA, Australia and Canada, where regional

governments play an influential role. For that reason, we focus on the Netherlands to

understand this pattern better: we have placed the major milestones in national response

against COVID-19 in the Netherlands along with the mutation frequencies below in Fig.

2.7A in comparison to number of sequences collected in Fig. 2.7B. We observe local/rare

mutations to increase in frequency around the same time as restrictions are relaxed. One

other explanation for the increase in frequency of rare mutations could be the gradual

expansion of testing and sequencing capacity. Testing in the Netherlands was almost

exclusively available to healthcare workers due to limited capacity until May [53]. It is

conceivable that testing different groups of individuals has made it possible to collect more

diverse samples of the virus.

2.3.4 Introduction of COVID-19 in the Netherlands and local
clusters with high genomic diversity

Next, we examined the Dutch phylogenetic tree to better understand the dynamics of

COVID-19 in the Netherlands: from its introduction in the earliest samples to its further

spread through localized infection clusters. We have identified multiple points of introduc-

tion in different provinces via highly diverse samples of virus. As the pandemic progresses,

we see deeper branching in the tree with unique, localized mutations as well as similar

patterns of evolution emerge in separate locations. While the virus population carries

an increased number of mutations in general, these mutations are localized in their own

clusters with little genomic diversity.

We observe two separate sections on the radial tree in Fig. 2.8, representing the diversity

of introduction to the Netherlands in terms of both the viral genome and location. First,

at the top, starting from around 12 o’clock to 3 o’clock consists of some of the earliest

samples from early March of V, L and S clades (denoted with a blue arch and text “Early

March”). This is further broken down into four sections numbered from 1 to 4 where the

second section is the early outbreak in Noord-Brabant in parallel with the first case reports

[11]. However, the remaining sections are mixed in location and date as we encounter

samples isolated from Limburg, Zuid-Holland, Gelderland and Utrecht, also from later into

the pandemic in late March and early April.

The second point of introduction is from 4 to 6 o’clock on the tree, denoted as “late
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Figure 2.7: (A) Change in frequency of the top 15 mutations in the Netherlands, averaged over a period of 7

days and removed periods with less than one sample per day. Each line represents the abundance of a specific

mutation over time. Line colors were kept consistent with Figs. 2.5 and 2.6: blue lines are mutations shared across

all these countries in the top 15, while the red lines are unique to that one country in the top 15 and the gray

lines are non-unique and non-common variants where the mutation is observed in more than one country. Areas

highlighted in yellow and blue indicate pre-lockdown and post-lockdown respectively. Major milestones in the

national response against COVID-19 are annotated at the top. (B) Number of submitted genome sequences in the

Netherlands, averaged over a period of 7 days and removed periods with less dan one sample.
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early March

5. Introduction to 
Utrecht and Noord Brabant

4. Mixed

May

7. Gelderland

6. Zuid Holland

1. Mixed

Figure 2.8: Radial representation of the Dutch phylogenetic tree: inner circle colored w.r.t. the assigned clades

(see legend for clade names), outer circle is color-coded according to the sample collection date (if available),

where the darker shade of blue represents more recent samples. Major points discussed in the text have been

indicated with blue arches on the outer circle, along with more detailed information (numbered in clockwise

direction) in gray arches on the inner circle.
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February and early March” with a blue arch. This section differs from the first one in that

we observe only samples of G and GR clades, both of which are dominant in the Europe

while absent in China. The earliest SARS-CoV-2 genome in our dataset with full sample

collection date (accession ID EPI_IS_454750, collected on February 27) is also located in this

section and it was first isolated in Utrecht (also see Supplementary file 4, rectangular Dutch

tree annotated with GISAID clade assignments, collection dates and within-Netherlands

location).

Recall the clade distribution over time in the Netherlands (Figs. 2.2 and 2.3) showed an

initial phase of high diversity with L and GR dominating the dataset, also supported by

the phylogenetic analysis. As part of the Dutch initiative to investigate transmission of

COVID-19 in the Netherlands, Munnink et al. had conducted a detailed analysis on the

earlier samples with patient data [11]. More recently, Sikkema et al. have published their

findings on COVID-19 infection in health-care workers in early March [54]. Their studies

suggest multiple introductions from Italy and Switzerland, as well as localized community

transmissions in super-spreading events in late February and early March. We also note

early samples from the Netherlands scattered among samples from outside the Netherlands,

mostly Europe, collected around the same time in global phylogenetic tree (Supplementary

file 5). In addition, the authors note the diversity of early strains even for patients with

similar travel histories, also in parallel with our observations in our study. In addition to

Noord-Brabant, Munnink et al. had detected local clusters in Zuid-Holland and Utrecht.

2.3.5 Novel mutations appear in the later phase of pandemic
To explore local transmission clusters, we analyzed mutations that appeared after the initial

pandemic response in the Netherlands. Munnink et al. have stated three phases of response

to pandemic in the Netherlands in their study; (1) before the first case was reported, (2)

from the first reported case to the start of screening of healthcare workers and (3) the

period from the introduction of stricter measures along with events and large gatherings of

people being banned until March 15th when the most strict phase of lockdown had begun

as retail and catering industries were closed, as well as schools and childcare centers [41].

Since March 15th, the spread of COVID-19 has been very limited due to more stringent

measures on travel and widely adopted practice of social distancing. For this reason, it is

particularly interesting to investigate the deeper branching in Fig. 2.8 with later samples

around 8–9 o’clock (denoted with a blue arch and the text “May”).

Below in Fig. 2.9, we have zoomed into the two “May” regions from Fig. 2.8 (numbered

3 and 4 in Fig. 2.9) as well as the remaining deep branches (numbered 1 and 2 in Fig. 2.9).

To simplify, we have indicated the absence/presence of a mutation with a circle where the

branch ends. Additional information about sample collection date and its location are also

displayed aligned to the leaves, if available and in the case of duplicate sequences separated

with a semicolon. Dates are expressed in format month-day. The large squares next to the

leaf names are color-coded clade assignments, colors have been kept consistent throughout

our study in Figs. 2.2, 2.8 and 2.9.

We have identified four mutations all of which have emerged after March 15th and have

led to deeper branching on the phylogenetic tree and are either unique to the Netherlands

or very rarely observed in the rest of the world: N:P383P, NSP14:D390D, NSP14:S374A and

ORF7a:F87F. These rare mutations could be further utilized to track local transmissions of
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1

2

4

3

N:P383P
NSP14:D390D
NSP14:S374A 
ORF7a:F87F

Figure 2.9: Zoomed-in view of rectangular representation of the Dutch phylogenetic tree: three regions of focus

are numbered next to the corresponding arch. Newer, unique mutations that define deep branching in the tree are

drawn in circles and the common mutations within Europe are rectangle (see legend for mutation annotations).

Assigned clades are indicated with large rectangle aligned next to the leaves (pink: GH and green: G) and

additional information about sequences (location and sequence collection date) are displayed next to the clade

color, if available.
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disease within the Netherlands.

N:P383P (green circles), a silent mutation on N protein is fairly unique to the Nether-

lands; it is present in less than five sequences in many European countries, including the

most well-sampled ones Denmark and the UK, as well as the USA and Canada. Consider-

ing the sample size, it is surely intriguing that this mutation has been observed only in

the Netherlands in such abundance. This mutation is also one of the oldest circulating

ones since its first occurrence was in a sequence from the Switzerland on February 27th.

However, we observe it for the first time in the Netherlands 2 weeks later on March 16th

(province unknown). Later on, the same mutation has appeared in multiple provinces,

Noord Holland, Zuid Holland, Flevoland, Utrecht and Limburg, in 50 sequences in total.

Moreover, we observe it in two separate branching events in the phylogenetic tree in differ-

ent provinces of the Netherlands; several provinces in arc number 1 and only in Limburg

in arc number 3. In a recent study, this mutation had been detected as one of several

homoplasies on the SARS-CoV-2 genome [55]. Since the Limburg branching contains only

three sequences carrying the mutation, it is difficult to comment whether it is convergent

or not. Given that branching with number 1 contains several provinces; it is also likely that

this is a consequence of relaxations in domestic travel restrictions, rather than convergent

evolution.

The second mutation, NSP14:D390D (purple circles), is tricky to interpret because it is

present in only nine genomes, seven of which had been sequenced in the Netherlands and

the remaining two in the UK. It has first appeared in the UK on March 24th, during strict

lockdown conditions, and it has emerged in the Netherlands in May. We hypothesize this

is a small cluster of variants genomes, localized in Limburg only and it has not found the

chance to spread outside of the province yet.

NSP14:S374A (blue circles) is the only non-silent mutation in this list, and is very

unique to Zuid Holland; it is present in 35 genomes in total, all collected in Zuid-Holland

region within 3 weeks. Similar to NSP14:D390D, it is highly likely to be a small, contained

cluster of individuals.

ORF7a:F87F (pink circles) is also incredibly rare since it was observed only in Gelderland

in the Netherlands from late April to earlyMay, and less than five times in any other country.

It occurs in only one sequence from Canada in April 13th, twice in the USA in late March

and four times in the UK in mid-April.

2.4 Discussion
In this work, we retrieved 29,503 complete, high quality SARS-CoV-2 from publicly available

databases to explore the viral population diversity In the Netherlands, within a global

context. Considering the rapid increase in public data and research on this subject, our

work is among the more comprehensive ones to lend insight into the genetic variation of

SARS-CoV-2 in the later stages of the pandemic in April and early May.

As a consequence of the natural evolution of a virus, SARS-CoV-2 genome has been

diverging from the initial reference sequence Wuhan-Hu-1 established based on viral

samples from Wuhan, China. The six major clades designated by GISAID had varying

distributions in different regions, at different points of time through the course of pandemic.

We demonstrated that in most countries, viral population goes through an initial phase

of high diversity followed by a decline in genetic variety in which the population is
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comprised of mostly G, GR or GH clades (Fig. 2.2). With increased ease of travel, COVID-19

was able to spread rapidly across the world and several studies had reported multiple

introductions of a diverse viral population into many countries outside of China that lends

itself to a more homogeneous population diverged from theWuhan-Hu-1 reference [56–58].

Interesting, we have also observed that China and Singapore, both of which are countries

that experienced the outbreak the earliest, harbor a markedly different viral population

that remains mostly homogeneous with L being the dominant clade that also includes the

Wuhan-Hu-1 reference (Fig. 2.2). Note that this could also be the artifact of the dramatic

decline in number of sequences from China, where we do not have any sequence collected

after April.

The S and N proteins in SARS-CoV-2 genome has received much attention; both have

been reported as the most variant proteins [23, 34] and are also significant in RT-qPCR

based diagnostic tests as well as vaccine and drug development [35]. We have identified

the most variant sites on the S and N proteins in sequences from the Netherlands (Fig.

2.4). Koyama et al. had noted the effect of these variants on sequence-based vaccine

and therapeutics against COVID-19 [39]. Following their discussion, we highlight their

predicted epitope regions derived from SARS and the mutations we detected on the S and

N proteins in Fig. 2.4. In addition, Kim et al. discussed variations on SARS-CoV-2 genes

targeted by diagnostic assays in [21], and Vanaerschot et al. observed a mutation on N

gene decrease the sensitivity of SARS-CoV-2 detection [59]. More recently, it was reported

that a novel variant, first detected in the UK, denoted B.1.1.7, could lead to false negative

results in diagnostic tests targeting the S gene [60].

Similarly, we analyzed primer/probe sequences currently in use in the Netherlands for

diagnostics targeting S and N genes (Fig. 2.4); we found a mutation on N protein, RG203KR

(in 57% of the genomes) overlapping with the target region of China CDC diagnostic test.

While there were no major mutations on target regions of tests released by US CDC, WHO

or Institut Pasteur in our dataset, emerging variants should be monitored routinely to

ensure the reliability of diagnostics. In our studies, we find amino-acid positions from 40

to 90, 160–170, 330–360 and 400–420 on N protein could potentially be utilized as targets

(blue shaded regions in Fig. 2.4). Even though RT-qPCR tests contain primer/probe sets

targeting multiple genes, according to the recent WHO guidelines, a single target could

be used as well, particularly in areas where COVID-19 has spread widely. Hence, it is

recommended that primer/probe binding sites are investigated for mismatches [61].

When we observed the global landscape of variants, we found four mutations, S:D614G,

N:RG203KR, NSP3:F106F and 5’UTR:241, are not only the most frequent ones, but also

have been steadily increasing in the frequency outside of China since the beginning of

pandemic. The 614G variant has been reported to exhibit increased transmissibility in

human cells and animal models61, as well as phylodynamic studies [62], although there

are currently no known effects on the disease trajectory or clinical outcome [63]. Volz et al.

also report two mutations, S:D614G and N:RG203KR, to be linked [62]. Some studies have

suggested certain linked mutations which poses a different question on its own [63]. We

also reported the increase in frequency of these shared mutations, regardless of the date of

introduction (Fig. 2.6). On one hand, the abundance of these mutations might suggest that

viral genome has converged to a new variant, different than the Wuhan-Hu-1 reference.

On the other hand, since most of the viral sequences are from diagnostic tests performed
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on hospitalized patients at the moment, we are looking at only a small portion of the

whole virus population in humans and we do not know clearly whether milder, or even

asymptomatic cases of COVID-19 also carry these mutations or not. To our knowledge,

studies have not found any significant correlation between these specific mutations and the

COVID-19 disease in patients [63]. Nevertheless, it is surely interesting consider that these

four mutations, linked to one another, might also influence the infection in the human

host.

With our phylogenetic study in the Netherlands, we confirmed multiple introductions

in distinct provinces as well as the population diversity in the initial samples. We found

sequences collected from late February to early March in Noord Brabant, Limburg, Utrecht

as well as Zuid Holland spread around the tree indicating genetically very diverse strains

(Fig. 2.8). We also detected emerging local clusters, defined by four mutations, N:P383P,

NSP14:D390D, NSP14:S374A and ORF7a:F87F, all of which are either entirely unique to

the Netherlands or very rarely observed elsewhere (Fig. 2.9). N:P383P had occurred at

two distinct sections in different regions, we presume this is likely a domestic travel event

rather than a convergent mutation. We note the detection and monitoring of such unique

mutations could be utilized for tracking the spread of virus and identifying possible routes

of transmission during the outbreak. In addition, our findings are in line with previous

studies in the Netherlands by Munnink et al. and Sikkema et al.; they had also observed

sequence diversity in the earliest days of the outbreak as well as community transmission

[11, 54].

The single most prominent pattern that we encountered in our study was that despite

the continual increase in number of mutations in the genome, diverging away from the

Wuhan-Hu-1 reference, there is little diversity in the new variants as we enter the later

stages of the first wave of the pandemic. This suggests the current SARS-CoV-2 reference

genome should be re-evaluated, perhaps replaced with a new one that represents the viral

population more accurately. Further work is required to investigate implications of an

inadequate reference in sequence-based analyses as well as develop alternative models.

Having a good quality reference sequence is crucial in sequence-based analyses; we expect

better read mapping and variant calling would improve phylogenetic studies and clade

designations, and allow for reliable detection of transmission clusters and emerging variants.

Improved variant detection would enable design of more accurate diagnostic assays. We

assert this line of research will continue to supplement the global effort to fight COVID-19.

The major limitation of our study is the biased sampling of SARS-CoV-2 sequences.

Despite our efforts to combine all genome sequences publicly available up to date, due to

imbalanced sampling and dramatic changes in the frequency of genome sequencing, our

dataset is over-represented by samples from the Europe and the USA and there are several

gaps in time since the beginning of pandemic. In addition, most of the viral sequencing today

is performed on hospitalized patients. These issues could be circumvented to some extend

by stratified sampling or controlled sequencing efforts with random samples collected

from individuals. Nevertheless, our findings are significant to understand the SARS-CoV-2

genome and both its national and global population diversity.
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2.5 Conclusions
In this study, we have analyzed 29,503 SARS-CoV-2 genomes retrieved from public databases

to investigate genetic diversity in viral population as the pandemic progresses, with a

focus on the Netherlands in particular. Our dataset contained 1338 genomes from the

Netherlands, most of them sequenced in April and early May. We assert our work provides

valuable information on the genetic diversity of SARS-CoV-2 and its local dynamics in

the Netherlands for tracking the transmission of COVID-19, as well as localized, region-

specific efforts in DNA-based therapeutic or vaccine development against COVID-19, and

primer/probe design in RT-qPCR tests. Our work demonstrates the use of genomics in

guiding diagnostics and outbreak investigation at a limited scale. In order to fully realize the

potential of genomic epidemiology, we need routine sequencing of viral DNA established

in parallel with COVID-19 testing. We emphasize the little diversity observed globally

in recent samples despite the increased number of mutations relative to the established

reference sequence, suggesting the current reference may not be representative of the

population; potential implications of an inadequate reference on downstream analyses

should be investigated.

2.6 Supplementary material
2.6.1 Supplementary text: Annotation of mutations further

elucidate conserved regions and show a general pref-
erence for non-silent changes in the genome

We have characterized and annotated point mutations in the SARS-CoV-2 genomes sampled

within the Netherlands. A large portion of these mutations are found in the S and N proteins

(subplots A and B in Figure S2.1, number of unique mutations and the total number of

mutations at the top of each bar); overall NSP3, NSP12b, S and N proteins carry a majority

of the mutations (protein names in orange color in Figure S2.1). To classify the mutations,

we follow a similar nomenclature to coronapp’s: SNPs leading to a change in the amino

acid sequence are non-silent, SNPs with no amino acid change are silent and SNP stop

denotes SNPs where a stop codon is introduced.

Most variant sites, in terms of total number of unique mutations, also favor non-silent

SNPs. More than half of unique mutations in NSP1, NSP5, NSP6, NSP7, NSP8 and NSP9 are

non-silent (orange parts of bars in Figure S2.1A). According to a recent study analyzing

SARS-CoV-2 proteins in terms of their codon usage, S, N, NSP7 and NSP8 proteins might

play a critical role in adaptation to their host since they prefer a smaller, more “optimized”

set of codons compared to the rest of the proteins [64].

Since there are only few dominant mutations in each protein, the percent breakdown

becomes more skewed when the total number of mutations is considered in Figure S2.1B.

More than 80% of total nucleotide substitutions in NSP3 are silent, whereas substitutions do

cause a change in the amino acid sequence in more than 60% of the instances on the other

proteins (compare blue and orange bars in Figure S2.1B). However, we have not observed a

significant change in the relative frequency of silent and non-silent SNPs over time (Figure

S2.2).

In terms of total number of mutations, NSP7, NSP10, ORF6, ORF7b and ORF10 appear

to be the least variable proteins in the SARS-CoV-2 genome (protein names in blue color
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Table S2.1: Percent breakdown of unique and total mutations observed in the Netherlands on different proteins of

the SARS-CoV-2 genome, total number of unique and total mutations in each protein are also reported. Throughout

this report, the term “nonsilent” refers to nucleotide changes accompanied with an amino acid change, whereas

“silent” mutations are nucleotide changes with no change in the amino acid sequence.

Unique mutations Total mutations

Protein SNP nonsilent SNP silent SNP stop Deletion Total # SNP nonsilent SNP silent SNP stop Deletion Total #

NSP1 29.2 58.3 0 12.5 24 6.4 90.3 0 3.4 236

NSP2 62 36.6 0 1.4 71 34.5 44.3 0 21.2 707

NSP3 67.9 30.9 0.6 0.6 165 19 80.9 0.1 0.1 1542

NSP4 56.8 40.9 0 2.3 44 61.9 37.5 0 0.6 160

NSP5 50 50 0 0 32 54.9 45.1 0 0 113

NSP6 54.2 45.8 0 0 24 90.3 9.7 0 0 424

NSP7 37.5 62.5 0 0 8 27.3 72.7 0 0 11

NSP8 47.6 47.6 0 4.8 21 12.7 85.8 0 1.5 134

NSP9 33.3 66.7 0 0 12 37.6 62.4 0 0 85

NSP10 66.7 33.3 0 0 9 76.9 23.1 0 0 13

NSP12a 100 0 0 0 1 100 0 0 0 73

NSP12b 58.9 41.1 0 0 56 87.3 12.7 0 0 1312

NSP13 62.5 37.5 0 0 64 67.5 32.5 0 0 326

NSP14 58 42 0 0 50 47.2 52.8 0 0 218

NSP15 65.8 31.6 0 2.6 38 37.6 62 0 0.4 271

NSP16 42.9 57.1 0 0 21 85 15 0 0 107

S 61.4 35.7 0.7 2.1 140 85.7 13.9 0.1 0.3 1471

ORF3a 70.4 24.1 3.7 1.9 54 94.1 5 0.8 0.2 623

E 66.7 33.3 0 0 9 72.3 27.7 0 0 47

M 35.7 64.3 0 0 28 85.2 14.8 0 0 244

ORF6 60 30 10 0 10 41.2 52.9 5.9 0 17

ORF7a 63.6 18.2 13.6 4.5 22 19.6 75.7 3.7 0.9 107

ORF7b 57.1 28.6 14.3 0 7 50 41.7 8.3 0 12

ORF8 64.7 23.5 5.9 5.9 17 75.5 20.4 2 2 49

N 69.5 30.5 0 0 82 82 18 0 0 523

ORF10 57.1 28.6 14.3 0 7 33.3 61.1 5.6 0 18

in Figure S2.1). ORF10, in particular is not only conserved, but it is also rather unique;

there are currently no homologs of ORF10 on NCBI [65]. While studies have shown it is

possible for ORF10 to be encoded in pangolin and bat viruses [66], ORF10 is mostly unique

to SARS-CoV-2 and could be used as a specific marker.
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Figure S2.1: Percent breakdown of unique (A) and total (B) mutations observed in the Netherlands on different

proteins of the SARS-CoV-2 genome, total number of unique and total mutations in each protein are placed at

the top of the bars. Throughout this report, the term “nonsilent” refers to nucleotide changes accompanied with

an amino acid change, whereas “silent” mutations are nucleotide changes with no change in the amino acid

sequence.
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Figure S2.2: Changes in the percent breakdown of non-silent and silent SNPs observed on SARS-CoV-2 genome

in the Netherlands over the course of pandemic.



2.6 Supplementary material

2

53

0

10

20

30

# 
of

 g
en

om
es

Netherlands

0

20

40

60

80

# 
of

 g
en

om
es

Australia

0

5

10

15

20

# 
of

 g
en

om
es

India

0

5

10

15

# 
of

 g
en

om
es

Singapore

20
20

-0
1-

05

20
20

-0
1-

15

20
20

-0
1-

22

20
20

-0
1-

29

20
20

-0
2-

05

20
20

-0
2-

12

20
20

-0
2-

19

20
20

-0
2-

26

20
20

-0
3-

04

20
20

-0
3-

11

20
20

-0
3-

18

20
20

-0
3-

25

20
20

-0
4-

01

20
20

-0
4-

08

20
20

-0
4-

15

20
20

-0
4-

22

20
20

-0
4-

29

20
20

-0
5-

06

20
20

-0
5-

13

20
20

-0
5-

20

20
20

-0
5-

27

20
20

-0
6-

03

Date

0

5

10

15

20

# 
of

 g
en

om
es

China
G
GH
GR
L
S
V

Figure S2.3: Distribution of SARS-CoV-2 clades in a selection among the 12 most sampled countries (Australia,

India, Singapore, China) in comparison to the Netherlands: y-axis shows absolute number of genomes, and x-axis

shows collection date. Moving average over seven days was calculated for six clades (see the legend for clade

names and colors) discarding intervals of fewer than one genome per day.



2

54 2 Emergence of novel SARS-CoV-2 variants in the Netherlands

0

200

# 
of

 g
en

om
es

UK

0

200

# 
of

 g
en

om
es

USA

0

20

# 
of

 g
en

om
es

Spain

0

20

# 
of

 g
en

om
es

Belgium

0

20

# 
of

 g
en

om
es

Denmark

0

10

# 
of

 g
en

om
es

Canada

20
20

-0
2-

12

20
20

-0
2-

19

20
20

-0
2-

26

20
20

-0
3-

04

20
20

-0
3-

11

20
20

-0
3-

18

20
20

-0
3-

25

20
20

-0
4-

01

20
20

-0
4-

08

20
20

-0
4-

15

20
20

-0
4-

22

20
20

-0
4-

29

20
20

-0
5-

06

20
20

-0
5-

13

20
20

-0
5-

20

20
20

-0
5-

27

20
20

-0
6-

03

Date

0

20

# 
of

 g
en

om
es

Portugal

G
GH

GR
L

S
V

Figure S2.4: Distribution of SARS-CoV-2 clades in the UK, the USA, Spain, Belgium, Denmark, Canada and

Portugal: moving average over seven days was calculated for six clades (see the legend for clade names and

colors) discarding intervals of less than one genome per day.
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Figure S2.5: Distribution of SARS-CoV-2 clades in the UK, the USA, Spain, Belgium, Denmark, Canada and

Portugal: y-axis shows % breakdown, and x-axis shows collection date. Moving average over seven days was

calculated for six clades (see the legend for clade names and colors) discarding intervals of less than one genome

per day.
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Figure S2.6: Number of S:D614G mutations observed per sample over the course of pandemic in the Netherlands

(A), Europe (B) and globally (C): data points corresponding to dates with fewer than five samples are colored gray

to indicate uncertainty.
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Figure S2.7: Change in number of genomes in the most-sampled countries in our dataset, numbers are averaged

over a period of 7 days and periods with fewer than one sample are removed.
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3
A comparative study of

pan-genome methods for
microbial organisms:

Acinetobacter baumannii
pan-genome reveals

structural variation in
antimicrobial

resistance-carrying plasmids

“Now, if you’ll excuse me, I’m going to go home and have a heart attack.”

— Quentin Tarantino

This chapter is based on  Aysun Urhan and Thomas Abeel. A comparative study of pan-genome methods

for microbial organisms: Acinetobacter baumannii pan-genome reveals structural variation in antimicrobial

resistance-carrying plasmids. Microbial Genomics, 7(11), 2021. [1].
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Abstract

M
icrobial organisms have diverse populations, where using a single linear reference

sequence in comparative studies introduces reference-bias in downstream analyses,

and leads to a failure to account for variability in the population. Recently, pan-genome

graphs have emerged as an alternative to the traditional linear reference with many success-

ful applications and a rapid increase in the number of methods available in the literature.

Despite this enthusiasm, there has been no attempt at exploring these graph construction

methods in depth, demonstrating their practical use. In this study, we aim to develop a

general guide to help researchers who may want to incorporate pan-genomes in their anal-

yses of microbial organisms. We evaluated the state-of-the art pan-genome construction

tools to model a collection of 70 Acinetobacter baumannii strains. Our results suggest that
all tools produced pan-genome graphs conforming to our expectations based on previous

literature, and that their approach to homologue detection is likely to be the most influential

in determining the final size and complexity of the pan-genome. The graphs overlapped

most in the core pan-genome content while the cloud genes varied significantly among

tools. We propose an alternative approach for pan-genome construction by combining two

of the tools, Panaroo and Ptolemy, to further exploit them in downstream analyses, and

demonstrate the effectiveness of our pipeline for structural variant calling in beta-lactam

resistance genes in the same set of A. baumannii isolates, identifying various transposon
structures for carbapenem resistance in chromosome, as well as plasmids. We identify a

novel plasmid structure in two multidrug-resistant clinical isolates that had previously

been studied, and which could be important for their resistance phenotypes.

Data Summary
A dataset of 70 Acinetobacter baumannii strains has been curated from a published dataset

used in a comparative study of adaptation in niche environments by removing the oldest

assemblies of low quality [2]. This particular dataset was selected as the use-case for

evaluating pan-genomes because (i) it comprises only full-length genome assemblies,

(ii) it includes strains isolated from different environments and thus is diverse, and (iii)

the original study provides a common ground on which a baseline evaluation can be

performed to compare the results of different tools. Sequence and annotation data have

been obtained from the NCBI RefSeq database [3]; the accession numbers of assemblies

used in this work are listed in Table S3.1 (available in the online version of this paper).

The scripts and code developed for this work can be found in the github repository at

https://github.com/AbeelLab/abaumannii-pangenome.

3.1 Introduction

A
s the amount of DNA sequence data available has increased dramatically, the conven-

tional, reference-based approach in bioinformatics is being re-examined. Relying on a

single linear reference sequence in comparative genomic studies can lead to reference-bias

in downstream analyses, and to failure to account for population variance which may be

valuable [4].

Pan-genome graphs have been proposed as an alternative to a linear reference to model

a collection of DNA sequences [5], representing genes shared across multiple genomes

https://github.com/AbeelLab/abaumannii-pangenome
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in a compact structure, and hence, they have found many applications in many tasks

such as genome alignment, read mapping and variant calling [6–9]. Several methods have

been developed in the literature to construct gene-based pan-genome graphs, and we can

summarize these methods in roughly three steps: (i) identifying homologue genes based on

all-vs-all pairwise alignments [10–12] and clustering [13, 14], (ii) paralogue splitting and

(iii) linking families to preserve the genomic order. For paralogue splitting, two different

approaches stand out: tree-based ones that make use of the phylogeny in gene families and

synteny-based ones in which the neighbourhood of each gene family guides the paralogue

splitting process. The final step may vary depending on the output of the tool and, in some

algorithms, it may be absent unless a final graph is produced.

Currently, there has been no attempt at bringing these graph construction methods

to a common ground, assessing both their weaknesses and strengths independent of

their computational performance. In this study, we evaluate the state-of-the-art pan-

genome construction tools to propose general guidelines and rules-of-thumb to help with

researchers who may want to incorporate pan-genomes in their analyses, particularly in

those of microbial organisms. The aim is to explore what questions each tool might be

useful in answering, and in what ways we can make use of these answers to gain valuable

biological insight. We performed a comparative study on a collection of 70 A. baumannii
strains of different isolation sources that has previously been published [2]. A. baumannii,
a multi-drug-resistant bacteria classified as an ESKAPE pathogen, is among the leading

causes of nosocomial infections, and thus plays a vital role in understanding antibiotic

resistance [15]. Studies have established genes associated with several traits including

virulence, pathogenicity and adaptation to its niche, probably acquired through horizontal

transfer in large clusters via plasmids [16]. A. baumannii, as a population, has a diverse
gene repertoire, and exhibits large, structural rearrangements; hence it has the prominent

characteristics of bacterial genomes and presents as a good example use-case for application

of pan-genome graphs in bacterial species. Given its typical average genome size and

plasmid content for bacteria, it should not pose any additional challenges to the algorithms

which would interfere with the comparison. In this work, first, we verify that our results

confirm the original analyses, and are in parallel with previous studies on A. baumannii.
Next, we propose to combine two of the pan-genome construction tools we have evaluated,

Panaroo and Ptolemy, to further exploit them in downstream analyses; the effectiveness of

this approach is demonstrated by calling structural variants in A. baumannii species to gain
more insights in the data set. We analysed different structures of transposons carrying the

blaOXA-23 carbapenemase gene in the set of A. baumannii strains. In addition, we explore

A. baumannii plasmids, and locate novel structures that might be involved in transferring

multiple antimicrobial resistance genes.

3.2 Methods
In this section, we first describe our approach for comparing state-of-the-art pan-genome

tools. The aim in the first part of this study is to evaluate existing tools in both qualitative

and quantitative terms, and to provide an overview of the current field. In the second part,

two of these tools, Panaroo and Ptolemy, are used in conjunction for calling structural vari-

ants. The final pan-genome graph serves as a compact model of a set of genomes, utilizing

Panaroo’s error correction mechanisms while it also retains the sequence continuity in
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each genome with the guidance of Ptolemy’s indexing and anchoring.

3.2.1 Data preprocessing
The A. baumannii dataset was curated from a previous study by Yakkala et al. which anal-

ysed niche-specific adaptations of A. baumannii [2]. We removed the oldest, low-quality

assemblies to retain 70 in total. Nucleotide sequences and annotations were downloaded

from the NCBI RefSeq database (assembly accessions are listed in Table S3.1) [3]. The

genomes were not re-annotated in our study since all the assemblies had been annotated

by NCBI’s prokaryotic annotation pipeline, and thus they had gone through the same pro-

cess. NCBI annotations were corrected and the corresponding nucleotide sequences were

appended to the GFF input files using the python script convert_refseq_to_prokka_gff.py

provided by Panaroo (see Supplementary Text) [17].

3.2.2 Tools
In this study, we have compared the tools Roary (v3.13.0), Ptolemy (v1.0), PPanGGOLiN

(v1.0.13), PIRATE (v1.0.3) and Panaroo (v1.1.2) [17–21]. The set of tools are by no means

comprehensive; however, they are diverse enough in their methodology and at the same

time sufficiently similar in their purpose to make comparison meaningful. In addition, the

pan-genome representation is consistent across these tools; the pan-genome is a graph

in which the nodes are formed by at least one gene (a node may contain multiple genes

forming an orthologous cluster) and the edges indicate sequence continuity between two

nodes. All the tools were run in their default settings according to instructions provided by

their authors. Tools which allow for some options without the need for parameter tuning

were also run with these options. A full list of commands and arguments used in this study

can be found in the Supplementary Text.

3.2.3Qualitative andqantitative assessment
In the first part, we compared different tools qualitatively in their usage first in terms of

software availability input/output file formats and compatibility with existing downstream

analyses. Input is usually sequences with their annotations in FASTA and GFF files, or

GenBank and GFF3 files that contain both the nucleotide sequences and annotations in a

single file. If a tool provides sequence annotation as well, then FASTA sequences alone can

be used. Since these tools are often run within a pipeline, once a pan-genome is obtained,

it might be used for aligning reads and whole genomes, calling structural variants or

performing genome-wide association studies (GWAS). To establish compatibility, tools

produce outputs in commonly used file formats such as DOT, GML, GEXF or GFA for

graphs, NEWICK for phylogenic trees and tab-separated text files for the remaining types

of outputs. In addition to these, we attempt to compare the core algorithms of the tools by

breaking down pan-genome construction into multiple steps in (i) detection of homologue

genes, as there are different methods (blast, DIAMOND, CD-HIT, minimap2) to determine

sequence similarity; (ii) paralogue identification (and splitting) to differentiate paralogues

from orthologues and find repeats in a genome, which can be achieved using the local

context of genes (synteny), phylogenetic information or graph-based approaches; (iii) type

of final output, a directed/undirected graph if a graph is produced, or gene clusters; and

(iv) additional functions the tools provide for correction of annotations, assembly errors,
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or pre-/post-processing for variant calling, converting file formats, etc [10–12, 22].

For quantitative comparison, the numbers of nodes, edges and connected components

were used as metrics to assess the graph size. Pan-genome content was measured based on

the average number of genomes per node, and the soft-core thresholding approach, which

is implemented frequently in the literature to classify gene clusters [23]: core genome is

observed in over 99%, soft core in 95–99%, shell in 15–95% and the cloud genome is observed

in less than 15% of the strains in the dataset. Unique genes are defined as the singleton

nodes on the graph; they are present in only a single strain. Finally, we established a

pairwise comparison in core pan-genome content using the Jaccard index: 𝐽 (𝐴,𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
,

where A and B are two different sets of core genes identified by different tools.

3.2.4 Replication of Yakkala et al.
Pan-genome graphs were also used to replicate the following findings of the previous study

from which the dataset had been obtained [2]:

Identify genes related to different carbon catabolism, and iron acquisition in environ-

mental A. baumannii strain isolated from soil, DS002. Find antimicrobial resistance genes

associated with biofilm formation, efflux pumps and beta-lactamases in the clinical strains.

We processed pan-genome graphs constructed by all five of the tools to identify the nodes

which contain genes from only the environmental A. baumannii strain DS002; these nodes

represent the unique genome content of DS002. Next, we extracted all the genes contained

in these nodes to analyse gene enrichment. In our replication study, gene enrichment anal-

yses were performed using the python package GOATOOLS (v0.9.9) [24]. Gene ontology

(GO) hierarchy in OBO format was retrieved from the Gene Ontology Website[25], and all

the annotated ORFs in our dataset were mapped to GO terms using the ID mapping tool on

UniProt [26]. Gene enrichment was performed with correction for false discovery rate (fdr

option in GOAtools), and GOATOOLS was also used for plotting GO subgraphs in python.

The in-house python script used to perform the analysis (see runGOE.py is provided in

the Supplementary Text.

3.2.5 Combining methods
Individual steps from two of the tools in our comparative study, Panaroo and Ptolemy,

were combined. Briefly, Panaroo uses CD-HIT with a high threshold for sequence identity

to obtain gene clusters. These clusters are then collapsed according to synteny information,

which is also used to find missing genes and correct for possible errors in assembly and

annotation [17]. The error correction in Panaroo can disrupt sequence continuity by

breaking up genomes. For that reason, we used Ptolemy to index genomes and connect the

nodes to retain the sequence continuity so that each genome can be traversed as a path on

the graph.

Panaroo was first run with default parameters in relaxed option (mode –relaxed)
in order to get an initial estimate of the pan-genome that consists of gene families as nodes

in the graph output file final_graph.gml. Next, all sequences were indexed with

Ptolemy (extract), and Panaroo’s gene families were reformatted to match Ptolemy’s

indexing and conform to the format of the syntenic anchor input file in python (see the

script createSA.py in Supplementary Text). Gene families were then used as input to

the canonical quiver construction step in Ptolemy’s algorithm (canonical-quiver).
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The final output is a directed graph stored in a GFA file. The Supplementary Text provides

the full list of commands, as well as the in-house scripts used to perform the analysis.

3.3 Results and Discussion
3.3.1Qualitative andqantitative comparison
To evaluate different tools for pan-genome construction, we selected a number of tools

from the literature, Table 3.1 provides a qualitative overview as described in the methods

section for the set of five tools we applied to our A. baumannii dataset. The most prominent

feature among the tools is their compatibility with other software; they accept inputs in

standard formats for sequence and annotation data, and produce graph outputs in formats

compatible with common graph visualization software. Since all tools construct gene-based

pan-genomes, sequences should be annotated with predicted ORFs beforehand, with the

exception of PPanGGoLin which can run Prodigal internally for annotation. The tools

differ most in their choice of sequence similarity, while usually the synteny or phylogeny

(tree-based) information is used for paralogue detection with the exception of Ptolemy,

which opts for a repeat graph.

Depending on the aim of pan-genome analysis, some tools could be preferred for the

outputs they generate in addition to a graph, although our quantitative comparison on our

A. baumannii dataset is limited to the graphs and we did not investigate these additional

features in our use-case. Both Panaroo and Ptolemy have modules to identify structural

rearrangements, while PIRATE, Panaroo and Roary can perform core gene alignment,

which can be useful for downstream phylogenetic studies. Similarly, the binary gene

presence/absence outputs from PPanGGoLin, PIRATE, Panaroo and Roary can also be used

to make a quick and dirty tree or run pan-genome association studies.

Another feature of these tools is that they can be packaged with auxiliary scripts for

pre-/post-processing, which can save user time. For instance, Panaroo and Roary both

include scripts to perform quality control on the input data before generating a pan-genome

graph. Moreover, Roary, Panaroo and PIRATE provide scripts for querying the pan-genome.

All tools, except for Ptolemy, have built-in modules to plot pan-genome statistics in various

ways. For visualizing the pan-genome graph, we found Ptolemy and PIRATE to be the most

straightforward since the GFA outputs can be used directly in Bandage [27]. However,

depending on the use-case, Panaroo might be preferred for its GML output, which can be

visualized more extensively using Cytoscape and combining additional metadata with the

graph [28]. Finally, we note that among these projects, Roary is the only one that is no

Table 3.1: Summary overview of qualitative features of pan-genome tools implemented in this study.

Method Software Input Graph output Pan-genome Sequence homology Paralogue identification
Roary

(v3.13.0)

Conda package GFF3 DOT Directed graph BLAST Synteny

Ptolemy

(v1.0)

Java executable FASTA+GFF GFA Directed graph minimap2 Graph-based

PPanGGoLin

(v1.0.13)

Conda package GBK or FASTA GEXF Undirected graph MMseq2 Synteny

PIRATE

(v1.0.3)

Conda package GFF3 GFA Directed graph BLAST (/DIAMOND) Synteny

Panaroo

(v1.1.2)

Conda package GFF3 GML Directed graph CD-HIT Synteny
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longer maintained actively. However, the PPanGGoLin, PIRATE and Panaroo packages

have all been extended since completion of our study.

The flowchart in Fig. 3.1 also includes tools not implemented in our study, to provide

a guide to help users choose among the state-of-the-art pan-genome tools. For some

applications, the flowchart in Fig. 3.1 can lead to multiple tools to choose from. In that

case, one can differentiate the tools according to the (i) required inputs or (ii) additional

outputs they produce and whether they could benefit from these in the downstream

analysis. For instance, Panaconda and PanX both provide visualization of the results

[28, 29]. Panaconda’s GEXF graph can be viewed using JS visualizer, while panX, having an

accompanying web-based interactive application, has more extensive options to visualize

the outputs. PanX also provides several statistics on genes (count, length, distribution,

etc.), and a phylogenetic tree, all of which can be manipulated and adjusted through its

graphical interface. Note that it is not possible to perform the analysis for one’s own dataset

using the web interface alone. Moreover, Panaconda requires input in PATRIC’s feature

tab format, in comparison to GBK format as in PanX, which might be less convenient to

prepare depending on the data available [29].
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NO

Working 
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Figure 3.1: Flowchart for users to choose among the current state-of-the-art pan-genome construction tools in

the literature, accompanying the analyses in this study..

If one ends up having to decide between SynerClust, PGAP and PEPPA, the input

requirements could be considered. PEPPA has the fewest requirements, with only annota-

tions (GFF) and the nucleotide sequence; for PGAP, protein sequences and more extensive

gene annotations, including their functional descriptions and COG classifications, must

be available [30–32]. For SynerClust, a phylogenetic tree of the genomes needs to be

available along with gene annotations (GFF). In terms of the outputs, these three tools are

not significantly different except for PGAP, which also performs species evolution and

gene function enrichment analysis, and could eliminate the need to run additional tools

downstream. Note that, in general, for tools that require annotations beyond to the most
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basic ORF predictions, the performance of the upstream annotation step may become even

more important, possibly more than the choice of the pan-genome construction tool itself.

While all tools used on the A. baumannii dataset for quantitative comparison were run

in default settings, we note that all tools considered in Fig. 3.1 are flexible enough to allow

for parameter tuning to tailor for different use-cases. The subset of tools implemented in

our study are mostly suited for use in microbial organisms out-of-the-box. It is estimated

that the A. baumannii pan-genome contains 20000 genes [33, 34], although some studies

report fewer than or approximately 10000 genes [2, 35]. We presume this number should

vary depending on the diversity among the strains in a particular dataset, in addition to

the method of choice. A. baumannii can colonize a variety of ecological niches; its extreme

adaptability is driven by a flexible genome that allows for the acquisition of new genes,

and these niche-specific genes can inflate the pan-genome. Except for two strains (SDF and

DS002), all genomes in our dataset were isolated from clinical sources, and thus there is

little variation in their habitat, and it is likely that the smaller estimate of the pan-genome

size is more applicable in our example. Regardless, with an average genome size of 3 Mbp,

around 3000 coding sequences, and an estimated pan-genome of 10000 genes, we found A.

baumannii to be a middle-of-the-road species among other bacteria [36]. We also note that

the A. baumannii pan-genome has been classified as open, and that our findings may not

generalize to closed pan-genomes [37].

We observe that all tools produced graphs within the range of previous studies (Table

3.2). In terms of graph size and complexity, there is little variation between PPanGGoLin,

PIRATE and Panaroo, possibly due to their similar algorithms. Roary and Ptolemy, on the

other hand, stand out with the largest graphs, which indicates a more stringent threshold

for sequence similarity. When the synteny window size was increased in Ptolemy, the

number of nodes varied by as much as 15% (~3000 nodes, see Table S3.2). PPanGGoLin

and Panaroo also have the option to run in different modes (-defrag in PPanGGoLin,

and -relaxed in Panaroo) that might allow for some adjustment without parameter

tuning (Table 3.2); graph size decreased by 17% (~2000 nodes) in the former (PPanGGoLin

with -defrag mode) and increased by less than 5% (~400 nodes) in the latter (Panaroo in

-relaxed mode). Costa et al. also report significant changes in bacterial pan-genomes

when the sequence identity thresholds are altered [36]. We recommend that users try

different values and settings for the parameters in these tools to improve their results.

External annotations, such as known orthologous clusters from the COG database, protein

families from the Pfam database, or KEGG pathways can be used to check for the integrity

of nodes in the pan-genome graph and possibly guide the parameter tuning, which is

beyond the scope of this work.

We also report pan-genome content with the soft-core approach as outlined in the

Methods section, in terms of both the number of nodes (or clusters) and the percentage

with the respect to the entire pan-genome. Previous studies estimate the core content

of the A. baumannii pan-genome to be in the range 1500–2500 [38]; in a recent analysis

of 2112 A. baumannii strains, Mangas et al. identified 2221 core genes while the entire

pan-genome comprised 19000 genes in total [33]. Yakkala et al. also found a total of 7683

genes in the pan-genome, 1344 of which are core genes and 1695 are unique (present in

only one genome) [2]. In our analyses, we found the variance in the core gene size to be

much smaller compared to the entire pan-genome. While the difference in core genome size
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Table 3.2: Quantitative comparison of pan-genome graphs in terms of size and complexity, and the pan-genome

content, all run in default configurations, except for the three that also include a different mode.

Method Roary Ptolemy PPanGGoLin PIRATE Panaroo

Settings Default Default Default Defrag BLAST Relaxed Strict
No. of nodes 13928 20140 11329 9318 7871 10776 10336

No. of edges 21032 31946 17751 14989 11331 16270 14709

No. of connected components 10 34 7 6 416 13 13

Mean sequence length (bp) 803.7 870.5 815.5 849.8 850 824.6 832.5

Average no. of genomes per node 18.7 11.7 22.4 27.1 31.6 24.4 25

Core genes 1996 (14.3%) 1623 (8.1%) 2025 (17.9%) 2223 (23.8%) 2126 (27%) 1910 (17.7%) 2353 (22.8%)

Soft core genes 429 (3.1%) 624 (3.1%) 509 (4.5%) 389 (4.2%) 447 (5.7%) 783 (7.3%) 322 (3.1%)

Shell genes 1912 (13.7%) 1367 (6.8%) 1624 (14.3%) 1526 (16.4%) 1516 (19.3%) 1655 (15.4%) 1609 (15.6%)

Cloud 9591 (68.9%) 16526 (82.1%) 7171 (63.3%) 5180 (55.6%) 3782 (48%) 6419 (59.6%) 6052 (58.5%)

Unique 5276 (37.9%) 13963 (69.3%) 4271 (37.7%) 2522 (27.1%) 1629 (20.7%) 3299 (30.6%) 2968 (28.7%)

Table 3.3: Pairwise similarity of core genome content.

Roary Ptolemy PPanGGoLin PIRATE Panaroo

Roary 0.68 0.87 0.87 0.84

Ptolemy 0.68 0.74 0.71 0.65

PPanGGoLin 0.87 0.74 0.91 0.85

PIRATE 0.87 0.71 0.91 0.88

Panaroo 0.84 0.65 0.85 0.88

ranges from 130 to 503 genes, all tools predict the core content to be within the established

range from previous studies. We also computed the pairwise Jaccard index for the core

genome content, and observed that it varies from 0.65 to 0.91 (Table 3.3). However, when

core and soft core genes are considered together, the difference in the number of genes is

much smaller.

We observed the largest differences among tools in the cloud genes, as Ptolemy and

Roary both stand out with the largest set of cloud genes (Table 3.2). Both tools have a

relatively pared-down approach with fewer steps to identify homologous genes, which

could possibly lead to a more stringent algorithm that produces clusters with fewer number

of genes on average, and an inflated pan-genome. This suggests that the homologue

detection step is likely to have the largest influence on the cloud gene content, although it

should be further investigated by changing parameter settings, which is beyond the scope

of this work. For applications in diverse species, or in cases where the strain speciation is of

primary interest, cloud gene content could become more important since the cloud content

reflects how an organism has evolved and diversified to adapt to different conditions and

environments. In that case, we presume the cloud gene content to play the most important

role in deciding which tool to use.

3.3.2 Replication of Yakkala et al.
Following the preliminary assessment of pan-genome graphs, we attempted to replicate

the major conclusions drawn in a previous study performed on the same A. baumannii
dataset [2]. Yakkala et al. had: (i) first identified genes related to the survival mechanism

of A. baumannii in diverse environments, and observed that the non-clinical isolate DS002
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carried genes which take part in detoxifying aromatic compounds to generate energy.

An absence of genes with these functions in clinical isolates suggests the environmental

strain had developed an adaptation mechanism in order to survive in soil that is often

polluted with phenol-based insecticides. Strain DS002 also showed differences in iron

acquisition mechanisms. (ii) Second, the authors reported the absence of genes involved in

biofilm formation and efflux pumps, as well as modification of aminoglycoside molecules

in non-clinical isolates.

In order to replicate these findings, nodes containing genes from only the soil isolate

were identified in the pan-genome output, and a gene enrichment analysis was performed

against the entire pan-genome. Note that for this part, only the results from the Ptolemy

graph are reported here. Compared to the other tools, we found Ptolemy to have the largest

set of significant terms, but when the most significant terms in common were considered,

the resulting sets would overlap more than 50% (column 1 in Table S3.3, proportion of

common GO terms). The remaining raw gene enrichment test results can be found in the

Tables S4 and S5. Fig. 3.2 shows a bar chart of the most significant GO terms associated

with these nodes; GO terms related to unique carbon catabolism and iron acquisition are

highlighted in red. Conforming with Yakkala et al., the unique gene content of the soil
isolate dataset is preserved in the pan-genome graph as well.

Figure 3.2: Gene enrichment analysis identifying the unique carbon catabolome and iron acquisition mechanisms

in the soil isolate, DS002; bar plot of GO terms significantly enriched in DS002. GO IDs and term names are

displayed on the y-axis, and the x-axis shows the −𝑙𝑜𝑔10(Pvalue) of each GO term. GO terms associated with

specialized mechanisms for carbon catalysis and iron acquisition are in red.
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3.3.3 Combining methods
To further demonstrate the power of pan-genome graphs we created a hybrid downstream

application for calling structural variants in pan-genome graphs. Following the results in

the first part of this study, we attempted to combine individual steps from Panaroo and

Ptolemy to obtain a pan-genome that we assert is more suited for this task than using either

tool on its own. We report the results from variant calling first in the context of genes

involved in carbapenem and amikacin resistance and then for validating and identifying

possible novel plasmid structures in our A. baumannii dataset.
In the preliminary exploratory part of this study, we found that Panaroo produced

average-sized pan-genomes, which suggests it achieves a good balance between over- and

under-clustering for our particular use-case. However, we also observed that the error

correction step in Panaroo could disrupt the continuity in certain chromosomes, thereby

making it difficult to place them within the context of individual genomes. It is more

challenging to analyse structural differences without sufficient contextual information. To

circumvent this, we attempted to re-introduce sequence continuity by making use of the

indexing and path construction steps in Ptolemy. While Panaroo’s error correction was

shown to be highly useful for handling fragmented assemblies as well as annotation errors

in the original study, our dataset consists of only chromosome-level complete assemblies

and thus such errors should be negligible and we presume there will not be any major

benefits from correcting the assemblies.

Unlike other tools, Ptolemy was developed modularly to the extent that each module

can essentially be used independently, provided that the inputs are in the correct format.

Hence, it is relatively straightforward to use Ptolemy to (i) index all the genomes, so we can

keep track of the order and place of each gene within a genome, and (ii) construct a graph

using indexed genes as a guide to connect genomes broken down into separate islands of

gene clusters. The resulting graph contains the same set of nodes as those produced by

Panaroo initially, but with an increased number of edges to establish sequence continuity.

Thus, we obtain a pan-genome graph that preserves whole genomes at a coarse level, and

can easily be queried for structural variant calling at small distances.

3.3.4 Structuralvariation intransposons carryingtheblaOXA-23
carbapenemase gene

Using the combined method, we explored the structural variation in 𝛽-lactamase-carrying

transposons in A. baumannii. Beta-lactam resistance in A. baumannii is mainly driven

by class D 𝛽-lactamase enzymes (also called oxacillinases or OXAs). The blaOXA-23 gene
encoding OXAs is readily carried on transposons and thus frequently observed in clinical

isolates, both on the chromosome and on plasmids. It is hypothesized that blaOXA-23 (red
arrows in Fig. 3.3) was mobilized with the help of insertion sequence (IS) ISAb1 (green

arrows in Fig. 3.3) [39]. ISAba1 acts as a promotor, and only in the presence of this sequence

is the level of gene expression enough to lead to significant imipenem, meropenem and

doripenem resistance [40, 41]. Hence, it is also important to investigate the context of

the gene in the A. baumannii genome and the mechanisms through which it is mobilized

among the strains [42].

So far, blaOXA-23 has been observed in five contexts in the literature, Tn2006, Tn2007,

Tn2008, Tn2008B and Tn2009. Among these, the A. baumannii dataset contains strains that
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Tn2006

Tn2008

Tn2009

Figure 3.3: Three different structures of A. baumannii transposons in which the blaOXA-23 gene is present: ISAba1
is shown with green and blaOXA-23 with red arrows; all arrows are placed according to the direction of the ORFs.

harbour three: Tn2006, Tn2008 and Tn2009 as reported in the literature (Fig. 3.3).

It is possible to locate the blaOXA-23 gene in our pan-genome, and extract the local

neighbourhood around this gene. This allows us to visually assess different contexts. Strain

15A5, for instance, has two copies of the 𝛽-lactamase gene in a Tn2006 context in its

chromosome, and Fig. 3.4 shows one of these copies (node labelled blaOXA-23 in Fig. 3.4)

and their surrounding structure. Edges are coloured according to which path they belong

to among these three different structures.

IS

IS

IS

blaOXA-23

Figure 3.4: Local context of blaOXA-23 in A. baumannii strains extracted from the pan-genome graph reveals three

different structures of transposons on which the gene is located. Edge colours indicate which structure each path

belongs to: red for Tn2006, green for Tn2008 and blue for Tn2009. Only the nodes containing IS and blaOXA-23 are
labelled; the unlabeled nodes represent ORFs.

Two ISAb1 sequences are located upstream of blaOXA-23 in reverse direction, and the

forward ISs downstream are placed after two proteins of unknown function. Both copies

of the upstream IS could be identified for Tn2006 and Tn2009 (two IS nodes left of the

blaOXA-23 node in Fig. 3.4, connected with blue and red edges), whereas the downstream IS

was detected only for Tn2006. In contrast, the Tn2008-carrying strains AbPK1 and CBA7

are both lacking this second instance of IS, and we did not observe it in the pan-genome

graph either. According to the literature, strains BJAB0868 and BJAB07104 carry the Tn2009

transposon, but it was not possible to extract this transposon in its entirety due to the

presence of four additional proteins of unknown function, since they increase the length

of this syntenic region, thereby making it more difficult to capture it.
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3.3.5 Exploring different plasmid structures
In addition to the resistance islands located in the chromosome, antimicrobial resistance

genes related to carbapenems and amikacins are also frequently observed in plasmids.

Conjugative plasmids play a crucial role in the spread of antibiotic resistance since they

facilitate in transferring resistance genes by carrying transposons on which they are

contained [43]. RepAci1 and RepAci2 types of plasmids are characterized by the replication

proteins (RepB) and the dif modules they contain, and there is only little variance in the

DNA sequence (sequence identity over 99.9%), and hence can be represented by the RepAci1

plasmid pA1-1 (accession number CP010782.1) contained in an early strain A1 (also present

in our A. baumannii dataset). While pA1-1 does not carry resistance genes, they can be

found inserted in downstream of plasmid pA1-1 on transposons [44]. Blackwell et al.
identified several RepAci1 and RepAci2 plasmids and their variants across different strains

in [43]. In this section, we analysed the context of the pA1-1 plasmid in the pan-genome

graph to find four different variants of this plasmid, three of which had been studied by

Blackwell et al. (variants 1–3 in Fig. 3.5) and a novel one carrying resistance genes related

to multiple drugs in our collection of strains.

RepAci1

RepAci1
variant 1

RepAci1
variant 2

RepAci1
variant 3

RepB sel1 tonB

RepB orf tonB

RepB* 

RepB sel1 tonB IS IS blaOXA-58 IS IS

Figure 3.5: RepAci1 plasmid structure and its three variants observed in our A. baumannii dataset: variant 1 in
p2ABAYE, variant 2 in pD36-3 and variant 3 in pABa3207a; note that variant numbers are assigned arbitrarily in

this study to help follow the results.

The pA1-1 plasmid comprises the green path in Fig. 3.6; this path is shared across all

plasmids in the tonB domain but not in sel1. Plasmids p2ABAYE and pD36-3 in strains

AYE and D36 are both classified as RepAci1, and they share common paths with pA1-1 but

diverge where the Sel1 protein is replaced with a different dif module (variant 1 and variant

2 in Fig. 3.5, respectively), also reported by Blackwell et al. [43]. The pABa3207a plasmid

from strain 3207 carries the carbapenemase gene blaOXA-58, which had been introduced by

repeating IS elements upstream (variant 3 in Fig. 3.5). It is suggested that the RepB protein

carried by pABa3207a had been mistaken for a variant of RepB, and while it also appears as
a separate node in the graph (labelled RepB* protein in Figs 3.5 and 3.6), it remains within

close proximity due to shared genomic context with other RepAci1 plasmids.

We also observed a novel variant of a RepAci1 plasmid, pHWBA8-1 and pAB04-1 in

strains HWBA8 and Ab04-mff, respectively (yellow path in Fig. 3.6, not shown in Fig. 3.5)

which were neither reported by Blackwell et al. nor studied yet to our knowledge. These

plasmids would be interesting to study as they had been isolated from multidrug-resistant

strains and they carry the tetracyline resistance genes TetB and TetR, as well as the Sul1
gene, which has been linked to sulfonamide resistance.
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Figure 3.6: Variants of the pA1-1 plasmid sequence across A. baumannii strains; unique plasmid structures are

differentiated by their edge colours (see key), and all the significant nodes mentioned in the text are labelled with

the corresponding product name.

3.4 Conclusions
In this study, we have evaluated the state-of-the-art different pan-genome construction

methods to understand the ways in which they can be the most useful to incorporate into

existing pipelines and gain insight. We curated a list of tools diverse enough to describe

the current literature in pan-genome construction, while still similar in their algorithms so

that a meaningful comparison could be made. We provide a flowchart to guide users to

select the tool most suited for their application, and we replicate a previous study analysing

various survival mechanisms of A. baumannii.
Our results on A. baumannii suggest that while all the tools produced pan-genome

graphs in line with previous work on the same species, they differed significantly in cloud

genes. In addition, we found that graph size is likely to be influenced the most by the

homologue detection step in the algorithm, and that it can be vary considerably when

the parameter settings are changed. Thus, if one desires to go one step forward, and use

these tools in more specialized downstream analyses, one must consider parameter tuning

or moulding the algorithms available to suit one’s own specific purpose. We recommend
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that users utilize external databases of known annotations to validate their results for the

species they are working on.

Finally, we have provided an example case of structural variant calling in the same

A. baumannii dataset by combining two of the tools in order to explore (i) the context of

the blaOXA-23 carbapenemase gene carried on Acinetobacter transposons and (ii) different

structures of RepAci1 plasmids in A. baumannii that play a significant role in transmission

of antimicrobial resistance genes. Interestingly, we have also identified a novel variant of

the RepAci1 plasmid in two clinical strains, carrying resistance genes associated with more

than one resistance phenotype, and that would play an important role in understanding

the mechanisms of multidrug resistance in A. baumannii. We assert the added benefit of

combining different tools strategically instead of using any of the tools on their own. Akin

to ensemble modelling in the field of machine learning, mixing and matching different

methods might be a viable option to consider for constructing pan-genome graphs.

While A. baumannii is a good representative of bacterial organisms, our findings are

limited to the particular use-case and thus may not be generalizable to species on the

more extreme ends, such as Escherichia coli, which is reported to be have a higher genome

plasticity as well as a larger average genome size ( 5Mbp long), or Campylobacter jejuni,
for which the core genome forms a substantial part of the whole pan-genome although on

average its genome is much smaller than that of A. baumannii ( 1.5Mbp long, with 40%

core genome content). In addition, since the A. baumannii pan-genome has been classified

as open, our findings may not generalize well to bacterial species with closed pan-genomes.

We presume such extreme cases would be the most to benefit from parameter tuning.
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3.5 Supplementary Material
3.5.1 Supplementary text
In this section we provide a list of all commands and scripts used to run pan-genome tools

implemented in the study.

1 # Roary
2 roary gff3-input*.gff -f output/roary -p 4 -v
3

4 # Ptolemy
5 java -jar ptolemy.jar extract -g ptolemy-input-list.txt -o output/ptolemy
6 java -jar ptolemy.jar syntenic-anchors --db output -o output/ptolemy
7 java -jar ptolemy.jar canonical-quiver -s output/ptolemy/syntenic_anchors.txt --db

output/ptolemy -o output/ptolemy --dump
8

9 # PPanGGoLin
10 ppanggolin workflow --anno ppanggolin-input-list.txt -output output/ppanggolin
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11 ppanggolin write -p output/ppanggolin/pangenome.h5 --families_tsv -o output/ppanggolin
12 ppanggolin write -p output/ppanggolin/pangenome.h5 --all_gene_families -o

output/ppanggolin -f
13 ppanggolin write -p output/ppanggolin/pangenome.h5 --all_genes -o output/ppanggolin -f
14

15 # PIRATE
16 ./PIRATE -i gff3-input -s "50,70,95" -o output/pirate
17 perl pirate-scripts/subsample_outputs.pl -i output/pirate/PIRATE.gene_families.tsv -g
18 output/pirate/modified_gffs/ -o output/pirate/gene_families.prev_locus.tsv --field

"prev_locus"
19 perl pirate-scripts/gene_cluster_to_binary_fasta.pl -i

output/pirate/PIRATE.gene_families.tsv output/pirate/binary_presence_absence.fasta
20 FastTree -fastest -nocat -nome -noml -nosupport -nt

output/pirate/binary_presence_absence.fasta >
output/pirate/binary_presence_absence.nwk 2>/dev/null

21

22 # Panaroo
23 python convert_refseq_to_prokka_gff.py -g input.gff -f input.fasta -o output.gff #

repeat for all inputs
24 panaroo -i gff3-input/*.gff -o output/panaroo -t 4 -verbose # strict mode
25 panaroo -i gff3-input/*.gff -o output/panaroo --mode relaxed -t 4 -verbose # relaxed

mode
26

27 # Combining Panaroo and Ptolemy
28 panaroo -i gff3-input/*.gff -o output/panaroo --mode relaxed -t 4 -verbose # obtain

gene clusters
29 java -jar ptolemy.jar extract -g ptolemy-input-list.txt -o output # index graph
30 python createSA.py output/panaroo output # create syntenic anchor file input to

Ptolemy
31 java -jar ptolemy.jar canonical-quiver -s output/syntenic_anchors.txt --db output -o

output -dump

Contents of ’createSA.py’
1 #!/usr/bin/env python3
2 import os, re, sys
3 import pandas as pd
4 import networkx as nx
5 if __name__ == ’__main__’:
6

7 panaroodir = sys.argv[1]
8 ptolemydir = sys.argv[2]
9

10 # Load and process panaroo outputs
11 panaroomap = os.path.join(panaroodir, ’gene_data.csv’)
12 panaroograph = os.path.join(panaroodir, ’final_graph.gml’)
13 centroid2Loc = pd.read_csv(panaroomap, index_col=2, header=0, \
14 names=[’strain’,’location’,’clusterID’,’annot’,’protseq’,\
15 ’dnaseq’,’gene’,’desc’]).drop(columns=[’desc’])
16 centroid2Loc.update(centroid2Loc.strain.apply(lambda x:

x.replace(’_reformatted’,’’)))
17 g = nx.read_gml(panaroograph, label=’id’)
18 g = nx.relabel_nodes(g,int)
19 panaroodf = pd.DataFrame([v for k,v in g.nodes.items()], index=g.nodes())
20 panaroodf.loc[:,’locustag’] = panaroodf.apply(lambda x: \
21 centroid2Loc.loc[x.seqIDs].annot if isinstance(x.seqIDs,str) \
22 else centroid2Loc.loc[x.seqIDs].annot.values, axis=1)
23

24 # Load and process ptolemy outputs
25 ptolemymap = os.path.join(ptolemydir, ’orf2id_mapping.txt’)
26 safile = os.path.join(ptolemydir, ’syntenic_anchors.txt’)
27

28 id2orf = pd.read_table(ptolemymap, delimiter=’\t’, header=None, index_col=2, \
29 names=[’orf’, ’strain’, ’id’])
30 id2orf[’locustag’] = id2orf.apply(lambda x: re.sub(’^’+x.strain+’_’, ’’, x.orf),

axis=1)
31 id2orf[’locustag’].update(id2orf.locustag.apply(lambda x: \
32 ’_’.join(x.split(’_’)[1:-2]) \
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33 if len(x.split(’_’))<8 else \
34 ’_’.join(x.split(’_’)[2:-2])))
35

36 # Match the panaroo outputs to ptolemys ORF indices
37 keeplocus = set(sum(panaroodf.locustag.apply(lambda x: \
38 [x] if isinstance(x,str) \
39 else list(x)),[]))
40 keeplocus = set(id2orf.locustag.values).intersection(keeplocus)
41 df = id2orf[id2orf.apply(lambda x: x.locustag in keeplocus, axis=1)].dropna()
42 df[’newid’] = df.index # df with common ORFs, renumbered (0-based)
43 df.to_csv(ptolemymap, sep=’\t’, columns=[’orf’,’strain’,’newid’], \
44 header=False, index=False)
45 id2orf = df.set_index(’locustag’)
46

47 # Remove ORFs discarded by panaroo from all ptolemy index files in the database
48 keepID = df.index
49 df = pd.read_table(os.path.join(ptolemydir,’id2fasta.txt’), \
50 delimiter=’\t’, header=None, \
51 index_col=0, names=[’id’,’seq’]).loc[keepIDs]
52 df.to_csv(os.path.join(ptolemydir,’id2fasta.txt’), \
53 sep=’\t’, header=False, index=True)
54 df = pd.read_table(os.path.join(ptolemydir,’global_z.txt’), \
55 delimiter=’\t’, header=None, \
56 index_col=0).apply(lambda x:

set(map(int,x[1].split(’,’))), axis=1)
57 df = df.apply(lambda x: ’,’.join(map(str,x.intersection(keepID))))
58 df = df.drop(labels=df[df.apply(lambda x: not(x))].index)
59 df.to_csv(os.path.join(ptolemydir,’global_z.txt’), \
60 sep=’\t’, header=False, index=True)
61 df = pd.read_table(os.path.join(ptolemydir,’global_z_prime.txt’), \
62 delimiter=’\t’, header=None, index_col=0)
63 df.loc[keepID].dropna()[1].to_csv(os.path.join(ptolemydir,’global_z_prime.txt’), \
64 sep=’\t’, header=False, index=True)
65

66 # Writing out the syntenic anchor file
67 df = panaroodf.apply(lambda x:

id2orf.loc[set(x.locustag).intersection(keeplocus),’newid’].values,axis=1)
68 anchors = df.apply(lambda x: ’’.join([’\t’.join([str(mem), \
69 ’,’.join(map(str,set(x).difference([mem])))+’\n’]) \
70 for mem in x if len(x)>1]))
71 anchors[anchors.apply(lambda x: len(x)==0)] = np.nan
72 anchors.dropna().to_csv(safile, sep=’\t’, header=False, index=False, na_rep=None)

Perform GO enrichment study

1 python runGOE.py go.obo orf2go.tsv studyinput.txt goestudy.out

Contents of runGOE.py
1 #!/usr/bin/env python3
2 from sys import argv
3 from goatools.obo_parser import GODag
4 from goatools.go_enrichment import GOEnrichmentStudy
5 if __name__ == ’__main__’:
6

7 obofile = argv[1] # obo file obtained from GO website
8 gomapfile = argv[2] # tab-separated file mapping ORFs to GO terms
9 studyfile = argv[3] # study input (ORFs)
10 if len(argv) > 4:
11 outfile = argv[4]
12 else:
13 outfile = ’goestudy.out’
14

15 godag = GODag(obofile, optional_attrs={’relationship’}) # load obo file
16 with open(gomapfile, ’r’) as f: # load mapping orf -> go IDs
17 gomap = {}
18 for line in f:
19 orf,go = line.strip().split(’t’)
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20 go = go.split(’ ’)
21 gomap[orf] = go
22 pop = set(gomap.keys())
23 with open(studyfile, ’r’) as f: # load study orf
24 study = set([line.strip() for line in f])
25 study = study.intersection(pop)
26

27 # Create the GOE study object
28 g = GOEnrichmentStudy(pop, gomap, godag, propagate_counts=False, \
29 alpha=0.01, methods=’fdr_bh’)
30 results = g.run_study(study) # run study
31 g.wr_tsv(outfile, results) # save the study results to a tab-separated file

3.5.2 Supplementary tables and figures

Figure S3.1: A section of GO hierarchy subgraph for the terms significantly enriched in clinical isolates, nodes are

color-coded according to the p-value: red for p-value of less than 0.005, orange for p-value between 0.005 and

0.01, and gray for p-values larger than 0.01.
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Table S3.1: Genbank accession numbers of Acinetobacter baumannii assemblies used in this study.

Accession Strain Accession Strain

AP013357.1 NCGM 237 CP017656.1 KAB08

AP014649.1 IOMTU 433 CP018143.1 HRAB-85

CP024911.1 AB307-0294 CP018254.1 AF-401

CP003846.1 BJAB07104 CP018256.1 AF-673

CP003847.1 BJAB0715 CP018332.1 A1296

CP003849.1 BJAB0868 CP018421.1 XDR-BJ83

CP003856.1 TYTH-1 CP018664.1 ATCC 17978

CP007535.2 AC29 CP020574.1 15A5

CP007577.1 AC30 CP020578.1 SSA12

CP008706.1 AB5075-UW CP020579.1 SAA14

CP009256.1 AB031 CP020581.1 SSMA17

CP009257.1 AB030 CP020584.1 JBA13

CP009534.1 AbH12O-A2 CP020586.1 CBA7

CP010397.1 6200 CP020590.1 15A34

CP010779.1 XH386 CP020591.1 SSA6

CP010781.1 A1 CP020592.1 USA2

CP012006.1 Ab04-mff CP020595.1 USA15

CP012952.1 D36 CP020597.1 HWBA8

CP013924.1 KBN10P02143 CP020598.1 WKA02

CP014215.1 YU-R612 CP021342.1 B8342

CP014528.1 XH858 CP021347.1 B8300

CP014539.1 XH859 CP021782.1 A85

CP014540.1 XH857 CP024124.1 AYP-A2

CP014541.1 XH856 CP024576.1 AbPK1

CP015364.1 3207 CP024611.1 Ab4977

CP015483.1 ORAB01 CP024612.1 Ab4653

CP016298.1 CMC-MDR-Ab59 CP024613.1 Ab4568

CP017152.1 DU202 CP001172.1 AB307-0294_2

CP017642.1 KAB01 CP025266.1 SMC_Paed_Ab_BL01

CP017644.1 KAB02 CP027704.1 DS002

CP017646.1 KAB03 CU459141.1 AYE

CP017648.1 KAB04 CU468230.2 SDF

CP017650.1 KAB05 LN865143.1 CIP70.10

CP017652.1 KAB06 LN868200.1 R2090

CP017654.1 KAB07 LN997846.1 R2091
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Table S3.2: Ptolemy graph size at different values of synteny neighborhood size (f).

# of nodes # of edges # of CCs

f = 5 19,541 32,420 28

f = 10* 20,140 31,946 34

f = 15 21,614 33,184 45

f = 20 22,149 33,106 47

Table S3.3: Proportion of common GO terms identified as significantly enriched in isolate DS002 using outputs of

different pan-genome tools.

Ptolemy Panaroo PIRATE PPanGGoLin Roary

Ptolemy 0.15 0.05 0.67 0.20

Panaroo 0.71 0.32 0.97 0.68

PIRATE 0.50 0.63 1.00 0.94

PPanGGoLin 0.66 0.20 0.11 0.26

Roary 0.69 0.50 0.36 0.93

Figure S3.2: GO hierarchy of significant terms related to biofilm formation in drug resistance mechanisms of A.
baumannii; nodes are color-coded according to the p-value: red for p-value of less than 0.005, orange for p-value

between 0.005 and 0.01, and gray for p-values larger than 0.01.





4

87

4
SAFPred: Synteny-aware

gene function prediction for
bacteria using protein

embeddings

“If you dream something, it might happen.
If you never dream it, it will never happen.”

— Bruce Dickinson

This chapter is based on  Urhan et al. SAFPred: Synteny-aware gene function prediction for bacteria using

protein embeddings Bioinformatics, 2024. [1].
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Abstract
Today, we know the function of only a small fraction of the protein sequences predicted

from genomic data. This problem is even more salient for bacteria, which represent some of

the most phylogenetically andmetabolically diverse taxa on Earth. This low rate of bacterial

gene annotation is compounded by the fact that most function prediction algorithms have

focused on eukaryotes, and conventional annotation approaches rely on the presence

of similar sequences in existing databases. However, often there are no such sequences

for novel bacterial proteins. Thus, we need improved gene function prediction methods

tailored for bacteria. Recently, transformer-based language models - adopted from the

natural language processing field - have been used to obtain new representations of proteins,

to replace amino acid sequences. These representations, referred to as protein embeddings,

have shown promise for improving annotation of eukaryotes, but there have been only

limited applications on bacterial genomes.

To predict gene functions in bacteria, we developed SAFPred, a novel synteny-aware

gene function prediction tool based on protein embeddings from state-of-the-art protein

language models. SAFpred also leverages the unique operon structure of bacteria through

conserved synteny. SAFPred outperformed both conventional sequence-based annotation

methods and state-of-the-art methods on multiple bacterial species, including for distant

homolog detection, where the sequence similarity to the proteins in the training set was as

low as 40%. Using SAFPred to identify gene functions across diverse enterococci, of which

some species are major clinical threats, we identified 11 previously unrecognized putative

novel toxins, with potential significance to human and animal health.

4.1 Introduction
With increasing volumes of sequencing data from high-throughput technologies, the

observed diversity of protein sequences is increasing faster than our knowledge of its

function. Given costs and the inability to scale experimental and other manual approaches

for function prediction, computational approaches have a critical role in deciphering

functional diversity. Most state-of-the-art gene function prediction methods have focused

on eukaryotes, leaving a gap in our understanding of the vast landscape of diversity among

bacteria, which represent some of the most phylogenetically and metabolically diverse

taxa.

As with previous tools, we define gene function prediction as the process of mapping

terms from the Gene Ontology (GO) knowledgebase to ORFs where the start and stop

positions have been annotated [2, 3]. Conventional approaches for gene function prediction

rely on sequence homology. Initial methods employed sequence search tools such as BLAST

or DIAMOND to query a database of known protein sequences and their functions [4].

While useful, these methods are limited by the completeness and fidelity of their databases.

Furthermore, it is often difficult to determine appropriate thresholds, resulting in low

sensitivity and specificity [3]. With increasing data, machine learning techniques have

been explored; in the most recent Critical Assessment of Functional Annotation (CAFA),

a challenge established to evaluate the state-of-the-art in automated function prediction,

GOLabeler was the top performer for predicting molecular function ontologies by inte-

grating sequence alignments, domain and motif information, and biophysical properties of
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proteins [5].

More recently, deep learning methods leveraging ideas from natural language pro-

cessing (NLP) have gained attention. Deep learning-based protein language models were

recently used to extract embedding vectors for protein sequences that are analogous to

word embeddings [6–8]. These vectors capture core properties of proteins beyond primary

structure, in a way that is context and species agnostic, but relevant to their function in the

cell, which makes them particularly useful for understudied organisms [9]. Contextualized

word embeddings have demonstrated success in predicting GO terms, as well as structure

and localization prediction, and refining protein family clusters [10].

Compared to eukaryotes, much less has been done to apply NLP-based methods to

bacterial genes. In a recent CAFA challenge, methods consistently performed less well on

bacteria than eukaryotes, suggesting room for improvement. Furthermore, the prokaryotic

track was heavily biased toward a single, well-studied bacterial species, E. coli [3], pointing
to a need to test methodologies on diverse bacteria. However, more recently Mahlich et al.
showed that with more sophisticated deep learning methods to study bacterial function, an

incredible amount of knowledge can be gained about remote homologs in novel organisms

[11, 12]. Given the vast diversity of functional repertoire in bacteria, remote homology

detection is of utmost importance.

Many functionally related bacterial genes are encoded in operons, co-located clusters

of genes on the same strand, which are often co-regulated and co-transcribed. Thus, the

context of a gene is another means to infer clues to its function [13, 14], as it is a source of

information complementary to both the sequence and embeddings-based representation

of a gene. Leveraging gene context and interactions was shown to improve prediction

performance on eukaryotes [15, 16]; however, combining information from gene context

with embeddings-based gene representations has not yet been done for gene function

prediction.

We developed Synteny-Aware Function Predictor (SAFPred), a novel approach to im-

prove bacterial gene function prediction based on protein embeddings and a comprehensive

bacterial synteny database. To evaluate SAFPred, we performed extensive benchmarking

using ground truth data and automated function prediction standard approaches to show

that SAFPred outperformed conventional sequence-based bacterial genome annotation

pipelines, HMM-based approaches, and a state-of-the-art deep learning method, when

using gene synteny conservation as additional input. As part of a real-world application,

we also demonstrated SAFPred’s utility to predict protein functions in Enterococcus species,
including predicting potential novel pore-forming toxins related to the delta toxin fam-

ily that could not be recognized using linear sequence or protein domain information.

SAFPred provides a powerful new tool for gene function prediction in bacteria, combin-

ing state-of-the-art NLP methods with a novel incorporation of syntenic information for

bacteria.

4.2 Materials and methods
4.2.1 Datasets
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SwissProt data set for benchmarking
We retrieved all the manually reviewed entries from the SwissProt Database (release 2021-

04, retrieval date 10 November 2021) [17], which was filtered to include proteins of length

40-1000 amino acids and with at least one experimental GO annotation. We selected the

evidence codes EXP, IDA, IPI, IMP, IGI, IEP, HTP, HDA, HMP, HGI, HEP, IBA, IBD, IKR,

IRD, IC, and TAS. To reduce redundancy, we clustered the proteins using CD-HIT [18] at

95% sequence similarity. The final dataset comprised 107,818 proteins in total.

To benchmark the performance of our method, we created five benchmarking datasets

from SwissProt, one for each of the five most numerous bacterial organisms in our dataset

(Table 4.1). Each organism’s dataset was split into training and test sets. The test was set

composed of all proteins from the specific bacteria. We also divided each training set in

different ways to create five sets where the sequence similarity (calculated using BLASTp

[4] of test to training set proteins was at most 40%, 50%, 60%, 70% and 80%. This resulted in

a total of 30 benchmarking sets (Table 4.1 and Supplementary Text).

Table 4.1: Total number of proteins in the benchmarking sets generated from the SwissProt dataset to evaluate

function prediction tools on bacterial organisms. For each organism, the test set remained constant and was

composed of all entries from the specific bacterial species, whereas the training set was restricted according to

the maximum sequence similarity allowed between the test and training sets.

Organism name # proteins in
the test set

# proteins in the training set
(for given similarity between train and test sets)

40% 50% 60% 70% 80% 95% (Full)1

Escherichia coli (EC) 3454 87014 96471 100445 102262 103229 104377

Mycobacterium tuberculosis (MT) 1666 95367 102531 105158 105917 106114 106152

Bacillus subtilis (BS) 1636 93363 101112 104325 105609 106015 106182

Pseudomonas aeruginosa (PA) 1014 94679 101338 104644 106186 106680 106804

Salmonella typhimurium (ST) 774 100928 104164 105384 105980 106340 107044

1
95% similarity was chosen to represent the full dataset to avoid redundancy

Enterococcus diversity dataset
We applied SAFPred to a set of 61,746 proteins with no experimental annotations, repre-

senting the entire protein content of 19 Enterococcus species, spanning four Enterococcus
clades [19] (Table S5). This collection of genomes is representative of Enterococcus ge-
nomic diversity, hence we refer to it as the Enterococcus diversity dataset. Assemblies were

downloaded from the Assembly Database in NCBI.

4.2.2 Building the bacterial synteny database, SAFPredDB
SAFPredDB is a comprehensive compilation of bacterial syntenic relationships, designed as

a resource for SAFPred. It is based on genomic data from the Genome Taxonomy Database

(GTDB Release 202, retrieved on 31/03/2022) [20] because GTDB assigns representative

genomes based on assembly quality and provides a curated list of species, with consistent

labels and IDs to cross-reference to all other databases. Starting with 45,555 representative

genomes, we extracted all protein sequences from the standardized GTDB annotations and

clustered them using CD-HIT at 95% sequence identity with default parameters, keeping

only clusters that contained at least 10 genes, resulting in 372,308 clusters. Next, we



4.2 Materials and methods

4

91

identified synteny by grouping clusters if at least one cluster member was located on the

same contig and strand, within 2000 bp (Fig. 4.1A). This yielded 1,488,249 non-singleton

candidate regions. Finally, we removed regions with an intergenic distance >300 bp, or split

them into multiple regions if possible (Fig. 4.1B). At the end of this procedure, SAFPredDB

consisted of 406,293 unique non-singleton regions, and the largest region was 25 genes

long.

We used experimentally determined operons collected in the Operon DataBase (ODB

v4) [21] to help determine threshold values used when building SAFPredDB, and to validate

SAFPredDB. We downloaded both the ODB known and ODB conserved operon databases

on 31/03/2022. We identified operons in ODB belonging to E. coli and B. subtilis, as (i) these
two organisms form the basis of a large part of the benchmarking of SAFPredDB, (ii) we

could cross-reference the protein IDs in ODB to the locus tags in their respective genome

assemblies, and (iii) they are two of the most well-represented organisms in ODB. The

ODB conserved operon database contained 8235 unique operons, from which we extracted

descriptive statistics and common patterns found across several operons conserved among

bacterial organisms. The ODB known operon database was used to model synteny features

and determine thresholds, such as region length, number of genes in a region, and the

maximum intergenic distance between adjacent genes in a region.

To summarize each SAFPredDB entry, we extracted protein embedding vectors for the

representative sequence of clusters found in that entry. We used ESM-1b, a transformer-

based protein language model [8] to extract the embeddings, and we took the average

of these embeddings to obtain one embedding vector per operon (Fig. 4.1C). Then, we

annotated SAFPredDB entries by assigning GO terms, if possible. Since we did not have

experimental annotations, we labeled entries based on sequence similarity. We used

BLASTp [4] to calculate pairwise sequence similarity between proteins in SAFPredDB

entries and the non-redundant SwissProt database with experimentally determined GO

terms (all 107,818 entries). We transferred GO terms from significant hits (e-value < 1e-6

and bit score > 50) using the frequency of each GO term among these hits as a predicted

score. We could assign at least one GO term to 295,446 of the 372,308 clusters (79%), which

in turn yielded 388,377 non-singleton entries (out of 406,293; 96%) annotated with at least

one GO term (Table 5.3 in Chapter 5).

In order to keep our synteny database consistent with our benchmarking datasets,

where we evaluated SAFPred on training subsets with differing sequence similarity to the

proteins in the test set, we generated corresponding subsets of SAFPredDB with matching

sequence similarity thresholds. We followed the same procedure as we did to generate

subsets of the SwissProt training sets with different sequence similarity thresholds: we

used BLAST to calculate the pairwise sequence identity of each query protein to the protein

clusters that form our main database. We removed clusters if they were more than 40%,

50%, 60%, 70%, 80% and 95% similar to at least one of the query proteins in the test set. Since

this operation removed or altered the content of the entries, we re-calculated the intergenic

distances for the remaining clusters and again split regions where the intergenic distance

exceeded our 300bp threshold, as we did when we created the main synteny database (Fig.

4.1B-C).

4.2.3 Comparison to published function prediction methods
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Figure 4.1: Schematic diagram of method used to construct our synteny database, SAFPredDB. Hashed boxes

represent genes; solid boxes are numerical embedding vectors. A. 2000 bp-long gene neighborhoods are extracted

from all genomes in GTDB; shown is an example with four genes in a single genomic neighborhood (hashed grey

boxes). B. After clustering all proteins from GTDB with CD-HIT, we replace the genes with the CD-HIT clusters

they belong to (hashed orange boxes) using the amino-acid sequence of the representative gene of each cluster in

place of their actual amino-acid sequence. Then, we trim potential syntenic regions to remove genes separated

by > 300bp, resulting in final syntenic regions (hashed green boxes). C. Once the final syntenic regions are

determined, we i) annotate each region with a set of GO terms, for which we track the corresponding frequency

among the gene clusters that make up the region (blue rectangles, darker shades mean GO terms are found in

more genes within the region), and ii) extract numerical embedding vectors for each region (solid green boxes).

We create a new representation for each region, which consists of the average embedding vector and a set of

GO terms. The final synteny database is a collection of such representative embedding vectors and GO term

frequency vectors; representations of six example entries are shown here.

Comparison to broadly used function prediction methods as baseline
In our SwissProt benchmarks, we compared SAFPred to two conventional methods of

function prediction: i) BLAST (v. 2.12.0) [4], widely used in the literature for comparisons

to function prediction tools, and ii) an HMM-based approach, as a more sophisticated

baseline.

To predict function using the BLAST baseline, we transferred GO terms from significant

BLAST hits taking short sequences into account (e-value < 1e-3,-task blastp-short)
of a query protein with a predicted score of the value of the maximum sequence identity.

As an alternative, we also used the GO term frequency-based approach [3], but we found

the maximum sequence identity scoring method performed better in our experiments.

To predict function using the HMM-based approach, we ran the hmmscan command

from the HMMER package [22] with the flags -E 1e-3 --cpu 2 --domtblout
against the Pfam database and applied the frequency-based approach to score transferred

annotations, i.e. we transferred GO terms from all significant HMM hits (e-value < 1e-3)

to the query protein, using the frequency of a GO term (number of times it was observed

among the significant hits) as the predicted score. To compare Pfam outputs quantita-

tively with those from other methods, we used Pfam2GO mapping tables (version date

2020/12/05) provided by the GO consortium to obtain GO terms corresponding to each

Pfam ID in addition to the Pfam database (release 32.0) [23, 24]. Because the Pfam database

is independent of the training sets we created based on the SwissProt database, we could

not evaluate its dependence on the similarity threshold examined for other tools.

Comparison to a recent state-of-the-art deep learning method
We chose DeepGOPlus (v 1.0.1) [25] as a recent deep learning based comparator in our

experiments. A state-of-the-art tool, it uses a supervised approach where a deep convolu-

tional neural network model is combined with a sequence homology based method. We

used the implementation provided by the authors and trained the model on the training
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sets in our experiments with the optimal values reported for the hyperparameters [25]. We

used the same training set for both the BLAST queries and DeepGOPlus.

4.2.4 SAFPred algorithm
SAFPred combines two nearest neighbor (nn) methods: SAFPred-nn, which is based only

on amino-acid level embeddings constructed from the SwissProt database, and SAFPred-

synteny, which leverages syntenic relationships drawn from our bacterial synteny database.

In SAFPred-nn, we used the ESM-1b protein language model (which we will call ESM)

[8] to represent SwissProt entries. To extract amino-acid level embedding vectors, we

used bio_embeddings (v 0.2.2) [26] with default settings. We obtained protein-level

embeddings (1280 dimensional vectors for ESM) by averaging over individual amino acid

embeddings. In preliminary work, we also used the ProtT5-XL-U50 model [7], but found

that embeddings from ESM performed better (Supplementary Material).

For each query protein, we identified nearest neighbors in the training set based on

embedding vector similarity over a threshold, which we calculate separately for each query

as the 99th percentile among all pairwise similarity values. We transferred GO terms from

nearest neighbors with a score equal to their cosine similarity to the query protein. As the

final prediction, we keep only the maximum score for each GO term transferred from the

nearest neighbors. We use cosine similarity to determine the similarity between any two

embedding vectors 𝑒1 and 𝑒2 defined as: 𝑠𝑖𝑚(𝑒1, 𝑒2) = (𝑒1 ⋅ 𝑒2)/(||𝑒1|| ⋅ ||𝑒2||), where 𝑒1 and 𝑒2

are both real-valued vectors, 𝑒1 ⋅ 𝑒2 represents the dot product between 𝑒1 and 𝑒2, and ||𝑒𝑖|| is

the Euclidean norm of vector 𝑒𝑖, for 𝑖 = 1,2.

The SAFPred-synteny component comprises two main steps (Fig. 4.2): (i) assigning

syntenic regions to a query from the pre-computed synteny database, SAFPredDB (Fig.

4.2A) and (ii) transferring GO terms from SAFPredDB entries to the query (Fig. 4.2B).

SAFPred-synteny follows the same nearest neighbor approach as SAPFred-nn to find the

most suitable syntenic regions in SAFPredDB for each query point. In short, we calculate

the pairwise cosine similarity between the query point and the average embedding vectors

representing database entries. We assign a region to the query if the pairwise similarity

between the region and query embeddings is greater than the 99th percentile among all

pairwise similarity values.

In our current implementation, we do not have any restrictions on entries assigned to

a query protein: given that the most suitable syntenic regions are picked among the same

set of regions used to calculate the threshold, at least one region is assigned to each query

point.

For all such entries assigned to the query, we also retrieve GO term frequencies. We

transfer all GO terms found in the assigned entries using the frequency of the terms

multiplied by the cosine similarity of the query point to the entry as the predicted score.

For each GO term, the predicted score is the maximum of these values. As the final step in

our algorithm, we normalize the predicted scores separately within three GO classes.

SAFPred combines the predictions from SAFPred-nn and SAFPred-synteny by taking the

average of predicted scores. We also evaluated its two component predictors individually.

Comparing all three methods side by side allowed us to assess the individual contributions

from embeddings and our synteny database on SAFPred’s performance.
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Figure 4.2: Overview of SAFPred-synteny algorithm: predicting GO terms of a query protein. A. SAFPred-synteny

assigns an entry (or multiple entries) to the query protein (red filled rectangle on the left) represented using

embeddings from ESM-1b LM, based on cosine similarity. Consistent with Fig. 4.1, green rectangles show synteny

embeddings paired with the corresponding GO term frequencies (blue rectangles). In this example, three entries

that passed the threshold are assigned to the query, and their GO term frequencies are weighted by multiplying

by the cosine similarity. B. All GO terms from the assigned entries are transferred to the query, where the final

predicted score of a GO term is the maximum of all the multiplied values for the term.

4.2.5 SwissProt benchmark evaluation
Using our SwissProt benchmarking datasets, we evaluated six protein prediction methods:

two baselines (BLAST and Pfam), DeepGOPlus, SAFPred, and separately its two compo-

nents SAFPred-nn and SAFPred-synteny, representing contributions from the embeddings

representation and synteny, respectively. In order to make the outputs of all tools compara-

ble to those of DeepGOPlus, we propagated the predicted GO term scores based on the GO

hierarchy, as done previously [25]. For each GO term, we assigned the highest predicted

score from among its children. This additional post-processing step was only implemented

in our benchmarking comparisons across tools, and not in our function prediction across

the Enterococcus genus.
We evaluated these function prediction methods as done for the CAFA challenges, using

the maximum F1-score (𝐹max) and the minimum semantic distance (𝑆min) as described in

[3]. We also report the coverage, defined as the percentage of test proteins annotated with

at least one GO term at the threshold which maximizes the F1-score. We use leaf nodes in

the GO hierarchy only, and remove all ancestor nodes between the leaves and the top of

the tree.

4.2.6 Applying SAFPredtoadiverse setofenterococcalgenomes,
including detailed analysis of pore-forming toxins

To demonstrate a practical application of SAFPred, we applied it to the Enterococcus diversity
dataset. We ran SAFPred in default mode, comparing its output to that from three annotation

approaches: (i) prokka (v. 1.14.6) [27], which runs multiple sequence homology-based

function prediction tools; (ii) the Pfam database (release 32.0) [28] using the hmmscan

command from HMMER (v 3.3.2) [22]; and (iii) eggNOG mapper (v 2.1.10) [29]. All tools

were run using default parameters; for HMMER and eggNOG, a significant hit was defined

as having e-value < 1e-3.

When examining potential novel Enterococcus pore-forming toxins, we performed

additional analyses to assess the potential function of query proteins without experimental
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annotations: (i) we performed a large-scale structure search using the query protein against

AlphaFoldDB and the Protein Data Bank (PDB); (ii) we examined their similarity to known

pore-forming toxins found in Enterococcus or closely related genera (Table S4), both in

terms of structural similarity (using Foldseek), as well as in genomic context; and (iii) we

assessed the presence of key structural elements, including N-terminal signal sequences, a

common feature in most toxin sequences which guides toxin secretion and transportation

outside the cell.

In order to compare syntenic relationships between predicted and known toxin genes,

we examined five genes upstream and downstream of toxin genes predicted by SAFPred,

as well as for the known delta toxin genes from Table S4, epx1 and epx4 [30].

To predict the structure of potential novel toxin genes identified by SAFPred, we used

the Fold Sequence public server on ESMFold Atlas [31] which only allows input sequences

shorter than 400 amino acids. For longer proteins, we used AlphaFold [32] in monomer

mode with default settings, using the Docker implementation. We used Foldseek [33]

for both protein structure search against databases and structural alignment. While the

structure database search was performed with default settings, we utilized both the global

(--alignment-type 1) and local alignment options (--alignment-type 2)
of Foldseek. Following the guidelines available for running Foldseek, we labeled alignments

depending on their structural alignment score: highly significant (> 0.7), significant (0.6 -

0.7), nonrandom (0.5 - 0.6) or random (≤ 0.5). To account for large differences in the query

and target sequence length, we required the alignment probability to be >0.8. We predicted

the N-terminal signal sequences using the SMART server [34].
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Figure 4.3: SAFPred outperformed conventional approaches to function prediction. Data is averaged across five

bacterial species, for variable sequence identity to proteins in the training set (x-axis). Error bars show standard

deviations. As the Pfam database is not dependent on the % Sequence identity to the training set, a single value

for 𝐹max for the Pfam baseline is shown (dashed line).
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4.3 Results
To improve gene function annotation for bacteria, we developed SAFPred, which combines

state-of-the-art protein embeddings based on NLP algorithms with bacteria-specific in-

formation about gene function inferred from bacterial synteny collected in our database,

SAFPredDB, which provides meaningful insight into gene function. This combination

outperformed conventional gene function prediction tools and a recent state-of-the-art

method, DeepGOPlus, on bacterial genes. We also demonstrated SAFPred’s performance

on a real-world application where it identified potential novel variants of delta toxin in

Enterococcus.

4.3.1 SAFPredDB: a database to leverage functional informa-
tion from syntenic relationships across bacteria

To incorporate information about synteny into SAFPred, we constructed a large-scale

database, SAFPredDB, of over 400,000 syntenic regions predicted from > 45,000 representa-

tive genomes from across the bacterial kingdom (Methods). We validated SAFPredDB by

comparison to the experimentally determined operons found in the conserved ODB [21],

a similar online database. SAFPredDB is larger and more up-to-date than ODB, which is

based on a smaller, curated list of experimentally determined operons from the literature.

Overall, SAFPredDB is quantitatively similar to the conserved ODB, in terms of region

length, number of genes in a region and intergenic distance within regions (Fig.s ). SAF-

PredDB provides an extensive catalog of conserved patterns of synteny within the bacterial

kingdom (Table 5.1 in Chapter 5).

Table 4.2: 𝐹max scores from our benchmarking for six different function prediction tools in the BPO category

(MFO and CCO are shown in Table S7), for each of five bacterial species in our full SwissProt benchmarking set.

The highest 𝐹max score in each column is shown in bold.

Bacterial species1

EC MT BS PA ST

Method 𝐹max scores for BPO

BLAST 0.570 0.543 0.639 0.683 0.852

Pfam 0.610 0.513 0.582 0.579 0.579

DeepGOPlus 0.648 0.669 0.857 0.824 0.928
SAFPred-nn 0.646 0.636 0.828 0.797 0.880

SAFPred-synteny 0.872 0.837 0.915 0.928 0.903

SAFPred 0.876 0.838 0.915 0.929 0.902

1EC: Escherichia coli, MT : Mycobacterium tuberculosis, BS: Bacillus subtilis, PA: Pseudomonas aeruginosa and ST : Salmonella
typhimurium.

4.3.2 SAFPred outperforms other tools in function prediction
for multiple bacterial species

To assess the performance of SAFPred in assigning GO terms to proteins, we first per-

formed benchmarking on the SwissProt database, where only the proteins with at least one
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experimentally determined GO annotation were retained. We then created benchmarking

datasets for five different bacterial species, dividing SwissProt entries into training and

test sets, thus simulating the real-world scenario of annotating predicted proteins that lack

exact matches to database entries.

We benchmarked SAFPred against three previously published tools, including i) a

baseline BLAST method; ii) a basic HMM-based approach (HMMER); and iii) a state-

of-the-art deep learning method (DeepGOPlus) (Methods). We also compared SAFPred

against its two component algorithms run separately, SAFPred-nn (which relies solely on

protein embeddings) and SAFPred-synteny (which relies solely on a database of syntenic

relationships from operons), allowing us to assess contributions of the two components. We

performed benchmarking separately for three categories of GO terms, including Biological

Process (BPO), Molecular Function (MFO), and Cellular Component (CCO), as these are

known to present different challenges for annotation [35]. Overall, SAFPred achieved

the highest 𝐹max scores across all five species, for all three GO categories, and on the full

SwissProt benchmarking set, with S. typhimurium being the only exception. On this species,

DeepGOPlus performed the best for BPO and MFO (Tables 4.2 and S7). We observed similar

trends in prediction performance using 𝑆min and the area under the precision/recall curve

(Tables S8 and S9). The SAFPRed-nn predictor used alone surpassed conventional tools,

showing that protein embeddings, even in a simple unsupervised model, provided a better

representation of protein sequence for GO term transfer than both the amino-acid sequence

itself (BLAST baseline) and the HMM profiles (Pfam baseline) (Tables 4.2 and S4.1). This

agreed with recent studies on eukaryotes [36]. SAFPred-synteny used alone performed

substantially better than SAFPred-nn, highlighting the usefulness of incorporating syntenic

information. SAFPred-synteny performed almost as well as the full SAFPred tool.

4.3.3 SAFPred surpasses existing tools for annotating distant
homologs

We were particularly motivated to develop SAFPred to increase the number of annotations

for the growing number of unannotated bacterial proteins, with few or no homologs in

existing databases. To emulate gene function prediction of distant homologs, we designed

additional benchmarking sets where the pairs of training and test sets were generated by

stratifying the full SwissProt dataset based on the maximum sequence similarity allowed

between protein sequences in the training and the test set.

As we did not observe any significant differences between the species examined, we

report the average 𝐹max values and standard deviation for all five bacteria combined (BPO

in Fig. 4.3). SAFPred was consistently the top-performing method. The difference in

prediction performance (as measured by 𝐹max) between SAFPred and all other methods

was greater as the sequence similarity between the test and the training sequences (as well

as the clusters in the synteny database) increased (Fig 4.3).

Similar to the full datasets, we observed that protein embeddings (SAFPred-nn) far

outperformed both conventional predictors, BLAST and Pfam, across the range of sequence

similarities. Furthermore, as with the full datasets, we observed that SAFPred-synteny per-

formed substantially better than SAFPred-nn, and almost as well as SAFPred, demonstrating

the large contribution gained by adding information from synteny.

In addition, this benchmarking revealed that BLAST performance was surprisingly
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consistent across levels of shared homology, while the embeddings-based methods showed

improvement in performance as similarity between the training and test sets increased.

This trend held for not only the average 𝐹max in the remaining two ontologies (MFO and

CCO), but also for each bacterial species individually (Tables S4.7-S4.10).

4.3.4 SAFPred provides more reliable predictions compared
to other methods

Among the tools we benchmarked, the BLAST and HMM-based Pfam baselines had the

lowest annotation coverages (i.e. the number of test genes that have at least one predicted

GO term) on both the full SwissProt dataset and the sets with lower sequence similarity

(Tables S15 and S16). SAFPred emerged as the all-around top-performing method in terms

of balancing precision and recall. Furthermore, we found that its prediction coverage

was in line with other embeddings-based nn models on the full SwissProt benchmarking,

although it occasionally lagged behind the state-of-the-art in terms of coverage on our

other benchmark sets. Given that SAFPred achieved the best 𝐹max values across the board,

the drop in coverage means SAFPred’s predictions are more reliable compared to other

methods.

We did observe that SAFPred’s coverage decreased slightly for test sets with lower

similarity to the training set (Table S16). In these benchmark tests, SAFPredDB is sparsely

labeled due to a conservative annotation methodology (Supplementary Text), limiting the

annotations that can be transferred based on synteny.

4.3.5 SAFPred identifies five potential novel pore-forming
toxins among a diverse set of enterococcal genomes

A key goal in the development of SAFPred was predicting functions of unannotated genes

in bacteria, including those associated with key bacterial features of clinical interest such as

antimicrobial resistance and virulence. Enterococcus is a diverse genus of bacteria thought
to inhabit the gastrointestinal tracts of all land animals. These organisms have an incredibly

diverse functional repertoire, yet many of their predicted proteins are of unknown function

[19, 37]. Uncovering this rich functional diversity is of primary interest given the ubiquity

and importance of this genus. Recent targeted searches have reported the discovery of

several classes of novel toxins within diverse enterococcal species, including the discovery

of a new family of pore-forming delta toxins in E. faecalis, E. faecium and E. hirae [30] and
new botulinum toxins in E. faecium [38]. All of these newly discovered toxins exhibit low

sequence similarity to known toxin sequences in other bacterial species.

Although the previous studies focused only on three clinically relevant species of

Enterococcus, we hypothesized that similar toxins could also be found in other diverse,

less well-studied species of Enterococcus, providing insights into other ecologies in which

these toxins may be advantageous. Thus, to search for additional novel toxin genes across

the Enterococcus genus, we applied SAFPred to a collection of 19 Enterococcus genomes,

each representing a different species [19], including 16 species not examined by Xiong et
al. or Zhang et al [30, 38]. We looked specifically for genes that were labeled with a GO

term describing toxin activity and associated with the conserved genomic context of delta

toxins [30]. SAFPred associated 59 genes with the single delta toxin operon from SAPdb,

consisting of an enterotoxin and a putative lipoprotein cluster, found in the unrelated
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Clostridium and Roseburia species (Table S5). Of these 59 genes, 6 were predicted by Pfam

to be pore-forming toxins (e-value < 1e-3 to PF01117 or PF03318), and 3 were annotated by

Prokka as “lipoproteins” (Methods). The remaining 50 had no functional prediction prior

to running SAFPred.

To explore their candidacy as delta toxin encoding, we evaluated each gene’s predicted

protein structure and genomic context. Eleven (of 59) had structural similarity to known

toxin structural folds (Foldseek alignment probability > 0.8 and alignment score > 0.5 to

proteins in the AlphaFold and the Protein Data Bank (PDB) structure databases), including

several with highly significant alignments (Table S4.1; Fig. S4.34). Of these eleven, five

were not previously identified as having a toxin annotation by either Prokka or Pfam -

these were detected only by SAFPred. All 11 contained signal peptides at similar positions

as those in known bacterial toxins. The remaining 48 proteins without structural similarity

had lower SAFPredDB rankings than the 11 with structural similarity (Supplementary

Text).

In the absence of experimental annotations, we continued the analysis with the 11

candidate toxins identified by SAFPred to the known pore-forming delta toxin genes

previously reported in Enterococcus, epx1 and epx4; we compared their genomic context

and their neighborhoods [30]. Seven of the 11 candidate toxin genes were most similar

to epx1 structures from E. faecalis and S. aureus, including five from E. haemoperoxidus
BAA-382, and two from E. pernyi ATCC882. All had surrounding genes with some degree

of structural similarity to genes within the known epx1 genomic neighborhood, including

two with highly significant matches (Fig. S37A). Among the 5 putative toxin genes, the

highest amino acid sequence identity to epx1 was less than 40% (Table S4.13). Furthermore,

the gene neighborhood was conserved between the five candidates from E. haemoperoxidus
BAA-382 (Fig. S4.34).

Four of the 11 candidate toxin genes were most similar to the E. hirae epx4 structure,
including one gene from E. haemoperoxidus and three genes from E. moraviensis BAA-383
(Fig. S4.34B). Among the four putative epx4 genes, the maximum amino acid sequence

similarity we observed to epx4 was 60% (Table S4.13). Similar to the epx1 context, we

observed that the neighboring genes of the new epx4-like toxins predicted by SAFPred

were structurally similar to one another. Although some of the neighboring genes had

lower Foldseek similarity scores, the neighborhoods had nonrandom similarity among

themselves (scores ranging from 0.4 to 0.9).

4.4 Discussion
In this work, we introduce SAFPred, a novel synteny-aware, NLP-based function prediction

tool for bacteria. SAFPred is distinguished from existing tools for annotating bacteria in

two ways: (i) it represents proteins using embedding vectors extracted from state-of-the-art

protein language models, and (ii) it incorporates additional functional information inferred

from a protein’s genomic neighborhood, by leveraging conserved synteny across the entire

bacterial kingdom, tabulated in our synteny database SAFPredDB. This allows SAFPred to

identify co-regulated genes that may be part of same functional pathways, but which have

completely different sequence or protein structure. To our knowledge, SAFPred is the only

bacterial gene function prediction tool with these two features.

While there have been successful uses of protein language models for gene function
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prediction in eukaryotes, these methods have not yet been extensively applied to bacte-

ria. We confirmed that protein embeddings in SAFPred surpass conventional sequence

homology-based tools, providing a better representation of genes to infer gene function

(Table 4.2).

To assess SAFPred’s performance on bacteria, we designed a systematic, rigorous

benchmarking framework based on the SwissProt database, where we further limited

our training set according to its sequence similarity to the test set, in order to evaluate

function predictors in the situation where there only distant homologs are known. We

examined thresholds down to 40% sequence similarity, as previous work showed that

proteins with identity >40% are likely to share functional similarity [39]. However, we

know that BLASTp is an imperfect method for identifying homologous relationships for

distantly related proteins, andwe thus expect that distant homologues, including similarities

in protein folds, will be present in our training set. A strength of our tool is its ability

to identify functional relationships in distant homologs that sequence comparisons are

unable to identify. As we have observed in our function prediction of enterococcal toxins,

SAFPred can identify functional linkages to proteins with structural folds that share less

than 30% sequence similarity. Thus, we expect that SAFPred’s performance would surpass

conventional methods when sequence similarity is even lower than the thresholds we

implemented in our SwissProt benchmarks. Future work will include benchmarks where

we can evaluate SAFPred’s performance on unseen genes and assess its generalizability.

Although bacterial gene neighborhoods have been used previously for function predic-

tion, this practice has mostly been manual and is absent from current automated annotation

tools. We consistently achieved the best performance when synteny was used in conjunc-

tion with the embeddings representation within the SAFPred framework. Either component

alone resulted in lower performance, while the biggest gain in prediction performance

came from the use of synteny relationships. We demonstrate that conserved synteny and

protein embeddings provide complementary information for predicting gene function, in

particular when there are fewer homologs available (Fig. 4.3). We presume the overall

improvement in prediction accuracy stems from both more accurate function prediction

and homolog detection since SAFPred consistently outperforms other methods, even when

the sequence similarity between training and test set is low. In future work, a different

experiment should be designed to study homolog detection specifically in addition to

expanding the set of comparator tools to provide more insight.

We demonstrated that SAFPred improves homolog detection for 19 diverse enterococcal

species. Following the recent discovery of several types of novel toxin genes in enterococci,

we focused on toxin discovery. SAFPred predicted 11 candidate delta toxin genes, which

showed low sequence similarity to known toxins (< 30%) but significant structural homology

to known toxin protein structural folds. Several of these candidates also shared similar

genomic neighborhood patterns with those of known toxin genes. Although six of these

candidate toxins could also be identified based on their Pfam domains, five of these could

not be annotated using any of the existing gene prediction tools. These five genes are

strong candidates for further experimental validation of their toxin activities. SAFPred

also identified 48 additional genes with functional linkages to toxin operons, but without

structural homology to known toxins. The function of these genes should be investigated

in future studies as well.
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One limitation of SAFPred is its reliance on a predicted synteny database, which may

contain syntenic linkages that do not share a function, in addition to actual operons. Also,

in the absence of ground truth, both the operon predictions and the functions we assigned

to these operons are limited by the existing databases (Supplementary Text). To minimize

false positives, we adopted a conservative approach which in turn resulted in a sparsely

annotated training set, lowering the prediction coverage of SAFPred (Tables S4.11 and

S4.12). One way to alleviate this problem is to routinely pick unlabeled entries from our

database, prioritizing the most common ones, to perform experiments and identify their

functions. With each new experimental annotation available, additional entries can be

labeled. We expect this iterative approach to rapidly increase the number of labeled entries

in the database.

Another limitation of the current version of SAFPredDB is its focus on broadly con-

served patterns; it represents synteny across the entire bacterial kingdom. Since our goal

was to develop an all-purpose bacterial gene annotation tool, we deliberately designed

our database to be inclusive and to cover as many syntenic regions as possible. Thus,

syntenic patterns or operons associated with rare traits, or functional pathways unique to

novel species are not present in the default SAFPredDB, but are straightforward to add

for specific analyses, as SAFPredDB can be tailored and reconstructed using the latest

releases of its source databases. We provide scripts to customize and keep it up to date. For

instance, a version of SAFPredDB incorporating metagenomic data could be used to study

new functions in uncultured bacteria. Or, to design an all-purpose annotation pipeline for

prokaryotes, SAFPredDB could be expanded to cover the diversity of prokaryotes. Although

we used only GO terms to describe gene function, the new database could incorporate

additional features, such as enzymatic activity and pathways to better capture functional

traits. Finally, different representations of synteny vectors in the database, other than

taking the average of embeddings, could be explored.

Currently, SAFPred assigns every query gene the same number of entries, equal to 1%

of all entries available in the dataset, in order to be as inclusive as possible in learning

about unannotated genes. To help disambiguate real matches from false positives, SAFPred

reports a rank for each of the matching entries based on their similarity to the query.

Although we have not determined whether a universal ranking threshold exists, our

detailed examination of toxin operons in Enterococcus suggested this ranking can be a

reliable proxy for confidence. While SAFPred reported 48 additional genes associated with

the delta toxin operon, the delta toxin operon ranked among the top two entries for only

the 11 candidate genes that showed structural similarity to the toxin fold. Thus, the order

of assigned entries could be used as a proxy to infer confidence.

We demonstrated that conserved synteny and protein embeddings both provide use-

ful information for predicting the protein function. SAFPred outperforms conventional

sequence-based bacterial genome annotation pipelines, as well as more sophisticated HMM-

based approaches and more recently developed deep learning methods. SAFPred can not

only infer beyond the linear sequence, at the level of protein fold, but it can also successfully

utilize conserved synteny among bacterial species to predict gene function.
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Data Availability
All data used for the analyses in this article are publicly available in the Uniprot database and

the Assembly Database at NCBI (accession IDs of Enterococcus assemblies listed in Table S5).

The code and the scripts developed in this work are public at https://github.com/AbeelLab/safpred.

4.5 Supplementary Material
4.5.1 Supplementary Text: SwissProt Dataset for Benchmark-

ing
SAFPred was developed to improve gene function prediction in bacteria, and to evaluate

our method on this specialized task we built a bacterial benchmarking dataset based on

the SwissProt database [17].

SwissProt Database (release 2021-04, retrieval date 10 November 2021) forms the basis

of our benchmarking dataset. First, we limited the entries to proteins of length [40,1000]

to minimize the effect of protein length on our study. Then, we restricted the dataset to

include only experimental GO annotations, we retained SwissProt entries with at least

one GO term with the evidence codes EXP, IDA, IPI, IMP, IGI, IEP, HTP, HDA, HMP,

HGI, HEP, IBA, IBD, IKR, IRD, IC, and TAS. Finally, we clustered the proteins using CD-

HIT at 95% sequence similarity threshold to reduce redundancy [18]. At the end of this

procedure, we had 107,818 proteins in total. This dataset reflects the full scope of organisms

present in SwissProt, with 2005 unique tax IDs, 737 of which belong to bacteria including

proteobacteria, terrabacteria, archaea and spirochaetes.

To create our bacterial benchmark datasets, we selected the five bacterial organisms

that had the largest number of entries in SwissProt: Escherichia coli (EC), Mycobacterium
tuberculosis (MT), Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), and Salmonella
typhimurium (ST). For each bacteria, we obtained the “Full” dataset by reserving all proteins

that belong to the organism to the test set. I.e., the “Full” EC dataset comprises a test set

made up of only E. coli genes (3454 entries), and a training set of the remainder of entries

from SwissProt (104377 entries).

Next, to evaluate SAFPred on more challenging prediction scenarios where the goal is

to predict gene function with few or no homologs in the existing databases, we created

additional train/test set pairs for each bacteria. We removed proteins from the training set if

they were more than 40%, 50%, 60%, 70% and 80% similar to any protein in the corresponding

test set. This led to 6 train/test pairs for bacteria; the test set size remained constant, while

the training set decreases in size as the sequence similarity threshold increases because

more proteins are removed from the training set. In total, we had 30 train/test pairs (Table

4.1 in the manuscript).

In addition to the training set derived from SwissProt, SAFPred relies on the synteny

database, SAFPredDB. Thus, we followed the same procedure to create additional databases

corresponding to the preset sequence similarity threshold. We ran BLASTp on all genes in

SAFPredDB, and removed members from the database if they were more than 40%, 50%,

60%, 70%, 80% and 95% similar to any protein in the corresponding test set. This operation

altered the contents of the entries, thus we recalculated the intergenic distance for each

entry in SAFPredDB and split the regions if the intergenic distance exceeded our 300bp

threshold.

https://www.ncbi.nlm.nih.gov/assembly
https://github.com/AbeelLab/safpred
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Table S4.1: Known pore-forming toxin genes found in Enterococcus or closely related genera. Protein structures

for all but two genes have been solved experimentally and were downloaded from PDB. For Leucotoxin and

Alveolysin, AlphaFold was used to predict their structure since they were not found in the databases.

Gene Sequence ID1 Structure ID2 Species

Alpha-hemolysin P09616 3m3r S. aureus
Alveolysin P23564 - P. alvei
Cytolysin P19247 4owl V. vulnificus

Gamma-hemolysin component A P0A071 3b07 S. aureus
Gamma-hemolysin component B A0A0H3JX61 4p1x S. aureus
Heat-labile enterotoxin B chain P01558 3ziw C. perfringens

Hemolysin P09545 1xez V. cholerae
Leucotoxin LukE O54081 - S. aureus

Pore-forming toxin epx1 WP_104660001.1 7t4e E. faecalis
Pore-forming toxin epx4 WP_053766529.1 7t4d E. hirae

1
Uniprot IDs for the first 8 rows, and NCBI protein IDs for the last two rows.

2
PDB identifiers.

Table S4.2: SAFPred associated 59 enterococcal proteins with the delta toxin entry from SAFPredDB (entry ID

395786), found in Clostridium and Roseburia. The contents of this entry are shown here.

Entry Cluster Gene Uniprot ID

395786

75445122 Heat-labile enterotoxin B chain P01558

84731674 Uncharacterized lipoprotein YsaB Q83J37

4.5.2 Analysis of false positive enterococcal toxin predic-
tions

To detect novel toxins, we first collected known pore-forming toxin genes observed in

Enterococcus or closely related genera. Table S4.1 lists all such toxins, along with their

Uniprot IDs and PDB identifiers, if their structure is available in the PDB database.

Among the 10 toxin genes, we located the heat-liable enterotoxin B chain in an entry in

SAFPredDB. Forty-eight genes were associated with the toxin operon in SAFPredDB, but did

not have structural similarity to a known toxin protein fold. The SAFPredDB entry codes

for two membrane-associated proteins: 1) the toxin gene itself, and 2) another membrane

protein of unknown function. Based on FoldSeek search results, 33 of these 48 genes

appeared to perform other functions related to the cell membrane, involving signaling,

secretion, and pore formation. To gain further insight into why these 48 additional genes

without toxin structural folds were matched to the delta toxin entry in SAFPredDB, we

compared the Euclidean similarity of embeddings vectors extracted from all 59 genes to the

embedding vector of the known delta toxin operon (Table S4.2). While we did not find any

significant differences in terms of the absolute similarity values between those 11 that had

structural similarity to the delta toxin operon and the rest, we noted that the SAFPredDB

toxin entry was consistently ranked in the top two among all SAFPredDB entries assigned

to the 11 likely toxins, whereas for the remaining 48 genes this was not the case. This
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suggests that the ranking could be used in future versions of SAFPred as a proxy to infer

confidence in region assignments and to reduce false positives.

4.5.3 Supplementary Tables
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Table S4.4: 𝐹max values for the full SwissProt dataset for the molecular function and cellular component ontologies.

𝐹max values for each of five species1,2

Method EC MT BS PA ST

Molecular function

BLAST 0.613 0.593 0.625 0.699 0.814

Pfam 0.650 0.549 0.571 0.534 0.559

SAFPred-nn 0.675 0.723 0.814 0.854 0.837

SAFPred-synteny 0.880 0.869 0.893 0.938 0.878

SAFPred 0.885 0.869 0.893 0.938 0.877

DeepGOPlus 0.686 0.755 0.841 0.883 0.911

Cellular component

BLAST 0.569 0.397 0.638 0.700 0.871

Pfam 0.625 0.541 0.608 0.560 0.616

SAFPred-nn 0.731 0.500 0.898 0.900 0.917

SAFPred-synteny 0.920 0.847 0.943 0.945 0.918

SAFPred 0.922 0.847 0.943 0.945 0.917

DeepGOPlus 0.745 0.567 0.885 0.887 0.936

1 EC: Escherichia coli, MT: Mycobacterium tuberculosis, BS: Bacillus subtilis, PA: Pseudomonas aeruginosa and ST:
Salmonella typhimurium.
2
Lowest value for each species and for each GO category are shown in bold.



4.5 Supplementary Material

4

107

Table S4.5: 𝑆min values for the full SwissProt dataset for each of five species
1,2
.

Method EC MT BS PA ST

Biological process

BLAST 20.97 22.93 15.99 19.02 8.53

Pfam 108.50 161.14 126.22 122.86 129.13

SAFPred-nn (T5) 18.61 18.44 9.84 12.76 8.83

SAFPred-nn 17.44 18.24 9.02 12.18 8.37

SAFPred-synteny 7.10 7.60 3.27 4.41 4.90

SAFPred 7.10 7.60 3.27 4.41 4.90

DeepGOPlus 16.45 14.94 5.68 10.39 2.85

Molecular function

BLAST 10.97 11.07 7.99 8.25 5.51

Pfam 30.87 52.74 35.04 35.48 37.17

knn (T5) 10.01 8.99 4.74 4.52 5.72

knn 9.12 8.04 4.77 4.49 5.67

SAP-operon 3.63 3.51 1.88 1.66 2.72

SAP 3.63 3.51 1.88 1.66 2.72

DeepGOPlus 8.68 6.36 2.57 2.67 1.68

Cellular component

BLAST 6.46 5.74 3.87 4.17 2.53

Pfam 30.29 35.91 34.37 31.40 32.15

knn (T5) 4.87 4.99 1.76 1.81 2.37

knn 5.02 5.00 1.84 2.05 2.29

SAP-operon 1.64 1.85 0.49 0.82 1.35

SAP 1.64 1.85 0.49 0.82 1.35

DeepGOPlus 4.92 4.63 1.55 1.77 1.18

1 EC: Escherichia coli, MT: Mycobacterium tuberculosis, BS: Bacillus subtilis, PA: Pseudomonas aeruginosa and ST:
Salmonella typhimurium.
2
Lowest value for each species and for each GO category are shown in bold.
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Table S4.6: Area under the precision/recall curve
1
for the full SwissProt

dataset, for all 5 bacterial organisms
2
and three GO categories.

Method EC MT BS PA ST

Biological process

BLAST 0.519 0.497 0.686 0.642 0.642

Pfam 0.648 0.556 0.582 0.623 0.623

SAFPred-nn (T5) 0.529 0.514 0.76 0.714 0.714

SAFPred-nn 0.544 0.533 0.80 0.714 0.714

DeepGOPlus 0.564 0.600 0.862 0.797 0.797

SAFPred-synteny 0.855 0.805 0.907 0.908 0.908
SAFPred 0.855 0.805 0.907 0.908 0.908

Molecular function

BLAST 0.569 0.573 0.658 0.644 0.644

Pfam 0.686 0.599 0.571 0.595 0.595

SAFPred-nn (T5) 0.523 0.602 0.764 0.774 0.774

SAFPred-nn 0.560 0.640 0.790 0.780 0.780

DeepGOPlus 0.613 0.719 0.857 0.899 0.899

SAFPred-synteny 0.872 0.849 0.887 0.921 0.921
SAFPred 0.872 0.849 0.887 0.921 0.921

Cellular component

BLAST 0.541 0.324 0.701 0.724 0.724

Pfam 0.675 0.598 0.608 0.634 0.634

SAFPred-nn (T5) 0.641 0.344 0.858 0.849 0.849

SAFPred-nn 0.633 0.335 0.879 0.853 0.853

DeepGOPlus 0.747 0.512 0.931 0.917 0.917

SAFPred-synteny 0.919 0.831 0.954 0.945 0.945
SAFPred 0.919 0.831 0.954 0.945 0.945

1
The highest value for each species and for each GO category are shown

in bold.

2 EC: Escherichia coli, MT: Mycobacterium tuberculosis, BS: Bacillus subtilis,
PA: Pseudomonas aeruginosa and ST: Salmonella typhimurium
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Table S4.7: 𝐹max values for the entire E. coli SwissProt benchmark sets.

Method 40 50 60 70 80 Full

Biological process

BLAST 0.505 0.526 0.540 0.556 0.560 0.570

Pfam 0.610 0.610 0.610 0.610 0.610 0.610

SAFPred-nn (T5) 0.464 0.510 0.574 0.596 0.607 0.625

SAFPred-nn 0.536 0.584 0.623 0.635 0.639 0.646

DeepGOPlus 0.568 0.601 0.624 0.636 0.644 0.648

SAFPred-synteny 0.720 0.792 0.824 0.840 0.858 0.877

SAFPred 0.724 0.800 0.830 0.846 0.865 0.877

Molecular function

BLAST 0.554 0.573 0.585 0.599 0.603 0.613

Pfam 0.650 0.650 0.650 0.650 0.650 0.650

SAFPred-nn (T5) 0.475 0.528 0.595 0.611 0.618 0.632

SAFPred-nn 0.558 0.598 0.656 0.666 0.669 0.675

DeepGOPlus 0.605 0.641 0.649 0.674 0.680 0.686

SAFPred-synteny 0.725 0.803 0.833 0.850 0.865 0.886

SAFPred 0.739 0.810 0.840 0.855 0.872 0.886

Cellular component

BLAST 0.502 0.519 0.532 0.546 0.554 0.569

Pfam 0.625 0.625 0.625 0.625 0.625 0.625

SAFPred-nn (T5) 0.560 0.610 0.691 0.712 0.732 0.738

SAFPred-nn 0.610 0.650 0.707 0.715 0.723 0.731

DeepGOPlus 0.645 0.705 0.721 0.706 0.726 0.745

SAFPred-synteny 0.769 0.835 0.866 0.887 0.905 0.925

SAFPred 0.774 0.842 0.873 0.893 0.911 0.925
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Table S4.8: 𝐹max values for the entire M. tuberculosis SwissProt benchmark sets.

Method 40 50 60 70 80 Full

Biological process

BLAST 0.525 0.521 0.531 0.532 0.539 0.543

Pfam 0.513 0.513 0.513 0.513 0.513 0.513

SAFPred-nn (T5) 0.520 0.597 0.613 0.615 0.618 0.618

SAFPred-nn 0.575 0.617 0.629 0.630 0.633 0.636

DeepGOPlus 0.627 0.645 0.670 0.667 0.667 0.669

SAFPred-synteny 0.698 0.750 0.786 0.812 0.825 0.838

SAFPred 0.703 0.750 0.787 0.813 0.828 0.838

Molecular function

BLAST 0.589 0.582 0.580 0.584 0.591 0.593

Pfam 0.549 0.549 0.549 0.549 0.549 0.549

SAFPred-nn (T5) 0.586 0.654 0.672 0.677 0.683 0.681

SAFPred-nn 0.654 0.706 0.714 0.718 0.722 0.723

DeepGOPlus 0.709 0.736 0.745 0.752 0.750 0.755

SAFPred-synteny 0.748 0.800 0.830 0.851 0.864 0.869

SAFPred 0.748 0.801 0.832 0.856 0.866 0.869

Cellular component

BLAST 0.401 0.397 0.394 0.396 0.396 0.397

Pfam 0.541 0.541 0.541 0.541 0.541 0.541

SAFPred-nn (T5) 0.434 0.513 0.520 0.517 0.510 0.507

SAFPred-nn 0.431 0.504 0.505 0.505 0.502 0.500

DeepGOPlus 0.570 0.577 0.575 0.573 0.572 0.567

SAFPred-synteny 0.634 0.700 0.753 0.804 0.835 0.846

SAFPred 0.638 0.704 0.756 0.807 0.835 0.846
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Table S4.9: 𝐹max values for the entire P. aeruginosa SwissProt benchmark sets.

Method 40 50 60 70 80 Full

Biological process

BLAST 0.650 0.666 0.680 0.686 0.684 0.683

Pfam 0.579 0.579 0.579 0.579 0.579 0.579

SAFPred-nn (T5) 0.629 0.731 0.786 0.798 0.797 0.796

SAFPred-nn 0.681 0.769 0.794 0.799 0.797 0.797

DeepGOPlus 0.749 0.785 0.812 0.820 0.816 0.824

SAFPred-synteny 0.754 0.835 0.879 0.892 0.916 0.927

SAFPred 0.755 0.837 0.878 0.896 0.922 0.927

Molecular function

BLAST 0.712 0.721 0.716 0.708 0.702 0.699

Pfam 0.534 0.534 0.534 0.534 0.534 0.534

SAFPred-nn (T5) 0.679 0.801 0.848 0.858 0.856 0.853

SAFPred-nn 0.765 0.849 0.863 0.863 0.857 0.854

DeepGOPlus 0.810 0.856 0.883 0.894 0.882 0.883

SAFPred-synteny 0.789 0.879 0.913 0.921 0.932 0.938

SAFPred 0.784 0.882 0.915 0.925 0.939 0.938

Cellular component

BLAST 0.658 0.687 0.692 0.701 0.701 0.700

Pfam 0.560 0.560 0.560 0.560 0.560 0.560

SAFPred-nn (T5) 0.743 0.838 0.876 0.894 0.900 0.898

SAFPred-nn 0.780 0.868 0.894 0.900 0.900 0.900

DeepGOPlus 0.819 0.847 0.874 0.877 0.900 0.887

SAFPred-synteny 0.823 0.890 0.914 0.927 0.934 0.945

SAFPred 0.830 0.893 0.914 0.931 0.943 0.945
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Table S4.10: 𝐹max values for the entire S. typhimurium SwissProt benchmark sets.

Method 40 50 60 70 80 Full

Biological process

BLAST 0.675 0.728 0.775 0.800 0.822 0.852

Pfam 0.579 0.579 0.579 0.579 0.579 0.579

SAFPred-nn (T5) 0.634 0.739 0.795 0.848 0.875 0.869

SAFPred-nn 0.774 0.855 0.889 0.910 0.919 0.880

DeepGOPlus 0.811 0.860 0.896 0.911 0.922 0.928

SAFPred-synteny 0.811 0.871 0.894 0.906 0.908 0.905

SAFPred 0.811 0.871 0.895 0.907 0.910 0.905

Molecular function

BLAST 0.674 0.723 0.751 0.782 0.811 0.814

Pfam 0.559 0.559 0.559 0.559 0.559 0.559

SAFPred-nn (T5) 0.589 0.694 0.753 0.818 0.856 0.829

SAFPred-nn 0.761 0.844 0.868 0.894 0.904 0.837

DeepGOPlus 0.800 0.845 0.875 0.892 0.904 0.911

SAFPred-synteny 0.796 0.863 0.884 0.893 0.889 0.883

SAFPred 0.798 0.862 0.885 0.895 0.890 0.883

Cellular component

BLAST 0.644 0.705 0.737 0.774 0.815 0.871

Pfam 0.616 0.616 0.616 0.616 0.616 0.616

SAFPred-nn (T5) 0.794 0.848 0.871 0.898 0.918 0.916

SAFPred-nn 0.824 0.881 0.909 0.923 0.941 0.917

DeepGOPlus 0.819 0.868 0.898 0.901 0.917 0.936

SAFPred-synteny 0.856 0.896 0.912 0.920 0.922 0.918

SAFPred 0.858 0.899 0.916 0.922 0.923 0.918
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Table S4.11: Prediction coverage
1
(in %) for the full SwissProt dataset, for

all 5 bacterial organisms
2
and three GO categories.

Method EC MT BS PA ST

Biological process

BLAST 65.66 66.14 75.58 73.11 87.61

Pfam 81.41 71.19 80.69 75.03 84.42

SAFPred-nn (T5) 84.78 91.40 91.58 91.00 97.15

SAFPred-nn 88.29 90.16 94.88 94.12 97.82

DeepGOPlus 88.79 81.92 94.80 95.80 97.49

SAFPred-synteny 92.48 82.36 90.68 92.32 90.45

SAFPred 92.66 82.36 90.68 92.32 90.45

Molecular function

BLAST 74.04 69.51 75.25 81.36 89.23

Pfam 88.46 88.80 87.28 88.82 87.44

SAFPred-nn (T5) 89.64 96.53 91.47 98.59 97.06

SAFPred-nn 88.35 96.00 93.56 98.33 97.23

DeepGOPlus 98.05 92.80 89.69 94.86 96.25

SAFPred-synteny 92.85 92.98 88.29 93.06 88.42

SAFPred 93.33 92.98 88.29 93.06 88.42

Cellular component

BLAST 60.29 58.41 68.377 77.51 87.05

Pfam 81.65 76.35 81.981 84.43 89.68

SAFPred-nn (T5) 82.39 67.22 93.437 93.60 96.15

SAFPred-nn 81.36 64.92 94.153 93.43 96.76

DeepGOPlus 89.86 95.08 97.017 94.29 97.98

SAFPred-synteny 93.32 92.86 95.943 91.35 96.96

SAFPred 93.53 92.86 95.943 91.35 96.96

1
The number of test proteins annotated with at least one GO term at

the threshold which maximizes the F1-score.

2 EC: Escherichia coli, MT: Mycobacterium tuberculosis, BS: Bacillus sub-
tilis, PA: Pseudomonas aeruginosa and ST: Salmonella typhimurium
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Table S4.13: Maximum % sequence identity of Enterococcus toxin genes to the 11 putative novel toxins predicted

by SAFPred.

epx gene epx gene locustag predicted gene locustag maximum ID

epx1 GCA_015300525.1_02780 Ente_haem_BAA-382_V2_01251 38.89

epx1 GCA_002945555.1_00127 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_003319525.1_02660 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_004120285.1_01193 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_004125665.1_01702 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_004125915.1_01060 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_004125935.1_01411 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_004125945.1_01477 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_004125955.1_00929 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_004126025.1_01270 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_005236595.1_02731 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_005237765.1_02590 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_005238535.1_01041 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_015302065.1_02752 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_015333445.1_02601 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_015335045.1_02694 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_015336125.1_02821 Ente_haem_BAA-382_V2_01826 25.76

epx1 GCA_015338255.1_02588 Ente_haem_BAA-382_V2_01826 25.76

epx4 GCA_017356565.1_01452 Ente_mund_ATCC882_V5_00469 60.00

epx4 GCA_015506475.1_02489 Ente_haem_BAA-382_V2_01251 28.85

epx4 GCA_015507715.1_02409 Ente_haem_BAA-382_V2_01251 28.85

epx4 GCA_018089265.1_02226 Ente_haem_BAA-382_V2_01251 28.85

4.5.4 Supplementary Figures



4

1164 SAFPred: Synteny-aware gene function prediction for bacteria using protein embeddings

40% 50% 60% 70% 80% Full
SwissProt experiment set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
A

v
e
ra

g
e
 
F m

a
x

BLAST
Pfam

DeepGOPlus
SAFPred-nn

SAFPred-synteny
SAFPred

Figure S4.1: average 𝐹max values in Molecular Function Ontology (MFO), across benchmarking datasets for five

bacteria in our experimental setup, and the error bars show the corresponding standard deviation of each method,

across five species. Note that bar plots for the Pfam baseline are identical for all 6 experiment sets because Pfam

uses a different training set, independent of our experimental design.
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Figure S4.2: average 𝐹max values in Cellular Component Ontology (CCO), across benchmarking datasets for five

bacteria in our experimental setup, and the error bars show the corresponding standard deviation of each method,

across five species. Note that bar plots for the Pfam baseline are identical for all 6 experiment sets because Pfam

uses a different training set, independent of our experimental design.
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Figure S4.3: Precision recall curves for the E. coli dataset where the % sequence ID between the training and the

test is limited to 40%.
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Figure S4.4: Precision recall curves for the E. coli dataset where the % sequence ID between the training and the

test is limited to 50%.
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Figure S4.5: Precision recall curves for the E. coli dataset where the % sequence ID between the training and the

test is limited to 60%.
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Figure S4.6: Precision recall curves for the E. coli dataset where the % sequence ID between the training and the

test is limited to 70%.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

BPO

BLAST
DeepGOPlus
SAFPred-nn
SAFPred-synteny
SAFPred

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
MFO

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
CCO

Figure S4.7: Precision recall curves for the E. coli dataset where the % sequence ID between the training and the

test is limited to 80%.
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Figure S4.8: Precision recall curves for the E. coli dataset where the % sequence ID between the training and the

test is limited to 95% (full dataset).
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Figure S4.9: Precision recall curves for the M. tuberculosis dataset where the % sequence ID between the training

and the test is limited to 40%.
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Figure S4.10: Precision recall curves for the M. tuberculosis dataset where the % sequence ID between the training

and the test is limited to 50%.
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Figure S4.11: Precision recall curves for the M. tuberculosis dataset where the % sequence ID between the training

and the test is limited to 60%.
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Figure S4.12: Precision recall curves for the M. tuberculosis dataset where the % sequence ID between the training

and the test is limited to 70%.
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Figure S4.13: Precision recall curves for the M. tuberculosis dataset where the % sequence ID between the training

and the test is limited to 80%.
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Figure S4.14: Precision recall curves for the M. tuberculosis dataset where the % sequence ID between the training

and the test is limited to 95% (full dataset).
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Figure S4.15: Precision recall curves for the B. subtilis dataset where the % sequence ID between the training and

the test is limited to 40%.
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Figure S4.16: Precision recall curves for the B. subtilis dataset where the % sequence ID between the training and

the test is limited to 50%.
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Figure S4.17: Precision recall curves for the B. subtilis dataset where the % sequence ID between the training and

the test is limited to 60%.



4

1224 SAFPred: Synteny-aware gene function prediction for bacteria using protein embeddings

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

BPO

BLAST
DeepGOPlus
SAFPred-nn
SAFPred-synteny
SAFPred

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
MFO

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
CCO

Figure S4.18: Precision recall curves for the B. subtilis dataset where the % sequence ID between the training and

the test is limited to 70%.
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Figure S4.19: Precision recall curves for the B. subtilis dataset where the % sequence ID between the training and

the test is limited to 80%.
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Figure S4.20: Precision recall curves for the B. subtilis dataset where the % sequence ID between the training and

the test is limited to 95% (full dataset).
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Figure S4.21: Precision recall curves for the P. aeruginosa dataset where the % sequence ID between the training

and the test is limited to 40%.
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Figure S4.22: Precision recall curves for the P. aeruginosa dataset where the % sequence ID between the training

and the test is limited to 50%.
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Figure S4.23: Precision recall curves for the P. aeruginosa dataset where the % sequence ID between the training

and the test is limited to 60%.
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Figure S4.24: Precision recall curves for the P. aeruginosa dataset where the % sequence ID between the training

and the test is limited to 70%.
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Figure S4.25: Precision recall curves for the P. aeruginosa dataset where the % sequence ID between the training

and the test is limited to 80%.
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Figure S4.26: Precision recall curves for the P. aeruginosa dataset where the % sequence ID between the training

and the test is limited to 95% (full dataset).
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Figure S4.27: Precision recall curves for the S. typhimurium dataset where the % sequence ID between the training

and the test is limited to 40%.
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Figure S4.28: Precision recall curves for the S. typhimurium dataset where the % sequence ID between the training

and the test is limited to 50%.
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Figure S4.29: Precision recall curves for the S. typhimurium dataset where the % sequence ID between the training

and the test is limited to 60%.
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Figure S4.30: Precision recall curves for the S. typhimurium dataset where the % sequence ID between the training

and the test is limited to 70%.
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Figure S4.31: Precision recall curves for the S. typhimurium dataset where the % sequence ID between the training

and the test is limited to 80%.
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Figure S4.32: Precision recall curves for the S. typhimurium dataset where the % sequence ID between the training

and the test is limited to 95% (full dataset).
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Figure S4.33: SAFPred predicts a possible new variant of pore-forming toxin gene in E. haemoperoxidus, distantly
related to the known toxin epx1, as evidenced by the highly significant structural alignment to the known toxin

epx1. Gene 0174 (red ribbon, query) had a TM- alignment score of 0.76 when we aligned its structure to epx1 with
Foldseek (gray ribbon, target), despite low sequence identity (5.8%). The protein’s sequence alignment is shown

below the 3D structural alignment.
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Figure S4.34: SAFPred predicts 11 likely novel toxin genes in our Enterococcus dataset (aligned below the column

titled “Predicted toxin gene”), including five that could not be predicted by previous function prediction methods

(red frames). A) seven genes with the highest similarity to E. faecalis epx1. These genes also shared some similarity

in genomic context with epx1. B) four genes with the highest similarity to E. hirae epx4. These genes also shared

some similarity in genomic context with epx4. The operon diagrams show the known genomic contexts of epx1
and exp4 found in E. faecalis and E. hirae species that were studied, respectively [30]. Beneath this, cells in the

table represent the occurrence of genes with structural similarity to those in the known epx1 or epx4 operons.
Their relative position within the operon in reference to the predicted toxin gene (# of genes away from the

predicted toxin) and structural alignment score (coloring) obtained using Foldseek to the analogous gene in the

operon diagram is shown. Gene locus tags, a 4-digit number given based on their location within the genome, for

the predicted toxins are also placed within the cells. Additional details are shown in Figure S4.35.
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SAFPedDB: A comprehensive

collection of bacterial
operons and syntenic regions

“I thought how unpleasant it is to be locked out;
and I thought how it is worse, perhaps, to be locked in.”

— Virginia Woolf

Parts of this chapter have been published in biorxiv?
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Abstract
Contents of a genome are organized into smaller units of genes and genomic structures.

These units are often arranged based on evolutionary and functional constraints. Similar

organizational units within genomes are conserved and we observe them across different

species and organisms. Usually, conservation, referred to as synteny, is a powerful source

of information in studying evolution and inferring functional relationships. In this work,

we develop a computational, bottom-up approach to model synteny in bacterial species

and we build SAFPedDB. In SAFPedDB, we present an inclusive and extensive catalog of

conserved synteny, and we assert its validity as a viable proxy for experimental data as

well as its seamless adoption within existing pipelines.

5.1 Introduction
It has been established that genomes of living organisms are subject to several evolutionary

and functional constraints that lead to certain genomic structures, and clusters of genes to

be commonly conserved across different species. The arrangement and conservation of

genomic structures is called synteny and the regions associated with these features are

syntenic regions [1]. Especially in bacteria, these clusters are more abundant because they

have a compact genome structure, with fewer non-coding regions and intergenic spaces

and thus a higher density of genes. In addition, we observe less variation in genome size

between closely related bacterial species compared to eukaryotes [2]. Thus, gene-dense

bacterial genomes of similar size that are also under strong selective pressures to maintain

adaptive fitness are more likely to exhibit synteny [3].

Operons, a specific kind of such syntenic regions, are one of themost prominent features

of bacterial genomes [4]. While operons are present in eukaryotes as well, they are not as

central to most eukaryotic genomes [5]. Genes within an operon are often co-regulated

and co-transcribed and thus they often function in the same metabolic pathway, and carry

complementing functions [6]. For that reason, operons can provide valuable information

to infer gene function through guilt by association since the genes located on the same

operon have functional similarities. Even when a syntenic region is not associated with an

operon, they offer us clues on the origins and evolution of genomic structures in bacteria

as they are conserved within several species, genera or the entire bacterial kingdom. These

features render synteny invaluable to investigate in detail [2].

Recognizing the importance of synteny in evolutionary analyses, several statistical

models and algorithms have been proposed to model and describe syntenic regions [7, 8].

In addition, there are many databases established to catalog known bacterial operons,

making use of experimental studies [9]. However, such databases are often restricted to

specific organisms or strains, and biased toward model organisms that are more widely

studied since the databases are limited to experimental data available. While computational

approaches can solve a lot of these issues with experimental databases, the best-performing

models and algorithms prioritize theory over practicality and thus they have not been

adopted as widely as they should be in the field [2].

Although theoretical models are invaluable to understand synteny at a fundamental

level, with the exponential increase in the amount of genomic data available, researchers

have been more drawn to explore data-driven, machine learning techniques for several
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applications in bioinformatics [10, 11]. More recently, deep learning has gained rapid

traction when researchers began to employ ideas developed in the field of natural language

processing (NLP) [12, 13]. Based on the analogy between human language and genomic

data, i.e. the language of life, several methods have been adopted successfully to solve

bioinformatics problems. In particular, we observed protein language models (pLM) to be

useful as an alternative representation of genomic data [14].

In this work, we developed a purely computational, bottom-up approach to build an

extensive database of bacterial operons and syntenic regions, titled SAFPredDB. SAFPredDB

has two notable novelties: (i) it is an inclusive and extensive catalog of conserved synteny

since it is not restricted to experimental data and (ii) it incorporates state-of-the-art deep

learning models to represent the syntenic regions, allowing for quick look-up and seamless

adoption within existing bioinformatics pipelines. SAFPredDB serves as a repository for

our gene function prediction tool SAFPred, which exploits the bacterial synteny cataloged

in SAFPredDB [14].

We demonstrate the validity of our algorithm for building SAFPredDB by first com-

paring it to existing databases of experimentally determined bacterial operons and then

showcasing individual entries to asses its operon predictions. Based on our analyses, we

present SAFPredDB to be one of the most up-to-date and inclusive collections of bacterial

operons and syntenic regions. SAFPredDB is equipped with metadata that would prove

useful in downstream applications to investigate the origins and evolution of a region.

SAFPredDB, can be expanded to include more annotations and features, allowing it to be

an invaluable tool that can be incorporated within the existing bioinformatics pipelines.

5.2 Building SAFPredDB
We built SAFPredDB, a comprehensive bacterial synteny database through a bottom-up,

data-based approach. We start at the level of the gene and move up within the predefined

constraints of our operon model to obtain a collection of bacterial synteny regions of

varying lengths, and sizes.

5.2.1 Data source

To establish a comprehensive, broad compilation of conserved syntenic regions, the choice

of data source is vital. The original genomic data that SAFPedDB is based on was retrieved

from the Genome Taxonomy Database (GTDB), which is a collection of all the bacterial

representative genomes [15]. We downloaded the entire database (Release 202, retrieved

on 31/03/2022), comprising 258,406 genomes in total, 45,555 of which were representative

assemblies. For all of these representative genomes, we extracted their protein sequences

along with the standardized annotations GTDB provides. To reduce redundancy and the

computational cost of downstream processing, we clustered the protein sequences using

CD-HIT [16] at 95% sequence identity with default parameters. CD-HIT output was filtered

to keep only the clusters that contained at least 10 genes. This step resulted in 372,308

clusters of bacterial genes in total.
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5.2.2 Synteny model
To form our database of syntenic regions, we first defined a synteny model. Our definition
of a synteny region and its constraints in the model were determined based on our survey

of known syntenic regions and bacterial operons determined through experiments as well

as the operon theory that describes gene regulation in bacteria [9]. According to our model,

a region would be classified as syntenic if

1. All genes are located on the same contig.

2. All genes are on the same DNA strand.

3. The maximum distance between any two genes within the region is 2000 bp.

4. The maximum intergenic distance - the distance between two consecutive genes - is

300 bp.

We formed the initial synteny database by grouping gene clusters that satisfy the first

three criteria above: initial groups consisted of gene clusters where at least one member

of the cluster is located on the same contig and same strand within 2000 bp distance

(subdiagram A. in Fig. 5.1). This yielded 1,488,249 such non-singleton candidate regions.
Next, to meet the final condition, we iterated over the candidate regions to either

remove those with an intergenic distance larger than 300 bp, or split into multiple regions

if possible (subdiagram B. in Fig. 5.1).
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Figure 5.1: Schematic overview of the SAFPredDB construction, from [14]. Hashed boxes represent genes; solid

boxes are numerical embedding vectors. A. 2000 bp-long gene neighborhoods are extracted from all genomes in

GTDB; shown is an example with four genes in a single genomic neighborhood (hashed grey boxes). B. After

clustering all proteins from GTDB with CD-HIT, we replace the genes with the CD-HIT clusters they belong to

(hashed orange boxes) using the amino-acid sequence of the representative gene of each cluster in place of their

actual amino-acid sequence. Then, we trim potential syntenic regions to remove genes separated by > 300bp,

resulting in the final syntenic region (hashed green boxes). C. Once the final operon structures are determined,

we i) annotate each region with a set of GO terms, for which we track the corresponding frequency among the

gene clusters that make up the region (blue rectangles, darker shades mean GO terms are found in more genes

within the syntenic region), and ii) extract numerical embedding vectors for each syntenic region (solid green

boxes). We create a new representation for each region, which consists of the average embedding vector and a set

of GO terms. The final synteny database is a collection of such representative embedding vectors and GO term

frequency vectors; representations of six example entries from the database are shown here.

5.2.3 Vector representation of synteny
In SAFPredDB, we opted for a numerical vector representation of the syntenic regions. The

representation is a pair of vectors that contain a numerical representation of the amino-acid

sequences as well as a numerical description of the probable function of the region.
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The first component, the amino-acid representation is based on the ESM-1b model.

ESM-1b is a transformer-based protein language model developed by Rives et al., and it is

the same model we used when designing our gene function prediction algorithm, SAFPred

[14]. Here in SAFPredDB, we use the same model to stay consistent within our function

prediction framework and ensure that our database can be used out of the box without the

need to convert vectors or change dimensions. Hence, we followed the same procedure as

in SAFPred. To extract amino-acid level embedding vectors, we used bio_embeddings
(v 0.2.2) (v 0.2.2) [18] with default settings. Then, we obtained protein-level embeddings

by taking the average over individual amino-acid embeddings to get 1280x1 dimensional

vectors.

The second component, the probable GO-function of the region, is based on the Gene

Ontology (GO) database [19]. GTDB includes Prokka annotations for the protein sequences

on the database, which are derived from a collection of sequence and HMM-based anno-

tation tools. We re-annotated the sequences by assigning GO terms. In the absence of

experimental annotations, we used only the GO terms with the experimental evidence

codes: EXP, IDA, IPI, IMP, IGI, IEP, HTP, HDA, HMP, HGI, HEP, IBA, IBD, IKR, IRD, IC,

TAS.

We assigned the GO terms based on sequence similarity. To look up similar proteins, we

used the non-redundant SwissProt database (release 2021-04, retrieval date 10 November

2021) [20]. We filtered down to include proteins of sequence length [40,1000] and with

at least one experimental GO annotation. Consistent with our approach, we selected the

experiment codes: EXP, IDA, IPI, IMP, IGI, IEP, HTP, HDA, HMP, HGI, HEP, IBA, IBD, IKR,

IRD, IC, TAS. To reduce the redundancy, we clustered the proteins using CD-HIT at 95%

sequence similarity. The final SWissProt look-up dataset comprised 107,818 proteins in

total.

To calculate pairwise sequence similarity between proteins in SAFPredDB and our

non-redundant SwissProt database, we used BLASTp [21]. We transferred GO terms found

in significant hits (e-value < 1e-6 and bit score > 50) using the frequency of each GO term

among these hits as a predicted score. With this approach, we could assign at least one GO

term to 295,446 of the 372,308 clusters of bacterial proteins (79%), which in turn yielded

388,377 non-singleton syntenic regions (out of 406,293; 96%) annotated with at least one

GO term.

Thus, the default version of SAFPredDB comprises 406,293 syntenic regions, and each

region is an entry with 2 numerical vectors: an embedding vector to represent the amin-

oacid sequence, and a GO term frequency vector to summarize the probable function of

the region.

5.2.4 Further refinement of SAFPredDB
SAFPredDB, at its default state, is an all-around, comprehensive database of bacterial

syntenic regions and operons. Depending on the downstream analysis, it is possible to

edit the database and further refine it. As an example, here we describe the procedure for

removing specific proteins and the synteny entries associated with them.

As part of our benchmarking study to asses SAFPred’s prediction performance, we

adjusted the SAFPredDB database to be consistent with the corresponding experiment. The

goal of the experiment was to assess SAFPred’s predictive performance in more challenging
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scenarios where there are no homologs of the query point, i.e. the protein sequence whose

function we want to predict, in the databases. For that reason, we removed proteins and

the regions they were located in if the proteins were homologous to any of the points in

the test set.

We used BLASTp to calculate the pairwise sequence identity of each query point to the

protein clusters that form SAFPredDB. We removed clusters if they were more similar than

a preset threshold of similarity to at least one of the query points in the test set. Since this

operation altered the content of syntenic regions (unless they were removed completely),

we re-calculated the intergenic distance for the remaining clusters and we split the regions

where the intergenic distance exceeded our threshold, 300 bp. This final step is the same as

we did when we created the main synteny database (subdiagrams B and C. in Fig. 5.1).

The current version of SAFPredDB is a catalog of broadly conserved syntenic patterns

in bacteria; operons or syntenic regions observed rarely in novel species, or uncultured

bacteria from metagenomic samples are not included in our database. In addition, consider-

ing the exponential growth in genomic data, contents of SAFPredDB will become outdated

quickly. SAFPredDB can be reconstructed from newer database releases as well as genomic

data other than whole genome assemblies, such as metagenomic sequences. Annotations

of SAFPredDB entries can be expanded to include additional functional descriptors or

ontologies. Moreover, if the goal is to study a specific genotype, SAFPredDB can be edited

to remove unrelated entries to streamline the database. We provide python scripts to

rebuild, and edit SAFPredDB to tailor it to any bioinformatics pipeline desired
1
.

5.2.5 Assigningqery points to syntenic regions
In this section, we briefly summarize how SAFPredDB was used within our gene function

method SAFPred, and a detailed explanation of our method SAFPred can be found in the

original manuscript [14]. Our approach demonstrates an example procedure to incorporate

SAFPredDB into existing bioinformatics pipelines.

SAFPredDB serves as a repository for SAFPred to exploit bacterial synteny for gene

function prediction, SAFPred achieves this through a nearest neighbor approach. Within

the framework of SAFPred, gene function prediction is a computational task where protein

sequences are assigned GO terms. Hence the goal is to figure out which GO terms should

be transferred to a query point. SAFPred identifies the nearest neighbors of the query point

in the SAFPredDB, and retrieves all syntenic regions the nearest neighbors are located in;

these syntenic regions are assigned to the query point. The GO term frequency vectors of

all assigned regions are extracted and the GO terms are transferred proportional to the

similarity of the region to the query point.

5.3 SAFPredDB is a comprehensive collection of bac-
terial operons and syntenic regions

In this section, we will investigate SAFPredDB as a universal collection of syntenic regions

and the validity of our synteny model as well as the bottom-up, purely computational

approach we developed. We start by comparing it to known, experimentally determined

1
You can find the relevant python scripts and documentation at https://github.com/AbeelLab/SAFPredDB
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Figure 5.2: The entries in SAFPredDB have a similar distribution of the number of genes in a region to the operons

in ODB: A. operons in ODB. B. syntenic regions in SAFPredDB. Only non-singleton regions are shown.

operons found in Operon DataBase (ODB v4) [9]. Then we explore the contents of SAF-

PredDB in detail and the final step of our algorithm when query points are assigned to

syntenic regions.

5.3.1 Synteny model in SAFPredDB approximates experimen-
tally determined operons in ODB

In SAFPredDB, we built a large-scale database that not only approximates the known

experimental operons in bacteria, but it provides adequate predictions for potential operons

as well as syntenic regions conserved across the bacterial kingdom.

ODBwas among the sourceswe utilizedwhen designing our synteny prediction pipeline,

in particular, their conserved operon database [9]. The conserved operon database from

ODB, referred to as ODB conserved in this text, is essentially an expansion on their known

operons where the additional operons were determined from orthologous genes found in

multiple genomes that are located consecutively on the same strand of the contig. Our goal

in designing our synteny prediction pipeline was to achieve an end product similar to the

ODB conserved database, but more extensive - representing a broader range of diversity

within the bacterial kingdom - and more up-to-date.

We used information from ODB to define our synteny model and the threshold values of

the parameters such as operon length, number of genes in an operon, and intergenic distance

between adjacent genes in an operon (Synteny model). When we compare SAFPredDB to

ODB conserved, we find that our database, is on an aggregate level, quantitatively similar

to it. In terms of region length, the number of genes in a region, and the intergenic distance

within regions (Figure 5.2-5.4)
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Figure 5.3: The entries in SAFPredDB have similar region length (bp) distribution to the operons in ODB: A.

operons in ODB. B. sytenic regions in SAFPredDB. Only non-singleton regions are shown.

We emphasize that our synteny database was not derived from ODB but was built

from scratch; as explained previously, we used the CDS of representative bacterial genome

assemblies in the GTDB database as the starting point, and we predicted putative operons

and identified syntenic regions based on our own synteny model, whereas ODB is a curated

list of experimentally determined operons obtained from the literature.

5.3.2 SAFPredDB predicts experimentally determined oper-
ons accurately

Our goal in designing our synteny prediction algorithm was to approximate the bacterial

operon and synteny landscape using a syntenymodel derived from known bacterial operons,

exploiting large scale genomic data. In this section, we evaluate SAFPredDB as a viable

proxy for experimental databases by showcasing its predictions.

We extracted ODB operons containing at least one E. coli gene (2845 total operons,

including 1071 non-singleton operons). We chose E. coli since it is not only one of the

most well-studied bacterial organisms in the SwissProt database, but we can identify and

cross-reference their genes with the operon entries on ODB because ODB maintains the

gene locus tags from the SwissProt database for this organism. However, for the remainder

of the organisms in our database, it was not feasible to cross-reference the genes on ODB

in a reliable manner.

We compared this to the syntenic regions in SAFPredDB that similarly contain at least
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Figure 5.4: The entries in SAFPredDB have similar intergenic distance (bp) distribution to the operons in ODB: A.

operons in ODB B. syntenic regions in SAFPredDB. Only non-singleton regions are shown.
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one E. coli gene (15968 entries in total, including 15,618 non-singleton regions), of which

87% (13,610 entries in SAFPredDB) partially or fully overlap with the known ODB operons.

Full concordance is not expected, as our database is substantially larger and encompasses

far more genes. In addition, our database is inherently redundant; a single experimentally

known operon from ODB can be split into multiple predicted operons and auxiliary regions

leading to multiple entries associated with the same operon in our database. Thus, it is

highly likely that the remaining 2008 entries (23% of SAFPredDB) we predicted in addition

to the ODB operons can be collapsed into a smaller number of actual operons.

While it is not feasible to cross-check each individual operon in our database, here we

present a predicted operon which is one of the most commonly found entries among the

species in GTDB, demonstrating the accuracy of our prediction at different values in Table

5.1 below. On the right-hand side of Table 5.1 we listed the known operon IDs, names and

definitions from ODB, consistent with their nomenclature. And the left-hand of contains

the region ID and the relevant metadata extracted from our database. Our database is

accompanied by extensive taxonomic metadata from the GTDB database, hence it is a

valuable tool to explore the bacterial operon landscape. We can observe which species and

lineages an operon is found in (species column in Table 5.1). In addition, our database can

capture the wider context of an operon. The relBEF toxin-antitoxin system (bottom row in

Table 5.1) is one example of such case where we observed that the individual functional

unit of the operon, consisting of genes b1562, b1563 and b1564, is often found in multiple

entries in our database. Some of these entries were larger than the operon itself, and

they contained two IS3 family transposase genes located upstream of the actual operon.

Thus, with our database it is possible to extract and analyze the surrounding genomic

structures of an operon. Although this can give us additional information about conserved

mechanisms related to the operon’s mobilization, this can also lead to false positive findings

if the goal is to detect only an operon.

5.3.3 SAFPredDB annotations and region assignments
An important feature of SAFPredDB, especially for applications in gene function prediction,

is the GO term annotations. It is critical to evaluate the consistency and quality of the

annotations to assess SAFPredDB’s suitability to study the functional landscape of bacterial

operons and syntenic regions. In this section we investigate the GO term annotations, their

shortcomings and the potential impact of on the SAFPredDB’s use for function prediction.

In the interest of creating a comprehensive collection of bacterial operons and conserved

gene context, we used the GTDB database since it is the largest catalog of representative

bacterial genomes. However, it does not catalog experimental annotations for the gene

sequences. Thus, we assigned function to the entries in SAFPredDB by transferring GO

terms from similar protein sequences in the SwissProt database, where only the GO terms

with the experimental codes were retained using thresholds on both the pairwise identity

and significance (section 5.2.3). When transferring GO terms to SAFPredDB entries, we

aimed to balance minimizing false positives while retaining as many annotations as possible,

in order to avoid an entry set that was too sparsely annotated to be useful for predicting

gene function.

To analyze the annotation procedure, we used the same datasets we generated to

benchmark our function prediction tool SAFPred in [14]. In our full SwissProt dataset
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Table 5.1: Our operon prediction algorithm can reproduce experimentally known operons in E. coli. Three example

operons and syntenic regions from SAFPredDB are shown, together with their corresponding operons in ODB,

which were manually curated based on experimental studies.

Region ID Species E.coli gene Annotation Operon ID Name

62671

Escherichia

Shigella

Citrobacter

b4460

L-arabinose transport system

permease protein AraH

KO03244 araFGH

b1900

Arabinose import ATP-binding

protein AraG (EC 7.5.2.12)

b1901

L-arabinose-binding

periplasmic protein (ABP)

62674

Escherichia

Shigella

Bacillus

b1879

Flagellar biosynthetic

protein FlhB KO03228 flhAB

b1880

Flagellar biosynthesis

protein FlhA

62755

Citrobacter

Enterobacter

Klebsiella

Leclercia

Escherichia

- IS3 family transposase - -

- IS3 family transposase - -

b1562 Toxic protein HokD

KO03197 relBEF
b1563

mRNA interferase

toxin RelE
b1564 Antitoxin RelB

experiments, 95.6% of the non-singleton entries (388,377 out of 406,293) were annotated

with at least one GO term; however, in remote homology experiments, SAFPredDBwas a lot

more sparse in annotations (Table 5.2). Since we removed training proteins that had more

than a certain predefined level of sequence homology to any of the test proteins in order to

create the remote homology datasets, there were only rare proteins with no homologs left

in the database. Given that such rare proteins are less likely to be studied, annotated or even

carry out any function within the cell, this loss of functional information was expected.

Since SAFPredDB is a major source of annotation that SAFPred relies on, SAFPred’s

prediction coverage also suffers from this loss of information, and we observed that the

difference in coverage between SAFPred and DeepGOPlus widens as more annotations are

lost (Tables S15 and S16 in [14]).

Furthermore, we note that annotations were transferred at uneven rates for different

categories of GO terms, consistent with previous findings in the literature. When sequence

similarity is used as the basis for transferring annotation, GO terms in the MFO category

are more likely to be transferred. In previous studies, it has been shown that, unlike BPO

and CCO, MFO can be modeled using the primary sequence or, features derived from it

[22]. We presume this aspect of the GO database affects our findings as well because we

also report that the number of syntenic regions annotated with at least one GO term is the

largest for the MFO category even though the total number of MFO terms available in the

SwissProt dataset is significantly smaller than that of BPO (Table 5.3).
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Table 5.2: GO term annotations in SAFPredDB were more sparse in the remote homology detection experiments.

Percentage of entries in SAFPredDB that were annotated with at least one GO term for each GO term category

and every organism in our SwissProt benchmarks at specific sequence similarity levels (columns).

40 50 60 70 80 Full

Organism Biological process (BPO)

E. coli 74.66% 80.23% 82.33% 83.84% 84.16% 84.83%

M. tuberculosis 80.32% 83.55% 84.65% 85.07% 85.21% 85.18%

B. subtilis 79.30% 83.82% 84.63% 85.17% 85.09% 85.15%

P. aeruginosa 79.21% 82.10% 82.79% 83.89% 84.34% 85.16%

S. typhimurium 83.56% 84.44% 84.80% 84.96% 85.03% 85.16%

Molecular function (MFO)

E. coli 77.37% 83.08% 85.77% 87.24% 87.84% 88.38%

M. tuberculosis 83.08% 86.40% 87.57% 88.13% 88.38% 88.59%

B. subtilis 81.55% 85.73% 87.51% 88.06% 88.48% 88.58%

P. aeruginosa 82.03% 84.94% 86.35% 87.47% 87.97% 88.59%

S. typhimurium 87.27% 87.90% 88.24% 88.45% 88.49% 88.59%

Cellular component (CCO)

E. coli 69.11% 75.94% 79.57% 81.25% 81.94% 82.79%

M. tuberculosis 76.02% 80.00% 81.83% 82.49% 82.82% 83.06%

B. subtilis 75.50% 79.87% 81.98% 82.76% 82.97% 83.06%

P. aeruginosa 75.71% 78.92% 80.86% 81.92% 82.44% 83.05%

S. typhimurium 81.37% 82.26% 82.61% 82.84% 82.91% 83.06%

Table 5.3: Annotation statistics and information content (IC) of syntenic regions in our database. GO terms in

MFO category are more likely to be transferred when using sequence homology for annotation transfer.

Annotation statistic BPO MFO CCO

# of annotated regions 268,773 311,424 268,359

Range of # of GO terms [1, 41] [1, 17] [1, 20]

Average # of GO terms per gene in an annotated region 0.556 0.543 0.456

Average IC of GO terms in an annotated region 10.73 8.786 6.022

Average IC of GO terms per gene in an annotated region 3.345 2.711 1.762

Total # of GO terms in the SwissProt database 16281 6308 2565
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5.4 Conclusion
In this work, we developed a purely computational, bottom-up approach to model con-

served synteny and operon structures in bacterial species. The underlying hypothesis

in constructing our own database was that given enough data, it is possible to model

the landscape of bacterial operons and syntenic regions accurately enough. This study

demonstrates the validity of our approach as we provide in SAFPredDB, a catalog of bac-

terial operons and syntenic regions that can mimic experimentally determined operons.

SAFPredDB is one of the most extensive, and up-to-date collections of bacterial synteny. It

serves as a valuable resource to uncover functional patterns, identify potential functional

modules or pathways, and infer the putative biological roles of syntenic regions in bacteria.

In addition to being a viable proxy to supplement known, experimentally determined

operons, SAFPredDB can be used within various bioinformatics pipelines and assist future

studies in bacterial genomics. For instance, it is a valuable tool for analyzing the genomic

structure surrounding an operon; equipped with relevant metadata from GTDB, one can

gain insight into the region’s distribution or its mobilizability across the bacterial king-

dom. Analysis of bacterial mobilome is particularly significant in studying antimicrobial

resistance in bacteria; several antibiotic resistance genes are found in operons flanked by

mobile genetic elements that allow their spread within bacterial populations and cause

severe hospital outbreaks.

Furthermore, it can be used to improve gene function prediction in bacteria, espe-

cially where sequence similarity is inadequate. Our function prediction tool SAFPred uses

SAFPredDB as one of its source databases for predicting gene function [14]. In our bench-

mark studies of SAFPred, we demonstrate that incorporating synteny with SAFPredDB

significantly improves the prediction performance, surpassing not only the conventional

annotation tools but also the state of the art in the field of automated function prediction.

Thus, SAFPredDB models the landscape of functions encapsulated within bacterial operons

and syntenic regions in sufficient detail to be able to leverage this resource to improve

bacterial function prediction. It can be an invaluable addition to existing bioinformatics

pipelines to annotate new bacterial genomes, identify candidate genes involved in specific

biological processes or pathways, and elucidate the functional basis of microbial phenotypes

and adaptations.

Having the regions encoded as numerical vectors, it is also faster to look up entries in

our database compared to conventional sequence-based databases. Since we use embedding

vectors to represent syntenic regions in SAFPredDB, we bypass the need to align the query

sequence against the entire database. All operations on our database, such as looking up

any entry or calculating similarity are reduced down the vector calculations. This allows

for seamless adoption into existing pipelines as well as keeping up to date with recent

developments in deep learning.

One limitation of SAFPredDB is its sparse function annotations. Since our genomic

data source, GTDB, did not contain experimental gene function annotations, we assigned

functions to the entries in SAFPredDB based on sequence similiarity. To minimize false

positives in operon annotations, we adopted a conservative approach which in turn resulted

in a sparsely annotated training set. We observed the fallout of this procedure when we

used SAFPredDB in our gene function prediction tool SAFPred and the sparse annotations

led to lower prediction cover [14]. One way to alleviate this problem would be to routinely
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pick unlabeled entries from SAFPredDB, prioritizing the most common ones, to perform

experiments and identify their functions. With each new experimental annotation available,

additional entries can be labeled from guilt by association. We expect this iterative approach

to rapidly increase the number of labeled regions available in the database.

Another limitation of the current version of SAFPredDB is its focus on broadly con-

served patterns; it represents conserved synteny across the entire bacterial kingdom. Since

our goal was to present the most comprehensive database possible that is universally valid,

we deliberately designed our algorithm for building SAFPredDB to be inclusive and to

cover as many conserved syntenic regions as possible. Thus, patterns or operons associated

with rare traits in bacteria, or functional pathways unique to novel species are not present

in the default SAFPredDB, but are straightforward to add for specific analyses. We provide

python scripts and relevant documentation to expand our database, rebuild it using the

newer release of GTDB, or build additional databases from different genomic data sources,

such as metagenomic samples. It is also possible to expand the GO term annotations by

incorporating additional metadata associated with the syntenic regions.
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Intrinsic and extrinsic

antimicrobial resistance in
enterococcus genus

“Defence, however, is of much more importance than opulence.”

— Adam Smith, Book IV: On Systems of Political Economy
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Abstract
Enterococci are widespread in the guts of all animals, from insects to mammals. Due

to their hardiness and ability to adapt, they evolve with their host and the changing

environment, and they can especially survive in hospital settings leading to many hospital-

acquired infections. With more than 60 enterococcal species identified, Enterococcus faecalis
and Enterococcus faecium are prevalent in the human microbiome and have become the

leading causes of multidrug-resistant hospital-associated infections. Currently, most of

the research on enterococci is focused on clinical isolates with human influence, confined

to a specific drug class or resistance mechanism, and lacking in technical rigor due to the

urgency of studying antimicrobial resistance for medicinal applications and improving

current treatments. In this work, we present the largest collection of Enterococcus genomes,

expanding the number of known species and the composition of clades in the genus. We

propose a standardized approach to define intrinsic antibiotic resistance separately from

extrinsic and sporadic resistance. Our broad view of the genus reveals that resistance traits

are more likely to be clade-specific as opposed to species-specific. In addition, we observed

resistance genes follow similar trajectories as they become intrinsic after being acquired

by the bacteria at first. Our findings confirm the known intrinsic resistance in enterococci,

and expand with additional genes conferring resistance to existing antimicrobial agents as

well as species carrying the genes. Finally, we identify genes that could potentially become

intrinsic in the future.

6.1 Introduction
Enterococci are lactic acid bacteria with the rare ability to populate the guts of a variety

of animals from insects to mammals [1]. They are incredibly resilient to changing envi-

ronmental conditions; believed to have originated in the guts of arthropods, they have

transitioned to land, evolving over hundreds of millions of years to adapt to changing hosts

and diets [2]. Enterococci, being opportunistic pathogens that exhibit resistance to several

antibiotics currently in use today, are often associated with nosocomial infections [3]. As

the number of infections and related hospital outbreaks increase, there is also a growing

interest in studying antimicrobial resistance (AMR) in Enterococcus to improve treatments

[4].

In broad terms, antimicrobial resistance in bacteria is described in three phenotypes:

bacteria can be susceptible to an antibiotic, it can exhibit resistance intrinsically or the

resistance phenotype can be acquired from the environment, the latter of which is also

called extrinsic resistance. Intrinsic resistance is generally defined as a resistance phenotype

inherent to all strains of a bacterial species. It is usually mediated by a gene or it can stem

from the physical attributes of the bacterial cell. For instance, gram-negative bacteria are

intrinsically resistant to conventional macrolides due to the physicochemical properties of

their cell wall [5]. Similarly, beta-lactam resistance in enterococci stems from mutations in

their penicillin-binding proteins [6].

In addition to beta-lactams, previous studies on Enterococcus had established its in-

trinsic resistance to aminoglycosides, vancomycin, cephalosporins, sulphonamides and

lincosamides [7, 8]. Moreover, due to their extensive survival capabilities, Enterococcus can
easily acquire resistance to several antibiotics, including chloramphenicol, tetracyclines,
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erythromycin, rifampicin, ampicillin and glycopeptides [9, 10]. There is a growing number

of research in parallel with the increased awareness of AMR, investigating Enterococcus
outbreaks using new sequencing technologies and applying more sophisticated analysis

[11].

Most of these studies, in particular those in clinical settings are concerned with

healthcare-associated outbreaks; they focus on the acquired resistance since it is more

likely to be transferred to other bacteria in the same environment, leading to massive

hospital outbreaks or the emergence of pathogens showcasing multidrug resistance (MDR).

While these studies are valuable as a tool to control outbreaks, and minimize their impact

on the healthcare system, they are limited in their scope; due to their clinical urgency, the

goal of these studies is to address outbreaks immediately and prevent future disasters [12].

Similarly, a large fraction of the existing work on intrinsic resistance is performed to

develop new drugs or design new treatments and thus confined to environments that are

heavily influenced by human interventions [13, 14]. However, at the most fundamental

level, intrinsic resistance predates human use of antibiotics, and it is shaped through the

evolutionary constraints imposed on bacteria in the environment, i.e. all other living

species and the physical conditions of the environment. Although this view of intrinsic

resistance is already known and established, it has not led to the formation of a standard

definition for intrinsic resistance.

In addition to the gap in studies about AMR in the absence of human intervention, when

we closely examined the current literature in terms of its technical rigor we found there is

great potential for improvement. For instance, bioinformatics tools and pipelines adopted

in the field can be updated to their latest versions. Similarly, since we have access to more

methods today, we can make use of tools and approaches that are tailored to work on

bacteria [15, 16]. Similarly, we should promote releasing the source code and describing the

technical details of analyses for reproducible research, thereby accelerating the technical

advances in future work. Thus, the field of microbiology and medicine can greatly benefit

from improving the applications of bioinformatics and computational methods.

In this work, we aim to address the shortcomings of research on AMR traits in En-
terococcus; we leverage the largest collection of public genome data to conduct a robust,

unbiased study of AMR gene patterns in enterococci and provide a starting point to define

intrinsic resistance in bacteria. Our study is unique in being inclusive of all genome samples

available, and not confined to a specific environmental setting, resistance mechanism, drug

class or bacterial species. We establish genotypically clear boundaries between the Entero-
coccus species already known, and we expand the species labels to include 127 species in

the genus in total. We provide a broad view of the genus where the four clades established

in previous studies are maintained and expanded with the addition of new species. We

propose a systematic approach to study intrinsic and acquired resistance in bacteria and

demonstrate its use first on our extensive Enterococcus dataset. Based on our proposed

definitions of AMR genotypes, we show that clade-specific patterns are more prominent

than species-specific ones, especially for the species that tend to occupy similar niches.

We also observed that AMR genes, regardless of the drug class they confer resistance

to or the resistance mechanism, follow similar trajectories from when they are initially

acquired from the environment by the bacteria, and to the final point where it becomes

intrinsic to the entire species. Finally, to promote reproducible science and best practices
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in microbial genomics research, we provide python scripts and relevant documentation to

both reproduce our analyses or implement our approach to study other bacterial organisms

in Github
1
.

6.2 Materials and methods
6.2.1 Enterococci data
To build our enterococci dataset, we retrieved all entries in the Assembly database of

NCBI that were labeled as Enterococcus, Melisococcus, Tetragenococcus, Vagococcus,

Catelicoccus or Pilibacter, with no restrictions on assembly quality [17]. We expanded

the dataset with the in-house collection of 805 assemblies from our collaborators at Broad

Institute. The in-house collection was generated for collaborative projects of Broad Institute

and Harvard Medical School throughout the years, and it consists of only Enterococcus
and Vagococcus assemblies. Once obtained, the entire dataset went through the same steps

regardless of their source of retrieval.

6.2.2 Data preprocessing
We used CheckM (v1.1.3) and PhyloSift (v1.0.0) to calculate several assembly statistics

to assess the assembly quality [18, 19]. While the output of these two tools overlap to

some extent, they differ in the set of marker genes they use and they provide different

metrics, hence they complement one another. We ran CheckM using their marker genes

selected specifically for firmicutes, and extracted the "# of scaffolds", "contamination",

"completeness" and "N50" statistics from the output file. We downloaded the PhyloSift

Reference Marker Genes (v4) which is an HMM database of 37 housekeeping genes that are

single copy core to all bacteria. We used HMMER (v3.3.2) to search against the PhyloSift

database with e-value cutoff selected for enterococci specifically [20]. Assemblies that

carried less than 30 of the PhyloSift housekeeping genes were marked as "incomplete",

and the ones that had multiple copies of any gene were flagged as "contaminated"; both

incomplete and contaminated assemblies were removed to obtain 18,015 assemblies in

total.

To identify the isolation source of assemblies, we adopted an approach similar to Pradier

and Bedhomme in [21]. We cross-referenced the assemblies we downloaded from NCBI

to collect sample metadata from the NCBI BioSamples database. The in-house assemblies

from Broad Institute were accompanied by detailed metadata on the sampling location and

source already. Based on these metadata, we categorized the assemblies into three main

groups: human, nonhuman and NA. The nonhuman category was further broken down to

designate samples collected from animals, environment, or food.

6.2.3 Genome annotation
All 18,015 assemblies in our collection went through the same annotation process. First,

we ran Prokka (v1.14.6) [22] with a list of manually curated Enterococcus-specific reference
genes. Next, we used two additional HMM-based databases to supplement Prokka anno-

tations: the Pfam database (release 32.0) and the KOfam database (release 94.0), which is

1
You can find the python scripts and relevant documentation on github: https://github.com/aysunrhn/Intrinsic-

antimicrobial-resistance/
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based on KEGG Orthology [23, 24]. We used HMMer [20] to search the Pfam database, and

KofamScan (v1.3.0) [25] for the KOfam database.

6.2.4 Prediction of mobile genetic elements
To account for as many mobile genetic elements (MGEs) as possible, we included plasmids,

insertion sequences (IS), transposons and prophage sequences in our list of MGEs.

To predict plasmids, we used three different tools: PlasmidFinder (v2.1.1) [26], MOB-

suite (v3.0.3) [27] and DeepMicrobeFinder (v1.0.1) [28]. We used BLAST (v.2.12.0) to search

the PlasmidFinder database and retained the significant hits (e-value < 1e-3). We used

the MOB-typer command in MOBsuite to predict and type plasmids: MOB-typer returns

replicon family predictions and auxiliary information about the predicted family for every

contig, but we extracted only the "mob" field, which states if the contig was classified as

"non-mobilizable", "mobilizable" or "conjugative"; we further grouped the "mobilizable"

or "conjugative" labels as mobile. Finally, we ran DeepMicrobeFinder with four different

parameter settings: single mode at lengths 500, 1000 and 2000, and hybrid mode. Deep-

MicrobeFinder classifies contigs into give classes: eukaryote, eukaryote virus, plasmid,

prokaryote and prokaryote virus. The output file contains prediction scores for each class,

where the contig is assigned the class with the maximum score. To interpret the scores,

we transformed the values through a softmax function, and we retained the label with

maximum score only if it was greater than 0.5. We aggregated the predictions from four

models by majority voting.

Since we used three different tools, PlasmidFinder, MOBsuite and DeepMicrobeFinder

namely, not only employ different algorithms but they also have their own separate

databases, we treated their predictions as independent outcomes, and summarized them by

majority voting as well. Our Enterococcus dataset, however, is made up of assemblies of

varying quality because we removed assemblies only if they were severely contaminated

or incomplete. Thus, there are many fragmented assemblies with several contigs, which

inevitably exacerbate false positive rates of prediction tools. To reduce the false positive

rate, we re-labeled contigs predicted to be plasmids as chromosomal if

1. The contig is longer than 500 kbp, or

2. There are more than five genes on the contig and 60% of these genes are core to the

Enterococcus genus, and the entire assembly contains more than 10 contigs

To identify transposable elements and insertion sequences, we used the TnCentral [29]

and ISFinder database (last updated in October 2020) [30], respectively. We searched both

databases using BLAST with e-value cutoff 1e-6. And finally, to predict the presence of

phage associated sequences in the assemblies, we used ProphET (v0.5.1) [31].

6.2.5 Prediction of antimicrobial resistance genes
We ran rgi (v5.2.0) [32] with the option –include_loose to identify antimicrobial resis-

tance genes. Following the guidelines of its developers, we filtered out the resulting hits to

remove the nudged hits if the alignment identity to the reference gene sequence was lower

than 50%. We then classified the AMR genes as intrinsic if (i) the gene was located on a

contig we predicted to be nonmobile and (ii) the gene was not associated with any other
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mobile element, i.e. there were no transposoble elements, insertion sequences or phage

sequences within its 5000bp vicinity.

6.2.6 Assigning species labels and orthogroup clustering
We employed a three-step procedure to identify species labels of all assemblies. First,

we started with an initial set of reference genomes used as part of a previous study on

Enterococcus in [33]. Schwartzman et al. compiled 103 assemblies within the family Entero-

coccaceae to use in their analyses. We calculated the average nucleotide identity (ANI) of

all the assemblies in our dataset to their comparator genomes using FastANI [34] and we

used their species labels as our starting point. We then expanded this initial comparator set

with assemblies that had ANI values lower than 95%. Next, we calculated all-vs-all mash

distance using Mash (v2.3) [35], and we clustered the assemblies using a distance threshold

of 0.05, which corresponds to approximately 95% ANI. As a final step, we refined the mash

clusters based on the ANI values: we split clusters if there were assemblies with different

initial species labels assigned to them.

To cross-check our species assignments and obtain a new, up-to-date phylogeny to

describe the Enterococcaceae family we built a phylogenetic tree. We picked representative

genomes for each of the species giving priority to the least contaminated and the most

complete assemblies, with fewer contigs and the highest N50 value. Only for the species

E. faecalis and E. faecium, we picked 2 representatives. Among the representatives, we

removed 2 severely contaminated assemblies (CheckM v1.1.3, contamination value higher

than 2) and 3 incomplete assemblies (less than 90% complete). We ran OrthoFinder (v.2.5.4)

[36] to find orthologous clusters of genes and identify single copy core (SCC) genes in the

representative genomes. We ran IQ-TREE (v.2.1.4 beta) [37] in the model finder plus
mode on the nucleotide alignment of SCC genes.

6.2.7 Pairwise syntenic distance between gene contexts
In our work, to quantify the difference of two gene contexts, we defined pairwise syntenic

distance. Inspired by Teixeira et al., we modified the 2-break distance to obtain a standard-

ized metric, which takes the presence of inserted and deleted genes into account as well.

We consider these differences in gene content as an additional penalty on top of the generic

2-break distance. We simply calculate the 2-break distance, which essentially measures

the syntenic difference in the shared gene content, and add the number of genes inserted

and/or deleted. To standardize, we divide the final value by the total number of unique

genes in the two gene contexts.

Following this procedure, if there are no genes shared by the two contexts, the pairwise

syntenic distance is 1.0, whereas if there is at least 1 gene in common the distance increases

as the number of inserted and/or deleted genes increases. Our distance metric penalizes

contexts that share a core set of genes, but have diverged significantly through inserted

and/or deleted genes compared to the size of their shared gene content more harshly than

completely unrelated contexts that contain entirely different sets of genes. We consider

conserved synteny only when the distance is less than 1.0, and a smaller value indicates

higher similarity. The minimum value of our distance metric is 0.0 when the two contexts

are identical. Figure 6.1 shows pairwise syntenic distance of different gene contexts that

can be found on the genome.
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Gene context Distance

⸱⸱⸱⸱⸱⸱⸱⸱⸱⸱⸱⸱⸱          0.0

⸱⸱⸱⸱⸱⸱⸱⸱⸱⸱⸱⸱⸱ 0.0

⸱⸱⸱⸱⸱⸱⸱⸱⸱⸱⸱⸱ 0.24

⸱⸱ 0.38
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⸱⸱ 1.04

⸱⸱ 1.30

Gene context Distance

Figure 6.1: Our modified 2-break distance can quantify conservation of synteny between two gene contexts:

different combinations of possible gene contexts are shown under "Gene context" along with the corresponding

pairwise syntenic distance under "Distance".

6.3 Results and Discussion
6.3.1 Most extensive view of the Enterococcaceae family
As part of our effort to study intrinsic and acquired resistance in Enterococcus, we have
amassed the largest, most extensive collection of the Enterococcaceae family. To our

knowledge, our work is also unique in our unbiased, bottom-up approach to identify

species, and perform taxonomic assignment. Thus, our dataset provides the most up-to-

date, comprehensive and clear view of the genus Enterococcus in the literature.

Due to the clinical importance of enterococcal species and their implications for human

health, with 11,700 genomes in total (65% of the entire dataset), most of the assemblies in

public repositories are isolated from humans directly, or they were collected in locations

with high levels of human activity such as hospitals, laboratories, or locations occupied by

humans (ex. hotel rooms ad public restrooms) (Figure 6.2). The largest fraction of nonhuman

samples (65%) were associated with animals, as expected. Enterococci are commonly found

in the guts of most land animals as part of the microbiome. Since enterococci are a type of

lactic acid bacteria, they also play an important role in fermentation, and they are present in

several fermented food products, such as dairy, olives and cured meat. Thus, the remainder

of the nonhuman samples in our dataset are either collected from environmental settings

or food products.

Enterococcus dataset

Human (𝑛 = 11700) Nonhuman (𝑛 = 4636)

Animal (𝑛 = 2988) Environmental (𝑛 = 778) Food (𝑛 = 870)

NA (𝑛 = 1679)

Figure 6.2: Breakdown of assemblies in the Enterococcus dataset based on their isolation source.
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Table 6.1: The most frequently found species in our Enterococcaceae dataset: we have more than 25 genome

assemblies for each species.

Species Count

E. faecium clade A 11095

E. faecalis OG1RF 4243

E. faecalis V583-GB 703

E. hirae 390

E. faecium clade B 380

E. lactis 232

E. casseliflavus 139

E. durans 132

E. gallinarum 74

E. mundtii 57

E. pernyi 56

E. cecorum 55

E. avium 43

E. thailandicus 28

To obtain robust species labels, we started with the comparator set of 103 genomes

from Schwartzman et al., and we added assemblies in our dataset that were released after

their study was published and that had ANI less than 95% to any of their genomes to obtain

137 species. Guided by this initial list of 137 species, we performed hierarchical clustering

on the entire dataset to obtain 115 clusters using the conventional species cutoff value of

0.05 mash distance. Mash distance is a rough approximation of ANI, and using it as a basis

led to underclustering since we observed multiple genomes from the initial comparator set

grouped into a single cluster. We refined mash clusters by breaking them up, and forming

new, smaller clusters based on the ANI values. Ultimately, we had 129 unique species,

including Enterococcus, Vagococcus, Tetragenococcus and Melissococcus.
From the 129 species, we found 5 species with assemblies of low quality (either incom-

plete or severely contaminated) and there was only 1 instance of each in our dataset, which

suggests issues in either sequencing or assembly. Thus, we removed these 5 species before

proceeding with analyses. For the remaining 124 species, we picked one representative

with the exceptions of E. faecium and E. faecalis where we retained 2 species for both

to differentiate their commensal subspecies (E. faecalis OG1RF and E. faecium clade B)

from the hospital-associated one (E. faecalis V583-GB and E. faecium clade A). To ensure

robustness and reliability, we prioritized higher-quality assemblies, and we obtained 126

genomes to represent the entire Enterococcacea family.

For the whole family, we found 11,433 orthogroups in total, 120 of which were single

copy core (SCC). When we considered the genus Enterococcus only, there were 10,879

orthogroups in total where 438 were core and 198 were SCC, consistent with the previous

studies [7, 33]. Based on the nucleotide alignment of SCC genes, we built a SCC phylogenetic

tree, which revealed a structure with 5 distinct clades: 4 for Enterococcus (blue, yellow, red
and green clades in Figure 6.3) and 1 for Vagococcus (gray clade in Figure 6.3), along with 4
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outgroup species. The outgroup species included Catelicoccus and Pilibacter, as well as 2
species that were most likely mislabeled as Enterococcus on NCBI. All major branches in the

final phylogenetic tree have bootstrap values larger than 95%. Thus, with this final view of

the Enterococcaea family, we have not only expanded the known phylogeny significantly

but also produced a high-resolution, robust representation of the family that will prove a

valuable resource for future studies (Figure 6.3).

6.3.2 Intrinsic resistance patterns in the Enterococcus phy-
logeny.

To study the intrinsic and acquired antibiotic resistance as two distinct features in entero-

cocci, we developed a systematic framework to define and assess intrinsic AMR. We build

on top of Miller et al.’s review of AMR and Hollenbeck and Rice’s study. Given that our

extensive collection of Enterococcus genomes covers the entire sequencing effort available

publicly, we are justified in using our representative set as a valid sample of the population.

In our work, we recommended the following conditions that define intrinsic resistance:

1. The AMR gene is present in at least 85% of the instances of a species. For the over-

represented species, or if there are clear, evolutionarily supported sub-speciation

within the species then this threshold should be applied at the subspecies level.

2. At least 85% of the instance of the gene is found on the chromosome, and it is not

associated with any mobile element.

3. The genomic context of the AMR gene is largely conserved across the genomes.

4. Gene tree correlates with the species phylogeny.

Note that the final point on the correlation of trees, while adding strong evidence to

the assessment, is a challenging one to measure. Although there have been many attempts

at quantifying pairwise distance between phylogenetic trees, there is no clear consensus

on which metric to use. In addition, the choice of the metric also determines how the

measurements should be interpreted, if it is all possible to interpret. In our work, we

suggest using a combination of visual checks and tree distance metrics: tanglegrams are

useful for small trees where the leaf sets are consistent, and multiple metrics should be

calculated to assess the difference between trees [39]. It should be up to the user to decide

whether the findings from these two approaches are strong enough to conclude such a

correlation between the trees.

Acquired resistance, on the other hand, is associated with genes located on a plasmid,

transposon or near a mobile element such as an IS. Lastly, we define sporadic resistance as

AMR genes carried on the chromosome, not associated with any mobile elements, but also

do not meet the threshold of intrinsic resistance.

All the AMR genes present in Enterococcus belong to only 4 of the gene families

designated in the CARD database based on the resistance mechanism: antibiotic efflux,

inactivation, target alteration and target protection. In addition, we found most of the

AMR genes to be either exclusively on the chromosome or a mobile element. It is very rare

to see an AMR gene on both, except for the two most studied species E. faecium and E.
faecalis. These two species, often considered separately in our work, are unique in the way

they can easily acquire new AMR genes and develop resistance [4].
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Figure 6.3: A single copy core phylogenetic tree of representative Enterococcus genomes. In our work, we expand

the known Enterococcaea family phylogeny, and we provide a robust view of the clades with higher resolution.
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6.3.3 Clade-specific AMR patterns are more prevalent than
species-specific patterns

At the genus level, clade-specific patterns appeared more prominently than species-specific

ones. For instance, one of the defining characteristics of Enterococcus as a genus is the
presence of antibiotic efflux resistance mechanism through the AMR gene efrA. As we
expected, efrA is absent in Vagococcus, and other outgroup species (Figure S6.1), as well as

Tetragenococcus although the latter is branching in our tree within clade IV of Enterococcus.
However, we found clade III species to be lacking not only efrA but also any AMR gene

with this mechanism. Making up for the lack of efflux mechanism, some clade III species

have developed alternative means of resistance. For instance, E. raffinosus and E. avium,

two species that are most commonly isolated from hospital infections, can readily acquire

resistance genes present in the environment. However, there are no reports of these species

displaying intrinsic resistance [40].

Apart from these two species, members of clade III in general are the least likely to

carry any AMR gene, despite having a larger genome size on average (Table 6.2). While

it might be a trait specific to this clade, it could also be an artifact of this clade being

undersampled compared to the rest of the genus. Although our dataset is well balanced in

terms of the number of species per clade, we have fewer assemblies of clade III species in

total and the average number of genomes per species is the lowest for this clade (Table 6.2).

Table 6.2: Statistics of four Enterococcus clades in our genus dataset.

Clade No. of
species

No. of genomes
per species

No. of genomes per species
(excl. E. faecalis and E. faecium)

Mean genome
size (bp)

I 26 120.8 3.1 2982827

II 21 581.3 44.6 2984041

III 19 4.6 4.6 4252120

IV 32 11.1 11.1 3145746

In addition to clade III species, we found 3 species in clade IV, E. cecorum, E. columbae
and E. aquamarinus, that do not carry the efrA gene. In the literature, these species are

considered to be specialized since they are found in very specific environments, similar to

Tetragenococcus species which are their immediate neighbors on the tree. These species,

being specialized to their niche, are unique in the genus.

Finally, we note that both clade II and clade IV carry several resistance genes with

antibiotic inactivation mechanism, however the specific AMR genes differed between

these two clades. In clade II, the intrinsic resistance was due to chromosomal-encoded

AAC(6’) and APH(3”) gene families, whereas clade IV carried genes from the lincosamide

nucleotidyltransferase (LNU) and chloramphenicol acetyltransferase (CAT) gene families

which confer resistance to lincosamides and phenicols, respectively (Figure 6.5).

Among all species, we found E. faecalis to carry AMR genes not only intrinsic but also

unique to the species, namely, emeA, efrB and lsaA genes, all of which are efflux-associated

(Figure S6.1). Together with efrA, efrB forms the efrAB multidrug ATP binding cassette

(ABC), and in our dataset, almost all E. faecalis genomes (3056 out of 3068) carried it on

the chromosome. In previous studies, the efrAB cassette and the lsaA genes were reported
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Figure 6.4: Clade III is unique in the Enterococcus for their lack of intrinsic AMR, in particular the Enterococcus
core gene, efrA.

to be intrinsic to E. faecalis, while E. faecium carried a different intrinsic efflux pump that

includes the gene msrC [10]. Our work also supports their findings, and we also suggest

that the efrAB pump is unique to E. faecalis, as we have not detected it intrinsically in any

other enterococci.

6.3.4 Acqired resistance genes follow similar trajectories
as they become intrinsic

Regardless of the gene family, AMR mechanism or the species, we found common patterns

among AMR genes in our dataset. Once acquired, an AMR gene goes through an evolution-

ary trajectory that is preserved among a few notable examples. We investigate the evolution

of AMR genes in detail by observing the phylogenetic gene trees. We found evolutionary

patterns common to multiple genes, these patterns suggest genes are in different stages of

becoming intrinsic.

AAC(6’)-Ii gene conferring resistance to aminoglycosides was initially reported to be

chromosomally encoded in E. faecium A only [41]. In our work, we confirm this, and we

also report three other species that are immediate neighbors to E. faecium A; E. thailandicus,
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in clade II

E. courvalini, and an un-named species E. sp. 30 (Genbank accesion GCA_011038845.1) to

be intrinsically resistant to aminoglycosides (Figure 6.6). In addition to carrying AAC(6’)-
Ii gene on a chromosomal contig, we found these genes within a conserved genomic

neighborhood of approximately six genes. The AAC(6’)-Ii gene tree is in agreement with

the species tree, and the gene is most commonly observedwithin the gene context numbered

6 in Figure 6.7 found on the chromosome. The chromosomalAAC(6’)-Ii context is conserved
among the neighboring species we deemed to be intrinsically resistant. E. faecium A, the
pathogenic subspecies, can readily acquire and transfer resistance genes, and we also

found some of the E. faecium A genomes in our dataset to carry AAC(6’)-Ii gene within the

genomic context 1 that is associated with mobile elements.

In addition to AAC(6’)-Ii, intrinsic aminoglycoside resistance in Enterococcus exists
through two other variants of the gene AAC(6’)-Ii in our dataset that we observed to be

occasionally mobilizable. AAC(6’)-Iid is intrinsic to both E. durans and E. wittei, within
similar gene contexts (contexts 2 and 3 in Figure 6.6. AAC(6’)-Iih is intrinsic to E. hirae and
E. villorum, although we also report instances associated with mobile elements in both



6

166 6 Intrinsic and extrinsic antimicrobial resistance in enterococcus genus

V
. e

lo
ng

at
us

V
. z

en
gg

ua
ng

ii
E

. t
ha

ila
nd

ic
us

E
.c

ou
rv

al
in

i
E

. s
p.

 3
0

E
. f

ae
ci

um
 A

E
. l

ac
tis

E
.f

ae
ci

um
B

E
. w

itt
ei

E
. d

ur
an

s
E

. h
ira

e
E

.v
ill

or
um

E
. g

al
lin

ar
um

1 2 3 4 5 6

A
A

C
(6

’)-
Ii 

   
   

   
   

   
 A

A
C

(6
’)-

Iid
   

   
   

   
  A

A
C

(6
’)-

Iih

R
es

is
ta

nc
e 

ge
ne

Species Gene context

Figure 6.6: Enterococcus species are intrinsically resistant to aminoglycosides through three variants of the gene

AAC(6’)-Ii: AAC(6’)-Ii (red tree), AAC(6’)-Iid (orange tree), AAC(6’)-Iih (green tree). Red cells are a heatmap for
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these two species as well as E. gallinarum. Given that E. gallinarum is phylogenetically

distant, positioned within clade IV, this species likely acquired AAC(6’)-Iih, and it is not

intrinsically resistant yet.

Since it is not possible to set an accurate root for the gene tree, the root was placed at

the midpoint in Figure 6.6, and hence it is tricky to infer the earliest variant of the gene.

However, we speculate that AAC(6’)-Ii, being chromosomally encoded the most among all

variants, is the earliest example of this gene. This is also supported by the two Vagococcus
species (V. elongatus and V. zengguangii) that carry the same gene on the chromosome;

Vagococcus being ancestrally related to Enterococcus (Figure 6.3, it is more likely the earliest

variant of AAC(6’)-Ii emerged in Vagococcus.
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Figure 6.7: AAC(6’)-Ii gene and its two variants, AAC(6’)-Iid and AAC(6’)-Iih, are found in six different gene

contexts where the synteny is conserved on the genomes. See Table S6.1 for the same contexts listed in more

detail.

6.3.5 Patterns of intrinsic resistance correlates with sub-
species differentiation in E. faecium

Due to its clinical significance, AMR in E. faecium has been extensively studied; species are

known to be intrinsically resistant to lincosamides and fluoroquinolone. Chromosomally

encoded msrC and eatAv confer resistance to lincosamides, and fluoroquinolone resistance

is associated with the efmA gene. In our work, we confirm these three genes to satisfy

our definitions of intrinsic resistance as well, and we find that they correlate with the

subspecies differentiation in E. faecium.

E. faecium A carries efmA gene on the chromosome, not associated with any mobile

element, while eatAv andmsrC genes are intrinsic in E. faecium B and E. lactis. We note that

both of these genes also appear sporadically in E. faecium A as we found that 57% of the E.
faecium A genomes in our dataset carry at least one copy of msrC gene, and 19% carry at

least one copy of eatAv on the chromosome. Compared to the commensal E. faecium B, the
E. faecium A genome is highly malleable and it can readily acquire new resistance genes;

thus we also see more AMR genes appear sporadically in E. faecium A (Tables S6.3-S6.5).

Finally, we note that we also found tetM, a wide-spread AMR gene conferring resistance

to tetracyclines, to be sporadic in E. faecium, not associated with any mobile elements (Table

S6.5). According to previous studies, tetM gene is the most prominent cause of tetracycline

in Enterococcus, however, there are no reports of it being intrinsic [14]. In our dataset, four

novel species recently isolated appeared to be intrinsically resistant to tetracycline; namely

E. devriesei, E. saigonensis, E. songbeiensis and E. xiangfengensis (Table S6.5). All four of
these species, being identified only recently, have only a handful of genomes available

publicly. In their study, the authors Li and Gu isolated the four species from pickle juice

and reported them to be sensitive to aminoglycosides [42]. While collateral sensitivity

between aminoglycosides and tetracyclines has been shown in K. pneumoniae, there are no
systematic studies performed on Enterococcus [43]. We speculate that a similar mechanism

can be found in enterocci as well; it is possible that in the absence of aminoglycoside

resistance, enterococci are more likely to develop resistance to tetracyclines. Thus, we

suggest it should be investigated in future studies. Finally, given the sporadic appearance of

tetM in multiple species, one could hypothesize that tetM is intrinsic to a few Enterococcus
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Figure 6.8: Patterns of intrinsic resistance correlate with subspecies differentiation in E. faecium: Both eatAv (a)

and msrC (b) are intrinsic to E. faecium B and E. lactis, but they appear sporadically in E. faecium A as well.

species, and it is in the process of becoming intrinsic to several others as well since it is

easily circulated within the genus [14].

6.3.6 Clade IV species exhibit distinct intrinsic resistance
patterns

Unlike the clinically relevant species of Enterococcus, e.g. E. faecium, E. faecalis and E. hirae,
clade IV species have been studied to a lesser extent. In our work, we found this clade, E.
casseliflavus and its immediate neighbors, E. flavescens and E. gallinarum in particular, to

stand out for their distinct resistance traits. This prominent feature is likely due to the

ecological niche of the species. According to recent studies, clade IV species are the most

commonly found members of enterococci in the guts of insects [33]. As insects encounter

an abundance of microorganisms in diverse environments, the Enterococcus species residing
in these organisms require a large repertoire of intrinsic resistance traits for survival.

We report the Erm(O)-lrm gene (CARD database short name) that confers lincomycin

resistance, is intrinsic to E. flavescens and E. casseliflavus 2. It should be noted that E.
casseliflavus 2 species name is a placeholder we use throughout this study because we

found the species to be closely related to both E. flavescens and E. casseliflavus, but well
below the sequence identity threshold we defined especially for these two species (97%

ANI). Since these genomes, on average, resemble E. casseliflavus more than they do E.
flavescens, we decided to use the placeholder name E. casseliflavus 2. Despite having a

higher ANI, E. casseliflavus lacks the Erm(O)-lrm gene (we found only 1 instance of the

gene in E. casseliflavus).
Although Erm(O)-lrm gene is usually found in a similar context in both E. flavescens and
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E. casseliflavus 2, there is a clear separation of these genes at the aminoacid level (Figure

6.9. The absence of Erm(O)-lrm gene in E. casseliflavus, and the differences in aminoacid

sequence between the instances carried by E. flavescens and E. casseliflavus 2 genomes

suggest this gene would be particularly useful to differentiate among these three species.

It has been hypothesized that speciation of E. flavescens and E. casseliflavus coincides
with the subspecies split in E. faecium with E. faecium A and E. faecium B, in terms of the

evolutionary timeline. Using Erm(O)-lrm gene as a marker, the parallel speciation within

these species can be investigated.

In addition to lincomycin resistance, we found that clade IV species are intrinsically

resistant to vancomycins through the vanC gene cluster. In all instances, the vanC operon

is located on the chromosome, but the ligase gene itself differs at the aminoacid level.

The ligase in E. gallinarum is at most 91% similar to the ligase sequences we found in

other species. Similarly, the vanC gene in E. sp. 24 forms a separate branching in the gene

tree, although the aminoacid similarity can be as high as 95% in this case (Figure 6.9 (b)).

However, the remaining ligase genes are not significantly different from one another as we

found the aminoacid identity to be more than 97%. The most common variants carried by

the species E. flavescens and its neighbors E. casseliflavus and E. casseliflavus 2 are highly
similar.

Interestingly, the overall gene context, both the composition and the order of genes, in

the vanC operon is highly conserved among all species. This is consistent with the recent

studies on vanC operons in enterococci: currently, there are three known variants of this

operon that have been established based on the amino acid similarity of both the ligase

genes as well as the components of the vanC operon. Despite the aminoacid difference

in the individual genes, the operon structure is known to be highly conserved [13]. We

note that in our dataset, the aminoacid identity between the genes ranged from 61% to 97%,

and hence the genes diverge enough to be annotated as different genes, resulting in three

distinct gene contexts in Figure 6.9 (b).

While vancomycin resistance in E. gallinarum and E. flavescenswas observed previously,
the vanC operon in E. sp. 24, an unnamed species from NCBI, is unknown. Although E. sp.
24 satisfies all the criteria for intrinsic resistance, we note that there is only one instance of

this species in our dataset and the immediate neighbors, E. testudinum and E. sp. 32, lack
the VanC operon. Since all three of these species are recently discovered Enterococcus, we
have fewer than 5 samples in total. Given their proximity to species already known to be

intrinsically resistant to vancomycin, we suggest these new species warrant further study.

Finally, we note that vanC gene, and its context, has been studied to a much lesser

extent compared to the other vancomycin resistance patterns in Enterococcus, hence there
is limited data available in AMR gene databases. In our work, we found the vanC gene was

often missing in most databases, or misannotated as vanB, another AMR gene associated

with vancomycin resistance. When searching for the vanC gene in our dataset, we also

checked for the genes vanXYC and vanTC, which are required for the vancomycin resistance

phenotype, as well as the regulating genes vanRC and vanSC [44]. Since the regulators

are not necessary for the ligase activity, they provide additional evidence when one of the

required components of the operon is missing.
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Figure 6.9: Clade IV species exhibit distinct resistance traits within the genus: (a) E. flavescens and E. casseliflavus
variant 2 are inherently resistant to lincomycin: chromosomally-encoded Erm(O)-lrm gene differs at the aminoacid

level among the species, while the genomic context of the gene is similar. (b) Evolutionary relationship of the

species that exhibit intrinsic resistance to vancomycin and lincomycin: a close-up view obtained from the complete

genus phylogenetic tree in Figure 6.3. (c) Evolutionary relationship of the species that exhibit intrinsic resistance

to vancomycin and lincomycin: a close-up view obtained from the complete genus phylogenetic tree in Figure 6.3.

6.4 Conclusion
Enterocci are among the most widespread microbes in the guts of animals, and they are

often associated with AMR in clinical settings leading to massive outbreaks. In recognition

of their significance and the growing rate of novel species discovered recently, we have

designed a robust and unbiased study in this work to investigate AMR traits in Enteroccus.
We have amassed the largest collection of publicly available genomic data which allowed

us to (i) define a systematic approach to identify AMR, (ii) distinguish between intrinsic

and resistance types of resistance and (iii) provide a starting point to study AMR genes

from when they are initially acquired by the bacterial species to it becoming intrinsic to all

members of a strain, species or even an entire clade.

Our work is the most extensive study on AMR traits in Enterococcus in terms of its scope

since our data is not limited to any specific sampling location, setting, drug class or species.
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In parallel with our fundamental view of intrinsic resistance in bacteria, predating human

use of antibiotics, we adopted a systematic approach to investigate intrinsic resistance in

enterococci. In addition, we make use of the most recent methods and general conventions

of data analysis in bioinformatics, addressing the lack of technical rigor in the field of

microbiology. Hence, we provide a valuable pipeline to investigate AMR not only in

Enterococcus genus but in all bacteria
2
.

In addition to the technical value of our work, we also established clear genomic bound-

aries to distinguish enterococcal species. Since we accounted for the recently discovered

species as well, we have successfully expanded the known species labels to 127 in total.

With a bigger genus tree, we solidified the four clades of Enterococcus to facilitate future

work on the genus. Our unique approach combining DNA sequence with synteny, and

phylogenetics is a solid starting point to map out the progress of resistance traits as they

become intrinsic within a strain, species or a clade of bacteria.

The main limitation of our study is that we only use genomic data, genome assemblies to

be specific. While we took the most conservative approach in gene detection, we can assess

AMR only in terms of the presence and absence of a gene. We validated AMR gene content

based on genomic and phylogenetic analysis. In the absence of experimental work, our study

provides a fully data-driven tool, bounded by the publicly available genome assemblies.

Future work should first supplement our findings with not only clinical experiments and

new samples, but also additional sources of genomic data, such as gene expression, and

protein structures.

6.5 Supplementary material
6.5.1 Supplementary Tables and Figures

2
You can find the python scripts and relevant documentation to reproduce our analyses, or adopt the same approach

as we did to study other bacterial organism on github: https://github.com/aysunrhn/Intrinsic-antimicrobial-

resistance/
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Table S6.2: Intrinsic AMR genes with antibiotic inactivation mechanism.

Antibiotic Gene family Gene name Intrinsic Sporadic Acquired
Species %

Aminoglycosides AAC(6’) AAC(6’)-Ii
E. faecium A, E. faecium B, E. lactis

E. thailandicus, E. sp. 30, E. sp. 61, E. sp. 91
Aminoglycosides AAC(6’) AAC(6’)-Iid E. hirae, E. villorum
Aminoglycosides AAC(6’) AAC(6’)-Iih E. durans, E. sp. 13

Table S6.3: Intrinsic AMR genes with antibiotic efflux mechanism.

Antibiotic Gene family Gene name Intrinsic Sporadic Acquired
Species %

Fluoroquinolone

major facilitator superfamily

antibiotic efflux pump

efmA E. faecium A

ATP-binding cassette

antibiotic efflux pump

efrA
Absent in E. hulanensis and
clade III (except E. sp. 201)

ATP-binding cassette

antibiotic efflux pump

efrB E. faecalis O and E. faecalis V

Lincosamides

lsa-type ABC-F protein lsaA E. faecalis O and E. faecalis V
msr-type ABC-F protein MsrC E. faecium B, E. lactis E. faecium A 56

disinfecting agents

and antiseptics

multidrug and toxic compound

extrusion transporter

emeA E. faecalis

Table S6.4: Intrinsic AMR genes with antibiotic target alteration mechanism.

Antibiotic Gene family Gene name Intrinsic Sporadic Acquired
Species %

Vancomycin Van ligase

vanC E. gallinarum, E casseliflavus, E casseliflavus 2 and E. sp. 241 E. flavescens 50 E. flavescens
vanE E. caccae and E. sp. 5

vanI E. massiliensis, E. songbeiensis1 and E. xiangfangensis

Lincosamides

Erm 23S ribosomal

RNA methyltransferase

Erm(O)-lrm E. casseliflavus 2 and E. flavescens E. cass 54

Table S6.5: Intrinsic AMR genes with antibiotic target protection mechanism.

Antibiotic Gene family Gene name Intrinsic Sporadic Acquired
Species %

Fluoroquinolone quinolone resistance qnrE2 E. thailandicus

Lincosamide ribosomal protection eatAv
E. faecium B
and E. lactis E. faecium A 19

Tetracyclines ribosomal protection

tetM

E. devriesei
E. saigonensis,
E. songbeiensis
E. xiangfengensis

E. avium 28

E. asini, E. avium, E. cecorum,
E. durans, E. faecalis, E. faecium A,

E. faecium B, E. flavescens, E. gallinarum,
E. hirae, E. lactis, E. lemanii,

E. raffinosus, E. sp. 31,
E. sp. 9, E. thailandicus

E. cecorum 53

E. durans 7

E. faecalis O 31

E. faecalis V 20

E. faecium A 15

E. gallinarum 10

E. lemanii 50

E. pseudoavium 50

E. raffinosus 40

E. villorum 25

tetS E. sp. 10

E. cass 5

E. asini, E. faecium A,
E. gallinarum, E. pseudoavium

E. flavescens 7

E. gallinarum 14

E. massiliensis 25

E. thailandicus 6
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antibiotic
efflux

antibiotic
inactivation

antibiotic
target

alteration

antibiotic
target

protection

Tetragenococcus halophilus

Tetragenococcus solitarius

Tetragenococcus koreensis

Tetragenococcus osmophilus

Tetragenococcus muriaticus

Enterococcus saccharolyticus

Enterococcus willemsii

Enterococcus lowelii

Enterococcus aquimarinus

Enterococcus alcedinis

Enterococcus lemanii

Enterococcus cecorum

Enterococcus columbae

Enterococcus italicus

Enterococcus sulfureus

Enterococcus casseliflavus

Enterococcus casseliflavus 2

Enterococcus flavescens

Enterococcus testudinum

Enterococcus sp. 24

Enterococcus sp. 32

Enterococcus gallinarum

Enterococcus dispar
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Enterococcus myersii

Enterococcus diestrammenae
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Figure S6.1: Clade-specific patterns of intrinsic AMR are more prominent than species-specific patterns.
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7
Discussion

“I met a lot of things on the way that astonished me.”

— J.R.R Tolkien explaining to W. H. Auden

why he spent 12 years writing Lord of the Rings
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T
he microbial world grows larger in our eyes each day. The rapid evolution of sequenc-

ing technologies, coupled with progress in bioinformatics tools and computational

resources, led to new methodological developments that drove significant advances in

microbial genomics [1]. With more genomic data than we could even dream of before,

comparative genomics has revolutionized our understanding of microbial life. From un-

raveling the evolutionary relationships between different organisms to deciphering the

genetic basis of microbial pathogenicity and antibiotic resistance, microbial genomics has

emerged as a cornerstone of modern biological research. In this chapter, I will reflect on

the progress I have made to elucidate the hidden world of microorganisms through the

lens of comparative genomics. I will end up on a bittersweet note, reminding everyone

how much more there is still out there to discover and the enduring challenges that lie

ahead in our quest to unlock the full potential of microbial genomes.

From the pioneering efforts of the Human Genome Project to the current era of large-

scale genomic data generation and analysis, the trajectory of microbial genomics reflects a

journey marked by innovation, collaboration, and the relentless pursuit of knowledge[2].

Although I have had the opportunity to witness only a small fraction of this journey, I

am proud to be part of this ongoing endeavor. In the context of these advances, my work

is among the pioneering efforts, a massive undertaking to bridge the computational gap

between eukaryotic and prokaryotic genomics. By applying novel methods and techniques

originally developed for eukaryotic organisms to prokaryotic organisms, I wanted to push

the boundaries of microbial genomics and have a peak into the microbial dark matter. This

work not only expands our understanding of microbial biology but also demonstrates the

versatility and adaptability of genomic methodologies across different domains of life. If

done rightly, that is.

Overall, my five-year-long journey traversed the intricate landscapes of viruses and

bacteria, leveraging cutting-edge computational methods to unravel hidden traits and

illuminate fundamental aspects of microbial biology, evolution, and antimicrobial resistance.

By focusing on microbial organisms, I hope I have done I have achieved my goal of

highlighting the importance of studying microbial genomes, which have often taken a

backseat compared to their eukaryotic counterparts. Understanding microbial life, their

biology, population dynamics, and ecological roles, have implications far beyond the

seemingly small world of microbial genomics; it transcends the boundaries of microbial

genomics, resonating with the broader understanding of ourselves as a species. Our lives are

intertwined with these microscopic organisms, and remember: we are as much microbial

as we are human.

7.1 Withbigdata comes great insight, butalsogreat
responsibility

One of the several main themes in my work has been the power of large genomics data to

provide insight. Right from the start in Chapter 2 when we delved into the realm of viruses,

focusing on the COVID-19 pandemic and the genomic dynamics of SARS-CoV-2 in the

Netherlands. What set our work apart from most of the studies published at that time was

the large collection of SARS-CoV-2 genomes. By aggregating this collection, we could gain

insight into the local landscape of COVID-19, tracing its spread and monitoring emerging
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variants; our findings are of great value for implementing targeted measures to control

outbreaks and informing strategies for treatment and vaccine development, showcasing

the utility of large-scale genomics data in addressing public health challenges.

Moving on to Chapter 3, our attention shifted to bacteria, where we confronted the

issue of inadequate representations of bacterial population diversity, particularly in the

case of Acinetobacter baumannii. Although microbiologists were well aware of the vastness

of genetic diversity harbored by microbial genomes, it has never been as pronounced

as it is today with public access to a large collection of genomes. Thus, the traditional

linear reference sequences prove insufficient to capture this intricate genetic diversity.

To overcome this limitation, we explored the emerging field of bacterial pangenomics

and developed practical guidelines for its application. Our ensemble method for building

pangenome graphs was effective in detecting structural variants, shedding light on clinically

significant genetic elements such as MDR plasmids, with implications for human health.

In Chapter 4, we expanded our view of bacterial functional diversity when we developed

our tool SAFPred to predict gene function in all bacteria. In SAFPred we combined two ideas:

using alternative representations for protein sequences and bacterial synteny. SAFPred

exploits bacterial synteny using SAFPredDB, a comprehensive database of bacterial operons

and syntenic regions we have built in Chapter 5. Large-scale genomics data served as the

foundation for building SAFPredDB, our database, providing a valuable genomic resource

for comparative analyses and functional genomics research across diverse bacterial taxa.

We designed a computational algorithm based on our proposed synteny model to build

SAFPredDB, independent of any experimental validation. SAFPredDB is first and foremost

significant since it addresses the need for a comprehensive catalog of bacterial synteny.

In addition, by mining the largest collection of bacterial genomes available we could

bypass the need for experiments to identify operons, demonstrating the power of large

genomics data. This power was showcased thoroughly when we used SAFPredDB to

improve gene function prediction in bacteria in Chapter 4 with our tool SAFPred. SAFPred,

relying heavily on SAFPredDB, outperformed the state-of-the-art in the field to prove that

conserved structural patterns in bacteria hold clues to their function.

The added value of big data is perhaps best observed in Chapter 6 in our study of AMR

in Enterococcus. We expanded the scope of data analysis to encompass the most extensive

range of enterococcal species, collected from a wide range of environments and hosts.

Our work shed light on species boundaries, evolutionary relationships, and AMR traits

within the genus that were not possible previously with limited data. Large-scale genomics

data enabled the systematic exploration of AMR traits across Enterococcus populations,
contributing to a deeper understanding of bacterial pathogenicity and AMR mechanisms.

The comprehensive analysis of Enterococcus genomes underscored the importance of large-

scale genomics data in uncovering hidden traits and fundamental aspects of bacterial

biology and evolution in Chapter 6.

Although the work in this thesis highlights the transformative potential of large-scale

genomics data in microbial research, our bioinformatics analyses have been limited to

genomic data. There is a growing interest in our field in adopting a multi-omics approach

which has proven useful for numerous applications in life sciences [3]. Similarly, within the

scope of this thesis, incorporating other omics data, such as transcriptomics, proteomics, and

metabolomics, could provide a more comprehensive understanding of microbial biology. A
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multi-omics approach can reveal functional insights, regulatory mechanisms, and metabolic

pathways, enhancing the depth of our analyses [4, 5]. In addition to providing further

insight into microbial life, utilizing multiple sources and types of biological data can serve

as a sanity check, and add support to our findings. This final point is particularly relevant

for our work in Chapter 6 where we relied heavily on genomic data and defined AMR

through the presence and absence of a gene. Our approach was based on previous work

that established links between the genotypes we identified and AMR traits. However,

experimental validation of predicted functions and genetic elements is essential to confirm

their biological relevance. By diversifying our data types to includemutli-omics data, as well

as functional validation experiments, such as gene knockout studies, functional assays, and

phenotypic characterization, we can validate our predictions and enhance the credibility of

our findings. While it is fairly easy to comment on ways we can overcome these limitations,

the real challenge is to figure out how we can implement them. In practice, this will require

new methodologies to analyze disparate data types and novel techniques to integrate

them within our existing pipelines. I expect one direction of research will be focused

on developing new techniques to model data and generate alternative representations to

facilitate data integration in a unified framework. Already in Chapter 4 we explored this

new perspective by replacing aminoacid sequences with protein embeddings. Since protein

embeddings are essentially numerical vectors, they can seamlessly be incorporated into

analyses and combined with any numerical data, allowing us to build on top of our tool

SAFPred in the future. A final point I need to address is the practical consequences of

big data, and the great responsibilities that it endows upon us. As the size of each data

type continues to grow in depth, a multi-omics approach brings an orthogonal direction of

growth where we expand the breadth of our data. I presume the added dimension will result

in a compounding effect, placing an extra burden on our computing resources and once

again bringing algorithmic scalability to our attention, if it has ever left it, that is. Many

bioinformatics algorithms and analytical methods are not inherently designed to scale to

large multi-omics datasets and thus developing scalable algorithms and computational

frameworks capable of processing massive amounts of data efficiently is essential for

enabling timely and cost-effective analyses.

7.2 You say eukaryote I say prokaryote: the perpet-
ual need to catch up with eukaryotic genomics

Throughout this thesis, I have done my best to emphasize the importance of being up to

date with novel methodological approaches in the field of genomics, as well as following

the best practices in computational comparative genomics and data analysis. These two

concepts are more interlinked than they have ever been as we borrow more ideas and

techniques from different fields, especially those outside the realm of genomics, blurring

the lines in between. The boundaries between disciplines are becoming increasingly porous,

allowing for the cross-pollination of ideas and methodologies. And yet, novel methods

in machine learning, network analysis, or new deep learning models still make their way

into eukaryotic genomics research first and sadly remain within their confinements [6].

Although some researchers have been let down by the difficulties in applying newer tech-

niques, or unimpressed by the marginal gains from exceedingly more intricate approaches
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developed for larger and more complex organisms such as humans, in microbial genomics

we have a lot to learn from these advancements.

My goal in this thesis was to avoid blind adoption and advocate for assimilating these

methods into our work, tailoring them to fit the metaphorical body of microbial genomics.

The vastness and diversity of genomic data provide a fertile ground for methodological

innovation, enabling the development and refinement of computational tools and analytical

frameworks to address complex biological questions in microbial genomics. I have demon-

strated this in Chapter 4 where I developed SAFPred, influenced by the impressive progress

made in protein language models, a concept adopted from NLP into bioinformatics [7].

Protein language models are a perfect example of this interdisciplinary fluidity. Proteins

also speak a language of their own; just as sentences and paragraphs convey meaning

in human language, the arrangement of amino acids in a protein sequence dictates its

structure, function, and interactions within biological systems. Protein language models

exploit the linguistic patterns learned through their deep learning architectures trained

on millions of protein sequences, to capture the complex relationships between amino

acids and predict various properties of proteins, ranging from their secondary and tertiary

structures to their biological functions [7]. Given the propensity to prioritize eukaryotic

genomes, I address the large gap in research where we know very little about how these

models perform on bacteria in Chapter 4. Our work is especially significant in our experi-

mental setup and approach to evaluating SAFPred; we presented a rigorous benchmark

that, despite being limited in size, allowed us to make inferences that extend beyond the

scope of the benchmark. It was through this systematic approach that we confirmed that

we can use protein language models to extract new representations of bacterial proteins

that are more meaningful than aminoacid sequences to infer functional attributes. Our

work follows the established conventions in the field of automated function prediction,

modified to suit bacterial organisms, and thus serves as a framework for future studies.

Chapter 4 stands out as a significant achievement in combining newmethodologies with

our knowledge and experience in bacterial genomics to develop new methods and pipelines

tailored for microbial organisms. In SAFPred, we harnessed bacterial synteny, a widely

established concept in bacterial genomics, and protein embeddings to present a new tool

that improves bacterial function prediction. Although we have achieved greater prediction

accuracy, our approach can be expanded to account for more aspects of bacterial genomes.

For instance, in SAFPredDB we treat all conserved genomic structures as equal, i.e. we do

not differentiate between operons, mobilizable genomic islands or MGE associated regions.

All of these different structures might appear similar on paper, however they could have

considerably different implications for their functional role in a bacterial genome. Genomic

islands and mobile regions are associated with MDR and virulence, and they mediate the

spread of AMR in pathogens [8]. Since a large fraction of microbial genomics is devoted

to understanding AMR, integrating information about MGE in our function prediction

pipeline would allow us to understand the dynamics of AMR, in addition to aiding in the

surveillance and management of AMR bacteria. Apart from the clinical significance of MGE,

accounting for HGT and the dynamic nature of bacterial DNA would help identify foreign

genes acquired through horizontal transfer. In Chapter 6 we have emphasized the need to

differentiate functional traits that are intrinsic to an organism from those that are acquired

from its environment. This difference has implications for not just our understanding of
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the evolution of a gene across different taxa, but also for deciphering the evolution of an

organism as it adapts to its niche through the acquisition of new traits. By identifying HGT

events, we can also trace the origin of these traits and understand how they contribute to

microbial adaptation and ecological success.

7.3 The isolating effects of isolate genomics
The conventional approach to genome sequencing is based on cultured organisms. Isolate

genomes, obtained through the cultivation and sequencing of individual microbial strains

in laboratory settings, serve as foundational resources for microbial research, enabling the

characterization of key features such as genome structure, gene content, and functional

potential [9]. Isolate genome assemblies provide valuable insights into the genetic makeup,

physiological traits, and metabolic capabilities of specific microbial taxa. Metagenomics,

on the other hand, offers a complementary approach by directly sequencing DNA from

environmental samples, providing a holistic view of microbial communities without the

need for cultivation. Metagenomic data capture the genetic diversity and functional

potential of an entire ecosystem, including both cultured and uncultured taxa, shedding

light on ecosystem dynamics, biogeochemical processes, and microbial interactions [5]. It

has been recognized for a long time now that isolate genomes represent only a fraction of

microbial diversity; since many microorganisms resist laboratory cultivation or exist in

natural environments as part of complex communities, it is currently estimated that we can

culture less than 1% of microbial species[10]. Uncultured bacteria, which cannot be grown

using traditional laboratory techniques, represent a significant portion of microbial dark
matter, the ever so elusive realm of microbial diversity that remains largely inaccessible

through culture-dependent methods.

Metagenomics gives us a holistic view of all microbial organisms sharing the same

environment. For instance, this "beyond the isolate genome" view allows us to study HGT

with more detail and accuracy. HGT plays a crucial role in shaping microbial interactions

within ecosystems. By acquiring genes involved in niche specialization, resource utilization,

and competitive advantage, microbes can exploit diverse ecological niches and establish

complex relationships with other organisms [11]. Understanding HGT-mediated interac-

tions between microbial organisms and their environment provides valuable insights into

ecosystem dynamics, microbial community structure, and the coevolution of host-microbe

relationships. It is incorrect to view microbes in isolation, their interactions with their

environment contribute to their remarkable diversity and plasticity. By exchanging genetic

material with other organisms, bacteria can explore a vast genetic reservoir and access a

wide range of functional traits. Similarly, new functional pathways emerge in bacteria as

they adapt to their environment. The holistic view will allow us to gain insight into the

mechanisms driving bacterial diversification and the evolutionary forces shaping microbial

communities.

A crucial point in studying microbial communities is taxonomic classification [12]. Tax-

onomic profiling of metagenomic samples remains a core challenge despite the impressive

improvements in the accuracy, resolution and the scalability of taxonomic classification

methods. [13] Hidden under such practical issues, lies a more philosophical inquiry: what
is a species? I personally find it difficult to answer this question in the context of micro-

bial organisms. Defining species boundaries in microbial organisms is far from being
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straightforward due to their high levels of genetic diversity, extensive HGT, and frequent

recombination events. These complexities often blur the traditional concept of species,

making it difficult to apply conventional species definitions based on morphology or ge-

netic similarity. Phylogenetic studies can supplement the species identification, however

this approach has severe limitations as well. MGEs do not abide by any rules of species

boundaries or taxonomic nodes, leading to mosaic genomes that defy traditional notions

of vertical inheritance and complicate species delineation. Similarly, recombinant genomes

are chimeras made up of shuffled variants, confounding efforts to reconstruct evolutionary

relationships based on sequence similarity alone. HGT and recombination both lead to

phylogenetic discordance, where different genomic regions or genes exhibit conflicting

evolutionary histories. Hence the assumption of a single, bifurcating tree of life falters.

Methods that account for reticulate evolutionary processes, such as phylogenetic networks,

may be more appropriate for capturing the complex evolutionary relationships among

microbes, although they have found limited applications.

Perhaps, it is a good opportunity to change our perspective when we are talking about

microbial organisms. Given the challenges of defining species based on genetic relatedness

alone, some researchers advocate for an "ecological species concept" (ESC), which defines

species based on shared ecological niches and functional traits rather than genetic similarity

[14]. This approach considers factors such as habitat preference, metabolic capabilities,

and ecological interactions to delineate microbial species boundaries, acknowledging the

importance of environmental adaptation and ecological context in microbial speciation

[15]. The ESC framework emphasizes the role of ecological niche differentiation, and

defines species based on their habitat preferences, metabolic capabilities, and interactions

with other organisms. Although the ESC concept was put forth almost 40 years ago today,

it remains useful as a point of view in certain applications to interpret research findings

[14]. For instance, the concept has been brought up again in the last decade following

several metagenomics surveys that suggest microbial communities are functionally redun-

dant despite carrying immense taxonomic diversity [16]. By switching our focus from

discriminating based on genotype, we can elucidate the functional roles of novel microbial

taxa in diverse ecosystems. This will help us to reveal the hidden functional diversity and

ecological significance of microbial dark matter within microbial communities. Sometimes

all it takes is to look at things through a new lens.
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