

Welcome to my thesis defence. The title of my graduation project is *"Constructing a digital 3D road network for The Netherlands"*.

Agenda		
1. Motivation and background		
2. Processing pipeline		
3. Final results and accuracy		
4. Comparison with commercial res	ults	
5. Conclusions		

- Agenda of the presentation will be:
 - Motivation and some background
 - Details of the pipeline design and showcase of intermediate results
 - Final results and accuracy assessment
 - Outcome of comparison with the commercial results
 - Concluding remarks

- Full name is Nationaal Wegenbestand, which stands for national road product
- Open data geospatial product of The Netherlands
- Produced and maintained by NDW
 - They are the commercial "client" of this project
- Graph-like representation of all named roads in The Netherlands
 - *Knooppunten:* real-life intersections, i.e. graph nodes
 - Wegwakken: road centreline segments, i.e. graph edges

- Georeferencing allows us to relate roads to their surroundings
 - I.e. to correlate with external information, such as addresses in route planning
- Our scenario: NWB is a traffic noise source in a noise propagation model
 - Position relative to surrounding objects needs to be known
 - Otherwise the noise load on the objects cannot be determined

- Traffic noise modelling traditionally done in 2D, but these are not very realistic
- A 3D noise propagation model should use a 3D road network
- Consider the example:
 - This is a best case scenario, we already have a terrain model and 3D buildings
 - If we model the road to always lie on the terrain, then the hill (part of the terrain) will block the noise
 - If we consider that it is in fact an elevated road, some of the noise will propagate to the building
- New noise legislations in The Netherlands prescribe a 3D model

- So how do we get from a 2D road network (graph) to a 3D road network?
- In other words, how do we enrich NWB with elevation data?

- In addition to the base problem, there are a few constraints
 - Noise regulations prescribe a 20 cm minimum accuracy at 2 STDs
 - We wish to use open data datasets only
 - Explore academic aspects, not only complete a commercial commission
 - Preserve topology, keep the 2D georeferencing
 - Compare with, and try to improve upon, the commercial implementation
 - Was developed in parallel with academic project

nesearch question		
<i>"How can we achieve a data and primarily 2.5D-and quantifiable accuracy</i>	3D conversion of the NWB dataset using Dutch op based surface modelling methods, while guarant v and completeness?"	oen geospatia teeing optima

• In the end we came up with the research question:

"How can we achieve a 3D conversion of the NWB dataset using Dutch open geospatial data and primarily 2.5D-based surface modelling methods, while guaranteeing optimal and quantifiable accuracy and completeness?"

• 2.5D-based surface modelling and scientific accuracy assessment are mentioned specifically because these are the main added academic aspects

- The datasets are:
 - NWB needs to be converted to 3D
 - We are only interested in motorways and provincial roads
- AHN3 the Dutch national remote sensing dataset
 - Cannot penetrate objects that are opaque to light
 - Difficult to sense 3D relationships due to this
 - Feature extraction is necessary, which is never perfectly accurate
- DTB a road management dataset of The Netherlands
 - We use the road marking line models from this dataset
 - This can provide coverage in AHN3 gaps
 - Coverage is limited, and it only exists for motorways
- Highlighted the relevant part of the main research question

Overview	of pipeline step	S			
• Mosaic	ed together from met	hods found in lite	erature, and own	ideas	
Made s	irface modelling a <i>col</i>	re stage of NWB's	s 3D conversion		
NWB	NBRS generation Preliminary elevation estimation	Lidar point cloud segmentation (op	timisation (tional)	Elevation interpolation	3D-NWB
		" primarily 2	J. 5D-based surface mo	delling methods"	ı

- This flowchart shows our planned processing pipeline
- Result of a preparation process that spanned about two months
 - Performed the necessary literature review
 - Consulted with NDW and their commercial developer
 - Mosaicked together the procedure based on the above, and my own ideas
 - Made the generation of road surface TIN models a core stage
 - Producing surface models is for research purposes only
- Highlighted the relevant part of the main research question

- First step of the pipeline: NBRS generation
- Subdivide NWB into well-behaved segments, a prerequisite for various subsequent steps
 - I call these Non-Branching Road Segments or NBRSs for short
- How exactly do we generate NBRSs?
 - NBRS are assembled from connected *wegvakken* (the building blocks of NWB)
 - The algorithms try to maximise length and minimise internal angles
 - Self-intersections are not allowed 2.5D modelling is made possible
- Implemented two algorithms
 - "Geometric" algorithm relies only on NWB geometry
 - "Semantic" algorithm uses attribute data too, but is thus specialised to NWB

 Issue: handling entire point cloud at once is both inefficient and ineffective Solution: segment point cloud into subclouds with points relevant to each NBRS Idea during implementation: quickly estimate rough elevations prior to this step (Hypothesis: it will improve segmentation effectiveness) 	Lidar segmentation	NBRS generation	Edge estimation	Elevatio
 Issue: handling entire point cloud at once is both inefficient and ineffective Solution: segment point cloud into subclouds with points relevant to each NBRS Idea during implementation: quickly estimate rough elevations prior to this step (Hypothesis: it will improve segmentation effectiveness) 				interpotatio
 Issue: handling entire point cloud at once is both inefficient and ineffective Solution: segment point cloud into subclouds with points relevant to each NBRS Idea during implementation: quickly estimate rough elevations prior to this step (Hypothesis: it will improve segmentation effectiveness) 				
• Solution: segment point cloud into subclouds with points relevant to each NBRS Idea during implementation: quickly estimate rough elevations prior to this step (Hypothesis: it will improve segmentation effectiveness)	• Issue: handling entire point cloud	l at once is both inefficient a	nd ineffective	
Idea during implementation: quickly estimate rough elevations prior to this step (Hypothesis: it will improve segmentation effectiveness)	Solution: segment point cloud int	o subclouds with points rele	vant to each NBRS	
	Idea during implementation: quickly (Hypothesis: it will improve segmen	estimate rough elevations p ntation effectiveness)	prior to this step	

- What is Lidar segmentation?
 - In our case, it means the selection and grouping of Lidar points...
 - ...that are relevant to the underlying road surface of each NBRS
- Why do we need Lidar segmentation?
 - In short: to improve performance and make subsequent steps more effective
- Starting from a 2D road network limits effectiveness → try to first create a rough 3D conversion of NWB

- Added a step to the pipeline: elevation estimation
- The goal is to extract elevations for NWB from AHN3
 - As quickly as possible
 - And keeping the algorithm relatively simple
- Really just to provide a starting point for later steps

- The implemented workflow is simple:
 - 1. Densify vertices where necessary
 - It means the addition of vertices where line segments are very long
 - Allows us to better sample the elevation data
 - 2. At each NWB vertex, query AHN3 for nearby points and derive an elevation value
 - Red vertices/lines in figure
 - Fit polynomials on the 2D profiles represented by each NBRS to identify outliers
 Illustrated by green line
 - 4. Interpolate new values for the outliers via linear interpolation
 - Blue vertices and lines
- The results are surprisingly accurate wherever the elevation profiles of the roads are relatively simple

- Next step in pipeline: Lidar segmentation
- The preliminary elevations proved to indeed be useful
 - Thanks to them, less irrelevant Lidar points are examined in complex areas
- DTB is used in conjunction with AHN3
 - It is used both as an elevation source, and as reference (like the 3D centrelines)

- Workflow:
 - 1. Fit planes on point cloud points close to each NBRS vertex
 - 3D squares and red vertices/lines in illustration, respectively
 - 2. For each vertex, pre-select close-by points that conform with local plane fit
 - Not shown here

•

- 3. Progressing along NBRS vertices, detect shifts in the planes
 - Such as the transitional plane illustrated here
- 4. If DTB can be used to disambiguate, make use of it
 - Such as underneath the bridge here
 - Also use its (densified) vertices where reliable
- 5. Accept planes (and conformant points) which agree with the global trend of the NBRS
 - ightarrow Assemble the subclouds
- Detecting transitional plane fits was key, and also the most challenging task

- Next step in pipeline: edge approximation
- We are looking for 3D lines that *approximately* delineate the smooth, traffic-occupied parts of roads.
 - These were originally going to be optimised in the next pipeline step
- Key part of original plan to accurately classify road surface reflections

• Workflow:

5.

- 1. Construct cross-sections on NBRS vertices and densify them
 - Black vertices and lines in inset
- 2. Compute elevations for them from nearby part of relevant subcloud
 - Not shown here
- Select suitable edge points on both sides of NBRS from inliers based on line fit
 Dashed blue line
- 4. Discard non-conformant cross-sections
 - Dashed red lines
 - Assemble preliminary edges of NBRS from these discrete edge points
 - Green lines
- Dealing with NWB getting close to road edges was the most challenging aspect
 - Shown in illustration

•

This is due to NWB's coarse/inaccurate 2D georeferencing

- Next step in pipeline: edge optimisation
- This was a core part of the original pipeline design
 - The original intention was to generate rough preliminary edges...
 - ...then optimise them using active contour optimisation...
 - ...to thus be able to select road surface reflections with near-perfect accuracy
- Workflow:
 - 1. Construct attractor maps for each NBRS
 - They are rasters that describe how smooth the Lidar-defined surface is locally
 - 2. Run active contour optimisation for each NBRS, inputting the attractor maps and preliminary edges

- This did not pan out as well as I was hoping
- Using conventional active contour optimisation, some edges are drawn too far inwards or outwards
- Imperfect attractor maps result in disruptive artefacts
- Difficult to find a parametrisation that works in all possible scenarios
- I only found implementations of basic active contour optimisation, not advanced ones
- I eventually decided to phase out edge optimisation (made it optional, it can still be used)
 - Research timeframe did not allow me to spend more time on this
 - Required significant modifications to the edge estimation and TIN construction steps

- Next step in pipeline: TIN construction
- Need to create an interpolation structure from where elevations for NWB can be extracted effectively
 - Also want to model road surfaces why not do both in a single step?
- Original intention was to just construct a CDT using the optimised edges and the Lidar points between them
- After phasing out edge optimisation, it was necessary to do this differently
 - The TINs are now constructed incrementally, via a surface growing process

- Workflow:
 - 1. Seed the TIN using points close to the skeleton of road edges
 - Green line and green points, edges shown as red lines
 - 2. Grow the TIN *within the edges* using an algorithm inspired by TIN-based ground filtering workflows
 - Normal conditional insertions are shown as red points, insertions take place if point conforms with local triangle
 - Growing-type insertions are shown as yellow points, these inspect the local planar trend in a larger area
 - 3. Extend the TIN beyond the edges using targeted conditional insertions between extension boundaries (optional)
 - For instance, in extension 3, Lidar points between the blue lines labelled "Extension 3" and "Extension 4" would be considered
 - Can help fill areas missed by the previous step, such as hard shoulders

- Next step in pipeline: elevation interpolation
- Workflow:
 - 1. Interpolate NBRS vertex elevations in corresponding TINs
 - 2. Take care to ensure continuity in intersections across NBRS
 - 3. Interpolate missing values linearly where the TINs do not exist locally
 - As a post-processing step
- Using the TIN-linear interpolator

•

- The points are projected onto the triangle's surface, in which they are found
- The weight of each triangle vertex decreases away from it, as shown in the figure
- The output file is identical to the input in every aspect other than the added Z coordinates

- The final elevations represent an improvement relative to the preliminary 3D geometries
 - The final 3D centrelines are more realistic where curvature is complex
 - Continuity is now being enforced
- Less smooth, because each elevation is based on exactly three Lidar points, rather than a patch

- Comparison of the final 3D-NWB geometries and the subclouds
- Switching between AHN3 and DTB can be spotted
 - Even where very little difference exists between two datasets
- Where AHN3 data is available, the final 3D-NWB geometry is fully defined by it
- Linear interpolation reasonable where no DTB data is available and the gaps are small

- Current pipeline does not allow the paved surfaces to be fully modelled
 - This was my original goal
- Approximately 75% of the paved surfaces are modelled
 - Here this is slightly lower, as motorways are very wide
 - For provincial roads it can be above 90%
- Traffic-occupied surfaces are fully covered under normal circumstances
- This is due to the combined limitations of the edge estimation and TIN construction algorithms
 - Could be overcome with further work
 - Is a result of phasing out edge optimisation (original assumption: edges will be near-perfect)

- Ultimate assumption is: we are effectively constructing DTMs from Lidar data
- Lidar data has been ground filtered nearly perfectly
- Road slope and ruggedness assumed to be negligible (smooth, relatively flat surfaces)
- Sampling density is high enough to describe the surfaces well
 - This is very much the case in general, as diagram shows

 \rightarrow Output elevation accuracy can be determined via theoretical error propagation alone

• Highlighted the relevant part of the main research question

- Theoretical error in TIN-linear interpolation roughly constant
 - Because of the absence of steeply sloping triangles
 - Output elevation accuracy thus constant, and fully determined by input accuracy
- Sampling density in TINs remains high almost everywhere, where there is AHN3 coverage

- Moving on to the comparison with the commercial results
- The primary source of disagreement is related to DTB
 - DTB contains lots of outdated elevation data
 - The commercial implementation always prioritises DTB in the case of motorways
 - These differences are carried over directly into the two sets of results
- Hypothesis is that this is ultimately due to subsidence
 - Other factors may also be partly responsible
- RMSE values between 1 to 15 cm where agreement is good
- RMSE values above 50 cm common where DTB is very outdated
- Commercial solution makes better use of DTB, because it is specialised to it

- Commercial implementation has no explicit means of dealing with occlusion
- Elevations are grossly overestimated where there is occlusion...
 - ...wherever DTB is missing on motorways
 - ...always in the case of provincial roads
- As shown, the profile simply jumps to the elevation of the bridge
 - This is because here the commercial implementation interpolates in infilled AHN3 DTM gaps
- The academic pipeline deals with these issues effectively, even where DTB is absent
- Commercial solution works without a scaling solution

Conclusions

Concluding remarks

- Pipeline can transpose NWB to 3D via AHN3 and DTB
- AHN3 was found to be very useful
- DTB should be improved significantly, or replaced by another dataset
- NWB's georeferencing issues caused some headache
- Active contour optimisation was found to be unsuitable
- The completeness of the generated TINs could be improved
- Certain parts of the pipeline could be skipped conditionally
- It would suffice to insert far less points into the TINs
- For full scale rollout, a scaling solution still needs to be developed
- Pipeline is well-documented, source code is available open-source
- Pipeline can transpose NWB to 3D via AHN3 and DTB
 - 5-10% interpolated linearly, another few percent via DTB
 - Rest can be regarded accurate, compliant with noise regulations (< 20 cm at 2 STDs)
- AHN3 was found to be suitable for this project, but not DTB
 - DTB's issues should be resolved, or better still, it could be replaced with an MLS dataset
- NWB's georeferencing issues caused some headache, it should be improved
 - NDW is already working on it, my thesis contains a comparison
 - (Basic) active contour optimisation is not suitable to this application
 - And is not recommended for future work
- The completeness of the generated TINs could be improved via additional work
- Certain parts of the pipeline could be skipped conditionally, where they are not necessary
 - I.e. were preliminary elevations are accurate enough
 - This could improve runtimes considerably
- Less points should be inserted into the TINs
 - Somewhere slightly above the minimum sampling density would suffice
- For full scale rollout, a scaling solution still needs to be developed
- Pipeline is well-documented, source code of the implementation available open-source

Thank you for your attention, and I would like to thank my mentors and family for their help and support throughout my graduation year.

We can now move on to any questions you may have.