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Abstract— The size of wireless systems is required to be
reduced in many applications, such as ultra-low-power sensor
nodes and wearable/implantable devices, where battery and
crystal are the two main bottlenecks in system miniaturization.
In recent years, battery-free radios based on wireless power
transfer (WPT) have shown great potential in miniature wireless
systems, while a reliable on-chip clock without a crystal remains
a design challenge. Conventional methods utilized the RF WPT
tone as the reference for clock generation, but the high RF
frequency leads to high power consumption. In comparison, using
a lower WPT frequency results in an antenna with a larger size.
In this work, the 2nd-order inter-modulation (IM2) component of
the two RF WPT tones is extracted to lock an on-chip oscillator,
providing a low-jitter PVT-robust clock. In this way, the wireless
systems can benefit from: 1) The clock recovery circuits operate
at a low IM2 frequency, reducing the power consumption. 2) The
WPT can be set to a high RF frequency to minimize the antenna.
Fabricated in 65 nm CMOS process, the proposed crystal-less
clock generator takes a small area of 0.023 mm2 in a wireless
system chip. Measured results show −92 dBc/Hz@10 kHz phase
noise and 6.8 µW power.

Index Terms— Battery-free, clock generator, wireless power
transfer (WPT), injection locking, inter-modulation.

I. INTRODUCTION

THE proliferation of the internet of things (IoT) requires
the wireless nodes to be miniaturized and battery-free

in many applications. For example, a battery-free counter-
counterfeit chip is minimized to 116 μm×116 μm without
external components [1]. Especially for wireless implants,
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a small size takes an important role in alleviating sur-
gical injury and mitigating infection [2], [3], such as
a 0.125 mm2 wireless neural sensor chip in [2] and a
0.009 mm3 neural stimulator in [3]. To miniaturize the wireless
systems, it is effective to eliminate the bulky components
such as batteries and crystals. Nowadays, wireless power
transfer (WPT) is widely used to minimize or eliminate the
battery, while the crystal is still desired to provide a reference
frequency for system clock or local oscillator (LO) of a
wireless system.

For clock generation, most wireless systems utilize a crystal
as the frequency reference, leading to bulky size and high
power consumption [4]. With a size of 10s to 100s of mm3, the
crystal becomes the main bottleneck in the system miniatur-
ization due to the low integration [5], [6]. Therefore, on-chip
oscillators without a crystal are usually used to reduce the
system size and power consumption [7], [8], [9]. However,
the on-chip oscillators suffered from large jitters and PVT
variations, leading to the expense of performance degradation
or off-chip tuning.

In a battery-free wireless system, the wireless-powering tone
can be utilized as a frequency reference. In this way, a stable
clock signal can be generated without a crystal. For example,
the clock recovery from a RF powering tone generated a
synchronized clock for a wireless system [10], [11]. However,
the clock recovery circuits dissipated high power consumption
due to the high RF powering frequency, which is not applicable
in a low-power wireless system, especially in a battery-free
system. Therefore, efforts have been made to reduce the power
consumption. For instance, two coil antennas were utilized
for data telemetry and clock recovery, respectively, where the
clock recovery frequency was set to be much lower than the
RF frequency to reduce the power of clock generator [12].
Nevertheless, the two-antenna solution significantly enlarge
the size of wireless systems, e.g., 0.5 cm3 in [12].

In this paper, we propose a crystal-less clock gener-
ation technique realizing low power and miniature chip
size for battery-free wireless systems. Instead of a single
power-transfer tone in conventional battery-free systems, two
RF tones are used for WPT. The proposed circuits extract
the 2nd -order intermodulation (IM2) component, to drive
an injection-locked ring oscillator (ILRO), achieving a wide
lock range against PVT variations. As a prototype, the
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Fig. 1. Top architecture of proposed clock generation technique for battery-free wireless systems.

proposed clock generation technique is demonstrated in a
fully-integrated battery-free neural-recording chip fabricated in
65 nm CMOS process. The neural-recording chip is battery-
free, which is wirelessly powered by an external power trans-
mitter. All the circuits are integrated inside the 2 mm×2 mm
on-chip coil antenna. The neural-recording chip utilizes the
crystal-less clock generation technique to provide a global
clock for signal-acquisition unit and backscatter communica-
tion. The signal-acquisition unit includes an analog front-end
(AFE) and an ADC to amplify and digitize neural signals,
and both of the two blocks require clock signals. In addition,
the communication block uses the clock to encode the digital
neural data, which drives the backscatter switches. In this way,
the prototype wireless system have benefited from: 1) The
WPT tones is set to a 404 MHz high frequency to ensure
a small antenna size, i.e., 2 mm×2 mm. 2) As the IM2
component can reach a much lower frequency than the RF
powering tones, the power consumption of crystal-less clock
generation is significantly reduced compared to conventional
works.

The rest of this article is organized as follows. Section II
presents the system architecture of the proposed clock gen-
eration circuit in a battery-free system. The circuit designs
are detailed in Section III, and the measured results are
summarized in Section IV. Finally, Section V concludes the
paper.

II. SYSTEM ARCHITECTURE

The system architecture based on the proposed clock gen-
eration technique is shown in Fig. 1, including an off-chip
power transmitter and a fully-integrated battery-free wireless
chip. The power transmitter includes two RF signal generators,
two power amplifiers (PAs), a power combiner, and a PCB coil
antenna. The proposed crystal-less clock generation technique
is implemented on the CMOS chip, which includes an on-chip
rectenna (antenna & rectifier), a power-management unit,
a pulse generator, and an ILRO.

In comparison to the two-antenna solution [12], our chip
includes a single antenna to reduce the system volume,
which harvests energy through wireless power transfer (WPT).
Meanwhile, backscatter circuits are also implemented for data
communication. To reduce the size of antenna, the WPT link

operates at a high RF frequency (400 MHz frequency band),
realizing an on-chip antenna with 2 mm×2 mm dimension.
All the circuits locate inside the loop antenna, resulting in a
2 mm×2 mm die area.

Compared to the conventional RF-based clock recov-
ery [11], we design a clock generator based on the IM2
component ( fIM2) of the two RF powering tones. The IM2
frequency fIM2 is much lower than the WPT frequencies,
so the proposed clock generator consumes less power than
the conventional RF-based clock recovery.

The operating principle and flow of proposed clock gener-
ation technique can be analyzed by equations. The powering
tones f1 = 404 MHz and f2 = 408 MHz coming from two
power amplifiers (PAs) is summed by a power combiner, and
then emitted by a PCB coil antenna. Then, the two powering
tones are harvested by the on-chip antenna and converted into
a DC voltage (VDC) by the subsequent rectifier. Afterwards, the
rectified DC voltage VDC is regulated by a power-management
unit (PMU), which provides supply voltages VDD and biasing
currents IREF to pulse generator and ILRO. The input signal
of rectifier can be expressed by:

x(t) = (A1 cos ω1t + A2 cos ω2t)Gant(ω), (1)

where A1 cos ω1t and A2 cos ω2t are the two WPT tones, and
Gant (ω) is the link gain. Due to the nonlinearity of rectifier,
there will be intermodulation components at the output:

y(t) ≈ α1((A1 cos ω1t + A2 cos ω2t)Gant (ω))

+α2((A1 cos ω1t + A2 cos ω2t)Gant (ω))2

+α3((A1 cos ω1t + A2 cos ω2t)Gant (ω))3, (2)

where the IM2 component α2Gant (ω)A1 A2 cos (ω2 − ω1)t is
explored for clock generation. By setting gap between the two
WPT frequencies, the IM2 tone locates at a lower frequency
than the RF WPT tones but close to the fSYS. As a result, the
pulse generator and the ILRO realize the low-power clock for
the chip system.

To realize a reliable clock for the wireless system, our
clock generator includes a pulse generator and an ILRO.
The pulse generator extracts the IM2 component ( f2 − f1)
and suppresses other undesired signals. To achieve a clean
IM2 frequency, we apply an RC network to suppress the
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Fig. 2. On-chip antenna: (a) Inductance and (b) Q-factor.

undesired frequency components. For instance, the rectifier
output includes the WPT tones f1 and f2, as well as f3 and
f4 induced by backscattering communication. Afterwards, the
IM2 component is amplified and shaped into a pulse signal,
which serves as an reference for the subsequent ILRO. The
ILRO is designed to lock to the IM2 component, where
the pulses with optimized width is injected into the ILRO
to achieve the injection lock and provide a low-noise clock
fSYS = 2 MHz.

III. CIRCUIT DESIGNS

The details of the circuit are presented in this section.
Firstly, we introduce the designs of the coil antenna in the
power transmitter and the on-chip rectenna in the CMOS
chip. Secondly, the circuit of the pulse generator is described.
Finally, we details the design of clock generator, and discussed
how the lock range of ILRO is maximized against PVT
variations.

A. On-Chip Rectenna

For the application of medical implant, the chip is designed
with an on-chip antenna to minimize the system size. Fabri-
cated in the 65 nm CMOS process, the RF WPT frequency is

Fig. 3. Simulated link gain between transmitting and receiving antennas.

Fig. 4. Rectenna: (a) Circuit and (b) Simulated frequency response.

set to 404 MHz, resulting in an on-chip coil antenna with
a dimension of 2 mm×2 mm. Fig. 2(a) shows the simu-
lated inductance of the on-chip antenna versus the operating
frequency, while Fig. 2(b) illustrates the simulated Q-factor,
which is optimized at the 404 MHz frequency. It can be
seen that the optimized on-chip antenna has an inductance of
33.5 nH and a Q-factor of 18.5. Afterwards, the transmitting
(Tx) coil antenna is also optimized for maximal link gain,
as shown in Fig. 3. At 404 MHz, the simulated link gain
between the antenna pair is -17.5 dB at 1-cm range towards
the ultra-small on-chip antenna.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 12,2023 at 09:53:58 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 5. (a) Harvested DC voltage vs. Tx power ratio (PTX,1/PTX,2). (b) Sim-
ulated IM2 amplitude vs. power ratio at rectifier input (PREC,1/PREC,2).

The AC-DC rectifier is co-designed with the antenna target-
ing at a high power gain. As illustrated in Fig. 4(a), the number
of the differential-driving rectifier cells [13] is optimized to
be four stage for maximal RF-to-DC power-transfer gain. The
resonant capacitor CR is designed to resonate with the antenna,
and the coupling capacitors CC are used for AC coupling.
Fig. 4(b) illustrates the simulated frequency response of the
rectenna. At WPT frequency f1, the overall power gain is
optimized and reaches −22.3 dB at 1-cm range.

Instead of the single-tone in conventional WPT systems,
we adopt two WPT tones delivered from the transmitter to
the CMOS chip. The gap between the two tones are set to
be 4 MHz, i.e., f1 = 404 MHz and f2 = 408 MHz. Thus,
the IM2 component ( f2 − f1 = 4 MHz) of the two tones
can be extracted to generate the clock signal for the system,
reducing the power compared to the conventional RF-based
clock recovery.

Compared to single-tone WPT, the rectified DC voltage and
IM2 amplitude are related to the power ratio of the two tones.
The total power of the two tones (PTX,1 and PTX,2) is fixed
to 40 mW. Meanwhile, we increase PTX,1 and decrease PTX,2
to observe the rectified DC voltage and IM2 amplitude. Since
the rectenna resonates at the frequency f1, the power gain at

f1 is higher than f2. As a result, the rectified DC voltage rises
versus the increasing of power ratio PTX,1/PTX,2, as shown
in Fig. 5(a).

In this work, the IM2 of the two WPT tones at the rectifier
output is extracted for clock generation. Note that the AC-DC
rectifier is a typical nonlinear module, so various frequency
components are produced at the rectifier output. The two input
tones of the rectifier can be represented by

V1 = Vm1 cos 2π f1t, (3)

V2 = Vm2 cos 2π f2t . (4)

Due to the 2nd -order nonlinearity in the rectifier circuit, the
(V1 + V2)2 component appears at the output of the rectifier,
resulting in an IM2 tone f2 − f1. The amplitude of IM2
component follows the relationship VIM2 ∝ Vm1 × Vm2.

The amplitude of IM2 component can be increased by
optimizing the power ratio of two tones at the rectifier input.
In the proposed design, the amplitude of IM2 component
is critical since it directly determines the lock range, which
reflects the ability to avoid PVT variations. The IM2 power
versus power ratio of f1 and f2 at the rectifier input is
simulated in Fig. 5, where the total power is kept to be 150 μW
(PREC,1 + PREC,2). We represent the power ratio of the two
tones at rectifier input by a parameter α = PREC,1/PREC,2,
where PREC,1 and PREC,2 represent the power of f1 and f2 at
the rectifier input, respectively. The simulation result shows
that the IM2 tone reaches the peak when the two input tones
of rectifier are with the same power, i.e., PREC,1 = PREC,2.

B. Pulse Generator

The pulse generator shapes the IM2 signal into optimized
pulses for injection locking, and filters down other frequency
components as well. At the output of AC-DC rectifier, there
are various frequency components, while the injection locking
only requires the IM2 signal f2− f1. In addition to the wireless
powering tones f1 and f2, there are other frequency signals
introduced by backscattering communication, such as f3 =
2 MHz and f4 = 20.83 kHz shown in Fig. 1. The proposed
clock generator is implemented in the neural-recording chip,
and the neural data is encoded to drive the switches for
backscatter communication. The backscatter signal includes
two frequency components, where f3 = 2 MHz is the
frequency of the encoding carrier, and f4 = 20.83 kHz is
the sample rate of the signal-acquisition unit. At the rectifier
output, there are several frequency components including

f = a f1 ± b f2 ± c f3 ± d f4, (5)

where the parameters a, b, c, and d are integers. In general,
the high-order tones show low power, which can be neglected.

The base-frequency and 2nd -order tones with relatively
higher power should be taken into account, such as f2 − f1,
2×( f2− f1), f3, f4, f1, f2. Subsequent to the AC-DC rectifier,
the pulse generator converts the weak IM2 signal into strong
pulses to enhance the injection locking. As shown in Fig. 6(a),
we adopt a bandpass RC filter to suppress undesired frequency
tones in VDC. As a result, the filter is designed to be with a
center frequency of IM2 ( f2 − f1 =4 MHz) and a passband of
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Fig. 6. IM2 pulse generator: (a) Circuit. (b) Signal spectrum in nodes VDC,
N1, and N2.

2.5 MHz−15 MHz. The frequency component 2×( f2 − f1) is
the 4th harmonic generated by the rectifier, which is -25 dB
lower than the IM2 signal f2 − f1 in VDC. As a result, the
component 2×( f2 − f1) shows little impact on the injection
lock. Then, an inverter-based amplifier is used to enlarge the
IM2 signal while a feedback resistor is used to set the DC
operating point. Finally, the IM2 signal is further amplified
into a full-scale square waveform by cascaded inverters.

The frequency response of the pulse generator is simulated
in Fig. 6(b). The simulation only incorporates the dominated
tones, while the weak tones are neglected. At the node VDC, the
magnitude of IM2 and other frequency components are shown
in Fig. 6(b), top. At the node N2, we can see that the IM2
tone dominates all the frequency components, indicating that

Fig. 7. Analysis of injection locking: (1) Circuit model. (b) Phasor diagram
of free-running state. (c) Phasor diagram of injection-locked state.

the filter has effectively suppressed undesirable interference
(Fig. 6(b), bottom).

To provide an optimized pulse signal for injection locking,
it is necessary to convert the IM2 signal into narrow pulses.
As analyzed in [14], narrow-pulse shaping of the injected
signals can help to improve the noise performance of ILRO.
In this design, the pulse generator adopts a delay line and
an AN D gate to convert the amplified square signals into
pulses. The delay line employs three identical delay cells to
provide a ns-level time delay, where each cell is composed by
a current-starved inverter controlled by the bandgap reference
Ibias, and two other inverters used to re-shape the delayed
signals. Finally, the AN D gate is used to provide a narrow
pulse injected into the ring oscillator.

C. Injection-Locked Ring Oscillator

An ILRO is designed to be locked to the IM2 component of
two wireless powering tones, which generates a stable clock
signal while filtering out undesired tones. The two wireless
frequencies f1 and f2 generates the IM2 component f2 − f1,
replacing a crystal to serve as the reference of ILRO. In this
way, the IM2 frequency f2 − f1 is much lower than the
RF powering frequencies f1 and f2, so the clock generator
consumes much lower power than the conventional RF based
clock recovery circuits. A ring oscillator structure is adopted
for a small die area and low power. The target of circuit
optimization is to provide a reliable clock in a wide range
of applications [14], [15], [16], [17], [18], [19], [20], [21].
In this section, the design considerations of ILRO circuit is
discussed.

To generate a reliable clock immune to PVT variations, it’s
necessary to maximize the lock range. Given the free-running
frequency ω0 and the injected frequency ωinj, the lock range
can be defined as [22]:

lock range := ω0,max − ω0,min, (6)

where ω0,max and ω0,min are the maximal and mini-
mal free-running frequencies that can be locked to winj,
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respectively. The symbol “:=” means “be defined as”. In addi-
tion, the upper edge and the lower edge of the lock range
is represented by ω0,max and ω0,min, respectively. If the
free-running frequency of ILRO exceeds the lock range, the
oscillator will not be able to locked to the injected frequency,
leading to injection pulling.

Conventional methods such as Alder’s equations [22], [23],
[24], [25] and phasor diagram [26], [27], [28], [29] ana-
lyzed the injection locking based on the injection current.
Conventional injection locking methods result in limited lock
range, where the injection current iinj(t) should be strong and
the injection frequency winj is required to be close to the
free-running frequency w0.

A periodic current iinj(t) injects to the oscillator, and
the frequency winj of the injection current is close to the
free-running frequency w0 of the ring oscillator. If there is
a phase difference θ between Iinj and Iosc, the oscillating
is shifted to a new frequency w1, resulting in an additional
current flowing into the oscillator. To satisfy the Barkhausen
criteria [30], each stage should provide a phase shift of −π/N
to sustain the oscillation. As the periodic current Iinj is injected
into a stage, an extra phase shift θ changes the oscillating
period, resulting in injection locking to ωinj. The lock range is
inversely proportional to the stage number of ILRO for a given
Iinj/Iosc. Likewise, the lock range is proportional to Iinj/Iosc
at a given stage number [29].

In this work, we design an ILRO with three-stage single-
ended ring oscillator based on inverter cells. The circuit is
shown in Fig. 8, where each stage contains a current-starved
inverter for low power operating and two additional inverters
for waveform shaping. At the output of the current-starved
inverter, there is a capacitor that determines the delay time
T0 of each stage. The free-running frequency of the ring
oscillator is expressed by

f0 = 1

2NT0
(N = 3), (7)

The bias current and the capacitor are set to operate the ring
oscillator around the 4 MHz target frequency. At a low power,
the charging and discharging of the capacitors are relatively
slow, resulting in a triangular wave at the output of the current-
starved inverter. To improve the jitter performance, another
two inverters in each stage shape the signal into a full-swing
square wave. As the input, the voltage pulses coming from the
pulse generator is converted into current pulses through the
injection stage (including a NMOS transistor and a resistor).
Acting as a degenerator, the source resistor RS is used to
control the gain of the injection stage, optimizing the lock
range and noise performance.

We develop a time-domain model based on the theory
in [31] for the injection locking process. In the ring oscillator,
we analyze the time delay of each cell in different conditions.
Three points in the ring oscillator are picked up, which are
marked by N1, N2, and N3 in Fig. 8. In free-running state,
each stage in the oscillator has a delay of T0, resulting in an
oscillating frequency of 1/6T0. If the pulse signal is injected
into N2 through the injection transistor, then the delay from
N1 to N2 will be periodically affected. Then, the injection

Fig. 8. ILRO circuit.

Fig. 9. Time-domain analysis at (a) a lower-frequency injected signal and
(b) a higher-frequency injected signal.

current breaks the free-running state, and pushes the ring
oscillator into a new steady state. Fig. 9(a) and Fig. 9(b) show
the cases that the ring oscillator reacts to an injection current
with a lower and higher frequency, respectively.

Firstly, we analyze the case that the injection frequency
( fIM2) is lower than the free-running frequency ( f0), as shown
in Fig. 9(a). Generally, the injected pulse has a random phase
difference with the signal of N2. If the injected pulse arrives at
the falling edge of the waveform at N2, the falling of N2 will
be accelerated due to the injected pulse. Then, the signal of
N2 will be pushed towards the left side. We assume the falling
time is shortened by �T (t), where �T (t) changes with the
injection pulse. As the signal of N2 is pushed towards left, the
injected pulse will arrive at the rising edge of the N2 signal
after several periods. Then, if the injected pulse meet the
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rising edge of the N2 signal, the injected pulse will delay
the rising of the N2 by �T (t) towards right. This process is
illustrated in Fig. 9(a), left. Apparently, if the injection pulse
meets the rising edge of N2 at the beginning, the waveform of
N2 will be directly shifted towards right, as shown in Fig. 9(a),
right. Finally, the waveform at N2 enters a steady state,
i.e., injection-locked state, when the shifting time becomes
a constant �T (t) = �TC . During the locking process, the
delay from N1 to N3 becomes T0 + �T (t), depending on the
frequency difference. �T (t) keeps changing till the oscillator
is locked, then we have �T (t) = �TC and

6 × T0 + 2 × �TC = TIM2, (8)

where TIM2 is the period of IM2 pulse signal. Note that the
time drift �TC depends on the frequency difference between
the fIM2 and f0.

From the analysis above, we can see that the oscillator can
be locked within the lock range. In addition, the locking will
happen no matter even there is a big initial phase difference
between the injected pulse and the N2 signal.

Secondly, the other injection locking case is shown in
Fig. 9(b), where the injection frequency ( fIM2) is higher than
the free-running frequency ( f0). If the injected pulse comes
at the falling edge of N2, the falling edge will be shifted
by �T (t) towards left. After several cycles, the oscillator is
locked and �T (t) = �TC. If the injected pulse meets the
rising edge of N2, the oscillating waveform will be shifted until
the injected pulse arrives at the falling edge. In this way, the
injection locking will be completed as the time drift becomes
a constant of �T (t) = �TC. The delay from N1 to N3 is
reduced to T0 − �T (t), increasing the oscillating frequency.
The period of the oscillator in locked state can be expressed
by

6 × T0 − 2 × �TC = TIM2. (9)

Based on the analysis, we can conclude that the injected
pulse changes the oscillator frequency by delaying the rising
of N2 signal (when fIM2 < f0) or accelerating the falling of
N2 signal (when fIM2 > f0). When fIM2 < f0, the time drift
+�TC can achieve a relatively large value as long as it is
smaller than 1/ f0. However, when fIM2 > f0, the time drift
−�TC is limited since the falling time of N2 is greater than 0,
so we have the delay from N1 to N3

T0 − �TC > 0. (10)

Thus, the time drift has different limitations in these two
situations, resulting in an asymmetrical lock range.

The source degenerator RS of the injection transistor is
optimized to improve the lock range. As shown in Fig. 8, the
injection stage is a common-source stage with a degeneration
resistor RS, which converts the injection pulse into a periodic
current signal. The source degeneration resistor improves the
linearity of the injection stage, impacting the lock range. In this
case, we adjust the value of RS to observe the change of
lock range of ILRO, as given in Fig. 10. Accompanying the
increasing of RS, the lock range is shortened since the gain
of injection stage is reduced.

Fig. 10. Lock range vs. source degeneration resistor RS.

Fig. 11. Lock range vs. injected pulse width.

Fig. 12. Lock range vs. power ratio at rectifier input (α=PREC,1/PREC,2).

To further improve the lock range, the width of the injected
pulse is also optimized in our design. The lock range versus
pulse width is simulated in Fig. 11. As we analyzed before, the
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Fig. 13. Free-running frequency vs. rectified DC voltage at (a) -30 ◦C,
27 ◦C, 80 ◦C, and (b) corner ‘ss’, ‘tt’, ‘ff’.

lock range is asymmetrical, i.e., the upper edge and lower edge
of the lock range show different trends versus the increasing
of the pulse width. According to the analysis in Fig. 9(a) and
Fig. 9(b), a wider pulse can help a higher-frequency oscillator
lock to the fIM2, so the upper edge of lock range ω0,max can be
increased by enlarging the pulse width. For the lower edge, the
frequency ω0,min can be decreased slightly as the pulse width
is enlarged, leading to a wider lock range. However, a too-
wide injected pulse will damage the free-running waveform,
leading to even worse lock range. Overall, the lowest edge of
lock range can be achieved when the pulse width is close to T0.

At the Tx side, we optimize the strength of two tones to
enhance the clock performance. As analyzed in Section III-A,
the amplitude of IM2 reaches the peak when the power of
f1 and f2 at the rectifier input are the same. We assume
the ratio of the two power as α = PREC,1/PREC,2, where
PREC,1 and PREC,2 corresponds to the power of frequency
f1 and f2 at the rectifier input, respectively. Fig. 12 shows
the lock range versus the ratio α. As α is increased, the upper
edge of the lock range (ω0,max) falls and the lower edge of
the lock range (ω0,min) rises, leading to a smaller lock range
(ω0,max − ω0,min ). The lock range is decreased because the
IM2 amplitude is reduced by a higher power ratio α.

Fig. 14. (a) Die micrograph. (b) Measurement setup.

The simulated free-running frequency at different supply
voltages VDC and temperatures is shown in Fig. 13(a). From
−30 ◦C to 80 ◦C, as the rectified DC voltage varies from
1 V to 1.6 V, f0 ranges from 3.5 MHz to 5.3 MHz. The
simulated free-running frequency at different supply voltages
VDC and corners is shown in Fig. 13(b). The rectifier output
voltage changes in the range of 1 V−1.6 V at different Tx
power. As the targeting rectified voltage is expected to be
1 V−1.6 V, there is some margin to compensate the process
corners. With a 50 k� RS and a 65-ns-pulse-width injected
pulse, the lock range can cover all the frequency variations
induced by temperature, process, and DC voltage. Meanwhile,
the harmonics of the IM2 signal is excluded in the free-running
frequency range to ensure the injection lock to fundamental
frequency.

The neural-recording chip utilizes the crystal-less clock
generation technique to provide a global clock for
signal-acquisition unit and backscatter communication. Instead
of a crystal oscillator, our clock generation technique utilizes
the IM2 component of the WPT tones as the reference, and
the temperature coefficient is determined by the external RF
powering signal. Meanwhile, the lock range of our ILRO can
cover temperature varies from −30 ◦C to 80 ◦C, ensuring a
clock robust to temperature.

IV. MEASUREMENT RESULTS

This chip is implemented in 65 nm CMOS process, and the
die micrograph is shown in Fig. 14(a). The proposed clock
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Fig. 15. (a) Power gain vs. power transfer range. (b) Power gain vs. Tx power.

generation technique is integrated into a 2 mm×2 mm chip
for medical implants, where the clock generation circuits take
an area of 0.023 mm2. The rectifier takes a dimension of
144 μm×85 μm, while the pulse generator and ILRO occupy
a chip dimension of 94 μm×116 μm. As the system incorpo-
rates an off-chip Tx power transmitter and a fully-integrated
CMOS chip, the testing setup is demonstrated in Fig. 14(b).
Two RF signal generators, two PAs, and a power combiner
deliver two WPT tones f1 and f2 to a Tx antenna. Meanwhile,
a probe station holds the miniature CMOS chip in place to
receive the WPT tones. In this way, the IM2 signal and the
output of clock generator can be measured by an oscilloscope
and a spectrum analyzer (SA).

The WPT from the Tx power transmitter to the CMOS chip
is measured at different ranges and Tx power. We utilize an
RF signal generator and a PA to provide a 404 MHz tone with
16 dBm power, which is harvested by the CMOS chip. The
harvested power and the power gain versus the power transfer
range is measured in Fig. 15(a). It shows that the power gain is
−24.5 dB at a typical powering range of 1 cm. In addition, the
power gain versus Tx power is shown in Fig. 15(b), indicating
that the maximum power gain is achieved at 16 dBm Tx power.

Fig. 16. (a) IM2 envelope at rectifier output. (b) Carrier frequency of RF
powering tones.

The waveform and magnitude of the IM2 signal is measured
at the output of AC-DC rectifier. We apply two tones f1 =
404 MHz and f2 = 408 MHz to power the chip wirelessly.
The rectifier output is monitored by an oscilloscope, as shown
in Fig. 16(a). At the output of AC-DC rectifier, the signal
envelope indicates the 4 MHz IM2 frequency. The waveform
is zoomed in Fig. 16(b), where we can still see the carrier
frequency of RF WPT tones. Since the on-chip rectenna is
optimized at f1, the residual RF signal in VDC is mainly
f1 component. The VPP of the residual RF signal is only a
few mV, which can be suppressed by the subsequent circuits.

Finally, we measured the noise of both the ILRO and
the injected pulse signal. In the free-running mode, the ring
oscillator works at a frequency of 4.8 MHz, which is shifted
away from the targeting 4 MHz due to the PVT variations.
The clock frequency is obtained by a divided-by-2 divider,
which is approximately 2.4 MHz, as shown in Fig. 17(a).
With injection locking, the ring oscillator is pushed to the
targeting frequency of 4 MHz, resulting in a 2 MHz stable
clock, as shown in Fig. 17(b). Fig. 18 shows the phase
noise traces of pulse signal (the output of pulse generator),
free-running oscillator, and ILRO, respectively. Without the
injection signal, the phase noise of free-running oscillator
is −45 dBc/Hz@10 kHz. In comparison, the phase noise is
reduced to −92 dBc/Hz@10 kHz by the injection locking.
The crystal-less clock generator achieves a measured 10 ppm
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TABLE I

COMPARISON OF CLOCK GENERATORS IN BATTERY-FREE WIRELESS SYSTEMS

Fig. 17. ILRO output in (a) free-running and (b) injection-locked states.

Fig. 18. Phase noise of injected pulse, free-running oscillator, and injection-
locked oscillator.

Allan deviation floor. In addition, the power consumption of
the whole clock generation circuit is 6.8 μW.

The performance of this design is compared to previous
clock generation circuits in battery-free wireless systems,

as shown in table I. Compared to conventional methods utiliz-
ing crystal or RF powering tone as the reference, our design
achieves lowest power consumption. In addition, compared to
conventional free-running oscillator, our method can get rid
of the off-chip tuning. Moreover, our design only requires a
single antenna for both WPT and clock recovery, realizing a
single-chip wireless system.

V. CONCLUSION

Battery-free radios are promising in many IoT applica-
tions, while the crystal-less clock generation remains a design
challenge in system miniaturization. The conventional designs
recovery the clock directly from the RF WPT tone, suffering
from high power consumption. In this paper, we proposed
a clock generation technique based on the IM2 component
of two wireless powering tones. As the IM2 frequency is
much lower than the RF WPT frequency, the proposed IM2
injection locking circuits generates a low-noise clock signal
while other interferes are filtered out. The chip implementation
and measured results shows that: 1) The high RF frequency in
WPT link results in a miniature antenna size of 2 mm×2 mm.
2) The low frequency of IM2 component reduce the power
of clock generator to 6.8 μW, which is 35% lower than
conventional RF-based clock recovery circuits. 3) Compared
to a tuning oscillator, the proposed IM2 injection locking
technique achieves 47 dB lower noise at 10 kHz offset, taking
a die area of only 0.023 mm2.
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