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Summary
A call for bio-based fuels, materials and the growing antibiotics and food additive mar-
ket yield an increasing demand for bulk-scale bioprocesses, paired with a demand for
larger and more efficient bioreactors. Upscaling bioreactors might induce transport
issues, such as an increased mixing time, possibly giving rise to gradients in process
conditions (substrate/oxygen concentration, temperature, shear rate, pH). These gradi-
ents mean that micro-organisms continuously observe changes in their environment,
affecting their metabolism and possibly reducing their performance. This inherent
scaling issue is a consequence of the complex interaction between hydrodynamics
and kinetics.

The goal of the Hé-project, of which this work is part, is to gain more understand-
ing about this interaction and its quantitative effects. Experimentally, the use of scale-
down simulators (lab-scale setups that replicate the large-scale environment) is gain-
ing popularity. Within the scope of the Hé project scale-down experiments considering
the effects of substrate and oxygen availability and shear stress on P. chrysogenum are
conducted at East China University of Science and Technology (ECUST). The results
of these and earlier studies are used for the development of a metabolic model for
this organism by researchers at ECUST, that currently captures the effect of substrate
variations on the penicillin production.

Current scale-down simulators typically impose fluctuations based on the global
large-scale mixing time or without industrial reference. While such setups increase
our understanding, they may not adequately reflect the environment in large-scale
reactors. This thesis focuses on the use of computational fluid dynamics to study
mixing in industrial bioreactors, and in particular to study the variations in substrate
concentration observed by micro-organisms. The simulation results are translated to
input parameters for the design of representative scale-down simulators. This new
generation of scale-down simulators has the potential to quantitatively evaluate the
effect of heterogeneity in industrial bioreactors on a case specific basis. While the
focus is on substrate concentration variations, the outlined methods are equally valid
for other process parameters. Using Eulerian (field-based) methods, a penicillin and a
yeast fermentation process were simulated. In both cases reasonable agreement with
experimental validation data is observed, including the local substrate concentration
in the yeast case. Hence, we regard the simulations as a good reflection of the studied
processes, within the required assumptions.

The Reynolds-averaged turbulence models used for modeling do not adequately
capture all physical phenomena currently. The mixing time in multi-impeller fermen-
tors is structurally over-predicted by improper assessment of the influence of turbu-
lence between impeller compartments; the MRF impeller model additionally ignores
the effect of macro-instabilities that were observed in such flows. Fine-tuning of the
turbulent Schmidt number, suggested in earlier studies to improve agreement in the
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global mixing time, limits predictive value. While large-eddy simulations perform
superior with respect to mixing time, their computational demands prohibit routine
application. Further attention is required for the interaction between turbulence, aer-
ation and rheology; the latter had to be omitted in the current study.

Lagrangian (particle-based) simulations allow to track thousands of micro-
organisms, and record substrate fluctuations from their point of view; referred to as
lifelines. The observed variations strongly depend on the balance between the mix-
ing and substrate consumption timescale. We analyzed lifelines using three methods:
regime analysis, arc-analysis and Fourier analysis. The acquired fluctuation statis-
tics were employed to guide the design of scale-down simulators; both the design
of single-vessel, fluctuating feed and multi-vessel simulators is illustrated. Since the
concentration fluctuations are influenced by substrate consumption by the organism,
the biomass concentration has to be matched between the lab-scale and large scale
in order to ensure an equal rate of change between the cases. This can lead to op-
erational complications for lab-scale simulators. The distribution of fluctuation times
follows an exponential decay in stirred vessels, with the mean fluctuation timescale
in the order of the vessel circulation time - a factor four below the global mixing time,
and significantly faster than applied in current scale-down simulators.

Coupling ametabolic model to the Lagrangian simulations allows to predict the im-
pact of substrate variations on the metabolism. For a P. chrysogenum fermentation in a
54mኽ reactor, we predict a yield loss of 18−46% compared to the ideal mixing case. A
simple change in the feed location predicts a reduction in loss to 9%, which illustrates
the capacities of Lagrangian simulations for design purposes. Similarly, the results can
be used to suggest metabolic optimizations. Numerical evaluation of a scale-down
simulator design shows a good match in the metabolic response compared to the in-
dustrial scale simulation. The performance is unlikely affected by non-ideal lab-scale
mixing, and a reduction in biomass concentration by a factor two compared to the
industrial value does not compromise performance, despite a reduced rate-of-change.
However, these observations are expected to be highly case-dependent. A fed-batch
simulation (60 hours flow time) shows that the coupled metabolic-hydrodynamic ap-
proach captures industrial growth and production profiles, and furthermore reveals
considerable intra-cellular heterogeneity in enzyme and metabolite levels over the
population. This provides a target for experimental assessment, for example using
fluorescent labeling of the relevant enzymes.

Altogether, the work presented in this thesis shows that Euler-Lagrange computa-
tional fluid dynamics can be used to assess the impact of extra-cellular heterogeneity
on the metabolism of micro-organisms, from their point of view. The acquired fluc-
tuation statistics can be used for the design of representative-scale down simulators.
Combining the experimental verification of these scale-down simulators with simu-
lations, process improvements can be suggested and evaluated, both regarding the
reactor and the metabolism. With this, we are one step closer to rational, reliable
scale-up of industrial bioprocesses.



Samenvatting
De vraag naar materialen uit hernieuwbare grondstoffen, alsmede de groeiende markt
voor antibiotica en voedingsmiddelentechnologie, zorgt voor een toenemende inte-
resse in industriële bioprocessen op bulkschaal, gepaard gaande met een vraag naar
grotere, efficiëntere bioreactoren (fermentoren). Schaalvergroting leidt typisch tot een
verhoogdemengtijd en andere transportproblemen, die mogelijk leiden tot gradiënten
in procescondities (substraatconcentratie, temperatuur, pH,...). Dergelijke gradiënten
betekenen dat de micro-organismen continu variaties in hun omgeving waarnemen,
die hun metabolisme en daarmee mogelijk productie (negatief) beïnvloeden. Dit in-
herent schaalafhankelijke effect is een gevolg van de complexe interactie tussen me-
tabolische kinetiek en hydrodynamica in industriële bioreactoren.

De doelstellingen van het hé project, waarbinnen het huidige onderzoek is uit-
gevoerd, zijn het vergroten van het begrip betreffende hydrodynamisch- kinetische
interacties in bioreactoren, en het kwantitatief inschatten van de gevolgen hiervan.
Experimenteel zijn er ontwikkelingen gaande op het gebied van neerschaalsimulato-
ren; reactoren met het doel om fluctuaties, geobserveerd door micro-organismen in
industriële reactoren, op labschaal na te bootsen. Binnen het hé project worden de
effecten van fluctuaties in substraatconcentratie, zuurstofconcentratie en schuifspan-
ning op het micro-organisme P. Chrysogenum met dergelijke technieken bestudeerd
aan de East China University of Science and Technology (ECUST). Op basis van de
daar behaalde en eerdere resultaten is door onderzoekers van ECUST een metabo-
lisch model voor dit organisme opgesteld, dat momenteel het effect van variaties in
substraatconcentratie op de penicillineproductie vangt.

Momenteel zijn de fluctuaties in neerschaalreactoren typisch gebaseerd op globale
mengtijden, of zonder referentie naar industriële condities. Hoewel deze reactoren ons
begrip betreffende de effecten van extracellulaire fluctuaties vergroten, is de waarde
van dergelijke experimenten als industriële afspiegeling discutabel. In het huidige
werk wordt numerieke vloeistofdynamica gebruikt om inzicht te verschaffen in het
menggedrag in industriële bioreactoren, en met name de substraatvariaties geobser-
veerd door micro-organismen in deze reactoren. Deze informatie wordt vertaald naar
ontwerpparameters voor neerschaalsimulatoren, die de dynamica van de grote schaal
weerspiegelen. Deze nieuwe generatie neerschaalsimulatoren heeft de potentie om de
metabolische effecten van extra-cellulaire variaties kwantitatief te evalueren, voor een
specifieke fermentatie, met een specifieke reactorgeometrie en organisme. Hoewel de
huidige focus op substraatfluctuaties ligt, zijn de methoden eveneens toepasbaar voor
andere procesparameters zoals de zuurstofconcentratie, pH en temperatuur.

Op basis van Euleriaanse (veldgebaseerde) numerieke methoden zijn een
penicilline- en een gistproces gesimuleerd. In beide gevallen is een redelijke overeen-
komst met beschikbare validatiedata, zoals de mengtijd en gasfractie, en in het geval
van het gistproces zuurstofoverdracht en lokale substraatconcentratie. De simulaties
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kunnen worden beschouwd als een goede afspiegeling van de werkelijke processen,
binnen de gestelde aannames.

Een aantal aspecten betreffende bioreactor fysica worden met huidige Reynolds-
gemiddelde numerieke methoden niet adequaat gevangen. Dergelijke simulaties, spe-
cifiek het ”multiple reference frame”(MRF) roerdermodel, overschatten de mengtijd in
reactoren met meerdere roerders doordat turbulente dispersie van materiaal tussen de
roercompartimenten slecht gevangen wordt. Het MRF model negeert daarnaast de ef-
fecten van een macro-instabiliteit in het stromingspatroon. Gesuggereerde fijnstelling
van het turbulent Schmidt-getal ten behoeve van het vangen van de globale mengtijd
gaat ten koste van de voorspellende waarde. Grote-eddy simulaties presteren beter
qua menging, maar de hoge rekentijd weerhoudt routinematige toepassing hiervan.
De interactie tussen turbulentie, beluchting en reologie is een punt van aandacht; het
laatste aspect is noodzakelijkerwijs buiten beschouwing gelaten in het huidige werk.

Door middel van Lagrangiaanse (deeltjesgebaseerde) simulaties zijn substraatvari-
aties in de grote-schaal simulaties vastgelegd vanuit het oogpunt van duizenden indi-
viduele micro-organismen; de zogenaamde levenslijnen. De geobserveerde variaties
blijken sterk afhankelijk van de verhouding tussen de tijdsschaal van substraatopname
en de tijdsschaal van menging. De levenslijnen zijn met een drietal methoden gea-
nalyseerd: regime-analyse, trajectanalyse en Fourier-analyse. De hiermee gewonnen
fluctuatiestatistieken kunnen worden gebruikt voor het ontwerpen van representa-
tieve neerschaalsimulatoren, zowel op basis van voedingsvariaties als op basis van
meerdere reactorcompartimenten. Met name de eerste twee methoden worden in
dit werk geïllustreerd. Aangezien de geobserveerde substraatfluctuaties een resul-
taat zijn van de consumptie door het organisme, dient een neerschaalsimulator met
een gelijke biomassaconcentratie te opereren als de industriële schaal om een gelijke
fluctuatiesnelheid te bewerkstelligen. Dit kan voor operationele complicaties zorgen
op de labschaal, met name voor viskeuze fermentatievloeistof. De spreiding van de
fluctuatieduur in geroerde vaten volgt een karakteristieke exponentiële afname, met
een gemiddelde tijdsschaal in de ordegrootte van de circulatietijd, circa een kwart van
de globale mengtijd en significant sneller dan in huidige neerschaalsimulatoren.

De levenslijnen kunnen verder worden gebruikt om de invloed van extra-cellulaire
variaties op het metabolisme te voorspellen, middels het koppelen van metabolische
modellen aan de Lagrangiaanse fase in vloeistofsimulaties. Deze koppeling voorspelt
een afname van 18 − 46% in de penicillineproductie ten opzichte van de ideale si-
tuatie in een 54 mኽ reactor. Een simpele aanpassing in voedingslocatie reduceert
deze voorspelde afname tot 9%, waarmee de potentie van de toegepaste simulatie-
methode voor ontwerpoptimalisatie wordt geïllustreerd. Op soortgelijke wijze kunnen
gewenstemetabolische aanpassingenworden gesuggereerd. Numerieke evaluatie van
een neerschaalontwerp laat een potentieel goede reflectie van de industriële schaal
zien. De numerieke evaluatie toont dat het effect van niet-idealemenging op labschaal
waarschijnlijk miniem is, en dat het halveren van de biomassaconcentratie, ondanks
het beperken van de overeenstemming in fluctuatiesnelheid, de metabolische respons
niet significant aantast. Deze observaties zijn echter situatie-afhankelijk en zullen der-
halve als dusdanig geëvalueerd moeten worden. Tot slot laat een simulatie van een 60
uur durend gevoed batchproces zien dat gekoppelde metabolisch-hydrodynamische
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modellen goed in staat groei en (de afname van) penicilline productie te vangen. In
deze simulatie is een significante heterogeniteit in de enzymbeschikbaarheid binnen
de populatie geobserveerd. Deze voorspelling kanmogelijk experimenteel getest wor-
den door middel van fluorescentiemarkering.

Al met al toont dit proefschrift dat het met Euleriaans-Lagrangiaanse vloeistof-
dynamica simulaties mogelijk is de invloed van gradiënten in fermentatieprocessen
te beschouwen vanuit het oogpunt van het organisme, deze informatie te benutten
voor het winnen van fluctuatiestatistieken, en deze statistieken te gebruiken voor het
ontwerp van neerschaalsimulatoren. Gecombineerd met metabolische modellen is
het mogelijk voorspellingen te doen betreffende het resulterend productieverlies en
populatieheterogeniteit. Gecombineerd met experimentele verificatie in neerschaal-
reactoren, kunnen op basis hiervan procesverbeteringen, zowel qua reactorontwerp
als metabolische aanpassingen, worden voorgesteld, waarmee een nieuwe stap in de
richting van betrouwbare opschaling van bioprocessen wordt gezet.
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1
Introduction

Many things are known about scale-up. No longer are Rushton impellers the answer.
No longer is our concern only in maintaining the same 𝑘ፋ𝑎. Environmental stress

due to poor mixing and “hidden” auxotrophy are two factors not fully addressed nor
appreciated on scale-up. As a consequence, scale-up is still an art not a science.

Arthur Humphrey, Shake Flask to Fermentor: What Have We Learned? [1]

Former EU-chief scientific adviser¹ Anne Glover crowned the 21፬፭ century ”the age of
biotechnology”. The prediction seems to hold so far: industrial and pharmaceutical
biotechnology are going strong [2]. For example, a recent market study by Deloitte
reveals a strong consistent growth since 2010 in all life science related fields, despite
varying economic conditions, with a predicted sales increase from 289 ⋅ 10ዃ USD in
2010 to 445 ⋅ 10ዃ USD in 2019 worldwide [3].

The pharmaceutical (life sciences) market traditionally holds amajority sharewithin
the total biotechnology market; in a recent market value assessment the pharma mar-
ket’s share (biologics + industrial pharma) was valued at slightly below 50% of the
total US biotechnology market [2], mainly due to an explosive rise in modified crops.
Albeit less explosive, biotechnological materials production is on the rise as well. Ex-
amples include 1, 4−butanediol [4, 5], an industrial solvent and succinic acid [6, 7],
both a polymer precursor and dietary supplement. The feasibility of biotechnological
production routes depends strongly on the global oil price, and its volatility gives rise
to a more cautious investment climate. Still, the increasing push to step away from
fossil resources, combined with rapid technological developments in biotechnology
(especially considering genetic engineering techniques), virtually ensures that more
and more biological production routes will become competitive.

1.1. Bioreactor development and scale-up
The developments in bulk bio-processes, aside from improved control, have beenmod-
est over the years. In some ways, the reactor is still more of a black box than the
micro-organisms residing inside. Mixing times, consumption rates, temperatures and
other process parameters can be determined at the equipment-size level, but there is
little data available regarding local conditions inside industrial bioreactors. Since mix-
ing can typically be regarded as instantaneous in lab-scale reactors (but not always,
see chapter 7), these equipment-scale measurements typically suffice for laboratory

¹A position sadly abolished under pressure of environmental organizations due to her progressive views on
agricultural biotechnology.
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experiments. In industrial scale reactors, where mixing is inherently slower, a hetero-
geneous fermentation environment may develop [8–10]. This translates to temporal
variations in the environment as experienced by micro-organisms. Experimentally, it is
extremely difficult to obtain detailed insight in this local fermentation environment on
the large scale, and detailed insight in the fermentation environment must be derived
from very limited information.

Extra-cellular heterogeneity leads to heterogeneity in the intra-cellular make-up
over the microbial population when the timescales of mixing and intra-cellular re-
sponse are similar. In this case, the organisms are never truly in equilibrium with their
surrounding (which would apply if mixing is much slower than metabolic adaptations),
nor is the intra-cellular makeup insensitive to the direct surrounding (which applies if
mixing is much faster than metabolic adaptation). Consequently, the population inside
a fermentor may be globally as well as locally heterogeneous: two organisms residing
at the same point in space may have a different metabolic make-up, depending on the
history of their trajectory.

Metabolic heterogeneity in turn may influence gene expression and protein syn-
thesis rates [11, 12], even though the associated timescales are orders of magnitude
higher than those of extra-cellular variations [13], leading to heterogeneous enzyme
levels within the population. The production of the desired end product may in turn
be affected, either by the availability of precursor metabolites, or by the availability of
(active) enzymes. The complex response to extra-cellular heterogeneity is one of the
aspects that makes bio-reactor scale-up a complicated, error-prone practice [1, 14]. An
associated problem relates to organism development. Modified organisms are often
selected based on their performance in lab-scale experiments, which unlikely repre-
sent the industrial fermentation environment; the herein selected strain may not be
the one that performs best under production conditions [15]. Preferably, the impact
of environmental heterogeneity should be accounted for during process design and or-
ganism selection, which means that methods are required that can make predictions
regarding the environment and the interplay between extra-cellular and intra-cellular
conditions.

1.2. The promise of coupled CFD-Metabolic dynamics
Computation has opened the route to detailed, dynamic descriptions of both biolog-
ical networks and complex flows. This offers possibilities for new computer-aided
routes for studying the environment in large scale bio-reactors. Computational Fluid
Dynamics (CFD) enables the prediction of local flow profiles inside bioreactors in vary-
ing levels of detail [8, 10, 16–20]. CFD can be applied to study how flow influences
the local distribution of substrate, dissolved oxygen and other extra-cellular param-
eters that may influence micro-organisms. Detailed metabolic models on the other
hand provide the means to assess the response of organisms to a certain environment
[21, 22]. These fields are inherently coupled: the distribution of extra-cellular reac-
tants will influence the organism’s response, the organism’s response will influence
the distribution of extra-cellular reactants [21, 23].

Combining CFD simulations with metabolic models enables to study this interplay
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computationally, and in principle, already during process design. Classically, reaction
models in CFD simulations are coupled as source/sink terms in the substrate transport
equations [16, 24, 25], which implicitly assumes equilibrium between the intra- and
extra-cellular domain. This fully Eulerian (field-based) approach does not include the
effect of the intra-cellular history on the current state of the metabolism. It is possible
to use a population balance model to include the effect of local cellular heterogeneity,
an approach developed by Morchain et al. [18, 19, 26–28]. This approach is especially
powerful when resolving longer timescales (hours of fermentation time), but it is lim-
ited in the intra-cellular details: a single distributed parameter, typically the growth
rate 𝜇, is used to describe the intra-cellular state. When multiple interacting intra-
cellular pools need to be tracked, this approach may quickly become cumbersome.

An alternative approach towards bioreactor modeling was pioneered by Lapin et al.
[21, 23]: Euler-Lagrange CFD [29], where the biomass phase is represented by a large
number of discrete particles (parcels) who’s motion is computed individually. Each
parcel represents a group of organisms following a similar path through the reactor.
A vector of intra-cellular conditions is stored for each particle, containing the levels of
key metabolites and enzymes. In this way, the degree of heterogeneity can be assessed
straightforwardly for many intra-cellular pools. The Euler-Lagrange approach further-
more provides a unique point of view: it is possible to track both the intra-cellular and
extra-cellular environment for each individual particle over time [10, 20, 21, 23, 30–
32]. Hence, we can study the fermentation environment from the point of view of
the organism, which enables to study the duration and magnitude of extra-cellular
concentration variations experienced by micro-organisms. A con is that the required
time resolution to resolve particle motion leads to high computational demands when
simulating long stretches of flow time.

Regardless of the metabolic approach, the complexity of fermentor flows (turbu-
lent, multi-phase and non-Newtonian) is such that many simplifications must be made
in its modeling and, while CFD approaches certainly have predictive value, prior vali-
dation of the models against experimental data is still required. For small-scale reac-
tors, detailed flow information may be available from experiments which can be used
for validation [16, 33–40]. To some extent, this information may be extrapolated to
large-scale reactors, based on geometric similarity and dimensionless number scaling.
It may, however,be challenging or outright impossible to perform a full experimental
scaling experiment, as length- and timescales associated with the metabolism are
scale-invariant. Lacking detailed insight into industrial fermentors, large-scale vali-
dation mostly relies on integral parameters: mixing times, gas holdups, oxygen trans-
fer rates, and so forth. Combined with the performance of the applied CFD models
in well-studied small-scale experiments, the validity of the chosen CFD approach for
large-scale processes can be claimed with at least some confidence.

Similarly, metabolic models should be validated by well-defined laboratory scale
environments, for example experiments in which the extra-cellular substrate or dis-
solved oxygen concentration is deliberately varied with a fixed frequency and am-
plitude [41–45]. The coupling between CFD and metabolic dynamics (MD) is more
difficult to validate, as this requires some degree of experimental insight into the
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environment inside a bio-reactor. There are promising developments in the field of
active tracer probes [46] which measure the environment from the perspective of a
flow-following particle, but contamination risks and operating costs will likely uphold
conservatism in large-scale fermentation experimentation, and these probes are cur-
rently not able to measure local dissolved oxygen or glucose levels. Currently, a very
limited number of data sets quantifying the environment inside a large scale fermentor
is available.

1.3. Scaling down bioreactors
Scale down (SD) simulators are laboratory setups that aim to mimic the environmen-
tal heterogeneity of large scale bioreactors to study how this environment affects the
organism [12, 43, 47]. This implies that, in order to be industrially representative,
a scale-down simulator must reproduce the amplitude and frequency of fluctuations
that organisms encounter at the large scale [15]. As discussed earlier, little to no in-
formation on these statistics is available experimentally. As an alternative, the design
of SD simulators can be based on CFD information; since the device aims to reproduce
the temporal variations observed by organisms, information from the organism’s point
of view is required. By providing time series of the extra-cellular conditions registered
by each individual particle, this is exactly what Euler-Lagrange CFD-MD simulations
give: insight in the fermentation environment, from the point of view of the organism. The
condition versus time series gathered in Euler-Lagrange simulations are referred to as
organism lifelines, a term coined by Lapin and Reuss [21, 23].

Scale-down simulators may use deliberate variations in the substrate feed to im-
pose extra-cellular substrate variations, or they may use multiple reactors, each oper-
ating under different conditions, in a flow-loop. Both approaches have been frequently
applied in literature [41, 43, 44, 48–55]. Lacking detailed information on the envi-
ronment inside the large scale reactor, the magnitude and duration of the imposed
extra-cellular variations in these studies were typically based on the global industrial
mixing times, or without industrial reference. While these studies were often very
useful in gaining insight in the response of organisms to extra-cellular variations, the
imposed conditions may not reflect the conditions encountered by organisms in the
industrial situation. With the state-of-the-art Euler-Lagrange CFD approach, statistics
on industrial scale variations can be derived from the individual organism lifelines.
These statistics can then be used as a basis of design for industrially representative
scale-down simulators to aid both in the rational scale-up of bioreactors, and in the
development of micro-organisms that are more resilient under industrial conditions.

1.4. The Hé project
The above discussion outlines the scope of the Hé project; a research project aimed at
combining computational fluid dynamics and metabolic dynamics to study the envi-
ronment in large scale bioreactors, how this environment influences the metabolism
of micro-organisms and how scale-down simulators can be designed based on the ac-
quired information. This project is conducted in a consortium consisting of TU Delft
(Transport Phenomena group and Cell Systems Engineering group), East China Uni-
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versity of Technology (ECUST, state key laboratory of bioreactor engineering) and DSM
Sinochem pharmaceuticals. Within this framework, TU Delft has the lead in large-scale
CFD simulations and, if required, hydrodynamic experiments. ECUST has the lead in
biological modeling and experimental scale-down studies. DSM Sinochem provides
expertise on industrial reactor design and on Penicillium chrysogenum, the model or-
ganism used in this study. A further discussion of the rationale behind the Hé project
has been published by Wang et al. [56].

1.4.1. Project outline
The Hé project is outlined graphically in figure 1.1. Here, the topics within the dashed
boundary are the steps conducted within the scope of this thesis. Within these bat-
tery limits ”experimental fluid dynamics” has been included. Within the scope of the
project, only LDAmeasurements relating to themulti-impeller mixing were conducted.
The rest of the project focused on the implementation and data processing of the Euler-
Lagrange method, and not so much on improving the turbulence, multiphase and rhe-
ological modeling of large-scale fermentors to increase agreement with experimental
flow data. As such, no further experimental studies were conducted.

The light-green sections are experimental studies geared towards further under-
standing the P. chrysogenum fungii, particularly when exposed to extra-cellular varia-
tions in glucose availability, oxygen availability and shear rate. These experiments
are used as a basis for metabolic modeling, together with data from prior studies
conducted at TU Delft. Both the experimental part and the metabolic modeling are
executed at the East China University of Science and Technology (ECUST). All white
boxes represent project input. The P. chrysogenum strain has been donated by DSM
Sinochem pharmaceuticals. Furthermore, DSM/Sinochem has supplied data regarding
a 60mኽ and a 120mኽ fermentor for CFD validation, as well as input for other reactor
configurations. Further CFD input (turbulence/multiphase/rheological modeling and
validation data) was acquired from academic literature. Dark grey blocks indicate the
final project goals, which were not tackled directly within the current work. Future
work should aim at actually constructing CFD-based scale-down simulators, verifying
the organism response predicted by the metabolic models, and proposing improved
scale-up protocols based on the scale-down analysis.

1.4.2. Research questions
Work by Lapin and Reuss provided the foundation of the Euler-Lagrange CFD approach,
which forms the basis of this project. We aim to further establish the methodology,
and apply it towards industrially relevant problems. The core steps covered in this
project are:

• Implementation of the Euler-Lagrange method in commonly used CFD software
(ANSYS FLUENT).

• Set up implementation guidelines and best practices for application of the Euler-
Lagrange method.

• Application of the Euler-Lagrange method to industrially relevant case studies.
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• Data analysis: from organism lifelines to environmental variation statistics.

• Design of representative scale-down simulators based on CFD data.

• Inclusion and evaluation of metabolic coupling in the Euler-Lagrange frame-
work.

In particular, the focus is on the data analysis step, which involves the transla-
tion of large amounts of data (individual lifelines) to manageable fluctuation statistics
that capture the fermentation environment at the reactor scale, the subsequent scale-
down design step, and analysis of themetabolic response to extra-cellular fluctuations.
Based on the above, the following research questions have been formulated:

1. What are the set-up requirements for accurate, coupled 𝐶𝐹𝐷−𝑀𝐷 simulations?

Lapin and Reuss have discussed the numerical implementation of the Euler-
Lagrange approach, but left practical questions open. Practically, the reaction field
is discretized separately from the background grid by coupling reactions to particles,
which means that the accuracy of the simulation depends strongly on the number of
particles 𝑁፩ and timestep size Δ𝑡. Other practical aspects consider simplification of
the domain by imposing periodicity, and using the multiple-reference frame impeller
modeling strategy which can save considerable computation time. The goal of this
first part is to set up implementation guidelines, which can be used to estimate the
Lagrangian simulation requirements a-priori, rather than by trial-and-error.

2. Which statistical parameters quantitatively characterize the fermentation envi-
ronment, as experienced by the organisms inside it, and how can these be de-
rived from organism lifelines?

The second part of this project couples to the data processing challenge. Lifelines
contain strong fluctuations in, for example, the extra-cellular substrate concentration
𝐶፬ . While qualitatively clear, quantitatively the lifelines are not directly insightful or
useful as a basis of design for scale-down simulation. A set of statistics representing
the observations of the population at large needs to be distilled from the lifelines. In
this section of the project, multiple methods for lifeline analysis are explored, and for
a deeper understanding of the nature of the registered fluctuations, the link between
the fluctuation statistics and Eulerian flowfield features is discussed.

3. How can scale-down simulator designs be derived from the statistics acquired
in Euler-Lagrange CFD simulations?

Noorman [15] identified fi degrees of freedom that must be fixed to design a scale-
down simulator. Here, we use the CFD data to determine the values of these degrees
of freedom, to propose designs that are a proper reflection of the large-scale environ-
ment. Further issues that are explored in this phase of the project are the practical
feasibility of the proposed scale-down design, and comparing the performance of com-
peting designs.
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4. How is the metabolism of P. chrysogenum predicted to respond to fluctuations in
the extra-cellular environment?

In the final part of this thesis, a metabolic model for P. chrysogenum, developed by
our project partners, is coupled to large-scale CFD simulations to assess the metabolic
response to extra-cellular fluctuations. Key parameters are the production rate 𝑞፩ and
mean growth rate 𝜇. The emergence of population heterogeneity is also discussed.
By coupling the same metabolic model to a scale-down simulator design, we evaluate
the expected performance of this simulator in terms of large-scale replication.

Besides these core challenges, several secondary problems were touched upon
during the execution of this work to some extent. These problems involve the model-
ing of turbulence, gas-liquid flow and non-Newtonian flow in stirred tank bioreactors.
Most of these issues have been considered as simulation inputs, and do not constitute
sufficient material for a separate chapter. An exception that has been studied in more
detail is the interaction between multiple impellers in a single-phase stirred reactor.
In particular, the exchange of material between the individual stirrers was found to be
underestimated in CFD simulations, over-estimating themixing time. This observation
has led to the additional research question:

5. Is the consistent over-estimation of mixing times in 𝑘 − 𝜖 CFD simulations of
multi-impeller mixing vessels due to an underestimation of mass exchange be-
tween the separate impeller compartments?

This question arose from the unsatisfactory notion that the turbulent Schmidt num-
ber in 𝑘 − 𝜖 simulations has to be arbitrarily tuned to agree with experimental mixing
data in stirred tanks. A literature study revealed this is mostly the case for multi-
impeller simulations; our hypothesis is that this turbulent transport between the im-
peller compartments is underestimated in RANS simulations of such systems, due to
mis-estimation of turbulent dispersion. Additionally, experimental data hints at the
presence of a macro-instability that may promote mixing. A wide variety of simula-
tions, combined with experimental LDA data, has been conducted to study how well
RANS models capture flow and turbulence in the region between the stirrers.

1.5. Thesis outline
In chapter 2, a treatment of relevant background theory is given, both considering the
flow in stirred, aerated fermentors and the organisms used in this study. Chapter 3
focuses on mixing in multi-impeller fermentors. Chapter 4 discusses implementation
guidelines for Euler-Lagrange bioreactor simulations, chapter 5 treats the analysis of
organism lifelines, chapter 6 outlines CFD-based scale-down strategies and chapter 7
reports on the use of coupled metabolic-hydrodynamic simulations, combining anal-
ysis and downscaling. To conclude, chapter 8 provides some future perspectives. Al-
together, this thesis proposes a methodology to translate data acquired from CFD-MD
simulations to design parameters for industrially representative scale-down simula-
tors, laboratory scale setups with an extracellular environment that reflects that of
the large-scale, as seen through the organism’s eyes.
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2
Theory

This chapter provides a treatment of the background theory, to expand upon some
modeling choicesmade in the subsequent chapters. First, fluid dynamic considerations
are discussed. The second part focuses on the biological side of the project.

2.1. CFD modeling of stirred fermentors
The flow in industrial scale fermentors is typically turbulent, might be stirred, might be
aerated and might be non-Newtonian. All four of these aspects require special treat-
ment within CFD simulations. The first three aspects are treated within this chapter.
Non-Newtonian flow simulations were only briefly addressed in this project, and are
not discussed in this thesis.

2.1.1. Single phase flow
Industrial stirred tank reactors are commonly operated in the turbulent flow regime
(𝑅𝑒 = ፮᎞ፋ

᎙ᑝ > 10ኾ), although highly viscous processes may be operated in the transi-
tional regime. As any flow, the basic fluid motion is described by the Navier-Stokes and
continuity equations:

𝜌 (𝜕𝑢።𝜕𝑡 + 𝑢፣
𝜕𝑢።
𝜕𝑥።

) = − 𝜕𝑝𝜕𝑥።
+ 𝜕
𝜕𝑥፣

𝜏።፣ + 𝑓። (2.1)

𝜕𝜌
𝜕𝑡 +

𝜕(𝜌𝑢።)
𝜕𝑥።

= 0 (2.2)

where for Newtonian behavior the stress tensor takes the form:

𝜏።፣ = 𝜇፥ (
𝜕𝑢።
𝜕𝑥፣

+
𝜕𝑢፣
𝜕𝑥።

− 23𝛿።፣
𝜕𝑢።
𝜕𝑥።

) (2.3)

These equations typically require a numerical solution [57]. Although other options
are available, the versatile finite volume (FV) approach is employed in this project
[58], as the inclusion of multiphase behavior and chemical reactions within the FV-
framework is well established.

9
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Turbulence modeling
The desire to resolve hours of flow time within at most days of computation time
rules out full resolution of the flow, as well as spatially filtered Large Eddy Simulations
(LES). The latter are used within this project, within the scope of detailed mixing stud-
ies (chapter 3). For fermentor simulations, we rely on Reynols Averaged Navier Stokes
(RANS) methods were the effect of scales of turbulence is modeled, while capturing
the global flow patterns and concentration gradients which we are interested in. Fur-
thermore, RANS methods are more established in combination with multiphase flows.

RANS Modeling In the RANS method it is assumed that each property in a turbulent
flow can be split into an average and a fluctuating component: 𝑢። = 𝑈። +𝑢ᖣ። . Applying
this to eq. 2.1, and averaging the resulting equation yields:

𝜌 (𝜕𝑈።𝜕𝑡 + 𝑈፣
𝜕𝑈።
𝜕𝑥።

) = − 𝜕𝑝𝜕𝑥።
+ 𝜕
𝜕𝑥፣

(𝜏።፣ − 𝜌𝑢ᖣ።𝑢ᖣ፣) + 𝑓። (2.4)

with the Reynolds stress tensor 𝑢ᖣ።𝑢ᖣ፣ nonzero and unknown; closure relations have
to be supplied to estimate the Reynolds stresses, which model the impact of (small
scale) turbulence on the large scale flow. In Reynolds Stress Modeling (RSM) relations
for each individual Reynolds stress component are supplied, plus one auxiliary equa-
tion for the turbulent energy dissipation rate 𝜖 [58]. This approach is computationally
still relatively intensive, and is only applied in studying single phase flow within this
work. Simpler 2-equation models compute the turbulent kinetic energy 𝑘፭ and tur-
bulent energy dissipation rate 𝜖 rather than the full Reynolds stress tensor. These
methods are significantly cheaper computationally, while showing similar accuracy in
the impeller region of a stirred tank [59, 60] In most of this project the two equation
standard 𝑘 − 𝜖 or realizable 𝑘 − 𝜖 model is used.

Standard and Realizable k−𝜖 models The 𝑘 − 𝜖 model uses 𝑘፭ and 𝜖 to provide
closure of the equations. In the standard formulation, the transport equations for 𝑘፭
and 𝜖 read:

𝜕(𝜌𝑘፭)
𝜕𝑡 + 𝜕𝜌𝑘፭𝑈።𝜕𝑥።

= 𝜕
𝜕𝑥፣

((𝜇፥ +
𝜇፭
𝜎፤
) 𝜕𝑘፭𝜕𝑥፣

) + 2(𝜇፥ + 𝜇፭)𝑆።፣ ⋅ 𝑆።፣ − 𝜌𝜖 (2.5)

𝜕(𝜌𝜖)
𝜕𝑡 + 𝜕𝜌𝜖𝑈።𝜕𝑥፣

= 𝜕
𝜕𝑥፣

((𝜇፥ +
𝜇፭
𝜎Ꭸ
) 𝜕𝜖𝜕𝑥፣

)+𝐶ኻᎨ
𝜖
𝑘፭
2(𝜇፥+𝜇፭)𝑆።፣ ⋅ 𝑆።፣−𝐶ኼᎨ𝜌

𝜖ኼ
𝑘፭

(2.6)

Here 𝜇፭ is the turbulent viscosity for the standard 𝑘 − 𝜖 model, 𝜇፭ = 𝜌𝐶᎙𝑘ኼ፭ /𝜖;
𝜇፥ is the molecular viscosity. Five fitting parameters are required, and by fitting to a
wide range of flows it was found that the following set is applicable in the majority of



2.1. CFD modeling of stirred fermentors

2

11

cases: 𝐶᎙ = 0.09, 𝜎፤ = 1.00, 𝜎Ꭸ = 1.30, 𝐶ኻᎨ = 1.44 and 𝐶ኼᎨ = 1.92. The Boussinesq
assumption [58] is used to close the averaged Navier-Stokes equations:

−𝜌𝑢ᖣ።𝑢ᖣ፣ = 2𝜇፭ (
𝜕𝑈።
𝜕𝑥፣

+
𝜕𝑈፣
𝜕𝑥።

) − 23𝜌𝑘፭𝛿።፣ (2.7)

The realizable 𝑘 − 𝜖 model differs from the standard 𝑘 − 𝜖 model in formulation
of the turbulent viscosity 𝜇፭ and the transport equation for 𝜖, which now reads:

𝜕(𝜌𝜖)
𝜕𝑡 + 𝜕

𝜕𝑥፣
(𝜌𝜖𝑈።) =

𝜕
𝜕𝑥፣

((𝜇፥ +
𝜇፭
𝜎Ꭸ
) 𝜕𝜖𝜕𝑥፣

) + 𝜌𝐶ኻ𝑆𝜖 − 𝜌𝐶ኼ
𝜖ኼ

𝑘፭ + √𝜈𝜖
(2.8)

with 𝐶ኻ = max(0.43, 𝜂/(5 + 𝜂)), 𝜂 = 𝑆𝑘፭/𝜖 and 𝑆 = √2𝑆።፣ ⋅ 𝑆።፣
Next to being mathematically consistent, the realizable 𝑘−𝜖 model generally per-

forms better in rotating flows [61], which would make it theoretically more applicable
for the studied system. The standard 𝑘 − 𝜖 model has been more frequently applied
in literature, showing decent results for both flow [59, 62] and mixing [62] in single-
impeller mixing tanks.

Reynolds stress modeling RSM models transport of each Reynolds stress compo-
nent individually, by the transport equation:

𝜕(𝜌𝑢ᖣ።𝑢ᖣ፣)
𝜕𝑡 + 𝜕

𝜕𝑥፤
(𝜌𝑈፤𝑢ᖣ።𝑢ᖣ፣) = −

𝜕
𝜕𝑥፤

(𝜌𝑢ᖣ።𝑢ᖣ፣𝑢ᖣ፤ + 𝑝ᖣ (𝛿፤፣𝑢ᖣ። + 𝛿።፤𝑢ᖣ፣))+

𝜕
𝜕𝑥፤

(𝜇፥
𝜕
𝜕𝑥፤

(𝑢ᖣ።𝑢ᖣ፣)) − 𝜌 (𝑢ᖣ።𝑢ᖣ፤
𝜕𝑢፣
𝜕𝑥፤

+ 𝑢ᖣ፣𝑢ᖣ፤
𝜕𝑢።
𝜕𝑥፤

)+

𝑝ᖣ (𝜕𝑢
ᖣ
።

𝜕𝑥፣
+
𝜕𝑢ᖣ፣
𝜕𝑥።

) − 𝜌𝜖 − 2𝜌Ω፤ (𝑢ᖣ፣𝑢ᖣ፦𝜖።፤፦ + 𝑢ᖣ።𝑢ᖣ፦𝜖፣፤፦) (2.9)

The turbulent diffusion, pressure strain and dissipation term must be modeled; the
latter is closed by supplying a transport equation for 𝜖 similar to the 𝑘 − 𝜖 model. For
the diffusive term, ANSYS FLUENT uses a simple-gradient approximation because of
numerical instabilities with the generalized gradient diffusion model:

𝜕
𝜕𝑥፤

(𝜌𝑢ᖣ።𝑢ᖣ፣𝑢ᖣ፤ + 𝑝ᖣ (𝛿፤፣𝑢ᖣ። + 𝛿።፤𝑢ᖣ፣)) =
𝜕
𝜕𝑥፤

( 𝜇፭𝜎፤
𝜕𝑢ᖣ።𝑢ᖣ፣
𝜕𝑥፤

) (2.10)

with 𝜎፤ = 0.82. The pressure strain model can be closed in various ways, the
default option is the linear-pressure strain approach which consists of three terms:

𝑝ᖣ (𝜕𝑢
ᖣ
።

𝜕𝑥፣
+
𝜕𝑢ᖣ፣
𝜕𝑥።

) = 𝜓።፣,ኻ + 𝜓።፣,ኼ + 𝜓።፣,ኽ (2.11)
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Here, 𝜓።፣,ኻ is the slow pressure-strain term, 𝜓።፣,ኼ the rapid pressure-strain term and
𝜓።፣,ኽ the wall-reflection term. Expressions for these terms can be found in the FLUENT
theory guide [63]. As this computationally intensive model did not yield favorable
results in previous studies [59], this model has not been applied in fermentormodeling.
The Reynolds Stress Model has been used in the single-phase flow section of this study,
to investigate the possible role of non-isotropic turbulence on multi-impeller mixing.

Large Eddy Simulations Large eddy simulations employ a spatial filtering procedure
rather than an averaging procedure to eq. 2.1, yielding:

𝜕𝜌𝑢።
𝜕𝑡 + 𝜌𝑢፣

𝜕𝑢።
𝜕𝑥፣

= − 𝜕𝑝𝜕𝑥።
+ 𝜕
𝜕𝑥፣

⋅ (𝜏።፣ + 𝜏፬፠,።፣) (2.12)

Practically, the applied filtering kernel in FLUENT is based on the local grid size,
which is computed as Δ = 𝑉ኻ/ኽ፜ [63]. The subgrid stress tensor 𝜏፬፠,።፣ = 𝑢።𝑢፣ − 𝑢።𝑢፣
results from the filtering procedure and accounts for small-scale (subgrid) turbulence.
This term is typically closed via an eddy viscosity formulation, similar to RANS models,
but now applicable only for the smaller scales which better abide the isotropy assump-
tions. The recommended subgrid model is the Dynamic Smagorinsky model [64, 65],
which, in contrast to the regular Smagorinsky model, requires no fitted constant; 𝐶ፒ
is determined dynamically, with a value between 0 and 0.23. The subgrid turbulent
viscosity is calculated as 𝜇፭ = 𝜌𝐿ኼ፬𝑆, with 𝐿፬ = 𝑚𝑖𝑛(𝜅𝑑, 𝐶፬Δ), 𝑑 being the nearest wall
distance and 𝜅 the von Karman constant. Combined with 𝜏፬፠,።፣−1/3𝜏፤፤𝛿።፣ = −2𝜇፭𝑆።፣ ,
this gives (in the bulk):

𝜏፬፠,።፣ = −2𝐶ኼፒ𝜌Δኼ𝑆 (𝑆።፣ −
1
3𝑆፤፤𝛿።፣) (2.13)

The Smagorinsky model assumes that the production of subgrid turbulent kinetic
energy is locally balanced by dissipation. To avoid excessively high mesh requirements
in the vicinity of boundaries, standard wall functions are applied [63].

2.1.2. Multiphase modeling
Multiphase flow modeling can be conducted in various ways. For dispersed flows in
large scale applications the size difference between the dispersed phase (droplets or
bubbles) and simulation domain means that it is impossible to resolve the dispersed
entities explicitly. Again, an averaging procedure is applied to avoid fully resolving the
dispersed phase, and the interaction between the dispersed and continuous phase has
to be modeled [66, 67]. The averaging procedure results in a volume-fraction field 𝛼
present everywhere in the domain; the two phases are assumed to be inter-penetrating
and continuous, leading to the name Euler-Euler modeling.

An alternative option is to treat the dispersed phase as individual point particles,
for which the motion is calculated by solving a force balance on each particle, called
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the Euler-Lagrange approach. As for the Euler-Euler approach, inter-phase interaction
is included via (empirical) force models. Literally tracking each individual entity is
computationally infeasible for macro-scale flows; a workaround is to assume every
computational particle (referred to as parcel) represents a group of individual particles
traveling a similar trajectory through the reactor (within the parcel, the true particle
size distribution including break-up/coalescence effects can be coupled if desired [68,
69]). In the current work, the Euler-Euler approach is used to model gas-liquid flow.
The Euler-Lagrange approach is used to model the biomass phase in this work, as it
allows to track the lifelines of parcels of biomass, as well as the internal metabolic
state by coupling metabolic reaction networks to each individual parcel.

The Eulerian approach
A two fluid (Euler-Euler) approach requires solving of a separate momentum equa-
tion for each fluid, with closure relations modeling inter-phase momentum transfer.
A phase indicator 𝜒(x, 𝑡) is introduced into the momentum equation, which is subse-
quently averaged (using the statistical mean 𝑓(x, 𝑡) = ∫጖ 𝑓(x, 𝑡; 𝜔)𝑑𝜇(𝜔) [67]). This
yields a phase-specific momentum equation with 𝛼 being the cell phase fraction. For
phase 𝑎, the equation (in tensor form) reads:

𝜕
𝜕𝑡 (𝛼ፚ𝜌ፚUፚ)+∇ ⋅ (𝛼ፚ𝜌ፚUፚUፚ) = 𝛼ፚ∇𝑃+∇ ⋅ 𝛼ፚ(𝜏𝜏𝜏ፚ +𝜏𝜏𝜏ፑ፞,ፚ)+𝛼ፚ𝜌ፚg+M፤ (2.14)

In this approach individual phase entities such as droplets and particles are aver-
aged out, making it suitable for situations where these entities cannot be practically

resolved. (see e.g. [66]). As for single phase flow, 𝜏𝜏𝜏ፑ፞,ፚ = −𝜌ፚuᖣፚuᖣፚ represents the
effect of fluctuating velocities due to (pseudo-) turbulence. Turbulence modeling re-
quires some extra consideration in multi-phase flows. For dispersed applications, the
mixture and dispersed formulation of the 𝑘 − 𝜖 are available. In the mixture model,
both phases share the same 𝑘−𝜖 equations, with a phase averaged density and viscos-
ity. This model is valid for fluids with a similar density ratio, and not advised for gas-
liquid flow. The dispersed model is based on Tchen-theory [70] for dispersed phase
turbulence, with modified transport equations for the continuous phase to include
transfer of turbulent momentum [63]. The term M፤ represents inter-phase momen-
tum exchange, which includes: [71]:

• Drag force: Viscous drag resulting from slip velocity

• Lift force: Transverse force resulting from vorticity-velocity interaction

• Virtual mass force: Results from inertia in the carrier fluid

• Basset force: Due to lagging boundary layer formation

• Turbulent forces: Phase interaction may influence turbulent behavior
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Typically these terms are closed via (semi-) empirical models and the individual
contributions of the forces are considered to be additive. In reality, interactions will of
course exist as each force depends on and interacts with the bubble/droplet velocity,
and the current approach to interaction force modeling can be disputed [72]. In any
case, the complexity of the interaction problem means that there is still much ground
to gain in the field, and that a general approach is far from available.

In typical stirred tank applications, only the drag force is included. Various drag
force formulations are available, as discussed in 2.2. Here, we employ the model of
Ishii and Zuber [73] which includes a bubble shape correction, and includes swarm
effects based on the Richardson-Zaki correction [74]. In FLUENT, the model is imple-
mented as the ’Universal drag law’ with slightly modified coefficients [75], and coupled
to the momentum balance via the exchange coefficient 𝐾ፚ፛ .

𝐾ፚ፛ =
𝐶ፃ𝑅𝑒፞𝜇፥,፛𝐴።

8𝑑፩

𝐶ፃ,፯።፬ =
24
𝑅𝑒፞

(1 + 𝑅𝑒ኺ.዁኿፞ )

𝐶ፃ,፝።፬ =
2
3
1
√𝐸𝑜

(1 + 17.67(1 − 𝛼፛)
ኻ.኿

18.67(1 − 𝛼፛)
)
ኼ

𝐶ፃ,፜ፚ፩ =
8
3(1 − 𝛼፛)

ኼ

𝐶ፃ = min (𝐶ፃ,፜ፚ፩, max(𝐶ፃ,፝።፬ 𝐶ፃ,፯።፬))
(2.15)

Here, 𝑅𝑒፞ = 𝜌ፚ|𝑢ፚ − 𝑢፛|𝑑፩/𝜇፥,፞ with 𝜇፥,፞ = 𝜇፥,ፚ/(1 − 𝛼፛). 𝐸𝑜 = Δ𝜌𝑔𝑑ኼ፩/𝛾 is the
Eötvös number, which is related to the Rayleigh-Taylor instability wavelength [76]
and associated with the bubble/droplet shape. When coupled to a population balance
model, the local Sauter-mean bubble diameter is used as the representative diameter
to calculate the drag force.

Population balance modeling Information about the bubble(/particle) size is lost in
averaging, and needs to be resupplied. A single (mean) size can be prescribed based on
experimental data, but in reality the size is strongly distributed and the mean poorly
models bubble behavior throughout the domain. A common approach towards in-
cluding a size distribution is the use of a population balance model, which prescribes
a transport equation for the bubble number density function 𝑛(𝑉, 𝑡), and may include
growth, coalescence and breakup. Neglecting growth/shrinking due to mass transfer
and the pressure gradient, this equation reads:
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𝜕
𝜕𝑡 [𝑛(𝑉, 𝑡)] +

𝜕
𝜕𝑥።

[𝑢።𝑛(𝑉, 𝑡)] =

1
2 ∫

ፕ

ኺ
𝑎(𝑉 − 𝑉∗, 𝑉∗)𝑛(𝑉 − 𝑉∗, 𝑡)𝑛(𝑉∗, 𝑡)𝑑𝑉∗ −∫

ጼ

ኺ
𝑎(𝑉, 𝑉∗)𝑛(𝑣, 𝑡)𝑛(𝑉∗, 𝑡)𝑑𝑉∗

+ ∫
጖፯
𝑔(𝑉∗)𝛽(𝑉|𝑉∗)𝑛(𝑉∗, 𝑡)𝑑𝑉∗ − 𝑔(𝑉)𝑛(𝑉, 𝑡) (2.16)

The first line represents transport, the second line particle death and birth due to
aggregation and the third line death and birth due to breakup. Semi-empirical kernels
are used to model the different terms. In this project break-up and coalescence were
included; ANSYS FLUENT includes several separate break-up and coalescence kernels,
but only the Luo and Svendsen [77] kernel is available for both break-up and coales-
cence. Hence, despite superior approaches being described in literature, in this project
the Luo and Svendsen kernels were used for both breakup (eq. 2.17) and coalescence
(eq. 2.18). It is not advised to mix-and-match different kernels, as the predicted rates
may differ significantly between them and they may only balance properly when used
with their associated counterpart [78]. The breakup kernel usually requires a frequency
term 𝑔(𝑉∗) and breakage pdf 𝛽(𝑉|𝑉∗); in the Luo and Svendsenmodel these two terms
are integrated in the breakage rate Ω፛፫ .

Ω፛፫(𝑉, 𝑉∗) = 𝐾∫
ኻ

᎛,፦።፧

(1 + 𝜉)ኼ
𝜉፧ exp(−𝑏𝜉፦)𝑑𝜉 (2.17)

with 𝐾 = 0.9238𝜖ኻ/ኽ𝑑ዅኼ/ኽ𝛼, 𝑛 = 11/3, 𝑏 = 12[𝑓ኼ/ኽ + (1 − 𝑓)ኼ/ኽ − 1]𝛾/𝜌 ⋅
𝜖ዅኼ/ኽ𝑑ዅ኿/ኽ𝛽ዅኻ, 𝑚 = −11/3 and 𝛽 = 2.047. Furthermore, 𝜉 = 𝜆/𝑑 where 𝜆 is the
integral eddy size and 𝑑 is the particle diameter and 𝑓 the bin fraction.

𝑎ፚ፠ = 𝜔ፚ፠(𝑉። , 𝑉፣)𝑃ፚ፠(𝑉። , 𝑉፣)

𝜔ፚ፠(𝑉። , 𝑉፣) =
𝜋
4 (𝑑። + 𝑑፣)

ኼ𝑢።፣

𝑃ፚ፠ = exp [−𝑐ኻ
(0.75(1 + 𝑥ኼ።፣)(1 + 𝑥ኽ።፣))

ኻ/ኼ

(𝜌ኼ/𝜌ኻ + 0.5)ኻ/ኼ ⋅ (1 + 𝑥።፣)ኽ
⋅ (
𝜌ኻ𝑑።𝑢።፣

ኼ

𝛾 )
ኻ/ኼ

]

𝑢።፣ = √(1.43(𝜖𝑑።)ኻ/ኽ)
ኼ + (1.43(𝜖𝑑፣)ኻ/ኽ)

ኼ

(2.18)

It was attempted to implement alternative models via user defined functions, in-
cluding the Prince and Blanch [79], Lehr [80] andWangmodel [78]. While thesemodels
may perform superior to the Luo and Svendsen kernel, implementation proved numer-
ically unstable, however, and constituting side-tracks from the core questions of this
work, these issues were not further addressed.
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Practical implementation of PBM There are multiple solution procedures for the
population balance model, the most popular ones being the discrete method and
quadrature method of moments (QMOM) [81–83]. In the discrete method, a number of
bins of fixed particle diameter is prescribed, the population balance model computes
the local size distribution between these bins. This approach has the advantage of
having an easily retrievable size distribution, but possibly requires a large number of
bins leading to steep computational demands. Since the bubble size distribution in
a stirred tank is relatively narrow (0.5mm − 16mm [37–39, 84]), the number of bins
(𝑂(10)) is manageable.

In the QMOM method, the moments of the size distribution are tracked. Typically
4−8moments suffice [81, 85], making the computational cost manageable. The Sauter
mean bubble size, by definition, follows from the 3፫፝ and 2፧፝ moment as 𝑑፛ = 𝑚ኽ/𝑚ኼ;
the size distribution on the other hand is not straightforwardly retrieved, sincemultiple
distributions may fit the available set of moments. In this work, the discrete method
was applied. Runs with the QMOM method yielded stability issues, and the relatively
narrow size distribution does not make the use of the discrete method prohibitively
expensive.

2.1.3. Modeling the impeller
In the presence of baffles, a moving wall approach cannot be used to model the im-
peller, and motion must be imposed otherwise. Early stirred tank simulations resorted
to impeller boundary conditions derived from experimental data [86–89], limiting
their predictive value; these are further omitted here. For fixed bodies with prescribed
motion, the most suitable approach is to mesh around the solid body, and add forces to
impose motion either at the impeller or in the surrounding domain. Such approaches
include the multiple-reference frame model (MRF) [90], the sliding mesh model (SM)
[91], the inner-outer model (IO) [92] and the computational snapshot model (CS) [93].
The MRF, IO and CS approach all fix the position of the impeller compared to the
baffles, yielding a steady state solution valid for this particular position, whereas the
impeller position varies in SM. In the CS approach, forces exerted by the impeller on
the fluid are modeled. Both the IO and MRF method separate the mesh in two zones -
rotating and stationary - with the Coriolis and centrifugal force imposed in the rotor-
domain. In contrast to MRF, the zones overlap slightly in IO; the MRF has been favored
in recent years and is frequently included in CFD packages. Using the absolute velocity
formulation, the conservation of momentum in a moving reference frame becomes:

𝜕
𝜕𝑡𝜌u+ ∇ ⋅ (𝜌uru) + 𝜌[u × 𝜔] = −∇𝑝 + ∇ ⋅ 𝜏𝜏𝜏 (2.19)

2.2. Stirred tank CFD: literature study
Stirred tanks studies with various turbulence models, multiphase approaches and de-
grees of success have been conducted over the past 20+ years. This section provides
an overview of such studies, serving as a basis for the CFD modeling conducted within
this work. Although some references to older work are made, the focus is on literature
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from the past 10 years. Furthermore, the focus is on Rushton turbines as they are most
frequently used in this work. A wide body of literature regarding impellers designed
for superior performance in specific situations (gassed blending, viscous blending, ...)
exists, consult e.g. Gogate et al. [94] for a discussion of such systems.

2.2.1. Single phase flow
The impeller discharge stream Most hydrodynamic research in stirred tanks is fo-
cused on the impeller discharge stream and trailing vortices, being the regions where
the hydrodynamic action happens. Several experimental studies quantified 𝑘፭ and dis-
charge stream velocities by Laser Doppler Anemometry (LDA) [34, 95–101] or Particle
Image Velocimetry (PIV) [35, 102–108]. The dissipation rate 𝜖 is difficult to measure
directly; some authors instead report integral length scales length-scale and compute
𝜖 on dimensional grounds as 𝜖 = 𝐴 ⋅ 𝑘ኽ/ኼ፭ /𝐿፫፞፬ with 𝐴 some constant. Recent studies
using both LDA and PIV were conducted with sufficient resolution to probe 𝜖 directly
[35, 106, 107]. The results showed that the dimensional methods provided proper
values further from the impeller, but underestimated 𝜖 close to the blade, where as-
sumptions of the dimensional method break down [109].

Inter-impeller flow The flow in multi-impeller systems is strongly dependent on the
inter-impeller clearance [110]. We focus on systems that exhibit parallel flow, meaning
the individual impellers act as single impeller systems. The exact transition is geom-
etry dependent, but parallel flow is typically ensured for 𝐶/𝑇 > 0.5 [110, 111]. We
are particularly interested in the horizontal plane between the impellers which seg-
regates the compartments. Here the flow is dominantly radial, and little axial mass
exchange is expected by the mean convective flow. This presents a rate-limiting step
in the mixing process, as can be concluded from the mixing times reported in sec-
tion 2.2.2. Hydro-dynamically, this region is under-studied, being part of the relatively
quiescent bulk region. In (PIV) studies where 𝑘 and 𝜖 are reported for the whole tank
cross-section, details of the inter-compartment plane typically drown in comparison
to the peak values near the stirrer [112]. Micale et al. [113] showed sliding mesh and
IO-impeller simulations could capture parallel, merging and divergent flow, but their
very early simulations strongly underestimated 𝑘፭ everywhere. At 0.18𝑇 from the im-
peller tip, their LDA results showed a small increase in 𝑘፭ in the inter-compartment
plane. Because of its importance in multi-impeller mixing behavior, this domain is the
focus of our study.

Macro-instabilities Macro-instabilities (MIs) in stirred tanks have been extensively
studied for single-phase, single-impeller geometries, both experimentally and numer-
ically [109, 114, 115]. Nikiforaki et al. [116] suggested that for a fixed agitation rate
and geometrical properties, jet instabilities or instabilities by precessing vortices are
the dominant cause. An in-depth review and analysis by Paglianti et al. [117, 118] us-
ing pressure measurements suggests both phenomena occur in Rushton-stirred tanks,
and relate to the Strouthal number 𝐿፜𝑓/𝑉, 𝑓 a characteristic frequency. For jet in-
stabilities, the discharge velocity scale 𝑉 = 𝐶 ⋅ 𝑁፬ ⋅ 𝐷 ⋅ 𝐹ፐ with 𝐶 a constant and
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𝐹ፐ the pumping number is used, while length-scale 𝐿፜ = 𝑇. Precessing vortices re-
late to the mean bulk velocity 𝑉 = 2𝐹ፐ ⋅ 𝑁፬𝐷ኽ/(𝜋𝑇ኼ) for a single Rushton impeller
with a dual-loop flow structure. In both cases, 𝑓 scales linear with agitation rate 𝑁፬,
hence MIs are reported in 𝑓/𝑁፬ . Follow-up work with 2 impellers revealed a precess-
ing vortex frequency of 𝑓/𝑁፬ ≈ 0.02 and jet oscillation frequency of 𝑓/𝑁፬ ≈ 0.055,
measured in the discharge stream. Guillard et al. similarly identified instabilities with
𝑓/𝑁፬ ≈ 0.08 − 0.05 above the top impeller by PLIF. [119, 120]

RANS modeling
The aforementioned impeller discharge profiles are frequently used to validate CFD
studies. Nearly all such studies report good agreement with the mean discharge ve-
locities [59, 92, 95, 121–124], while the turbulent kinetic energy 𝑘፭ and dissipation
rate 𝜖 yield less universal agreement. Brucato reported an underestimation of 𝑘፭ us-
ing the standard 𝑘 − 𝜖 (SKE) model, for both IO and SM impeller modeling. Jenne and
Reuss [124] relied on experimental boundary conditions, but made a noteworthy con-
tribution by comparing many 𝑘 − 𝜖 formulations. They observed good performance
with a modified Chen-Kim 𝑘−𝜖 model and reasonable performance of the SKE model,
while standard Chen-Kim and Renormalization group 𝑘−𝜖 (RNG-KE) performed signif-
icantly worse. Gunyol and Mudde [59] found good agreement in 𝑘፭ with the SKE and
the realizable 𝑘 − 𝜖 (RKE) while the results for Reynolds Stress model (RSM) were less
satisfactory, and poor results were found for RNG-KE.

Some studies report an underestimation of 𝜖 of up to 50% [95, 96]; they all included
the full 3𝐷 impeller geometry, including disc and blade thickness. This typically yields
1 − 3 cells across the blade thickness, resulting in a poorly resolved flow around the
blade. In contrast, studies using sheet bodies for the impeller and baffle do not observe
a strong under-prediction of 𝜖 [59, 60, 62] although significant mesh densities (10ዀ+
cells for a single impeller and 360∘ domain) are required to yield mesh-independent
𝜖 profiles [62]. Both the SKE and RKE model yield good agreement with the dimen-
sional assessment of 𝜖 by Wu and Patterson [59]. This is perhaps unsurprising, as the
𝑘 − 𝜖 method is built largely on the same assumptions (isotropy and a single turbu-
lent length-scale 𝐿፫፞፬ = 𝐴𝑘ኽ/ኼ፭ /𝜖). One sidenote is that Gunyol and Mudde [59] report
instantaneous outflow profiles for a fixed impeller position using the MRF impeller
modeling approach, while LDA data used for comparison is phase-averaged over all
positions. Singh et al. [60] used SM impeller modeling, yielding phase-averaged re-
sults. Their results still show a decent agreement in 𝑘፭ and 𝜖 further from the impeller
for the SKE model, but the agreement breaks down near the blade, especially com-
pared to direct 𝜖 measurements. This hints at a breakdown of the 𝑘 − 𝜖 assumptions
close to the impeller, and a consequent error in the prediction of trailing vortex be-
havior; a qualitative comparison of trailing vortex behavior by Singh et al. shows the
𝑘 − 𝜖 model predicts short vortices trailing close to the shaft, whereas more elabo-
rate models predict longer vortices bulging outward from the blade, more in line with
experimental assessments [101, 103, 105].
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LES
Revstedt et al. [125] used finite volume LES (FV-LES) with an implicit closure model
and momentum source terms for impeller modeling. They found decent results for 𝑈
and 𝑘፭ in the bulk, with poorer agreement near the impeller, with 2.12 ⋅ 10኿ gridcells.
Yeoh et al. [126, 127] (FV-LES, SGS (𝐶ፒ = 0.1), 4.9⋅10኿ cells,sliding-deforming grid) and
Zhang et al. [128] (FV-LES, SGS (𝐶ፒ = 0.1), inner-outer impeller method, 1.7⋅10ዀ cells)
both found good results for 𝑈 and 𝑘፭ , none of them report on 𝜖. A lattice-Boltzmann
approach (LB-LES) has been frequently applied in LES studies [129]. Eggels applied
the Smagorinsky (SGS) subgrid model with constant 𝐶ፒ = 0.1, combined with a force
field method to include impeller motion. Aside from a local under-prediction of 𝑈ፚ፱ ,
overall good agreement in velocities was observed compared to experimental data.
Derksen and van de Akker (SGS-model, 𝐶ፒ = 0.12) used a grid of 6 ⋅ 10ዀ nodes [130].
The impeller discharge stream velocities, 𝑘፭ , and trailing vortex behavior were ac-
curately captured. The phase-averaged maximum energy dissipation in the impeller
discharge stream was 𝜖፦ፚ፱/𝑁ኽ፬𝐷ኼ ≈ 4.6, over 50% lower than measured experimen-
tally [35]. Hartmann et al. [109] observed that the Voke subgrid model predicted a
higher eddy viscosity in the bulk regions than SGS; equal values were observed in the
discharge stream. The velocities were well captured, while 𝑘፭ was locally overesti-
mated. Hartmann found Values of 𝜖 similar to Derksen and van den Akker [130], which
is supported by Micheletti et al. [131] (SGS, (𝐶ፒ = 0.1)) with finite-volume LES.

Delafosse et al. [132, 133] (sliding mesh, 10ዀ cells, FV-LES, SGS model) were the
first to note explicitly that setting 𝐶ፒ = 0.1 leads to a significant under-prediction of 𝜖
in the discharge stream. This value of 𝐶ፒ was selected after testing for a wide range of
flows, with higher values of 𝐶ፒ leading to excessive turbulence dampening [63]. Still,
Delafosse et al. observed good results with 𝐶ፒ = 0.2, without significantly affecting
the predictions for velocity and 𝑘፭ . Soos et al. [134] (sliding mesh, 1.6 ⋅ 10ዀ cells) also
used 𝐶ፒ = 0.2. Compared to the data of both Escudié and Liné [105], and Wu and
Patterson [34], they report a mild under-prediction of the velocities and the periodic
kinetic energy, while 𝑘፭ was well predicted. The values for 𝜖 are in accordance with
Delafosse et al.

The work of Delafosse et al. and Soos et al. indicates a case-by-case tuning of
𝐶ፒ may be required, which is undesirable from the perspective of predictive capabil-
ities. Murthy and Joshi [97] used the dynamic kinetic energy subgrid model, which
expands upon the dynamic Smagorinsky model by introducing a subgrid-kinetic en-
ergy transport equation (FV-LES, 1.3 ⋅ 10ዀ cells, sliding mesh). They good results for
the dissipation based power number 𝑃𝑜Ꭸ , but reported no profiles of 𝜖 or values of 𝐶ፒ
were reported to judge why such good agreement was achieved. Jahoda et al. [65]
applied the dynamic Smagorinsky model for mixing in 1 and 2 impeller geometries
but did not report 𝜖 or 𝑃𝑜Ꭸ . They did show local values of 𝐶ፒ, which were in the range
of 0.05 − 0.1, below the default 𝐶ፒ = 0.1. A direct computation of 𝐶ፒ based on direct
numerical simulation by Gillissen and van den Akker [64] yielded 𝐶ፒ ≈ 0.1, in agree-
ment with their own dynamic LES. This indicates that the proposed 𝐶ፒ tuning is not in
accordance with physical observations, and the authors note that the under-prediction
in 𝜖 may be the result of an under-predicted 𝑘፭ production due to insufficient mesh
resolution in the vicinity of walls.
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DES
As noted by Gillissen [64], under-resolution of the wall-bound flow may be related
to the observed under-prediction of 𝜖 in LES simulations, and may consequently af-
fect micro-mixing behavior. Detached eddy simulations (DES) blend a LES approach
in the free-stream with RANS in under-resolved (wall) regions, and may thereby re-
duce any dependence of the bulk flow on wall effects. Of course, the accuracy of
the wall flow itself will still be limited, due to the inherent assumptions of the RANS
methodology. Gimbun et al. [135] conducted Spalart-Allmaras-DES simulations in a
Rushton-stirred tank, and extensively compared the results with both SKE-RANS and
FV-LES (𝑆𝐺𝑆, 𝐶ፒ = 0.1). The bulk velocity prediction was very similar between the
models. DES generally yielded the best agreement with experimental 𝑘፭ data of Derk-
sen et al [101], predicting slightly higher values than SKE and LES. LES and DES were
nearly equal in assessing the qualitative trailing vortex behavior, with the SKE model
predicting significantly lower radial spreading of the vortex core, similar to the study
of Singh et al. [60]. DES compared favorable to the other models in predicting veloc-
ities and 𝑘፭ in the vortex core. Overall, DES outperformed RANS, and outperformed
LES in regions where wall effects are significant.

Chara et al. [136] came to similar conclusions, observing good agreement in dis-
charge velocities and trailing vortex behavior. They did note that the tangential spread
of the trailing vortex is slightly narrower than experimental (PIV) results show. Lane
[137] studied the energy dissipation behavior of various turbulence models with an
A-310 impeller. A power recovery of 69% was observed, i.e. 𝑃 ፞፬ = ∫(𝜇 + 𝜇፭)𝑆ኼ።፣𝑑𝑉
is 69% of the power input. The DES-mesh contained 13.1 ⋅ 10ዀ cells. For various SST
and KE formulations, the energy recovery was 68−91% and strongly mesh dependent,
supporting the observations by Coroneo et al. [62]. The low energy recovery for DES,
at the finest mesh used, does hint that the wall treatment of DES does not provide a
significant improvement over LES in terms of resolving 𝜖. Clearly, a comprehensive
comparison of LES and DES with various levels of wall resolution, possibly supported
by DNS, is required to provide further insight in the reported under-predictions of 𝜖.

2.2.2. Single phase mixing
We report the 95% mixing time in dimensionless form; 𝜃ዃ኿ = 𝑁፬ ⋅ 𝜏ዃ኿ with 𝜏ዃ኿ the
mixing time in s and 𝑁፬ the agitation rate in sዅኻ.

Mixing: definition Various not necessarily inter-comparable definitions of 𝜃ዃ኿ are
used in literature. Frequently applied point-measurements (0𝐷) typically establish 𝜏ዃ኿
as the time where the normalized tracer concentration 𝐶፬/𝐶፬ is between 0.95 and
1.05 (𝐶፬ the vessel average) [65, 138–144]. The local dynamics resolved by probes
make them favorable for comparison with CFD, but individual point-probes might not
represent mixing in the entire vessel properly. For multiple probes, 𝜃ዃ኿ዅፌፏ is the
arithmetic average 𝜃ዃ኿ of the points [145, 146]. Probe based measurements are here
referred to as: 0D-xP, X being the number of points.

Line (1𝐷) methods were not encountered in literature for the studied setups. Plane
laser induced fluorescence (P-LIF) measures mixing in a 2𝐷 cross-section [62]; every
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pixel can be regarded as a probe to calculate an arithmetic average, or mixing can
be quantified by the coefficient of mixing (CoM) [147–149] (alternatively called Coef-
ficient of Variation (CoV)), which is also applicable to 3𝐷 domains. This approach is
especially suitable for CFD techniques. As meshes are typically non-uniform, volume-
weighing should be applied in the determination of the CoM [149]:

𝐶𝑜𝑀 = √⎛

⎝

Σ። (ፂᑚዅፂፂ )
ኼ
Δ𝑉።

Σ።Δ𝑉።
⎞

⎠

(2.20)

Kukukova et al. [147] set 𝐶𝑜𝑀 = 0.05 as the 95%mixing limit, while Hartmann et
al. [149] report 𝐶𝑜𝑀 = 0.0283 being where 95% of the volume is 95% mixed, based
on numerical experiments. We apply the limit of Hartmann, but do not consider either
indicator to be superior provided consistency is applied. Studies which quantify mixing
with the CoM are labeled 2𝐷-CoM or 3𝐷-CoM. For decolorization methods, the 95%
mixing time was declared when 95% of the volume was decolored (3𝐷-C) [150]. Lee
et al. [151] suspended thermally sensitive liquid-crystal particles (3𝐷-T) and applied
a heat pulse, measuring 𝜃ዃ኿ when 95% of the particles had the same hue.

Single impeller mixing
Experimental: 1 impeller
Single-impeller mixing times from literature are reported in table 2.1. The mixing
time correlation of Fasano et al. yields 𝜃ዃ኿ = 30.7 for a single Rushton turbine, with
𝐷 = 𝑇/3, 𝐻 = 𝑇. The Ruszkowski-Grenville correlation, valid for various impeller
types [152], predicts 𝜃ዃ኿ = 27.5. Table 2.1 shows considerable spread in experimental
measurements and CFD results (in part due to different mixing definitions), but overall
𝜃ዃ኿ ≈ 30 − 40, in agreement with the correlation estimates.

The 0-D measurements reasonably agree between studies, with Raghav Rao et al.
[153] being a notable outlier. This may be a probe location issue, although Jahoda et
al. [65] and Kukukova et al. [138] yield lower 𝜃ዃ኿ with similar placement. The ther-
mal particle method of Lee [151] gives a significantly lower 𝜃ዃ኿, while the colorization
method of Moo-Young [150] is in agreement with 0𝐷 results. Lacking detailed infor-
mation on the thermal sensitivity of the particles of Lee, it is difficult to judge the exact
cause of their lower 𝜃ዃ኿, but we expect it to be method-related.

Considering the CFDmethods, LESmethods typically agreewith experimental data,
albeit with significant spread. This may result from different quantification techniques:
Jahoda et al. use a single probe, Yeoh et al. average a number of probes and Hartmann
et al. use the 3D-CoM, which appears to yield a generally higher 𝜃ዃ኿, possibly due
to the inclusion poorly mixed regions (close to the walls) which are not sufficiently
accounted for in 0𝐷 measurements.

The SM-SKE approach of Jahoda over-predicts 𝜃ዃ኿ compared to their measure-
ments. Zadghaffari et al. do not explicitly quantify 𝜃ዃ኿ for their SKE simulation,
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but show similar results. In contrast, the MRF-SKE approach of Jahoda et al. and
Kukukova et al. underestimates 𝜃ዃ኿ compared with their measurements. The exper-
imental agreement in 0𝐷 measurements means this is unlikely to result from exper-
imental flow disturbance by the probe. More likely, the mesh resolution was insuffi-
cient, or MRF-SKE is inherently unsuitable. Results by Coroneo et al. (different geom-
etry: 𝐷 = 𝑇/3, 𝐶 = 𝑇/2, 𝐻 = 𝑇) hint at the first option: both the quantitative mixing
dynamics (2D-CoM, MRF-SKE and PLIF-experiment) and qualitative mixing dynamics
(concentration snapshots) were in good agreement between simulation and experi-
ment. However, a fine mesh (± 2000𝑘 cells) was required, compared to much cruder
domains used in earlier 𝑅𝐴𝑁𝑆 studies.

Jahoda et al. and Kukukova et al. evaluated mesh quality based on velocity profiles
and torque-based power numbers (𝑃𝑜Ꭱ), which are rather insensitive to mesh details
[62]. Coroneo et al. found 𝑃𝑜Ꭸ to be a better indicator of mesh dependency. Javed
et al. report surprising agreement between simulation and experiment at low mesh
resolution. Inspection of their individual probe results reveals large local differences,
yielding local under- and overestimates of 𝜃ዃ኿, that average out overall.

2+ impellers
Because of the larger number of geometrical variations, we only report cases where
both experimental and CFD data are available (table 2.2). All employed 0−𝐷measure-
ment techniques, typically using 1 probe per impeller compartment. All cases were
top-injected, meaning the bottom probe yields the highest 𝜏ዃ኿. In all cases, this value
was reported.

2-impeller: Kukukova et al. [138] and Jahoda et al. [65] studied the same geometry,
with 𝐶/𝑇 = 𝐷/𝑇 = 1/3 (table 2.2), but with slightly differing probe locations, explain-
ing the different 𝜏ዃ኿. Their LES simulations are in agreement with the probe dynamics,
but the higher degree of experimental noise leads to a higher 𝜃ዃ኿ experimentally. Both
SM-SKE andMRF-SKE over-estimate 𝜃ዃ኿; the similar𝑀𝑅𝐹 assessment between Jahoda
and Kukukova hints the probe location dependence is more significant experimentally
than numerically.

Zadghaffari et al. reported good agreement for LES with their own experimental
results in a geometry with 𝐶 = 𝑇/4 and 𝐷 = 𝑇/2. Oddly, they compared a 2𝐷 ex-
periment with a 0𝐷 numerical measurement. Both Bujalski et al. and Jaworski et al.
(𝐶 = 𝑇/4 and 𝐷 = 𝑇/2) reported up to a factor 2 overestimation of 𝜃ዃ኿, using SM-
SKE and MRF-SKE. Both of these were very early studies with limited mesh resolution,
which can explain part of the offset.

3+ impellers:
For 3 impellers (table 2.3), Mostek et al. [159] (MRF-SKE) report a 20% overestimation
in 𝜃ዃ኿ compared to their measurement with 𝐶 = 𝑇/2, which is a 40% over-estimation
compared to measurements by Jahoda et al. [158] in the same geometry. Similar ob-
servations apply to 𝐶 = 𝑇/3. With 4 impellers, Montante et al. require a strongly
lower turbulent Schmidt number, 𝑆𝑐፭ = 0.1 [160], to yield agreement with experi-
ments. Delafosse et al. [112] required 𝑆𝑐፭ = 0.2 rather than the default 0.7 for proper
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prediction of 𝜃ዃ኿ with two 4-blade impellers, as did Gunyol et al. [84] in a 4-impeller
fermentor. Mostek et al. [159] found decent agreement in 4 impeller systems without
any 𝑆𝑐፭ compared to their experiments, but again Jahoda et al. [158] reported lower
experimental 𝜃ዃ኿. In the work of Mostek, increasing mesh density increases 𝜃ዃ኿. This
applies to 2, 3 and 4 impeller systems; the increase in with 𝜃ዃ኿ and mesh require-
ments that were reported for mesh-independent single-impeller results [62] hint that
mesh-independence was not reached by Mostek et al., implying a significant over-
estimation in 𝜃ዃ኿ when the mesh density is further increased. The decent agreement
in 𝜃ዃ኿ observed for 3 and 4 impellers may be an incidental negation of an inherent
over-estimation of 𝜃ዃ኿ by MRF-SKE by insufficient resolution, rather than inherently
good model performance.

Single phase mixing: observations Significant spread is visible within the single-
impeller mixing results, but no consistent over- or under-prediction of the 𝜃ዃ኿ by CFD
simulations is observed. Coroneo et al. [62] show that, while requiring dense meshes,
good qualitative (mixing motion contours) and quantitative (mixing time) agreement
can be achieved with RANS methods. For multi-impeller simulations, the situation is
very different: there are strong indications that the results of Mostek et al. [159] were
not mesh independent, and that further refinement will lead to a significant over-
estimation of 𝜃ዃ኿. Several authors resort to ad-hoc tuning of the turbulent Schmidt
number, 𝑆𝑐፭ = 𝜈፭/𝒟፭ to 𝑆𝑐፭ = 0.1 − 0.2 in order to repair this over-prediction [84,
112, 160], compromising the predictive value of their simulations. The default value
of 𝑆𝑐፭ = 0.7 is based on boundary layer studies [161].

We pose the hypothesis that the overestimation of 𝜃ዃ኿ is a consequence of the zero-
shear layer in-between individual impeller compartments, that form for high inter-
impeller spacing [110, 113]. As a result of Reynolds Averaging, there is no convective
axial flow between the compartments, and all material exchange is governed by tur-
bulent diffusion. Due to the zero-shear layer, we expect the turbulence intensity to be
underestimated in this region, leading to an under-prediction of mass exchange. While
the turbulent Schmidt number may vary in value depending on local flow features, it
is more likely that values as low as 0.1 are used to patch inadequate turbulence pre-
dictions, as was observed in cross-flow jet spreading [161]. However, this tuning will
affect mixing in all of the vessel, and the data of Coroneo et al. [62] shows no tuning
is required within the individual impeller compartments. Improving agreement in the
overall mixing time will hence lead to a poorer prediction of tracer dispersion in the
bulk. In chapter 3 we explore the flow behavior in the inter-compartment plane to
support our hypothesis of turbulence underestimation.

2.2.3. Gas-liquid flows
Multiphase flows are considerably more complex than single phase flows, both in
their nature and in modeling. Several regimes are distinguished in stirred gas-liquid
flow, classified based on the Froude number 𝐹𝑟 = 𝑁ኼ፬𝐷/𝑔 and gas flow number
𝐺𝑠 = 𝑄፠/(𝑁፬𝐷ኽ) with 𝑄፠ the gas flow rate inmኽ/s [33, 162]. For low Fr/high Gs, the
impeller hardly influences bubblemotion, inducing flooding. Increasing𝑁፬ or decreas-
ing 𝑄፠ leads to the loading regime, wherein gas is partially dispersed, and a further
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increase of𝑁፬/decrease of 𝑄፠ will lead to complete dispersion; the regime boundaries
are geometry dependent. Gas accumulates in a low pressure zone behind the blade,
which reduces the power transmission from the stirrer to the fluid [33, 163]. In the
complete dispersion regime the accumulation is minor, leading to trailing or clinging
cavities and a power drop sensitive to the cavity size [33]. When 𝑄፠ increases, a 3-3
structure with 3 major and 3 minor cavities may exist [162]. The power drop is signif-
icant for a Rushton turbine (> 30%), but becomes less sensitive to a further increase
in 𝑄፠. Still, a power drop as large as 60% can occur at high 𝑄፠ [33]. When flooded,
large ragged gas cavities occur, with power drop of around 50% for Rushton turbines.
[33] Impellers that have been designed specifically for gassed operation may show
significantly different power dynamics [164–168].

Deen et al. [36] used PIV to study the velocity field of both phases, observing an up
to 50% reduction of the liquid radial velocity in the impeller discharge stream com-
pared to single phase flow for a gas flow number 𝐺𝑠 = 𝑄፠/𝑁፬𝐷ኽ = 0.029. Radial
velocity fluctuations were enhanced under aerated conditions, with the highly turbu-
lent zone being shifted upward in the axial direction; a clear effect of buoyancy on
the discharge stream. The 36% power drop hints that sizable cavities had formed
behind the blades, which causes the two distinct trailing vortices observed in single-
phase flow to vanish. The gas flow will cause a reactor-scale circulation due to the
buoyant gas dragging liquid up in regions of strong axial gas-flow. This additional
circulation can affect the mixing times; Groen et al. [169] observed that in case of
impeller flooding mixing is more rapid than in single phase flow; the reactor basically
acts as a bubble column. In the 3 − 3 cavity regime the mixing time was equal to a
single phase case with the same power input, and in the clinging cavity regime, 𝜃ዃ኿
may be negatively affected by gas flow. The results of Groen have been widely con-
firmed [164, 170–174]. It is well known that for single-phase mixing 𝜃ዃ኿ reduces as
a function of 𝑅𝑒 in the laminar/transitional regime, reaching a constant value under
fully turbulent conditions. Under aerated conditions, for a given 𝑄፠, the situation may
be different: at low 𝑁፬, flooding leads to a low dimension-carrying mixing time 𝜏ዃ኿
(𝜃ዃ኿ is an ill indicator here, since at very low 𝑁፬ the vessel acts more as a bubble
column). In the loading regime 𝜏ዃ኿ increases with 𝑅𝑒 and, as 𝑁፬ increases too, 𝜃ዃ኿
increases strongly. When the 3-3 cavity regime is reached, the behavior is similar to
single phase, and 𝜃ዃ኿ may increase again somewhat at very high stirring speeds, in the
clinging cavity regime [172]. Oddly, Hadjiev et al. [175] reported an increase in 𝜃ዃ኿
with increasing 𝑅𝑒 even in single-phase flow, in a 3 L lab scale fermentor vessel. While
they did observe an analogy between single- and multiphase mixing, these results are
at odds with other mixing literature. Guillard [176] used the single-multiphase anal-
ogy to develop a model that favorably compared to experimental results in large-scale
multi-impeller vessels.

Oxygen transfer from the gas to the liquid phase plays an important role in aerated
fermentors; in large-scale vessels the availability of oxygen can be a limiting factor,
leading to yield losses and unintended by-products. The overall rate of mass transfer
depends on the bubble area concentration, 𝑎, and mass transfer coefficient, 𝑘፥ . The
individual contributions and local transfer rates are difficult to measure and experi-
mental assessments frequently report equipment-integral 𝑘ፋ𝑎 values, rather than the
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local mass transfer rate [177–184]. In stirred tanks, the specific power consumption
and gas flow rate appear to have the biggest 𝑘ፋ𝑎-influence [178], although impeller
types and other process parameters may play some role, too. A systematic review of
this literature is currently out of scope. Alves et al. showed that under mildly turbulent
conditions, film diffusion limits interfacial mass transfer [185] and Higbie’s penetration
theory is valid to predict local mass-transfer [186]. Under highly turbulent conditions,
better predictions follow from models based on Danckwerts surface renewal theory
[61, 187] such as the eddy-cell model of Lamont and Scott [188].

The different flow regimes existing in gas-liquid stirred tanks pose additional mod-
eling challenges; a robust CFD model should be able to predict the correct flow profile
for a given 𝐹𝑟 and 𝐺𝑠. Additionally, the fact that the bubble size information needs
to be supplied in dispersed Euler-Euler simulations adds complexity. Experimental
studies have determined typical bubble sizes in the range of 2 − 5 mm in gas-water,
lab scale tanks [37–39, 189]. Data on bubble sizes at the industrial scale is, however,
scarce. The work of Hinze et al. [70] relates the maximum stable bubble size to a crit-
ical Weber number𝑊𝑒 = 𝜌𝑢ኼ𝑙/𝛾, but the value of this critical number ranges widely
between studies [190]. Add to this that in real fermentations parameters such as the
effective viscosity and gas-liquid surface tension may deviate strongly from water (and
over time), and it is clear that capturing multiphase behavior in 2-phase fermentors is
far from a settled issue, both experimentally and numerically.

Euler-Euler gas-liquid modeling
Khopkar [191] studied the relative importance of several inter-phase forces in stirred
vessel applications, concluding that the virtual mass force is not significant in the bulk
of the vessel, and that the lift and Basset force are typically an order of magnitude
smaller than the drag force. Hence, they recommended include only the drag force in
CFD modeling. Scargiali et al. [192] reached similar conclusions considering lift, vir-
tual mass and turbulent dispersion forces (the latter accounts for bubble re-distribution
by turbulence). As noted before in this chapter, the interphase forces need to be closed
with (empirical) closure relations. The frequently used Schiller and Naumann model
[193] has been developed for a rigid particle in a stagnant liquid. In turbulent, bubbly
flows shape deformation, swarm effects and drag modification by turbulence interac-
tion play a significant role. The first two of these effects are especially significant in
dense bubbly flows, and are, for example, included in the aforementioned Ishii-Zuber
drag model applied in this study. Turbulence attenuation seems to be particularly
prominent at lower gas fractions [84, 192, 194, 195]. Many CFD simulations, focusing
on 𝛼 < 5% (for which most validation data is available), include some form of drag
modification to account for the effect of turbulence. Bakker and van den Akker [196]
employed a modified Reynolds number based on the bubble slip velocity and an effec-
tive viscosity 𝜇፞፟፟ = 𝜇፥ + 𝐶∗𝜌፥𝑘ኼ፭ /𝜖. Brucato et al. [195] developed a drag correction
by dropping solid particles through a turbulent Taylor-Couette flow, where they noted
that the settling velocity reduced, i.e. 𝐶ፃ increased, yielding eq. 2.21:

𝐶ፃ − 𝐶ፃ,ኺ
𝐶ፃ,ኺ

= 𝐾 (𝑑፩/𝜆፤)
ኽ

(2.21)
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Here, 𝜆፤ is the Kolmogorov lengthscale. Lane et al. [197] applied the model of
Brucato with a lower 𝐾 to account for the different nature of bubbles. Khopkar [198]
used the Brucato/Lane correction to compare CFD simulations (4mm bubbles) with ex-
perimental Computer-automated radioactive particle tracking (CARPT) and computed
tomography (CT) data in the flooding and 3-3 cavity regime. The radial and tangen-
tial velocity over the height of the domain were predicted reasonably well, with some
over-estimation of𝑈፫ፚ፝,፥ in the discharge stream. Gunyol et al. [84] noted that the Bru-
cato/Lane correction improved agreement for low 𝛼, but led to strong over-estimations
of 𝛼 in high hold-up cases, using both Schiller-Naumann and Ishii-Zuber drag as a ba-
sis. Van den Akker [72] noted that the basis of Brucato’s approach, using the ratio of
the particle to Kolmogorov eddies, is questionable. Furthermore, specific aspects of
the Taylor-Couette setup such as the presence of Taylor vortices were not accounted
for. Using the relevant timescales as a basis for drag attenuation is instead recom-
mended. Lane et al. [197] suggested a drag modification based on the ratio between
the particle relaxation time and integral eddy timescale, 𝜏፩/𝑇ፋ . Drag is modified as
𝐶ፃ/𝐶ፃ,ኺ = (𝑈ፒ/𝑈ፓ)ዅኼ, where 𝑈ፒ/𝑈ፓ follows from eq. 2.22:

𝑈ፒ
𝑈ፓ

= 1 − 1.4 (
𝜏፩
𝑇ፋ
)
ኺ.዁

exp(−0.6
𝜏፩
𝑇ፋ
) (2.22)

Their model shows good agreement with terminal velocity datasets for bubbles
and droplets in turbulent flow. Lane et al. combined their approach with a trans-
port equation for the number density that allowed the local mean bubble diameter
to vary (without requiring a full population balance approach), additional corrections
for drag in very high holdups regions (𝛼 > 0.3), and inclusion of liquid turbulence
attenuation via the model of Sato et al. [199]. Their model well-predicted the bubble
diameter and gas-holdup for several cases, although fitting to the data was required
to find the model constants, and the combination of models makes it difficult to eval-
uate individual model contributions. Karimi et al. [200] compared the drag coefficient
modifications of Lane, Bakker and Brucato (with Lane’s value of 𝐾 in eq. 2.21), and
showed that all models work reasonably when 𝛼 is low, while strongly overestimating
𝛼 in high hold-up cases. The model of Lane performed best with a stable 20% 𝛼 over-
estimation compared to data of Newell [201, 202], while the Brucato model doubled
𝛼 and introduced strong transient oscillations. Montante [203] et al. decided upon
a more simple approach, prescribing a maximum terminal velocity of 0.12 m/s (con-
siderably lower than the > 0.2 m/s in quiescent flow) rather than 𝐶ፃ , a method later
adopted by Petitti et al. [85, 204] and Buffo et al. [82]. The axial and radial velocity
were well predicted with this approach, although the gas hold-up was low (< 2%),
which makes the relevance for highly aerated systems questionable.

Balachandar and Eaton [194] note in a review on dispersed multiphase flows that
turbulent drag attenuation has been observed to be both positive and negative, de-
pending on the attenuation mechanism. Besides drag attenuation, continuous phase
turbulence is attenuated by the presence of the dispersed entities. Balachandar and
Eaton describe a strong dependence of turbulence attenuation on the particle Stokes
number 𝑆𝑡, with maximum attenuation around 𝑆𝑡 = 50. Further dependencies on 𝑅𝑒
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and the holdup 𝛼 were observed, both towards dampening and augmentation. In any
case, the effect of turbulence modulation is poorly understood, and rarely included in
gas-liquid stirred tank simulations. Sliding mesh simulations conducted by Deen et al.
[36] included turbulence modulation of the liquid phase using the model of Sato et al.
[199]. The liquid velocities (mean and fluctuating) in the two phase simulation are in
good agreement with their own experiments, the axial mean gas velocity is strongly
over-predicted, while the fluctuating gas velocity is under-predicted. Unfortunately,
no results without the Sato model are presented, making it difficult to assess the im-
portance of including turbulence modulation. Assuming a mean bubble size of 4mm,
it is noted that the bubble deformation of the Ishii-Zuber drag model improves the
agreement in axial velocity, although it is still far from perfect.

Population balance modeling
Early approaches aimed at including bubble size distributions assumed the bubble to
reach a local mean equilibrium size, based on the local flow properties [197] this intro-
duces global but not local size distributions at modest computational costs. Venneker
et al. [205] were among the first to engage in population balance modeling of bubble
distributions in stirred tanks, wherein bubble size is transported and does not need
to be in equilibrium with local flow properties. They employed their own kernels and
modeled aeration of a viscous 0.075 % Keltrol solution. The prediction of the gas
holdup was promising. Chen et al. [206] employed a bin-based population balance
model in a bubble column to test the influence of the number of size classes, yielding
very similar results using 9 or 16 classes, with a distribution between 1 − 40 mm.
The comparatively narrow size distribution observed in gas-liquid flows means the
class-based population balance approach does not seem to be prohibitive in terms of
computation time, which is promising for simulations with large meshes.

Wang et al. noted that the energy constraint employed by Luo to guide break-
up is unsatisfactory [78, 207]. Lehr et al. [80] replaced the energy constraint with
a capillary pressure constraint, while Wang et al. [207] combined both approaches.
Wang et al. [78] compared their own kernel to those of Lehr et al. [80], Luo and
Svendsen [77] and Prince and Blanch [79]. The break-up rate of the Prince and Blanch
kernel exceeded that of Lehr et al. and Wang et al. by approximately two orders of
magnitude for a fixed energy dissipation rate; the model of Luo and Svendsen predicts
higher breakup rates than Lehr et al. and Wang et al. for small bubbles (𝑑፛ < 4 mm),
and significantly lower breakup rates for larger bubbles. The difference in break-up
rates between the approaches shows why it is likely a bad idea to mix coalescence
and break-up models; mixing models may easily lead to unrealistic size distributions.
Wang et al. next compared the axial bubble size evolution in a bubble column. The
model of Prince and Blanch under-predicts the bubble size; especially for high gas
flow rates the distribution is too narrow, and the mean too small. The Kernel of Luo
et al. yields a heavily skewed distribution with many small bubbles due to the high
break-up rate at small sizes, and an unrealistically long tail in the large bubble region,
due to the low break-up rate for large bubbles. In some cases, bi-modality is even
observed. Both lehr et al. and Wang et al. show good agreement with experimental
data; the model of Wang et al. better captures the axial evolution of their own data,
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while the model of Lehr et al. shows better agreement with distributions at different
gas flow rates (data by Lehr et al.). In conclusion, the models of Lehr et al. and Wang
et al. are preferred when it comes to predicting the size distribution (the Luo and
Svendsen may still yield similar Sauter mean diameters, which in most CFD packages
are used for 𝑘፥𝑎 and interphase force calculations). Wang et al. furthermore showed
their own model had the capability of predicting the transition of the homogeneous
to the heterogeneous flow regime in a bubble column [208, 209]. However, only the
Luo and Svendsen kernel is fully included in ANSYS FLUENT, currently.

Laakkonen et al. [210, 211] recognized that the integral terms in the break-up
model of Wang et al. may be computationally prohibitive, and proposed a new kernel
without such terms. Combined with a drag modification model based on a modified
version of the Bakker-van den Akker approach, their CFD simulations reasonably well
computed the gas hold-up (albeit with some over-estimation, on a crude grid) in a 14
and 200 L tank. Laakkonen et al. compared the predictions of their own model with
the model of Lehr et al., and observed that the model of Lehr under-predicts bubble
sizes in stirred tanks. Moilanen et al. [212] applied the method of Laakkonen to a
shear-thinning, viscous xanthan fermentation with the drag model of Tzounakos et
al. [213]. The gas hold-up was reasonably well predicted, the energy input heavily
under-predicted, as was the 𝑘፥𝑎 in all but the most viscous simulation. Mixing times
were strongly over-estimated due to the formation of stagnant zones in the CFD simu-
lations, showing that modeling of viscous fermentations requires significant improve-
ment. Gimbun et al. [61] modeled the experiments of Laakkonen et al. [37, 38] using
the QMOM population balance approach, employing the kernels of Prince and Blanch
[79] and drag model of Ishii and Zuber [73]. The velocity profiles in their simulation
were in decent accordance experiments by Deen et al. [36], agreeing well with exper-
imental bubble sizes. For the 𝑘፥𝑎, the eddy-cell model [188], taking 𝜖 into account,
yielded better agreement than the penetration model [186], although the difference
was small. Petitti et al. [85, 204] combinedQMOMwith the kernels of Laakkonen. They
did note that parameter 𝐶ኻ in these kernels may be scale-dependent, which could lead
to unreliable results for different scales. Additional care was taken in stabilizing the
moment equations, correcting for possible corruption of the moment set due to spatial
discretization in the momentum transport equations. The terminal velocity approach
of Montante was selected for drag modeling. Globally, the gas hold-up was slightly
over-predicted, but never more than 20% . The accuracy of the bubble size prediction
was found to depend on the value of 𝐶ኻ, which was fitted to the data. Buffo et al. [82]
expanded the work of Petitti et al. to the multidimensional direct quadrature method
of moments (DQMOM). In this approach, the distribution in velocity, size and composi-
tion can be tracked separately, while regular QMOM only accounts for size differences.
As in the work of Petitti, good agreement with the data of Laakkonen was observed.

Kálal et al. [214] mixed the break-upmodel of Luo et al. and the coalescencemodel
of Prince and Blanch, and used the terminal velocity of Montante et al. [203]. Despite
the strongly different formulations, a reasonable agreement with data by Laakkonen
was observed; high mesh resolutions (2 ⋅ 10ዀ) were required for mesh-independence
results. The authors noted significant formation of small bubbles, and recommended
exploring different kernels. Montante et al. [215] used the same kernels (discrete
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method, 16 bins) and compared the CFD flowfields with their own PIV results. The
velocity components were well predicted (based on two axial profiles), but the liquid
phase velocity differed little from the predictions made with a mono-disperse bubble
assumption. A larger difference withmono-disperse bubbles was registered for the gas
phase velocity. The Sauter mean diameter poorly agreed with experimental data, but
the number average was properly assessed. Liu et al. [216] simulated several values
of 𝑁፬ and 𝑄፠ with the same kernels (20 classes, 0.1 − 10 mm), such that flooding,
loading and dispersion were captured. The CFD model further used Schiller-Naumann
drag and the added mass force. The overall hold-up reasonably reflected experimental
CT data, but the strong radial hold-up variations could not be reproduced. Sarkar
et al. [217] used the break-up and coalescence method of Luo and Svendsen in a
3-stirrer fermentor, observing good agreement with the experimental 𝑘፥𝑎 using the
Higbie penetration model.

Zhang et al. [218] combined the Eulerian multiphase model with a large eddy
approach using a fixed bubble size and relatively crude mesh. This approach is ques-
tionable both due to the insufficient mesh resolution for proper mesh modeling, and
because LES seems incompatible with the underlying assumptions of Euler-Euler mod-
eling. Still, the results are better than for a RANS approach on the same grid in terms
of gas-holdup; although locally strong deviations from the hold-up are found with
either model.

Mixing in gas-liquid flows
Khopkar et al. [198] used Lagrangian particle tracking to compare circulation time
distributions from their CFD simulations with CARPT data, observing generally good
agreement with log-normal circulation behavior, with a slight skew to long circulation
times for the CFD work. This could be a result of the tendency of particles to stick in
low-turbulence zones when the dynamic random walk model is used to model turbu-
lent dispersion of particles [21, 23, 219, 220]. They furthermore studied the influence
of the gas flow regime in a multi-impeller system on the circulation time distribution.
While there was no experimental circulation distribution data to compare in this case,
the mean CFD circulation time 𝜏፜ was in good agreement with the experimentally de-
termined mixing time, using the rule of thumb 𝜏ዃ኿ ≈ 4𝜏፜ . Jahoda et al. [221] studied
mixing in a vessel with a single pitch blade impeller, for 𝑄፠ = 1 − 7.5 L/min and
𝑁 = 300 RPM. The liquid velocity for 𝑄፠ = 1 L/min equaled that of single phase
flow using MRF impeller modeling, while for SM the impeller discharge stream was
clearly pushed upward. For 𝑄፠ = 4 L/min, the approaches gave similar results. In all
cases, flooding was predicted by the CFD simulations (Schiller-Naumann drag, 4 mm
bubbles). A variable level of agreement was observed for mixing. For 𝑄፠ = 1 L/min
both methods under-predicted 𝜏ዃ኿, while for 𝑄፠ = 4 L/min MRF over-predicted the
𝜏ዃ኿ and SM agreed with experiments. For 𝑄፠ = 6 − 7.5 L/min, both methods yielded
decent results within the experimental margin of error, with SM predicting faster mix-
ing than MRF. The applied strategy likely under-predicted the drag coefficient for low
gassing rates (no correction was applied), leading to an untimely flooding transition.
Under flooding conditions, both the mixing time and power drop were reasonably well
predicted.
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Multiphase stirred flows: observations
CFD simulations of multi-phase stirred flows have led to promising results, but there
is still a clear gap in literature. The interaction between the two phases remains a
complex modeling issue. It has been reasonably established that virtual mass, turbu-
lent bubble dispersion, the lift force and the Basset force can be neglected, although
for a more general conclusion this should be checked for a wider range of conditions.
The interplay between turbulence and the dispersed phase has been poorly studied
for stirred tank applications. Although it is well known that drag modification by tur-
bulence is significant, it’s effect on the macro-scale flow has only been included via
empirical correlations with limited validity and questionable theoretical basis [72], or
ad-hoc adjustment of the terminal velocity [203]. The development of a more robust
approach to this issue is among the most urgent problems in multiphase modeling.
Turbulence attenuation in the presence of a dispersed phase is a lively field of re-
search [194], but the effect of this phenomena in dense bubbly flows in stirred tanks
is poorly studied. Population balance modeling has improved the predictive capabil-
ities of multi-phase simulations, still their application has been limited to relatively
low gas hold-ups so far. Generally speaking, high hold-up (5 − 20%) stirred tanks
have been understudied, with and without population balances. Swarm effects and
the effects of bubble deformation on the drag force have been included in some cases
by using the drag model of Ishii and Zuber [73], but rarely so. For high-hold up sim-
ulations, these considerations seem to be essential [84]. Clearly, there is room for a
thorough comparative study of gas-liquid stirred tank simulations, considering:

• The effect of different inter-phase forces, in combination with the population
balance approach, on 𝑢፥ , 𝑢፠ , 𝑘፭ , 𝛼, 𝑑፛ . Specifically, drag attenuation by turbu-
lence at a range of gas fraction demands further study.

• The effect of liquid-phase turbulence attenuation

• The capability to predict flooding/loading/dispersion transitions

• The model performance for high gas hold-up cases

2.2.4. RANS modeling: Setup
Based on the above discussions, we have opted to model all internals as sheet bodies
for better agreement in 𝜖. The standard 𝑘−𝜖 model was used for turbulence modeling
due to decent agreement with flow and mixing literature [59, 62]. Later multi-impeller
work showed that the realizable 𝑘−𝜖 model yielded (somewhat) better predictions of
𝜃ዃ኿, and this model is recommended for consideration in future work. In any case, 𝜃ዃ኿
in multi-impeller vessels is still over-predicted for single phase flows (chapter 3), and
the turbulent Schmidt number was evaluated case-by-case for the fermentor model-
ing conducted in this thesis. In multi-impeller simulations the MRF and sliding mesh
model yield comparable mixing behavior (chapter 3); in terms of computational de-
mand, the MRF model is strongly preferred and hence applied for fermentor modeling.

The multi-phase simulations conducted in chapter 5 consider high-holdup cases.
The Ishii-Zuber drag law (implemented in FLUENT as Universal Drag) was selected
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to account for deformation and swarm effects, no turbulent drag modification was
required at high gas-holdup values [84], and no additional inter-phase forces were ap-
plied [192, 198]. The coalescence and break-up model of Luo and Svendsen [77] were
used in population balance modeling due to their default availability in ANSYS FLU-
ENT. In this work the mean diameter is of greater importance, and the Luo/Svendsen
model appears to predict this reasonably. Still, for future work, implementation and
consideration of other models is recommended to yield better agreement in size dis-
tributions [78]. UDF implementations of the Laakkonen and Lehr coalescence kernels
were attempted, but they proved numerically unstable, and solving these issues was
not considered to be within the scope of this project. The relatively low number of
bins (max. 16) made computational demands of the discrete approach manageable;
this approach showed better computational stability. Expansion of the bubbles due
to the hydro-static pressure was not accounted for in this work. To calculate the 𝑘፥𝑎,
the eddy-cell approach of Lamont and Scott was used [188], based on the results of
Gimbun et al. [61].

2.3. Biological modeling
In this work, reaction dynamics for two different organisms have been coupled to CFD
simulations of fermentors. Themetabolic modeling part of the Hé-project is conducted
by a team from East China University of Science and Technology, and biological mod-
eling in itself not the focus of the current thesis. Still, the application of metabolic
models (S. cerevisiae and P. chrysogenum) in CFD simulations means some background
on the metabolic features is required for analysis and discussion.In this section, a brief
overview of the key metabolic features is provided for both organisms, combined with
some typical industrial practices.

The coupling of chemical reactions to CFD simulations has been frequently con-
ducted. Biological reactions are often modeled with unstructured, hyperbolic Monod
kinetics [222] for biomass specific substrate uptake:

𝑞፬ = 𝑞፬,፦ፚ፱ ⋅
𝐶፬

𝐾፬ + 𝐶፬
(mol/g፝፰/h) (2.23)

Here, 𝑞፬,፦ፚ፱ is the transport capacity, and 𝐾፬ the substrate affinity; the values
vary strongly between different transport mechanisms and hence between organisms.
While it is often assumed in practice that both parameters are constant for a given
organism, this may not be the case [223]. Organisms may have the capacity to synthe-
size several transporters with different affinities, the expression of which may depend
on the extra-cellular conditions. Hence, the observed affinity may depend on the con-
ditions [224, 225], and 𝑞፬ may be the result of multiple transporters acting in paral-
lel. The transport capacity may similarly vary; P. chrysogenum experiments conducted
within the scope of this project [226] indicate that 𝑞፬,፦ፚ፱ is reduced at low biomass
specific growth rates (𝜇), hinting at a lower availability of transporters. Postma et al.
[227, 228], reported strong deviations from Monod kinetics for S. cerevisiae at differ-
ent steady states, hinting at the presence of 2 transporters, with the amount of each
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transporter depending on 𝜇. Experiments by De Jonge et al. [44] for P. chrysogenum
and Suarez-Mendez et al. [45] for S. cerevisiae reveal that Monod kinetics do properly
model the substrate uptake rate in feast-famine cycles, c.q. at a timescale of min-
utes. This agrees with the notion that transporter adaptation occurs by controlling the
synthesis rate of transporter enzymes, a process taking place at hour timescales. For
simulated flowtimes of < 1 h, the kinetic parameters can typically be assumed con-
stant. However, the dependence of the kinetic parameters on the reaction conditions
means that literature values for 𝑞፬,፦ፚ፱ and 𝐾፬ can not be used straightforwardly; the
reported values may not be representative for the simulated conditions. Lacking a
better alternative, in this work values of 𝑞፬,፦ፚ፱ and 𝐾፬ from literature are used when
using Monod kinetics, with the notion that these may be acquired under unrepresenta-
tive conditions. When a structured metabolic model is used (chapter 7), 𝑞፬,፦ፚ፱ varies
depending on conditions.

2.3.1. Penicillium chrysogenum
Penicillium Chrysogenum is a fungus (eukaryote) known for its capability to produce
𝛽 − 𝑙𝑎𝑐𝑡𝑎𝑚 antibiotics, including penicillin-G (Pen-G). In this project strain DS17690,
a high pen-G producer, is applied.

The penicillin production pathway Penicillin in produced by condensing amino acids
𝛼-aminoadipate (AAA), L-cysteine (CYS) and L-valine (VAL) to form a backbone, fol-
lowed by enzymatic ring closure at the sulfur atom, and exchange of the AAA section
for phenylacetic acid (PAA) [229]. The total synthesis pathway is presented in figure
2.1. The amino acids AAA, CYS and VAL are synthesized in abundance; external ad-
dition of AAA had no positive effect on penicillin production [229]. The backbone
is formed when the three acids are condensed to 𝛼-aminoadipyl-L-cysteinyl-D-valine
(ACV) by the enzyme ACVS, consuming ATP. ACV is transferred to IPNS, where it is oxi-
dized to isopenicillin-N (IPN). IPN is transported to the peroxisomes where the enzyme
AT is located. This enzyme has multiple functions; The high-affinity route is the ’IAT’
route: AAA is exchanged for Coenzyme-A (CoA) activated PAA, producing Pen-G and re-
leasing the CoA [230]. Alternatively, when PAA is absent the IAH route is taken: IPN is
converted to 6-aminopenicillanic acid (6-APA) by releasing AAA. 6-APA reacts to 8-HPA
under addition of 𝐶𝑂ኼ. PAA-CoA can still be added to 6-APA by the AAT functionality of
the AT enzyme; the IAH-AAT route also contributes to Pen-G formation. The PAA used
in the above reactions has to be supplied externally. It has been shown that uptake of
PAA occurs through passive diffusion of the non-dissociated acid [229, 231]. However,
an active (ATP driven) exporter of PAA is also present, resulting in a so-called ’futile
cycle’ of PAA in- and export, consuming a considerable amount of ATP [231, 232].

It has been shown that, under regular glucose-limited conditions, ACVS controls
94% of the flux through the penicillin biosynthesis pathway, and that this enzyme’s
activity degenerates over the period of cultivation [229, 230]. Van Gulik et al. reported
that the central carbonmetabolism is not limiting for penicillin production, but NADPH
availability was limited when an increased NADPH demand was imposed by changing
carbon/nitrogen substrate [233]. Nasution et al. [234] reported an influence of cys-
teine supply on the penicillin production rate, attributed to the NADPH demand in
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Figure 2.1: Synthesis pathway of Penicillin-G in P. chrysogenum (reproduced from [229] with permission).

cysteine synthesis. A high 𝑞፩ furthermore correlated with high ATP levels. Kleijn et
al. [235] observed a strongly increased flux through the pentose phosphate pathway
to fulfill the increased NADPH demand. Douma et al. [236] formulated a model (the
dynamic gene regulation model, DRW) describing the dependence of the biomass spe-
cific penicillin production rate 𝑞፩, on 𝜇 and the extra-cellular substrate concentration
𝐶፬; 𝑞፩ was found to be suppressed by substrate excess conditions. De Jonge et al. [44]
imposed 6 min feast-famine cycles, with the same time averaged 𝐶፬ as a steady state
chemostat. This reduced 𝑞፩ by approximately a factor 2, but also reduced degradation
in 𝑞፩ over time.

From the production pathway it is clear that a lack of PAA will drive the pathway
fluxes away from Pen-G, towards 6-APA and IPN as the main end products [229]. The
total production of 𝛽−lactams (which includes both these compounds and Pen-G) was
50% of the normal production under PAA starvation conditions. After a step supply
of PAA, the PenG production rate briefly exceeds the regular pathway flux, consuming
stored IPN and 6-APA. As a result, the oxygen uptake rate peaked as well. The rapid
response shows all relevant enzymes were expressed already, despite PAA absence. In
this case, the activity of AT was rate limiting [229, 230].

Oxygen dependency of P. chrysogenum In lab-scale fermentations the dissolved oxy-
gen concentration DO is typically saturated, however, in industrial fermentations oxy-
gen transfer may be limiting. Oxygen is required for the conversion from ACV to IPN
and oxygen starvation therefore limits IPNS activity; de Noronha Pissara et al. assumed
a first order activity of IPNS for 𝐷𝑂 < 70 % [237], which is supported by Bainbridge et
al. [238]. According to the model of de Noronha Pissara et al. for penicillin-V produc-
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tion, IPNS was found to be rate limiting at low𝐷𝑂, while for𝐷𝑂 > 50% control shifted
to ACVS. Although both the strain and product are different, this is consistent with
the observations of Deshmukh et al. that ACVS is limiting when oxygen is abundant
[229]. It also indicates that a metabolic model for industrial penicillin fermentation
should include a shift in pathway control if oxygen is considered; over the course of
a fed-batch process the oxygen demand will increase due to an increase in biomass
concentration, while the associated increase in rheology will reduce oxygen transfer.
Most oxygen will be required by the central metabolism, hence lack of oxygen may
reduce the energy availability, introducing significant stress on the cell. The effect of
oxygen starvation was studied by Enfors and Larsson [239, 240] using a scale-down
simulator. They revealed that < 2min of oxygen limitation has no irreversible effect,
but a first-order irreversible decrease in respiration capacity is observed for longer
starvation periods. Although the circulation time in large fermentors is typically be-
low 2min, individual organisms may occasionally reside in oxygen-limited regions of
the reactor for such periods. McIntyre et al. [241] commented that oxygen starvation
(like carbon starvation) may result in cell autolysis. Their study furthermore revealed
some ethanol production, indicating that P. Chrysogenum has some capacity to con-
sume substrate under oxygen starvation conditions [241]. No data regarding effects
on 𝑞፩ is reported. Vardar and Lilly [54] cycled DO-levels in a 7 liter fermentor and
observed a steep decrease in penicillin formation for a DO < 30% and an irreversible
impairment in production below 10%, an observation supported by Henriksen et al.
[242]. Surprisingly, the oxygen uptake itself was affected significantly only at a DOT
of 7%. They used the Pen-V producing strain P1. Cycling the DO concentration around
30 ± 7% with a period of 2min showed the same reduced production (with a steady
flux) as a constant 26% DO, possibly due to differences in dynamics between inhibition
and release from inhibition. Whether similar effects occur in the DS17690 strain for
Pen-G production is currently not known, nor are there any metabolic models available
that include the effect of oxygen limitations on 𝜇, 𝑞፬ and 𝑞፩. In any case, the effects of
oxygen starvation on the intra-cellular state, which is a prerequisite for comprehensive
metabolic modeling, are poorly known and require additional attention.

Morphological effects The mycelial nature of P. chrysogenum gives rise to the com-
plex rheology of penicillin broths [243–245]. Cells may tangle to form pellets, which
lead to comparatively low viscosities [246]; within the pellets the (near) absence of
convective transport may lead to local substrate- and oxygen limitations [247], how-
ever. It is therefore preferential to conduct industrial fermentation with dispersed or
clumped cells [246, 248], even though this may complicate the rheology. Smith et al.
[249] report that the use of very high agitation rates reduces the mean hyphal length
and penicillin production rate, which indicates that (on the lab scale) the loss of pro-
duction due to shear damage outweighs the improved oxygen transfer. They found
the decrease correlated not just with power input, but also the circulation rate. These
observations were further developed by Jüsten et al. into the Eddy Dissipation Circu-
lation Function (EDCF) concept, posing that the product of the energy dissipation rate
(causing shear damage) and the frequency of exposure to high-dissipation conditions
correlates well with the mean hyphal length [250, 251].
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Structured metabolic model for penicillin production
Previous models for penicillin production were often mechanistic and acted at the
reactor scale. These models may include several of the observations outlined above,
including substrate repression, oxygen limitation [252–254], pH, temperature, power
input [253, 254], morphology and rheology [254]. These models, however, do not take
the intra-cellular environment and reactor heterogeneity into account, making them
unsuitable for CFD coupling and scale-down simulator design.

One of the aims of the Hé project is to develop a structured metabolic model for
penicillin production, relating the production rate to the intracellular state of the cell.
To allow coupling of metabolic models and CFD simulations, compact models of O(10)
equations are highly desired from the perspective of computation speed and mem-
ory requirements. These are a far cry from full-scale models such as those published
by Agren et al. [22]. Nikerel et al. [255] discuss how the use of pseudo-equilibrium
and quasi-steady state assumptions, lumping of similar metabolites and removal of in-
significant byproducts can be used to reduce a model of 155metabolites and 156 reac-
tions [233] to 52metabolites with 48 rates, while maintaining the essential metabolic
responses. The metabolic response model of Nikerel et al. [255], combined with the
work gene regulation model of Douma et al. [236], the production pathway study of
Deshmukh et al. [229] and the substrate oscillation study of De Jonge et al. [44], forms
the basis of the metabolic model developed by the ECUST team in the scope of this
project.

Compared to themodel of Nikerel, the number of equations in this metabolic model
is further reduced, and some enzyme pools have been introduced in order to assess
performance at the timescale of hours. Currently, the model includes 5 metabolite
and 4 enzymes pools. The most significant effects that are captured with the current
model are:

• The effect of PAA on the metabolism. Although PAA limitation is not expected
on the large scale, futile cycling of PAA costs a significant amount of ATP.

• Storage/release kinetics: excess substrate is stored as trehalose at times of sub-
strate excess, and is released back to the glycolytic pathway under substrate
starvation conditions.

• Penicillin production dependency on 𝜇 and glycolytic intermediates; 𝑞፩ con-
trolled by the amount of available enzyme, the enzyme dynamics are governed
by the DRW model of Douma, but with intracellular glycolytic intermediates as-
suming control instead of extra-cellular substrate.

• Intracellular carbon pools (amino acid, glycolytic intermediates) and ATP influ-
ence the growth rate.

• The availability of substrate transporter enzymes is dynamic, and relates to the
growth rate. This implies that 𝑞፬,፦ፚ፱ in the Monod uptake model is dynamic on
long timescales, while at short times Monod kinetics are retrieved.
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A full description of the model can be found in appendix A. Further model exten-
sions may consider oxygen starvation and shear effects. Currently, these phenomena
are insufficiently quantified for the current strain to be included in a structured, dy-
namic model at the cellular level; investigations into shear and oxygen starvation
effects are conducted at ECUST within the scope of this project. As noted earlier, the
current model has 4 enzyme pools in total, which can be assumed to be in quasi-
steady state within the timespan of several mixing times, although they may vary
strongly over the process timescale, and their level may be heterogeneous within the
population. Assuming the enzyme level to be in steady-state when simulating mixing
timescales reduces the computational load; this does mean that the value of these
parameters under fluctuating conditions needs to be estimated a-priori, or assessed
iteratively.

2.3.2. Saccharomyces cerevisiae
Saccharomyces cerevisiae, colloquially known as baker’s yeast, is one of the workhorses
of the biotechnology industry, used in baking and brewing, but also as model organism
in biological research. In contrast to the P. chrysogenum, the cells are typically smooth
ovoids, giving rise to low viscosity broths that behave in a reasonably Newtonian fash-
ion. Strain 𝐶𝐵𝑆8066 is used in this project.

S. cerevisiae can be grown both aerobically and anaerobically. Anaerobic fermen-
tation typically has to goal of ethanol production; in absence of oxygen, glucose sub-
strate is metabolized to form 2 pyruvate, which is turned into 2 ethanol + 2 𝐶𝑂ኼ. The
net production of 𝐴𝑇𝑃 under anaerobic conditions is 2 ATP/glucose; the low energy
gain of anaerobic growth leads to a low growth rate [256]. Under aerobic conditions,
glucose is metabolized in the Krebs cycle which has a yield of 32 ATP/glucose in case
the substrate is completely combusted, leading to much higher growth rates; the ob-
jective of aerated yeast processes is typically to produce large amounts of biomass.
The product may either be the yeast itself (for backing applications), or yeast extracts
(used as taste enhancers).

The Crabtree effect Aiming at the production of biomass, it is desirable to avoid pro-
duction of ethanol in aerobic yeast processes, meaning that (local) deficiencies in dis-
solved oxygen are to be avoided. However, ethanol production can also occur under
glucose excess conditions, even if high levels of dissolved oxygen are available, called
the Crabtree effect [257]. Publications often discriminate between a short-term and
long-term Crabtree effect; the short-term effect is more interesting from the point of
view of the dynamic environment in industrial bioreactors. Initially, the effect was
often regarded as resulting from a saturated oxygen uptake capacity, but later reports
showed that the rate limitations instead occur in the capacity to oxidize pyruvate to
acetyl-CoA [258, 259], rather than oxygen availability itself. The oxidation of pyruvate
to acetyl-CoA can occur directly, by action of pyruvate dehydrogenase, or via a bypass
route which utilizes pyruvate reduction to acetaldehyde via pyruvate decarboxylase; a
notable difference between Crabtree-positive and negative yeast is the higher level of
this enzyme in the former [260]. The pyruvate affinity of the first route is much higher
[261], and at low dilution rates the direct route is dominant; at higher dilution rates the
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contribution of the bypass becomes significant [258]. In the bypass route, acetalde-
hyde is converted to acetate and then acetyl-CoA. Alternatively, acetaldehyde can be
metabolized to ethanol, but the affinity of this route is much lower [262]. Taken to-
gether, these observations lead to the hypothesis that the Crabtree effect sets in when
the pyruvate to acetyl-CoA bypass saturates, driving the conversion of acetaldehyde
to ethanol [228, 262, 263]. The production of ethanol is paired with significant excre-
tion of acetate. Verduyn et al. [257, 264] reported measurable quantities of ethanol
within 2 minutes after a glucose pulse, showing that the Crabtree-effect is metaboli-
cally controlled. Kresnowati et al. [265] showed a peak in the intracellular pyruvate
level around 5 − 10 s after a glucose pulse, for strain CEN.PK 113-7D, supporting a
rapid intracellular response.

In pulse studies a large amount of substrate is introduced instantaneously, leading
to strong excess and making it difficult to comment on the exact conditions at which
the Crabtree effect sets in. Studies which explicitly considered the onset were con-
ducted in steady-state chemostats. The exact onset of the Crabtree effect depends on
the applied strain, but several studies report the onset to occur at dilution rates of
𝐷፫ = 0.35−0.4 hዅኻ, with 𝐷፫,፜፫።፭ = 0.38−0.39 hዅኻ reported for S. cerevisiae CBS8066
[227]. Postma et al. [227] reported a residual substrate concentration independent
of the dilution rate for a series of steady-state chemostats with 𝐷፫ < 𝐷፫,፜፫።፭ , which
means that substrate uptake does not follow Monod kinetics at long timescales. A
strong elevation in residual glucose concentration was observed when 𝐷፫ > 𝐷፫,፜፫።፭
Postma et al. attribute this uptake behavior to the presence of 2 transporters with
different affinities, the total capacity of which varies with the dilution rate. The above
considerations make it challenging to introduce the Crabtree effect into an unstruc-
tured metabolic framework, as is required for more traditional CFD simulations. The
observations of Postma et al. reveal that the onset of the ethanol production links to
the growth rate 𝜇, which in turn can be related to the substrate uptake rate 𝑞፬ . Using
Monod kinetics to determined 𝑞፬ based on 𝐶፬ will introduce errors, however, as 𝑞፬,፦ፚ፱
and 𝐾፬ vary depending on the growth rate. The value of the kinetic parameters can be
estimated under steady-state conditions, but it is unknown whether these agree with
the statistical steady-state values under highly dynamic conditions. Correct inclusion
of the substrate uptake rate within structured metabolic models will be challenging, as
the adaptation of the capacity of the different transporters still needs to be predicted
based on the extra-cellular environment. The pyruvate node is a logical basis for a
simple metabolic model; based on the above observations inclusion of acetadelhyde
is also recommended.

More recent work focused on further quantification of the intra-cellular environ-
ment after the admission of a glucose pulse. Wu et al. [266] report a highly increased
substrate uptake after the pulse, directly followed by a dip - possibly caused by 𝐺6𝑃
inhibition, reaching a minimum at 𝑡 = 50 s, and leveling off at a somewhat higher
level over the next 100 s. A 50 s time-lag followed by a 100 s transient is seen in the
ethanol production. During the first phase, acetate production increases, indicating
that acetaldehyde is first driven towards acetate, and ethanol production only sets in
once this route is saturated. Importantly, the response timescales are relatively close
to the circulation time of a large fermentor, which means the extra- and intra-cellular
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environment in such reactors will almost certainly be out-of-equilibrium locally. The
consequence may be that ethanol formation is suppressed due to the brevity of expo-
sures to excess conditions, or that ethanol formation may be continuously active to
some extent.

Suarez-Mendez et al. [45] reported a consistent reduction in the pyruvate level
in scale-down experiments compared to steady state conditions, although their os-
cillations were of insufficient amplitude to invoke a Crabtree response. Still, these
extra-cellular variations could change the ratio of substrate pushed through the bypass
route, possibly affecting the biomass yield on substrate. Experiments with successive
rapid oscillations of sufficient amplitude are required to provide additional informa-
tion. In the experiments of Wu, the pyruvate pool follows the dynamics of 𝑞፬: a strong
peak, followed by a dip, and gradual settling; the settling concentration exceeds the
level prior to the pulse by a factor 2. Kresnowati et al. [267] focused on transcriptome
dynamics, but also included several metabolic pools. A rapid drop in 𝐴𝑇𝑃 as well
as the total 𝐴𝑋𝑃 was observed immediately following the pulse. The NADH/NAD ra-
tio peaked immediately, all studied glycolytic and TCA intermediates responded with
short lag times (< 100 s), in accordance with the observations of Wu et al.

In the large-scale experiments conducted at the former Statoil plant in Stavanger
(Norway), ethanol was measured to be present during the exponential growth phase of
the fermentation [16]. The presence of a glucose gradient during later stages implies
that there may still be zones in the reactor where glucose excess occurs. Noorman
[15] reports that the respiration quotient (RQ) in the bottom of the reactor was below
1, which hints at co-consumption of ethanol and glucose in this region of the reactor.
In the bulk of the vessel, 𝑅𝑄 ≈ 1, indicating solely glucose consumption. While no
quantifications are made, the data indicates that despite low ethanol levels overall,
theremay be some local production and re-consumption due to the large-scale glucose
gradient.

Current models for S. cerevisiae Several models for S. cerevisiae have been devel-
oped previously. Lapin et al. coupled a model for anaerobic fermentation to Euler-
Lagrange CFD [21]. Aerobic models are more rare. Sonnleitner and Käppeli [268]
assumed oxygen limitations caused the onset of Crabtree fermentation. Pham et al.
[42] proposed a model in which the oxidative and total substrate fluxes are separately
calculated, and 𝑞፟፞፫፦ = 𝑞፬ − 𝑞፨፱ . A Monod model is used to determine 𝑞፬, ethanol
re-assimilation is included in parallel to glucose uptake. The model was capable of
correctly assessing the dynamics of 𝐶፱ , 𝐶፬ , 𝐶፞ and 𝑞፨ኼ in a fed batch fermentation, and
an oscillating feed experiment with an oscillation period of 0.5 h. The model does not
consider the intra-cellular environment, limiting its applicability for metabolic cou-
pling to CFD simulations. Lei et al. [263] proposed an intracellular model includ-
ing pyruvate, acetaldehyde and acetate, based on the bypass saturation hypothesis of
Postma et al. [228]. The presence of two substrate uptake systems was taken into
account (albeit with fixed 𝑞፬,፦ፚ፱), with an extra acetaldehyde-based term to include
the rapid rise in 𝑞፬ under Crabtree conditions. The level of acetaldehyde was used to
control the Crabtree onset. The model compared favorably with the data of Postma et
al. [227] for steady state chemostats, although the presence of acetate and acetalde-
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hyde at high dilution rates was overestimated. In a dynamic batch simulation, the
agreement is mostly qualitative, with a strong over-prediction for the pyruvate and
under-prediction for the acetate pool. Similar qualitatively correct, but quantitatively
incorrect tendencies were observed for fed-batch, glucose pulse and dilution rate-shift
experiments. While intracellular in its basis, equilibrium between the intra- and extra-
cellular domain was assumed, and all balance equations are written in extracellular
form; this makes the model as published unsuitable to study heterogeneity at the
metabolic timescale. Rizzi et al. [269] proposed an elaborate model of the glycolytic
pathway, and studied short-timescale dynamics. They found satisfactory results for
the production of several components, including excreted acetate, ethanol and intra-
cellular G6P, F6P, FBP, GAP and PEP. The pyruvate pool was strongly over-estimated
after the pulse, as was ADP while NADH was under-estimated. The over-estimation of
pyruvate was attributed to an incomplete understanding of the pyruvate decarboxylase
enzyme. The model of Rizzi et al. [269] provides a step towards a dynamic metabolic
model suitable for CFD coupling, although it is desired that the number of model
equations is further reduced and the model performance is more widely checked. The
availability of intra-cellular response data to glucose pulses should facilitate the de-
velopment of such a model in the future.



3
Mixing in multi-impeller reactors

Stirred industrial fermentors frequently contain multiple impellers. For accurate assess-
ment of extra-cellular gradients in these fermentors, the mixing behavior in such vessels
must be accurately captured. A review of literature reveals that RANS models currently per-
form poorly in this respect, even for the comparatively simple case of single-phase, New-
tonian flow. Compartment formation around the individual impellers is often observed in
multi-impeller vessels, especially in the case of radial mixers and high inter-impeller clear-
ance. Since mixing in single-impeller systems is reasonably captured by RANS models, our
hypothesis is that the interaction between these compartments is not adequately captured
in multi-impeller RANS simulations.

In this chapter, we use a combination of experimental LDA data, RANS simulations
and large eddy simulations to assess the role of turbulence and macro-instabilities in the
exchange of fluid between the compartments formed around individual impellers, in a
single-phase mixing process with two Rushton turbines. LDA results confirm the pres-
ence of macro-instabilities (MIs), which locally account for up to half of the fluctuating
kinetic energy. While unsteady sliding mesh simulations do capture the influence of a
macro-instability on mixing between the compartments to a reasonable degree, they under-
estimate the production of turbulence in the region of convergent flow between the im-
pellers, which leads to a mixing time over-estimation of approx. 17%. By virtue of their
steady state nature, multiple reference frame simulations do not capture the effect of the
macro-instability , nor do they correctly assess the turbulent kinetic energy. The combined
effect leads to over-estimations in the mixing time of up to 100% depending on the used
turbulence model and mesh density. Furthermore, variation in the predicted flow-pattern
between the meshes led to deviations from typical mesh-dependence behavior, which re-
duces reliability. Large eddy simulations, even at very crude meshes, performed signifi-
cantly better in assessing the mixing dynamics in two-impeller stirred vessels, although
the frequency of the experimentally observed macro-instability was not fully reproduced,
and the energy dissipation rate 𝜖 was poorly assessed.

3.1. Introduction
CFD simulations offer a relatively cheap and fast approach towards evaluating the
mixing performance of a range of impeller configurations, without requiring a lengthy
experimental campaign. This of course requires that CFD simulations sufficiently cap-
ture the true mixing behavior, which gave rise to a significant body of validation lit-
erature. A review of literature focusing on single phase flows with Rushton turbines
(chapter 2, section 2.2) shows that Reynolds Averaged Navier Stokes (RANS) simula-
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tions yield decent results for single-impeller geometries [62], but appear to consis-
tently overestimate mixing times in multi-impeller geometries [65, 138, 159, 160];
this over-estimation may hold for other impeller types at large spacing [160]. LES
simulations appear to adequately capture mixing behavior, but the required computa-
tion time prohibits routine application.

We assess this overestimation of the mixing time in Rushton-stirred tanks with
large impeller spacing by RANS simulations. Our original hypothesis was that of
RANS simulations under-estimating 𝜇፭ in the horizontal plane segregating the com-
partments formed around the individual impellers, hence under-estimating the mass
exchange between them. During our investigation, we additionally observed a macro-
instability (MI) in the inter-compartment plane itself, which significantly contributed
to mass exchange. In several prior publications, inter-compartment mass exchange
was boosted by tuning of the turbulent Schmidt number, 𝑆𝑐፭ = 𝜈፭/(𝒟፭). We pose that
this tuning is not based on physical reasoning. Instead, it is a patchwork solution to
cover under-predicted turbulent exchange, as Tominaga and Stathopoulos [161] simi-
larly discussed for mispredicted scalar spreading in jets, as well as exchange by virtue
of MIs. Such an an ad-hoc correction compromises the predictive capabilities of stirred
tank simulations.

Whereas other publications on multi-impeller mixing focus primarily on overall
mixing behavior, we study the flow in the inter-compartment plane in detail, using a
combination of LDA experiments, RANS and LES simulations. With this, we attempt to
describe which physical phenomena underlay inter-compartment mass transfer, their
assessment by CFD simulations, and answer as towhy RANS simulations poorly capture
mixing in multi-impeller tanks.

3.2. Materials and Methods
3.2.1. CFD setup
The focus for RANS simulations is on the realizable 𝑘 − 𝜖 (RKE) and Reynolds Stress
Model (RSM) with linear-pressure strain formulation. For the LES simulations, the
dynamic Smagorinsky model is employed, based on the favorable mixing results ob-
tained by Jahoda et al. [65]. An overview of the model formulations is given in chapter
2, sec. 2.1.1. Both the steady-state multiple reference frame (MRF) and transient slid-

Table 3.1: Meshes used in this work. ኼፈፅ represents a ኽዀኺ∘ domain and ኼፈፏ represents the ዀኺ∘ domain.
The last letter(s) represent the mesh quality (C = crude, M = medium, F = fine, SF = super-fine).

Name Cells Domain Methods
2IP-C 94𝑘 60∘ RKE, RSM
2IP-M 506𝑘 60∘ RKE, RSM
2IP-F 812𝑘 60∘ RKE, RSM, SM-RKE
2IF-C 648𝑘 360∘ RKE, RSM, SM-RKE, LES
2IF-M 1997𝑘 360∘ RKE, RSM, SM-RKE, SM-RSM, LES
2IF-F 5884𝑘 360∘ RKE, RSM, SM-RKE
2IF-SF 10584𝑘 360∘ RKE, RSM, LES
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ing mesh (SM) impeller model are used in RANS simulations. For LES, only the latter
is employed.

A 2-impeller stirred tank with height 𝐻 = 2𝑇, impeller diameter 𝐷 = 𝑇/3, off-
bottom clearance 𝐶 = 𝑇/3 and inter-impeller clearance Δ𝐶 = 𝑇 was modeled. Here,
tank diameter 𝑇 = 0.29 m, as used by Jahoda et al. The tank contains 4 baffles with
width 𝑇/10. All internals were modeled as sheet bodies [59, 62]. Simulations were
conducted both in a 360∘ domain and 60∘ domain to assess the influence of a symmetry
assumption [10, 20, 59, 84]. Using a 60∘ section introduces 6 baffles; the effect of this
additional baffling was found to be small [59]. As in Jahoda et al. [65], the tracer
concentration probe is placed at 𝑇/4 from the bottom, between the baffles, at 𝑇/20
from the wall, and the agitation rate 𝑁፬ = 5 sዅኻ.

Spatial discretization was set to 2፧፝ order upwind [59, 62] for RANS models and
bounded central differences with for LES. Standard wall functions were employed. The
vessel top was set to no-shear to mimic a free surface, all other walls were no-slip.
Convergence of the flowfield was declared when the residuals were < 10ዅ኿ and the
mean velocity remained within 0.1% over 1000 iterations. With transient simulations
(SM and LES), only the residuals were considered. We report the used meshes in table
3.1, with the 2IF series being the full domain, and the 2IP series representing a 60∘
slice. We set Δ𝑡 = 0.00333s in the sliding mesh simulations and the crudest LES sim-
ulation, 2IF-C. The finest LES simulation, 2IF-SF, was conducted with Δ𝑡 = 0.001667s,
and medium resolution simulation (2IF-M) with both Δ𝑡 values for comparison. Tem-
poral discretization was second order implicit. With the MRF model, the flowfield was
resolved in steady state. During mixing, we used a timestep size of Δ𝑡 = 0.005 s with
MRF, while the velocity and turbulence fields remained frozen. Second order implicit
time discretization was used in all cases.

Tracer was introduced as a passive scalar in a spherical volume (𝑟 = 0.0125m),
at 𝑌 = 0.551m from the bottom, at 𝑟/𝑅 = 0.5, in the baffle plane, with 𝑅 = 0.5𝑇
the tank radius. The tracer and bulk fluid had equal properties, 𝜌 = 1000 kg/mኽ

and 𝜇፥ = 0.001 Pa s, such that the tracer will not disturb the flowfield. The FLUENT
default simple gradient diffusion hypothesis (SGDH) was used to determine turbu-
lent scalar diffusion, modeling the diffusive flux as 𝐽። = −(𝜌፥𝒟፦ + 𝜇፭/𝑆𝑐፭)∇𝐶። with
𝒟፦ = 10ዅዃ mኼ/s the molecular diffusion coefficient, 𝜇፭ the turbulent viscosity, 𝐶። the
scalar concentration. 𝑆𝑐፭ = 0.7 is the turbulent Schmidt number. A simulation with
generalized gradient diffusion hypothesis (GGDH) yielded no significant change in 𝜃ዃ኿.

3.2.2. LDA setup
We used a 2-probe TSI powersight laser system (150mW) with 𝜆ኻ = 561 nm (axial)
and 𝜆ኼ = 532 nm (radial), operated in backward scattering mode. A glass tank (𝑇 =
0.26 m, 𝐻 = 2𝑇, 𝐶 = 𝑇/3, Δ𝐶 = 𝑇, 4 aluminum baffles of 𝑇/10) was placed in a
water-filled rectangular glass box for refractive indexmatching. Two standard Rushton
turbines were mounted on a centered shaft of diameter 𝑑፬ = 0.02m. All experiments
were conducted at 𝑁፬ = 5.78 sዅኻ, to match the Reynolds number with Jahoda et al.
[65]. Hollow glass seeding (𝑑፩ = 8 − 12 μm, Stokes number 𝑆𝑡 = 0.03) was used.

Verification measurements were conducted in the impeller outflow, at the height
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Figure 3.1: Measurement grid for the LDA-experiments in the mid-compartment plane. All axial values are
given in mm, with ፲ ዆ ኺ the central position between the impeller, and ፫ ዆ ኺ the impeller shaft.

of the impeller disc, at radial positions were 𝑟 = [50, 60, 70, 77, 90, 102] mm, in
the baffle plane. The average data rate was 340 − 500 Hz (axial) and 830 − 850Hz
(radial). Data around the inter-compartment plane was recorded at 𝑟 = 7 ∗ 𝑦 = 11
(radial * axial) positions, specified in figure 3.1. Each measurement 50000 data-points
were collected, measurements were done in 5−fold. The average data rates were
289 Hz (axial) and 343Hz (radial). These are insufficient to resolve the full turbulence
spectrum, but suffice to measure the energy-carrying motions which are expected to
be relevant for inter-compartment mass exchange.

Data processing
LDA data processing was conducted in MATLAB 8.6.0. The setup contained a burst
counter to remove false registrations, the velocity bias was corrected using gate-time
weighing. The mean velocity is retrieved by time-averaging the velocity signal; sub-
tracting the mean yields the fluctuating velocity. The contribution of noise and peri-
odic flow components was assessed via the slotted auto-correlation method with local
variance normalization [270–272], with the auto-correlation 𝜌̂ computed as:

𝜌̂(𝑘Δ𝜏፥ፚ፠) =
Σ𝑢ᖣ(𝑡።)𝑢ᖣ(𝑡፣)

√Σ𝑢ᖣኼ(𝑡።)Σ𝑢ᖣኼ(𝑡፣)
(3.1)

Ideally, at zero lag-time 𝜌̂ = 1; (white) noise causes a lower value in practice,
the difference is used to assess the noise contribution Ψ. To segregate periodic flow
contributions, van Maanen [273] proposed fitting the auto-correlation function with a
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series of damped cosines, eq. 3.2:

𝜌̂፟።፭(𝜏) = 𝑏 + 𝑐ኺ𝑒ዅᎎᎲᎡ + Σ።፧዆ኻ𝑐፧𝑒ዅᎎᑟᎡ cos(2 ⋅ 𝑛𝑓𝜋𝜏) (3.2)

Summing the amplitudes Σ𝑐፧ then gives the contribution of periodic motions to
the fluctuating kinetic energy. Alternatively, the kinetic energy contribution of periodic
flow can be estimated from the spectral density function eq. 3.3:

𝑆(𝑓) = Δ𝑡
𝜋 [

1
2𝜌̂(𝑘Δ𝜏፥ፚ፠)𝑤(𝑘Δ𝜏፥ፚ፠) cos(𝑘𝑓Δ𝜏፥ፚ፠)] (3.3)

With w a Tukey-Hanning window [271] with width 𝑡፦(𝑓) = 𝑡፦ፚ፱𝜅𝑓ኺ/𝑓, where
lower 𝜅 decreases low-frequency resolution, but high 𝜅 can induce modulation. We
found 𝜅 = 5 provided a good trade-off. The relative contribution of periodic compo-
nents follows from integrating eq. 3.3 over the relevant frequencies, which was done
using trapezoidal integration.

With these methods, the 𝑅𝑀𝑆 velocity 𝑢፫፦፬ = √(𝑢ᖣ𝑢ᖣ) can be corrected for the
periodic components, by eq. 3.4 when periodic fitting is used and eq. 3.5 when using
spectral integration:

𝑢ᖣ፭ = 𝑢ᖣ ⋅ √1 − Ψ − Σ(𝑐፧) (3.4)

𝑢ᖣ፭ = 𝑢ᖣ ⋅ √1 − Ψ − 𝐸፩፞፫/𝐸፭፨፭ (3.5)

Since the tangential component of 𝑈 and 𝑢ᖣ is unknown, isotropy is assumed in
order to calculate the turbulent kinetic energy as 𝑘፭ = 3/4(𝑢ᖣኼ፭,ፚ፱ + 𝑢ᖣኼ፭,፫ፚ፝).

In the impeller outflow 𝜌̂ was evaluated for 𝜏፥ፚ፠ = 250ms using 500 slots, which
sufficed to capture noise and blade passages. The well-defined impeller-induced peri-
odicity gave preference to eq. 3.4 for periodic estimation, taking the first 3 harmonics
into account. There was no discernible influence of 𝑀𝐼𝑠 in the outflow. In the mid-
plane, 𝜌̂ was evaluated first for 𝜏፥ፚ፠ = 250 ms using 500 slots to estimate noise (no
impeller influence was discernible here), and next at 𝜏፥ፚ፠ = 40 s with 1600 slots to
evaluate MI-induced periodicity. As a high-resolution, long lag time computation was
unfeasible, we estimated the total spectral density function by matching the spec-
trum of both lag time ranges in the overlapping frequency range to construct a single
spectrum.

In the mid-plane, 𝜌̂was fitted with 4 cosines with frequencies 𝑓።.፣ : 𝑖 = 1, 2 indicates
the two fitted frequencies, 𝑗 = 1 the base frequency and 𝑗 = 2 the first harmonic.
Spectral density integration requires a cut-off between turbulent and MI components.
We considered the range 𝑓/𝑁፬ < 0.1 (10 impeller revolutions) as MI-components,
based on visual assessment of the spectra. Of course, the cutoff point can be debated,
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but as we use the same definition between experiment and CFD changing the cut-
off should not affect the comparison. In the mid-plane, we report 𝑘፭ as the MI-free
turbulent kinetic energy, 𝑘ፌፈ as the kinetic energy of macro-instabilities and 𝑘፭∗ as
their sum.

3.3. Results and Discussion
3.3.1. Experimental
LDA verification
Ranade and Joshi [274] summarized a range impeller outflow measurements, visu-
alized in the gray band of figure 3.2. Our data coincides with the upper bound, we
observe a somewhat slower decline in 𝑈፫ፚ፝ with radial position. The differences may
arise because of variations in signal processing, LDA setup, and sensitivity of 𝑈፫ፚ፝ to
the axial position, and because varying measurement angles compared to the baffle.
The rapid drop at 𝑟 = 102mm is attributed to the vicinity of the baffle. A good agree-
ment in turbulent kinetic energy 𝑘፭ is observed compared to Wu and Patterson [34];
Murthy and Joshi [97] reported a higher 𝑘፭ near the tip, likely since they measured all
three velocity components and avoided the isotropy assumption.

Mid-plane dynamics
We define themid-plane 𝑦 = 0 as the axial location exactly between the two impellers.
𝑈፫ፚ፝ showsmirror symmetry in themid-plane, with some deviation near the baffle (the
results are shown together with the CFD results, e.g. figure 3.8). 𝑈ፚ፱ switches from
convergent to divergent behavior between 𝑟/𝑅 = 0.617 and 𝑟/𝑅 = 0.489. Below
𝑟/𝑅 = 0.489, this flow divergence leads to a deceleration in 𝑈፫ፚ፝ . The total fluctuat-
ing kinetic energy 𝑘፭ peaks at 𝑦 = 0, and increases in strength with increasing 𝑟/𝑅,
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Figure 3.2: LDA results: current data (top and bottom impeller outflow) compared with earlier studies. The
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Figure 3.3: Fitted auto-correlation functions of ፮ᖤᑒᑩ (top) and ፮ᖤᑣᑒᑕ (bottom) at 3 radial locations, in the
plane ፲ ዆ ኺ. Blue: LDA data. Red: fitted function with ኾ damped cosines, at ኼ base frequencies and their
first harmonic.

again with the exception of the point closest to the baffle. To discriminate whether
this 𝑘፭-peak at 𝑦 = 0 is evidence of MIs, or whether it represents regular turbulence
generated by the collision of the converging flow, we have to assess the influence of
low-frequency oscillations.

Fitting 𝜌̂ with dampened cosines (fig. 3.3) consistently yielded frequencies around
𝑓ኻ.ኻ/𝑁፬ = 0.020±0.001 and 𝑓ኼ/𝑁፬ = 0.061±0.003 axially and 𝑓ኻ.ኻ/𝑁፬ = 0.015±0.007
and 𝑓ኼ.ኻ/𝑁፬ = 0.052±0.015 radially. These values agree well the reports of Paglianti
et al. [117] for the precessing vortex and jet instability effect, respectively. The MI en-
ergy was maximum at 𝑦 = 0. An overview of parameters at 𝑦 = 0 is presented in table
3.2. Radially, the oscillations are comparatively weak: Σ𝑐፧,፫ፚ፝ < 0.075 at all locations
except at 𝑟/𝑅 = 0.0694. The latter seems to be a fitting error caused by excessive
damping; there are hardly fluctuations visible in fig. 3.3 (bottom right), and the damp-
ing coefficients are all at the constraint value 𝑎፧ = 0.33. For the axial component,
Σ𝑐፧,ፚ፱ varies between 0.1 at the shaft to 0.22 at 𝑟/𝑅 = 0.694. For fluctuations in 𝑈፫ፚ፝ ,
frequencies 𝑓ኻ.ኻ,፫ፚ፝/𝑁፬ = 0.015 and 𝑓ኼ.ኻ,፫ፚ፝/𝑁፬ = 0.052 both contribute more than
their respective harmonics, while for 𝑈ፚ፱ the contributions vary with location. Close
to the shaft 𝑓ኻ.ኻ,ፚ፱ has twice the amplitude of its harmonic 𝑓ኻ.ኼ,ፚ፱/𝑁፬ = 0.040, but
in for 𝑟/𝑅 > 0.359, 𝑓ኻ.ኼ,ፚ፱/𝑁፬ is by far the stronger contribution. 𝑓ኼ.ኻ,ፚ፱/𝑁፬ = 0.061
exceeds 𝑓ኼ.ኼ,ፚ፱/𝑁፬ by a factor 1.5 − 2, except at 𝑟/𝑅 = 0.2.

The noise Ψ lies below 6% at all points, except 𝑟/𝑅 = 0.765. This was consistent
at all axial positions, and the correlation function showed a much more rapid decay at
this position. We have not been able to pinpoint the exact reason for this higher noise
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Table 3.2: RMS-velocity, noise factor ጕ, MI-correction factor, oscillation frequencies and kinetic energy in
the plane ፲ ዆ ኺ at different radial positions, using the periodic-fitting approach (eq. 3.4). The coefficient ፜
represent the contribution to the Reynolds stress ፮ᖤ፮ᖤ, with ፜ᑚ.ᑛ the ፣ᑥᑙ harmonic of frequency component
።.

𝑟/𝑅 0.200 0.358 0.435 0.512 0.566 0.694 0.765
𝑢ᖣ፫ፚ፝ (m/s) 0.149 0.135 0.127 0.115 0.107 0.091 0.083
Ψ፫ፚ፝ 0.015 0.017 0.022 0.032 0.037 0.064 0.317
𝑐ኻ.ኻ,፫ፚ፝ 0 0.006 0.016 0.017 0.006 0.032 0.010
𝑐ኻ.ኼ,፫ፚ፝ 0.037 0.048 0.040 0.007 0.003 0.002 0.001
𝑐ኼ.ኻ,፫ፚ፝ 0 0.015 0.075 0.009 0.012 0.045 0.006
𝑐ኼ.ኼ,፫ፚ፝ 0.032 0.005 0.028 0.016 0.011 0.039 0.012
𝑓ኻ.ኻ,፫ፚ፝/𝑁፬ 0.020 0.001 0.015 0.015 0.022 0.017 0.017
𝑓ኼ.ኻ,፫ፚ፝/𝑁፬ 0.049 0.058 0.056 0.053 0.050 0.043 0.062
𝑢ᖣፚ፱ (m/s) 0.082 0.098 0.112 0.134 0.154 0.194 0.151
Ψፚ፱ 0.063 0.054 0.045 0.041 0.033 0.027 0.192
𝑐ኻ.ኻ,ፚ፱ 0.049 0.022 0.029 0.031 0 0 0
𝑐ኻ.ኼ,ፚ፱ 0.022 0.005 0.052 0.095 0.064 0.070 0.055
𝑐ኼ.ኻ,ፚ፱ 0.027 0.044 0.043 0.102 0.113 0.135 0.073
𝑐ኼ.ኼ,ፚ፱ 0.003 0.007 0.009 0.014 0 0.011 0
𝑓ኻ.ኻ,ፚ፱/𝑁፬ 0.020 0.017 0.021 0.020 0.021 0.020 0.020
𝑓ኼ.ኻ,ፚ፱/𝑁፬ 0.053 0.062 0.065 0.062 0.062 0.061 0.061
10ኽ ⋅ 𝑘፭,ኻ/𝑈ኼ፭።፩ 7.73 7.63 7.49 7.54 8.85 10.80 6.17
10ኽ ⋅ 𝑘ፌፈ,ኻ/𝑈ኼ፭።፩ 0.62 0.41 0.78 1.36 1.23 2.40 0.70

level; it could be that the presence of the baffle leads to relatively dominant small-
scale turbulence, meaning the data-rate was insufficient. Furthermore, imperfections
in refractive-index matching are most pronounced at this position, and the vicinity of
the baffle may lead to higher background noise by reflection effects.

The fitted frequencies contribute 8−20% to the fluctuating kinetic energy at 𝑦 = 0.
MIs have a less well defined frequency than stirrer blade passages; their contribution
may be under-estimated by rapid dampening and not all frequencies may be accounted
for. This makes it likely the MI-energy is underestimated by eq. 3.4. Using the spectral
density function (fig. 3.4) and determining the MI contribution with eq. 3.5, the kinetic
energy contained in the range 𝑓/𝑁፬ < 0.1 lies between 28 − 49% at 𝑦 = 0. However,
this method does not discriminate MI frequencies from other large-scale contributions,
and is considered over-estimative. The non-discriminatory nature of the spectral den-
sity method does make comparison with large eddy simulation spectra more straight-
forward, as they were found to be more erratic. Hence, the MI energies reported in the
CFD comparison were obtained by the spectral density method, with the notion that
the true MI energy is likely to lie in between the estimates of eq. 3.4 and 3.5. The
features observed in fig. 3.4 are in agreement with the fitted cosine frequencies, with
a clear bi-modal peak representing 𝑓ኻ.ኼ/𝑁፬ and 𝑓ኼ.ኻ/𝑁፬ at the outer radial positions.

Since we are interested in inter-compartment mixing, 𝑢ᖣፚ፱,ፌፈ is of particular in-
terest; in this direction the jet instability 𝑀𝐼፣ (𝑓ኼ) contributes most. Whether MIs
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Figure 3.4: Experimental spectral density functions of ᎞̂ᑦᑒᑩ at various radial positions and ፲ ዆ ኺ. Dashed
line: ፒ(፟/ፍᑤ) ∝ (፟/ፍᑤ)ᎽᎷ/Ꮅ. Dash-dot line: ፒ(፟/ፍᑤ) ∝ (፟/ፍᑤ)ᎽᎳ. Dotted line: cut-off frequency between
MI and turbulence.

will strongly affect mixing depends on whether the observed oscillations represent a
cross-flow between the compartments, or the segregation between the compartments
moving up and down as a whole. The unsteady CFD results presented later suggest
compartment cross-flow only occurs close to the shaft. However, we first focus on the
performance of MRF simulations, which are inherently unable to capture MIs by their
steady state nature.

3.3.2. CFD validation: the impeller outflow
Figure 3.5 shows 𝑈፫ፚ፝ , 𝑘፭ and 𝜖 in the top impeller outflow for the MRF simulations
(360∘, MRF-RKE (top) andMRF-RSM (bottom)). The profiles were tangentially averaged
in order to account for all impeller angles. In our view, this is a fairer comparison
with LDA data than the instantaneous outflow profile directly from the impeller tip,

Table 3.3: MI-correction factor and kinetic energy in the plane ፲ ዆ ኺ at different radial positions, using the
spectral integration approach (eq. 3.5). The RMS velocity and noise factor are as in table 3.2.

𝑟/𝑅 0.200 0.2358 0.3435 0.512 0.566 0.694 0.765
(𝐸፩/𝐸፭)፫ፚ፝ (eq. 3.5) 0.409 0.380 0.337 0.267 0.222 0.140 0.029
(𝐸፩/𝐸፭)ፚ፱ (eq. 3.5) 0.164 0.140 0.200 0.288 0.391 0.546 0.318
10ኽ ⋅ 𝑘፭,ኼ/𝑈ኼ፭።፩ 5.38 5.57 5.91 6.32 6.60 6.77 4.67
10ኽ ⋅ 𝑘ፌፈ,ኼ/𝑈ኼ፭።፩ 3.04 2.47 2.35 2.58 3.52 6.45 2.22
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although it reduces agreement near the baffle where the flow is not rotor-dominated.
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Figure 3.5: Tangentially averaged profiles of ፔᑣᑒᑕ, ፤ᑥ and Ꭸ in the top impeller outflow compared with
phase-averaged LDA data, for MRF simulations. Top row: realizable ፤ ዅ Ꭸ, ኽዀኺ∘ domain. Bottom row: RSM,
ኽዀኺ∘ domain. Lines represent CFD data; dotted line: 2IF-C, dash-dot line: 2IF-M, dashed line: 2IF-F, solid
line: 2IF-SF. Symbols represent experimental data. Abbreviations: W.P. Wu and Patterson [34], M.J. = Murthy
and Joshi [97], D.Y. = Ducci and Yianneskis [35]. The crosses in the ፔᑣᑒᑕ plot represent the upper- and lower
bound of the studies reviewed by Ranade and Joshi [274].

Both models predict 𝑈፫ፚ፝ and 𝑘፭ well within the LDA data range; 𝑘፭ does deviate
close to the impeller, where the isotropic turbulence assumption breaks down (note
that experimentally the impeller influence is removed from 𝑘፭; 𝑀𝐼 energy is included
but negligible). Interestingly, the non-isotropic RSM predicts a 𝑘፭ decrease at the tip,
which is in better agreement with our data andWu and Patterson [34] than with Murthy
and Joshi [97], while only the latter measured all velocity components. RSM yields
a superior assessment for 𝜖; at the highest mesh density the peak dissipation rate
recorded by Baldi et al. and Ducci et al. [35, 106, 107] is reasonably captured. The RKE
model agrees with the dimensional assessment of Wu and Patterson [34], likely arising
from the similar underlying assumptions. The RSM model is more mesh sensitive, but
based on impeller outflow data, both models perform satisfactory. Due to similarity
the bottom impeller profiles and profiles for the 60∘ mesh are omitted.

The SM simulations show good agreement with experimental data (fig. 3.6). Again,
the RSM simulation predicts a decrease in 𝑘፭ and 𝜖 near the blade tip, where the RKE
model does not. In the bulk of the outflow, RKE and RSM are in excellent agreement.
LES is well capable of capturing 𝑈፫ፚ፝ , but performs poor for 𝑘፭ and 𝜖. Only the turbu-
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Figure 3.6: Profiles of ፔᑣᑒᑕ, ፤ᑥ and Ꭸ in the top impeller outflow compared with LDA data. Results are
recorded in the baffle plane, which causes erroneous behavior for (፫ ዅ ፫ᑥᑚᑡ)/(ፑ ዅ ፫ᑥᑚᑡ) ጻ ኺ.዁, the baffle
location. Bottom impeller results are omitted due to similarity. Top row: SM simulations. Solid line: 2IF-F,
SM-RKE. Dashed line: 2IF-M, SM-RKE. Dotted line: 2IF-M, SM-RSM. Bottom row: LES simulations. Solid line:
2IF-SF. Dashed line: 2IF-M. Dotted line: 2IF-C. Symbols represent experimental data. Abbreviations: W.P. Wu
and Patterson [34], M.J. = Murthy and Joshi [97], D.Y. = Ducci and Yianneskis [35]. The crosses in the ፔᑣᑒᑕ
plot represent the upper- and lower bound of the studies reviewed by Ranade and Joshi [274].

lent kinetic energy of the resolved scales is shown in figure 3.6, which means 2IF-SF is
expected to yield higher 𝑘፭ than 2IF-C and 2IF-M, as observed. However, 2IF-SF, which
is still insufficiently fine to capture all energy carrying eddies, already over-estimates
the experimental 𝑘፭ . The dissipation rate 𝜖 on the other hand is strongly underesti-
mated. Hartmann et al. [109] and Derksen et al. [130] reported an under-estimation
of 𝜖 with the standard Smagorninsky model using constant 𝐶፬ = 0.1. Delafosse et
al. [132] and Soos et al. [134] found that setting 𝐶፬ = 0.2 increased agreement; 𝜖 is
highly sensitive to 𝐶፬ . Following Jahoda et al. [65], we applied the dynamic Smagorin-
sky model where 𝐶፬ is determined dynamically. This gave values between 0.01−0.06,
as observed by Jahoda et al. [65]. These low 𝐶፬ values explain the strong under-
prediction of 𝜖, and may well be related to the over-prediction in 𝑘፭ . Unfortunately,
Jahoda et al. do not report 𝑘፭ and 𝜖 for verification.

3.3.3. Mixing times
We quantify 𝜃ዃ኿ by two methods; a probe at the same location as used by Jahoda et al.
[65] for direct comparison, and the 𝐶𝑜𝑀 as used by Hartmann et al. [149]. There is no
verification data for the latter, meaning it is reported for mutual comparison only.
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Table 3.4: Comparison of dimensionless mixing times ᎕ᎻᎷ for the MRF method: models and mesh depen-
dency. Methods: P = bottom probe, C = coefficient of mixing. The work of Hartmann is followed to set the
CoM-boundary.

Mesh Method RKE RSM
2IF-C P/𝐶 133.5/148.5 138.1/152.0
2IF-M P/𝐶 146.1/162.0 157.8/173.0
2IF-F P/𝐶 145.2/160.5 145.2/159.5
2IF-SF P/𝐶 180.9/200.0 n.m. /172.5
2IP-C P/𝐶 96.2/106.5 113.0/129.0
2IP-M P/𝐶 117.1/129.0 166.4/161.5
2IP-F P/𝐶 135.9/152.0 176.5/161.0

n.m. = not measured.

MRF simulations
𝜃ዃ኿ for both RKE and RSM exceed the experimental result (𝜃ዃ኿ = 92) substantially. As
observed in Mostek et al. [159], 𝜃ዃ኿ increases with mesh density. There are outliers;
particularly mesh 2IF-F yields a comparatively low 𝜃ዃ኿ with both turbulence models.
The 𝐶𝑜𝑀-based 𝜃ዃ኿ structurally exceeds probe measurements, but shows a similar
trend with mesh density. In all cases, 𝜃ፏ ≈ 0.9𝜃ፂ , which indicates the probe is a
representative albeit slightly under-estimative measurement of mixing in the total
volume.

2IF-F-RKE is an outlier in terms of mixing time. In table 3.5 we report the inte-
gral downward flowrate 𝑄ፚ፱ through the plane 𝑦 = 0 as an estimate of convective
inter-compartment exchange, which is typically seen to decrease with mesh density.
It is significantly increased for 2IF-F-RKE, which appears to be related to the exact
velocity field in the plane segregating the compartments, and thereby the magnitude
of convective exchange between the compartments. If the segregation plane is tilted
compared to the plane 𝑦 = 0, leading to a higher 𝑄ፚ፱ , convective mixing between the
compartments is stronger (hence 𝜃ዃ኿ is lower). As the flowfield in 𝑀𝑅𝐹 simulations
is fixed, this leads to pronounced differences between simulations. This is discussed
further in sec. 3.3.4. The observed decrease of 𝑄ፚ፱,፲዆ኺ with increasing mesh density
likely causes the trend of increasing 𝜃ዃ኿ with increasing mesh density. Hence, the in-
creasing mixing time is not a typical numerical diffusion issue, and the typical ”cure”
of increasing mesh resolution does not lead to better agreement with experimental
data. Note that an increased 𝑄ፚ፱ through 𝑦 = 0 does not necessarily mean increased
exchange between the compartments, the segregation plane could be skewed without
increased exchange, but there does appear to be a correlation between the two.

The 60∘ mesh yields a lower 𝜃ዃ኿ when using the RKE model. When considering the
mid-plane hydrodynamics, we observed this was not a direct result of the smaller do-
main (which would indicate limiting intra-compartmentmixing), but was rather caused
by increased axial exchange (𝑄ፚ፱) between the compartments, as reported in table 3.5.
RSM in the 60∘ yields similar 𝐶𝑜𝑀 figures as in the 360∘ mesh, but while the 𝐶𝑜𝑀 be-
comes constant, the probe value keeps increasing. This does indicate different mixing
behavior within the compartments for the RSM model.
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SM and LES simulations
SM simulations predict a probe-based 𝜃ዃ኿ ≈ 110 for RKE, in agreement with the SM
simulation of Jahoda et al. [65], and 15% above the experimental value. Interestingly,
no mesh dependence is observed in the results of SM-RKE. This contrasts the MRF
simulations, where 𝜃ዃ኿ was strongly mesh dependent, depending on the predicted
axial exchange 𝑄ፚ፱ between the compartments which in turn depended strongly in
the predicted position of the segregation plane between the compartments. As this
plane was fixed in MRF simulations, the exact fixed position could strongly influence
𝜃ዃ኿. In SM simulations, the segregation plane location is dynamic, making the results
much less sensitive. These results hint the SM-RKE simulations capture convective
axial exchange due to MIs with a magnitude that is consistent between the different
meshes. The SM-RSM model predicts a higher 𝜃ዃ኿ of 133.

The LES simulations with 2IF-C and 2IF-M yield mixing times of 𝜃ዃ኿ ≈ 80, in agree-
ment with 𝜃ዃ኿ = 81.5 observed in the LES simulations by Jahoda et al., using a similar
mesh density. There was no difference between Δ𝑡 = 0.00333 and Δ𝑡 = 0.00167
for simulations with mesh 2IF-M. Simulation 2IF-SF yielded 𝜃ዃ኿ = 94, in very good
agreement with the experimental value 𝜃ዃ኿ = 96 reported by Jahoda et al. [65].

Mixing profiles
Probe profiles for a selection of the simulations are shown in figure 3.7. The top figure
compares SM-RKE with MRF-RKE. The SM simulations reasonably capture the lag time
and general trend observed experimentally, although the weaker slope in the late
stage causes an over-estimated 𝜃ዃ኿ overall. The lower lag time for 2IF-F is a sign of
slightly faster intra-compartment mixing, possibly due to the higher mesh density [62];
the MRF simulations show a higher lag time for the denser mesh, however. Both SM
curves show some slight wiggling, indicating MIs indeed introduce temporal variations
in axial exchange. For LES, 2IF-SF slightly over-estimates the lag-time, but better
approximates the mid and end-stage of the experimental mixing curve. It must be
kept in mind that the figures show single realizations, while both the experimental
and LES data will vary between repetitions.

3.3.4. Inter-compartment flow

Table 3.5: Axial flow-rate (downward) through the mid-impeller plane ፲ ዆ ኺ in L/s (MRF simulations). For
the ዀኺ∘ mesh, the value is multiplied by ዀ.

Mesh RKE RSM RKE RSM
360∘ 360∘ 60∘ 60∘

X-C 1.36 1.58 3.04 2.45
X-M 1.14 1.28 2.72 1.34
X-F 1.48 1.31 1.10 2.25
X-SF 0.74 1.46 − −
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Figure 3.7: Mixing profiles for different simulations. Black: typical experimental data, Jahoda et al. [65].
Top: RANS simulations, including ኼ MRF simulations. Bottom: LES simulations.

Table 3.6: Comparison of dimensionless mixing times ᎕ᎻᎷ for the sliding mesh and LES simulations. Meth-
ods: P = bottom probe, C = coefficient of mixing. The work of Hartmann is followed to set the CoM-boundary
at ፂ፨ፌ ዆ ኺ.ኺኼዂኽ.

Mesh Method 𝜃ዃ኿
2IF-M-SMRKE P/𝐶 112.7/126.5
2IF-F-SMRKE P/𝐶 110.1/122.0
2IF-M-SMRSM P/𝐶 133.3/147.0
2IF-C P/𝐶 80.0/86.0
2IF-M (Δ𝑡 = 1.67 ms) P/𝐶 80.7/88.0
2IF-M (Δ𝑡 = 3.33 ms) P/𝐶 81.6/𝑛.𝑚.
2IF-SF P/𝐶 94.0/99.0
Jahoda (LES) P 81.5
Jahoda (EXP) P 96.0
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Figure 3.8: Axial profiles of A: ፔᑣᑒᑕ, B: ፔᑒᑩ C: ፤ᑥ with RKE in baffle plane of the ኽዀኺ∘ domain. Black
rectangles: LDA data. For ፤ᑥ, the black rectangles represent the total kinetic energy ፤ᑥ∗, the blue diamonds
the turbulent kinetic energy ፤ᑥ, and the red diamonds the MI energy ፤ᑄᑀ. Lines: CFD results at different
mesh densities (dotted: 2IF-C , dash-dot: 2IF-M, dashed: 2IF-F, solid: 2IF-SF). Row D shows the tangential
average of ᎙ᑥ acquired from the CFD simulations.
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Figure 3.9: Flow structures around the inter-compartment plane (ኽዀኺ∘ domain, ፌፑፅ ዅ ፑፄፀ). A: 2IF-M,
B: 2IF-F. In the latter case, flow in the segregation plane is pointed slightly downward, increasing axial
exchange.

Midplane dynamics: MRF
Full domain 𝑈፫ፚ፝ and𝑈ፚ፱ are reasonably well predicted in the baffle plane using RKE
(fig. 3.8, row A and B), although both are over-predicted close to the baffle, probably
due to the use of a 2𝐷 baffle geometry. The change from converging to diverging axial
flow is well captured. Some mesh differences can be detected, but aside from 2IF-F
no mesh performs particularly better or worse.

For 2IF-F, the peak 𝑈፫ፚ፝ and inflection point of 𝑈ፚ፱ lie slightly below 𝑦 = 0. This
indicates the compartment segregation plane is shifted. Qualitative inspection of the
vector fields furthermore shows a slightly downward pointed flow in the mid-plane for
2IF-F (fig. 3.9), which enhances axial exchange. This explains why 𝑄ፚ፱ is high and 𝜃ዃ኿
is comparatively low in 2IF-F, despite 𝑘፭ and tangentially-averaged turbulent viscosity
⟨𝜇፭⟩ (fig. 3.8 D) being similar to the other cases.

The 𝑈፫ፚ፝ and 𝑈ፚ፱ profiles for RSM (fig. 3.10) are in lesser agreement with exper-
imental data. For 2IF-M the velocity profiles favorably match the LDA measurements,
but for both 2IF-F and 2IF-SF the 𝑈፫ፚ፝ peak shows strange asymmetric behavior. As
for the RKE case, the skewed inter-compartment plane increases 𝑄ፚ፱ in the 𝑦 = 0
plane (table 3.5), explaining why 𝜃ዃ኿ is nearly similar for 2IF-M, 2IF-F and 2IF-SF with
MRF-RSM, whereas a large jump in mixing time is observed between 2IF-M and 2IF-SF
with MRF-RKE.

Reduced domain In contrast to the full domain, 𝑈፫ፚ፝ and 𝑈ፚ፱ are poorly predicted
in the 60∘ domain (fig. 3.11, rows A, B). The magnitude of 𝑈፫ፚ፝ is strongly under-
estimated everywhere except close to the baffle, while reversal from converging to
diverging axial flow is not at all captured within the measured region. The peak 𝑈፫ፚ፝
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Figure 3.10: Axial profiles of A:ፔᑣᑒᑕ, B:ፔᑒᑩ C: ፤ᑥ with, withMRF-RSM in the ኽዀኺ∘ domain. Squares: phase-
averaged LDA experimental data, recorded in the baffle plane. For ፤ᑥ, the black rectangles represent the
total kinetic energy ፤ᑥ∗, the blue diamonds the turbulent kinetic energy ፤ᑥ, and the red diamonds the MI
energy ፤ᑄᑀ. Lines: CFD results at different mesh densities (dotted: 2IF-C, dash-dot: 2IF-M, dashed: 2IF-F,
solid: 2IF-SF). Row D shows the tangential average of ᎙ᑥ acquired from the CFD simulations.
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is predicted at a lower axial position than measured experimentally. The MRF-RKE
model does yield a comparatively good estimation of 𝑘፭ for the 2IP-SF mesh, resulting
in a higher tangentially averaged 𝜇፭ (fig. 3.11, row E). Furthermore 𝑄ፚ፱ is significantly
higher in the 60∘ domain (table 3.5). Combined, the high 𝜇፭ and 𝑄ፚ፱ explain the low
𝜃ዃ኿ observed for RKE in the 60∘ domain. Compared to RKE, RSM simulations in the
60∘ mesh show a higher degree of mesh dependency, with odd 𝑈፫ፚ፝ peaks. 𝑘፭ is
reasonably assessed for 𝑟/𝑅 < 0.5. Overall, 𝜇፭ and 𝑄ፚ፱ are similar between the 360∘
and 60∘ domain for RSM, explaining the similarity in 𝜃ዃ኿ between them. As was the
case with the full-domain, there seems to be a shift in plane position compared to the
experimental data for the denser meshes.

3.3.5. Midplane dynamics: Sliding mesh
SM simulations predict a lower 𝜃ዃ኿ than MRF, although they still over-estimate the
experimental value. The wiggles in fig. 3.7 hint the difference lies in the inclusion of
MIs. Mid-plane data (fig. 3.12) indeed shows 𝑘፭ is captured to a similar degree as in the
MRF case, and under-estimated compared to LDA data, especially in the converging
flow region. The data for 2IF-F shows a slightly higher peak 𝑘፭ near the baffle than
2IF-M with the 𝑅𝐾𝐸 model.

For SM simulations, all fluctuating kinetic energy of the resolved motions is at-
tributed to𝑀𝐼𝑠 (not just 𝑓/𝑁፬ < 0.1 as done for the LDA and LES data). 2IF-M yields a
slightly higher 𝑘ፌፈ compared to 2IF-F; 𝑘፭∗ is similar between the meshes. The overall
𝑀𝐼 energy is still lower than reported experimentally. 𝑈፫ፚ፝ is well captured for SM-
RKE, although the MRF simulations performed slightly better in quantitatively captur-
ing 𝑈ፚ፱ . Still, the reversal from converging to diverging flow is qualitatively reason-
ably captured with SM-RKE. SM-RSM performs poorly: a shift in midplane position is
clearly observed in all three profiles. In contrast to the MRF simulations, this leads
to a higher 𝜃ዃ኿ for SM-RSM. In general, the inclusion of turbulence anisotropy does
not seem to improve the agreement with experimental data, in the SM simulations,
MRF simulations, and single-impeller work of Gunyol et al. [59]. Hence, there ap-
pears to be little reason to opt for the more computationally expensive RSM model
Rushton-stirred tank applications.

Probing 𝑈ፚ፱ as a function of time at several points in the mid-plane, (SM-RKE)
shows strong periodic motions (figure 3.13). For 2IF-M, these are well defined, with the
Fourier spectrum showing a dominant frequency at 𝑓/𝑁፬ = 0.058 (and its harmonics).
This is in excellent agreement with the jet instability frequency reported by Paglianti et
al. [275], and the experimentally observed values. Experimentally, we also observed
a weak contribution of 𝑓/𝑁፬ = 0.02, and strong contribution of 𝑓/𝑁፬ ≈ 0.04 in the
parallel flow region. In 2IF-M, a weak peak can be observed at 𝑓/𝑁፬ = 0.02, while
𝑓/𝑁፬ = 0.04 is absent. Case 2IF-F shows more scatter, the dominant peak now is at
𝑓/𝑁፬ = 0.045 with a strong shoulder at 𝑓/𝑁፬ = 0.06 for 𝑟/𝑅 = 0.512 and 𝑟/𝑅 =
0.694. This is qualitatively more in line with experimental observations, although the
contribution of 𝑓/𝑁፬ = 0.06 is too low in the simulation. At 𝑟/𝑅 = 0.694, an additional
peak is observed at 𝑓/𝑁፬ ≈ 0.01, which represents the very slow oscillation visible in
3.13 B that is absent in 3.13 A.
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Figure 3.11: Comparison of axial profiles for A: ፔᑣᑒᑕ, B: ፔᑒᑩ, C: ፤ᑥ, with MRF-RKE in the ዀኺ∘ domain.
Squares: phase-averaged LDA experimental data, recorded in the baffle plane. For ፤ᑥ, the black rectangles
represent the total kinetic energy ፤ᑥ∗, the blue diamonds the turbulent kinetic energy ፤ᑥ, and the red
diamonds the MI energy ፤ᑄᑀ. Lines: CFD results at different mesh densities (dotted: 2IF-C, dash-dot: 2IF-M,
dashed: 2IF-F, solid: 2IF-SF). Row D shows the tangential average of ᎙ᑥ acquired from the CFD simulations.
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The qualitative observation that axial oscillations increase with increasing radial
position is captured by SM simulations. To some degree, 𝑈፫ፚ፝ and 𝑈፭ፚ፧ (not shown)
exhibit the opposite trend. The next question is how strongly MIs contribute to mixing.
As seen in the snapshots of the velocity vectors (fig. 3.14) and tracer concentration
(fig. 3.16), the axial variations result in limited cross-flow between the compartments.
Rather, the parallel-flow plane segregating the compartments is displaced as a whole.

Plotting the tracer concentration 𝐶፭ at fixed monitor points (fig. 3.15) confirms
this; the registered concentration oscillates between two levels. This agrees with the
segregation plane oscillating as a whole, meaning that the measurement point keeps
switching between the compartments. While 𝐶፭ converges between the compartments
eventually, as expected, there is no evidence of significant convective tracer transport
at the monitored points; only 𝑟/𝑅 = 0.2 shows some superposed wiggles which hint
at some exchange. Snapshots of mixing (fig. 3.16) show that significant carry-over is
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Figure 3.14: Vector fields (ኼፈፌ ዅ ፑፊፄ) during four stages of a macro-oscillation.

indeed only observed in the divergent flow region near the shaft, and that the imposed
MI dynamics do enhance carry-over in this region. There is indeed convective exchange
between the compartments due to MIs, but only in the vicinity of the shaft.

3.3.6. Midplane dynamics: Large Eddy Simulations
The velocity components resolved in LES span a much wider range of frequencies, well
into the turbulent domain. Hence, we analyze them with the same methods as the
LDA data in part I; details on the calculations can be found there. For consistency, the
cut-off between MIs and turbulence was set at 𝑓/𝑁፬ = 0.1 when employing spectral
integration, with the energy contained in the range 𝑓/𝑁፬ < 0.1 being fully attributed
to 𝑘ፌፈ . This may be an over-estimation of the true 𝑀𝐼 energy, but because the same
cut-off was used in LDA, this method provides the most direct comparison. For 2IF-
M, the reported results were obtained with Δ𝑡 = 0.0033, as a larger timespan was
resolved for this case.

The frequencies observed with auto-correlation fitting differ between the meshes
(table 3.7). As noted earlier, we fit 2 frequency components (𝑓ኻ.ኻ and 𝑓ኼ.ኻ) and their
first harmonics (𝑓ኻ.ኼ and 𝑓ኼ.ኼ). 2𝐼𝐹 − 𝑆𝐹 gives 𝑓ኻ.ኻ/𝑁፬ ≈ 0.023 and 𝑓ኼ.ኻ/𝑁፬ ≈ 0.039,
with strong scatter. The first value agrees well with experimental data for the pre-
cessing vortex (𝑓ኻ.ኻ/𝑁፬ ≈ 0.02). The second value underestimates the experimen-
tally observed frequency for the jet instability (𝑓ኼ.ኻ/𝑁፬ ≈ 0.06). In the simulation,
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Figure 3.15: Oscillation profiles (2IF-M) for ፔᑒᑩ (top) and ፂᑥ (bottom) at ፫/ፑ ዆ ኺ.ኼ (left), ፫/ፑ ዆ ኺ.኿ኻኼ
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Figure 3.16: Snapshots of mixing at ዀ timepoints, ኼፈፅ ዅፌ ዅ ፒፌ, showing tracer exchange along the shaft
is influenced by MIs.
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most energy is actually contained in the harmonic frequency, 𝑓ኼ.ኼ/𝑁፬ ≈ 0.078, hence
𝑓ኼ.ኻ and its harmonic 𝑓ኼ.ኼ lie around the experimental jet instability frequency. The
quality of the fits (fig. 3.17) is poorer than observed for the experimental data. The
data further suggests several higher frequency contributions are present; the current
autocorrelation-fit routine leaves these unaccounted for.

2𝐼𝐹 − 𝑀, 𝑓ኻ.ኼ/𝑁፬ ≈ 0.024 (which roughly coincides with 𝑓ኼ.ኻ) and 𝑓ኼ.ኼ/𝑁፬ ≈ 0.04
contribute most. While the latter frequency was relatively prominent experimentally,
the strongest experimental component 𝑓/𝑁፬ = 0.06 is not observed in the simulation
data. As with the SM simulations, the radial correlations show relatively strong os-
cillations near the shaft (stronger than experimentally observed), while they dampen
with radial position. (not shown for brevity).

The spectral density functions (fig. 3.18) show a 𝑓ዅኻ scaling for 0.1 < 𝑓/𝑁፬ < 1,
and a 𝑓ዅ኿/ኽ scaling for 𝑓/𝑁፬ > 1, in line with experimental observations. The mod-
erate spatial resolution of the meshes results in a quick deviation from −5/3 scaling
at the high-frequency end of the spectra. For the 2𝐼𝐹 − 𝑆𝐹 simulations, the filter
length ratio was around Δ/𝜂 = 10−25 with 𝜂 the Kolmogorov lengthscale; the lower
value existed near the shaft, the higher near the baffle. A finer mesh may be desired,
but for routine use without super-computing facilities, 2𝐼𝐹 − 𝑆𝐹 is already much too
demanding.

In the low frequency range, the spectral density functions show features around
the frequencies that were observed in the auto-correlation fits. The spectrum for
2𝐼𝐹 − 𝑀 does show the bi-modal peak observed experimentally, but at frequencies
𝑓ኻ.ኻ/𝑁፬ ≈ 0.024 and 𝑓ኼ.ኼ/𝑁፬ ≈ 0.04, whereas experimentally 𝑓/𝑁፬ = 0.040 and 0.062
were observed. In 2𝐼𝐹 − 𝑆𝐹 the peaks are further apart. Here 𝑓ኻ.ኻ/𝑁፬ ≈ 0.026 and
𝑓ኼ.ኼ/𝑁፬ ≈ 0.078 contribute most, while 𝑓/𝑁፬ ≈ 0.040 is absent. These observations
are consistent with the auto-correlation observations.

According to the auto-correlation method, the kinetic energy contained in the𝑀𝐼𝑠
is 10 − 30% at 𝑦 = 0 for 2𝐼𝐹 − 𝑀, with the maximum at 𝑟/𝑅 = 0.512. For 2𝐼𝐹 − 𝑆𝐹,
the 𝑀𝐼 contribution is 5 − 40% with the maximum at 𝑟/𝑅 = 0.694; for comparison,
experimental data yielded a contribution of 8 − 20% with the maximum at 𝑟/𝑅 =
0.694. Spectral integration gave a 𝑀𝐼 kinetic energy contribution of 25 − 30% for
2𝐼𝐹 −𝑀 and 25− 40% for 2𝐼𝐹 − 𝑆𝐹, compared to 25− 50% experimentally. Overall,
we conclude the agreement between LES simulations and experiments is decent in
terms of MI-energy. This is supported by the profiles in fig. 3.19. We now further
discuss the profiles of velocity and kinetic energy in the mid plane. Again, the spectral
integration method is used to assess the MI contribution

Aside from the baffle position, 𝑈፫ፚ፝ is well captured (fig. 3.19), this is again at-
tributed to the 2𝐷 baffle geometry. The change from converging to diverging flow
in 𝑈ፚ፱ is excellently assessed by all but the crudest mesh. Overall good agreement
in 𝑘፭ is observed, with 2IF-M over-estimative near the shaft, whereas 2IF-SF is over-
estimative near the baffle. Both simulations reasonably capture 𝑘ፌፈ near the shaft, but
only 2IF-SF properly captures the peak at 𝑟/𝑅 = 0.694. Even though the frequency
distribution does not completely agree with experiments, the overall 𝑘ፌፈ and 𝑘፭ are
well captured by 2IF-SF, in line with the good assessment of 𝜃ዃ኿. The slight under-
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Figure 3.17: Fitted auto-correlation functions for ኼፈፅ ዅ ፌ ዅ ፋፄፒ (top) and ኼፈፅ ዅ ፒፅ ዅ ፋፄፒ (bottom) at
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Figure 3.18: Spectral density functions of፮ᖤᑒᑩ (dark blue) and፮ᖤᑣᑒᑕ (light blue) at 3 radial positions, at ፲ ዆ ኺ.
A: 2IF-M LES . B: 2IF-SF-LES. C: Experimental results. Dashed line: ፒ(፟/ፍᑤ) ∝ (፟/ፍᑤ)ᎽᎷ/Ꮅ. Dash-dot line:
ፒ(፟/ፍᑤ) ∝ (፟/ፍᑤ)ᎽᎳ. Dotted line: cut-off frequency between MI and turbulence.

estimation of 𝜃ዃ኿ by the cruder meshes may be by virtue of their higher 𝑘፭ near the
shaft, which due to its diverging axial flow is the region contributing most to exchange
between the compartments.

3.4. Concluding remarks
Multi-Rushton stirred tanks are prone to compartment formation around the impellers,
which introduces a rate limiting step for mixing. The mixing time 𝜃ዃ኿ depends strongly
on 2 factors: turbulent exchange between the compartments, and the effect of macro-
instabilities (MIs) on inter-compartment dynamics. Using LDA, we find evidence of MIs
at 𝑓/𝑁፬ = 0.020 and 𝑓/𝑁፬ = 0.062, in agreement with earlier reported values for the
precessing vortex and jet instability [275]. Depending on the method of estimation,
the MIs contain at between 15% (from auto-correlation) and 30% (from spectral
integration) of the kinetic energy, although close to the baffle this may be as high as
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Figure 3.19: Comparison of axial profiles for A: ፔᑣᑒᑕ, B: ፔᑒᑩ, C: ፤ᑥ in the baffle plane, for LES simulations.
Black squares: LDA data. For ፤ᑥ, the black squares show the total energy ፤ᑥ∗, the blue diamonds the
turbulent kinetic energy ፤ᑥ, and the red diamonds the MI energy ፤ᑄᑀ. Black, blue and red lines show the
simulation results for ፤ᑥ∗, ፤ᑥ and ፤ᑄᑀ, respectively. Dotted line: ኼፈፅዅፂዅፋፄፒ Dashed line: ኼፈፅዅፌዅፋፄፒ,
Solid line: ኼፈፅ ዅ ፒፅ ዅ ፋፄፒ.
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20 − 50%, mostly in the axial velocity fluctuations.

Multiple reference frame (MRF) simulations consistently over-predict 𝜃ዃ኿. In part,
this is due to the inability to capture transient MIs. Furthermore, Reynolds Averaging
of the inter-compartment flow yields a parallel, largely shear-free flow, which seems
to inadequately capture the generation of turbulent kinetic energy (𝑘፭) in the con-
verging flow region, yielding a local under-estimation of 𝑘፭ . 𝜃ዃ኿ was progressively
over-estimated with mesh density, with a 100% over-estimation at the finest mesh.
Some cases deviated from typical mesh convergence due to a shift in the predicted
mid-plane position, which increased convective transport between the impeller com-
partments. Possibly the presence of MIs allows for some ambiguity in the segregation
plane position when forced into a steady-state solution, which makes the simulations
sensitive to the mesh layout and initial conditions. Modeling a 60∘ section of the
domain yielded very poor flow agreement around the midplane, in contrast to good
agreement around the impeller. Typically, 𝑄ፚ፱ was higher yielding lower 𝜃ዃ኿; not as
the result of better flow prediction, but due to forcing an inherently unstable plane
into a 6−fold periodic position.

SM simulations perform better than MRF due to their ability to capture MIs, al-
though the MI energy was underestimated compared to experiments. As for MRF,
the peak in 𝑘፭ near the baffle was not resolved. Together, these observations ex-
plain why SM outperforms MRF, but still over-estimates 𝜃ዃ኿ by approx. 20%. Some
mesh dependency was observed for the MI frequency, but with a frequency around
𝑓/𝑁፬ = 0.04 − 0.06 agreement with experimental data was very reasonable. It was
observed the MIs did not strongly disturb the segregation between the compartments,
rather the segregation plane moved up and down as a whole. Only near the shaft,
where the flow is strongly diverging, mass exchange was significantly affected by MIs.
As for the MRF simulations, using the Reynolds Stress Model yielded no advantage
over realizable 𝑘 − 𝜖. In fact, the latter compared favorable here.

LES simulations exhibited a wider range of MIs than were observed experimentally,
including some higher frequency components, and a less sharp distinction of the low-
frequency peaks. The observed frequencies were mesh dependent, with the medium
mesh (2𝑀 cells) yielding 𝑓/𝑁፬ ≈ 0.024, 0.040 and the finer mesh (10𝑀 cells) 𝑓/𝑁፬ ≈
0.026, 0.078. Experimentally, 𝑓/𝑁፬ = 0.040 and 𝑓/𝑁፬ = 0.061 dominated. The MI
energy 𝑘ፌፈ was under-predicted by the medium mesh, while the total kinetic energy
was over-predicted near the shaft. As this is the region mostly contributing to mass
exchange, it may explain why 𝜃ዃ኿ is under-predicted by LES on the crude and medium
resolution mesh. The finer mesh yields a generally good prediction of both 𝑘ፌፈ and
𝑘፭ , while 𝜃ዃ኿ was in excellent agreement with experiments.

The applied LES approach did somewhat over-predict 𝑘፭ and strongly under-predict
𝜖 in the impeller discharge stream. The employed dynamic Smagorinsky model pre-
dicts low values of constant 𝐶፬ to which this is attributable. While taking 𝐶፬ constant
and fine-tuning it may increase agreement [112], a more universal approach is desired.
As such, there is room for further exploration of alternative subgrid models and other
transient simulation approaches ((ID)DES, hybrid LES-RANS) in stirred tank applica-
tions. Strictly speaking, the finest current LES study was under-resolved, especially in
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Table 3.7: Axial RMS-velocity, oscillation frequencies and their contributions for ኼፈፅ ዅፌዅፋፄፒ and ኼፈፅ ዅ
ፒፅዅፋፄፒ in the plane ፲ ዆ ኺ at different radial positions, using the periodic-fitting approach. The coefficient
፜ represent the contribution to the Reynolds stress ፮ᖤ፮ᖤ, with ፜ᑚ.ᑛ the ፣ᑥᑙ harmonic of frequency component
።. For brevity, only ፮ᖤᑒᑩ is reported. Top rows: ኼፈፅ ዅፌ. Bottom rows: ኼፈፅ ዅ ፒፅ.

𝑟/𝑅 0.200 0.2358 0.3435 0.512 0.566 0.694 0.765
𝑢ᖣፚ፱,ፌ (m/s) 0.089 0.111 0.126 0.147 0.164 0.181 0.148
𝑐ኻ.ኻ,ፚ፱,ፌ 0 0.026 0 0.001 0.022 0 0
𝑐ኻ.ኼ,ፚ፱,ፌ 0.033 0.011 0.033 0.08 0.117 0.110 0.049
𝑐ኼ.ኻ,ፚ፱,ፌ 0.002 0.005 0 0.007 0 0.015 0.023
𝑐ኼ.ኼ,ፚ፱,ፌ 0.003 0.071 0.017 0.141 0.065 0.045 0.039
𝑓ኻ.ኻ,ፚ፱,ፌ/𝑁፬ 0.014 0.010 0.012 0.012 0.012 0.012 0.013
𝑓ኼ.ኻ,ፚ፱,ፌ/𝑁፬ 0.019 0.022 0.017 0.021 0.018 0.022 0.023
𝑢ᖣፚ፱,ፒፅ (m/s) 0.088 0.106 0.117 0.132 0.148 0.208 0.174
𝑐ኻ.ኻ,ፚ፱,ፒፅ 0 0 0.042 0.068 0.086 0.135 0.088
𝑐ኻ.ኼ,ፚ፱,ፒፅ 0.011 0.007 0 0.014 0 0 0.039
𝑐ኼ.ኻ,ፚ፱,ፒፅ 0 0 0.005 0 0 0.013 0
𝑐ኼ.ኼ,ፚ፱,ፒፅ 0.022 0.09 0.006 0.030 0.006 0.210 0.108
𝑓ኻ.ኻ,ፚ፱,ፒፅ/𝑁፬ 0.034 0.026 0.010 0.024 0.020 0.022 0.023
𝑓ኼ.ኻ,ፚ፱,ፒፅ/𝑁፬ 0.043 0.042 0.042 0.036 0.040 0.036 0.035

the impeller region. Higher resolution studies may be desirable for further fundamen-
tal studies, but already the current fine mesh is considered too demanding for routine
mixing studies. Despite these shortcomings, LES performed well in terms of mixing
assessment, even on the crudest meshes which far from resolve all energy carrying tur-
bulence scales. As both SM and LES mispredict (𝜃ዃ኿) to a similar degree at the crude
meshes, and both have similar computational demands, both are currently considered
to be reasonably options for mixing assessment provided their degree of error is kept
in account; both are clearly preferred above MRF. However, if computational facilities
allow for finer meshes, LES is the preferred choice.

In applications like long-termmodeling of (bio)chemical dynamics in mixing tanks,
the use of transient simulation models is highly undesirable from the perspective of
computation time, and some degree of mismatch in the mixing time may be tolerable.
Here, 𝑆𝑐፭ tuning can be used to improve agreement in mixing behavior; it should be
considered to adjust 𝑆𝑐፭ only in the mid-plane region to avoid an unrealistic increase
inmixing in the bulk domain. Such tuning does require the availability of experimental
data (or high resolution simulation data) to tune against, reducing the predictive value
of such an approach.





4
Practical guidelines for Euler-Lagrange

simulations of bioreactors
Lapin et al. [23] proposed an Euler-Lagrange CFD method to study the impact of extra-
cellular gradients in industrial bioreactors from the microbial point of view. The discrete
representation of the biomass phase yields an advantageous perspective for studying the
impact of extra-cellular variations on the metabolism, but at significant computational
cost. In particular, the tracked number of particles and the applied time resolution have
a large impact on both the accuracy and the runtime of the simulation. In this chapter
we study the influence of these parameters on both the accuracy of the simulation and the
computation time. Furthermore, reaction coupling schemes for practical implementation in
ANSYS FLUENT are treated. We provide guidelines for accurate Euler-Lagrange bioreactor
simulations in ANSYS FLUENT at minimal computational cost.

4.1. Introduction
In many (bio)chemical reactors, reaction takes place inside a discrete phase such as
micro-organisms or catalysts particles, with transport occurring in the bulk phase. If
the timescale of bulk mixing is in the range of or longer than the reaction timescale,
the competition between reaction and bulk mixing will result in spatial substrate het-
erogeneity. When the discrete phase is mobile, such as in a slurry reactor or fermentor,
micro-organisms/particles will see continuous changes in their environment as they
move around. The spatial substrate gradients inside the reactor, translate to temporal
substrate variations from the organism’s, catalyst’s or particle’s reference frame [29].

Focusing now on a bioreactor, the biomass specific production rate 𝑞፩ of the desired
component is typically governed by a complex metabolic reaction network, with the
reaction rates depending both on the availability of extra-cellular substrates (such as
sugar and oxygen) and intra-cellular components (such as amino acids and ATP). The
adaptation of organisms to their surroundings does not occur instantaneously [276],
meaning that the intra-cellular and extra-cellular conditions will typically not be in
equilibrium. Consequently, 𝑞፩ may vary in time, and is a function of the organism’s
trajectory through space: the history of the particle’s extracellular exposure influences
its intracellular state. As a result, the observed production rate of the entire population
may differ considerably from an ideal mixing situation [16]. Second, there may be
considerable heterogeneity within the population [13].

Published as: C. Haringa, H.J. Noorman and R.F. Mudde. Lagrangian modeling of hydrodynamic–kinetic
interactions in (bio)chemical reactors: Practical implementation and setup guidelines, Chemical Engineering
Science, 157:159-168, 2017
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Lapin et al. [21, 23] proposed to study the response of organisms to extra-cellular
variations computationally, by combining Euler-Lagrange computational fluid dynam-
ics (CFD) with metabolic models to incorporate metabolic (reaction) dynamics (MD).
In their work, they explored synchronized NAD/NADH oscillations in yeast, coupling
a metabolic model of 𝑂(10) reactions, and successfully reproduced the amplitude
and frequency of such oscillations, as well as the eventual de-synchronization. Al-
though this particular reaction has no direct industrial significance, capturing this
out-of-equilibrium interplay between the extra- and intra-cellular domain shows the
efficacy of the method. However, Lapin et al. left several computational details that
may influence the accuracy of the computation undiscussed. Furthermore, their im-
plementation considered an in-house code, while many users rely on commercial or
open-source software packages. Here, we show that the proposed methodology can
easily be incorporated in a commercial code, discuss a range of implementation as-
pects, and set up guidelines for accurate 2−way coupled Euler-Lagrange bioreactor
studies.

4.1.1. CFD-MD coupling
Due to computational constraints, early CFD-MD work related to bioreactors often re-
mained limited to the application of unstructured kinetic models (i.e. [16]), simulat-
ing only the uptake of substrate, or linking growth and production rate directly to
the substrate uptake rate via a Herbert-Pirt equation. As such models assume an in-
stantaneous adaptation of the metabolism to the extra-cellular conditions, they are
unsuitable when the intra- and extra-cellular conditions are not in equilibrium.

More recently, the adaptation of the metabolism to environmental fluctuations
has been included via two approaches: the population balance approach and Euler-
Lagrange (EL) approach. In the population balance approach, micro-organisms are
modeled as a component of the liquid phase. The biomass specific growth rate 𝜇 is
typically applied to describe population heterogeneity [18, 19, 26], using empirical
relations to specify how 𝜇 adapts to the local extracellular environment. This method
is suitable for situations where all relevant processes can be described as a function of
𝜇. However, metabolic fluctuations may take place on shorter timescales than growth
rate fluctuations, and complex mutual interaction between metabolite- and enzyme
levels may mean that solely considering 𝜇 to describe population heterogeneity may
be too limited. Extending the population balance approach to several mutually inter-
acting intra-cellular species may, however, quickly become cumbersome.

In the EL-approaches the biomass phase is represented by a large number of virtual
particles carrying an internal parameter vector describing their state [21, 23]. These
virtual particles are further referred to as parcels, to distinguish between computa-
tional and physical biomass particles. A large number of intra-cellular components
and their mutual interactions can be tracked for each parcel via a structured metabolic
model. This makes the EL method specifically suitable to study the effect of reactor
heterogeneity on metabolic timescales, and to study how the variations in multiple
metabolites lead to heterogeneity in (among others) 𝜇 and 𝑞፩ [21]. In our opinion,
coupling complex metabolic models in which the intra-cellular response is governed
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Figure 4.1: Example of an uptake rate signal (lifeline) as experienced by a single parcel in an Euler-Lagrange
simulation (scaled with maximum biomass specific substrate uptake rate ፪ᑤ,ᑞᑒᑩ. This time-series is a result
of a spatial gradient as observed from the organism’s point of view.

by more parameters than just 𝜇, is more straightforward in the Euler-Lagrange ap-
proach.

Besides the easy coupling of complex metabolic models, a second advantage is
the viewpoint that the EL method offers. The use of parcels makes it straightfor-
ward to study the observed extra-cellular conditions over time for each parcel, and
to monitor the intra-cellular response to these conditions. From this viewpoint, it is
straightforward to construct ‘parameter versus time’ series for each parcel, for exam-
ple the biomass specific uptake rate 𝑞፬ versus 𝑡 series shown in figure 4.1. We refer
to such timeseries as lifelines, in this case the 𝑞፬−lifeline. Statistical processing life-
lines, which we will discuss in later chapters, provides direct insight in the response
of the metabolism to extra-cellular variations and distributions of the magnitude and
duration of extra-cellular variations can easily be collected. Since experimental scale-
down simulators should replicate such variations to test organisms under industrially
representative conditions, these statistics are a valuable basis of scale-down design. In
our opinion, these advantages make the EL-approach the preferred approach to study
the impact of substrate gradients on the microbial metabolism, and to provide a basis
of design for scale-down simulators.

A major challenge of the EL method is the significant computational burden. First,
the large range of timescales in the problem leads to the requirement to simulate a
significant period of flow time, while a high temporal resolution is required to compute
the parcel trajectories. Second, a large number of parcels (𝑁፩) may be required to
obtain an accurate solution, in case themetabolic model is coupled to the parcel phase.
In case the uptake rate of extra-cellular compounds is fully determined by the extra-
cellular conditions, the rates can be coupled to the Eulerian phase, which means the
parcels act solely as tracers and 𝑁፩ does not affect the Eulerian solution. With fully
Eulerian kinetics, 𝑁፩ and 𝑡፟፥፨፰ (the total simulated flow time) should be sufficient to
obtain converged lifeline statistics, but there is no minimum 𝑁፩ requirement. In any
case the timestep size Δ𝑡፜ should still be significantly shorter than the timescale of
the smallest flow features, for successful particle tracking.

Here, we focus on metabolic-coupled EL simulation, where the value of 𝑁፩ will
affect the solution, and a minimum 𝑁፩ requirement exists. The local 𝑞፬ may be influ-
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enced by the internal state of the organisms, which means the local 𝑞፬ is determined
by the biomass-carrying Lagrangian phase rather than the Eulerian phase. This means
uptake of substrate from the liquid phase becomes an inter-phase exchange effect,
only occurring in grid cells where parcels are present. Due to the point-like nature
of parcels, the amount of biomass in a given volume element is directly proportional
to the number of parcels in that volume element. An insufficient number of parcels
leads to artificial spatial variations in the biomass concentration, 𝐶፱ , and consequently
to artificial spatial variations in 𝑞፬ and 𝐶፬ . As will be discussed in section 4.1.2, the
computation time depends strongly on the number of tracked parcels 𝑁፩, and on the
required time resolution Δ𝑡. In this work, we consider what the minimum number of
parcels 𝑁፩ and maximum allowed timestep size Δ𝑡 is to provide a good trade-off be-
tween accuracy and computational costs for a metabolically coupled Euler-Lagrange
simulation. Based on an evaluation of timescales involved in the problem, we present
how these values can be predicted based on simulation parameters. These guidelines
provide a basis for the computationally efficient application of Euler-Lagrange CFD to
study the effects of non-ideal mixing on the performance of industrial scale bioreac-
tors.

4.1.2. Problem outline
With agitation speeds of 𝑁፬ > 1 sዅኻ, the time resolution Δ𝑡 required to resolve the
parcel motion is in the order Δ𝑡 ≈ 5 − 50 ms. A similar time resolution is required
to explicitly model fast reactions such as substrate assimilation and ATP consump-
tion [276]. The 95 % mixing time 𝜏ዃ኿ is typically in the order of one or several min-
utes [277], and several (approx. 10) mixing times should be simulated to properly
resolve the magnitude- and duration distributions for extra-cellular substrate fluctu-
ations. This means in the order of 30 min flow time must be resolved for a typical
industrial case. Reactions related to (for example) enzyme production may act on the
timescales of hours [236]. If the goal is to study a fermentation including the influence
of enzyme dynamics on biomass specific growth, production and uptake rates, the re-
solved flowtime requirement may be in the order of hours to days, with 𝑂(10)ms time
resolution. Clearly, such simulations will be computationally demanding especially
due to the large number of timesteps, and the computational burden per timestep
must be kept to a minimum.

Efficient modeling of stirred tank flows in a fully Eulerian fashion already received
considerable interest in literature. Hence, we focus here on the Lagrangian aspects
of the simulation. These aspects have received less interest as, in the conventional
applications of Euler-Lagrange methods, the parcel computations are typically a mi-
nor contribution to the total computation time. In our particular application this is
not the case. Under the simplification that the flowfield is in steady state, it is not
required to update the flowfield every timestep, leaving operations related to parcel
tracking as the major contributor to the total computation time. It must be noted that
if this steady-flowfield simplification cannot be made (when the sliding mesh model
is used to model the impeller, for example), Eulerian updating is indeed the dominant
contribution to the computation time. This assumption, and other aspects related to
the Eulerian implementation, are presented in section 4.3.1.
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Computational demands of parcel tracking Typically, the Stokes number for a micro-
organism 𝑆𝑡 < 0.01 and massless parcel tracking may be used. This means parcels
immediately adapt to the local flow velocity and no force balance has to be solved,
reducing the computation time considerably. We will briefly consider computational
cost. Running parcel tracking-only simulations on one core of a 2.4GHz XEON E5-2665
established that in ANSYS FLUENT 15.07 the computation time per parcel 𝑡፜፨፦፩ ≈
5 − 10 ⋅ 10ዅዀ s, without file output. Here, 𝑡፜፨፦፩ became independent of 𝑁፩ for
𝑁፩ > 10኿, meaning the total calculation time scales linearly with 𝑁፩ for such values.
In the case of file output, 𝑡፜፨፦፩ ≈ 20 − 30 ⋅ 10ዅዀ s when writing 5 tracking parame-
ters to file for each parcel, each timestep. Clearly, file output contributes significantly
to the total computation time. In many cases, writing data on only a subset of the
total parcel population suffices for the study of metabolic statistics, and it may not
be necessary to write data with the same temporal resolution as the simulation time-
stepping. Taking this in consideration and writing only the necessary data can save
considerable computation time. The specifics will be highly case-dependent however,
and are therefore out of the scope of this chapter.

Assuming an average computational demand of 𝑡፜፨፦፩ = 10 ⋅ 10ዅዀ s/particle (in-
cluding optimized file output) and a fairly typical time resolution of Δ𝑡 = 30 ms per
timestep, the total computation time is 67 h per hour flow-time for 2 ⋅ 10኿ parcels
on a single processor; resolving one day of flowtime on a 16-core machine, assuming
perfect scalability, would take around 4 days wall-clock time with the applied models.
As the runtime scales (approximately) linearly with 𝑁፩ and inversely with Δ𝑡, the ben-
efit of optimizing these two parameters is clear. This leads to the questions: What is
the minimum required number of parcels 𝑁፩ and the maximum allowed timestep size
Δ𝑡 to achieve accurate results? In this case, accurate means the simulation outcome
is independent of 𝑁፩ and Δ𝑡 and, for a simple reaction model, comparable to results
for an Eulerian simulation with a homogeneous biomass concentration 𝐶፱ , using the
same mesh. Preferably, we want to be able to determine the required 𝑁፩ and Δ𝑡 for a
given simulation problem a priori, rather than resorting to trial and error. Therefore,
we first turn to a theoretical approach for the prediction of 𝑁፩.

4.2. Setting the number of particles
4.2.1. Artificial concentration variations
A typical CFD mesh of a reactor contains 𝑁፜ = 𝑂(10኿ − 10ዀ) grid cells where a fac-
tor 100 − 1000 volume difference between cells is common due to local refinement.
When 𝑁፩ ≈ 𝑁፜ , large grid cells at all times contain tens of parcels while the smallest
cells rarely contain one, inducing artificial spatial biomass concentration gradients.
Taking 𝑁፩ >>> 𝑁፜ gives an approximately homogeneous biomass distribution, but
at excessive computational demands in all but a few applications. Since 𝑞፬ is directly
coupled to the biomass availability, artificial biomass variations inherently give rise
to artificial substrate concentration gradients in the vicinity of the parcel, as indicated
in figure 4.2 A. This need not be a problem if mixing in the direct surrounding of the
parcel is sufficiently fast compared to reaction, such that the magnitude of artificial
substrate gradients is kept small. In order to estimate how many parcels are required
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Figure 4.2: An outline of the computational problem: A: 1-D representation of computational substrate
gradients. The black line represents the physical concentration profile. The dashed red line illustrates
the concentration profile that might be found with parcel-coupled reactions. B: Hypothetical picture of a
single parcel in a fine 2-D grid, outlining the defined volumes and concentrations. C: Enlarged view of
the substrate concentration profile around a single spherical parcel assuming radial symmetry. The dashed
lines indicate the grid cells. D: translation from the hypothetical image to the numerical implementation,
including boundary conditions.

to make the effect of artificial substrate gradients negligible, we first need to estimate
the magnitude of the gradient around the particle as a function of process parameters.

4.2.2. Predicting artificial gradients
Consider a 3−D domain with volume 𝑉ፓ containing 𝑁፩ point-like biomass parcels with
an equidistant particle spacing. Although the point parcels themselves have no true
volume, each parcel has an associated volume 𝑉፩ = 𝑉ፓ/𝑁፩; the parcel represents
the amount of biomass that is contained within this associated volume 𝑉፩. We study
the concentration field in this volume 𝑉፩ which, for simplicity, we assume a spherical
domain with radius 𝑟 (figure 4.2 B). In reality spherical volumes cannot fill the entire
domain of course, but we ignore this fact for the sake of the derivation. The background
domain is discretized in grid cells with 𝑉፜ < 𝑉፩. Because all biomass inside the volume
𝑉፩ is concentrated in the central gridcell containing the parcel, substrate uptake only
occurs inside this gridcell. The substrate concentration at the edge of 𝑉፩ is assumed
constant and homogeneous with a value 𝐶፬,፛ . Due to uptake, the concentration in
the center 𝐶፬,፩ < 𝐶፬,፛ , causing a substrate flux from the domain edge to the center,
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eventually resulting in a steady concentration gradient within 𝑉፩. This is the artificial
concentration gradient arising from the point-like biomass distribution; the situation
is sketched in figure 4.2 C.

We relate concentrations at the edge and center of 𝑉፩ as 𝐶፬,፛ = (1 + 𝛽)𝐶፬,፩, and
use 𝛽 to quantify the magnitude of the artificial gradient. Below, we will relate 𝛽 to
hydrodynamic andmetabolic parameters. Subsequently, we consider that in reality the
parcels are not stationary and homogeneously distributed. The random fluctuation of
the number of parcels in a cell, 𝑁፩,፜ , is accounted for by the standard deviation of the
binomial distribution. Now, we turn to predicting the value of 𝛽.

Predicting𝛽 The substrate gradient around a parcel depends on the balance between
local mixing and reaction; we assume 𝛽 is a function of the timescales describing
these phenomena. Assuming mixing within 𝑉፩ is governed by turbulent diffusion, 𝒟፭ ,
penetration theory dictates 𝑟፩ = √𝜋𝒟፭𝜏፦; rewriting in terms of 𝑉፩ and solving for
𝜏፦ gives eq. 4.1 for a parcel 𝑝. The reaction timescale in gridcell 𝑐 containing 𝑁፩,፜
parcels, with parcel-bound reaction rate 𝑟፬,፩ is given in eq. 4.2.

𝜏፦,፩ = (
3
4𝜋)

ኼ/ኽ 1
𝜋𝒟፭

𝑉ኼ/ኽ፩ (4.1)

𝜏፫,፜ =
𝐶፬,፜𝑉፜

𝑁፩,፜𝑟፬,፩𝑉፩
(4.2)

Since we now study a single parcel, 𝑁፩,፜ = 1. We apply Monod kinetics with 𝐶፱
being the biomass concentration: 𝑟፬,፩ = 𝑞፬,፦ፚ፱𝐶፱ ⋅ [𝐶፬,፩/(𝐾፬ + 𝐶፬,፩)] [222]. When
𝐶፬,፩ << 𝐾፬, Monod kinetics reduce to 1፬፭ order kinetics. Computations showed that 𝛽
becomes independent of 𝐶፬,፩ in this regime. For higher 𝐶፬,፩, we find that 𝛽 decreases
as 𝐶፬,፩ increases, converging to 𝛽 = 0 for 𝐶፬,፩ → ∞. Hence, we can consider the 1፬፭
order regime where 𝛽 reaches a maximum (𝛽 = 𝛽፦) as a worst case-scenario to derive
a criterion for 𝑁፩. Any 𝑁፩ criterion that holds for 𝐶፬,፩ << 𝐾፬ also holds for higher
values of 𝐶፬,፩.

To study how 𝛽፦ depends on the mentioned timescales, we solve the 1-D diffusion
equation in MATLAB (version 8.2); A schematic view of the implementation is shown in
figure 4.2 D. Reaction takes place at the central node, leading to a boundary condition
𝐴𝒟፭ ፝ፂᑤ፝፫ (𝑡, 0) = −𝑟፩,፜𝑉፩. Two different boundary conditions have been applied at the
domain edge. Simulations were conducted with fixed 𝐶፬,፛ - yielding a steady-state
solution - or symmetry boundary condition ፝ፂᑤ

፝፫ (𝑡, 𝑟፩) = 0. The latter gives a transient
batch process. As 𝛽፦ is independent of 𝐶፬, both yielded similar results. Based on a
large number of simulations with varying domain volume, hydrodynamic parameters
and kinetic parameters, we find the relation of eq. 4.3 from the data shown in figure
4.3 A. The different symbols correspond with different numbers of nodes between
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simulations, their relative offset is attributed to the crude discretization.

𝛽፦ =
4𝜋ኼ
3 (𝑉፜𝑉፩

)
ኼ/ኽ
⋅
𝜏፦,፩
𝜏፫,፜

(4.3)

4.2.3. Distribution of parcels in a volume
Because of turbulent motion, the distribution of parcels inside the volume 𝑉ፓ is not
equidistant, but more or less random and the probability of finding 𝑁፩,፜ parcels in
a volume 𝑉፜ follows from the binomial distribution. For the magnitude of artificial
gradients the absolute number 𝑁፩,፜ is not relevant; we have to consider the number
of parcels inside a cell, compared to neighboring cells. This number will fluctuate as
the parcels are in constant motion. Therefore we use the standard deviation of the
binomial distribution, eq. 4.4 to describe the effect of non-homogeneous distribution
and parcel motion.

𝜎፩,፜ = (𝑁፩
𝑉፜
𝑉ፓ
(1 − 𝑉፜

𝑉ፓ
))

ኻ/ኼ
(4.4)

4.2.4. Quantifying artificial gradients in CFD simulations
In CFD software we cannot observe the artificial gradients surrounding a parcel di-
rectly (unless 𝑁፩ is really small). Due to these gradients, the concentration 𝐶፬ in
any given gridcell 𝑐 will be somewhat lower when it contains a parcel, then when
it contains none. The artificial concentration gradients near parcels will hence result
in temporal concentration fluctuations in each gridcell, which are easily quantified.
Such variations are absent when the biomass phase is homogeneously distributed. To
quantify these fluctuations we consider the concentration 𝐶፬ in every gridcell 𝑐 as a
function time. The Coefficient-of-variation (𝐶𝑜𝑉፜) of concentration variations in cell 𝑐
is defined as the ratio of the temporal standard deviation 𝜎፬,፜ over the temporal mean
⟨𝐶፬,፜⟩. Subsequently, 𝐶𝑜𝑉፜ is volume-averaged to yield a single number quantifying
the fluctuations in the simulation, shown in equation 4.5.

𝜒 = ⟨𝐶𝑜𝑉፜⟩ ≡ ⟨
𝜎፬,፜
𝐶፬,፜

⟩ (4.5)

With 𝜒 describing artificial gradients in simulations, we pose the proportionality
𝜒 ∝ ⟨𝛽፦,፜𝜎፩,፜⟩ with a yet to be determined proportionality constant 𝛼፠. ⟨𝛽፦,፜𝜎፩,፜⟩ is
determined by solving eq. 4.3 and 4.4 for each gridcell, and volume-averaging their
product over all cells. The constant 𝛼፠ describes all effects that have not been ac-
counted for in ⟨𝛽፦,፜𝜎፩,፜⟩, including the fact that all above computations assumed the
artificial gradient around the parcel was completely developed, while in reality it will
be very dynamic. Now combining 𝜒 = 𝛼፠⟨𝛽፦,፜𝜎፩,፜⟩ with equations 4.1 - 4.4, we can
solve for 𝑁፩, yielding equation 4.6. For convenience, the numerical constant 4𝜋ኼ/3 is
absorbed in 𝛼፠ in this equation and the rest of this work; accordingly, 𝛽፦ is scaled to
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Figure 4.3: A: Calculated ᎏᑞ versus predicting equation for a variety of settings. The different symbols
indicate numerical resolution: ፧ᑘ ዆ ኽ (blue diamonds), ኿ (red squares), ዃ (green triangles), ኻኽ (orange cir-
cles). Black line: ፗ ዆ ፘ. Dashed lines: ኼኺ% deviation from the proposed relation. B: Observed fluctuations
versus predicted value for the Rushton geometry and PBT geometry. The black lines show the obtained fits
used for determining ᎎᑘ.

𝛽∗፦ = 𝛽፦/(4𝜋ኼ/3). In eq. 4.6, the allowable artificial gradient magnitude is specified
via 𝜒 (we use 𝜒 = 0.05 as a default), and constant 𝛼፠ has yet to be determined.

𝑁፩ = 𝛼ኼ፠ [
𝑞፬,፦ፚ፱𝐶፱
𝐾፬𝜒√𝑉ፓ

∑(𝑉
዁/ዀ
፜
𝒟፭,፜

(1 − (𝑉፜𝑉ፓ
))

ኻ/ኼ
)]
ኼ

(4.6)

4.3. CFD implementation
Simulationswere performed in the commercial software package ANSYS FLUENT 15.07,
which includes Euler-Lagrange modeling as the DPM model. FLUENT is equipped
with a parcel-reaction model, but this model is not compatible with the massless
tracking formulation. Hence, reaction routines were added as User-Defined Func-
tions (UDFs). To allow direct comparison with Eulerian simulations for validation of
the Euler-Lagrange implementation, the reaction rate used in this work is a func-
tion of a single external scalar only: 𝑟፬,፩ = 𝑓(𝐶፬,፜). Two different schemes for inter-
phase reaction coupling were tested. In Approach I, the source term 𝑆፬,፜(𝑡 + Δ𝑡፜) =
Σ𝑁፩,፜𝑟፬,፩(𝑡)Δ𝑡፩ with Σ(Δ𝑡፩) = Δ𝑡፜ and Δ𝑡፩ a flexible timestep size determined by
FLUENT. The value of the 𝑆፬,፜ is determined at the beginning of each timestep, and
is not updated in subsequent iterations of the Eulerian field. In essence, this makes
approach I non-iterative. In Approach II, 𝑆፬,፜(𝑡 + Δ𝑡፜) = Σ𝑁፩,፜𝑟፬,፩(𝑡 + Δ𝑡፜)Δ𝑡፜ where
𝑆፬,፜ is recalculated every iteration, possibly increasing accuracy but also calculation
time.
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4.3.1. Computational setup
A RANS simulation approach was selected to keep the computational demands low;
its accuracy is sufficient for providing insight in reactor-scale substrate concentration
gradients [16]. The standard 𝑘 − 𝜖 model was used in all simulations. Although this
model is fundamentally weak for strongly rotating flows [58], it has been well estab-
lished that the 𝑘 − 𝜖 model can reasonably capture the fluid flow [138], turbulence
quantities [59] andmixing time [62] in a stirred vessel. Our own simulations yield com-
parable results, further specifics have been discussed in the previous chapter. While
performance of the 𝑘 − 𝜖 is sufficient for our goals, the guidelines presented in this
paper are by no means limited to this turbulence model; they are compatible with any
eddy viscosity model.

The steady state Multiple Reference Frame (MRF) model for impeller simulation is
favored over the inherently transient Sliding Mesh (SM) approach. In many stirred tank
applications, the periodic velocity component arising from rotor-stator interaction is
small and the MRFmethod can be applied [59]. As the MRFmethod calculates a steady
state flowfield, there is no need to recalculate the flow every timestep saving an order
of magnitude in computation time. Discretization was 2፧፝ order upwind in space [59]
and 2፧፝ order implicit in time. The SIMPLE algorithm was used for pressure-velocity
coupling. Convergence was assumed if all residuals were below 10ዅ኿ and oscillations
in the mean velocity magnitude were below 1%.

Reaction and parcel tracking Species tracking was initially enabled including a vol-
umetric (Eulerian) reaction term 𝑟፬,፜ = 𝑞፬,፦ፚ፱𝐶፱ ⋅ ( ፂᑤ,ᑔ

ፊᑤዄፂᑤ,ᑔ ). The turbulent Schmidt
number was kept at the default value of 0.7. After the concentration field converged
to a steady state, the solver was switched to transient andmassless parcels were added
via the DPM model. The effect of turbulence was included using the discrete random

walk model (DRW), where √𝑢ᖣኼ = √2𝑘፭/3 and isotropic turbulence is assumed. Dur-
ing parcel tracking, the baffles and impeller boundary conditions were switched from
wall to interface. As 𝑘፭ vanishes at these walls, parcels tend to get stuck when the
wall boundary condition is retained. Parcels were first distributed for 30 impeller rev-
olutions without particle-coupled reactions. After this time, the volumetric reaction
model was switched off, and the particle-coupled reaction model was enabled.

Physical conditions Water (𝜌 = 1000 kg/mኽ, 𝜇፥ = 0.001 Pa s) was used as a working
fluid in all simulations. Glucose (𝑀𝑊 = 180 g/mol) was the substrate. It was assumed
that the dissolution of glucose did not influence 𝜇፥ and 𝜌 of the continuous phase. The
molecular diffusion coefficient 𝒟፦ was arbitrarily set to 10ዅዃ; the exact value is not
of significant influence in turbulent simulations. Glucose uptake by the filamentous
fungus P. chrysogenum was selected as a model reaction, described by Monod kinetics.
De Jonge et al. determined the model parameters to be 𝑞፬,፦ፚ፱ = 1600 μmol/(g፝፰ h)
and 𝐾፬ = 7.8 μmol/kg [44]. In our simulations the biomass concentration is set to
𝐶፱ = 10 g/kg. Since we assume a continuous fluid with the properties of water for
model-development purposes here, mass transfer limitations towards the microorgan-
ism will play a negligible role [278] and are not included in the simulations.
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Table 4.1: An overview of all conducted simulations. Several cases were conducted in duplo. Case names
are based on mesh (፱፱፱kc) and parameter variation (I = coupling approach I, II = coupling approach II, LP =
Low Power input, TET = tetrahedral, PBT = Pitch Blade Turbine).

Case sዅኻ No. Parcels Δ𝑡፜ (s) coupling
51kcI 1.026 5𝑘 - 2000𝑘 0.001 - 5 I
51kcII 1.026 10𝑘, 500𝑘 0.01 - 3 II
51kcLP 0.750 10𝑘 - 100𝑘 0.01 I
166kcI 1.026 10𝑘, 500𝑘 0.01 I
341kcI 1.026 10𝑘, 500𝑘 0.01 I
341kcII 1.026 10𝑘, 500𝑘 0.01 II
TET 1.026 10𝑘, 500𝑘 0.01 I
PBT 1.033 10𝑘 - 500𝑘 0.01 I

As a hypothetical reactor, a flat bottomed tank with 𝐻 = 𝑇 = 5m agitated by
a 6-blade Rushton turbine (RT) with a clearance Δ𝐶 = 𝑇/4, diameter 𝐷 = 𝑇/3 and
baffle width was 𝑇/10 was used. To reduce computational effort 1/6፭፡ of the tank
was modeled, containing a single blade and baffle. The additional baffling was shown
to be of negligible influence [59]. Three hexahedral grids with respectively 51𝑘, 166𝑘
and 341𝑘 gridcells, and one tetrahedral grid with 147𝑘 cells were used. All internals
were modeled as thin surfaces. Substrate was fed to the domain via a source term
in a region near the impeller top. In all simulations, the conditions were such that
⟨𝐶፬⟩ << 𝐾፬ . Additional simulations were performed in a pitch blade tank (PBT), to test
if the proportionality constant 𝛼፠ is influenced by the geometry. The used dimensions
are Δ𝐶 = 𝑇/2, 𝐷 = 0.35𝑇 and 𝑇 = 5m; the impeller contained 4 blades with an angle
of 45∘. For further geometric details, we refer to Bakker et al. [279]. The mesh was
fully hexahedral with 99𝑘 grid cells and covered 1/4፭፡ of the domain.

Monitoring Each timestep, the mean concentration 𝐶፬, total uptake rate Σ𝑟፬,፩𝑉፩, con-
centration and parcels per gridcell (𝐶፬,፜ , 𝑁፩,፜) and concentration observed by each
parcel (𝐶፬,፩) were monitored. To account for transients, the first 15 impeller revolu-
tions with Lagrangian reaction were discarded - in all cases the concentration field
was statistically steady after this time. All properties were monitored for 60 − 300
impeller rotations to derive the reported statistics.

Cases Most simulations were conducted at an agitation speed of 𝑁፬ = 1.026 sዅኻ;
one series of simulations was executed with 𝑁፬ = 0.75 sዅኻ to test the influence of
power input. The typical timestep was set to Δ𝑡፜ = 0.01 s, but other values have been
applied to test the influence of Δ𝑡፜ . An overview of cases is shown in table 4.1.

4.4. Results and discussion
We focus on four aspects of the simulations: 1) we compare 𝜒 against ⟨𝛽∗፦,፜𝜎፩,፜⟩ to
study the value of 𝛼፠ under different conditions, 2) we compare mean concentration
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⟨𝐶፬⟩ between Eulerian and Lagrangian simulations to validate the Lagrangian reaction
approach, 3) we study the effect of Δ𝑡 and 4) we check whether the inter-phase mass
balance is closed.

4.4.1. Artificial gradients in FLUENT
Artificial gradients were quantified by monitoring 𝜎፬,፜/𝐶፬,፜ in each grid cell, and av-
eraging them to yield 𝜒. Data was stored every timestep and post-processing was
performed in MATLAB 8.6.0. In figure 4.3 B 𝜒 is plotted against ⟨𝛽∗፦,፜𝜎፩,፜⟩. We ob-
serve a linear relation between ⟨𝛽∗፦,፜𝜎፩,፜⟩ and 𝜒, in line with our expectations. The
proportionality constant 𝛼፠ is found to be 0.27 for the RT geometry and 0.19 for the
PBT. This indicates 𝛼፠ is dependent on the fermentor geometry. This is attributed to
the difference in global flow pattern and thereby global parcel motion. In the RT case,
runs with different meshes (hexa- and tetrahedral), different power input and different
Δ𝑡 all collapse on the same line. Also, we see no influence of the coupling mechanism
on 𝜒 and thereby 𝛼፠. Additional runs were conducted in a tank stirred by 2 Rushton
turbines, using the geometry of [65]. Here, 𝛼፠ is also found to be 0.27, which is not
surprising as the geometry can be seen as 2 single-RT tanks stacked together. Finally,
sliding mesh simulations too yield 𝛼፠ = 0.27 for a Rushton turbine. For brevity, a
detailed discussion of the sliding mesh results is omitted.

4.4.2. Mean concentration
A second prerequisite for the successful application of parcel-based reactions, is that
the time-average substrate concentration field agrees with the steady state substrate
concentration field found in a fully Eulerian simulation, for the simple kinetics applied
here. To establish this, we compare the volumetric mean substrate concentration for
the Lagrangian and Eulerian reaction implementation. First we consider how ⟨𝐶፬,፜⟩
(the Eulerian mean in EL simulations in both space and time) develops with 𝑁፩, by
comparing ⟨𝐶፬,፜⟩ with ⟨𝛽∗፦,፜𝜎፩,፜⟩ (figure 4.4 A). As can be expected, ⟨𝐶፬,፜⟩ converges to
a steady value for ⟨𝛽∗፦,፜𝜎፩,፜⟩ → 0, with ⟨𝐶፬,፜⟩ nearly independent of 𝑁፩ for ⟨𝛽∗፦,፜𝜎፩,፜⟩
below 0.5.

In table 4.2 we compare ⟨𝐶፬,፜⟩, the volume average in a steady state Eulerian sim-
ulation (first column), with the Lagrangian ensemble-and-time average 𝐶፬,፩ and ⟨𝐶፬,፜⟩
for the same mesh. The agreement between ⟨𝐶፬,፜⟩ and 𝐶፬,፩ is expected; with the es-
sentially 1፬፭ order kinetics, there is a unique ⟨𝐶፬,፜⟩ at which substrate uptake and feed
balance. This is the average concentration in an Eulerian simulation, and must also
be the average concentration observed by the parcels in a Lagrangian simulation, re-
gardless of 𝑁፩. The small difference between the meshes shows the Eulerian solution
is not yet mesh independent for the 51𝑘 grid. More striking is the significant mesh
dependency of ⟨𝐶፬,፜⟩. We attribute this effect to the DRW model for turbulent parcel
motion.

As noted before, the turbulent kinetic energy 𝑘፭ vanishes near walls, and the con-
vective velocity is low. Consequently parcels tend to have an unrealistically long res-
idence time in these zones [21]. The effect is most pronounced in the crudest mesh,
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Table 4.2: Mean concentration in the volumetric reaction case versus Lagrangian reaction case for selected
cases. For the Lagrangian case, both the field mean, and mean observed by parcels is shown. For all cases,
ጂ፭ᑔ ዆ ኺ.ኺኻ. Concentrations are given in mol/kg

Case ⟨𝐶፬,፜⟩ ⟨𝐶፬,፜⟩ 𝐶፬,፩
51kcE-100kp 7.28 2.90 7.06
166kcE-500kp 6.83 6.33 6.83
341kcE-500kp 6.83 7.28 6.83

which has a relatively large ratio of boundary gridcells over bulk gridcells. The result
is a somewhat elevated average biomass concentration in some wall regions, most
notably the vessel top - near the substrate feed. This leads to a comparatively large
uptake in this region and thereby lower 𝐶፬ in the bulk of the vessel. Higher mesh den-
sities result in fewer wall cells compared to bulk gridcells and the offset decreases with
increasing mesh resolution. Improvements over the DRW have been suggested, such
as anisotropic-DRW or continuous random walk (CRW) [219] and probabilistic methods
such as explored by Lapin et al. [21]. We consider the implementation of such meth-
ods outside the scope of this work. The main message is that the agreement between
⟨𝐶፬,፜⟩ and ⟨𝐶፬,፜⟩ should be checked, as an offset is not fixed by simply increasing 𝑁፩.
If an offset is detected, it should be checked whether parcels accumulate in certain
regions, and measures (either mesh refinement or alternative tracking models) should
be implemented.

Turning back to figure 4.4 A, the increase in ⟨𝐶፬,፜⟩ at high ⟨𝛽∗፦,፜𝜎፩,፜⟩, can be ex-
plained by the 𝑁፩-independent value of 𝐶፬,፩. Looking back at figure 4.2 B and C, the
concentration in the parcel-containing grid cell is lower than in the surrounding cells
as a result of uptake, an effect that becomes more pronounced with decreasing 𝑁፩;
hence upon decreasing 𝑁፩, ⟨𝐶፬,፜⟩ will increase. This notion still holds for the 51𝑘 grid.

4.4.3. Inter-phase mass balance
Having established the value of 𝛼፠, dependence of ⟨𝐶፬,፜⟩ on 𝑁፩ we have established
the minimum required 𝑁፩ for an accurate Euler-Lagrange bioreactor simulation. A
final important aspect is the closure of the inter-phase mass balance. The substrate
uptake from the field Σ𝑆፬,፜𝑉፜ , must be balanced by an equal accumulation term (Σ𝑟፩𝑉፩)
in the Lagrangian phase in order to properly study intra-cellular reaction dynamics
when more complex models are used. In practice, some imbalance will occur, due to
numerical errors in the iterative solution of the scalar field, and due to uptake clipping.
The latter occurs when the uptake from a gridcell, 𝑆፬,፜𝑉፜Δ𝑡፜ , exceeds the availability
in that cell, 𝐶፬,፜𝑉፜ .

We quantify the instantaneous uptake imbalance as 𝜆(%) = 100 ⋅ ፫ᑡ,ᑔጂፕᑡጂ፭ዅፒᑤ,ᑔጂፕᑔ፫ᑡ,ᑔጂፕᑡጂ፭ .
A typical 𝜆 versus time plot is shown in figure 4.4 B. Both positive and negative im-
balances are observed, the average 𝜆 is slightly positive. This is attributed to the two
types of error mentioned above; the iteration error is distributed around 0, clipping
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Figure 4.4: A: Mean concentration as a function of ⟨ᎏ∗ᑞ,ᑔ᎟ᑡ,ᑔ⟩ showing the convergence of the ⟨ፂᑤ⟩ as a
function of ፍᑡ, for the ኿ኻ፤፜ፄ cases. The concentration is nearly independent of ፍᑡ for ⟨ᎏ∗ᑞ,ᑔ᎟ᑡ,ᑔ⟩ below
ኺ.኿. For all cases,ጂ፭ᑔ ዆ ኺ.ኺኻ. B: Signed inter-phasemass imbalance ᎘ versus time for case ኻዀዀ፤፜ፈዅ኿ኺኺ፤፩.
The variations between timesteps are mainly due to numerical errors in the iterative solution procedure.
Overall, ᎘ is slightly positive with mean offset is ኼ.ዂ ⋅ ኻኺᎽᎴ%. This offset occurs when in some gridcells,
substrate uptake exceeds availability and the uptake must be clipped. The low offset magnitude indicates
this effect is of negligible.

errors lead to a positive 𝜆. In all cases where 𝜒 < 0.05, the absolute time average
mass imbalance |𝜆| was well below 1%, indicating the inter-phase mass balance is
sufficiently closed.

4.4.4. Time step size
As noted in the introduction, the time resolution Δ𝑡፜ will significantly affect the com-
putation time, given a certain flowtime; a higher Δ𝑡፜ simply means less timesteps
are required for the same simulation. The influence of timestep size Δ𝑡፜ has been
studied in the 51𝑘𝑐 Rushton grid. First, the effect of Δ𝑡፜ on the mass imbalance |𝜆|
is briefly considered. We scale Δ𝑡 with the reaction timescale, Θ = ጂ፭ᑔ፪ᑤ,ᑞᑒᑩፂᑩ

ፊᑤ ; for
Θ > 1 significant clipping is expected since the uptake per timestep is bigger than the
substrate availability. The effect of clipping is clearly visible in figure 4.5 (top). The
value of |𝜆| is sufficiently small (consistently < 1%) for Θ < 0.1. It is noteworthy that
coupling approach I (non-iterative) and II (iterative) yield no significant difference in
error, meaning the additional computational burden of recalculating uptake each field
iteration is not justified.

To conclude, the effect of timestep size on the 𝜒 is checked. The data in figure 4.5
(top) clearly shows that for Θ < 1 there is no effect of Δ𝑡 on 𝜒. This is in line with our
expectations; the parcel timestep Δ𝑡፩ (controlling uptake and motion) is determined
independent of the field timestep Δ𝑡፜; as long as there is no significant change in the
external scalar field during Δ𝑡፜ , no effect on 𝜒 is expected. Still, for a too large Δ𝑡፜
parcel trajectories could not be computed successfully - this occurred when Δ𝑡፜ ≈ 𝑁ዅኻ፬ .
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Figure 4.5: Uptake mass imbalance |᎘| (top) and artificial gradients Ꭴ (bottom) as a function of time. Both
parameters are shown to be independent of ጂ፭ᑔ for ጆ ጺ ኻ. All shown data points are for the ኿ኻ፤፜ mesh.
Black squares: Coupling approach I. Red triangles: Coupling approach II.

Hence, we advise a maximum timestep size Δ𝑡፜ < ኻ
ኻኺፍᑤ and

ጂ፭ᑔ፪ᑤ,ᑞᑒᑩፂᑩ
ፊᑤ < 0.1 to ensure

successful trajectory calculation, time-independent 𝜒 and an acceptably low imbalance
in the inter-phase mass balance.

4.5. Conclusion
Due to the large number of timesteps required when running an Euler-Lagrange sim-
ulation of a fermentation process Lagrangian reaction coupling, computational effi-
ciency is essential. When the uptake of substrates from the broth (the Eulerian phase)
by the organisms (the Lagrangian phase) is a function of intra-cellular parameters, the
uptake rate 𝑞፬ needs to be modeled as an inter-phase exchange term which is deter-
mined from the Lagrangian perspective. This means that locally 𝑞፬ is a function of the
local particle coverage, and a sufficient number of particles 𝑁፩ is required to achieve
accurate results. Inherently, the clustering of biomass in Lagrangian parcels leads to
artificial substrate concentration fluctuations in the substrate concentration field. A
sufficient number of parcels 𝑁፩ must be used to minimize these effects, with higher
𝑁፩ inherently leading to a longer computation time. In this work, we set out to pre-
dict the minimum value of 𝑁፩, as well as the maximum allowable timestep size Δ𝑡፜ ,
necessary to acquire accurate simulation results at minimal computational cost.

Artificial substrate concentration fluctuations, caused by non-homogeneous distri-
bution of the biomass phase in Euler-Lagrange (EL) simulations, scale linearly with
⟨𝛽∗፦,፜𝜎፩,፜⟩. Here, 𝛽∗፦,፜ is derived from the substrate gradient around a single, station-
ary parcel and 𝜎፩,፜ is the standard deviation of the binomial distribution, describing
the random distribution of parcels. The proportionality constant 𝛼፠ is found to de-
pend solely on the geometry of the system; no effect of mesh, power input or timestep
size was observed, provided the timestep size was below 𝐾፬/𝑞፬,፦ፚ፱𝐶፱ . Knowing 𝛼፠,
the number of parcels 𝑁፩ required to keep the artificial substrate fluctuations below a
certain threshold can be calculated from equation 4.6, where 𝑁፩ typically is of 𝑂(10኿)
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for a threshold 𝜒 = 0.05. Because of the iterative nature of the method, there is a
mass-imbalance |𝜆| between the Eulerian and Lagrangian uptake. This imbalance was
found to be < 1% when 𝛼፠⟨𝛽∗፦,፜𝜎፩,፜⟩ < 0.05 and Δ𝑡 < 0.1𝐾፬/𝑞፬,፦ፚ፱𝐶፱ , for all cases.
Both explicit and implicit uptake coupling were tested. No consistent improvement in
performance was found regarding error or fluctuations for the implicit method, while a
significant increase in calculation time was observed. Hence, we provide the following
primary guidelines for setting up Euler-Lagrange fermentation simulations:

1. Calculate the minimum number of required parcels using equation 4.6.

2. A timestep size Δ𝑡 <min( ኺ.ኻፊᑤ
፪ᑤ,ᑞᑒᑩፂᑩ ,

ኻ
ኻኺፍᑤ ) is recommended.

3. Calculation inter-phase exchange terms only during the first iteration of a timestep
is recommended to reduce computation time.

The size of microorganisms allows massless parcel tracking to be used, with reaction
models supplied via user-defined functions, resulting in significant savings in com-
putation time. Furthermore, computation time can be reduced by using the Multiple
Reference Frame method for impeller simulation; the impeller and baffles have to be
switched from ’wall’ to ’interface’ boundary condition to prevent parcels from getting
stuck. It is advised to consider alternatives for the discrete random walk model for
turbulent particle dispersion. Although its drawbacks can be diminished by increasing
mesh density, a more systematic solution is preferred.



5
Analysis of organism life-lines

The trajectories, referred to as lifelines, of individual micro-organisms in an industrial scale
fermentor under substrate limiting conditions were studied using an Euler-Lagrange com-
putational fluid dynamics (CFD) approach. The metabolic response to substrate concen-
tration variations along these lifelines provides insight in the dynamic environment inside
a large scale fermentor, from the point of view of the micro-organisms themselves. We
explore two methodologies to analyze the variations experienced along these lifelines;
the first methodology is based on variations compared to a reference point (arc analy-
sis) and the second based on transitions between metabolic ‘regimes’ (regime analysis).
Both methodologies have the potential to provide comprehensive statistical insight in the
environmental fluctuations experienced by micro-organisms inside an industrial bioreac-
tor. These statistics provide the groundwork for the design of representative scale-down
simulators, mimicking substrate variations experimentally. Two case studies are explored.
First, the aerated fermentation of S. cerevisiae in a 22 mኽ fermentor, as conduct in Sta-
vanger, Norway [8, 16, 40, 277, 280]. Second, we study a simplified representation of an
industrial fermentation of P. chrysogenum, dealing only with glucose gradients and ignor-
ing aeration and rheology. Available experimental data shows the relevant hydrodynamic
timescales are nevertheless reasonably captured. Together, these cases provide insight
in how moderate- to extreme substrate gradients inside bio-reactors are experienced by
micro-organisms. The competition between the timescale of reaction and timescale of
circulation is highlighted, leading to different spatial layouts of the gradients between
the cases. Micro-organisms experience significant substrate concentration fluctuations at
timescales of seconds while traveling through these gradients, on average in the order of
magnitude of the global circulation time. Such rapid fluctuations should be replicated in
truly industrially representative scale-down simulators.

5.1. Introduction
Non-ideal mixing in industrial bioreactors may lead to several large-scale gradients,
for example in substrate concentration, in dissolved oxygen concentration and in pH.
From the point of view of the organisms, these spatial gradients in the reactor translate
to temporal variations in their observed environment to which they are continuously
subjected [8], and which will influence their metabolism. In order to properly assess

Parts of this chapter have been published as: C. Haringa, W. Tang, A.T. Deshmukh, J. Xia, M. Reuss, J.J. Heijnen,
R.F. Mudde and H.J. Noorman. Euler-Lagrange computational fluid dynamics for (bio)reactor scale-down: an
analysis of organism life-lines, Engineering in Life Sciences, 16:652-663, 2016 and C. Haringa, A.T. Deshmukh,
R.F. Mudde and H.J. Noorman, Euler-Lagrange analysis towards representative down-scaling of a ኼኼ mᎵ

aerobic S. cerevisiae fermentation, Chemical Engineering Science, 170:653-669, 2017
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the performance and feasibility of industrial bioprocesses upfront, the influence of
these variations must be taken into account. This can be done via the use of so-called
‘scale-down (SD) simulators’ [43, 78]. The design parameters and operating conditions
of these simulators are currently often chosen on the basis of intuition or engineering
correlations, related to the vessel mixing time [44, 50, 54, 55], or chosen as a vari-
able [49, 52, 53]. Whether the magnitude and frequency of fluctuations observed by
organisms based on this assumption are representative is, however, questionable.

A more rational design of scale-down simulators requires deeper insight in the
large-scale conditions to which organisms are exposed. Unfortunately, industrial ves-
sels are typically poorly accessible for detailed measurements. With state of the art
CFD, it is possible to obtain detailed insight in the environment inside the fermen-
tor [19, 21, 23, 26, 212]. Of course, such methods involve several assumptions in the
modeling of turbulent and multi-phase flows and are not perfect in their accuracy, but
they provide a significant step forward compared to the information that is currently
available experimentally.

Several authors have suggested the use of CFD to tune scale-down simulators
[21, 23, 30, 56, 281], in particular the use of Euler-Lagrange CFD. In the Euler-Lagrange
method the biomass phase is represented by a set of individual parcels, which pro-
vides the most straightforward way to study the environmental variations from the
perspective of the micro-organisms. For each parcel, a ‘condition versus time’ series
describing the observations of a single micro-organism is recorded, referred to as a
lifeline, a term coined by Lapin et al. [23]. Although the focus here is on the extra-
cellular environment, lifelines for intra-cellular conditions can similarly be obtained
[21, 23].

Since the pioneeringwork of Lapin, who first presented the Euler-Lagrangemethod-
ology, only few authors have applied this method, and little attention has been de-
voted to analyzing fermentation simulations from the unique microbial perspective
offered by the approach. Lapin et al. and Delvigne et al. [281] showed lifeline plots,
but did not quantify fluctuation frequencies. Some initial quantification of substrate
concentration variations, considering both frequency and magnitude, has been con-
ducted by McClure et al. [282]. A more extensive statistical analysis of CFD-based
lifelines is considered of great value for the design of representative scale-down sim-
ulators as they provide deeper insight in what conditions organisms experience in
industrial scale fermentors and can therefore provide a basis of design for industri-
ally representative scale-down simulations. The major challenge in this respect is to
transform the large amount of simulation data to a manageable set of statistics. This
chapter aims at developing a methodology to address this issue: we present methods
to collect statistical insight in the environmental (substrate) variations observed by
micro-organisms, that may serve as a basis of design of scale-down simulators.

5.2. Materials and Methods
We applied an Euler-Lagrange CFD approach to study the extra-cellular environment in
industrial scale fermentors from themicrobial viewpoint, focusing on the extra-cellular
glucose concentration 𝐶፬ (mol/kg). Extra-cellular variations in 𝐶፬ lead to variations
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in the biomass specific substrate uptake rate 𝑞፬ (mol፬/g፝፰/h) for each individual or-
ganism. Since we are primarily interested in the response of the micro-organism, the
lifelines are expressed in terms of 𝑞፬ versus 𝑡.

In our study we consider 2 industrial fermentations. First, the aerobic fermentation
of Saccharomyces cerevisiae strain CBS 8066 in a 22mኽ reactor. This process has been
studied extensively within the scope of the Nordic fermentation program between
1990 and 2000, which provides validation data for gas hold-up 𝛼, mass transfer rate
𝑘፥𝑎, gassed power number 𝑃𝑜፠ and mixing time 𝜏ዃ኿ [40, 277]. Most important, the
substrate concentration 𝐶፬ has beenmeasured at three axial positions in the fermentor
[16], providing clear experimental evidence of a concentration gradient as well as a
model validation opportunity. The second case focuses on the production of penicillin-
G by Penicillium chrysogenum strain 𝐷𝑆17690 in a 54mኽ reactor, formerly operated by
DSM. In this chapter, we focus solely on extra-cellular variations; the impact of these
on the intra-cellular response is treated in chapter 7.

5.2.1. Biomass specific kinetics
In both cases, hyperbolic Monod kinetics (eq. 5.1) are applied to compute the specific
substrate uptake rate 𝑞፬ based on the local substrate concentration 𝐶፬:

𝑞፬ = 𝑞፬,፦ፚ፱ ⋅ (
𝐶፬

𝐾፬ + 𝐶፬
) mol፬/g፝፰/h (5.1)

The kinetic parameters for both cases are reported in table 5.1. As discussed in
chapter 2, variations in both 𝑞፬,፦ፚ፱ and𝐾፬ may occur at long timescales due to adapta-
tions in the glucose transporters. In this work, the simulated timeframe is 30−60min
as we are interested in metabolic variations, which typically occur on the second -
minute scale; 𝑞፬,፦ፚ፱ , 𝐾፬ can be assumed constant. The used Monod parameters have
been determined in experimental setups that do not reflect the highly dynamic reality
of a large scale fermentor, which does mean that the pseudo-steady value of 𝑞፬,፦ፚ፱
and 𝐾፬ under reaction conditions may differ; this was currently not accounted for, val-
ues for 𝑞፬,፦ፚ፱ and 𝐾፬ were based on available literature. The simulated growth rate
𝜇 < 0.05 hዅኻ, which means changes in 𝐶፱ within the simulated timeframe can be
ignored.

Under steady state conditions, Growth, production and maintenance (𝑚፬) can be
linked to 𝑞፬ via the Herbert-Pirt equation, equation 5.2:

𝑞፬ =
𝜇
𝑌፬፱

+
𝑞፩
𝑌፬፩

+𝑚፬ (5.2)

While we focus on 𝑞፬ variations in this work, the Herbert-Pirt equation is used to
comment on the state of being of organisms in certain zones of the reactor, for the P.
chrysogenum case. The term 𝑞፩/𝑌፬፩ is small and can be safely neglected to make 𝜇 an
function of 𝐶፬ only.
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Table 5.1: Monod parameters for case 1 (S. cerevisiae CBS8066) and case 2 (P. chrysogenum DS17690)

Parameter Case 1 Case 2
𝑞፬,፦ፚ፱ (mol/g/h) 0.00944 0.0016
𝐾፬ (mol/kg) 0.001 7.8 ⋅ 10ዅዀ

Oxygen dynamics
Under oxygen limiting conditions, S. cerevisiae may ferment sugar to ethanol. Lars-
son et al. [16] report a dissolved oxygen tension 𝐷𝑂 > 30% and oxygen limitations
were not observed in this case. In the very viscous penicillin fermentation, sufficient
oxygen transfer may be a challenge. We currently do not consider dissolved oxygen
(DO) gradients and assume sufficient oxygen is supplied. It is known for several P.
chrysogenum strains that 𝑞፩ is affected below 𝐷𝑂 ≈ 0.08 mol/mኽ, and may vanish
at 0.026 mol/mኽ. The reversibility of this loss is disputed [54, 240, 242]. The effect
of low 𝐷𝑂 on 𝑞፬ is not well known; Henriksen et al. [242] observed no change in
𝜇 and the residual glucose concentration 𝐶፬ while McIntyre et al. [241] did observe
a reduction in 𝐶፱ under complete oxygen starvation (𝐶፬ was not reported). Indus-
trial data for a 150 mኽ fermentor with 2 DO probes indicated an oxygen gradient of
0.05 − 0.1 mol/mኽ (top-bottom). This indicates some effect on 𝑞፩ could occur, but
very serious limitations are not expected. Based on the 150 mኽ measurements, no
serious limitations are expected to occur in the 54 mኽ vessel either.

5.2.2. Fermentation details
Case 1: S. cerevisiae
Geometrical details for the simulated S. cerevisiae fermentor can be found in figure 5.1
A. The liquid filled height was 𝐻 = 6.55 m, or 22 mኽ filled volume, the total domain
height was set to 11 m to allow for broth expansion during gassing. The reactor
contained 4 Rushton impellers. In practice, the reactor had 4 baffles; in the simulation
6 baffles were used due to facilitate periodicity: a 60∘ section of the tank with 1 blade
and 1 baffle was modeled. This did not significantly affect the overall flow [59]. The
periodicity introduces additional feed points (6 instead of 1) at equal angular spacing.
This has no strong influence on the substrate distribution, as the gradient is mostly
axial [16, 21, 84, 160]. Furthermore, the tank was modeled with the shaft and baffles
extending over the full height, and a flat bottom to facilitate meshing [84]. In reality,
the bottom was slightly convex, and the shaft ended below the bottom impeller. The
agitation rate was set to 𝑁፬ = 2.22 sዅኻ. Gas was fed via a ring sparger located with a
flow rate 𝑄፠ = 0.182 𝑁mኽ/s, resulting in a gas-flow number 𝐺𝑠 = 𝑄፠/𝑁፬𝐷ኽ = 0.24
and Froude number 𝑁ኼ፬𝐷/𝑔 = 0.35. Under these conditions the bottom impeller is
expected to be in the loading regime [283], while the other impellers operate under
dispersion conditions. The rheology of the broth was assumed to be equal to water
(𝜌 = 1000kg/mኽ, 𝜇፥ = 0.001Pa s), the air-water surface tension 𝛾 = 0.072N/m.
A fixed biomass concentration 𝐶፱ = 10 g/kg (dry weight) was used, with a constant
glucose feed rate𝐹 = 52 kg/h (as a 50%𝑤𝑡. solution) and constant liquid-filled height.
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Figure 5.1: The reactors modeled in this study with listed dimensions and associated meshes. A, B: ኼኼmᎵ

(liquid filled volume) S. cerevisiae fermentor, mesh containing ዀኻኻ.ኺኺኺ elements (MRF-interface shown). C,
D: ኿ኾmᎵ (liquid filled volume) P. chrysogenum fermentor, mesh containing ኼኽ኿.ኺኺኺ elements (MRF-interface
not shown).

Case 2: P. chrysogenum
Geometrical details for the simulated P. chrysogenum fermentor can be found in fig-
ure 5.1 C. The filled volume was 54 mኽ, with two Rushton turbines (8-blade bot-
tom, 6-blade top, diameter 𝐷 = 1.3 m) operating at 𝑁፬ = 1.63 sዅኻ and four baf-
fles of width 𝑇/10. The shaft is extended through the entire tank. Substrate solution
was fed at the fermentor top with a rate of 𝐹 = 0.37mol፬/s, the broth density was
𝜌፛፫፨፭፡ = 1000 kg/mኽ with biomass concentration 𝐶፱ = 1.96 𝐶mol፱/kg (55 g/kg dry
matter). In the industrial study of Goldrick et al. [254] the broth weight and 𝐹 were
constant after 80 h with 𝐶፱ approximately constant after h. The process at hand had a
shorter filling stage (≈ 1 day) and higher 𝐶፱ , but qualitatively similar dynamics apply.
As such, our simulation choices (constant 𝐻, 𝐹, 𝐶፱) represent the mid/late fermenta-
tion stage. Half of the tank was modeled by imposing periodic boundary conditions,
similar comments apply as for the periodicity imposed in case 1. A cooling coil in the
original geometry was omitted for simplicity. The feed point was mimicked by defin-
ing substrate source terms in a 0.034 mኽ box, 0.80 m off-center and at a height of
7.35m. This is a simplification; the real feed tube is too small to resolve. Preliminary
work showed that the size of the feed region, provided it is much smaller than the tank
volume, has little effect on the metabolic regime distribution due to rapid dilution.

5.2.3. Hydrodynamic setup
We applied the well-validated RANS approach used by several earlier studies: The
𝑘−𝜖model for turbulence modeling in combination with the multiple-reference frame
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(MRF) for impeller rotation [59, 62]. Substrate transport is included via equation 5.3:

𝜕𝐶፬
𝜕𝑡 + ∇ ⋅ (u𝐶፬) = −∇ ⋅ (𝒟፦ +

𝜈፭
𝑆𝑐፭

)∇𝐶፬ + 𝑆፬ (5.3)

The internals of the reactor were modeled as sheet bodies, as this was observed
to give better results in terms of the turbulent energy dissipation rate 𝜖 [59, 60, 62].
Standard wall functions [284] were used to avoid the need for excessive mesh resolu-
tion near the wall. Second order upwind discretization was used for all equations, with
second order implicit time discretization during the transient stages. All simulations
were conducted in ANSYS FLUENT 15.7, data analysis was conducted using MATLAB
R2015b (v8.6.0).

Parcel tracking and reaction modeling Lapin et al. [21, 23] employed complex reac-
tion models, coupled to the individual parcels (computational particles) in their work.
Since we apply simple Monod kinetics, 𝑞፬ instantaneously adapts to the local 𝐶፬ and
the reaction kinetics can be coupled to the liquid phase rather than parcel phase (see
Chapter 4). Combined with the steady-state MRF impeller this yields steady state 𝐶፬−,
𝑞፬− and flowfields, which do not require updating during the parcel tracking simula-
tion: with the reaction coupled to the liquid phase, the parcels do not influence the
flow- or 𝐶፬ fields. The influence of subgrid variations of 𝐶፬ are assumed to be small
based on the work of Linkés et al. [278], and reaction rates were based on the mean
cell substrate concentration 𝐶፬,፜ , rather than taking the subgrid distribution into ac-
count. External mass transfer limitations from bulk to organism were also omitted.
If desired, such effects can be accounted for straightforwardly via common closure
relations.

In contrast to the parcel-coupled reactions reported in the previous chapter, there
is no lower limit on𝑁፩ since the reactions are fully Eulerian, and𝑁፩ is chosen such that
reasonably converged fluctuation statistics are obtained without requiring excessive
simulation times. With an organism size of 5−10 μm, the parcel Stokes number 𝑆𝑡 <<
1 and parcels are treated as massless tracers. Turbulent motions were superimposed
via the discrete random walk (DRW) model, which computes the motion timescale as
the minimum of the eddy lifetime and particle-eddy crossing time, eq. 5.4:

𝜏 = min(−𝐶ፋ(𝑘፭/𝜖) 𝑙𝑜𝑔(𝑟), −𝜏፫ ln [1 −
𝐿፞

𝜏፫|𝑢፟ − 𝑢፩|
]]) (5.4)

here, 𝜏፫ is the particle relaxation time, 𝐿፞ the eddy length-scale and 𝑟 a random
number between 0 and 1. The constant 𝐶ፋ is linked to 𝑆𝑐፭ , and has a default value
of 0.15. The turbulent velocity magnitude is calculated as 𝑢ᖣ፩ = 𝜒√2𝑘፭/3, assuming
isotropic turbulence, with 𝜒 a normally distributed random number. A known problem
with the DRW model is the tendency of parcels to accumulate in regions where the
convective velocity of the parcel and random velocity are near zero (i.e. near walls)
[21, 219]. Improved treatments of parcel turbulence are described in literature, but
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have not been implemented in ANSYS FLUENT. The local accumulation of parcels was
observed to be minor here, hence, no efforts were undertaken to include alternative
methods of parcel turbulence treatment. A trapezoidal tracking scheme with an auto-
matically adapting parcel timestep Δ𝑡፩ < Δ𝑡፜ was applied.

Case-specific settings: S. cerevisiae
Aeration was included using the Euler-Euler approach. Gunyol et al. [84] showed that
assuming a single bubble size in the range of 3 − 5 mm (based on [37–39]) gave
poor results for the gas hold-up 𝛼, which was strongly improved by using a population
balance. We used the discrete population balance model, with 16 diameter classes
ranging between 0.5 and 16 mm, with a ratio-exponent of 1. Our results are in good
agreement with Gunyol et al. who used only 6 bubble classes, indicating sufficient size
resolution. The break-up and coalescence kernels of Luo et al. [77] were employed.
Bubble drag was modeled using Fluent’s Universal drag model, based on the drag
model of Ishii and Zuber [73]. Dispersed phase turbulence was included using the
mixture model which shares 𝑘፭ and 𝜖 equations between the phases. The mixing
behavior was reasonable captured with 𝑆𝑐፭ = 0.7.

The structured hexahedral mesh, shown in figure 5.1 B, had 611000 elements. All
walls were no-slip boundaries for liquid, the impellers were no-slip for gas to account
for cavity formation, all other walls had a free-slip boundary condition for gas. A gas-
backflow pressure outlet was used as the top boundary condition, in combination with
an extended headspace, to account for expansion of the liquid by gassing. During
parcel tracking, the headspace was removed to prevent parcels from getting stuck,
and a degassing condition was imposed at the top. 𝑁፩ = 12500 parcels were added
after flow convergence, they were tracked for 1190 s with a simulation timestep size
𝑡፜ = 0.005 s during parcel tracking; larger timesteps led to parcel accumulation in the
impeller gas cavities. The data writing interval should be sufficiently small to resolve
the smallest global flow features. Here, 8 flow compartments are expected to form,
due to the action of 4 Rushton impellers. The estimated inter-compartment circulation
time is ≈ 𝜏፜።፫፜/8 ≈ 5 s. Δ𝑡፬፭፨፫ፚ፠፞ = 0.03 s, providing more than sufficient resolution
here, and easily meeting the criteria of chapter 4.

Case-specific settings: P. chrysogenum
Simplified hydrodynamics were used in this case; the simulation routines used for the
previous case were unable to capture the flow when aeration and the shear-thinning
rheology of P. chrysogenumwere included. Previous studies that did attempt to include
the effect of shear-thinning rheology, with or without aeration, had limited success
[160, 212, 285]. Moilanen et al. [212] strongly over-predicted 𝜏፦።፱ due to excessive
formation of stagnant caverns, for example, and population balance models are poorly
validated in non-Newtonian fluids. Further developments regarding the simulation of
transitional, aerated, non-Newtonian flows are required for the reliable simulation of
viscous fermentations. To focus on lifeline analysis rather than detailed bioreactor
physics here, we opted to model a single-phase water situation. This assumption is
further justified by considering that the 𝜏፜።፫፜ under fermentation conditions is rea-
sonably close to that in non-aerated water (table 5.2). Aeration influences the spatial
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Table 5.2: Experimental values for the circulation time under different flow conditions in industrial P. chryso-
genum fermentations. ፔᑤᑦᑡ,ᑘ is the superficial gas velocity. Numerically, Ꭱᑔᑚᑣᑔ ዆ ኻዂ.ኼ was found for the
single phase water case used in parcel tracking.

Fluid 𝑈፬፮፩,፠ (m/s) 𝜏፜።፫፜ (s)
Water 0 19.3
Water 0.05 42.8
Broth 0 77
Broth 0.05 25.6

mixing behavior due to a change in the dominant transport mechanism [15, 286] and
alteration of flow patterns, but at similar 𝜏፜።፫፜/𝜏፫፱፧, the observations are expected to
hold at least qualitatively. The applied simplifications do not compromise our current
goal of lifeline analysis. Gassed simulations were successfully conducted in a later
project stage, these are reported in chapter 7; simulations with non-Newtonian rhe-
ology proved highly sensitive to the exact rheological parameters when applied for
single-phase flow, and diverged for multi-phase flow due to an indefinite increase in
the gas hold-up. Hence, these simulations are not further addressed in this thesis.

The turbulent Schmidt number 𝑆𝑐፭ was set to 0.2, based on the considerations
reported in chapter 3 [84, 112, 160]. Accordingly, 𝐶ፋ = 0.45 in the DRW model. 𝑁፩ =
175000 parcels were tracked for 1700 s of flow time (Δ𝑡፜ = 0.015), 𝑞፬ was stored every
Δ𝑡 = 0.03 s (approx. 𝜏፫፱፧,፦።፧/10), yielding the organism lifelines. All walls of the
vessel had a no-slip boundary condition, the top was modeled as a no-shear surface.
Meshes with 235000 − 809000 elements were tested, the difference in 𝑃𝑜Ꭱ < 2.5 %
between the finest and crudest mesh, the difference in 𝜏ዃ኿ < 1 %. Hence, parcel
tracking simulations were conducted in the 235000 cell mesh, which is shown in figure
5.1, D.

Simulation strategy
The single phase hydrodynamics were first solved, convergence was declared when
⟨|𝑈|⟩ was stable within 0.01% and the residuals were below 10ዅ኿. For case 1, the
2−phase simulation (steady state) was started afterwards; somemass balance instabil-
ities observed, we refer to the supplementary information of [20] for further discussion.
The simulation was declared converged when the residuals ≈ 10ዅኾ and ⟨𝑈፥።፪⟩, ⟨𝑑፛⟩
were stable within 2.5%. Deeper convergence could not be achieved due to the highly
non-linear nature of the setup. After convergence, the headspace was removed, and
a degassing boundary condition was set at the top surface. An additional 4000 itera-
tions were executed, yielding a similar degree of convergence as when the headspace
was included. Gas backflow over the degassing boundary was responsible for the for-
mation of a small gas cavity around the shaft (visible in figure 5.5), this could not be
avoided in the current setup.

After convergence the flow equations (turbulence, momentum, 𝛼, 𝑑፛) were frozen,
fixing their respective fields. Monod kinetics were included via a user-defined function
(UDF) and substrate feed was enabled. Once the steady-state concentration gradient
was resolved, the simulation was switched to transient mode and parcels were added
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for lifeline registration. The parcels were first distributed for 1 mixing time before
lifeline registration was enabled via user defined functions.

5.2.4. Validation parameters
For the gassed S. cerevisiae case, data on the overall gas holdup ⟨𝛼⟩ [40, 277], gassed
impeller power numbers 𝑃𝑜፠, overall 𝑘ፋ𝑎 [16] and the mixing time 𝜏ዃ኿ [40, 277] was
available. For P. chrysogenum, only 𝜏ዃ኿ was directly available from previously unpub-
lished plant data, the ungassed impeller power number was available from literature
[287] . Below, the calculation procedure of validation parameters is outlined.

The gas holdup was determined by volume-averaging the local gas holdup 𝛼፜ ac-
cording to eq. 5.5:

⟨𝛼⟩ = Σ𝑉፜𝛼፜
Σ𝑉፜

(5.5)

using the cell volume 𝑉፜ as a weight. Similarly, the global mean bubble diameter
was determined by volume-averaging the local Sauter mean diameter, weighted by
the gas volume rather than the total cell volume (eq. 5.6):

⟨𝑑፛⟩ =
Σ𝑉፜𝛼፜𝑑፛,፜
Σ𝑉፜𝛼፜

(5.6)

The power number was calculated from the torque exerted on the individual im-
pellers (eq 5.7):

𝑃𝑜 = 2𝜋𝑀
𝜌𝑁ኼ፬𝐷኿

(5.7)

with𝑀 the rotational moment for a full 360∘ domain. To calculate the inter-phase
mass transfer coefficient 𝑘፥ (in sዅኻ), we used the eddy cell model of Lamont and Scott
[188], eq. 5.8, which was shown by Gimbun et al. [61] to yield good results.

𝑘፥ = 0.4 ⋅ 𝒟፦ኺ.኿ (
𝜖
𝜈፥
)
ኺ.ኼ኿

(5.8)

Following Gimbun et al., the interfacial area of the bubbles 𝑎 was calculated taking
into account bubble deformation via eq. 5.9, which estimates the ratio between the
major and minor ellipsoid axes of a deformed bubble:

𝑅 = 1 + 0.163𝐸𝑜ኺ.዁኿዁ (5.9)
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With 𝐸𝑜 = 𝑔Δ𝜌𝑑፛/𝛾 being the Eötvös number. Using the local Sauter mean di-
ameter 𝑑፛ to determine the bubble volume, the ellipsoidal bubble’s surface area can
be calculated straightforwardly; the overall 𝑘ፋ𝑎 is calculated by volume averaging,
similar to 𝛼. The Eulerian mixing time 𝜏ዃ኿ was determined by placing a virtual probes
inside the reactor vessel. In the S. cerevisiae case these were placed at 𝑟 = 0.3 m, at
three different heights: 𝑌 = 1.12, 4.04, 6.56m, as done experimentally. For P. chryso-
genum, a single monitor was used at coordinates 0.7meter off-center, 0.25meter from
the bottom. Mixing was declared complete when 0.95 < 𝐶፬/⟨𝐶፬⟩ < 1.05 at all probed
locations, yielding 𝜏ዃ኿. Additionally, a Lagrangian mixing experiment was conducted
for case 1, using 5.75 ⋅ 10ዀ parcels, registering when 0.95 < 𝐶፩/𝐶፩ < 1.05 at each
probe location. Here 𝐶፩ is the local parcel concentration.

5.3. Lifeline analysis
The lifelines, exemplified in figure 5.2, A contain detailed information on how individ-
ual organisms experience the simulated fermentation environment, but in themselves
they can not be straightforwardly translated to scale-down design criteria. Our anal-
ysis aims to translate the information from a large collection of lifelines to a small
set of lifeline statistics, consisting of duration and magnitude distributions, that can
serve as a basis for SD-simulator design. Regardless of the method, some reference
point for fluctuations needs to be chosen. As micro-organisms have no notion of their
spatial location, we do not use a spatial reference point to determine (circulation) time
distributions [30, 288]. Rather, reference points are chosen within the limiting param-
eter space, 𝑞፬ in this case. We currently focus on 𝑞፬ parameters, which quantify the
direct response to the extra-cellular environment and thereby aim to directly quantify
the environment as experienced by organisms. In principle, any lifeline, based on the
extra-cellular observations or intra-cellular state can be analyzed with the methods
outlined here. We explore three methods for lifeline analysis in this work:

• Regime analysis: Divide the domain in several regimes based on critical values
in 𝑞፬, register the exposure time each individual visit of a parcel to each regime,
and how parcels transit between regimes.

• Arc (baseline) analysis: Select a reference value 𝑞፫፞፟ , monitor the time consec-
utive crossings of 𝑞፫፞፟ (arc duration, 𝜏ፚ፫፜) and the registered extreme value in
𝑞፬ (arc magnitude Ω፬,፦ፚ፱).

• Fourier analysis: use the Fourier transformation to translate the lifeline time-
series to frequency space, in order to study if any dominant fluctuation frequen-
cies are present in the signal.

5.3.1. Regime analysis
During regime analysis, 𝑞፬-space is divided in several regimes, the boundaries between
which can be based on metabolic considerations (excess/starvation effects, metabolic
overflow), or on reactor compartmentalization (the formation of several well-mixed
zones within the reactor). The continuous organism lifeline (fig. 5.2, A) is reduced to
a discrete regime lifeline (fig. 5.2, B), which is used in the subsequent analysis. The
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Figure 5.2: Steps in the regime-based analysis method. A: continuous lifeline in ፪ᑤ/፪ᑤ,ᑞᑒᑩ ፯፬. ፭ as retrieved
from CFD simulation. B: discretized lifeline based on regime methodology. C: Different possible transition
patterns for a domain discretized in 3 regimes. The type convention for the different patterns will be used
throughout this study.

regime residence time 𝜏፫፞፠ is defined as the time that a micro-organism is exposed
to a certain regime, between two consecutive crossings of the regime boundaries. By
analyzing a large number of such events, per-regime residence time distributions can
be determined.

A central concept in our analysis are transition patterns: these are determined by
the nature of the 2 consecutive crossings. Transition patterns determine how organ-
isms move between the different metabolic regimes (fig. 5.2, C), in essence providing
the fluctuation magnitude. The regime analysis provides direct insight in whether or
not overflow regions are expected to be present in the reactor, and how long organ-
isms are exposed to them. Whether overflow actually occurs depends on the adapta-
tion time of the metabolism, which can be elucidated with proper metabolic models,
or by conducting a representative scale-down experiment.

Regime examples: excess/starvation kinetics As an example, consider a large vessel
where 𝜏፫፱፧ << 𝜏፜።፫፜ (a high Damköhler number, 𝐷𝑎 = 𝜏፜።፫፜/𝜏፫፱፧) such that a very
strong 𝐶፬ gradient is present, with an organism lacking metabolic overflow mecha-
nisms. Using Monod kinetics, 𝑞፬ saturates for 𝐶፬ → ∞. For 𝐶፬ > 19𝐾፬, 𝑞፬ > 0.95𝑞፬,፦ፚ፱
and 𝑞፬ iters largely insensitive to further increases in 𝐶፬ . We refer to the domain where
𝑞፬ > 0.95𝑞፬,፦ፚ፱ as the (substrate) excess regime. In the domain where 𝐶፬ < 𝐾፬/19,
𝑞፬ < 0.05𝑞፬,፦ፚ፱ . In this range 𝑞፬ and 𝐶፬ are linearly related, but in absolute terms
strong variations in 𝐶፬ result in minor variations in 𝑞፬ . This domain is regarded as the
(substrate) starvation regime, with negligible 𝑞፬ (see the supplementary material of
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[10] for discussion of this assumption). The range 𝐾፬/19 < 𝐶፬ < 19𝐾፬ is classified as
the limitation regime, where 𝐶፬-fluctuations lead to non-negligible 𝑞፬ variations. The
above considerations lead to the following distinction:

• Excess regime (𝑞፬ > 0.95𝑞፬,፦ፚ፱)

• Limitation regime (0.05𝑞፬,፦ፚ፱ < 𝑞፬ < 0.95𝑞፬,፦ፚ፱)

• Starvation regime (𝑞፬ < 0.05𝑞፬,፦ፚ፱)

One of the benefits of the regime analysis for this case is clear: grouping all in-
stances where 𝑞፬ > 0.95𝑞፬,፦ፚ፱ into a single regime hardly reduces the amount of
information in the lifelines, as 𝑞፬ fluctuations within this regime are negligible; the
same applies to the starvation regime. For the limitation regime, where 𝑞፬ variations
are strong, grouping all 𝑞፬ instances to a single value leads to a considerable loss of
information. Depending on their impact on the metabolism, quantification of fluctua-
tions within the limitation regime may be required. This can be done, for example, by
combining the regimemethod with the arc-method to examine intra-regime dynamics.

Regime transitions After pre-processingwith turbulence filters (discussed below), the
𝑞፬/𝑞፬,፦ፚ፱ and conversion to the regime series, the regime residence time and the
transition pattern are determined: the nature of the two successive crossings. For the
above example, we distinguish between 6 of such transition patterns:

• a: From regime 1, in 2, back to 1

• b: From regime 1, in 2, to 3

• c: From regime 3, in 2, back to 3.

• d: From regime 3, in 2, to 1.

• e: From regime 2, in 1, back to 2.

• f: From regime 2, in 3, back to 2.

The trajectories are shown graphically in 5.2, C. A 6 second ‘a’ event means that a
particle originates from regime 1, spends 6 seconds in regime 2, and then returns to
regime 1. Due to the physical distance, no direct crossings between regime 1 and 3
occur in the reported cases. Discriminating between the different transition patterns
provides insight in how micro-organisms move between regimes and how the regime-
residence time is linked to their trajectory.
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Turbulence filtering Prior to the analysis, the trajectories are smoothed and filtered
to remove rapid turbulent fluctuations that would skew fluctuation statistics towards
short timescales. These rapid variations are low in magnitude, and likely have little
effect on the organism [278]. Smoothing is performed using a moving-average filter,
with a filter window equal to the Lagrangian timescale 𝜏ፋ = 𝐶ፋ𝑘፭/𝜖 that is represen-
tative for turbulent motions imposed by the DRW model. This filtering step removes
most of the rapid turbulent fluctuations. A dispersed rather than sharp regime bound-
ary is applied to remove rapid consecutive regime-crossings of low magnitude. Using
a fuzzy boundary, the regime boundary is set to 𝑞፬/𝑞፬,፦ፚ፱ = 𝑋 ± 𝑌, where 𝑌 is the
filter strength. An example of smoothing + fuzzy boundary filtering is provided in fig-
ure 5.3; a regime boundary 𝑞፬/𝑞፬,፦ፚ፱ = 0.05 ± 0.01 is used in this example. Regime
transitions from the upper to the lower regime are only registered if the lower filter
boundary is crossed, and conversely, transitions from the lower to the upper regime
are only counted when the upper boundary is crossed. In addition, extreme jumps in 𝑞፬
may be registered if a particle moves close to a gas-filled trailing vortex in multi-phase
simulations, due to the finite accuracy of the numerical particle trajectory integration.
Such outliers are filtered out by a rate-of-change filter, meaning that Δ𝑞፬/Δ𝑡 may not
exceed a certain threshold (which is crossed in case a parcels jumps into a trailing
vortex, but not during regular motion).

To summarize, our regime analysis consists of four steps:

• Non-dimensionalize 𝑞፬ with 𝑞፬,፦ፚ፱

• Turbulence filtering: smoothing/amplitude/rate-of-change filter

• Conversion to regime vector

• Determination of transitions and residence times

5.3.2. Arc analysis
Arc analysis is a more straightforward manner of interpreting the particle trajectories.
A reference value 𝑞፫፞፟ in 𝑞፬-space is chosen. This may be based on metabolic signifi-
cance (the onset of metabolic overflow, for example), physical significance (based on
a concentration jump between two compartments), or of statistical significance (the
vessel mean or median 𝑞፬/𝑞፬,፦ፚ፱). The ‘arc’ refers to the section of the lifeline in be-
tween two crossings of 𝑞፫፞፟ , which is assumed to have an arc-shape, with the arc-time
(𝜏ፚ፫፜) being defined as the time between two consecutive crossings of 𝑞፫፞፟ , and the arc
magnitudeΩ፬,፦ፚ፱ defined as the extreme value in 𝑞፬ encountered over the (smoothed)
arc-trajectory (see figure 5.4). The shape of the arcs can simply be assumed symmetric
as a first approximation; the arc symmetry Λፚ፫፜ = 𝑡጖/𝜏ፚ፫፜ can be determined as a
measure of skewness, where 𝑡጖ is the time at which Ω፬,፦ፚ፱ is registered (shown in
figure 5.4). The arc time distribution represents the duration distribution of global-
vessel fluctuations with respect to 𝑞፫፞፟ and the values of Ω፬,፦ፚ፱ give the distribution
of fluctuation magnitudes; correlating Ω፬,፦ፚ፱ and 𝜏ፚ፫፜ completely quantifies the fluc-
tuations and provides a basis for scale-down design. Since both 𝜏ፚ፫፜ (especially for
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Figure 5.3: Example of the filtering procedure. A: Raw ፪ᑤ/፪ᑤ,ᑞᑒᑩ versus time signal, with the regime
boundary at ፪ᑤ/፪ᑤ,ᑞᑒᑩ ዆ ኺ.ኺ኿, indicated by the dashed line. The colored bar on top shows the registered
regime; yellow means the particle is in regime 2, blue in regime 3. B: the same signal after smoothing, and
with a ’Fuzzy boundary filter’ of ±ኺ.ኺኻ indicated by the dotted lines. Now, a regime transition from ኼ to ኽ
is only registered if the lower boundary is crossed, and a transition from ኽ to ኼ only if the upper boundary
is crossed. The resulting regimes are again indicated by the colored bar on top. The rate of change filter is
not shown in this example.

rapid variations) and Ω፬,፦ፚ፱ are sensitive to noise, the lifelines are smoothed based
on the Lagrangian timescale before conducting the analysis.

The arc-analysis method can be superimposed on the regime analysis when fluc-
tuations within one or more regimes are deemed important. In this case, 𝑞፫፞፟ should
be chosen within the bounds of the relevant regime (for example the regime mean
𝑞፬), and care must be taken that only re-circulation trajectories completely enclosed
within the regime are counted; those leaving the regime are already accounted for
within the per-regime residence time distribution.

5.3.3. Fourier Analysis
The suggestion to decompose organism lifelines using Fourier analysis has been made
in several unpublished talks by Reuss. There are reasons to be skeptical towards the
applicability of Fourier analysis towards stirred tank analysis, as the circulation times
of parcels are widely distributed [30, 162, 198, 288] and no dominant circulation fre-
quencies are expected. We took the Fourier transform of each individual 𝑞፬-series,
after subtracting the series mean 𝑞፬ (which acts as a reference value in this method),
and multiplication of the series with a Blackman window function [289]. The per-track
frequency spectra were subsequently summed to form a composite spectrum.

5.3.4. Lifeline analysis: method selection
The preferred analysis method depends both on the system analyzed, and the available
scale-down method. Using solely the arc method works best for comparatively simple
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Figure 5.4: Outline of the arc method. A baseline of ፪ᑤ/፪ᑤ,ᑞᑒᑩ ዆ ኺ.኿ is used for illustration. The solid gray
line shows an excerpt of a lifeline, the red line shows the arc approximation for the shown sections. The
arc time Ꭱᑒᑣᑔ is the time between the baseline crossings, the arc magnitude ጖ᑤ,ᑒᑣᑔ is the extreme value
compared to the baseline. The arc symmetry is defined as ጉᑒᑣᑔ ዆ ፭ᐎ/Ꭱᑒᑣᑔ where ፭ᐎ is the time at which
጖ᑤ,ᑞᑒᑩ is registered. A shows a positive track compared to the baseline, B a negative track.

circulation systems, such as a single impeller tank, where the assumption of an arc-
shape trajectory holds reasonably. The advantage of the arc-method in such cases is
that it does not require discretization of the amplitudes, whereas the regime analysis
method does require this. In strongly compartmentalized flows with many possible
local trajectories, the assumption of simple arc-shaped trajectories fails, and may lead
to a misjudgment of the exposure time to extreme conditions.

The discretization of the fluctuation amplitude to a few discrete levels (the regimes)
means detailed information on the amplitude is lost in regime analysis. By construc-
tion, the regime analysis method does accurately capture the duration of individual
exposures to a certain range of conditions, regardless of the complexity of the un-
derlying flow patterns. This makes regime analysis preferred for complex flows with
many possible (re-)circulation trajectories, where the assumption of arc-shaped fluctu-
ations compared to 𝑞፫፞፟ obviously fails, or for situations where the exposure duration
to (for example) overflow or starvation conditions must be properly captured. In case
information regarding the 𝑞፬ distribution within a certain regime has to be retained,
superimposing arc-analysis in the relevant regimes is an option. The selection of the
preferred analysis method may be influenced by the selected scale-down methodol-
ogy; this is further treated in chapter 6.

5.4. Validation
Before moving to the Lagrangian viewpoint, the simulations are validated against
available data.
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Table 5.3: Global validation parameters for the simulation. ፤ᑃፚ is retrieved from [16]. Experimental gas
holdup is reported for water [40]. Mixing times differ between sources, the lower value is retrieved from
[15], the higher value was reported by [40]. Power numbers are retrieved from previously unpublished data
of the Stavanger experiments.

Parameter Simulation Experimental Exp. Method
⟨𝛼⟩ 17.6 17.1 Height increase
𝑃𝑜፠ 9.6 9.2 Torque
𝑘ፋ𝑎 144 hዅኻ 180 hዅኻ 𝑂ኼ balance
𝜏ዃ኿ 183 s 147 − 166 s Probe (bottom)
⟨𝑑፛⟩ 8.9 mm 𝑛/𝑚 𝑛/𝑎

n/m = not measured, n/a = not applicable.

Figure 5.5: A: Gas holdup in S. cerevisiae fermentation. Close to the top there are some artifacts of the
degassing method. B: Glucose concentration profile for the S. cerevisiae case (top feed). Experimental values
(mg/L) are retrieved from [16]. C: Glucose concentration profile in the P. chrysogenum fermentation, scaled
by ፊᑤ to emphasize the many orders of magnitude.

5.4.1. Case 1: S. cerevisiae
Table 5.3 reports all validation parameters; 𝑃𝑜፠ and ⟨𝛼⟩ are in good agreement with
experimental data. The overall 𝑘ፋ𝑎 is somewhat underestimated, which could be due
to an overestimation of the bubble size; at ⟨𝑑፛⟩ = 8.9mm the mean size is high com-
pared to lab/pilot-scale studies [37–39]. Unfortunately, we lack experimental data on
𝑑፛ for the current fermentation. Still, the agreement in 𝑘ፋ𝑎 is very decent considering
that broth is a complex, surfactant-laden substance. As 𝛼 is properly predicted, and 𝑑፛
does not directly impact our work, we did not attempt the use of other kernels. The
volumetric gas distribution, figure 5.5 A, shows that the expected loading flow regime
is indeed retrieved for the bottom impeller.
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Mixing behavior
The Lagrangian mixing data gives 𝜏ዃ኿ = 183 s, a 10 − 25% overestimation compared
to the experimental data, acceptable considering the complexity of the simulation
and typical variation in experimental mixing studies. Eulerian mixing (pressure outlet
boundary) yielded 𝜏ዃ኿ ≈ 169 s, but temporal variations in the total tracer mass were
observed [84]. This limits the accuracy of the method, opposed to the Lagrangian
simulations where parcel number is conserved. The tracer response dynamics deviate
from the experimental curve reported by Noorman [15] for both approaches (figure
5.6). A feasible explanation is a difference in the dominant transport mechanism [15];
in dense bubbly flows bubble wake-induced convective mixing dominates over the
turbulent mixing that dominates single-phase flow [286]. The employed mixture tur-
bulencemodel and absence of a turbulence interaction forcemean liquid phasemixing
acts as in a single phase liquid, aside from stronger axial motion caused by the effects
of buoyancy and drag. A consequence of the latter is that tuning 𝑆𝑐፭ not lead to a
consistent improvement in the Eulerian 𝜏ዃ኿, in contrast to single phase simulations
(see chapter 3 and appendix C).

Substrate concentration gradient
Figure 5.5 B shows the simulated concentration gradient (degassing boundary con-
dition, 𝑆𝑐፭ = 0.7). In agreement with previous simulations [16, 84], the weak axial
mixing of Rushton turbines leads to strong axial heterogeneity. The flow remains
impeller-dominated leading to clear compartment formation within the gradient, al-
though the compartment boundaries are somewhat blurred due to improved axial mix-
ing induced by gassing. The mass-based glucose concentration 𝑐፬ is in fair agreement
with experimental values [16], considering the inherent approximations made both in
the CFD and metabolic models. At the top probe 𝑐፬ is over-predicted by a factor 2, but
it is very sensitive to axial position: a few cm down, 𝑐፬ = 50 − 60 mg/L. Aside from
the value at the top probe, changing the top boundary condition and 𝑆𝑐፭ had little
effect on the concentration gradient; this is further discussed in appendix C.

5.4.2. Case 2: P. chrysogenum
Experimental circulation time values have been reported in table 5.2. The CFD result,
𝜏፜።፫፜ = 18.2 s, is close to the experimental value in water (19.3 s) and, despite the con-
siderable difference in hydrodynamics, reasonably close to the aerated broth value of
25.6 s. Hence, the simplified simulation reflects the industrial case at least in an order
of magnitude sense. The experimental values of the power number 𝑃𝑜 for 6− and 8−
blade Rushton impellers is reported to be 5.6 and 6.6 for 6 and 8 blades respectively
[287]; the CFD is in good agreement with values of 5.2 and 6.3. Profiles for 𝑘፭ and 𝜖
in impeller discharge stream of the 6− bladed impeller were in good agreement with
the profiles reported in chapter 3, and are not shown here for brevity.
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Figure 5.6: Mixing curves for ፍᑤ ዆ ኼ.ኼኼ sᎽᎳ and ፐᑘ ዆ ኺ.ኻዂኼ mᎵ/s The experimental data was retrieved
from Noorman [15] which yields a lower mixing time than [40]. Red curves show Eulerian tracer data
(pressure outlet, ፒ፜ᑥ ዆ ኺ.዁.), gray curves show Lagrangian particle data (smoothed over a period of ኾ s for
noise removal, degassing b.c., ፒ፜ᑥ ዆ ኺ.዁) A: bottom probe. B: middle probe. C: top probe.

5.5. Results and discussion
5.5.1. Glucose concentration gradients: comparing cases
The reported 𝑞፬-gradient compartmentalization for S. cerevisiae contrasts the smooth
gradient observed for P. chrysogenum . This difference in behavior arises from the
Damköhler number 𝐷𝑎 = 𝜏፜።፫፜/𝜏፫፱፧, with 𝜏፜።፫፜ ≈ 𝜏ዃ኿/4 [15] and 𝜏፫፱፧ = 𝐶፬/(𝑞፬𝐶፱).
Under substrate limited conditions 𝜏፫፱፧ can be estimated by assuming the limit 𝐶፬ → 0
for Monod kinetics, yielding 𝜏፫፱፧ = 𝐾፬/(𝐶፱𝑞፬,፦ፚ፱). For S. cerevisiae, 𝜏፜።፫፜ = 46.5 s
and 𝜏፫፱፧, ፂᑤ→ኺ = 38 s, yielding 𝐷𝑎 ≈ 1. While yielding a significant substrate gradient
overall, the broth within individual circulation loops is well mixed; estimating the per-
loop circulation time as 𝜏፜።፫፜/𝑁፥፨፨፩፬ gives 46.5/8 = 5.8 s; this means the Damköhler
number for intra-loop mixing is << 1, supporting the observation of intra-loop homo-
geneity. In the P. chrysogenum case, 𝜏፜።፫፜ = 18.2 s and 𝜏፫፱፧, ፂᑤ→ኺ = 0.32 s, hence
𝐷𝑎 >> 1. As a result, the P. chrysogenum case is characterized by a strong substrate
gradient manifesting within the circulation loop of the top impeller. The difference in
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Figure 5.7: Normalized volumetric distribution function of ፪ᑤ/፪ᑤ,ᑞᑒᑩ in the tank domain; the y-axis is
scaled such that the area under each curve is ኻ. A: Distribution for the S. cerevisiae simulation, both from
the Eulerian and Lagrangian viewpoint. The effect of compartment formation is clearly visible. The Eulerian
distribution results from the steady-state ፪ᑤ field; in case an unsteady method is used, the field should be
time-averaged. The Lagrangian distribution represents the overall distribution registered by parcels, taken
over all lifelines and timesteps. B: Distribution for the P. chrysogenum fermentation. Both extremes are
strongly represented within the volume, with a gradual gradient in between. Lagrangian results overlap
with the Eulerian results and are not shown.

compartmentalization behavior is clearly visible in the volumetric substrate distribu-
tion, figure 5.7. In the S. cerevisiae case, several sharp peaks are observed, associated
with the individual, well-mixed compartments. In the P. chrysogenum case, a large
section of the domain is completely devoid of substrate and a small section has sugar
in excess, with a gradual change in between.

5.5.2. Regime analysis: Case 1
At a high glucose concentration, S. cerevisiae CBS 8066 exhibits the Crabtree-effect:
the aerobic production of ethanol resulting from saturation of the pyruvate to acetyl-
CoA processing pathways [42, 227, 228, 256, 258, 259, 290]. The onset of the effect
occurs around 𝐶፬ = 0.22 mmol/kg [228], which equals 𝑞፬/𝑞፬,፦ፚ፱ ≈ 0.2 with the
applied kinetics. We use this value as a basis for the first regime. In the bulk of the
vessel, sufficient glucose is available. Near the bottom co-consumption of ethanol is
reported to occur [15]; the exact onset of ethanol consumption is, however, unknown
making it an unsuitable regime basis. In figure 5.7 A two closely spaced, sharp peaks
are visible for 𝑞፬/𝑞፬,፦ፚ፱ < 0.05, indicating that a large fraction of the liquid volume
is in a state of low glucose availability, with a nearly constant 𝑞፬ . When designing a
laboratory scale representation of this industrial fermentor, this low-uptake regime can
be approximated by a single 𝑞፬/𝑞፬,፦ፚ፱ value, yielding a convenient regime boundary
and illustrating how regime boundaries may be based on different strategies. These
considerations give the following regimes, ± the fuzzy boundary filter value:

• Regime 1: 𝑞፬/𝑞፬,፦ፚ፱ > 0.2 ± 0.003, Ethanol production.
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• Regime 2: 0.05 ± 0.01 < 𝑞፬/𝑞፬,፦ፚ፱ < 0.2 ± 0.003, Glucose limitation.

• Regime 3: 𝑞፬/𝑞፬,፦ፚ፱ < 0.05 ± 0.01, Low glucose availability

Spatially, the interfaces between regime 1 and 2 and regime 2 and 3 coincide with
the first (top) impeller and third impeller, respectively. Due to the steady-state back-
ground fields in this work, these interfaces are fixed both in space and time from the
Eulerian perspective. This notion facilitates the subsequent analysis, as specific fea-
tures observed in the Lagrangian residence time distributions (RTDs) can be linked to
the location of regime interfaces and circulation loops directly. Since the regime divi-
sion is based on the instantaneous 𝑞፬, this link is more difficult to establish when the
Eulerian phase is unsteady, which leads to spatially dynamic regime distribution and
interface location. Of course, the Lagrangian lifeline methodology and the regime-
analysis in themselves are compatible with unsteady simulations; regime transitions
and RTDs can be determined, regardless of whether the background fields are steady
or unsteady.

From the Eulerian perspective, regimes 1, 2 and 3 cover 23/41/36% of the total
liquid volume, respectively. Taking the Lagrangian perspective, the regime division is
determined by registering the average time spent by parcels inside each regime, yield-
ing 18/42/40%, respectively. This is a notable difference, contrasting the P. chryso-
genum case discussed later. It is difficult to pinpoint the exact reason of this difference,
considering the good agreement between the observed regime distributions from the
two perspectives (figure 5.7 A); it may simply be a statistical fluke originating from the
slow convergence of the regime statistics.

The RTD for each regime, constructed by recording the duration of individual regime
exposures, is reported figure 5.8. To facilitate the comparison of their magnitude, the
curves are not normalized. A log-lin scale is used to highlight certain features of the
RTDs: a constant slope on this plot signifies an exponential decay in probability, a
manifestation of typical circulation behavior. Changes in slope hint at the existence of
different circulation patterns with different associated time constants. For each RTD
the mean residence time is calculated as 𝜏፱ = Σ(#፭,፱𝑡፫፞፬,፱)/Σ(#፭,፱), #፭,፱ being the
number of counts for a given residence time 𝑡፫፞፬ in distribution 𝑥. To study the regime
follow-up behavior, the four trajectories through limitation are registered separately,
following the transition patterns 𝑎 − 𝑑 outlined in section 5.3.1.

Of all trajectories entering regime 2 from 1, only 8.7% are of type 𝑏, all others being
type 𝑎 (in the converse direction, 18.7% are type 𝑑). As the regime 1 − 2 interface
coincides with the top impeller, by far most registered interface crossings concern
parcels completing a single circulation in one of the loops originating from the top
impeller. This trajectory lasts < 6 s, yielding the RTD peak clearly visible in the inset
of 5.8 A. Similar single-circulation trajectories are found in distributions 𝑐, 𝑒, 𝑓.

Since all regimes enclose multiple circulation loops, multiple slopes are distin-
guished in each RTD. The mid-range (6 − 40 s for regime 2, and 6 − 20/6 − 30 s for
regimes 1 and 3, respectively) is a complex combination of several circulation loops
through a regime-space. For 𝑡 > 40 s all type 𝑎 − 𝑑 trajectories have similar RTDs;
these parcels have circulated within the region of space enclosed by regime 2 for a
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Figure 5.8: Lin-log plot of the residence time distributions for the 6 different trajectories. A: Trajectories
through regime 2 for S. cerevisiae, discriminated by follow-up behavior (as indicated in C). B: Trajectories
through regime 1 and 3 (directions indicated in D). # represents the number of counts for a given residence
time. Mean residence times: Ꭱᑒ ∶ ዀ.ዃዀ s, Ꭱᑓ ∶ ኽዂ.ኽ዁ s, Ꭱᑔ ∶ ኻኾ.ኺኽ s, Ꭱᑕ ∶ ኽዃ.ኾኻ s, Ꭱᑖ ∶ ዂ.ኺኽ s, Ꭱᑗ ∶ ኽኾ.ኻዃ s.

long time, and their behavior is no longer influenced by their regime of origin or des-
tination. As trajectories 𝑏 and 𝑑 have to fully cross the regime 2 region a lag-time of
6 s is registered (figure 5.8 A, inset). The symmetry of the 𝑏 and 𝑑 RTD is noteworthy,
consistent with the notion that the flow is still dominated by stirring despite the high
𝑄፠ and the minor influence of gassing does not lead to strong flow asymmetry.

5.5.3. Regime analysis: Case 2
The mean substrate concentration observed from population point of view, 𝐶፬,ፏ =
32.9 ⋅ 10ዅዀ mol/kg agrees well with the Eulerian mean ⟨𝐶፬,፜⟩ = 34.4 ⋅ 10ዅዀmol/kg,
indicating that the parcels are on average homogeneously distributed, which is also
reflected by good agreement in the overlapping distributions in figure 5.7. Filtering of
the lifelines to remove the most rapid turbulent fluctuations alters the overall regime
distribution by < 5%, an acceptable margin.

Excess substrate is not excreted as an overflow product by P. chrysogenum but
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Figure 5.9: A: Residence time distributions (lin-log) for trajectories through the limitation regime (regime
2), P. chrysogenum (directions indicated in C). The inset shows short-timescale peaks (lin-lin plot). B: Resi-
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stored internally. Combining the lack of overflow with the strong gradient, the regime
division outlined in section 5.3.1 is applied here: 𝑞፬/𝑞፬,፦ፚ፱ > 0.95 ± 0.01 for excess,
𝑞፬/𝑞፬,፦ፚ፱ < 0.05 ± 0.01 for starvation, and limitation in-between. The Herbert-Pirt
equation (eq. 5.2) with 𝑚፬ = 0.0015 mol፬/𝐶mol፱/h shows that for 𝑞፬/𝑞፬,፦ፚ፱ < 0.05
the energy supply from extra-cellular substrate is insufficient to fulfill maintenance
requirements, which may strongly affect the cellular metabolism by requiring the con-
sumption of intra-cellular storage polymer, and possible suppression of energy con-
suming processes such as penicillin production.

Figure 5.9 shows the excess and starvation residence time distributions (figures 5.9
A and B) and distribution for the four different limitation transitions (figures C and D).
The RTD for the excess regime is straightforward: initially there is a gradual increase
in counts, associated with short trajectories directly crossing the regimes enclosed
space, of varying duration. The constant slope in the log-lin plot (figure 5.9 B)) is
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Figure 5.10: A: Residence time distributions for trajectories ፞ and ፟ (fig. 5.9). Several circulation modes are
observed for trajectory ፟, due to the inclusion of multiple circulation loops in the regime space. The numbers
indicate the trajectory variations outlined in figure B, the dashed lines emphasize different modes. Figure
B: graphical outline off different trajectory variations. Gray arrows: trajectory ፞, with a single circulation
mode. Black arrows: trajectory ፟, showing three distinct modes. Mode ኻ is associated with the sharp peak
at ፭ ≈ ኺ.዁ s, mode ኼ with the domain ኿ ጺ ፭ ጺ ኻኺ s, mode ኽ with ፭ ጻ ኼኺ s. # represents the number of
counts for a given residence time.

indicative of an exponential decay for 𝑡፫፞፬ > 5 s, representing trajectories with one or
more circulations inside the excess region. The long-time behavior of the starvation
distribution is particularly interesting, displaying 3 distinct circulation modes; these
are illustrated in figure 5.10. A sharp peak at 𝑡 ≈ 0.7 s represents parcels coming from
limitation, following the upward circulation in the direct vicinity of the top impeller,
which quickly mixes them back with the substrate rich broth coming from above; this
trajectory is denoted 1 in fig. 5.10. Although short, the low 𝜏፫፱፧ does cause a non-
negligible 𝑞፬ change along the trajectory; it is unknown if high-amplitude events with
such brief duration will significantly affect the metabolism, however.

For 𝑡፫፞፬ ≈ 10 s, a milder slope represents downward re-circulation at the top
impeller, this is emphasized with a dashed line in fig. 5.10, A and denoted as trajectory
2. For 𝑡፫፞፬ > 20 s a verymild slope is observed (trajectory 3, fig. 5.10, emphasized with
a dashed line), representing parcels that move all the way to the bottom of the tank;
these can spend tens up to several hundred seconds circulating around the bottom
impeller, leading to the long tail of the distribution. Type 𝑐 trajectories may very briefly
pass through limitation before moving back to starvation, result in a peak at 𝑡፫፞፬ ≈
1 s (figure 5.9). It could again be argued that these very brief exposures have little
influence on the metabolism; they may be removed by some form of low-pass filter,
but more insight on their metabolic action is required to set a representative filter
frequency. Details similar to the 𝑡፫፞፬ ≈ 1 s peak in the type 𝑐 trajectory can also be
found in 𝑎, 𝑏 and 𝑑 type trajectories, but the four distributions show an equal-sloped
decay after approximately 5 s. This is again consistent with the notion that parcels
end up in origin-independent re-circulation behavior if not crossing the limitation zone
directly.

In total, 39% of the trajectories starting in excess are of type 𝑎, and 80% of the
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trajectories starting in starvation are type 𝑐. Clearly, on many occasions organisms
will repeatedly oscillate between limitation and starvation conditions before being
exposed to excess conditions, while prolonged oscillation between excess and lim-
itation is less likely. Evidently, such sequential transitions should be reflected in a
representative experimental SD-setup.

5.5.4. Arc analysis
For both organisms, 𝐶፬ variations in the central regime result in significant intra-
regime 𝑞፬ variations. For S. cerevisiae, this is true for the overflow regime as well,
as the onset of the Crabtree effect is well below the onset of saturation of the Monod
kinetics. In this chapter, only the regime 2 variations are explored in depth, in view
of brevity. For both cases, the arc-analysis is conducted within the central regime,
meaning that only trajectories which do not cross the regime boundaries between two
consecutive crossings of the reference value 𝑞፫፞፟ are registered.

Arc magnitude
We set 𝑞፫፞፟ to 𝑞፬/𝑞፬,፦ፚ፱ = 0.1 for S. cerevisiae; this value is close to the regime me-
dian and is registered around the 2፧፝ impeller from the top. For P. chrysogenum we set
𝑞፫፞፟/𝑞፬,፦ፚ፱ = 0.5 in this example. Similar to the residence time analysis, a smoothed
trajectory was used to decrease the sensitivity of arc magnitude Ω፬,፦ፚ፱ to turbulent
noise. Ω፬,፦ፚ፱ is plotted as a function of arc duration 𝜏ፚ፫፜ in figure 5.11, showing
markedly different behavior between the cases. The aforementioned compartmental-
ization (section 5.4) is clearly observed for S. cerevisiae in figure 5.11 A. Since 𝐶፬ within
any given circulation loop is reasonably homogeneous in this case, the duration of a
trajectory within a single loop has no effect on Ω፬,፦ፚ፱ , while crossing over to a differ-
ent loop leads to an instant jump in Ω፬,፦ፚ፱ (figure 5.11 C). In contrast, the intra-loop
heterogeneity observed in the P. chrysogenum simulation means that longer trajecto-
ries (a higher 𝜏ፚ፫፜) lead to more extreme Ω፬,፦ፚ፱ , even though all arc trajectories in the
P. chrysogenum case are confined to a single circulation loop. This behavior is sketched
in the right of figure 5.11 D. While there is significant spread around the mean, there
is a clear, smooth correlation between 𝜏ፚ፫፜ and Ω፬,፦ፚ፱

We now focus on the S. cerevisiae case. Regime 2 encloses multiple circulation
loops; the concentration jumps in figure 5.11 A show that virtually all trajectories that
return to 𝑞፫፞፟ in less than 5 s follow the upward loop of the impeller (type I trajectories
in figure 5.11 C), and register Ω፬,፦ፚ፱ ≈ 0.115. No events with Ω፬,፦ፚ፱ ≈ 0.115 are
observed for 𝜏ፚ፫፜ > 5 s, which implies that there are no type 𝐼 trajectories that do not
return to the impeller (the 2፧፝ impeller from the top) within this timespan: either the
parcel has returned already, or it jumped to a type 𝐼𝐼𝐼 trajectory, through the lower-
loop of the next impeller, before being transported down to 𝑞፫፞፟ again. This loop
is again well mixed, meaning all parcels on a type 𝐼𝐼𝐼 trajectory register the same
extreme, Ω፬,፦ፚ፱ ≈ 0.17. A parcel may complete several circulations in this loop, or
exhibit some complex back-and-forth jumping between trajectory 𝐼 and 𝐼𝐼𝐼, before
returning to 𝑞፫፞፟ , but the sameΩ፬,፦ፚ፱ is recorded regardless of this behavior (provided
the parcel does not cross the regime boundary, 𝑞፬ = 0.2𝑞፬,፦ፚ፱). This illustrates the
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Figure 5.11: Results of the arc-magnitude analysis. ጖ᑤ,ᑞᑒᑩ is the extreme value in ፪ᑤ/፪ᑤ,ᑞᑒᑩ encountered
over an arc trajectory. A: S. cerevisiae results, arc magnitude versus Ꭱᑒᑣᑔ for regime 2. Each discrete level
in A is associated with a certain circulation trajectories, marked by roman numerals, displayed in C. B: P.
chrysogenum results, showing a smooth relation between arc magnitude ጖ᑤ,ᑞᑒᑩ and Ꭱᑒᑣᑔ, explained by the
trajectories shown in D.

weakness of the arc-method for more complex flow profiles, which worsens as more
flow-loops are enclosed in the regime space.

For parcels moving in the downward direction, the most frequently observed be-
havior is that they get drawn close to the lower impeller, before being transported back
up via trajectories 𝐼𝑉 and 𝑉. The physical length of these trajectories mean very few
events with a duration 𝜏ፚ፫፜ < 5 s are registered. The notion that jumps are typically
observed after a duration of 5 s is in good agreement with the per-loop circulation time
estimated in section 5.4. An oddity in this analysis are the type II trajectories which
originate from the superimposed motion by gassing and the consequent asymmetry
between the top- and bottom circulation loop around from the 2፧፝ impeller from the
top.
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Figure 5.12: A: Distribution of Ꭱᑒᑣᑔ for regime 2, S. cerevisiae, with baseline ፪ᑤ/፪ᑤ,ᑞᑒᑩ ዆ ኺ.ኻ. The different
peaks are associated with the circulation trajectories of figure 5.11 and indicated with the same roman
numerals. B: Distribution of Ꭱᑒᑣᑔ for regime 2, P. chrysogenum, with baseline ፪ᑤ/፪ᑤ,ᑞᑒᑩ ዆ ኺ.኿. Inset:
volumetric ፪ᑤ/፪ᑤ,ᑞᑒᑩ distribution within regime 2, showing values of ፪ᑤ/፪ᑤ,ᑞᑒᑩ ጻ ኺ.኿ are dominant in this
regime.

Arc duration
Similar to the regime RTD, a distribution for 𝜏ፚ፫፜ can be constructed (figure 5.12). For
P. chrysogenum (fig 5.12, B), the presence of a single circulation loop makes the dis-
tribution quite simple: a uni-model decay is observed both for upward and downward
trajectories, with only a mild disturbance around 𝜏ፚ፫፜ = 0 due to remaining turbulent
fluctuations. There is a clearly visible difference between upward- and downward tra-
jectories. Due to the non-linear kinetics, the a larger fraction of the volume enclosed
by regime 2 has 𝑞፬ > 𝑞፫፞፟ (shown in (fig 5.12 B, inset) , leading to a higher mean
arc-time for upward trajectories: 𝜏ፚ፫፜,ዄ = 3.14 s, 𝜏ፚ፫፜,ዅ = 1.11 s. Furthermore, there
are fewer closed downward trajectories: downward moving parcels reach the top im-
peller, where most are exposed to starvation conditions, and are not counted towards
arc-analysis. Much fewer upward moving trajectories pass trough the excess zone.

The S. cerevisiae case (fig 5.12, A) shows a multi-modal exponential decay for both
up- and downward trajectories, following from the much more complex behavior. The
strong initial slope is associated with circulations in the direct vicinity of the impeller,
the dip around 𝑡 = 4 s results from the lag-time associated with parcels crossing over
to different loops. Parcels completing a single circulation in a second loop lead to a
peak at 𝑡 = 6 s. For 𝑡 > 10 s there are many possible combinations of circulation
trajectories, making it impossible to discriminate distinct modes and lag-times; their
overall combination leads to a constant slope. The total number of upward and down-
ward trajectories is roughly the same; the median concentration in the regime was
chosen as a reference point, such that for 50% of the regime 𝑞፬ > 𝑞፫፞፟ .
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Figure 5.13: A: construction of the magnitude versus consumption time ፭ᑔ distributions for an organism
traveling inside a fluid element in an ideal plug flow reactor. For ፪ᑤ/፪ᑤ,ᑞᑒᑩ ጻ ፪ᑣᑖᑗ, ፭ᑔ,Ꮌ is the time
required to change from ፪ᑤ,ᑒ to ፪ᑣᑖᑗ, for ፪ᑤ/፪ᑤ,ᑞᑒᑩ ጺ ፪ᑣᑖᑗ, ፭ᑔ,Ꮍ is the time required to change from ፪ᑣᑖᑗ
to ፪ᑤ,ᑒᑓ. B: Comparison of ጖ᑤ,ᑞᑒᑩ vs. ፭ᑔ,Ꮌ (red) and ፭ᑔ,Ꮍ (blue) from the CFD simulations, compared to the
PFR-relation ጖ᑤ,ᑇᐽᑉ vs. ፭ᑔ,Ꮌ and ፭ᑔ,Ꮍ (dashed lines), showing good agreement between the observations of
organisms in the limitation regime and organisms residing in a plug flow reactor.

Arc behavior
Above, it was established that the environment within the upward circulation loop of
the top impeller is highly heterogeneous for the P.chrysogenum case. Further analysis
of the relation Ω፬,፦ፚ፱ = 𝑓(𝜏ፚ፫፜) sheds additional light on this non-ideal behavior.
The arc magnitude Ω፬,፦ፚ፱ is registered at time Λፚ፫፜ ⋅ 𝜏ፚ፫፜ , as was illustrated in figure
5.4. For an upward arc, the average symmetry Λፚ፫፜ = 0.4, which means that 𝑞፬ in-
creases over a period of 0.4𝜏ፚ፫፜,ዄ and decreases over 0.6𝜏ፚ፫፜,ዄ. For the downward arc
trajectories, Λፚ፫፜ = 0.5, which means such trajectories can be regarded as symmetric

Due to the very high 𝐷𝑎, the poorly mixed reactor may exhibit behavior close to
that in a plug flow reactor (PFR), when evaluated from the microbial point of view.
During the consumption period within an arc, the substrate concentration observed by
an organism residing inside a fluid plug will change as eq. 5.10:

𝑑𝐶፬
𝑑𝑡 = 𝑞፬𝐶፱ +𝑀 (5.10)

Here, 𝑀 is a mixing term representing exchange with neighboring fluid elements.
We can compare this with the consumption profile inside a perfect PFR, where 𝑀 =
0 and 𝐶፬/𝑞፬ decrease solely due to consumption. For upward arcs, this amounts to
comparing the time required to change the concentration in a fluid element from some
𝑞፬,ፚ to 𝑞፫፞፟ with the time of 𝑞፬-decrease in an upward arc, 0.6𝜏ፚ፫፜,ዄ. For downward
arcs, the time required to change from 𝑞፫፞፟ to 𝑞፬,፛ is compared to 0.5𝜏ፚ፫፜,ዅ. A graphical
outline of the Ω፬ − 𝜏 relation in a plug flow reactor is presented in fig. 5.13, A.

In 5.13 B, the Ω፬ −𝜏 relation for a PFR operating at 𝐶፱ = 55 g/kg (dashed lines) is
compared with Ω፬,፦ፚ፱ vs. the consumption interval Λፚ፫፜ ⋅ 𝜏ፚ፫፜ from the CFD simula-
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Figure 5.14: Outline arc analysis with alternative ፪ᑣᑖᑗ ዆ ኺ.ኺ኿ for P. chrysogenum. The solid gray line shows
an excerpt of a lifeline, the red line shows the arc approximation for the shown sections. The arc time Ꭱᑒᑣᑔ
is the time between the baseline crossings, the arc magnitude ጖ᑤ,ᑒᑣᑔ is the extreme value compared to the
baseline. The arc symmetry is defined as ጉ ዆ ፭ᐎ/Ꭱᑒᑣᑔ where ፭ᐎ is the time at which ጖ᑤ,ᑞᑒᑩ is registered.
A: A positive track compared ፪ᑣᑖᑗ. B: A negative track compared to ፪ᑣᑖᑗ, for which the magnitude can be
neglected.

tions (solid lines). The agreement is striking; on average, the flow environment inside
the limitation regime acts very close to a PFR, which means the exchange term 𝑀 in
eq. 5.10 is negligible. These notions have a profound impact on scale-down reactor
design, which is discussed in the next chapter of this thesis. Naturally, the agreement
breaks down near the regime boundaries, as all arc-trajectories crossing the regime
boundary were discarded in this analysis.

Arc-analysis for P. chrysogenum with a different reference value
In the previous arc analysis for P. chrysogenum, 𝑞፫፞፟ = 0.5 was selected, being the
value centered between the regime boundaries for the limitation regime. As was
mentioned in the methodology section, the reference value for arc analysis can be
chosen on multiple grounds, and arc-analysis can be conducted without an underlying
regime analysis, too. We show such an approach here. In this approach, 𝑞፫፞፟ = 0.05,
which is considered a relevant value for 2 reasons. First, on metabolic grounds, for
𝑞፬ < 0.05𝑞፬,፦ፚ፱ the organism takes up too little substrate to satisfy its maintenance
demands. Second, on physical grounds, virtually the entire region of the broth with
𝑞፬ > 0.05𝑞፬,፦ፚ፱ is enclosed in the top circulation loop of the top impeller, which
means the arc-shape assumption is reasonably satisfied. An added benefit is that the
arc magnitude is negligible for downward arcs 𝑞፬ > 0.05𝑞፬,፦ፚ፱ , and henceΩ፬,፦ፚ፱ only
needs to be recorded for upward motions. Graphically, the alternative arc boundaries
are presented in figure 5.14.

The arc magnitude, duration and symmetry plots resulting from this analysis are
shown in figure 5.15. Again, the highly non-ideal mixing leads to a clear relation
between Ω፬,፦ፚ፱ and 𝜏ፚ፫፜ for positive fluctuations. However, the here-chosen 𝑞፫፞፟
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Figure 5.15: A: Arc-time distributions for arcs with ፪ᑤ/፪ᑤ,ᑞᑒᑩ ጺ ኺ.ኺ኿ (gray) and ፪ᑤ/፪ᑤ,ᑞᑒᑩ ጻ ኺ.ኺ኿ (black).
The inset displays the arc symmetry ፭/Ꭱᑒᑣᑔ. B: Arc magnitude as a function of arc time. Colors indicate
bin fraction (normalized per timestep). Solid line: ጖ᑤ,ᑞᑒᑩ ፯፬. Ꭱᑒᑣᑔ from CFD simulation. Dashed line:
጖ᑤ,ᑞᑒᑩ ፯፬. Ꭱᑒᑣᑔ for an ideal batch reactor; Ꭱᑒᑣᑔ is corrected for the arc-symmetry.

allows for a much simpler scale-down strategy than the earlier chosen baseline of
𝑞፫፞፟ = 0.5. This scale-down methodology is discussed in the next chapter.

5.5.5. Fourier analysis
A Fourier analysis was conducted on the 𝑞፬ tracks in the P. chrysogenum reactor. The
per-track frequency spectra were gathered according to the method outlined in section
5.3.3, yielding figure 5.16. As expected, no frequencies stand out due to the wide
circulation time distribution, and no more direct insight in the fluctuations by moving
to the frequency domain. We hence have chosen to discard the Fourier analysis in favor
of a time-domain approach for stirred tanks. This does not mean that Fourier analysis
could not be used in other situations; in appendix E, Fourier analysis of an airlift loop
reactor is briefly discussed; due to the more structured flow pattern, distinct features
in the spectrum are observed in that case, and Fourier analysis has the benefit of being
more straightforward and faster than arc-analysis for such a case.

5.6. Concluding remarks
Wehave outlined a novel approach to analyze the data acquired by Euler-Lagrange CFD
simulations of bioreactors. The Euler-Lagrange approach offers the possibility to ana-
lyze substrate concentration variations from the microbial point of view. The obtained
𝑞፬(𝑡) series, referred to as lifelines, are analyzed using three different methods. First,
regime analysis, where the the lifeline is divided into metabolic regimes each repre-
senting a certain consistent response in an organism’s metabolism to the extra-cellular
substrate concentration. We record the residence time distribution within each regime
as well as how organisms transit between regimes. Second, we use arc analysis, where
the magnitude and duration of fluctuations with respect to a certain baseline 𝑞፫፞፟ are
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Figure 5.16: Fourier spectrum for ኻ዁኿.ኺኺኺ parcels in the P. chrysogenum process; the broad distribution of
frequencies is a clear sign of the circulation behavior inside the domain.

analyzed in the time domain. Third, we use Fourier analysis, where the magnitude and
duration of fluctuations with are analyzed in the frequency domain. For the widely dis-
tributed circulation time in a stirred tank, the first and second method provide most
direct insight in the fluctuations that organisms are exposed to.

We provide a comprehensive statistical assessment of the substrate fluctuations
experienced by organisms in an industrial scale fermentation. This information can a
basis for the design of scale down simulators: lab-scale studies aimed at mimicking
industrial scale conditions. In this work we studied the fermentation of S. cerevisiae in
an aerated 22mኽ reactor, and P. chrysogenum in a 54mኽ stirred vessel with simplified
hydrodynamics, neglecting aeration and non-Newtonian rheology. No oxygen limita-
tion were assumed in either case, both cases were experimentally validated. In the
S. cerevisiae case the circulation timescale and reaction timescale were in the same
order of magnitude leading to a Damköhler number of 𝐷𝑎 ≈ 1, leading to a signifi-
cant substrate gradient over the entire reactor, with local well-mixed compartments
around the individual impellers; in 24% of the reactor, ethanol formation by the Crab-
tree effect was predicted to occur. In contrast, in the P. chrysogenum case 𝐷𝑎 >> 1,
resulting in a very strong gradient over the entire vessel and 57% of the vessel being
effectively depleted of substrate. This different compartmentalization behavior was
clearly reflected in the subsequent regime and arc analysis. The strong heterogeneity
in the P. chrysogenum case means that organisms may observe an environment very
much alike an ideal plug flow reactor; comparing the rate-of-change in the environ-
ment along an average arc-trajectory with the rate-of-change in a PFR yields very good
agreement.

The regime analysis shows that the residence time in the prescribed regimes is
follows an exponential distribution, in line with the circulation behavior inside the
tank. In cases where multiple circulation compartments, which form around Rushton
impellers, are enclosed inside a regime region, different circulation modes may occur.
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These result in multi-modal exponential decay distributions, each slope in the distri-
bution being associated with a certain circulation mode. The mean residence time in
each regime is in the order of 3 − 30 s, typically. This hints that the mean residence
time inside different compartments of a representative scale-down simulator must
be similarly short, much shorter than the timescales typically applied in the current
generation of scale-down simulators. Similar observations are made in the arc-time
analysis. The short timescales of concentration fluctuations, and high rates of change
in the substrate concentration that organisms are predicted to observe, will lead to
practical challenges in reactor scale-down. The next step towards rational design of
scale down simulators is to use this CFD data as a basis of design. This issue, together
with a discussion of the challenges that may be encountered in scale-down design,
forms the subject of the next chapter.





6
Rational scale-down of industrial

fermentors
The influence of extra-cellular variations on the organism can be probed using so-called
scale-down simulators, laboratory scale setups where deliberate, controlled fluctuations are
imposed in the extra-cellular environment. The major challenge associated with this scale-
down philosophy is to design a scale-down simulator that resembles the extra-cellular en-
vironment of the industrial process. In the previous chapter, Euler-Lagrange CFD was ex-
plored to investigate the large scale environment from the microbial point of view, collect-
ing statistics of the frequency and magnitude of environmental fluctuations that can serve
as a basis for scale-down design. In this work, we discuss the scale down of the aerated
fermentation of S. cerevisiae and a simplified representation of a P. chrysogenum fermenta-
tion, devising possible scale-down strategies based on this CFD data, both with fluctuating
feed profiles and multiple compartments. All designs are deemed feasible within the lim-
itations of current scale-down equipment. Additionally, several challenges of CFD-based
scale down are discussed.

6.1. Introduction
Since large-scale gradients in industrial bioreactors can have a critical influence on
the overall process performance, they should be accounted for during process de-
velopment. To this end scale-down simulators (SD-simulators) have been developed;
laboratory scale systems in which micro-organisms are subjected to temporal varia-
tions in a given process parameter [43, 48]. These may be well defined variations (e.g.
[41, 44, 291]), typically imposed by a fluctuating feed in a single vessel, in order to
study the direct impact of variations on the metabolism. Alternatively, fluctuations
with a distributed duration can be imposed, being more representative of an actual in-
dustrial situation (e.g. [49, 50, 52, 55]). This is often done by placing multiple reactors,
operating under different conditions, in a flow loop.

In order to obtain directly applicable insight into the effect of environmental varia-
tions in industrial scale reactors, the duration and magnitude of environmental varia-
tions imposed in SD-simulators should reflect the variations encountered at the large

Parts of this chapter have been published as: C. Haringa, W. Tang, A.T. Deshmukh, J. Xia, M. Reuss, J.J. Heijnen,
R.F. Mudde and H.J. Noorman. Euler-Lagrange computational fluid dynamics for (bio)reactor scale-down: an
analysis of organism life-lines, Engineering in Life Sciences, 16:652-663, 2016 and C. Haringa, A.T. Deshmukh,
R.F. Mudde and H.J. Noorman, Euler-Lagrange analysis towards representative down-scaling of a ኼኼ mᎵ

aerobic S. cerevisiae fermentation, Chemical Engineering Science, 170:653-669, 2017
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scale. Statistics considering the distribution of the parameters of interest are, how-
ever, rarely available for industrial scale reactors. To approximate the industrial envi-
ronment, current SD-simulators are often set to achieve a fluctuation duration in the
order of the industrial 95%mixing time (𝜏ዃ኿), typically between 60−600 s. In the pre-
vious chapter, we employed Computational Fluid Dynamics (CFD) simulations to show
that this is too long; global concentration variations occurred on average in the order
of the circulation time 𝜏፜።፫፜ , with local variations occurring at shorter timescales. Fur-
thermore, low biomass concentrations (around 𝐶፱ = 5 g/kg) are typically employed;
a factor 10 lower than may be the case for a considerable portion of the industrial
fermentation. As the rate of change in, for example, substrate concentration depends
directly on 𝐶፱ , the amplitude of extra-cellular variations that can be attained is typ-
ically constrained. While the currently generation of SD-simulators certainly has its
merits for metabolic model development, they seem to poorly mirror industrial condi-
tions.

The fluctuation statistics acquired from lifelines that were resolved with Euler-
Lagrange CFD can serve as a basis of design for representative SD-simulators, which
is explored in this chapter. The here-conducted analysis is based on the 𝑞፬−lifelines
studied in the previous chapter. Using fluctuation statistics from 𝑞፬ lifelines as a ba-
sis aims at replicating the large-scale extra-cellular environment, as experienced by
micro-organisms, which should therefore induce the same metabolic response. The
philosophy behind representative scale-down can be summarized as:

A representative scale-down simulator is to replicate those fluctuations in the extra-
cellular environment to which the relevant metabolism of the micro-organism is sensitive,
as observed by micro-organisms themselves, to the highest possible degree of accuracy.

It is possible to conduct a different scale-down strategy based on replication of
the intra-cellular lifelines, if a metabolic model is available to simulate these lifelines.
We briefly delve into this in appendix B. This scale-down philosophy is, however, more
applicable for model verification, as intra-cellular scale-down may result in relevant
extra-cellular variations being omitted, introducing unforeseen metabolic responses.
This makes scale-down based on extra-cellular lifelines the preferred choice, espe-
cially when the goal is to study yield changes resulting from environmental variations.

Noorman previously concluded that there are 5 degrees of freedom in scale-down
simulations. We explore how these degrees of freedom can be fixed based on the
available statistics both for a single-vessel and multi-vessel scale down simulator.
Several designs are compared in their agreement with the full CFD data. Finally, some
previously operated scale-down simulators are discussed in terms of their agreement
with industrial scale, and challenges associated with representative scale-down are
identified.

6.2. Materials and Methods
Euler-Lagrange CFD simulations of an aerated 22 mኽ S. cerevisiae and a simplified
representation of a 54 mኽ P. chrysogenum fermentation are studied for scale-down
purposes in this study. The CFD setup, CFD validation and data processing routine
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have been discussed in the previous chapter. It is assumed that the lab-scale reactors
used in this analysis are ideally mixed (𝜏ዃ኿ << 𝜏፫፱፧). This assumption is reasonable
in all but the most extreme cases. A second effect that may introduce potentially
unwanted transients in lab-scale fermentors is feed dripping; the feed rate 𝐹 is often
insufficient to maintain a steady flow. In case the dripping frequency 𝑓 ፫።፩ >> 1/𝜏፫፱፧
and 𝑓 ፫።፩ >> 1/𝜏፦።፱ , no strong impact on the extra-cellular environment is to be
expected. For a 3 L lab fermentor, both 𝜏፦።፱ and 1/𝑓 ፫።፩ are≈ 2 s. This may introduce
some transients, which are currently neglected. Of course, in case 𝜏፫፱፧ is low, the
transient effects of dripping and the gradient resulting from insufficiently fast mixing
can be used to impose deliberate heterogeneity; the resulting gradients are difficult
to estimate, however, and they are currently not included in the analysis.

Scale down simulators may be operated in fed-batch mode (variable 𝑉፭፨፭), or in
chemostatmode (constant𝑉፭፨፭). Chemostat operation is often preferred for cell-analysis
experiments, as the extra-cellular conditions are well-defined and constant in time.
The growth rate 𝜇 in a chemostat is directly coupled to the dilution rate 𝐷፫ , leading
to a constant 𝐶፱ , once the system reaches steady state. By construction, scale-down
systems with feed variations will never be truly steady, but as the feed fluctuation
timescale is far below 𝜇ዅኻ (with 𝜇 = 0.01 − 0.1 hዅኻ), a statistically steady state is
readily achieved. Chemostat operation is also preferred from the design point of view,
as the CFD simulations used as a basis of design were similarly conducted with steady
𝐶፱ , 𝑉፭፨፭ and a statistically steady extracellular environment. Because of this reason,
chemostat scale-down is primarily explored in this chapter. Fed-batch operation, how-
ever, is more representative of the entire course typical industrial fermentations where
𝐶፱ , 𝑉፭፨፭ and the extra-cellular conditions are a function of time. Computationally,
these dynamics can be resolved by taking several snapshots at different stages of the
fermentation, or simulating the entire fermentation with dynamic 𝐶፱; this is outside
of the current scope, however.

6.2.1. Scale-down simulation
According to Noorman, any type of SD-simulator based on (ideal) lab reactors has a
total of 5 degrees of freedom [15]:

• Number of compartments 𝑁ፕ

• Vessel volumes 𝑉። or broth mass 𝑚።

• Flow patterns (reactor types)

• Circulation rates 𝜙።

• Feed rates 𝐹። (and locations)

The goal of CFD based scale-down analysis is to fix the values based on the fluc-
tuation statistics acquired from CFD-generated organism lifelines.
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Single-vessel scale down
Provided the ideal mixing assumption is met, all but one degree of freedom are fixed
for a single-vessel approach: the feed rate of the limiting substrate 𝐹፬ = 𝐶፬,፟ ⋅ 𝐹 where
𝐶፬,፟ is the substrate concentration in the feed, and 𝐹 the total feed rate (if oxygen or
𝐶𝑂ኼ variations are imposed via gassing, 𝐹 = 𝑄፠). To impose extra-cellular variations,
either 𝐹 or 𝐶፬,፟ can be varied in time. The desired 𝑞፬/𝐶፬ versus 𝑡 profile, which can
be seen as the lifeline of the scale-down simulator, is first determined. Then, 𝐹 can be
determined via the substrate balance, which for ideal mixing reads:

(𝐹𝐶፬,፟)
𝑚፭፨፭

= 𝑞፬𝐶፱ +
𝑑𝐶፬
𝑑𝑡 (6.1)

𝑚፭፨፭ (the total mass) has been put on the left side of the equation to emphasize
that the absolute size does not play a direct role in determining the feed fluctua-
tions; 𝑚፭፨፭ can be freely chosen within practical limits. Single vessel scale-down
is relatively straightforward in terms of operation: it does not require pumping of
the broth between different compartments at high throughput rates, with possibly
clogging pumps, shear damage to the cells, and several contamination-prone tubing
sections. A drawback is that all organisms in the reactor experience the same extra-
cellular conditions at the same instance of time, which may poorly reflect upon the
population heterogeneity in industrial fermentors. Delvigne et al. [13] have shown
that population divergence is to be expected even under well mixed conditions, but it
may well be that the driving force of spatial heterogeneity in a large scale fermentor
leads to a different rate of divergence within the population, or with different emer-
gent phenotypes. Related to this (as further discussed in chapter 7) is the capturing of
extreme events, such as lengthy starvation exposures. In real reactors, a small fraction
of the population may be exposed to such events at any given time - but in a well-
mixed single vessel scale down simulator, either none of the organisms are exposed
to extremes, or all are.

Fourier analysis When there is a dominant circulation path in the reactor, extra-
cellular fluctuations may have reasonably well-defined frequencies, in which case
Fourier analysis provides useful insight and the scale-down procedure is compara-
tively simple. Sinusoidal variations in 𝑞፬ can be imposed with the dominant fluctua-
tion frequency from the Fourier spectrum; the associated amplitude can often simply
be estimated directly from the lifelines. Once the scale-down lifeline is designed, the
mass balance (eq. 6.1) can again be used to determine a feed profile. This method was
not found to be applicable for stirred tanks due to the widely distributed circulation
time, but it has merits for more defined flows, for example in airlift loop reactors. This
is discussed in appendix E.

Arc analysis When the arc-time methodology is employed, 𝑞፬ fluctuations compared
to some baseline 𝑞፫፞፟ are to be imposed; this 𝑞፫፞፟ should be equal to the reference
value chosen during the CFD analysis. The simplest approach is to impose cycles
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with a fixed period, alternating between upward and downward trajectories with the
respective duration 𝜏ፚ፫፜,ዄ and 𝜏ፚ፫፜,ዅ. The correlation between Ω፬,፦ፚ፱ and 𝜏ፚ፫፜ is used
to set the associated magnitude. Using fixed-duration cycles has its merits for analysis:
any effects on the metabolism can be linked to the well defined periodic fluctuations.
However, this approach does not induce the most extreme events - both in duration
and amplitude. The feed can be applied gradually, to impose smooth (sinusoidal) arcs,
or instantaneously (at the start of an upward/end of a downward arc), to impose a
saw-tooth shape. The first option is more realistic, as it is a better reflection of the
rate-of-change in the environment that organisms experience. The instantaneous-
pulse option is operationally simpler, however, but the metabolic shock induced by
this method could lead to a different metabolic response than a more gradual feed. In
case ametabolic model is available for the studied strain, this may be used to comment
whether gradual and instantaneous feeding induce different metabolic responses.

The current generation of scale-down simulators typically applies fixed pulse in-
tervals. Based on the CFD results, variable intervals are more realistic. These can
be included based on the distribution in 𝜏ፚ፫፜ , where the individual arc-duration is
determined via inverse transform sampling. In this method, the cumulative distribu-
tion function (CDF) is used to transform a uniformly distributed random number into
a random number distributed according to the corresponding probability distribution
function (PDF). Once 𝜏ፚ፫፜ is determined for a given cycle, the correlation between 𝜏ፚ፫፜
and Ω፬,፦ፚ፱ can be used to match the correct amplitude with the sampled duration, and
if desired, to match the arc-skewness Λፚ፫፜ .

Regime analysis The goal of regime-based scale down is to replicate the correct ex-
posure duration to certain ranges of conditions, rather thanmimicking the exact fluctu-
ation amplitude. For each exposure, the extracellular substrate concentration should
maintain between the regime boundaries. The simplest option is to impose variations
of a fixed period, such as the feast-famine cycles used in prior scale-down experiments
[44, 45]. The overall cycle time 𝜏፜፲፜፥፞ can be based on the vessel circulation time,
which is representative of organism motion through the vessel, or on the summation
of the mean regime residence times ∑፧።዆ኻ 𝜏፫፞፬,። of all relevant transition patterns. The
downside of using regular feast famine cycles is that, while the regime distribution is
captured on average, the distribution in individual exposures may be poorly captured,
and the correct regime transition behavior is not accounted for.

Regime transitions can be included if the trajectories are segregated based on their
regime of origin and destination, as was done in the previous chapter. The regime-
follow up probabilities can straightforwardly be introduced Using a random number
generator, and if every individual regime exposure has a duration equal to the mean
regime residence time 𝜏፫፞፬, the per-exposure duration as well as the overall exposure
to a certain regime are correctly captured. As for the arc-distribution, the residence
time distribution per regime can be introduced via inverse transform sampling if de-
sired. The advantage of arc-analysis is that the exposure duration to critical conditions,
such as overflow conditions, can be properly captured. However, the method is less
accurate in capturing exact fluctuation amplitudes, as the full lifeline is essentially



6

126 6. Rational scale-down of industrial fermentors

reduced to a number of 𝑞፬-discrete levels. As a result, the method may perform poorly
for gradual fluctuations without clear metabolic thresholds. Arc-analysis can be used
to introduce super-imposed intra-regime fluctuations, if required.

Multi-vessel scale down
Multi-vessel scale-down is best based on the regime analysis method; it may be possi-
ble to conduct an arc-analysis based scale-down, but this is significantly less intuitive.
All degrees of freedom have to be treated in this method.

Number of compartments The number of compartments is most straightforwardly
based on the number of regimes. It is possible to impose multiple regimes in one (or
more) compartments by adding feed variations, to reduce the set-up complexity. In the
case of a complex regime residence time distribution, multiple physical compartments
may be used to capture a single regime; this is further discussed under flow patterns.

Vessel volumes/broth mass The absolute vessel size is not relevant provided the
ideal mixing assumption is satisfied, and the feed rate is sufficiently high to prevent
excessive dripping intervals. The relative vessel broth mass 𝑚።/𝑀ፓ (or volume 𝑉።/𝑉ፓ)
is to be matched with the relative mass enclosed by a given regime in the CFD data. If
the full industrial fermentation is simulated, including long term dynamics in 𝐶፱ and
𝜏፫፱፧/𝜏፜።፫፜ , the mass-per-compartment may change in time. This should be reflected
in the filling level of the individual compartments.

Flow patterns The flow pattern of each compartment depends on the shape of the
residence time distribution. A log-normal or exponential decay distribution hints at
circulation behavior, best mimicked by a stirred tank. A narrow distribution hints at
using an axially-dispersed PFR, where the variance of the distribution determines how
much dispersion should be imposed. Fitting known RTD functions for particular lab-
scale reactors to the regime RTDs can be used to find the best matching reactor type.
RTDs enclosing multiple circulation loops may show complex RTDs with multiple time
constants, as is the case for the starvation regime in the P. chrysogenum case. Such
multi-modal distributions may be accurately reproduced with a combination of 2 or
even 3 vessels, although this quickly leads to cumbersome designs.

Circulation rates Circulation rates (mass-based) are straightforwardly computed from
the vessel mass 𝑚። and mean residence time 𝜏። as 𝜙። = 𝑚።/𝜏። . However, the overall
circulation of the system has to abide Σ𝜙። = 𝐹−𝐷፫ , which is 0 in chemostat operation
while for a fed batch 𝐷፫ = 0. Calculating 𝜙። from 𝜏። does not satisfy this constraint,
due tot the influence of filtering and the complex shape of the distributions. A con-
strained fitting routine is used to find the best-fitting residence time distributions, by
minimizing the sum-of-square difference between the CFD-based RTDs, and the ide-
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alized RTDs of the simulated compartments:

𝑐𝑜𝑠𝑡 =
ፍᑧ
∑
።዆ኻ
(
ፍᑥ
∑
፣዆ኻ
(𝑅𝑇𝐷(𝑗) − 𝑓(𝑗))ኼ)

።

(6.2)

Here, 𝑓(𝑗) is the RTD of the lab-scale vessel, and 𝑁፭ the number of timeslots.
Nearly all CFD RTDs discussed in the previous chapter exhibited a peak at 𝑡 ≈ 1s,
which has a strong effect on 𝜏፫፞፬ and the fitted profiles. These short fluctuations are
low in amplitude, and may be ignored by specifying a certain time-range for the cost
function, rather than taking all data points.

Feed/drain selection The feed rate 𝐹 and drain rate 𝐷 require the circulation rates
to be established, as their calculation is based on the per-vessel mass-balance. The
feed and drain rate for each individual vessel can be calculated by solving equations
6.3 - 6.5, the given example being for a generic 3-vessel scale-down simulator, which
is outlined in figure 6.1.

0 = 𝐹ኻ(𝐶ፅ,ኻ − 𝐶፬,ኻ)
𝑚ኻ

+ 𝜙ኻ(𝐶፬,ኼ − 𝐶፬,ኻ)𝑚ኻ
− 𝑞፬,፦ፚ፱𝐶፱

𝐶፬,ኻ
𝐾፬ + 𝐶፬,ኻ

(6.3)

0 = 𝐹ኼ𝐶ፅ,ኼ
𝑚ኼ

+ (𝜙ኻ + 𝐹ኻ − 𝐷ኻ)𝐶፬,ኻ𝑚ኼ
+ (𝜙ኼ + 𝐹ኽ − 𝐷ኽ)𝐶፬,ኽ𝑚ኼ

− (𝜙ኻ + 𝜙ኼ + 𝐷ኼ)𝐶፬,ኼ𝑚ኼ
− 𝑞፬,፦ፚ፱𝐶፱

𝐶፬,ኼ
𝐾፬ + 𝐶፬,ኼ

(6.4)

0 = 𝐹ኽ(𝐶ፅ,ኽ − 𝐶፬,ኽ)
𝑚ኽ

+ 𝜙ኼ(𝐶፬,ኼ − 𝐶፬,ኽ)𝑚ኽ
− 𝑞፬,፦ፚ፱𝐶፱

𝐶፬,ኽ
𝐾፬ + 𝐶፬,ኽ

(6.5)

For each vessel, a target 𝐶፬ representative of the average extra-cellular conditions,
or the average metabolic response within a certain regime should be specified. In
most cases, the regime-mean 𝑞፬ is the obvious choice, but there may be exceptions,
for example in cases with strongly non-linear overflow conditions. There, a better
choice may be the value of 𝐶፬ that captures the mean production rate of the overflow
metabolite, 𝑞፨፯ . Since the vessels are linked and substrate is carried over, it may not
be possible to meet the target concentration for each individual vessel. A cost function
minimization routine may be used to find the closest match in 𝐶፬ values within the
posed constraints, and to find the most suitable feed and drain layout. Again, when
a metabolic model is available, the cost function may consider the best replication of
the metabolic response observed in the CFD simulations, rather than solely fitting to
the 𝐶፬ values.

In principle, a feed and drain can be added in each compartment, but the most
common solution is to feed only the compartment with the highest target 𝑞፬, and to
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Figure 6.1: Example of a generic 3-vessel scale down reactor system. Solving the mass balances for the
shown system determines the agreement in per-regime residence times. The substrate component balances
can be used to determine required feed rates.

drain from the low-𝑞፬ compartment. In case a chemostat operation is decided upon,
the growth rate 𝜇 equals dilution rate 𝐷፫ , which means that the total feed rate Σ𝐹። has
to equal 𝑚፭፨፭ ⋅ 𝐷፫ on average. If it is desired to superimpose temporal variations in
the feed, this can only be done by varying 𝐶፬,፟ , in this case.

6.3. Scale-down challenges
To fully replicate the 𝑞፬-fluctuations seen by organisms on the industrial scale, an
SD simulator has to replicate the rate of change in the environment, 𝑑𝐶፬/𝑑𝑡, as seen
by organisms. In ideal scale-down simulators based on a PFR or (fed-)batch reactor
(during a phase where 𝐹፬ = 0), 𝑑𝐶፬/𝑑𝑡 = −𝑞፬𝐶፱ in the organism’s frame of reference.
In the industrial vessel, the rate of change in the organism’s reference frame is:

𝑑𝐶፬
𝑑𝑡 = 𝑞፬𝐶፱ +𝑀 (6.6)

Here, 𝑀 is a mixing term represents the exchange of substrate between the fluid
package surrounding the organism, and neighboring fluid. For strongly non-ideal sys-
tems where 𝜏፫፱፧ << 𝜏፜።፫፜ , such as the studied P. chrysogenum fermentation, 𝑀 ≈
0, which means an equal-rate of change dictates (𝑞፬𝐶፱)።፧፝፮፬፭፫፲ = (𝑞፬𝐶፱)ፒፃ , and
since 𝑞፬ are the intrinsic kinetics, 𝐶፱,።፧፝. = 𝐶፱,ፒፃ . This notion was clearly illustrated
in figure 5.13, where the plug-flow solution using 𝐶፱,።፧፝. perfectly collapsed on the
Ω፬,፦ፚ፱ 𝑣𝑠. 𝑡 plot. Current lab-scale chemostat reactors are typically operated with
𝐶፱ = 5 − 10 g/kg. This already indicates that such simulators at best represent in-
dustrial fermentations operating within this low range of 𝐶፱ , and poorly reflect the
conditions in high cell density fermentations.

In case of moderate heterogeneity (𝜏፫፱፧ ≈ 𝜏፜።፫፜), 𝑀 is non-negligible, and can be
both positive and negative. Consider an organism carried by a down-flowing, glucose-
rich broth stream. This stream interacts with an upward flow of glucose-depleted
broth; if mixing between the two streams is significant, this enhances the rate of
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change observed by an organism in the downward flowing fluid element due to di-
lution with depleted broth, whereas organisms in the upward moving plug see some
supply of substrate. Critically, the rate of change observed by organisms in the down-
ward flowing fluid element is higher than the rate of change induced by their own con-
sumption. A scale-down simulator with instantaneous mixing or pure plug flow can, by
construction, not capture such effects unless 𝐶፱,፥ፚ፛ > 𝐶፱,።፧፝ . This basically provides
two options if such events are to be captured explicitly: operating at 𝐶፱,፥ፚ፛ > 𝐶፱,።፧፝ ,
or deliberately introducing non-ideal behavior (axial dispersion, poor mixing) at the
lab scale. In this chapter, we solely consider the first option; the more complex second
options is out of our current scope.

We practically observe this in the S. cerevisiae case study, where the mean RTD
of the type b trajectory 𝜏፛ = 40 s (see fig. 5.8). This type b trajectory amounts to a
reduction in 𝑞፬ from 𝑞፬ > 0.2𝑞፬,፦ፚ፱ to 𝑞፬ < 0.05𝑞፬,፦ፚ፱ . In a plug flow reactor the
same change requires 67 s, for the given kinetics and industrial biomass concentration
𝐶፱ = 10 g/kg. The observed transition is 1.67 times faster in the CFD simulation than
can be realized in an ideal scale-down simulator, unless 𝐶፱ in the simulator is increased
accordingly.

The arc analysis conducted for S. cerevisiae in the previous chapter shows that the
organisms do not experience a gradual change in their environment in this case, but
rather discrete jumps associated with changes in circulation loop. Such instantaneous
jumps cannot be captured in fluctuating-feed single-vessel setups by construction,
but they may be approximated in multi-compartment scale-down simulators. In such
situations, the jump is still dictated by the overall rate of consumption. Assuming
first order kinetics (𝑞፬ = 𝑞፬,፦ፚ፱𝐶፬) for simplicity, the concentration jump between two
compartments reads 𝐶ኼ = 𝐶ኻ/(1 + 𝑞፬,፦ፚ፱ ⋅ 𝐶፱ ⋅ 𝜏ኼ).

From the above, we conclude that any scale-down reactor, based on ideal unit
operations (well-mixed or plug flow), needs to operate at equal or higher 𝐶፱ as its
industrial counterpart in order to capture the rate-of-change experienced by micro-
organisms. There may be possibilities to relax this requirement in certain cases, but
this requires the metabolic response of the organism to be evaluated, and hence re-
quires a metabolic model to be available. This is considered in the next chapter. Still,
even if there is some room to relax 𝐶፱ based on metabolic model predictions, we still
deem operating at industrial 𝐶፱ to be the preferred option, to avoid possible responses
that are not accounted for by the model; representing the extra-cellular environment
as truthfully is considered the best practice in any case. This requirement may im-
pose operational challenges: primarily, high 𝐶፱ may induce unfavorable rheological
properties (especially for mycelial broths), which can lead to issues with pumping (in
multi-vessel systems), inter-phase mass transfer and mixing. In this work, we do not
take these limitations into account explicitly in the proposed conceptual scale-down
simulator designs, but we do reckon they should be considered in the detailed design
phase.
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Table 6.1: Design aims for the 3-compartment scale-down approach. ፦ is fixed, ፪ᑤ/፪ᑤ,ᑞᑒᑩ is based on the
per-regime mean uptake rate.

Vessel 𝑚።/𝑚፭፨፭ (kg/kg) 𝑞፬/𝑞፬,፦ፚ፱
T1 0.24 0.309
T2 0.41 0.105
T3 0.35 0.034

6.4. Scale-down: examples
In this section, several conceptual scale-down strategies are presented, based on both
case-studies outlined in the previous chapter. The main goal of these examples is to
outline how CFD simulations can be used to guide scale-down design, not to yield
detailed designs for actual scale-down simulators.

• 3 Regime based 3-vessel scale down, S. cerevisiae

• 3 Regime-based 1-vessel scale down, S. cerevisiae

• Arc-based 1-vessel scale down, P. chrysogenum

An additional Fourier-based 1-vessel scale-down methodology is presented in Ap-
pendix E.

6.4.1. Regime based 3-vessel design, S. cerevisiae
We fixed 𝑁ፕ = 3, each compartment representing one of the regimes discussed in
section 5.5.2: an overflow compartment, a limitation compartment and a low-𝑞፬ com-
partment. The broad, exponentially decaying regime RTDs (fig. 5.8) clearly show that
each regime is best represented by a stirred tank, which under ideal assumptions has
the residence time distribution of eq. 6.7:

𝑓(𝑡) = 1
𝜏።
exp (−𝑡/𝜏።) (6.7)

with 𝜏። = 𝑚።/𝜙። where 𝜙። is the mass-based compartment flowrate. The rela-
tive compartment mass 𝑚። , based on the volumetric regime distribution, is reported
in table 6.1, column 2. The circulation rates 𝜙። have to be determined by fitting the
per-regime 𝑅𝑇𝐷, constrained by 𝜙ኻ + 𝜙ኽ = 𝜙ኼ, as reported in section 6.2.1. Here, 𝜙ኼ
is the overall residence time distribution for the limitation compartment, regardless of
the parcel trajectories through the regime. The best fit, design M1, is summarized in
table 6.2. A low 𝜏። is found for each compartment due to the short-timescale variations
dominating the fit; the frequency of the more relevant longer exposures is strongly un-
derestimated, and practically the very short residence times mean 𝑞፬/𝑞፬,፦ፚ፱ cannot
be met due to excessive substrate carry-over. An improved design (M2 in table 6.2) was
constructed by evaluating the cost function 6.2 only for the interval 20 s < 𝑡 < 60 s.
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Table 6.2: Tank specifications for design M1 (top three rows) and design M2 (bottom three rows).

Vessel 𝜙። (kg/kg/s) 𝜏። 𝑅ኼ
T1-M1 0.0663 3.62 0.80
T2-M1 0.097 4.23 0.68
T3-M1 0.0307 11.41 0.67
T1-M2 0.0093 25.8 0.31
T2-M2 0.0193 21.2 0.29
T3-M2 0.0100 34.9 0.54

The overall 𝑅ኼ of this fit is logically lower, as the short-time events remain unac-
counted. However, this fit shows a more satisfactory reproduction of long-term behav-
ior (figure 6.2 A) as the design filters out brief, low amplitude substrate fluctuations
while retaining the desired long-term behavior.

The operating condition for each vessel is set to the regime mean 𝑞፬/𝑞፬,፦ፚ፱ , re-
ported in table 6.1, which was determined from figure 5.7. In order to meet these con-
ditions, we operate the reactor at 𝐶፱ = 20 g/kg. We do not consider superimposed
variations in 𝑞፬/𝑞፬,፦ፚ፱ in this example. We propose to operate the SD-simulator as a
chemostat (reflecting the simulated snapshot). This means 𝜇 must be estimated under
the simulated conditions, and 𝐷፫ has to be set accordingly. Assuming that variations
in 𝜇 are slow compared to imposed extra-cellular variations, we assume 𝜇 = 𝑓(𝑞፬).
This assumption is supported by the work of Suarez-Mendez et al. [45], who showed
that variations in metabolites such as amino-acids and TCA intermediates are strongly
dampened when 400 s feast-famine cycles are imposed. It is likely variations in a
derivative process such as growth are consequently dampened as well. This does not
imply that 𝜇 under dynamic conditions equals 𝜇 under steady conditions with the same
𝑞፬, but lacking data on the effect of 𝑞፬-dynamics on 𝜇, we here do assume that 𝜇 can
be estimated by solving the Herbert-Pirt equation, eq. 6.8:

𝜇 = (𝑞፬ −𝑚፬) ⋅ 𝑌፬፱ (6.8)

where the maintenance coefficient 𝑚፬ = 0.01 g፬/g፝፰/h and 𝑌፬፱ = 0.5 [42, 228].
The CFD simulations give 𝑞፬ = 0.129𝑞፬,፦ፚ፱ , yielding 𝜇 = 0.10 hዅኻ, or 𝐷፫ = 2.8 ⋅
10ዅ኿ kg/kg/s. If an instantaneous adaptation of 𝜇 to the conditions in each individual
compartment is assumed instead, the result setup-average 𝜇 = 0.11 hዅኻ and 𝐷፫ =
3.1 ⋅ 10ዅ኿ kg/kg/s, showing comparatively little difference.

The individual vessel feed rates are found by solving the coupled mass balances
(see section 6.2.1) with the constraint Σ።዆ኽ𝐹። = 𝐷፫ = 2.8 ⋅10ዅ኿ kg/kg/s. Optimization
was conducted using the genetic algorithm available in MATLAB, yielding the feed
parameters reported in table 6.3 for design M2; the design is outlined graphically in
6.2 B. An organism lifeline is included in 6.2 C to sketch the qualitative behavior of an
organism in the proposed simulator. The feed and concentration constraints could not
be satisfied for design M1 with 𝐶፱ = 20 g/kg.
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Table 6.3: Design M2: Best fit for the feed conditions and estimated per-compartment glucose uptake rate.

Vessel 𝑐ፅ (mol/kg) 𝐹። (sዅኻ) 𝑞፬,፟።፭/𝑞፬,፦ፚ፱
T1-M2 0.25 2.8 ⋅ 10ዅ኿ 0.309
T2-M2 0.041 5.2 ⋅ 10ዅዂ 0.107
T3-M2 0.021 4.5 ⋅ 10ዅዂ 0.042

When designing a fed batch system rather than a chemostat, a reasonable choice
may be to regard the above conditions as a starting point, subsequently allowing 𝐶፱ to
develop freely while keeping 𝐹 constant. Ideally, 𝜙። and 𝑚። should change over time
to reflect the changes in regime distribution inside the industrial reactor over time,
which can be estimated by repeating the CFD analysis for different 𝐶፱ .

6.4.2. Single vessel, Regime-based: S. cerevisiae
As noted in section 6.2.1, the simplest approach to an oscillating feed is to impose
feed-famine cycles, imposing a regime 1−2−3 pattern, or transition pattern 𝑒−𝑏−𝑓,
based on the trajectory definitions of fig. 5.8. Taking the per-regime residence times
as a basis of design would significantly under-represent the exposure to regime 1, the
overflow regime, as the above methodology does not account for regime follow-up.

The first objective of this scale-down approach is to capture the overall regime
exposure (24% overflow, 41% limitation and 35% starvation), the second objective is
to do so at timescales reasonably reflecting the large-scale fluctuation time. Due to the
reasons outlined in sec. 6.3, the type b trajectory is the most challenging to replicate.
Its mean duration, 𝜏፛ = 38.4 s, can be captured if we operate at 𝐶፱ = 16.7 g/kg.
Abiding the overall regime exposure distribution then gives a total cycle time of 93.7 s,
about twice the vessel circulation time. This design, named 𝑆1, captures the duration
of b trajectories by design, and reasonably captures the duration of the f trajectory, as is
shown in table 6.4. The duration of the e trajectory is highly over-estimated: in the CFD
simulation, parcels visit the overflow regime more frequently, but with much shorter
average exposure times. The maximum 𝑞፬/𝑞፬,፦ፚ፱ obtained in the simulator, named
𝑄𝑀, is 0.34. This is much lower than the value of 0.66 observed in the CFD simulations;
the most extreme amplitude events will never be reproduced in a vessel with a fixed
oscillation period. Whether this is a significant issue is open for debate, since a) the
region in which such high concentrations occur is comparatively small and b) the CFD
simulations assume a homogeneous biomass concentration in the tank, whereas in
reality it will take some time to mix the biomass broth with the viscous glucose syrup
fed into the reactor. This means that the fraction of organisms exposed to excessive
substrate concentrations may be even smaller practically. A subgrid mixing model will
need to be included in future CFD simulations to capture mixing between the broth
and feed stream.

Randomized cycle design The above design has its merits in studying how organisms
respond to repetitive, well-defined variations, with a duration of the correct order-of-
magnitude. Yet, they do not include several aspects of the CFD results and an alterna-



6.4. Scale-down: examples

6

133

0 50 100 150 200
time (s)

10

p 
(t)

Reg. 1, fit
Reg. 1, data
Reg. 2, fit
Reg. 2, data
Reg. 3, fit
Reg. 3, data10

10-4

0

-2

F  = 2.8 x10    g/kg/s
C    = 0.25 mol/kg

-2
1
F,1

D = 2.8 x10   g/kg/sr
-2

T  = 0.24 kg/kg
q  /q       =0.31

T  = 0.41 kg/kg
q  /q       =0.11

T = 0.35 kg/kg
q  /q       =0.042s       s,max s       s,max s       s,max

Φ  = 9.3 g/kg/s Φ  = 10.0 g/kg/s1 3

A

B

q 
 /q s  

   
 s,

m
ax

0.0

0.5
C

0 600 1200 1800
time (s)

Figure 6.2: A, B: Specifications design M2 A: Comparison between the normalized RTDs from CFD (solid)
and fitted RTDs (dashed). B: Schematic design of the proposed simulator. Volumes and flow rates are given
per liter of total setup volume; the absolute vessel size is a free parameter. C: Example of an Oscillation
profile experienced by a single organism circulating through the system.
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Table 6.4: Simple single vessel design strategies, based on the global regime distribution, compared to the
Eulerian and Lagrangian simulation perspective (row EUL and LAG, respectively). Design S1 considers fixed
cycle pulsing, S2 a more complex oscillation strategy. R1, R2, R3 are the regime fractions.

Case Ꭱᑒ Ꭱᑓ Ꭱᑔ Ꭱᑕ Ꭱᑖ Ꭱᑗ R1 R2 R3 ፐፌ ፪ᑤ/፪ᑤ,ᑞᑒᑩ
(s) (s) (s) (s) (s) (s) (%) (%) (%) ዅ ዅ

EUL ዅ ዅ ዅ ዅ ዅ ዅ ኼኾ ኾኻ ኽ኿ ኺ.ዀዀ ኺ.ኻኼዃ
LAG ዁.ኺ ኽዂ.ኾ ኻኾ.ኺ ኽዃ.ኾ ዂ.ኺ ኽኾ.ኼ ኻዂ ኾኼ ኾኺ ኺ.ዀዀ ኺ.ኻኻ
S1 ዅ ኽዂ.ኾ ዅ ዅ ኼኼ.኿ኺ ኽኼ.ዂ ኼኾ ኾኻ ኽ኿ ኺ.ኽኾ ኺ.ኻኼኽ
S2 ዁.ኺ ኽዂ.ኾ ኻኾ.ኺ ኽዃ.ኾ ዂ.ኺ ኽኾ.ኼ ኻዃ ኾኽ ኽዂ ኺ.ኼዀ ኺ.ኻኻ
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Figure 6.3: Simplified graphical representation of the ዀ building blocks used to construct the fluctuating
feed signal. Dashed lines represent the regime boundaries. At the end of an ፞-type block, a random number
determines if an ፚ or ፛ block follows. After an ፟ block, a random number determines whether a ፜ or ፝ block
follows. ፚ and ፝ are always followed by ፞, ፛ and ፜ always by ፟.

tive design including regime follow-up and properly capturing residence time distribu-
tion in each regimemust be considered. Here, we propose a regime-based randomized
cycle design which captures the regime follow-up behavior and mean residence time
𝜏። for each of the six trajectories; capturing the full distribution in residence times
is problematic due to the consumption limitation in instantaneously mixed vessels,
discussed in 6.3, and is considered to be out of the current scope.

To construct a scale-down lifeline that abides the regime follow-up registered in
CFD simulation, we specify six building blocks, each representing one of transition
trajectories reported in figure 5.2. The duration of each block is equal to 𝜏። . After each
𝑒- or 𝑓-type block, a random number generator is used to determine which block type
follows based on the follow-up distribution. The blocks are graphically represented
in figure 6.3. To allow for more complex feed profiles that better capture the 𝑞፬ dis-
tribution within each regime, we set 𝐶፱ = 20 g/kg, as was done for the multi-vessel
simulator. This means an additional substrate pulse is injected halfway each 𝑏− and
𝑓− type block to achieve the proper block duration. In the type 𝑑-type block, the sub-
strate concentration is gradually increased. Type 𝑒 and 𝑐 blocks both have a feed-spike
at the start of the block, with consumption only during the remainder. An example of
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a sampled 𝑞፬/𝑞፬,፦ፚ፱-lifeline based on the approach outlined above is displayed in
figure 6.4 C.

Running the proposed protocol for 𝑡 = 300 h yields a regime division of 19 %,
43 %, 38 % for regimes 1, 2, 3, respectively, which reflects upon the Lagrangian dis-
tribution reported in 5.5.2. The time-averaged uptake 𝑞፬/𝑞፬,፦ፚ፱ = 0.110, in excellent
agreement with the Lagrangian and acceptable agreement with the Eulerian CFD re-
sults. A weak design aspect is the achieved 𝑄𝑀 = 0.26, a consequence of the short
duration of the type-𝑒 block. This can be improved by further increasing 𝐶፱ or by in-
cluding the block RTD, allowing longer exposures. Considering the overall feed rate
under chemostat conditions, the calculations are equal to the 3-vessel design.

Distributions of 𝑞፬/𝑞፬,፦ፚ፱ The time-averaged 𝑞፬-exposure distribution is captured in
figure 6.4, C for each proposed feed cycle, and compared with the Eulerian distribution
observed in the CFD simulation. Naturally, the compartment peaks are not resolved by
any design, but the global trends are retrieved, most properly by S2. S1 only roughly
captures the global distribution in comparison. The highest values of 𝑞፬ are poorly
captured by design S2, which is compensated in the range 𝑞፬/𝑞፬,፦ፚ፱ = 0.2 − 0.25. A
deficit in counts in the region of 𝑞፬/𝑞፬,፦ፚ፱ = 0.1 − 0.15 is visible as this region lies
outside of the current range for both the 𝑎 and 𝑐-block; this can be fixed by either
increasing 𝐶፱ , or accounting for the RTDs.
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Figure 6.5: A: Randomly sampled oscillation profile, design PC.S1. The top figure shows the ፪ᑤ-response
of particles assuming ideal mixing conditions, the bottom figure the required feed profile. B: Similar to A,
for design PC.S2. Instantaneous pulses are applied, hence the feed profile is now expressed in mol/፩፮፥፬፞
rather than mol/s. C: Reference track from the CFD simulations of chapter 5.

6.4.3. Single vessel, arc-based: P. chrysogenum
A single-vessel scale-down protocol for P. chrysogenum is reported based on the arc-
analysis method with 𝑞፫፞፟ = 0.05𝑞፬,፦ፚ፱ , outlined in section 5.5.4, without requiring
the specification of any further regimes. For famine arcs (𝑞፬ < 0.05𝑞፬,፦ፚ፱), we assume
𝑞፬ ≈ 0 regardless of duration. For feast arcs, the correlation between magnitude
Ω፬,፦ፚ፱ and duration 𝜏ፚ፫፜ can be used to quantifies the arc-magnitude, and together
with statistics on the arc-time distribution, this follows a full set of statistics quanti-
fying 𝑞፬ fluctuations.

Representative profiles of alternating feast-famine intervals are generated from
the 𝜏ፚ፫፜ distributions by inverse transform sampling; for each feast interval, the maxi-
mum 𝑞፬ is retrieved from the mean 𝜏ፚ፫፜-Ω፬,፦ፚ፱ correlation, Determining the feed rate
𝐹፬ is straightforward from the mass balance. Do note that we still work under the as-
sumption of ideal mixing here, even though the substrate concentration varies in time.
The notion of ideal mixing here means each feed pulse is instantaneously distributed
within the volume, and the reactor is spatially homogeneous at all times, even though
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Table 6.5: Regime distribution for single-vessel scale-down designs of the P. chrysogenum process. The
values for the scale down simulators represent the mean ± 1 standard deviation over ኿ runs of ኻኺኺ h.

Regime 𝐶𝐹𝐷 𝑃𝐶.𝑆1 𝑃𝐶.𝑆2
1 (excess) 6.8% 9.6 ± 0.3% 8.0 ± 0.2%

2 (limitation) 36.2% 32.4 ± 0.3% 34.2 ± 0.1%
3 (starvation) 57.0% 56.8 ± 0.6% 57.8 ± 0.3%

it is temporally heterogeneous. During famine intervals, 𝐹፬ = 0 and 𝑞፬ ≈ 0 by con-
struction. This approach provides a relatively truthful representation of feast-famine
alternations in the industrial reactor. The most realistic approach is to feed gradu-
ally, such that the arc-shape is symmetric (fig. 6.5, A) and the rate-of-change observed
by organisms in the large-scale reactor is adequately captured; this requires the lab-
scale to operate at the industrial biomass concentration 𝐶፱ = 55 g፝፰/kg; this design
is referred to as PC.S1.

If we compromise the agreement in rate-of-change by administering instantaneous
feed pulses instead of gradual feeding, the required biomass concentration can be re-
laxed to 𝐶፱ = 27.5 g፝፰/kg: the instantaneous pulse administration means the total
length of the feast arc is available decreasing 𝑞፬ by consumption, whereas with grad-
ual pulsing 𝑞፬ decreases only during half of the arc duration. The instantaneous-pulse
design is referred to as PC.S2, and a sample trajectory is given in fig. 6.5, B. In 6.5
C a CFD track is shown for reference. In both cases, a regime analysis, using the ex-
cess/limitation/starvation division used in chapter 5 shows that the 𝑞፬-lifelines for
both PC.S1 and PC.S2 reflect the regime division observed in the CFD simulation. The
question remains whether or not the compromise in the rate-of-change for design
PC.S2 will influence the metabolic response; this is explored with metabolic modeling
in chapter 7.

6.5. Analysis of prior scale-down designs
Previously, scale-down studies on S. cerevisiae have been performed replicating both
oxygen [41, 53, 292] and glucose gradients [42, 45, 49, 51, 52, 293, 294]. Being the
focus of the current work, we briefly discuss the glucose-variation experiments.

Multi-compartment George et al. [51, 293] based their scaledown study on a 215mኽ

industrial bubble column, with a PFR representing the ‘crabtree compartment’ (𝐶፬ >
0.11 g/kg for the used strain), which contained 10% of the process volume. Despite
replicating a different reactor, this volume was based on observations by Larsson et
al. [16]. 𝐶፱ was 10 − 50 g/kg, in the industrial range. Both the SD-simulator and
the well mixed benchmark of George et al. ran at high residual substrate (glucose +
fructose) concentrations, between 100 and 150 mg/L most of the time. These levels
roughly correspond to experimental samples taken at heights of 2.1 and 6.3m in their
fermentor. With a total filled 9.7 − 16.3 m, the overall gradient was likely stronger.
The average residence time in the stirred compartment was 9 min, the PFR residence
time 1min. The mixing time in a bubble column can be estimated using eq. 6.9 [169],
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yielding 𝜏ዃ኿ = 57 s for the highest hold-up, with 𝜏፜።፫፜ around a factor 4 lower. This
indicates that the SD-simulator design of George et al. strongly overestimated the
fluctuation duration.

𝜏ዃ኿ = 1.6𝑇ኼ/ኽ ⋅ (𝑔𝑈፠)ዅኻ/ኽ(𝐻/𝑇)ኼ (6.9)

Based on our CFD data, the inclusion of feed variations to create a hybrid multi-
vessel fluctuating-feed setup would constitute an upgrade for the design of George
et al. This would induce 𝑞፬-lifelines similar to those in figure 6.2 C, where the multi-
vessel construction is responsible for the high-amplitude variation (between the bor-
der of the overflow regime and the border of the starvation regime), with the more
rapid substrate variations around these borders being imposed by feed fluctuations.
Such a hybrid between the varying feed andmultiple vessel approach was not assessed
in detail in our work, but may provide a method to reproduce rapid variations at the
relevant timescales in multi-vessel setups, without requiring excessive pumping rates
by keeping 𝜏፜።፫፜ for the individual vessels in the range utilized by George et al.

Sweere et al. [52] simulated glucose variations in a 2 STR systemwith 𝜏፜።፫፜ ranging
between 0.6 and 20.5 min, using strain 𝐶𝐵𝑆8066. They observed a reduction in 𝐶፱
and increase in ethanol production for increasing 𝜏፜።፫፜ . This is likely an effect caused
by the increasing gap in residual 𝐶፬ upon increasing 𝜏፜።፫፜ , which is reflected in the
growing difference in the respiration quotient between the two compartments while
increasing 𝜏፜።፫፜ . Overall, 𝐶፱ varied between 6.5 − 25 g/kg during the process. No
information on 𝐶፬ was provided, but an estimate could be made by assuming Monod
kinetics. From the microbial point of view, this yields 𝑞፬ profiles as given in figure
6.6, for 𝜏፜።፫፜ = 0.6 min and 𝜏፜።፫፜ = 6.3 min, respectively. For both cases, the profiles
at 𝐶፱ = 10 g/kg and 𝐶፱ = 20 g/kg are shown (left and right of the dashed line
respectively).

Figure 6.6 A, B shows that 𝑞፬ oscillates between regimes 1 and 2, but the oscilla-
tion magnitude depends strongly on 𝜏፜።፫፜; ranging from 0.13 − 0.21 (with negligible
ethanol production) for 𝐶፱ = 10 g/kg and 𝜏፜።፫፜ = 0.6 to 𝑞፬/𝑞፬,፦ፚ፱ = 0.06 − 0.48
in case 𝜏፜።፫፜ = 6.3 min and 𝐶፱ = 20 g/kg. The latter conditions reflect the mag-
nitude of industrial fluctuations better, while 𝜏፜።፫፜ = 0.6 mimics their duration best.
Overall, the work of Sweere et al. covers cases that provide a decent reflection of in-
dustrial frequencies (for low 𝜏፜።፫፜) and amplitude (for high 𝜏፜።፫፜), although both were
not captured simultaneously.

The two-compartment chemostat of Heins et al. [49] operated at 𝐶፱ = 10 −
20 g/kg, representing part of an industrial operation. The circulation time 𝜏፜።፫፜ =
1.17 h at minimum, hence the exposure of organisms to extra-cellular variations is
not considered to be truly industrially representative. One of the merits of this setup
is the strong 𝐶፬ gradient between the vessels (𝐶፬ >> 1 g/kg in compartment 1, and
𝐶፬ << 1 g/kg in compartment 2), allowing to study the effect substrate concentration
variations with an extreme magnitude on the population.

Single-compartment: Pham et al. [42] used a fluctuating feed experiment to validate
their metabolic model for CBS8066, imposing oscillations of 15% around the mean
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Figure 6.6: Reproduction of the oscillations experienced by organisms in the 2-vessel scale-down simula-
tions conducted by Sweere et al. A: cycles with Ꭱᑔᑚᑣᑔ ዆ ኺ.ዀ min, B: cycles with Ꭱᑔᑚᑣᑔ ዆ ዀ.ኽ min. Sweere et
al. operated the set-up as a fed-batch reactor, hence ፂᑩ varied in time. The left side of both figures shows
the oscillation amplitude at ፂᑩ ዆ ኻኺ g/kg, the right side at ፂᑩ ዆ ኼኺ g/kg.

substrate feed rate of 21 g/h in a fed batch process. Both 𝐶፱ and the filled reactor
volume are dynamic; for comparison we constructed a snapshot where 𝐶፱ = 10 g/kg
and 𝑉 ≈ 9 L (𝐶፱ = 20 g/L was not reached experimentally). No ethanol production
is predicted to occur under these conditions as 𝑞፬/𝑞፬,፦ፚ፱ oscillates between 0.12 −
0.158 (figure 6.6). Their experimental data confirms the lack of ethanol production.
Compared to our CFD benchmark, it is clear that the oscillations imposed by Pham et
al. were too long in duration and too low in magnitude to be considered industrially
representative.

Van Kleeff et al. [294] exposed strain 𝐶𝐵𝑆8066 to feast famine cycles. The cycle
duration was 200 s or 400 s, with a feed period of 20 and 40 s, respectively. The
dilution rate was approximately 𝐷፫ = 0.055 hዅኻ and 𝐶፱ was around 3.6 g/kg. In-
spired by van Kleeff et al., Suarez-Mendez et al. [45] imposed 400 s cycles (40 s
feed) to strain CEN PK 113-7D, with 𝐶፬ oscillating between 0.46 − 0.094mmol/kg at
𝐶፱ = 3.46g/kg. A 5% reduction in 𝐶፱ was observed compared to their steady state
reference, without ethanol production. For illustrative purposes, we assume the up-
take kinetics of CBS8066 apply to CEN PK 113-7D, in which case 𝑞፬ cycled between
0.048 − 0.082𝑞፬,፦ፚ፱ . Both for van Kleeff et al. and Suarez-Mendez et al., the long cy-
cle times and low fluctuation magnitude (due to the low 𝐶፱) indicate their setups are
not industrially representative. Of course, they are suitable for revealing the effects of
well-defined, repeatable fluctuations on micro-organisms.

6.6. Concluding remarks
Above, relatively simple SD-designs were discussed, which can all be realized within
current scale-down practices. Our scale-down approach uses Euler-Lagrange CFD data
to fix the five degrees of freedom for scale-down design that Noorman [15] reported.
Both approaches with a single vessel and with multiple compartments are explored.
The proposed designs aim to reproduce the amplitude and frequency of extra-cellular
variations on an average scale; (explicitly) including the most extreme events is typi-
cally unworkable within the limitations of scale-down simulators using ideal reactors.
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An important notion is that SD-simulators which seek to reproduce the rate-of-
change in the environment experienced by organisms on the large scale, must at least
operate at the industrial biomass concentration 𝐶፱ . Since industrial processes are fre-
quently operated at high biomass concentrations, and possibly include highly viscous,
shear thinning broths, this notion may lead to operational complexities for some of
the proposed scale-down simulations. Reducing 𝐶፱ may relax some of these restric-
tions, but inherently this reduces the agreement with the rate-of-change observed by
organisms in the industrial-scale fermentation. In many cases, this will in turn compro-
mise the agreement in magnitude and/or duration of oscillations, although arc-based
design for P. chrysogenum shows that it may be possible to reduce 𝐶፱ in some cases,
without compromising the overall fluctuation duration and magnitude. This will, how-
ever, compromise the achieved rate of change; a metabolic model study is required to
comment on whether or not this changes the metabolic response, and hence whether
or not lowering 𝐶፱ is an allowed simplification. In any case, a practical scale-down
simulator requires some trade-off between practical operation, simple design, and ac-
curacy of reproduction. This trade-off should be based on themetabolic characteristics
of the used organism. The influence of 𝐶፱ on operational parameters will furthermore
play a significant role in how much operational simplifications will be practically re-
quired. In the current chapter, the focus was fully on 𝑞፬-lifeline replication, which
aims at mimicking the extra-cellular environment in large-scale fermentors. Alter-
native scale-down methodologies, with different operating windows and constraints,
may be devised based on intra-cellular lifelines. Such an approach was not considered
in this chapter.

Within the limitations of ideal scale-down simulators, the current CFD-based scale-
down proposals are a reasonable reflection of the industrial scale conditions and are
a step forward compared to the current generation of scale-down simulators which
were typically designed based on a combination of global parameters such as 𝜏ዃ኿ and
intuition, often leading to an overestimation of the fluctuation duration and/or an
underestimation of the amplitude. We conducted an analysis of previously operated
scale-down simulators for S. cerevisiae which shows that, with the hindsight offered
by state-of-the-art CFD simulations, most indeed do not closely represent industrial
conditions. With the availability of novel (CFD) methodologies, improvements to these
designs that improve their agreement with industrial conditions can be proposed.
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Coupled hydrodynamic-kinetic

simulation
We assess the effect of substrate heterogeneity on the metabolic response of P. chryso-
genum in industrial bioreactors via the coupling of a 9-pool metabolic model with Euler-
Lagrange CFD simulations. In this work, we outline how this coupled hydrodynamic-
metabolic modeling can be utilized in 4 steps: 1) a model response study with a fixed spatial
extra-cellular glucose concentration gradient, which reveals a drop in penicillin production
rate 𝑞፩ of 18 − 50% for the simulated reactor, depending on model setup. 2) Scale-down
verification, where we numerically compare the model response in a scale-down simulator
(proposed in chapter 6) with the large-scale CFD response. 3) Reactor design optimization,
reducing the drop in penicillin production by a change of feed location. 4) Long-term fed-
batch simulation, where we verify model predictions against experimental data, and discuss
population heterogeneity. Overall, these steps present a coupled hydrodynamic-metabolic
approach towards bioreactor evaluation, scale-down and optimization.

7.1. Introduction
Due to the presence of gradients in substrate concentration [8], dissolved oxygen con-
centration [9] and other process variables in industrial bio-reactors, organisms are
subject to temporal variations in their environment. Such variations impose stresses
on these organisms [12, 43, 56], which may in turn affect the process yield [44]. There
are cases where extra-cellular variations appear to be advantageous [8], but typically
the impact is negative as the process is driven away from the conditions set for yield
optimization [44, 48]. Being related to mixing behavior, these gradients amplify upon
scale-up, which may hence come with a yield loss that should be considered when
judging scale-up economics. Furthermore, knowledge on the impact of bioreactor
heterogeneity can be used to guide design changes to the reactor and, with genetic
engineering, the micro-organism itself.

Previously, we used Euler-Lagrange CFD to study the environmental fluctuations
experienced by micro-organisms (chapter 5) and showed how fluctuation statistics can
be acquired from such simulations to guide SD-simulator design (chapter 6). These
chapters focused on simulation and fluctuation quantification using the substrate up-
take (𝑞፬) lifeline, and did not quantitatively consider the metabolic response. When
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Figure 7.1: Graphical outline of the 4 subjects covered in this paper. I: Metabolic response simulation. II:a
CFD-guided scale-down simulator design. IIb: Numerical verification of scale-down reactor performance.
III: Numerical full-scale design optimization. IV: Industrial fed-batch simulation.

a dynamic metabolic model is available for the studied organism, coupled metabolic-
hydrodynamic simulations can be used to evaluate the expected metabolic impact
[21, 23]. Combined with experiments in representative scale-down simulators, such a
coupled hydrodynamic-metabolic approach is applicable towards: 1) scale-down ver-
ification: does a scale-down simulator result in the same metabolic response as ob-
served in the large-scale CFD simulation? and 2) design optimization: what is the
expected impact of reactor design changes or metabolic modifications based on nu-
merical assessment? The most promising changes can then be experimentally tested
in representative scale-down simulations, offering a powerful approach to rational
bioreactor design and scale-up [48, 56].

We discuss four topics in this chapter, outlined in figure 7.1, highlighting the differ-
ent aspects of the CFD-based scale-down workflow. A penicillin production process is
used as a case-study. Part I considers the coupled hydrodynamic-metabolic simulation
of a 54 mኽ industrial P. chrysogenum fermentation [10], focusing on mixing dynam-
ics and neglecting slow processes such as biomass growth. We study the impact of
mixing on metabolic variations using a 9-pool metabolic model [226]. In part II, we
numerically compare the metabolic response in the arc-analysis based SD-simulator
proposed in sec. 6.4.3 to the CFD response, first assuming ideal mixing, and second
by a CFD simulation of a 3 L reactor with dynamic feed. In part III, we discuss process
optimization and propose a simple reactor alteration to improve the penicillin yield.
To conclude, in part IV we simulate 60 h of a fed-batch fermentation for compari-
son with industrial data. With this, we explore various aspects of the use of coupled
hydrodynamic-metabolic modeling for process evaluation and optimization.

7.2. Methodology
All CFD simulations were conducted in ANSYS FLUENT 15.7, MATLAB 8.6.0 was used
for post-processing and ideal mixing simulations.
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7.2.1. Metabolic model
The 9-pool metabolic model for P. chrysogenum developed by Tang et al. [226] con-
tains 5 intra-cellular metabolite and 4 enzymatic pools, and couples to the extra-
cellular substrate concentration 𝐶፬ and phenylacetic acid (PAA) concentration 𝐶ፏፀፀ.
The metabolite pools are: Glycolytic intermediates (𝑋፠፥፲), Amino acids (𝑋ፀፀ), Storage
polymers (𝑋፬፭፨), ATP (𝑋ፀፓፏ) and intra-cellular PAA (𝑋ፏፀፀ), all reported in μmol/g፝፰
with g፝፰ being the dry biomass weight. Three dimensionless enzyme pools influence
metabolic rates: 𝑋ፄ,ኻኻ (the substrate uptake capacity), 𝑋ፄ,ኽኼ (PAA export capacity) and
𝑋ፄ,ኾ (storage capacity). The 4፭፡ enzyme pool controls the biomass specific penicillin
production rate 𝑞፩ [236] and is reported in mol፩/𝐶mol፱/h [44, 233, 236]. The effect
of oxygen limitations has not been studied sufficiently to be included in the current
model [10, 226], and will be considered in future extensions. For a model overview,
we refer to Tang et al. [226].

Model simplifications Tang et al. developed and validated their model against a
range of experimental data [44, 226, 233] including 360 s feast-famine cycles [44].
These results provide confidence that the model is able to capture the impact of
circulation-timescale substrate variations. However, instabilities in 𝑋ፀፓፏ were en-
countered in our CFD simulations, which resulted from the sensitivity of the storage
pool fluxes to turbulence-induced 𝐶፬ fluctuations on the sub-second timescale, which
were not accounted for in model development (for details see appendix A). A structural
solution of this issue requires deeper analysis of the signaling mechanism behind stor-
age dynamics. As we currently lack the information to develop such improvements, we
instead opted for a patch solution by assuming the ATP pool is in quasi-steady state,
meaning the fluxes in- and out of the ATP pool balance, giving 𝑑𝑋ፀፓፏ/𝑑𝑡 ≈ 0 [255].
This converts the dynamic ATP-balance in an algebraic expression:

0 =
።

∑𝑣።(𝑋፠፥፲ , 𝑋ፀፀ, 𝑋ፀፓፏ , ...) (7.1)

For the current non-linear kinetics, equation 7.1 was evaluated for 10኿ randomly
generated sets of intra-cellular pools. Subsequent correlation showed 𝑋ፀፓፏ can be
modeled as 𝑋ፀፓፏ = 8.25 ⋅ 𝑋ኽ፠፥፲/(10.5ኽ +𝑋ኽ፠፥፲). The model response was deemed sat-
isfactory under all tested conditions. Further details on the approach and verification
against experimental data are reported in appendix A.

7.2.2. CFD setup
54mኽ reactor setup
We use the 54 mኽ reactor simulation (chapter 5) with simplified single-phase hydro-
dynamics as the industrial base-case. We furthermore simulate the same case includ-
ing aeration, which was in previous chapters for P. chrysogenum. The superficial gas
velocity, measured at STP conditions, 𝑈፠ = 0.05 m/s. The pressure in the reactor
headspace was 1.85 bar, the air density was set to 2.4 kg/mኽ based on the mean
pressure. The total domain height 𝐻፭ = 11 m to account for broth expansion upon
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Table 7.1: Validation parameters of ኿ኾmᎵ fermentor simulations. The holdup for air-water is averaged over
ኽ experiments, while a single experiment is reported for broth. The CFD circulation time is based on ኿%
saturation of the probe signal (mixing time ᎡᎻᎷ is based on ዃ኿% saturation). For the experimental data, the
half-circulation time was determined by recording the time lag between ፇᎴፒፎᎶ insertion at the top and
probe response at the bottom.

Parameter Exp. Exp. Exp. Exp. CFD CFD
water broth air-water air-broth water air-water

Gas hold-up 𝑛/𝑎 𝑛/𝑎 16.4 ± 0.8 12.6 𝑛/𝑎 20.4
𝑑፛ (mm) 𝑛/𝑎 𝑛/𝑎 𝑛/𝑚 𝑛/𝑚 𝑛/𝑎 7.1
𝜏፜።፫፜ (s) 19.3 77.0 41.6 25.7 18.2 32.9

n/a = not applicable; n/m = not measured.

gassing, the gas-filled headspace is removed during parcel tracking [20]. The mesh
(180∘ domain) contained 9.23 ⋅ 10኿ gridcells. A discrete population balance (8 bins,
0.5 − 12.7mm) with the Luo and Svendsen [77] was employed to capture the bubble
size distribution. Furthermore we used the standard 𝑘 − 𝜖 model (dispersed turbu-
lent formulation), multiple-reference frame impeller modeling, and the universal drag
model for inter-phase momentum exchange. Other inter-phase forces were neglected
[20, 84, 191]. The broth rheology was set equal to water; simulations using Casson rhe-
ology [243] diverged in volume fraction 𝛼, and the combination of single-phase and
air-water hydrodynamics captures the range of mixing times measured industrially,
which suffices for the current purpose. The air-water surface tension 𝛾 = 0.072 N/m,
the turbulent Schmidt number was set to 𝑆𝑐፭ = 0.2.

The gas flow number 𝐺𝑠 = 𝑄፠/𝑁፬𝐷ኽ = 0.1 implies the fermentor operates at
the boundary of the 3 − 3 cavity regime and recirculation regime, where the mixing
time 𝜏ዃ኿ is equal to and above that of single phase-flow, respectively [169]. Available
industrial data on the circulation time [10] (𝜏፜።፫፜ ≈ 𝜏ዃ኿/4, [15]) suggests the latter;
the circulation time 𝜏፜።፫፜ is compared to simulation results in table 7.1. The single-
phase and two-phase simulation under- and over-estimate 𝜏፜።፫፜ for aerated broth with
30 %, respectively. Note the experimental value is based on a single measurement
and hence comes with a significant margin of uncertainty. We regard the single-phase
and aerated simulation as a lower and upper boundmixing time scenario, with the true
mixing behavior in the range. This level of accuracy suffices for our current demon-
stration purposes, but we stress the need for further investigation into modeling true
aerated, non-Newtonian fermentation broths, and associated with that, a wider range
of large-scale validation data (gas hold-up, local mixing curves and preferably local
DO/substrate concentrations). The simulation is observed to over-estimate the hold-up
by 25% in water, and by nearly 60% in broth. Currently we are not directly interested
in gas-holdup, but in case oxygen dynamics are included, this aspect requires further
study.

3-l laboratory reactor setup
A round-bottom vessel with a working volume of 3 L [226] is simulated for scale-down
verification. Geometric parameters are reported in appendix D. The typical gas flowrate
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is 2 L/min, giving 𝐹𝑙 = 0.009 with an agitation rate of 𝑁፬ = 10 sዅኻ (600 RPM). This
value is outside of the range probed in mixing experiments [169], but implies 𝜃ዃ኿ is
similar to or slightly higher than for single-phase conditions. For simplicity, we hence
ignore the effect of gas flow and model single-phase water. All walls were no-slip
while the top surface had a no-shear free surface condition. Computational mixing
simulations at 𝑁፬ = 10 sዅኻ yield 𝜃ዃ኿ = 22, in excellent agreement with experiments
(appendix D); the dimensionless circulation time 𝜃፜።፫፜ ≈ 𝜃ዃ኿/4.

At high 𝐶፱ , the high effective liquid viscosity 𝜇፥ may practically lead to transitional
flow, possibly increasing 𝜃ዃ኿ significantly. Previous non-Newtonian simulations of aer-
ated lab-scale reactors did not produce realistic mixing results due to stagnant zones
[212], and preliminary work using a low−𝑅𝑒 𝑘 − 𝜖 model with 𝜇፥ = 0.15 Pa s led to
parcel tracking issues, with parcels sticking in the impingement point of the impeller
discharge stream. We hence opted to decrease the agitation rate 𝑁፬ to 1.67 sዅኻ (100
RPM) to assess the effect of mixing time on the performance of a lab-scale scale-down
simulator. At 600 and 100 RPM, 𝜏፜።፫፜ = 0.55 and 3.3 s, respectively. Experimental
evaluation of mixing behavior in real fermentation broths is required to comment on
whether this range of 𝜏፜።፫፜ represents lab-scale practice.

Metabolic model coupling
In the 9-pool model the glucose uptake rate 𝑞፬ is subject to transporter control, where
the availability of transporter (𝑋ፄ,ኻኻ) is controlled by growth rate 𝜇 (hዅኻ). This means
that strictly speaking 2-way coupling is required to resolve the substrate environment,
which requires simulating long timespans (𝑂(h)) due to the long transporter adapta-
tion time, and is therefore computationally expensive.

The long adaptation time allows for the assumption that the average transport
capacity 𝑋ፄ,ኻኻ is homogeneous in the fermentor. As 𝑋ፄ,ኻኻ = 𝑓(𝜇), its value can be
estimated based on growth rate under ideally mixing conditions, 𝜇።፝ . For the applied
model, the average growth rate under dynamic conditions 𝜇 was typically close to 𝜇።፝ ,
and the estimated 𝑋ፄ,ኻኻ was similarly close. A-priori estimation of 𝑋ፄ,ኻኻ allows to use
1-way coupling, as in our earlier work [10, 20], which means the number of tracked
parcels 𝑁፩ does not influence the substrate gradient and can be freely chosen. This
simplification does not hold when circulation timescale-intracellular dynamics affect
𝑞፬ [21, 23, 31], or when 𝑋ፄ,ኻኻ under dynamic conditions differs strongly from the ideal-
mixing assessment.

The above 1−way coupled approach was used to studymixing-timescale dynamics,
assuming constant 𝐶፱ , 𝑋ፄ,ኻኻ, feed rate 𝐹 and liquid-filled height 𝐻. This practically
represents a chemostat cultivation, where the dilution rate 𝐷፫ is equal to the mean
growth rate 𝜇. 1−way coupling is conducted as a post-processing step; the (statistical)
steady state allows to simulate 𝑂(10) mixing times to acquire fluctuation statistics;
lifelines of 80 h are subsequently generated to study the adaptation of 𝑞፩ to mixing-
time dynamics (with constant 𝐶፱ , 𝑋ፄ,ኻኻ by construction) by joining together individual
lifelines, exploiting the statistically-steady extra-cellular nature.

For the fed-batch simulation we use 2−way coupling to include temporal changes
in 𝐶፱ and 𝑋ፄ,ኻኻ. The long variation time of both parameters allows the assumption
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Table 7.2: Comparison of the assumptions between 1-way and 2-way coupling method used in this work.
1-way coupling is here used for chemostat cultivation, and 2-way coupling for fed-batch cultivation.

Method 1-way coupling 2-way coupling
Software MATLAB 8.6.0 (post-process) FLUENT 15.7 (in-process)
𝐶፱ Fixed Variable
𝑋ፄኻኻ Fixed Variable
𝜇 Variable, stat. steady Variable
𝐷፫ stat. steady, 𝐷፫ = 𝜇 𝐷፫ ≈ 0 (fed-batch)

that 𝐶፱ and 𝑋ፄ,ኻኻ are spatially homogeneous (𝑋ፄ,ኻኻ may be heterogeneous within the
population, but to a same degree at every spatial location). This means that each
timestep 𝐶፱ and 𝑋ፄ,ኻኻ can be calculated as the parcel population ensemble average,
and the local uptake rate can be computed from the Eulerian framework as eq. 7.2:

𝑟፬,፜ = 𝐶፱ ⋅ 𝑘ኻኻ ⋅ 𝑋ፄ,ኻኻ ⋅
𝐶፬

𝐾፬ + 𝐶፬
(7.2)

This simplified 2-way coupling requires the parcel number to be sufficient to cap-
ture overall heterogeneity, for which 𝑁፩ = 𝑂(10ኽ) typically suffices; full 2−way cou-
pling would require 𝑁፩ = 𝑂(10኿) − 𝑂(10ዀ) [31]. 1− and 2− way coupling require
similar computation time per hour flow-time, but 2− way coupling does require the
full fermentation time to be simulated to account for changes in 𝐶፱ and 𝑋ፄ,ኻኻ. A com-
parison of the assumptions between 1 and 2-way coupling is given in table 7.2.

7.2.3. Overview of cases
Here, we provide an overview of all simulations (table 7.3), both conducted with CFD
(FLUENT) and with the ideal or instantaneous mixing assumption (MATLAB), including
the assumptions made and sections where these simulations are described. There is
some variability in the applied timestep size Δ𝑡 in FLUENT; in all cases it was ensured
the particle trajectories were completed within the default accuracy settings. In all
cases, glucose concentration 𝐶፬ was variable, and the PAA concentration was fixed at
𝐶ፏፀፀ = 3 mmol/kg.

As noted in section 7.2.2, the uptake capacity 𝑞፬,፦ፚ፱ = 𝑘ኻኻ ⋅ 𝑋ፄ,ኻኻ in the 9−pool
model depends on the growth rate 𝜇. In the chemostat simulations, we aimed at
𝜇 ≈ 0.03 hዅኻ to maximize 𝑞፩; at this value of 𝜇, the 9−pool model predicts 𝑞፬,፦ፚ፱ ≈
1.13 mmol/g፝፰/h under well mixed conditions, which is markedly lower than the
𝑞፬,፦ፚ፱ = 1.6mmol/g፝፰/h reported by de Jonge et al. [44], measured for 𝜇 = 0.05 hዅኻ.
The large scale simulations 𝑇𝑈 − 𝐴, 𝑇𝐺 − 𝐴, 𝑀𝑈 − 𝐴 were conducted with 𝑞፬,፦ፚ፱ =
𝑘ኻኻ ⋅ 𝑋ፄ,ኻኻ = 1.13 mmol/g፝፰/h and 𝐾፬ = 9.8 μmol/kg.

The lab-scale CFD simulations (part II) were conducted before the 9−pool model
was available, which meant we had to rely on the kinetic parameters of De Jonge et
al. [44], as in our previous work where we solely considered glucose uptake [10]. For
consistency, we hence report a set of 𝐶𝐹𝐷 simulations (𝑇𝑈 − 𝐵, 𝑇𝐺 − 𝐵, 𝑀𝑈 − 𝐵)
which use the 9−pool model, but with the uptake kinetics as published by De Jonge et



7.2. Methodology

7

147

Ta
bl
e
7.
3:

O
ve
rv
ie
w
of

al
lt
he

si
m
ul
at
io
ns
,b
ot
h
CF

D
an

d
id
ea
l/
in
st
an

ta
ne

ou
s-
m
ix
in
g
ba

se
d
(ID

M
),
co
nd

uc
te
d
in

th
is
w
or
k.

Al
lc
as
es

w
er
e
co
nd

uc
te
d
as

ch
em

os
ta
ts
,

ex
ce
pt

fo
rፓ
ፔ/
ፈፃ
ዅ
ፅፁ

,w
hi
ch

is
a
fe
d-
ba

tc
h
si
m
ul
at
io
n.

N
am

in
g
co
nv

en
tio

n:
ፓ
=
to
p
fe
ed

.ፌ
=
m
id

fe
ed

(im
pe

lle
rd

is
ch
ar
ge

st
re
am

).
ፔ
=
un

ga
ss
ed

.ፆ
=
ga

ss
ed

.
ፅፁ

=
fe
d-
ba

tc
h
(2
-w

ay
co
up

le
d)
.
ፈፃ

=
in
st
an

ta
ne

ou
sl
y
m
ix
ed

.
ፒፃ

=
sc
al
e-
do

w
n.
ዃ
ዅ
ፏ
in
di
ca
te
s
th
e
ዃዅ

po
ol

m
od

el
of

Ta
ng

et
al
.
[ 2
26

]
is
us
ed

fo
r
m
et
ab

ol
ic

co
up

lin
g,
ኻ
ዅ
ፏ
in
di
ca
te
s
th
e
D
yn

am
ic

Ge
ne

Re
gu

la
tio

n
m
od

el
of

D
ou

m
a
et

al
.
is
us
ed

[2
36

].
ፀ
an

d
ፁ

in
di
ca
te

w
hi
ch

ki
ne

tic
pa

ra
m
et
er

va
lu
es

ar
e
us
ed

.
Pa

rt
in
di
ca
te
s
th
e
se
ct
io
n
of

th
e
ch
ap

te
rw

he
re

th
e
si
m
ul
at
io
n
is
di
sc
us
se
d.

N
am

e
ፂፅ
ፃ/
ፈፃ
ፌ

M
od

el
Pa

rt
Ga

ss
in
g

Co
up

lin
g

Fe
ed

፪ ᑤ
,ᑞ
ᑒᑩ

ፊ ᑤ
ፂ ᑩ

ፍ ᑡ
ጂ፭

(m
m
ol
/g

ᑕᑨ
/h
)

(μ
m
ol
/k
g)

(g
ᑕᑨ
/k
g)

(s
)

TU
-A

CF
D

ዃዅ
ፏ

I
no

1-
w
ay

to
p

ኻ.
ኻኽ

ዃ.ዂ
኿኿

ኾኺ
ኺኺ

ኺ.
ኻ

TG
-A

CF
D

ዃዅ
ፏ

I
ye
s

1-
w
ay

to
p

ኻ.
ኻኽ

ዃ.ዂ
኿኿

ኾኺ
ኺኺ

ኺ.
ኼ

M
U
-A

CF
D

ዃዅ
ፏ

III
no

1-
w
ay

im
p.

ኻ.
ኻኽ

ዃ.ዂ
኿኿

ኾኺ
ኺኺ

ኺ.
ኽ

TU
-B

CF
D

ዃዅ
ፏ

I
no

1-
w
ay

to
p

ኻ.
ዀ

዁.
ዂ

኿኿
ኾኺ
ኺኺ

ኺ.
ኺኽ

TG
-B

CF
D

ዃዅ
ፏ

I
ye
s

1-
w
ay

to
p

ኻ.
ዀ

዁.
ዂ

኿኿
ኾኺ
ኺኺ

ኺ.
ኼ

M
U
-B

CF
D

ዃዅ
ፏ

III
no

1-
w
ay

im
p.

ኻ.
ዀ

዁.
ዂ

኿኿
ኾኺ
ኺኺ

ኺ.
ኽ

TU
-1
P

CF
D

ኻ
ዅ
ፏ

I
no

1-
w
ay

to
p

ኻ.
ዀ

዁.
ዂ

኿኿
n/
a

st
.s
t.

ID
-1
P

ID
M

ኻ
ዅ
ፏ

I
n/
a

n/
a

n/
a

ኻ.
ዀ

዁.
ዂ

኿኿
n/
a

st
.s
t.

ID
-9
P

ID
M

ዃዅ
ፏ

I
n/
a

n/
a

n/
a

ኻ.
ዀ

዁.
ዂ

኿኿
n/
a

st
.s
t.

ID
-S
D
-2
7

ID
M

ዃዅ
ፏ

II
n/
a

n/
a

n/
a

ኻ.
ዀ

዁.
ዂ

ኼ዁
n/
a

ኺ.
ኺኽ

ID
-S
D
-5
5

ID
M

ዃዅ
ፏ

II
n/
a

n/
a

n/
a

ኻ.
ዀ

዁.
ዂ

኿኿
n/
a

ኺ.
ኺኽ

CF
D
-S
D
-1
00

CF
D

ዃዅ
ፏ

II
no

1-
w
ay

to
p

ኻ.
ዀ

዁.
ዂ

ኼ዁
኿ኺ
ኺኺ

ኺ.
ኺኻ

CF
D
-S
D
-6
00

CF
D

ዃዅ
ፏ

II
no

1-
w
ay

to
p

ኻ.
ዀ

዁.
ዂ

ኼ዁
኿ኺ
ኺኺ

ኺ.
ኺኺ
ኼ

ID
-1
P-
FB

ID
M

ዃዅ
ፏ

IV
n/
a

n/
a

n/
a

va
r.

ዃ.ዂ
va
r.

n/
a

1
TU

-F
B

CF
D

ዃዅ
ፏ

IV
no

2-
w
ay

to
p

va
r.

ዃ.ዂ
va
r.

ኼኺ
ኺኺ

ኺ.
ኼ

n/
a
=
no

ta
pp

lic
ab

le
;v
ar
.=

va
ria

bl
e;

st
.s
t.
=
si
m
ul
at
io
n
co
nd

uc
te
d
in

st
ea
dy

st
at
e.



7

148 7. Coupled hydrodynamic-kinetic simulation

al., 𝐾፬ = 7.8 μmol/kg and 𝑞፬,፦ፚ፱ = 1.6 mmol/g፝፰/h. We note that the fluctuations
in 𝑞፬ and the intra-cellular pools are too strong in these cases. The purpose of these
simulations is to show that the intra-cellular response predicted between the indus-
trial and lab-scale simulations matches; not to predict the metabolic response in the
absolute sense.

Part I: Model response study Part I focuses on TU-A (non-aerated, top feed) and TG-
A (aerated, top feed), to study the metabolic response to extra-cellular variations in
an industrial-scale reactor with a statistically steady extra-cellular environment. As
in our earlier work, a late fermentation stage was modeled, with 𝐶፱ = 55 g/kg and
substrate feed rate 𝐹፬/𝑉 = 1.23 g/mኽs [10]. The 1−way coupling approach means
𝑋ፄ,ኻኻ remains unchanged in time. All other pools were variable, and initialized based
on ideal mixing results. For consistency with part II, TU-B and TU-B are also reported
here. The results are compared with a CFD simulation coupled with the dynamic gene
regulationmodel of Douma et al. (non-aerated, top feed, case TU-1P), and ideal-mixing
simulations with both the dynamic gene regulation (ID-1P) and 9−pool (ID-9P) model.

Part II: Scale-down verification First the performance of the scale-down protocols
from section 6.4.3 are assessed assuming ideal mixing (cases ID-SD-27 and ID-SD-
55). Next, CFD simulations of the 3 L lab scale reactor were conducted with the
𝐶፱ = 27.5 g፝፰/kg scale-down protocol, to study the effect of non-ideal mixing on
SD performance. Instantaneous feed pulse injection was assumed in a small volume
near the top surface. The hydrodynamics were frozen, but the substrate field was
updated every timestep. The feed pulse scheme was supplied to FLUENT via a user
defined function coupled to a lookup table. The fast mixing required time resolutions
of Δ𝑡 = 0.002 s for 600 RPM (case CFD-SD-600), Δ𝑡 = 0.01 s for 100 RPM (case CFD-
SD-100); this limited the resolved flow-time to 650 s, in which 42 feed pulses were
applied. This number is too small for a proper replication of the industrial-scale fluc-
tuation statistics; therefore, scale-down performance was judged by comparing the
model performance with the ideal-mixing response for the same 42 pulses.

Part III: Design optimization Industrial-scale CFD simulations were conducted with
the substrate feed directly in the top impeller discharge stream (non-aerated hydro-
dynamics), referred to as MU-A and MU-B.

Part IV: Full-scale fed-batch Verification We simulated a 60 h timespan of a fed-batch
fermentation (top feed, non-aerated) which was conducted in the current 54mኽ geom-
etry, named TU-B, to verify model performance with industrial data which was kindly
provided by the DSM biotechnology center. The simulation was started at 𝑡 = 10 h
after the batch start 𝐶፱ = 14 g/L. All model parameters are initialized based on
the ideally-mixed 9−pool model outcome for the given starting conditions. In the
industrial fermentation the total broth mass increased from 36 to 46 ⋅ 10ኽ kg over
the simulated timespan. However, explicitly modeling the volume change is compu-
tationally costly. As an approximation, we kept the volume constant at 54 mኽ, with
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Figure 7.2: Long-term 9-pool model response for TU-A (black), TG-A (red), TU-B (gray), TU-B (yellow). The
top panel shows examples of extra-cellular variations experienced by a single parcel in TU-A, TG-A. For ፗᑘᑝᑪ
and ᎙, the solid lines represent the mean, the dashed lines represent single parcel tracks to indicate the
variations. All other lines represent are averages of 100 parcels. Intracellular pools ፗᑘᑝᑪ, ፗᐸᐸ, ፗᑤᑥᑠ and
ፗᑇᐸᐸ have units μmol/gᑕᑨ. ᎙ has units hᎽᎳ. ፪ᑡ has unitsmol/ፂmolᑩ/h. All other pools are dimensionless.

the hydrodynamics of TU-A; as both impellers are submerged at all times, the change
in 𝜏፜።፫፜ over the course of the fermentation is assumed to be minor. To compensate
for the higher volume, the provided feed profile (reported in fig. 7.10) was adjusted to
ensure an equal feed in g/kg/s between the simulation and industrial fermentation at
all times. Experimental data for 𝑞፩ and 𝜇 were used to evaluate model performance
for TU-B, as well as an ideal-mixed simulation with the model of Douma et al., case
ID-1P-FB.

7.3. Results and discussion
7.3.1. Part I: Model response study
CFD simulations
We study the long-term adaptation of P. chrysogenum exposed to a strong substrate
gradient. The most notable difference between TU-A/B and TG-A/B is the higher 𝜏፜።፫፜
for the latter, as discussed in sec. 7.2.2, yielding 𝑞፬ fluctuations of longer duration. As
𝑞፬ is locally saturated in all cases, the fluctuation amplitude hardly differs. Examples
of single lifelines for TU-A and TG-A are shown in the figure 7.2, top panel.

Figure 7.2 shows the pool dynamics over an 80 h period for TU-A, TG-A, TU-B, TU-
B. All cases show qualitatively similar behavior, but the higher 𝑋ፄ,ኻኻ for TU/TG-B has
a clear negative impact on 𝑞፩. This illustrates the error introduced by taking kinetic
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parameters directly from literature, without accounting for the adaptation of 𝑞፬,፦ፚ፱ to
𝜇.

Practically, 𝑞፩ is controlled by 𝑋፠፥፲ : high 𝑋፠፥፲ inhibits synthesis of penicillin pro-
ducing enzyme, but it increases growth rate 𝜇 which enhances enzyme synthesis. The
first effect scales with 𝑋ዀ፠፥፲ [226], meaning that high values of 𝑋፠፥፲ are highly re-
pressive, but below-average values of 𝑋፠፥፲ are hardly influential. This explains the
large difference in 𝑞፩ between the cases, even though all cases have a nearly equal
average 𝑋፠፥፲ . The cases with the highest 𝑋፠፥፲ buildup show the biggest 𝑞፩ loss. As
𝜏፜።፫፜ is higher for aerated cases, the parcels experience prolonged exposures to ex-
cess conditions, resulting in strong 𝑋፠፥፲ accumulation. Similarly, the higher transport
capacity for TU/TG-B causes increased glycolytic accumulation. The effect of both ki-
netics and 𝜏፜።፫፜ is summarized in the Damköhler number 𝐷𝑎 = 𝜏፜።፫፜/𝜏፫፱፧, where we
take 𝜏፫፱፧ = 𝐾፬/(𝑞፬,፦ፚ፱𝐶፱), the limit for 𝐶፬ → 0. This definition for 𝜏፫፱፧ does not re-
quire a value of 𝐶፬, which makes it straightforward to evaluate for both experimental
and CFD cases. Including the impeller-fed cases MU-A/B (part III), a linear trend be-
tween the penicillin yield 𝑌፬፩ (table 7.4) and𝐷𝑎 is observed: 𝑌፬፩ = 0.3417−0.0015𝐷𝑎
(𝑅ኼ = 0.97), graphically shown in figure 7.3.

𝑞፩ is linearly dependent on 𝜇, and 𝜇 depends on 𝑋ኼ፠፥፲/(𝐾ኼ፠፥፲ + 𝑋ኼ፠፥፲) [226]; the
effect of high and low 𝑋፠፥፲ values on 𝜇 nearly averages out: 𝜇(𝑋፠፥፲) ≈ 𝜇(𝑋፠፥፲). Only
the most extreme case (TU-B) deviates from this; the very lengthy exposures to star-
vation conditions leads to a lower 𝜇. The data clearly shows that the duration of ex-
posures to excess- and starvation conditions strongly impacts the metabolic response.
Since these time periods are highly distributed, there is considerable heterogeneity in
𝑋፠፥፲ at any given location. This feature is inherently not captured by black-box mod-
els that instantaneous adaptation of the intra-cellular to the extra-cellular domain.
𝑋ፄ,ኽኼ and 𝑋ፄ,ኾ are hardly affected in case TU/TG-A where 𝑋ፄ,ኻኻ was preconditioned
for 𝜇 = 0.03 hዅኻ, whereas the higher uptake for TU/TG-B causes some changes in
these pools. 𝑋ፀፀ is hardly affected in all cases. The value the intra-cellular pools is
homogeneous within the population, as is shown in figure 7.4 for case TU-A.
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Experimental data and yields
The CFD results are compared with experimental chemostat data [233] and ideal-
mixing simulations using both the model of Douma et al. [236] (ID-1P) and the model
of Tang et al. [226] (ID-9P). Both models are known to under-predict 𝑞፩ around 𝜇 =
0.03 hዅኻ compared to steady-state experiments. Compared to the 9−pool model
with ideal mixing, the CFD simulations show a yield loss between 18% (TU-A) and
46% (TU-B). The real circulation time for the 54 mኽ reactor lies in between the ex-
tremes simulated here; based on the 𝐷𝑎-correlation a yield loss of 22% is expected
for 𝜏፜።፫፜ = 25.7 s, using 𝑋ፄ,ኻኻ value for 𝜇 = 0.03 hዅኻ .

For demonstration, we have also coupled the model of Douma directly to FLUENT
(TU-1P). Coupling to CFD required some minor model alterations, these are elucidated
in appendix A. This yields an extreme 85% decrease in 𝑌፬፩ and strong increase in 𝑌፬፱ ,
which are not deemed realistic. In TU-1P both 𝑑𝑞፩/𝑑𝑡 and 𝜇 adapt to the local 𝐶፬
instantaneously; 𝑑𝑞፩/𝑑𝑡 is highly negative close to the feed (substrate inhibition) as
well as in the starvation zone (zero growth); a positive 𝑑𝑞፩/𝑑𝑡 exists only in a very
narrow band. The very high 𝜇 close to the feed leads to a high 𝜇 overall, despite the
slightly negative 𝜇 ≈ −𝑚፬ [10] in the starvation zone. This extreme result shows the
merits of using a structured model in non-ideal reactors with strong substrate gradi-
ents. Although the chemostat assumption used here introduces some simplifications,
we are confident the overall trends hold, making the outlined method suitable for a
quick assessment of the impact of design changes on the fermentation process. The
most promising cases can subsequently be studied in more detail with 2-way coupling
and experimental scale-down assessment.

7.3.2. Part II: Scale-down verification
A scale-down design analysis was conducted for TU-B using the arc-analysis method
reported in chapter 5, section 5.5.4, using a reference value 𝑞፫፞፟ = 0.05𝑞፬,፦ፚ፱ . This
means the lifelines are divided in feast- (𝑞፬/𝑞፬,፦ፚ፱ > 0.05) and famine-arcs (𝑞፬/𝑞፬,፦ፚ፱ <
0.05). The rationale behind this reference value is that the amplitude in famine arcs
can be neglected, and that for feast arcs the distribution for 𝜏ፚ፫፜ is comparatively
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Table 7.4: Comparing yields and productivity between experimental data of van Gulik et al. [233], the
black box (BB) model of Douma et al. [236] and the 9-pool model [226] with ideal mixing assumption
and the 9-pool (9P) of Tang et al. [226]. Feed ፅᑤ ዆ ኺ.ኺኻኼ኿ molᑤ/ፂmolᑩ/h for all simulations and
ኺ.ኺኻኻዂ molᑤ/ፂmolᑩ/h for the experiment.

case ᎙ ፪ᑡ ፘᑤᑩ ፘᑤᑡ ፃፚ
(hᎽᎳ) (molᑡ/ፂmolᑩ/h) (ፂmolᑩ/ፂmolᑤ) (molᑡ/molᑤ)

Exp. ኺ.ኺኼዃ ኿.ኽኽ ⋅ ኻኺᎽᎶ ኺ.ኾኻ ኺ.ኺኾ኿ n/a
ID-1P ኺ.ኺኽኼ ኾ.ዃኾ ⋅ ኻኺᎽᎶ ኺ.ኾኽ ኺ.ኺኾኺ 0
ID-9P ኺ.ኺኽኽ ኾ.ኾኺ ⋅ ኻኺᎽᎶ ኺ.ኾኾ ኺ.ኺኽ኿ 0
TU-1P ኺ.ኺኾኽ ኺ.዁ኽ ⋅ ኻኺᎽᎶ ኺ.኿዁ ኺ.ኺኺዀ n/a
TU-A ኺ.ኺኽኼ ኽ.኿዁ ⋅ ኻኺᎽᎶ ኺ.ኾኾ ኺ.ኺኼዃ ኽኼ.ኻ
TG-A ኺ.ኺኽ኿ ኽ.ኼዂ ⋅ ኻኺᎽᎶ ኺ.ኾ዁ ኺ.ኺኼዀ ኿ዂ.ኺ
TU-B ኺ.ኺኽኽ ኼ.ዃዃ ⋅ ኻኺᎽᎶ ኺ.ኾኾ ኺ.ኺኼኾ ኿዁.ኺ
TG-B ኺ.ኺኼ዁ ኼ.ኽዂ ⋅ ኻኺᎽᎶ ኺ.ኽዀ ኺ.ኺኻዃ ኻኺኽ

n/a = not applicable.

simple, providing a clear correlation between Ω፬,፦ፚ፱ and 𝜏ፚ፫፜ . These statistics quan-
tify 𝑞፬-lifeline fluctuations and form a basis for representative scale-down simulation.
This scale-down analysis was conducted in chapter 6, section 6.4.3, based on inverse
transform sampling. Representative lifelines were shown for both 𝐶፱ = 55 g፝፰/kg
and 𝐶፱ = 27.5 g፝፰/kg. The latter may be beneficial for operation of the scale-down
simulator, but required a compromise in the rate-of-change experienced by the micro-
organisms. In this section, we use the 9−pool model to evaluate the effect of this
compromise on the microbial metabolism, first assuming instantaneous mixing, and
latter including non-instantaneous mixing in a CFD simulation of the lab-scale reac-
tor. Note instantaneous mixing means pulses are instantaneously spread in space;
concentration variations will still occur in time due to pulsed feeding.

Instantaneous mixing
Both for ID-SD-55 and ID-SD-27, 5 statistically representative lifelines were generated
and analyzed. Table 7.5 lists the metabolic response in 𝑞፩ and 𝜇 compared to TU-B.
Additionally, the exposure to excess (E), limitation (L) and starvation (S) conditions,
based on the regime definitions of Haringa et al. [10], is reported. Case ID-SD-55
slightly over-estimates exposure to excess conditions. This results in a higher 𝜇, mildly
lower 𝑞፩ and minor offsets in the intra-cellular pool sizes (fig. 7.5), but overall we
conclude that both cases excellently represent the large-scale simulation. The good
performance of ID-SD-27 follows from the notion that the total uptake within a pulse
of duration 𝜏ፚ፫፜ , ∫

Ꭱ,ፚ፫፜
ኺ 𝑞፬𝑑𝜏, is equal between the two pulse administration methods,

and the turnover time of 𝑋፠፥፲ is sufficiently low to yield similar responses in 𝑋፠፥፲ , as
is visible in the instantaneous 𝑋፠፥፲ variations shown in fig. 7.5. If the turnover time of
𝑋፠፥፲ was well below 𝜏ፚ፫፜ , the metabolic response is expected to differ between the
cases, and lowering 𝐶፱ might not be allowed. We hence regard the possible reduction
in 𝐶፱ as a case-dependent effect, and it should be evaluated as such. In case no
predictions regarding the metabolic response are available, a scale-down simulator
should in any case aim to produce the best possible replication of the extra-cellular
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Figure 7.5: Model prediction for ideal-mixed scale-down simulators ID-SD-55 and ID-SD-27. The CFD results
(TU-B) are averaged over ኻኺኺ tracks, the scale-down simulations averaged over ኿ realizations. In both cases
ፗᑘᑝᑪ is smoothed with a moving average filter over ኻዂኺኺ s to remove rapid variations and yield average
levels. The dashed lines represent instantaneous values in ፗᑘᑝᑪ for a single realization. Intra-cellular
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Table 7.5: Comparison of the instantaneous mixing cases ID-SD-27 and ID-SD-55 with CFD simulation TU-B.
Inst. ዆ instantaneous feed, Grad. ዆ gradual feed. Changes ጂ፪ᑡ are reported with respect to the ideal
mixing benchmark ID-9P. Regimes definitions for ፄ (excess), ፋ (limitation) and ፒ (starvation) are from [10].

Case ፂᑩ feed ᎙ ፪ᑡ ጂ፪ᑡ ፄ ፋ ፒ
(g/kg) (hᎽᎳ) (molᑡ/ፂmolᑩ/h) % % % %

TU-B ኿኿.ኺ - ኺ.ኺኽኽኺ ኼ.ዃዃ ⋅ ኻኺᎽᎶ ዅኽኻ.ዂ% ዀ.ዂ ኽዀ.ኼ ኿዁.ኺ
ID-SD-55 ኿኿.ኺ grad. ኺ.ኺኽዂዀ ኼ.ዃኺ ⋅ ኻኺᎽᎶ ዅኽኽ.዁% ዃ.ዂ ኽኼ.዁ ኿዁.኿
ID-SD-27 ኼ዁.኿ inst. ኺ.ኺኽኾኺ ኼ.ዃኽ ⋅ ኻኺᎽᎶ ዅኽኽ.ኼ% ዂ.ኺ ኽኾ.ኼ ኿዁.ዂ

environment (𝑞፬-lifelines), and no compromises in 𝐶፱ should be made.
The ability to use the metabolic model to investigate the predicted effect of com-

promises in the extra-cellular domain presents a first step towards an alternative scale-
down philosophy, where the goal is to maintain the intra-cellular response despite
(highly) simplified extra-cellular fluctuations. We explore this philosophy in appendix
B, but do stress indulging in such simplifications makes the scale-down routines prone
to unforeseen metabolic responses. We hence regard this possibility most suitable for
metabolic model verification (is the metabolic response as predicted, or are there in-
deed unforeseen effects, which means the metabolic model is incomplete?) in the
relevant range, and not for direct evaluation of the large-scale metabolic response.

CFD verification
CFD simulations of a SD-simulator were conducted with 𝐶፱ = 27.5 g/kg to probe
the possible impact of non-instantaneous mixing. Instantaneous spatial heterogene-
ity again depends on the Damköhler number. Here, 𝜏፜።፫፜ ≈ 0.5 − 3.3 s (for 600 and
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100 RPM, respectively). As the concentration field is now dynamic, we employ a more
general definition of the reaction time, 𝜏፫፱፧ = ⟨𝐶፬⟩/⟨𝑅፬⟩ = (⟨𝐶፬⟩ + 𝐾፬)/(𝑞፬,፦ፚ፱𝐶፱)
with ⟨𝐶፬⟩ the volume average substrate concentration. Right after pulse administra-
tion, ⟨𝐶፬⟩ >> 𝐾፬ and 𝐷𝑎 << 1: this implies the pulse will be mixed before ⟨𝐶፬⟩ is
reached and thereby 𝜏፫፱፧ drops significantly, leading to a homogeneous broth and
equal experiences by all micro-organisms in the domain.

This is reflected in the model response for both case CFD-SD-600 and CFD-SD-600.
The 𝑞፬ lifelines in fig. 7.6 B (600 RPM) and C (100 RPM) show evidence of spatial het-
erogeneity directly following pulse administration, which for case CFD-SD-600 rapidly
wears off, meaning the lifeline under the instantaneous mixing assumption is retrieved
(fig. 7.6 A). The heterogeneous period lasts longer for CFD-SD-100, but eventually the
population synchronizes, and the metabolic response is hardly affected (fig. 7.6, D). To
comment on the role of non-ideal mixing in (aerated) SD-simulators with a high liquid
viscosity 𝜇፥ , experimental measurements are required, but the results for CFD-SD-100
imply very poor mixing is required to yield significant heterogeneity in the population,
and to yield a different metabolic response compared to the pulse-profile under the
assumption of instantaneous mixing. This stems positive for practical application of
fluctuating-feed SD-simulators.

7.3.3. Part III: Design optimization
Part I revealed that reducing the frequency of 𝑞፬ variations reduces the amplitude
of 𝑋፠፥፲ fluctuations, which reduces inhibition of 𝑞፩. Cronin et al. reduced 𝜏ዃ኿ by a
factor 2 − 2.5 by placing the feed point just below the top impeller [40, 169, 295].
We find 𝜏ዃ኿ = 23 s (non-aerated, 𝑀𝑈 − 𝐴/𝐵) when the feed is placed in the top-
impeller discharge stream, a 2.7-fold reduction in 𝜏ዃ኿ compared to the top feed. This
exceeds expectations and may be excessively low for a true penicillin fermentation
when rheology and aeration are accounted for, but we accept this result for the sake of
demonstration. The pool response for simulations MU-A and MU-B is reported in fig.
7.7.

Compared to TU-A, the 𝑞፬-lifelines for MU-A show a lower fluctuation amplitude,
and strong reduction in fluctuation duration (fig. 7.7, top). This translates to much
milder 𝑋፠፥፲ variations that directly relate to a higher 𝑞፩ for MU-A/B cases (table 7.6).
Again, 𝑋፠፥፲ and hence 𝜇 remains virtually equal between the cases. With a 𝑞፩ loss
of 8.6% compared to ID-9P, where the top-feed case with equal 𝜏፜።፫፜ , TU-A, gave a
loss of 17%. The reduced exposure to starvation conditions is furthermore observed
to yield a higher 𝑋፬፭፨ for 𝑀𝑈 − 1 cases. An alternative process improvement may be
to increase 𝐾፬ by modifying the glucose transporter, thereby reducing sensitivity to 𝐶፬
fluctuations. We attempted this by setting 𝐾፬ = 0.001 mol/kg [16] based on yeast,
but the sensitivity of the storage equations to 𝐶፬ resulted in an uncontrolled increase
of 𝑋፬፭፨, quenching 𝑋፠፥፲ . A better understanding of storage dynamics is required to
further assess this option.
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Figure 7.6: Particle tracks in scale-down simulation CFD. A: instantaneous mixing simulation. B: CFD-SD-
600, 3 tracks. C: CFD-SD-100, 3 tracks. D: Response of intra-cellular pools in the ኽ L lab-scale reactor
simulations. Black line: instantaneous mixing results. Red line: CFD-SD-600, average over ኿ኺኺኺ tracks.
Blue line: CFD-SD-100 simulation, average over ኿ኺኺኺ tracks. Intra-cellular pools ፗᑘᑝᑪ, ፗᐸᐸ, ፗᑤᑥᑠ and ፗᑇᐸᐸ
have units μmol/gᑕᑨ. ᎙ has units hᎽᎳ. ፪ᑡ has units mol/ፂmolᑩ/h. All other pools are dimensionless.

7.3.4. Part IV: Industrial-scale Fed-batch Simulation
The long time metabolic response in an industrial fed-batch reactor is simulated; the
feed profile is reported in fig. 7.10 A. 𝐶፱ and 𝜇 are well captured ((fig. 7.10 B and C,
resp.), although an ideal-mixed simulation with model of Douma et al. [236] (𝐼𝐷−𝐹𝐵)
better captures the final 20 h. The 9-pool CFD simulation, however, performs superior
in predicting the gradual reduction in 𝑞፩ (fig. 7.10 D). The initial offset results from
the lower peak 𝑞፩ prediction by the 9-pool model around 𝜇 = 0.03 hዅኻ.

The trends in intra-cellular pools (fig. 7.10, E) reveal major temporal changes in
the pool averages (solid lines), as well as the emergence of significant heterogeneity
within the population; the dashed lines in fig. 7.10, E represent the pool size standard
deviation over 2500 tracks. The decreasing trend in all enzyme pools is a consequence
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the variations. All other solid lines represent are averages of 100 parcels. Intracellular pools ፗᑘᑝᑪ, ፗᐸᐸ,
ፗᑤᑥᑠ and ፗᑇᐸᐸ have units μmol/gᑕᑨ. ᎙ has units hᎽᎳ. ፪ᑡ has units mol/ፂmolᑩ/h. All other pools are
dimensionless.

of the reduction in 𝜇 to 0.01 h; the drop in𝑋ፄኽኼ reduces the 𝑃𝐴𝐴 export capacity, giving
rise to a strong 𝑃𝐴𝐴 build-up. Similarly, a buildup in 𝑋፬፭፨ is observed. As before, the
AA pool is least sensitive, although it undergoes some changes in later stages. The
strong rise in population heterogeneity roughly coincides with the switch to a constant
feed rate 𝐹፬ (g/kg/h).

The high degree of heterogeneity in the enzyme pools may be surprising at first
glance; their long adaptation timescale strongly exceeds 𝜏፜።፫፜ , meaning all parcels
are expected to observe highly similar 𝐶፬ fluctuations during the cultivation. The
link between 𝜇 and 𝑋ፄ,ኻኻ plays a key role here; a parcel residing in a famine zone
(𝜇 ≈ 0) for a prolonged time undergoes a reduction in 𝑋ፄ,ኻኻ. This means that this
parcel’s 𝑞፬ is lower than the population average following this starvation exposure,
due to the reduced uptake capacity. This lower 𝑞፬ gives rise to a comparatively lower
𝜇, which further lowers 𝑋ፄ,ኻኻ compared to the population mean: the initial disturbance
is amplified.

This behavior is shown for 2 lifelines in figure 7.8; the black line is among the
fastest growers, the red among the poorest. A prolonged exposure to starvation con-
ditions in the period 𝑡 = 10.6 − 10.9 h for the red parcel caused a period with 𝜇 = 0,
reducing 𝑋ፄ,ኻኻ. In the subsequent period both parcels have roughly similar experi-
ences, but the lower 𝑋ፄ,ኻኻ causes the red track to diverge. Once the feed is switched
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Table 7.6: Comparing yields and productivity for the 9-pool model [226] between an ideal mixed situation,
and several non-ideal CFD simulations coupled with the 9-pool model.

case ፅ ᎙ ፪ᑡ ፘᑤᑩ ፘᑤᑡ
(molᑤ/ፂmolᑩ/h) (hᎽᎳ) (molᑡ/ፂmolᑩ/h) (ፂmolᑩ/ፂmolᑤ) (molᑡ/molᑤ)

IDM ኺ.ኺኻኼ኿ ኺ.ኺኽኽ ኾ.ኾኺ ⋅ ኻኺᎽᎶ ኺ.ኾኾ ኺ.ኺኽ኿
TU-1A ኺ.ኺኻኼ኿ ኺ.ኺኽኽ ኼ.ዃዃ ⋅ ኻኺᎽᎶ ኺ.ኾኾ ኺ.ኺኼኾ
TU-1B ኺ.ኺኻኼ኿ ኺ.ኺኽኼ ኽ.኿዁ ⋅ ኻኺᎽᎶ ኺ.ኾኽ ኺ.ኺኼዃ
MU-1A ኺ.ኺኻኼ኿ ኺ.ኺኽኺ ኽ.ዂኽ ⋅ ኻኺᎽᎶ ኺ.ኾኺ ኺ.ኺኽኻ
MU-1B ኺ.ኺኻኼ኿ ኺ.ኺኽኺ ኾ.ኺኼ ⋅ ኻኺᎽᎶ ኺ.ኾኺ ኺ.ኺኽኼ
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Figure 7.8: Heterogeneous lifelines for ኼ parcels in the fed-batch simulation TU-B, conducted in part IV. Start-
ing off at similar ፗᐼ,ᎳᎳ, a prolonged starvation period (top left panel) for the red track causes a downward
spiral in ፗᐼ,ᎳᎳ (top right panel for short timescale, mid-left panel for full simulation span), which causes
divergence in all other pools compared to the fast-grower black lifeline. Intra-cellular pools ፗᐸᐸ, ፗᑤᑥᑠ and
ፗᑇᐸᐸ have units μmol/gᑕᑨ. ᎙ has unit hᎽᎳ. ፪ᑡ has unitsmol/ፂmolᑩ/h. ፗᑓᑚᑠ is the parcel biomass content
in kg. All other pools are dimensionless.

from increasing to steady, the substrate availability per parcel starts dropping more
rapidly, accelerating the divergence. The rapidly decreasing average 𝑋ፄ,ኻኻ causes the
mean substrate concentration 𝐶፬ to stabilize, and even slightly increase after a while.
The organisms that enter this stage with high 𝑋ፄ,ኻኻ, such as the black parcel in fig. 7.8,
now thrive: while the mean population experiences a decrease in substrate availabil-
ity, they experience an increase. Not only 𝑋ፄ,ኻኻ is controlled by 𝜇, but also the 𝑃𝐴𝐴
exported 𝑋ፄ,ኽኼ and storage control enzyme 𝑋ፄ,ኾ. Both enzymes are present in reduced
levels for the poorly growing parcel, causing accumulation of PAA and storage mate-
rial. The latter can physically be interpreted as preparing a buffer for true starvation,
at the cost of growth and production.

A prolonged exposure to excess conditions after a starvation period may reverse
the offset, but the further the parcel has deviated from the population average, the
more unlikely this becomes. Figure 7.9, C shows that the parcels with 𝑋ፄ,ኻኻ slightly
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below average after 20 h exclusively end at the bottom of the 𝑋ፄ,ኻኻ distribution after
70 h. Having a high 𝑋ፄ,ኻኻ after 20 h appears to be a prerequisite for ending among the
most rapid growers, but it by no means a guarantee: many parcels that did well after
20 h did end up with low 𝑋ፄ,ኻኻ eventually.

The parcels with high 𝑋ፄ,ኻኻ are the fastest growers (fig. 7.9 A); some acquire dou-
ble the population average biomass over the cultivation time, whereas for the poorest
growers 𝜇 ≈ 0 in the late process stage. As a low 𝜇 has a negative effect on 𝑞፩, the
fastest growers are also among the best penicillin producers (fig. 7.9 B), whereas the
poor growers mostly accumulate storage material. Whether or not the predicted de-
gree of heterogeneity is realistic requires an experimental scale-down study where
population heterogeneity is probed on the single-cell level [13, 296]. The simulations
predict notable heterogeneity enzyme levels, which may provide suitable targets for
fluorescent marking for experimental quantification. Besides bench-scale scale-down,
the use of microfluidic tools [297, 298] with highly controllable substrate feed rates
may be a promising route towards studying the effects of substrate variations on en-
zyme expression and population heterogeneity.

7.4. Concluding remarks
We reported on the use of coupled hydrodynamic-metabolic simulations to assess
large-scale fermentation processes in four parts: I) industrial-scalemetabolic response
analysis, II) scale-down design and verification, III) design optimization and IV) industrial-
scale fed-batch analysis. Combined, these steps provide a methodology for the anal-
ysis, scale-down and optimization of large-scale fermentation processes.

We combined the 9−pool metabolic model for P. chrysogenum of Tang et al. [226]
with CFD simulations of a 54 mኽ fermentor [10]. In part I we studied the influence
of non-ideal mixing in this reactor using a 1−way coupled chemostat-simulation ap-
proach, which facilitates rapid assessment of the metabolism. Within the varied pa-
rameter space, the penicillin yield loss was 18 − 45%, which correlated linearly with
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Figure 7.10: Response profiles of simulation TU-FB, comparing industrial data (diamonds), CFD response
(black line) and an ideal-mixed black-box simulation (red line). A: Feed rate per unit reactor volume. B:
Biomass concentration. C: Growth rate. D: Penicillin production. Panel E shows the response of ዀ slow-
responding intra-cellular pools, with the solid line the mean and dashed lines ±ኻ st. dev.

the Damköhler number. The yield loss was a result of high intra-cellular glycolytic lev-
els, which relate to a higher circulation time (longer exposures to excess conditions) as
well a higher substrate uptake capacity/substrate affinity. These observations provide
targets for reactor- and metabolic optimization.

Numerical evaluation (part II) of the scale down simulator designs presented in
section 6.4.3 showed the proposed scale-down design well captured the metabolic re-
sponse observed in part I. Capturing the rate-of-change in the environment from the
microbial point of view requires operating the scale-down simulator at the industrial
biomass concentration 𝐶፱ = 55 g/kg. Assessment of the scale-down simulator de-
sign with the 9−pool model predicted it is possible to compromise the rate of change
without changing the metabolic response, provided the overall fluctuation duration
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and magnitude remain unchanged. This allows for a factor 2 reduction in 𝐶፱ , which
will benefit practical operation. We do emphasize this is a case-dependent prediction;
the general best practice remains to match 𝐶፱ between the scales for truthful replica-
tion of the 𝑞፬-lifelines, especially if no metabolic predictions considering the impact
of operational compromises can be made.

CFD simulations of a 3 L lab scale-down simulator with pulsed feeding showed
non-instantaneous mixing hardly effected the metabolic response; both at 600 and
100 RPM (circulation times of 0.55 and 3.3 s) the metabolic response was equal to
that when instantaneous mixing was assumed. This gives a relatively wide operating
window for the scale-down simulator, which provides confidence that the proposed
lab-scale simulators are experimentally feasible; we do stress this window has to be
evaluated case-by-case.

In part III change the substrate feed location in the industrial-scale fermentor from
the vessel top to the top-impeller discharge stream to improve substrate distribution.
The yield loss for the most favorable case was reduced from 18.4% to 8.6%. This
shows the potential for coupled hydrodynamic-kinetic simulations for in-silico design
optimization. To conclude, we present a 60 h fed-batch study in part IV, showing
good agreement in 𝜇 and 𝑞፩ compared to industrial data. Significant intra-cellular
heterogeneity was observed, which was attributed to the interplay between 𝜇 and the
glucose transport capacity 𝑋ፄ,ኻኻ. The results illustrate the importance of simulating
2−way coupled fed-batch dynamics to capture population heterogeneity. We do stress
this does not mean the 1−way coupled simulations are useless; 1−way coupling is
preferred for a quick assessment of the likely impact of design changes. We advise that
the most promising cases observed with 1−way coupling are simulated with 2−way
coupling (and/or experimentally assessed) to verify their performance when the effect
of population heterogeneity is included.

Altogether, we outlined the different roles of coupled hydrodynamic-metabolic
modeling in the assessment and improvement of large-scale fermentor designs. In
future work, the proposed scale-down simulators are to be tested to verify model pre-
dictions; the predicted yield loss and population heterogeneity provide clear targets
for assessment and model verification. There is room for improvement in both the CFD
models and dynamic metabolic models, which would greatly benefit from a broader
availability of industrial-scale data for verification. Such improvements act towards in-
creasing the accuracy and reliability of the here-shown coupled CFD approach, but will
not influence the methodology in itself. We believe the here-presented methodology,
combined with practical scale-down simulation, opens up a new approach towards ra-
tional fermentor design and scale-up, accounting for the effect of large-scale reactor
heterogeneity.
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Conclusions and outlook

The growing market for biological platform chemicals, bulk pharmaceuticals and food
additives raises interest in bioprocesses, and calls for ever larger fermentation capac-
ities. Arthur Humphrey [1] called bioreactor scale-up ”more an art than a science”,
due to the complex interplay of physical phenomena at different scales, often relat-
ing to transport issues: mixing, mass-transfer and/or cooling. Inadequate transport
capacities manifest themselves in large scale gradients, in substrate, pH, dissolved
oxygen/𝐶𝑂ኼ, shear rates, temperature, and so on. The complexities of bio-reactor
scale-up arise from the interplay between these gradients and the metabolism of the
organism. Metabolic responses to heterogeneous extracellular conditions may be re-
versible, such as substrate inhibition, or irreversible, or may come as irreversible vi-
ability losses. In some cases, the effect may be positive [8], but frequently, it is not
[226]. It is this complexity that brings uncertainty in bioreactor scale-up.

Much has changed since the statement by Humphrey. Scale-down simulation be-
came a much more prominent tool [43, 56], although the underlying concepts are
older [41, 52, 53, 299]. Metabolic adaptation to extracellular variations is studied
on long [49] and short [17, 44] timescales, as are population heterogeneity triggers
[13], etcetera. Scale-down studies allow for understanding and quantification of the
metabolic response to large-scale heterogeneities, thereby contributing to more ra-
tional and reliable scale-up procedures.

Compartment models [9] and later CFD simulations [16] allow reactor assessment
beyond what can be measured experimentally, with ever-increasing resolution. Al-
though requiring some approximations and simplifications, large-scale bio-processes
can be simulated with reasonable accuracy [16, 30, 59, 61], allowing equipment-scale
gradients to be captured [10, 16, 19, 20, 32], and population heterogeneity to be eval-
uated [19, 21, 23, 26–28, 281]. Lagrangian particle tracking methods allow to study
how organisms experience their surroundings [10, 20, 21, 23, 31]. Simulation tech-
niques allow to quantify large-scale conditions from the microbial point of view, and
when metabolic models are available, to predict the metabolic impact of large-scale
heterogeneity.

Combining these two fields offers an obvious perspective: CFD simulations can be
used to design scale-down simulations representative of industrial conditions, whereas
the metabolic insight from scale-down simulations can be used to develop metabolic
models and predict the impact of metabolic responses in industrial scale-processes.
This is the scope of the hé project.

161



8

162 8. Conclusions and outlook

8.1. Conclusions
8.1.1. CFD implementation
Guidelines and simplifications
Implementation and metabolic coupling We have successfully implemented the
methodology to couple metabolic dynamics to a parcel (virtual particle) phase, as
proposed by Lapin et al. [21, 23], in ANSYS FLUENT. For free-flowing microbes (low-
Stokes number) massless parcels tracking is favored, which required implementation
of a user-defined reaction model, as reported in chapter 4. The discrete, finite num-
ber of parcels leads to numerical gradients in biomass concentration and thereby (for
example) substrate uptake, unless even the smallest grid-cells contain 𝑂(10) parcels
at all times, which is computationally infeasible. The effect of numerical biomass gra-
dients can be mitigated by distributing the parcel-grid interaction of each individual
over a larger volume. A cruder, simpler option is choosing the number of parcels suf-
ficiently high so that biomass gradients do exist, but their effect on the other fields is
small due to parcel motion and physical mixing.

The latter approach was chosen here. Based on the timescales of substrate up-
take and turbulent distribution within the parcel swept volume (total reactor vol-
ume/number of parcels), we derived an expression to compute the minimum number
of parcels required [31]. This number is in the same order of magnitude as the number
of grid-cells typically, which is computationally feasible. We reported guidelines for
the timestep size in coupled hydrodynamic-metabolic studies, and showed that use of
the computationally cheaper multiple reference frame (MRF) impeller model instead
of sliding mesh (SM) yielded a similar degree of accuracy in a simple 1-impeller tank.

Simplified uptake models Depending on the situation, the used uptake model may
be simplified, graphically outlined in figure 8.1. When rapidly changing intra-cellular
pools influenced uptake [21, 23], the local substrate uptake depends strongly on the
local intra-cellular composition, which varies through the domain; accounting for this
requires 2-way coupling and a large number of parcels [31]. In case uptake is solely
controlled by the local extra-cellular environment (such as Monod kinetics), it can
be fully coupled to the Eulerian phase with the Lagrangian phase merely ’reading’ the
environment (1-way coupling). When uptake is controlled by enzymatic pools (on long
timescales), the population will be heterogeneous, but to a similar degree everywhere
in the domain. In that case, simpler averaged-2-way coupling can be used, where
the average uptake capacity of the population is computed every timestep. which
is then assumed homogeneous in the reactor. Whereas full 2-way coupling requires
sufficient parcels to capture heterogeneity locally, the average-2-way coupling only
needs to do so globally, requiring much lower 𝑁፩. With 𝑂(10ኽ) parcels it is feasible to
run such simulations near-real time on desktop computers: a flow-time resolution of
5−10 h per day could be achieved near the end of this project. For comparison, using
𝑂(10኿) parcels with sliding mesh impeller modeling allows for tens of seconds to be
resolved in this timeframe. This does mean that situations with local heterogeneity,
as those simulated by Lapin et al., are much more time-taking to simulate. Fed-batch
simulations of such systems for full fermentation times are not yet feasible.
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Figure 8.1: Illustration of coupling approaches used in this work. Left: if substrate uptake is only influenced
instantaneously by the extra-cellular domain (the uptake capacity ፪ᑤ,ᑞᑒᑩ is constant and homogeneous), 1-
way coupling is used. Middle: If there is heterogeneity within the population, but the population is similar at
each point in the tank, ፪ᑤ,ᑞᑒᑩ is assumed to depend on the average overall population composition, ፗᑚᑟᑥ,
and is regarded spatially homogeneous but temporally variable. ፍᑡ should suffice to capture the global
population distribution. Right: In case the population is heterogeneous both locally and globally, ፪ᑤ,ᑞᑒᑩ
may vary locally and should be based on the local composition ፗᑚᑟᑥ. ፍᑡ should suffice to capture the local
population distribution, and can be calculated from eq. ኾ.ዀ.

Bioreactor physics
Fermentor simulation requires the combination of models for many phenomena. Ide-
ally, the following aspects ought to be accounted for:

• Macromixing (impeller interaction)

• Mesomixing (Feed mixing)

• Micromixing (Film diffusion, intra-pellet mass transfer,...)

• Rheology (typically shear thinning, turbulence/aeration interaction)

• Aeration (interaction with rheology, swarm effects, population dynamics)

• organism/pellet motion (turbulent behavior, settling, ...)

• Inter-phase mass transfer (𝑘ፋ𝑎 models)

• Heat transfer

All of these issues have been studied individually in many contexts. However, the
interaction between different phenomena (turbulence, aeration, rheology in particu-
lar), and possibly empirical, case specific nature of models (for example the effect of
surfactants on 𝑘ፋ𝑎), mean that routine usage of CFD models for bioreactors with quan-
titative predictive purposes is not generally feasible currently. Developments in the
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above-mentioned aspects were considered out of scope in this work, the developed
analysis methods work independent of the applied level of simulation detail.

One exception that was studied in detail is single-phase multi-impeller mixing.
Mass transfer between the compartments around individual impellers is underesti-
mated by RANS simulations of Rushton-stirred tanks (chapter 3). This stems from
an under-estimation in turbulent kinetic energy between the compartments, for both
sliding mesh and multiple-reference frame simulations, as well as the inability to cap-
ture macro-instabilities for the latter. As a consequence, the mixing time is over-
estimated by these models. Practically, this is often solved by reducing the turbulent
Schmidt number, but this is a situation-dependent patch rather than a structural so-
lution, thereby limiting predictive value of the simulations.

Aeration (air-water, Newtonian broth) with a high hold-up was reasonably captured
by combining the universal drag law and the Luo/Svendsen [77] population balance
model in FLUENT (chapter 5). Interphase mass transfer can be reasonably assessed for
air-water cases [61], although the Luo-Svendsen population balance kernels predict
high bubble sizes [77]. The applied drag modeling strategy works well for high gas
fractions, but at lower gas fractions turbulence interaction and modulation plays a big
role [191, 192, 195, 200]; this makes themodeling approach case dependent. Together
with the required case-by-case Schmidt number tuning for the mixing time, this limits
predictive value of the simulations. Attempts to include rheology were not satisfactory,
especially when combined with aeration. We did not consider meso- or micro-mixing
effects in this work.

Overall, the global features of large-scale fermentors with Newtonian character-
istics (gas holdup, mixing time) can be captured within ≈ 25% of their experimental
value with the used RANS approach, and the substrate gradient is captured in the
correct order of magnitude for the case where validation data was available. This is
certainly a step ahead compared to ideal mixing assumptions, and suffices to com-
ment on possible productivity loss in large-scale fermentors, although quantitative
statements come with a margin of error. In terms of the underlying physics, and re-
ducing this error margin, there is still room for improvement considering the physics
of bioprocess simulation.

8.1.2. Lagrangian analysis
Compartment formation around the impellers strongly influences the substrate gra-
dient. Unless the timescale of substrate uptake significantly exceeds the reactor cir-
culation time, there will be a large-scale gradient. In tall multi-impeller bioreactors,
flow compartments may form around each individual impeller; then mixing inside the
compartment around a single impeller is fast compared to uptake, the (substrate) gra-
dient manifests between the compartments. When uptake is faster than mixing inside
these compartments, there may be a strong intra-compartment gradient. The former
situation was observed in the S. cerevisiae simulations, the latter with P. chrysogenum.
With a strong inter-compartment gradient, discrete jumps in the environment are ex-
perienced by micro-organisms, with a near-homogeneous environment between the
jumps. A strong intra-compartment gradient results in continuous but smooth varia-
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Figure 8.2: Lagrangian analysis methods used in this work. Left: Regime analysis, based on regions in
፪ᑤ-space with a consistent metabolic response. Middle: Arc-analysis, based on the duration between sub-
sequent crossings of a reference value in ፪ᑤ. Right: Fourier analysis, seeking the dominant fluctuation
frequencies when dominant circulation trajectories exist. In this work, methods were illustrated with ፪ᑤ
variations but they may similarly be applied to other parameters.

tions, as described in chapter 5.
The tank circulation time distribution provides the relevant timescales for fluctu-

ations on the largest scale, the residence time distributions of the individual com-
partments for more rapid, lower amplitude variations. Each compartment acts as an
individual stirred vessel, with a circulation time distribution 𝑝(𝑡) = exp(−𝑡/𝜏።), 𝜏።
being the average compartment residence time. Variations at more rapid timescales
are introduced by turbulence in case there are intra-compartment gradients.

From the practical perspective of scale-down, the whole tank or all individual com-
partments may not be the most suitable division for studying fluctuation behavior. We
developed several analysis methods to quantify the magnitude and duration of fluc-
tuations for more applicable statistics. An overview of methods is given in figure 8.2.

In the regime methodology the domain is divided into several virtual compart-
ments, defined in uptake rate (𝑞፬) space of the relevant metabolite, typically based
on a consistent metabolic response such as overflow, starvation, substrate inhibition,
etcetera. The regime residence time distribution describes the duration of exposure to
each regime, the magnitude should be chosen as a representative value, such as the
mean 𝑞፬ or 𝑞፬ = 0 for a starvation regime, which is evaluated per case. Alternatively,
complementary arc-analysis can be used to quantify intra-regime fluctuations.

Arc analysis, used together with regime analysis or on its own, quantifies 𝑞፬ fluc-
tuations compared to a single reference value 𝑞፫፞፟ in the relevant parameter space.
The duration between subsequent 𝑞፫፞፟ crossings quantifies the fluctuation time, the
magnitude is given by the most extreme value in 𝑞፬ along the (smoothed) arc trajec-
tory. Correlating duration and magnitude provides information about compartmen-
talization of the gradient; inter-compartment gradients exhibit magnitude jumps at
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the intra-compartment circulation time. A smooth correlation hints at a strong intra-
compartment gradient, and the duration between magnitude and time follows the
relation between uptake and residence time in a plug-flow reactor, illustrating that
poorly mixed tanks locally approach pipe-flow behavior, albeit with a distributed res-
idence time.

The highly distributed circulation behavior in stirred tanks means that no domi-
nant fluctuation frequencies exist within the domain, hence Fourier analysis provides
no directly applicable information. Additional simulations of an airlift loop reactor
(appendix E) demonstrated the applicability of Fourier analysis in situations with a
narrower circulation distribution. As the above-mentioned analysis methods are typi-
cally conducted towards the design of scale-down simulators based on the fluctuation
statistics, the type of scale-down reactor may also play a role in deciding the preferred
analysis methodology. Based on the analysis conducted in this work, a selection dia-
gram for the preferential (but not necessarily the only suitable) method is outlined in
figure 8.3.

8.1.3. Scale-down design
The quantified fluctuation statistics provide a novel basis of design for scale-down
simulators, that reflect the industrial-scale environment. Traditionally, scale-down
simulators were often designed without reference to industrial mixing conditions [49],
or based on estimations of the vessel mixing time [44]. Our analysis shows that fluc-
tuations typically occur at the circulation timescale and below (chapter 5). Sweere et
al. [41, 52, 53, 299], among the first to use scale-down simulators, got it right in this
respect.

Based on Lagrangian CFD data, we can impose representative fluctuation time
distributions rather than fixed-period fluctuations in single-vessel scale-down sim-
ulators, and determine the size and residence time of individual compartments in a
multi-vessel scale-down simulator. Obtaining a perfect reflection of the large scale is
unfeasible, but the design methods in chapter 6 capture the essential timescales of
large-scale fluctuations in liter-scale reactors. The general approach is to systemati-
cally fix the five degrees of freedom for scale-down design reported by Noorman [15]
using the available CFD data (chapter 5).

The rate-of-change in the (substrate) environment is essentially controlled by con-
sumption/production by the micro-organisms. When the consumption timescale is
much lower than that of circulation, the consumption rate of change is followed closely
everywhere. With better mixing, the rate of change is close to 0 at many locations,
but the concentration jump between two compartments may give a much higher local
rate-of-change, the magnitude of which still depends on the rate of consumption. In
order to capture the observed rate of change, the biomass concentration hence needs
to be at least equal between the large and the small scale. Fed-batch experiments
frequently use high biomass concentrations (𝐶፱), but chemostat simulators typically
operate at 𝐶፱ ≈ 5 g/kg, which gives a poor reflection of reality as reducing 𝐶፱ inad-
vertently results in milder concentration variations.

High 𝐶፱ may, due to unfavorable rheology and higher consumption rates, lead to
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Figure 8.3: Selection diagram for lifeline analysis methods. Top shows some considerations for choosing a
single or multi-vessel scale-down (list by no means complete). Gradient-induced population heterogene-
ity means heterogeneity induced by different individuals having different experiences in the reactor (not
heterogeneity in general). Operational challenges will be most prominent with unfavorable rheology, al-
though sufficiently fast pumping can always be a constraint with a multi-vessel approach. The bottom
shows a selection chart for the preferred analysis method (this does not mean other methods are necessarily
inapplicable for the described situations).
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inadequate mixing and mass-transfer at the lab scale. Furthermore, pumping in multi-
vessel geometries may become problematic. In some cases a reduction in 𝐶፱ may be
possible, even though this affects the agreement in rate of change. Using a coupled
metabolic model, we showed that a factor 2 decrease in 𝐶፱ (P. chrysogenum, single-
vessel scale-down) did not lead to a different metabolic response by applying instan-
taneous rather than gradual pulse-feeding. This possibility is highly case-dependent,
and should be evaluated as such. An alternative may be to match the intra-cellular
lifelines instead of the extra-cellular environment on a scale-down simulator, an op-
tion that is explored in appendix G. Such an approach may come with a more favorable
operating window, but we stress it is no full replacement of the 𝑞፬-lifeline based extra-
cellular scale-down methodology; as scale-down based on intra-cellular lifelines may
simplify some extra-cellular events, there is a risk of unforeseen responses.

8.1.4. Coupled metabolic-hydrodynamic simulations
Combined hydrodynamic-metabolic simulations for P. chrysogenum with the model of
Tang et al. [226] showed that extremes in the glycolitic intermediate pool have a
strong repression effect on the synthesis of penicillin-pathway enzymes, thereby af-
fecting production. The mean growth rate could also affect production, but only in
extreme situations. Depending on the lower/upper bound circulation time and ki-
netic assumptions, the predicted yield loss was 18 − 46% compared to ideal mix-
ing. By moving the feed to the top impeller discharge stream, this was reduced to
9% in the most favorable case. The structure of the metabolic model did not allow
for evaluation of strong changes in uptake affinity, but in principle such changes can
be similarly proposed. While further improvements in the simulation approach may
change the numbers somewhat, the general observations are expected to hold, and
the approach shows the promise of the coupled hydrodynamic-metabolic simulation
approach (chapter7).

The approach was furthermore used to numerically evaluate scale-down designs,
as partially discussed in the previous section. The single-vessel scale-down proto-
cols proposed in chapter 7 exhibit good agreement in yield and growth rate compared
to the large-scale CFD simulations. CFD simulations of the lab-scale showed mixing
times of 2.2 − 13.2 s on the lab-scale had no significant effect on the results, which
shows mixing may not be a large issue for representative scale-down. To conclude, a
60 h flow-time simulation of a fed-batch process favorably compared with experimen-
tal data in terms of 𝑞፩ over time. Significant heterogeneity was observed within the
population with respect to the uptake capacity 𝑞፬,፦ፚ፱ , which was self-amplifying due
to the relation between the uptake 𝑞፬, growth rate 𝜇 and transport enzyme capacity
𝑋ፄ,ኻኻ. These results illustrate the prospects of coupled simulations.

8.2. Outlook
In this thesis, we have explored the use of Euler-Lagrange simulations for rational
bioreactor scale-down and scale-up. In short, we have made progress considering
the use of coupled hydrodynamic-metabolic simulations to evaluate the performance
of large scale bioreactors, the use of representative scale-down simulators to verify
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these predictions, and the use of CFD and scale-down data to suggest scale-up im-
provements. And, we have shown how computational simplifications make it feasible
to model long stretches of flowtime in certain situations, even using commercial CFD
software not necessarily optimized for this type of application.

Overall, computational bioreactor engineering is very much an emerging field, with
the proposed ideas being picked up in scale-down design [300–303], and several lines
of development [19, 30, 282]. There are many more aspects to explore, both regarding
improvements of the CFD methods and regarding experimental assessment of non-
ideal bioprocesses.

8.2.1. Computational advances
Simulation and validation While somewhat tangential to the Lagrangian analysis dis-
cussed in this thesis, there is still ground to gain in the physical modeling of industrial
bioreactors to improve overall accuracy. RANS-Turbulence models may not properly
predict the interaction between impellers in multi-impeller tanks, as reported in chap-
ter 3, and structural improvements are desired. For bubbly multiphase flows, there is a
wide variety of interphase-force models and population balance kernels, which are se-
lected on a case-by-case basis. Already a comprehensive study towards best practices
for large-scale bioreactor modeling would be valuable. Turbulent drag modification,
bubble induced turbulence and turbulence-bubble interaction are inadequately under-
stood and captured [72]. Turbulent/aerated non-Newtonian flows remain troublesome,
meso-mixing issues (i.e. blobs of unmixed feed) need to be included, and a whole
range of micro-mixing phenomena (Kolmogorov-scale mixing, intra-pellet transport of
substrate in pelleted biomass, etc.) has to be considered; the importance of such phe-
nomena will be case-dependent. Coalescence and mass transfer in surfactant-laden
flows is poorly captured by available models.

One particular issue is that CFD modeling advances mostly in the direction of high
resolution LES and DNS approaches, whereas the field of bioreactor modeling calls
for simulating long physical time-spans rather than high spatial resolution. For such
applications, RANS approaches remain indispensable. The current state of affairs pro-
hibits unverified predictive application of CFD models. However, keeping the limi-
tations and margins of error into account, the current state of models can certainly
provide insight beyond what is experimentally accessible, and far beyond the typical
ideal mixing assumption. The need for further model development may appear pes-
simistic, but it certainly is not. It should be regarded as a warning against blind faith
in simulations, but when properly applied, simulations are certainly valuable for rapid
quantitative and qualitative evaluation of current fermentations, and future improve-
ments.

The call for developments in CFD methods comes with a need for more large-scale
validation data to be published in the public domain to encourage academic endeavors
into large-scale fermentor modeling, instead of being forced to stick with lab-scale
data. We do not expect detailed profiles; overall gas hold-up and 𝑘ፋ𝑎 and rheological
information, as well as the mixing profile, substrate/oxygen concentration at a couple
of points, would already be highly valuable in verifying simulation performance.
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Numerical challenges Gains in calculation speed are required for routine industrial
application. This acts at two levels: highly simplified simulations of full fed-batch pro-
cesses, and shorter time-spans with more physical details. We could currently achieve
around 5 − 10 h of flowtime per day of computation time with highly simplified sim-
ulations in ANSYS FLUENT on a desktop computer (XEON E5-2665, 2.4GHz), where
the low gridcell count allows little speed-up with further parallelization. The most
promising route to faster computations is likely the use of dedicated software, rather
than general CFD packages which were currently chosen for their flexibility and to fo-
cus on application rather than software development. With a combination of optimized
software, fast processors, and optimized simulation settings, it should be possible to
run real-time simulations, and likely well beyond that, within the foreseeable future.

The second track considers introducing more physical realism within manageable
solution times. Rapid inter-phase dynamics call for many computational parcels, and
the steady-state MRF impeller model may not always be applicable. Oscillating bub-
ble plumes in bubble columns may also call for transient flowfields, greatly increasing
simulation time. Early simulations that we conducted, with sliding mesh and 2 ⋅ 10኿
parces, ran around tens of seconds of flow time per day on a desktop computer. Since
these aspects are periodic, it may be possible to simulate a single (developed) period,
and load the appropriate flowfield every timestep rather than solving it. In cases with
high mesh resolution, parallelization can save significant time, although our experi-
ence was that parcel tracking slowed down in heavily parallelized cases (with FLUENT
14/15). Real-time simulations for these more complex cases are a long term perspec-
tive, but even resolving 1 h flowtime per day would bring routine-scanning of design
optimizations based on the 1-way coupling method of chapter 7 within reach.

8.2.2. Scale-down simulation
The obvious first step is to build and operate CFD-based scale-down designs, explore
their operational feasibility (at high 𝐶፱), and to verify model predictions made regard-
ing the output of these simulators. The proposed designs include novel elements,
such as the combination of three stirred tank reactors, and the use of randomized feed
profiles, but these are all are practically realizable within the limits of current technol-
ogy. The output of these scale-down simulators may of course differ from the model
predictions, pushing further development of metabolic models; scale-down develop-
ment and metabolic model development go hand in hand. We have provided several
methodologies to extract fluctuation statistics from lifelines, and over the years of
the project these methods continued to evolve. We hope they will keep doing so af-
ter; there may be other avenues towards acquiring fluctuation statistics, perhaps even
more promising ones than those explored here. The translation of lifelines to scale-
down simulators may also evolve. Compartmentalization leads to discrete levels in
the signal, which may guide a 1-vessel design alternating between these levels as a
more robust alternative to arc-analysis. We have also not delved into the design of
hybrid multi-vessel fluctuating-feed scale-down simulators. In case new lifeline anal-
ysis method be proposed, they may come associated with new rational downscaling
approaches.
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Liter-scale reactors are inherently limited by their reliance on consumption to in-
duce extra-cellular changes, which caps the achievable rate-of-change by 𝐶፱ . Prefer-
ably, a next generation of scale-down simulators decouples the achievable rate of
change from 𝐶፱ . This requires some form of substrate flushing, possibly using mem-
brane reactors or biomass retention on the bench-scale, which likely come associated
with fouling, clogging, etcetera. The use of micro-fluidic devices may be a more fea-
sible route. Single cells or small clusters of cells can be trapped in these devices
[297, 298, 304–308], which makes it possible to control the environment around the
organism directly [309, 310]. Preliminary 2D simulation with a conceptual, non opti-
mized design (appendix F) shows it should be possible to achieve environmental con-
trol on the second scale. Alternating between fluid streams saturated with oxygen and
nitrogen can be used to simulate rapid oxygen variations. In principle, proper dosing
of the streams could even be used to directly mimic particle tracks retrieved from CFD
experimentally.

The microfluidic approach is most suitable to study the metabolic response in de-
tail on the single cell level. The largest challenge therein is likely data collection:
normally, the few mL of broth retrieved for analysis already contains an enormous
amount (≈ 10ኻኻ mLዅኻ) of cells. Single-cell analysis requires measuring minute quan-
tities, intra- or extra-cellular. Luckily, these fields are subject to rapid developments
[13, 296, 298, 311, 312]. Rapid-fluctuation studies based on single-cell responses in
well controlled environments are becoming an established part of the biological anal-
ysis toolbox, and in the future may be used for representative design. Combined with
advances in rapid strain screening using parallelized micro-titerplate applications, and
with some projections for future developments (discussed in the next section), the
bioprocess development platform landscape takes the outline presented in figure 8.4.
The drive to smaller and smaller screening platforms makes one fear for the future of
shake-flask fermentation.

8.2.3. And further...
Freely quoting the late professor Gert Frens, The road [for an engineer] extends beyond
the horizon. What lies beyond? Many possibilities, to be sure. With proper micro-
fluidic scale-down simulation and analysis protocols, the next step is to replace the
microtiterplate with truly high-throughput screening. Massively parallel microfluidics
allows to screen thousands of strains in parallel, under constant conditions to un-
derstand their metabolism, or under fluctuating conditions to screen their industrial
applicability. Or, the same strain may be exposed to many feed protocols to optimize
operating conditions. Thousands of individual cells exposed to equal conditions may
be studied to reveal what gives rise to spontaneous heterogeneous conditions. Mas-
sive parallel single-cell studies promise a new era for understanding and selecting
micro-organisms.

On the CFD-side, improvements in physical modeling will allow us to better cap-
ture the environment of large-scale reactors, with experimental flow-following probes
possibly offering large-scale validation data from the microbial reference frame. De-
velopments in computational speed will lead to more routine application of simula-
tion approaches; the ability to run real-time hydrodynamic-metabolic simulations may



8.2. Outlook

8

173

open new avenues in process control. Running in parallel to the actual fermentation,
and directly coupled to process inputs, processes could be followed beyond what the
sensors measure. This can be used for on-the-go optimization, response to process
perturbations, or early batch canceling if there are signs of an irreversible produc-
tion loss. Combined with neural network models, pre-conditioned using both CFD and
factory data, on-line simulations may help in rapid troubleshooting.

Imagine a situation where the broth oxygen level is measured to be insufficient.
The hydrodynamic-metabolic model running in parallel starts showing signs of intra-
cellular oxygen starvation, while the neural network correlates the sensory data with
an elevation in broth viscosity due to higher hyphal length. It suggests increasing the
agitation rate to shear off some hyphea, and increase oxygen transfer. At some point,
however, the CFD model suggests that the intra-cellular impact of oxygen starvation is
too severe to continue the process, and it may be better to dump the batch. A waste of
material maybe, but at least valuable time is saved. Coupled withmodern visualization
technology, a process operator may stream real time data on the state of the process,
extra- and intra-cellular, to their smartphone or augmented reality glasses. They can
then evaluate a process while walking in the factory, and act whenever the system
hints at possible process improvements to optimize batch quality.

”From shake flask to fermentor” became ”From cell to fermentor”, maybe even
”From gene to fermentor”; in the course we’ve learned a lot. Yet, the age of biology
has only just begun, and all the best may still lie ahead.





Nomenclature
Abbreviations: general

CFD Computational Fluid Dynamics
CoM Coefficient of Mixing
CoV Coefficient of Variation
DO Dissolved Oxygen
DRW Dynamic Random Walk
EL Euler-Lagrange
LDA Laser Doppler Anemometry
LES Large Eddy Simulation
MI Macro Instability
MRF Multiple Reference Frames
PIV Particle Image Velocimetry
(A)PFR (Axially dispersed) Plug Flow Reactor
RANS Reynolds Averaged Navier Stokes
RD Reaction Dynamics
RKE Realizable 𝑘 − 𝜖 model
RTD Residence Time Distribution
RSM Reynolds Stress Model
SD Scale-Down
SGDH Simple Gradient Diffusion Hypothesis
SM Sliding Mesh
STR Stirred Tank Reactor

Abbreviations: species

6-APA 6-aminopenicillanic
AAA 𝛼-aminoadipate
ACV 𝛼-aminoadipyl-L-cysteinyl-D-valine
ACVS ACV-synthase
CoA coenzyme-A
CYS L-cysteine
IPN isopenicillin-N
IPNS IPN synthase
PAA phenylacetic acid
Pen-G penicillin-G
VAL L-valine
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176 Nomenclature

Roman (I) Units Description
𝑎 mኼ/mኽ Area concentration
𝐴 mኼ Area (general)
𝑐። − Amplitude coefficient in autocorr. signal
𝐶ፒ − Smagorinsky constant, LES model
𝐶፬ mol/kg Substrate concentration (mole based)
𝑐፬ mg/L Substrate concentration (mass based)
𝐶፬,፛ mol/kg Substrate concentration at a boundary b
𝐶፬,፜ mol/kg Substrate concentration in cell c
𝐶፬,፩ mol/kg Substrate conc. observed by parcel p
𝐶፱ g/kg Biomass concentration
𝐶ፅ mol/kg Feed concentration
𝐶 − Constant (general notation)
𝐶 m Off-bottom clearance impeller
𝐶ፃ − Drag coefficient
𝐷 m Impeller diameter
𝐷፫ hዅኻ Dilution rate
𝑑፛ mm Sauter mean diameter
𝒟፦ mኼ/s Diffusion coefficient
𝒟፭ mኼ/s Turbulent diffusion coefficient
𝐸፩፞፫ mኼ/sኼ Energy per kg, periodic
𝐸፭፨፭ mኼ/sኼ Energy per kg, total
𝑓።.፣ Hz 𝑗፭፡ harmonic of 𝑖፭፡ frequency comp.
𝐹 kg/s Feed rate (general)
𝐹። kg/kg/s Specific feed flowrate, vessel i
𝐹፬ mol/s Substrate feed rate (general)
𝐹፬,። mol/s Substrate feed rate, vessel i
𝑔 m/sኼ Gravitational acceleration
𝐻 m Tank height
𝐻ፋ m Liquid height
𝑘፭ mኼ/sኼ Turbulent kinetic energy
𝑘፭∗ mኼ/sኼ Total fluctuating kinetic energy
𝑘ፌፈ mኼ/sኼ Macro-instability kinetic energy
𝑘፬፠፬ mኼ/sኼ Subgrid turbulent kinetic energy
𝑘፥ m/s Local mass transfer coeff.
𝑘ፋ𝑎 hዅኻ Overall mass transfer coeff.
𝐾፬ mol/kg Affinity constant for substrate
𝐿፫፞፬ m Integral lengthscale
𝑀 mol/kg/s General mixing term
𝑀ፈ Nm Impeller moment
𝑚፬ mol፬/𝐶mol፱/h Maintenance coefficient
𝑛 − Integer multiplier
𝑁፬ sዅኻ Impeller revolutions
𝑁፜ − Total number grid cells
𝑁፩ − Total number particles
𝑁፩,፜ − Number particles in cell 𝑐
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Roman (II) Units Description
𝑝 Pa Instantaneous pressure
𝑃 Pa Average pressure
𝑃 W Power input
𝑞፩ mol፩/𝐶mol፱/h Specific production rate of product
𝑞፬ mol፬/𝐶mol፱/s Specific uptake rate of substrate
𝑞፬,፦ፚ፱ mol፬/𝐶mol፱/s Max. Specific uptake rate of substrate
𝑞፫፞፟ − Reference 𝑞፬/𝑞፬,፦ፚ፱
𝑄፠ mኽ/s Gas flowrate
𝑟፩ m Particle radius
𝑟፭።፩ m Impeller radius
𝑅 m Tank radius
𝑅፬,፜ m Reaction rate of 𝑠, cell-based
𝑅፬,፩ m Reaction rate of 𝑠, parcel-based
𝑆፬,፜ mol/kg/s Source term of 𝑠
𝑆 sዅኻ Strain rate magnitude
𝑠።፣ sዅኻ Rate-of-strain (component)
𝑆።፣ sዅኻ Average Rate-of-strain (component)
𝑇 m Tank diameter
𝑇። kg/kg Mass fraction compartment 𝑖, SDS
𝑡 s Time (general)
𝑢፟ m/s Fluid velocity
𝑢። m/s Instantaneous velocity (component)
𝑢፩ m/s Particle velocity
𝑢ᖣ m/s Fluctuating velocity
𝑢ᖣ፭ m/s MI-free fluctuating velocity
𝑈። m/s Average velocity (component)
𝑈፠ m/s Superficial gas velocity
𝑉 mኽ Tank volume
𝑉። mኽ Vessel volume in SDS
𝑉፩ mኽ Parcel associated volume (𝑉ፓ/𝑁ፏ)
𝑉ፓ mኽ Total volume (general)
𝑉፭፨፭ mኽ Total volume SDS
𝑤 − Tuckey-Hanning window function
𝑥። m Spatial coordinate (component)
𝑋። μmol/g፝፰ Intracellular metabolic pool
𝑋ፄ,። − Intracellular enzyme pool
𝑋፛።፨ g፝፰ Biomass content per parcel
𝑌፬፱ 𝐶mol፱/mol፬ Max. biomass yield on substrate
𝑌፬፩ mol፩/mol፬ Product yield on substrate
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Greek Units Description
𝛼 − Gas fraction
𝛼ኺ − Damping coefficient in autocorr. signal
𝛼ፚ − Phase a fraction
𝛼፠ − Geometry constant for no. parcels
𝛽 − Heterogeneity ratio around parcel
𝛽፦ − Max. heterogeneity ratio around parcel
𝛾 N/m Surface tension
𝛿።፣ − Kronecker delta
Δ m filter size (LES)
Δ𝑡 s Timestep size
Δ𝑡፜ s Eulerian timestep size
Δ𝑡፩ s Lagrangian timestep size (𝑡፩ ≤ 𝑡፜)
Δ𝐶 m Mutual clearance impellers
𝜖 mኽ/sኼ Turbulent energy dissipation rate
𝜃ዃ኿ − Dimensionless mixing time
Θ − Timestep - uptake rate ratio
𝜆 % Inter-phase mass imbalance (Euler-Lag.)
𝜆፤ m Kolmogorov lengthscale
𝜆። nm Wavelength
𝜆ፈ m Integral lengthscale
𝜇 hዅኻ Specific growth rate
𝜇፥ Pa s Viscosity, dynamic
𝜇፭ Pa s Turbulent viscosity, dynamic
𝜈 mኼ/s Viscosity, kinematic
𝜈፭ mኼ/s Turbulent viscosity, kinematic
𝜌 kg/mኽ Density
𝜌̂ − (Auto-) correlation coefficient
𝜎፬,፜ − Standard deviation no. parcels in cell
𝜏ዃ኿ s Mixing time
𝜏ፚ፫፜ s Arc-time
𝜏፜።፫፜ s Circulation timescale
𝜏። s Residence time, vessel 𝑖.
𝜏፥ፚ፠ s Autocorr. lag time
𝜏፦ s Mixing in parcel-swept volume 𝑉ፓ/𝑁ፏ
𝜏፫፱፧ s Uptake timescale of substrate
𝜏።፣ Pa Stress tensor components
𝜙። kg/s Circulation flowrate
𝜒 − Heterogeneity in domain
𝜒ፚ − Phase indicator function phase a
Ψ − Noise fraction, LDA signal
Ω፬,፦ፚ፱ − Max. 𝑞፬/𝑞፬,፦ፚ፱ on arc trajectory
Ω። sዅኻ Vorticity (component)
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Tensors and vectors
Symbol Units Description
𝜏𝜏𝜏 Pa Stress tensor

𝛿።፣𝛿።፣𝛿።፣ − Kronecker delta
𝜔 sዅኻ Angular velocity (vector)
u m/s Instantaneous velocity (vector)
uፚ m/s Instantaneous velocity phase a (vector)
𝜔 sዅኻ Angular velocity (vector)
x m Spatial coordinate (vector)

Operations
Operator Description
𝑦 Time or ensemble average of 𝑦
⟨𝑦⟩ Volume average of 𝑦
𝑦 Spatially filtered 𝑦 (in LES)
𝜏። Mean residence time, regime 𝑖.
𝑦ᖣ። Fluctuating component of y
𝑝(𝑦) Probability of 𝑦
𝜎(𝑦) Standard deviation of 𝑦

Population balance variables
Var. Units Description
𝑛(𝑉, 𝑡) mዅኽ Number density
𝑎(𝑉ፚ , 𝑉፛) mኽ/s Aggregation kernel
𝑓 − Bin fraction (number)
𝑔(𝑉ፚ) sዅኻ Breakup frequency
𝛽(𝑉ፚ|𝑉፛) (−) Breakage pdf
Ω፛፫ mዅኽsዅኻ Breakage rate Luo model (𝛽, 𝑔 integrated)
𝜔ፚ፠ sዅኻ Collision frequency
𝑃ፚ፠ − Collision probability

Dimensionless numbers
Number Description
𝐷𝑎 Damköhler number
𝐸𝑜 Eötvös number
𝐺𝑠 Gas flow number
𝑃𝑜Ꭸ Power number (ungassed) based on energy dissipation
𝑃𝑜Ꭱ Power number (ungassed) based on torque
𝑃𝑜፠ Power number (gassed) based on torque
𝑅𝑒 Tank Reynolds number based on 𝐷
𝑅𝑒፩ Particle Reynolds number based on 𝑑፩
𝑆𝑐፭ Schmidt number, turbulent
𝜎። Prandtl number for 𝑖 (RANS models)
𝑆𝑡 Stokes number
𝑊𝑒 Weber number
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Appendix A: The 9 − 𝑝𝑜𝑜𝑙 model
Model formulation The 9 − 𝑝𝑜𝑜𝑙 model proposed by Tang et al. [226] was used to
study themetabolic response of micro-organisms in large scale fermentors. Themodel
structure is reported in figure A1. The following intra-cellular pools are included:

Figure A1: Overview of the ዃ ዅ ፩፨፨፥ metabolic model developed by Tang et al. [226] for P. chrysogenum
DS17690. [reprinted from [226] with permission].

• Glycolytic intermediates: Lumped pool representing glycolytic (GLY) intermedi-
ates (G6P to pyruvate). Consumed glucose (consumption rate 𝑣ኻኻ) is converted
to GLY at cost of 2 mol/mol of ATP by substrate uptake and phosphorylation.
Responds rapidly (𝑂(10) s), acts as a gateway to the rest of the metabolism.
During substrate starvation, GLY is generated from stored carbon. This rate 𝑣ኾኼ
is controlled by 𝐶፬ . Storage release requires ATP; 𝑣ኾኼ is quenched at low ATP
levels.

• Amino acids: Lumped amino acid (AA) pool, building block for biomass synthe-
sis (𝑣ኻኽ, controlled by GLY, ATP and AA, requires ATP) and penicillin production
(𝑣ኽኽ). AA supply is governed by 𝑣ኻኼ expending 0.65mol ATP per mol AA, and is
controlled by GLY, AA and ATP. Slow response (𝑂(1) h).
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Table A1: Stoichiometric matrix of the metabolically structured kinetic model (in mol/mol, from: Tang et
al. [226]). ፗᑓᑚᑠ is the biomass pool, ፠፥፮፜ the extra-cellular glucose pool.

Pool ፯ᎳᎳ ፯ᎳᎴ ፯ᎳᎵ ፯ᎴᎳ ፯ᎴᎴ ፯ᎵᎳ ፯ᎵᎴ ፯ᎵᎵ ፯ᎶᎳ ፯ᎶᎴ ፯ᑕ
Glyc. ዀ ዅኻ ዅኺ.኿዁ዂ ዅኻ ኺ ኺ ኺ ዅኾ.ዂኻ ዅኻ.ኺ዁ ኻ ኺ
AA. ኺ ኻ ዅኺ.኿ ኺ ኺ ኺ ኺ ዅዀ.ኼ኿ ኺ ኺ ኺ
Sto. ኺ ኺ ኺ ኺ ኺ ኺ ኺ ኺ ኻ ዅኻ
ATP ዅኼ ዅኺ.ዀ኿ ዅኻ.ኺኽ዁ ኾ.ኾኽ ዅኻ ኺ ዅኼ ዅዂ ዅኺ.ኻዀ዁ ዅኺ.ኻዀ዁ ኺ
PAA ኺ ኺ ኺ ኺ ኺ ኻ ዅኻ ዅኻ ኺ ኺ ኺ
Gluc. ዅኻ ኺ ኺ ኺ ኺ ኺ ኺ ኺ ኺ ኺ ኺ
ፗᑓᑚᑠ ኺ ኺ ኻ ኺ ኺ ኺ ኺ ኺ ኺ ኺ ዅኻ

• Storage carbon: Polymeric carbon (STO) stored during excess, released dur-
ing starvation. The storage rate is 𝑣ኾኻ and release rate is 𝑣ኾኼ. Both require
0.1667 mol ATP per mol stored/released. Slow response (𝑂(10) h).

• ATP: Energy carrier, generated in 𝑣ኼኻ (controlled by GLY and ATP) and consumed
in most other reactions. Very fast response (𝑂(1) s).

• PAA: Penicillin precursor. Diffuses into the cell (𝑣ኽኻ, controlled by 𝑝𝐻 and 𝐶ፏፀፀ),
while being actively transported out (𝑣ኽኼ, controlled by 𝑋ፄኽኼ and 𝑋ፏፀፀ, at cost of
2 mol ATP per mol PAA). This passive import and active export leads to a futile
ATP consuming cycle.

• Enzyme pools: 𝑋ፄኻኻ: Controls the substrate import capacity. 𝑋ፄኽኼ: Controls the
PAA export capacity. 𝑋ፄኾ: Controls storage/release capacity. Enzyme synthesis
is controlled by the growth rate, 𝑣ኻኽ.

• V33/qp: Production rate of penicillin (𝑞፩), governed by enzymatic control. En-
zyme synthesis/breakdown is controlled by the growth rate 𝑣ኻኽ (also called 𝜇) as
described by Douma et al. [236]. Enzyme synthesis is suppressed by high GLY
levels.

All metabolic pools are reported in 𝑋። μmol/g፝፰ . The explicitly defined extra-
cellular pools are: 𝐶፱ , the biomass concentration in g፝፰/kg (alternatively referred
to as 𝑋፛።፨ g/𝑝𝑎𝑟𝑐𝑒𝑙 in lagrangian tracking), 𝐶፬, the glucose concentration in mol/kg
and 𝐶ፏፀፀ, the 𝑃𝐴𝐴 concentration in mol/kg. Rate 𝑣ኼኼ represents maintenance, con-
suming a constant ATP amount. Death rate 𝑣፝ = 0.005 hዅኻ represents a lump-sum
parameter including all cell deterioration effects. Excretion/uptake rates related to
𝑂ኼ, 𝐶𝑂ኼ, 𝐻ኼ𝑂, 𝑁𝐻ዄኾ , 𝐻ዄ, 𝑆𝑂ኼዅኾ can be computed with the model based on stoichiom-
etry, but none of these components currently influences the metabolism itself.

Model equations The model stoichiometry is given in table A1, the kinetic equations
in table A2, and model parameters in A3.

Model instabilities and modification Instabilities in 𝑋ፀፓፏ were noted in coupled sim-
ulations with the 9-pool model. We conducted turbulent plug-flow simulations to
replicate the 360 s feast-famine cycles of De Jonge et al. [44] in a flow reactor.
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Table A2: Kinetic equations of the ዃ ዅ ፩፨፨፥ model.

Reaction Kinetics Eq.
Transporter
capacity

ᑕᑏᐼ,ᎳᎳ
ᑕᑥ ዆ ፪ᐼ,ᎳᎳ,ᑞᑒᑩ ⋅ ((ᒑᎼᒑᎲ)/ᑜᎳᎳ)Ꮇ

ᎳᎼ((ᒑᎼᒑᎲ)/ᑜᎳᎳ)Ꮇ
ዅ (᎙ ዄ ፤ᑕᐼ,ᎳᎳ)ፗᐼ,ᎳᎳ ፝፯ᑏ,ᎳᎳ

Carbon
uptake ፯ᎳᎳ ዆፤ᐼ,ᎳᎳፗᐼ,ᎳᎳ ᐺᑤ

ᐺᑤᎼᑂᑤ,ᎳᎳ ፯ᎳᎳ
Amino Acid
synthesis ፯ᎳᎴ ዆፯ᎳᎴ,ᑞᑒᑩ ⋅

ᑏᎴᑘᑝᑪ
ᑂᎴᑘᑝᑪ,ᎳᎴᎼᑏᎴᑘᑝᑪ

⋅ ᑂᎴᐸᐸ,ᎳᎴ
ᑂᎴᐸᐸ,ᎳᎴᎼᑏᎴᐸᐸ

⋅ ᑏᎵᐸᑋᑇ
ᑂᎵᐸᑋᑇ,ᎳᎴᎼᑏᎵᐸᑋᑇ

፯ᎳᎴ

Growth ፯ᎳᎵ ዆፯ᎳᎵ,ᑞᑒᑩ ⋅
ᑏᎴᑘᑝᑪ

ᑂᎴᑘᑝᑪ,ᎳᎵᎼᑏᎴᑘᑝᑪ
⋅ ᑏᎴᐸᐸ
ᑂᎴᐸᐸ,ᎳᎵᎼᑏᎴᐸᐸ

⋅ ᑏᎵᐸᑋᑇ
ᑂᎵᐸᑋᑇ,ᎳᎵᎼᑏᎵᐸᑋᑇ

፯ᎳᎵ/᎙
ATP

production ፯ᎴᎳ ዆፯ᎴᎳ,ᑞᑒᑩ ⋅
ᑏᎵᑘᑝᑪ

ᑂᎵᑘᑝᑪ,ᎴᎳᎼᑏᎵᑘᑝᑪ
⋅ ᑂᎶᐸᑋᑇ,ᎴᎳ
ᑂᎶᐸᑋᑇ,ᎴᎳᎼᑏᎶᐸᑋᑇ

፯ᎴᎳ
Maintenance ፯ᎴᎴ ዆ ፦ᐸᑋᑇ,ᎴᎴ ፯ᎴᎴ
PAA import ፯ᎵᎳ ዆፤ᑡᑖᑣᑞ,ᎵᎳ ⋅ ፚᑔᑖᑝᑝ ⋅ ( ᑏᑇᐸᐸ/Ꮄ.Ꮇ

ᎳᎼᎳᎲᑡᐿ,ᑖᑩᑥᎽᑡᑂ ዅ
ᐺᑇᐸᐸ⋅ᒖᑓᑣᑠᑥᑙ
ᎳᎼᎳᎲᑡᐿ,ᑚᑟᑥᎽᑡᑂ ) ፯ᎵᎳ

PAA export
capacity

ᑕᑏᐼ,ᎵᎴ
ᑕᑥ ዆ ᎎᎵᎴ ዄ ᎏᎵᎴ ⋅ ᎙ ዅ ፤ᑕᐼ,ᎵᎴ ⋅ ፗᐼ,ᎵᎴ ዅ ᎙ ⋅ ፗᐼ,ᎵᎴ ፝፯ᑏ,ᎵᎴ

PAA export ፯ᎵᎴ ዆ ፗᐼ,ᎵᎴ ⋅ ፗᑇᐸᐸ ⋅ ፌᑏ ⋅ ኻኺᎽᎸ ፯ᎵᎴ
Pen-G production

capacity
ᑕᑧᎵᎵ
ᑕᑥ ዆ ᒇᎵᎵ⋅ᒑ

ᎳᎼ(ᑏᑘᑝᑪ/ᑂᑘᑝᑪ,ᎵᎵ)ᑞᎵᎵ
ዅ (፤ᑕᐼ,ᎵᎵ ዄ ᎙) ⋅ ፯Ꮅኽ ፯ᎵᎵ/፪ᑡ

Storage
capacity

ᑕᑏᐼ,Ꮆ
ᑕᑥ ዆ ᎎᎶ ዄ ᎏᎶ ⋅ ᎙ ዅ ፤ᑕᐼ,Ꮆ ⋅ ፗᐼ,Ꮆ ዅ ᎙ ⋅ ፗᐼ,Ꮆ ፝፯ᑏ,Ꮆ

Carbon
storage ፤ᎶᎳ ⋅ ፗᐼ,Ꮆ ⋅ ᐺᑤ

ᐺᑤᎼᑂᑤ,ᎶᎳ ⋅ (ኻዄኼ ⋅
ᐺᑤ

ᐺᑤᎼᑂᑤ,ᎶᎴ ) ⋅
ᑂᑤᑥᑠ,ᎶᎳ

ᑏᑤᑥᑠᎼᑂᑤᑥᑠ,ᎶᎳ ፯ᎶᎳ
Storage
release ፤ᎶᎴ ⋅ ፗᐼ,Ꮆ ⋅ ᑂᑤ,ᎶᎴ

ᐺᑤᎼᑂᑤ,ᎶᎴ ⋅ (ኻዄኼ ⋅
ᐺᑤ

ᐺᑤᎼᑂᑤ,ᎶᎳ ) ⋅
ᑏᎴᑤᑥᑠ

ᑏᎴᑤᑥᑠᎼᑂᎴᑤᑥᑠ,ᎶᎴ
⋅ ᑏᎴᐸᑋᑇ
ᑏᎴᐸᑋᑇᎼᑂᎴᐸᑋᑇ,ᎶᎴ

፯ᎶᎴ
Death rate ፯ᑕ,ᑞ ፯ᑕ

Herein, 𝑋ፀፓፏ was observed to become negative for the majority of parcels directly
after the feast-famine transition. Further investigation revealed the extra-cellular
signaling terms in storage equations 𝑣ኾኻ and 𝑣ኾኼ were very sensitive to small vari-
ations in 𝐶፬ in the range 10ዅዂ < 𝐶፬ < 10ዅኾ: turbulent fluctuations in the parcel
trajectory imposed rapid 𝐶፬ oscillations within this amplitude range around the feast-
famine transition. We illustrate this by comparing the model response of the 9−pool
model in a feast famine cycle, with the same cycle where some 𝐶፬-noise was added
as 𝐶፬(𝑡) = 𝐶፬(𝑡) ± 0.5 ⋅ 10ዅ዁ ⋅ 𝑟𝑎𝑛𝑑() mol/kg, with 𝑟𝑎𝑛𝑑() an random number be-
tween 0 and 1 (fig. A2). Even though the overall 𝑞፬ is slightly higher with noise (since
𝐶፬ is always positive), the 𝑋ፀፓፏ pool collapses only when noise is imposed. These
fluctuations caused rapid switching between storage and liberation, resulting in an
insufficient overall flux from 𝑋፬፭፨ to 𝑋፠፥፲ to maintain the required level of ATP syn-
thesis. Low ATP levels in turn quench storage release (𝑣ኾኼ) inevitably leading to a
collapse of 𝑋ፀፓፏ that does not reflect upon experimental observations [44].

In case storage/release is indeed directly regulated by the extra-cellular glucose
concentration 𝐶፬, a timescale of activation/deactivation of the signal cascade should
be introduced to dampen the effect of turbulent oscillations. Alternatively, stor-
age/release may be triggered by an intra-cellular signal molecule; for example, ATP or
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Table A3: Parameters of the ዃ ዅ ፩፨፨፥ model.

Param. Value St. Err. Unit
𝑞ፄ,ኻኻ,፦ፚ፱ 6.5 ⋅ 10ዅኼ 4.41 ⋅ 10ዅኽ 𝑈/𝐶mol፱/h
𝜇ኺ 5.5 ⋅ 10ዅኼ 1.03 ⋅ 10ዅኽ hዅኻ
𝑘ኻኻ 0.10 1.16 ⋅ 10ዅኽ hዅኻ
𝑘፝ፄ,ኻኻ 1.46 ⋅ 10ዅኼ 6.55 ⋅ 10ዅኽ hዅኻ
𝑘ፄ,ኻኻ 0.26 1.54 ⋅ 10ዅኼ mol፬/𝑈
𝑘፬,ኻኻ 9.8 ⋅ 10ዅዀ 1.54 ⋅ 10ዅኼ mol/kg
𝑣ኻኼ,፦ፚ፱ 0.18 7.74 ⋅ 10ዅኼ mol/𝐶mol፱/h
𝐾፠፥፲,ኻኼ 31.38 4.91 𝜇mol/g፝፰
𝐾ፀፀ,ኻኼ 870.23 69.6 𝜇mol/g፝፰
𝐾ፀፓፏ,ኻኼ 2.01 0.26 𝜇mol/g፝፰
𝑣ኻኽ,፦ፚ፱ 0.32 9.92 ⋅ 10ዅኼ mol/𝐶mol፱/h
𝐾፠፥፲,ኻኽ 38.54 9.25 𝜇mol/g፝፰
𝐾ፀፀ,ኻኽ 757.81 128.83 𝜇mol/g፝፰
𝐾ፀፓፏ,ኻኽ 1.95 0.24 𝜇mol/g፝፰
𝑣ኼኻ,፦ፚ፱ 0.35 9.45 ⋅ 10ዅኼ mol/𝐶mol፱/h
𝐾፠፥፲,ኼኻ 25.64 5.58 𝜇mol/g፝፰
𝐾ፀፓፏ,ኼኻ 6.01 0.66 𝜇mol/g፝፰
𝑚ፀፓፏ,ኼኼ 3.3 ⋅ 10ዅኼ 1.2 ⋅ 10ዅኼ mol/𝐶mol፱/h
𝑘፩፞፫፦,ኽኻ 1.62 ⋅ 10ዅኼ 3.74 ⋅ 10ዅኽ m/h
𝑎፜፞፥፥ 56.00 − mኼ/𝐶mol፱
𝛼ኽኼ 0 0 hዅኼ
𝛽ኽኼ 1.56 ⋅ 10ኽ 218.4 hዅኻ
𝑘፝ፄ,ኽኼ 0.35 4.90 ⋅ 10ዅኼ hዅኻ
𝛽ኽኽ 6.5 ⋅ 10ዅኾ − mol/𝐶mol፱/h
𝑘፝ፄ,ኽኽ 1.47 ⋅ 10ዅኼ 1.2 ⋅ 10ዅኽ hዅኻ
𝐾ኽኽ,፠፥፲ 30.76 1.58 𝜇mol/g፝፰
𝑚ኽኽ 6.00 − −
𝛼ኾ 8.01 ⋅ 10ዅኾ 1.68 ⋅ 10ዅኾ mol/𝐶mol፱/hኼ
𝛽ኾ 0.289 1.49 ⋅ 10ዅኼ mol/𝐶mol፱/h
𝑘፝ፄ,ኾ 0.29 1.23 ⋅ 10ዅኼ hዅኻ
𝑘ኾኻ 1.01 0.1 mol/mol
𝐾፬,ኾኻ 10ዅዂ 1.33 ⋅ 10ዅዂ mol/kg
𝐾፬፭፨,ኾኻ 4.25 ⋅ 10ኽ 9.32 ⋅ 10ኼ 𝜇mol/g፝፰
𝑘ኾኼ 3.99 0.48 mol/mol
𝐾፬,ኾኼ 10ዅኾ 1.37 ⋅ 10ዅኾ mol/kg
𝐾፬፭፨,ኾኼ 7.99 ⋅ 10ኽ 1.07 ⋅ 10ኽ 𝜇mol/g፝፰
𝐾ፀፓፏ,ኾኼ 6.48 0.9 𝜇mol/g፝፰
𝑝𝐻።፧፭ 2.20 − −
𝑝𝐻፞፱፭ 6.50 − −
𝑝𝐾ፏፀፀ 4.31 − −
𝑣፝,፦ 5 ⋅ 10ዅኽ − hዅኻ
𝑀፰,፛።፨ 28.05 − g፝፰/𝐶mol
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Figure A2: A: Concentration profiles in a perfect plug flow reactor (Ꭱᑣᑖᑤ ዆ ኽዀኺ s), without superimposed
noise (blue) and with superimposed noise (red). Inset shows the same curve with a logarithmic y-axis. B:
ATP pool response to both profiles, generated with the ዃዅpool model [226].

the glycolytic intermediates may trigger the release of stored carbon when the cell en-
ergy charge becomes critical. Lacking the required information to propose a structural
model improvement at this time, we opted for a patch solution based on the quasi-
steady state assumption. Since 𝑋ፀፓፏ changes at shorter timescales than the other
pools, it is valid to assume that 𝑋ፀፓፏ the fluxes in and out of 𝑋ፀፓፏ instantaneously
balance, which means we can set 𝑑𝑋ፀፓፏ/𝑑𝑡 = 0, yieldin 𝑋ፀፓፏ = 𝑓[𝑋፠፥፲ , 𝑋፬፭፨ , ..., 𝑋ፄኾ],
which replaces the dynamic balance by an algebraic equation, eq. 1, with all 𝑋 except
𝑋ፀፓፏ fixed [255].

0 =
፧ᑚ዆ኻ

∑ (𝑣፧[𝑋ፀፓፏ , 𝑋፠፥፲ , 𝑋፬፭፨ , ..., 𝑋ፄኾ]) (1)

With the current non-linear kinetic model, a numerical procedure is required to find
𝑋ፀፓፏ for a given set of conditions. To study the dependency of 𝑋ፀፓፏ on the other pools,
we generated 100.000 sets of values for the other pool sizes, assuming a) the pool sizes
are statistically independent and b) each pool can vary within a certain range 0...𝑍 with
𝑍 being a pool-dependent estimation based on experimental observations. For each
set eq. 1 was solved to find 𝑋ፀፓፏ . A strong relation between 𝑋ፀፓፏ and 𝑋፠፥፲ could be
observed (fig. A3), while the other pools were non-influential. This is understood as
1) ATP generation and consumption depend strongly on the availability of glycolytic
intermediates and 2) the timescale of variations in 𝑋፠፥፲ lies between that of 𝑋ፀፓፏ and
the other pools.

Using non-linear regression, a function of the form 𝑋ፀፓፏ = 𝐴 ⋅ 𝑋ኽ፠፥፲/(𝑋ኽ፠፥፲ + 𝐵ኽ)
is fitted to the data. A bi-square weighting routine is used to reduce outlier influ-
ence, which is most notable around 𝑋፠፥፲ = 0 where the initial guess of 𝑋ፀፓፏ may
satisfy the tolerance of the fsolve solution algorithm of MATLAB, as the fluxes here are
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Figure A3: Correlation between ፗᐸᑋᑇ and ፗᑘᑝᑪ observed from ኻኺኺ.ኺኺኺ randomly generated pool datasets.
Non-linear regression was used to find a best-fit function (black line), manual finetuning was used to opti-
mize the model response to experimental conditions (red line).

(close to) 0. The best-fit parameters are 𝐴 = 9.07 μmol/g፝፰ , 𝐵 = 12.1 μmol/g፝፰ with
𝑅ኼ = 0.96. Use of the best-fit parameters did result in some offsets compared to avail-
able experimental data. This is deemed a consequence of the assumptions: the range
of allowed pool values may be unrealistically large, and pools may not be fully sta-
tistically independent. Manual fine-tuning of the parameters gave 𝐴 = 8.5 μmol/g፝፰
and 𝐵 = 10.5 μmol/g፝፰ , which was used in our simulations. The data clearly shows
that for 𝑋፠፥፲ < 10 μmol/g፝፰ there is no positive solution for 𝑋ፀፓፏ in the current
pool formulation. With the patch solution, 𝑋ፀፓፏ will approach 0 at low 𝑋፠፥፲ , reducing
𝜇 and other intra-cellular responses, no negative 𝑋ፀፓፏ is allowed.

The response of the pools under A-stat conditions is shown in figure A4 A, for
steady state conditions in A4 B. The patched model with 𝐴 = 8.5 μmol/g፝፰ and 𝐵 =
10.5 μmol/g፝፰ is in perfect agreement with the full model of Tang et al. under the
assessed conditions. Deviations between the original model and patched model were
observed for feast-famine conditions (fig. A5), notably in 𝑋፬፭፨, and 𝑋ፀፓፏ during famine
cycles. The predicted ATP value under-estimates the experimental values reported by
de Jonge et al. [44], but the value is more stable than in the original model of Tang et
al. [226].

Experimental data considering longer starvation periods is required to comment
on whether or not the ATP pool indeed settles at a pseudo-steady value, what this
value is, and how the rest of the cell metabolism is affected during starvation peri-
ods. As such we stress that the current model revision considers a quick patch, and a
more structural model improvement and model validation under a broader range of
fluctuation conditions is desired.

The dynamic gene regulation model

Model modifications Douma et al. [236] based kinetic parameters related to sub-
strate uptake on work by Gulik et al. [232, 233]. Updates parameters were acquired by
De Jonge et al. [44], with improved methods to determine the residual substrate con-
centration (see table A4). These parameters were used in our Monod model, requiring
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vs. steady state chemostat data (van Gulik et al, [233]). Solid black line: original model. Dashed blue line:
algebraic ATP formulation. All intracellular fractions ፗ are in (ፂ)mol/gᑕᑨ, extra-cellular concentrations ፂ
in mol/kg and all ፪-rates in (ፂ)mol/ፂmolᑩ/h.

Figure A5: A: Validation of the modified metabolic model vs. feast-famine data (De Jonge et al., [44]. Solid
black line: original model. Dashed blue line: algebraic ATP formulation. A single feast-famine cycle is
displayed for rapid pools GLY and ATP, whereas the long-term trends are displayed for the other pools.
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Table A4: Parameters for the P. chrysogenum gene regulation model of Douma et al., modified for use in this
work.

Parameter Value Unit
𝑞፬,፦ፚ፱ 12.47 ⋅ 10ዅዀ mol፬/𝐶mol፱/s
𝐾፬ 7.8 ⋅ 10ዅዀ mol፬/kg
𝐾፩ 8.36 ⋅ 10ዅዀ mol፬/kg
𝑘፝ፄ 0.0147 hዅኻ
𝛽 8 ⋅ 10ዅኾ mol፩/𝐶mol፱/s

𝑌፦ፚ፱፬፱ 3.96 𝐶mol፱/mol፬
𝑌፦ፚ፱፬፩ 0.174 mol፩/mol፬
𝑚፬ 0.41 ⋅ 10ዅዀ mol፬/𝐶mol፱/s
𝑚፱ 28.05 g/mol

𝐾፩ in eq. 2 to be re-evaluated, yielding 𝐾፩ = 8.36 ⋅ 10ዅዀmol፬/kg. An overview of all
model parameters used is given in table A4.

𝑑𝑞፩
𝑑𝑡 = 𝛽 ⋅max(0, 𝜇)

1+( ፂᑤፊᑡ )
፦ − (𝑘፝ፄ + |𝜇|)𝑞፩ (2)

In the original model, the terms max(0, 𝜇) and |𝜇| simply read |𝜇|. However, the
heterogeneous environment in the large scale reactor contains substantial regions
where 𝑞፬ < 𝑞፩ ⁄ 𝑌፬፩ + 𝑚፬, leading to negative values for 𝜇, and erroneous behavior
of eq. 2. The first term on the right hand side of eq. 2 represents enzyme synthesis,
hence the modification prescribes no enzyme is produced under starvation conditions.
The modification of term 2 proposes enzyme destruction under starvation conditions
to mitigate energy shortages in the metabolism. We stress there is no experimental
backing for these choices, but we deem them defendable for the goal of our investi-
gation. We further emphasize that the dynamic gene model is not developed for rapid
fluctuations in extra-cellular conditions, and the instantaneous response of 𝜇 to rapid
variations is unlikely to hold in reality. The above model is purely used to illustrate
how a black-box model would predict 𝑞፩ to change under highly dynamic conditions.



Appendix B: Scale-down based on
intra-cellular lifelines

Extra-cellular scale-down In this thesis, we focused on scale-down using the 𝑞፬-
lifelines extracted from CFD simulations. This amounts to scale-down based on a
replication of the extra-cellular environment, as experienced by micro-organisms in
the fermentor. We see accurate replication of the extra-cellular environment as the
preferential scale-down methodology; if the extra-cellular environment is fully repli-
cated between the scales (𝑞፬, but also 𝑞ፎኼ, T, shear rates...), then so is the metabolic
response. Practically, several of these rates/phenomena will be non-influential, or can
be considered constant. This means that the primary goal of a scale-down simulator
is to accurately replicate those lifeline variations to which the relevant metabolic response
of the micro-organism is sensitive. Any simplification (omitting certain lifelines which
do turn out to be influential, simplifications of the fluctuation distributions by using a
single frequency or amplitude, changing the rate-of-change, ...) has the potential to
change the metabolic response between the scales, and introduce unforeseen effects.
Any practical scale-down protocol will require some simplifications and compromises,
but their effects must be well considered, in order to design a set-up that replicates the
environmental environment at the highest accuracy. If a metabolic model is available
for the tested strain, this model can be used to probe the impact of simplifications
on the metabolic response (as was done in chapter 7), although we again emphasize
that such simplifications should only be made if required from an operational point of
view: there is still the chance that these induce unforeseen responses, not currently
captured in the metabolic model. To summarize, the core philosophy of extra-cellular
scale-down reads:

To replicate those fluctuations in the extra-cellular environment to which the relevant
metabolism of the micro-organism is sensitive, as observed by micro-organisms themselves,
to the highest possible degree of accuracy.

Intra-cellular scale-down If some information about the metabolic response is al-
ready available in the form of a metabolic model, there is an alternative scale-down
philosophy that can be considered: intra-cellular scale down. We do stress this is not
a replacement for extra-cellular scale-down, as it has a higher chance of introduc-
ing unforeseen effects; it should be regarded as an addition to the overall toolbox,
that should be used predominantly for metabolic verification. The philosophy behind
intra-cellular scale-down is summarized in the following statement:

To replicate the fluctuations in those parts of the metabolism of the micro-organisms,
to which the overall process performance is sensitive, to the highest possible degree of
accuracy.

This may regard oscillations in metabolic pools that control the relevant rates, or
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capturing the correct level of the relevant enzyme levels. The advantage of intra-
cellular scale-down is that it leads to different operational considerations. Replica-
tion of the relevant intra-cellular response may not require operating the lab-scale
at equal 𝐶፱ as the industrial scale, it may allow for the use of fixed-frequency feed
intervals, etcetera. The downside is that information about the metabolic response
needs to be priorly available in order to assess which intra-cellular pools influence
overall process performance, and that there is no guarantee that the designed scale-
down protocol induces the expected metabolic response. The disregard of mimicking
extra-cellular conditions means the response in parts of the metabolism not included
in the metabolic model could be altered, which could subsequently interfere with the
relevant part of the metabolism. While this is a clear disadvantage when the goal
of the scale-down experiment is to replicate an industrial environment and probe
the expected process yield loss, it can be considered an advantage when the goal
of the scale-down study is to improve metabolic understanding: if the metabolic re-
sponse differs from the model prediction, clearly the model omits parts of the relevant
metabolism, which provides targets for future study.

As an example for intra-cellular scale-down, we study the P. chrysogenum case. The
relevant pools for process performance in this case are 𝑞፩ and 𝐶፱ (although 𝑋፠፥፲ is
influential, it does not directly control the process, and hence we do not consider it a
target). The results in chapter 7 do clearly show 𝑞፩ is sensitive to extra-cellular fluc-
tuations, its level under fluctuating conditions with a statistical steady state differing
from that under true steady-state conditions, due to the effect of oscillations in 𝑋፠፥፲ .
The long turn-over time in the penicillin-producing enzyme level means 𝑞፩ itself does
not significantly change at short (circulation) timescale, which implies that it is not
relevant to capture the distribution in fluctuation frequency accurately; it is sufficient
to capture fluctuations in 𝑋፠፥፲ in an average sense to induce a change in 𝑞፩, without
capturing the distributions of the frequency and amplitude of 𝑋፠፥፲-fluctuations. The
other relevant process variable, 𝐶፱ , is directly controlled by 𝜇. While 𝜇 is predicted by
the 9−pool model to vary at short timescales, the turnover time of 𝐶፱ itself implies
that it suffices to capture growth only in the time-average sense, 𝜇. The goal of the
scale-down protocol in this example is to capture the 𝑞፩-lifeline and 𝜇 >-lifeline.

Because 𝑞፩ and 𝜇 vary only at long timescales and it is not required to exactly repli-
cate environmental fluctuations at the circulation timescale, the requirement of equal
𝐶፱ can be relaxed. The desired response in 𝑞፩ and 𝜇 can be captured with any prac-
tical value of 𝐶፱ , due to the non-linear model formulation. Previous chemostat-based
steady-state and scale-down experiments conduced with P. chrysogenum operated at
𝐶፱ = 6 g/kg [44, 226], hence we selected this value for consistency. The dilution
rate is set to 𝐷፫ = 0.033 hዅኻ, equal to 𝜇 for case 𝑇𝑈 − 𝐵 (chapter 7). Imposing feed
cycles at a fixed frequency, there are three free parameters: feed time 𝜏፟ , cycle time
𝜏፜ and feed concentration 𝐶፬,፟ . The value of these parameters must be chosen such
that the response in 𝑞፩ is equal to the response observed in 𝑇𝑈−𝐵, which served as a
basis here. Using MATLAB’s genetic algorithm, the three parameters are varied while
evaluating a 20 h model response to the cost function in eq. 3:
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𝐶𝑜𝑠𝑡 = 10ኻኺ ⋅ ((𝑞፩,ፒፃ[10 h] − 𝑞፩,ፂፅፃ[10 h])ኼ
+ (𝑞፩,ፒፃ[20 h] − 𝑞፩,ፂፅፃ[20 h])ኼ) + (6− < 𝐶፱ >)ኼ (3)

Here, 𝐶፱ is averaged between 10−20 h. The optimal parameter set to replicate the
𝑞፩-lifeline of 𝑇𝑈−𝐵 was found to be 𝜏፜ = 113.1 s, 𝜏፟ = 37.4 s, 𝐶፬,፟ = 0.0895mol/kg.
Imposing this feed-famine regime yields the model response shown in fig. B1, which
shows 𝑞፩ to be in excellent agreement despite the highly different lifelines in 𝑞፬ and
𝑋፠፥፲ .
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Figure B1: Pool response for a scale-down design protocol design for a fixed biomass concentration of
ዀ g/kg, with fixed feed intervals. Black lines: CFD data. Red lines: SD simulator response. Intracellular
pools ፗᑘᑝᑪ, ፗᐸᐸ, ፗᑤᑥᑠ and ፗᑇᐸᐸ have units μmol/gᑕᑨ. ᎙ has units hᎽᎳ. ፪ᑡ has units mol/ፂmolᑩ/h. All
other pools are dimensionless.

Of course, it is not necessary to impose a 𝑞፩-lifeline equal to the large-scale re-
sponse; the performance of a metabolic model can be evaluated by prescribing fluctu-
ations of any duration to study if the model prediction and experimental observations
match. The benefit of basing the 𝑞፩-lifeline on large-scale predictions is that this en-
sures the yield loss is at least in the industrially relevant range; imposing unrealisti-
cally long cycle times to impose extreme changes in 𝑞፩ may induce metabolic changes
that are not relevant in modeling the large-scale response. By verifying model per-
formance at a yield change that reflects the industrial scale process, it is likely that
the metabolic responses captured in the scale-down simulator that contribute to this
particular yield-change are the responses that act at the industrial scale.





Appendix C: Regime sensitivity
Fluctuation statistics are sensitive to parameter changes (geometry, 𝑁፬, 𝐾፬ , 𝑞፬,፦ፚ፱
and 𝐶፱) and modeling strategies. The RTDs are also influenced by the set regime
boundaries and filtering strategy. The effect of physical regime changes is assessed
by varying 𝐷𝑎 via the agitation rate 𝑁፬ for the P. chrysogenum case. The effect of filter
strength and the turbulent Schmidt number 𝑆𝑐፭ is tested for the S. cerevisiae case.

Effect of changes in regime layout: P. chrysogenum The base CFD simulation had
𝜏፜።፫፜ = 18.2 s; case 𝑆𝐸𝑁𝑆 − 1 has 𝜏፜።፫፜ = 25.6 s (as experimentally observed), case
𝑆𝐸𝑁𝑆 − 2 has 𝜏፜።፫፜ = 42.8 s, equal to the large-scale water-air result. Regime distri-
butions are reported in figure C1. 𝑆𝐸𝑁𝑆 − 1 has a slightly larger excess zone due to
slower mixing close to the feed, the starvation-limitation boundary is shifted slightly
upward. For 𝑆𝐸𝑁𝑆 − 2, the excess zone is much larger, and the limitation-starvation
boundary shifted further upwards. The change in RTDs was studied by tracking 4300
parcels over 3600 s. The RTDs are normalized for comparison and shown in figure
C2. The increased regime volume and lower particle velocity lead to a broader RTD
in the excess zone; stretching is not proportional to the change in 𝑁፬ due to the su-
perposed effects. The limitation RTDs are hardly affected; in all cases the mean RTD
for a type 𝐶 trajectory approaches the time required to move from 𝑞፬/𝑞፬,፦ፚ፱ = 0.95
to 𝑞፬/𝑞፬,፦ፚ፱ = 0.05 by consumption, which reads 8.13 s for 𝜏፜።፫፜ → ∞ for the current
kinetics. The size of the limitation regime is 𝑞፬-controlled here, and while the zonal
volume changes, the mean RTD remains roughly equal for highly non-ideal conditions.

Effect of Turbulent Schmidt number and boundary conditions: S. cerevisiae The in-
fluence of the top boundary condition and 𝑆𝑐፭ is shown in figure C3. The higher 𝜏ዃ኿
for degassing leads to an overall steeper gradient, resulting in a larger region where

Figure C1: Variation of the regime layout as a function of the circulation time. Left: regular settings (Ꭱᑔᑚᑣᑔ ዆
ኻዂ.ኼ s). Middle: case ፒፄፍፒ ዅ ኻ (Ꭱᑔᑚᑣᑔ ዆ ኼ኿.ዀ s). Right: case ፒፄፍፒ ዅ ኼ (Ꭱᑔᑚᑣᑔ ዆ ኻዂ.ኼ s).
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Figure C2: Sensitivity of the regime residence time distributions to the circulation time. A) type ፞-transition
B) type ፜-transition C) type ፟-transition; changes in the distribution mainly occur due to the immersion of
the top impeller in the starvation regime. Dark blue: ፒፄፍፒ ዅ ኻ. Light blue: ፒፄፍፒ ዅ ኼ. Black: Regular
settings.

𝑐፬ < 5 mg/L near the bottom, and a larger region where 𝑐፬ > 80 mg/L near the top.
The differences have little effect on the regime distribution (figure C4). The per regime
residence time distributions are not expected to differ significantly in terms of long
term behavior, as the same circulation loops are enclosed in all cases.

Coupled metabolic model sensitivity: ideal mixing Coupled simulations were con-
ducted with dilution rate 𝐷፫ = 0.033 and feed concentration 𝐶፟ = 0.0895mol/kg, as-
suming ideal mixing. Four simulations were conducted: 1: 𝑞፬,፦ፚ፱ = 1.6mmol/g፝፰/h
and 𝐾፬ = 7.8 ⋅ 10ዅዀ mol/kg, 2: 𝑞፬,፦ፚ፱ = 1.6 mmol/g፝፰/h and 𝐾፬ = 9.8 ⋅
10ዅዀ mol/kg, 3: 𝑞፬,፦ፚ፱ = 1.13 mmol/g፝፰/h and 𝐾፬ = 7.8 ⋅ 10ዅዀ mol/kg 4:
𝑞፬,፦ፚ፱ = 1.13 mmol/g፝፰/h and 𝐾፬ = 9.8 ⋅ 10ዅዀ mol/kg. The 𝐾፬ change had negli-
gible effect, whereas 𝑞፬,፦ፚ፱ did significantly influence 𝑞፩ and 𝜇 (fig. C5). Next we
imposed feast-famine cycles of 360 s with 𝐶፟ = 0.0833 mol/kg and 𝐷፫ = 0.05
[44], and kinetic parameters 𝑞፬,፦ፚ፱ = 1.6 mmol/g፝፰/h, 𝐾፬ = 7.8 ⋅ 10ዅዀ mol/kg and
𝑞፬,፦ፚ፱ = 1.13 mmol/g፝፰/h, 𝐾፬ = 9.8 ⋅ 10ዅዀ mol/kg. For comparison, the model by
Tang et al. (no simplified ATP pool) was included. The results are shown in figure C6.
The higher 𝑞፬,፦ፚ፱ mainly led to higher peaks in 𝑋፠፥፲ which reduce 𝑞፩ via glycolytic
inhibition, while most other pools remain unchanged. The different ATP formulation
hardly affects 𝑞፩.
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Figure C3: Comparison of concentration gradients for different outlet boundary conditions and values of the
turbulent Schmidt number ፒ፜ᑥ. Concentrations at the probe location are presented right of every contour
map.

Figure C4: Comparison of the regime distribution for the different simulation setups.
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Figure C5: Sensitivity study for constant feed conditions, with with ፂᑗ ዆ ኺ.ኺዂዃ኿ mol/kg and ፃᑣ ዆
ኺ.ኺኽኽ hᎽᎳ. Black, solid: case 1. Black, dashed: case 2. Red, solid: case 3. Red, dashed: case 4. Intracellular
pools ፗᑘᑝᑪ, ፗᐸᐸ, ፗᑤᑥᑠ and ፗᑇᐸᐸ have units μmol/gᑕᑨ. ᎙ has units hᎽᎳ. ፪ᑡ has units mol/ፂmolᑩ/h. All
other pools are dimensionless.
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Figure C6: Sensitivity study for the simulation of ኽዀኺ s feast-famine cycles, with ፂᑗ ዆ ኺ.ኺዂኽኽ mol/kg
and ᎙ ዆ ኺ.ኺ኿ hᎽᎳ. Black: ፪ᑤ,ᑞᑒᑩ ዆ ኻ.ዀ mmol/gᑕᑨ/h, ፊᑤ ዆ ዁.ዂ ⋅ ኻኺᎽᎸ mol/kg based on de Jonge
et al. [44]. Red: ፪ᑤ,ᑞᑒᑩ ዆ ኻ.ኻኽ mmol/gᑕᑨ/h, ፊᑤ ዆ ዃ.ዂ ⋅ ኻኺᎽᎸ mol/kg, with patched ATP formulation
(ፗᐸᑋᑇ ዆ ዂ.ኼ኿ፗᎵᑘᑝᑪ/(ኻኺ.኿Ꮅ ዄ ፗᎵᑘᑝᑪ)). Blue: original model of Tang et al. [226].



Appendix D: Lab scale setup and
mixing

Mixing experiments were conducted in the 3 L laboratory setup used in ECUST, Shang-
hai. The tank geometry is shown in figure D2. Mixing experiments were conducted by
registering the local conductivity change in response to a brine injection. The probe
was placed in the outflow of the bottom rotor, attached to a baffle. Tracer is manually
poured in via a tube at the top surface. 6 mL of brine solution was poured in each
measurement, resulting in a conductivity change of approximately 15mS/cmኼ; the
probe resolution was 0.1mS/cmኼ, with a time resolution of 0.4 s. The salt solution
contained 5g/L NaCl, which gives a density difference of 0.3% compared to tap water.
Hence, buoyancy effects were considered negligible. Preliminary testing revealed the
probe lag time is negligible. Mixing time determinations were conducted at 10− 300
RPM, the time resolution was insufficient for higher agitation rates. All measurements
were resolved 5-fold, and the final conductivity averaged over 10 seconds was used to
non-dimensionalize the results. The dimensionless mixing number 𝜃ዃ኿ as a function
of 𝑅𝑒 is reported in figure D1.
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Figure D1: Mixing behavior in the lab scale fermentor at different Reynolds numbers in the transitional-
turbulent range.
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Figure D2: Schematics of the laboratory scale reactor used in this study.



Appendix E: Airlift loop simulation
Simulations of an airlift loop reactor were conducted to further explore the use of
Fourier analysis. Some data on a S. cerevisiae fermentation inside an airlift loop reactor
is available [313–315, 315, 316], including data on a dissolved oxygen gradient [316].
However, an attempt to incorporate the oxygen consumption dynamics of Sonnleitner
and Käpelli [268] did not yield satisfactory results. Instead, we opted to model a re-
actor only used for flow studies, based on a system for which sufficient CFD data was
available, and added a dummy biological reaction model to this.

We modeled the reactor of Šimčík et al. [317], who conducted a combination of
CFD and experiments in the setup. A single bubble size of 5 mm was used, with
the Universal drag model and turbulent dispersion model by Simonin et al. [318]. The
realizable 𝑘−𝜖model was used for turbulence. 2፧፝ upwind discretization was used for
all equations except volume fraction, for which 1፬፭ order upwind was used to ensure
stability. Validation results are shown in table E1. As a dummy reaction model, we
added the kinetics used for the S. cerevisiae simulations of chapter 5, with a biomass
concentration of 30 g፝፰/kg. The liquid has the properties of water, for gas, standard
air at 𝑆𝑇𝑃 is assumed, with 𝜌 = 1.2g/L, 𝜇፥ = 18.6 ⋅ 10ዅዀ Pa ⋅ s.

The feed is set to 𝐹፬ = 0.00194mol/s, which means under ideal mixing conditions
𝐾፬ = 𝐶፬ . Under the simulated conditions, the substrate gradient ranges from 0.45 <
𝑞፬/𝑞፬,፦ፚ፱ < 0.8. The feed is inserted as a source term at the bottom of the draft
tube, as is visible from the high-𝑞፬ spot in figure E1. We added 7500 particles to the
reactor and tracked them for 200 s. Figure E2, A shows a typical particle track, which
has an obviously better defined structure than those recorded in stirred tanks. This is
reflected in the Fourier spectra, reported in figure E2, B. There is still a wide residence
time distribution, which we attribute to the shape of the headspace region, where
particles may recirculate as in a stirred vessel. Two peaks nevertheless stand out, due
to the plug-flow like behavior in the draft tube. The peak at 0.05 Hz reflects typical
circulation behavior: this is the frequency of feed-point passings, reaching 𝑞፬/𝑞፬,፦ፚ፱ >
0.6. The higher frequency peak at 0.1−0.12Hz reflects the peaks reaching 𝑞፬/𝑞፬,፦ፚ፱ >
0.52. These peaks are attributed to headspace circulations.

These results hint at reasonably simple scale down strategies. One single-vessel
option is to use a variable feed reactor, with total cycles of 20 s (0.05 Hz), imposing

Table E1: Validation of airlift loop simulations, compared with experimental data of Šimčík et al. [317].

Parameter Simulation Experimental
𝑢፥ (m/s) (draft tube) 0.7 0.75
𝑢፥ (m/s) (downcomer) 0.18 0.18

𝛼 (draft tube) 0.06 0.07
𝛼 (downcomer) 0 0.02
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Figure E1: Eulerian results for the Airlift loop reactor. A: Gas holdup profile in the reactor. B: Liquid velocity
profile. Vectors show direction, colors show magnitude. C: Uptake rate profile. Substrate is fed right above
the sparger, leading to a high-uptake hotspot at this locations.

𝑞፬/𝑞፬,፦ፚ፱ ≈ 0.65 at the cycle start, and using a secondary injection at 𝑡 = 10 s to
reach 𝑞፬/𝑞፬,፦ፚ፱ ≈ 0.54. Another option that takes the distribution in the top into
account would be to combine a stirred tank for the headspace with a plug-flow reactor
for the draft tube (feedpoint halfway the plug-flow). Of course, the here-simulated
reactor is not an industrial scale fermentor, but the simulations provide an outline for
how downscaling of an industrial scale draft-tube reactor might be approached.
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Figure E2: A: Example of a single Lagrangian particle track in the airlift-loop reactor. B: Composite Fourier
spectrum of ዁኿ኺኺ tracks, showing peak at ኺ.ኺ኿ and ኺ.ኻኻ Hz, associated with reactor and headspace circu-
lations respectively.



Appendix F: Microfluidic scale-down
concept

When designing scale-down simulators based on industrial fermentation processes,
the operational range offered by traditional bench-scale fermentors is limited. In order
to obtain the duration and magnitude of variations observed in non-ideal industrial
reactors, high biomass concentrations might be needed in the lab, which may lead
to unfavorable rheology, causing poor mixing, mass transfer and pumping problems.
Even when the requirements for replicating the duration and magnitude of variations
can be met, this is only in the average sense; the most rapid perturbations can not be
explicit imposed.

Micro-reactors offer an alternative methodology, that allows to impose very rapid,
well controlled variations in the environment of micro-organisms. To our knowledge,
no studies to date have aimed at imposing fluctuations in process parameters on the
second scale, but micro-reactors have been used for detailed studies of cellular growth
under controlled conditions [297, 307, 309, 310, 319], and to impose slow (minute-
hour scale) environmental dynamics in order to study responses in protein activity
[304, 306]. One major challenge associated with microfluidic scale-down is to probe
the metabolic response on the single-cell level, but techniques in this area are subject
to rapid development [13, 296, 311].

Imposing rapid (second-scale) variations in micro-reactors is absolutely possible
from a theoretical perspective. As a proof-of-principle, we conducted a 2D CFD sim-
ulation of a very simple scale-down simulator, shown in figure F1 A, based on a sim-
plification of the cell-trapping design of Probst et al. [320]. Note that the current
design is by no means optimized; there may be better trap designs, channel designs,
and so on. The current purpose is solely to get an indication considering the rate of
change achievable in such a simulator. For this trial, we set a 40 μm diameter of the
feed channels and main flow channel. A velocity inlet was used at both inlets, with
5−20⋅10ዅኾ m/s such that the main channel velocity is 1−4mm/s. The mixing path
length was approx. 3mm. The flowfield (laminar) was first solved in steady state with
pure fluid 𝐵. At 𝑡 = 0, the fluid at inlet 1 is switched to pure 𝐴, with equal properties
to 𝐵 and a molecular diffusion coefficient 𝒟፦ = 6 ⋅ 10ዅኻኺ mኼ/s, for glucose in water.
Figure F1 A shows a snapshot of the transition from pure 𝐵 to 𝐴+𝐵. After 3 s, the fluid
was switched back to pure 𝐵. The surface-averaged concentration at the cell cluster
was measured. The imposed step function is smeared out due to the laminar velocity
profile and diffusive backmixing, as can be observed in figure F2, but still a step-like
profile retrieved with 5 − 95% saturation time of 0.46 s − 1.15 s, for the highest and
lowest inlet velocity. This shows that even this simple, unoptimized concept can serve
as an excellent basis for imposing rapid extra-cellular dynamics. Using concepts from
control theory, a transfer function describing the relation between feed (input) and
fluctuation registration at the cell cluster (output) can be derived, which would allow
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Figure F1: A: 2-D CFD simulation of a simple single-phase micro-reactor (channel diameter ኾኺ μm) designed
to impose rapid extra-cellular variations on micro-organisms, physically trapped in a cell chamber. Contour
plot shows a switch from pure fluid ፁ to fluid ፀ fed via feed 1, while feed 2 constantly feeds fluid ፁ. B:
concept layout of a 2-phasemicroreactor designed to reduce backmixing in the substrate flow by introducing
Taylor-flow.
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Figure F2: Response at the cell-trap (black) to a pulse of ፀ inserted via one inlet. The pulse profile (red) has
been visualized as the response for a perfect plug flow with the same superficial flow-rate. A: inlet velocity
of ኼ mm/s, B: inlet velocity of ኺ.኿ mm/s per channel.

a desired response profile (possibly even a lifeline directly acquired from CFD, using
deconvolution techniques to minimize the impact of the device) to be translated to the
required feed profile to impose the desired lifeline.

If back-mixing due to the laminar flow and diffusion is too strong, an alternative
may be to turn to a droplet-based scale-down simulator, sketched in figure F1 B. Using
a variable-magnitude side-feed, the substrate concentration in every plug can be con-
trolled separately, while the presence of bubbles or plugs reduces backmixing. The
presence of this bubble train does imply the cells are not exposed directly to the main
flow, but are placed in a separate compartment [321]. This means diffusion through
the continuous phase film and separating membrane (or PDMS pillar array) induces a
time delay, and may lead to some back-mixing. Designing optimal micro-reactors to
directly impose lifelines with rapid fluctuations on micro-organisms requires further
quantification of such phenomena, which is a project in and of itself.
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