
D
elf

tU
ni

ve
rs

ity
of

Te
ch

no
lo

gy

Library Characterization
for Cell-Aware Test

Santosh S. Malagi CE-MS-2018-27

Abstract

Due to their large number of high-precision, defect-prone manufacturing steps, integrated circuits
(ICs) are susceptible to manufacturing defects and hence need to undergo electrical tests to weed
out the defective parts and guarantee sufficient outgoing product quality to the customer. A
key step in test development for digital logic ICs is automatic test pattern generation (ATPG).
Cell-aware test (CAT) is a next-generation test pattern generation approach; its novel feature is
that it explicitly addresses cell-internal defects (as opposed to relying on serendipitous coverage
by traditional ATPG). CAT consists of two stages - cell-aware library characterization (CA-LC)
and cell-aware ATPG. Library characterization uses parasitics-extracted transistor-level netlists
to model open and short defects candidates, which are then simulated with an exhaustive set of
cell-level test patterns. The results are encoded in the form of defect detection matrices (DDMs).
Cell-aware ATPG uses this information to determine a set of test patterns such that, as many
as possible cell-internal defects in the circuit are covered.

As an industrial standard-cell library contains hundreds of cells, library characterization is a time
consuming task. The target defect set must be realistic and complete, but not unnecessarily
large. The objective of this thesis is to improve the library characterization stage of the Cadence
CAT flow by effectively and efficiently modelling realistic defects, while trying to minimize the
time required for characterization. To achieve this, several improvements to the existing flow are
proposed. (1) defining a set of customized settings for the parasitics extraction tool for generating
transistor-level netlists, which are well-suited for cell-aware defect modelling (2) elimination of
potential defects, which were superfluous elements being inserted into the netlist (3) using super-
hard defect resistance values for modelling opens and shorts (4) reduction in simulation time
by modifying the software flow and, (5) inserting a single short defect between two net pairs to
reduce the size of the target defect set. For the 45nm generic library (GPDK045) from Cadence,
these modifications resulted in an improvement in test quality by uncovering as many as 1114
false detections and a reduction of 6% in the characterization time. The number of short defects
to be simulated reduced by 97.7%. This work was carried out as a part of a joint project on cell-
aware test between Cadence (supplier of electronic design automation software), IMEC (research
organization), and Eindhoven University of Technology.

LIBRARY CHARACTERIZATION FOR

CELL-AWARE TEST

by

Santosh S Malagi

in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Engineering

at the Delft University of Technology,
to be defended publicly on Tuesday September 18, 2018 at 1:00 PM.

Student number: 4602420
Supervisor: Prof. dr. ir. Said Hamdioui,
Thesis committee: Dr. ir. Rene van Leuken, TU Delft

Ir. Erik Jan Marinissen, IMEC

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

iii

Dedicated to the worldwide community of DfT and EDA engineers,
who strive to make the world a better place, one chip at a time!

CONTENTS

List of Figures vii

List of Tables ix

List of Acronyms xi

Acknowledgements xiii

1 Introduction 1
1.1 Motivation behind IC Manufacturing Test . 1
1.2 Cell-Aware Test . 1
1.3 Contribution of the Thesis . 2
1.4 Thesis Organization. 3

2 Background Knowledge 5
2.1 Introduction to IC Testing. 5

2.1.1 Fault modelling . 6
2.1.2 Fault simulation . 7
2.1.3 Automatic test pattern generation . 8

2.2 Standard-cell based Design Flow . 9
2.3 Parasitics Extraction . 11
2.4 Quantus QRC based Parasitic Extraction Flow. 13
2.5 Summary . 14

3 Cell-Aware Test 15
3.1 The Evolution of Cell-Aware Test . 15
3.2 Library Characterization . 15
3.3 Cell-Aware ATPG . 17
3.4 Industrial Applications of Cell-Aware Test. 17
3.5 Summary . 18

4 Original Cell-Aware Flow by Cadence 21
4.1 Overview of Cadence Cell-Aware Test Flow . 21
4.2 Issues with Cadence Library Characterization Flow . 25

4.2.1 Parasitic extraction settings . 25
4.2.2 Arbitrary thresholds for defect insertion . 26
4.2.3 Potential defects . 26
4.2.4 Resistance values for modelling opens and shorts . 27
4.2.5 Simulation of |D| + 1 defect injected netlists . 27
4.2.6 Spectre netlist format . 27
4.2.7 Reversal of transistor source-drain terminals . 27

4.3 Summary . 28

5 Improvements to The Cell-Aware Test Flow 29
5.1 Related Prior Work . 29
5.2 Parasitic Extraction Settings for Cell-Aware Test. 30
5.3 Threshold Values for Defect Insertion . 33
5.4 Elimination of Potential Defects . 35
5.5 Insertion of Super-Hard Defects . 35
5.6 Reduction in Run-Time by Modifying Software Flow . 37

v

vi CONTENTS

5.7 Inserting a Single Short between Net Pairs . 37
5.8 Summary . 38

6 Experimental Results 41
6.1 Improvements due to elimination of potential defects . 41
6.2 Improvements due to insertion of super-hard defects. 41
6.3 Effect on simulation time . 43
6.4 Reduction in number of shorts . 44
6.5 Analysis for the GPDK045 Library . 46
6.6 Summary . 47

7 Conclusion and Future Scope 49

Bibliography 51

A Code Listings 53

B Cadence Cell Aware Test - RAK directory structure 57

C Cadence Library Characterization - Software Execution 59

LIST OF FIGURES

1.1 Three nested loops in library characterization. 2

2.1 Concept of IC manufacturing test. 5
2.2 Examples of fault models at various levels of abstraction. 6
2.3 Circuit to illustrate concept of fault sites. 7
2.4 Illustration of unknown and high-impedance states. 8
2.5 Fault sensitization and propagation. 9
2.6 Standard-cell based design flow. 10
2.7 2-input AND cell from GPDK045 library. 11
2.8 Quantus parasitic extraction flow. 13

3.1 Cell-aware test flow. 16
3.2 Defect Detection Matrix (DDM). 16
3.3 Cell-Aware Automatic Test Pattern Generation. 17
3.4 ATPG for stuck-at fault model. 18
3.5 ATPG for cell-aware defect model. 18

4.1 Cadence cell-aware (a) library characterization (b) ATPG. 21
4.2 Open defect insertion and concept of potential defects. 22
4.3 Short defect insertion and concept of potential defects. 22
4.4 An example of a faults list file. 24
4.5 Example defect detection file for 2-input AND cell. 24
4.6 Original parasitic extracted Spectre netlist. 26
4.7 Additional steps required for generating Spectre netlists. 27
4.8 (a) Software bug causing reversal of transistor source-drain terminals (b) fix added. 28

5.1 Terminals, segments, nets and nodes. 33
5.2 Quantus parasitics-extracted cell model. 34
5.3 AND2X1 layout to illustrate heuristics for choosing Cth . 34
5.4 Opens (a) based on potential defects (b) without potential defects. 35
5.5 Defect simulation (a) using D +1 netlists vs. (b) combining all defect injected netlists. 37
5.6 Shorts between nodes of a net-pair are equivalent . 38
5.7 Algorithm for inserting a single short between two net pairs. 38

6.1 Defect detections gained or lost per-cell after eliminating potential defects 42
6.2 Defect detections with potential defects and without potential defects. 42
6.3 Defect detections gained or lost per-cell after inserting super-hard defects 43
6.4 Increase or decrease in number of test patterns upon inserting super-hard defects. 43
6.5 Comparison of simulation times. 44
6.6 ∆ simulation times. 44
6.7 Inserting a single short defect per net-pair for all cells. 45
6.8 Number of transistors, resistors and capacitors for the GPDK045 library. 46
6.9 Number of transistor, open and short defects. 47

7.1 Improved flow for cell-aware library characterization . 50

vii

LIST OF TABLES

2.1 Logic operations on 0,1, and X. 8

4.1 Various EDA tools being used in library characterization flow. 25

5.1 Speedup - defective netlists combined as sub-circuits within a large netlist. 37

6.1 Number of transistors, resistors and capacitors extracted for few cells. 46

B.1 The cell-aware flow RAK directory structure. 57

ix

LIST OF ACRONYMS

ATPG Automatic Test Pattern Generation

CAT Cell-Aware Test

CA-ATPG Cell-Aware Automatic Test Pattern Generation

CA-LC Cell-Aware Library Characterization

CUT Circuit Under Test

DfT Design for Test

DDM Defect Detection Matrix

EDA Electronic Design Automation

IC Integrated Circuits

PEX Parasitics Extraction

PVS Physical Verification System

QRC Quantus RC extraction tool

RAK Rapid Adoption Kit

xi

ACKNOWLEDGEMENTS

This thesis is a result of the support and the guidance I received from several people, and I am forever in-
debted to them. I consider myself to be fortunate to be associated with such individuals and organizations.
Foremost, I would like to express my sincere gratitude’s to my thesis advisor Prof. Said Hamdioui, who initi-
ated me into the world of VLSI Testing and DfT with his inspiring lectures and magnetic personality. Without
him, I don’t think I would have ventured into this discipline or thought of making a career as a DfT engineer.
If Prof. Hamdioui showed me the way my daily supervisor at IMEC, Erik Jan Marinissen taught me how to
walk on this path. Erik Jan refined my style of working, corrected me when I was wrong, and showed me the
importance of writing correctly and making effective technical presentations. The lessons I learned from him
during this short tenure at IMEC will go a long way in shaping my professional career. My sincere thanks to
my colleague Zhan Gao, for her untiring support and interesting discussions. I am sure, Zhan will make a
good researcher and I wish her the very best in her future endeavors.

Next I would like to extend my acknowledgements to Kristof Croes who not only funded my project but taught
me that respect has to be earned, and it takes time and effort to reach great heights. Prof. Ingrid De Wolf
from KU Leuven, was an able mentor during this journey. Without the cooperation of IT support staff at
IMEC, especially my Linux Guy - Ibrahim Tatar my software would never have worked. Thank you Linda
Vanmeerbeek, for providing a nice office working space and the colourful marker pens!

Joe Swenton, Principal Software Architect, and Carl Wisnesky, Product Manager, from the Test Solutions
Group at Cadence were my software gurus. This was my first real world software development experience
both Joe and Carl took keen interest in me, and mentored me. Anton Klotz, University Program Manager
at Cadence EMEA sent me a powerful laptop to work on, took care of all the administrative formalities and
was kind enough to extend his professional network for my advantage. A special mention of Michel Mon-
tanuy - Staff Application Engineer from Cadence France, who taught me two industry leading software tools
- Quantus QRC and PVS. As an organization, Cadence was instrumental in providing me with all the tools
necessary to find the answers I needed during the course of this project. Not to forget, Vivek Chickermane
and Louis Milano at Cadence, for offering me a suitable position to continue my journey with Cadence after
my graduation!

The Delft University of Technology, and the people there especially my master coordinator, Prof. Arjan van
Genderen, CE group secretaries, Joyce van Velzen and Lidwina Tromp. Prof. Rene van Leuken for consenting
to being a part of my thesis exam committee. My fellow batch-mates from TU Delft Aritra Sarkar, Prashanth
G L, Sarthak Sharma, Manoj Payani, Srinidhi Ramdas, and Sunil Suresh, many cheers to our friendship! The
international student community at the Wisteria Student Residence in Leuven, for all the fun during the thesis
period.

None of this would ever have been possible if not for my family, my father for believing in me and giving away
his life’s fortune for my education, my mom for letting me go, and my sister for her sacrifices.

Santosh S Malagi
Leuven, September 2018

xiii

1
INTRODUCTION

As Integrated Circuits (ICs) become pervasive in all walks of life, it is necessary to ensure they meet high quality
standards and are reliable. Section 1.1 begins by discussing the motivation behind IC manufacturing test and its
importance in electronic product development life-cycle. This is followed by a discussion about the traditional
approaches to manufacturing test pattern generation and their inability to model realistic defects based on
actual physical layouts. Cell-Aware Test (CAT) is a next generation test pattern generation technique which
can address these shortcomings. Section 1.2 provides an overview of the cell-aware test methodology and it’s
associated challenges. Section 1.3 highlights the major contributions of this thesis, followed by the organization
of the rest of the report in Section 1.4.

1.1. MOTIVATION BEHIND IC MANUFACTURING TEST
ICs are omnipresent today; not only in computers, consumer electronics, and smartphones, but increasingly
also in the Internet of Things (IoT), automotive and healthcare. Due to their large number of high-precision,
defect-prone manufacturing steps, ICs are susceptible to manufacturing defects and hence need to undergo
electrical tests to weed out the defective parts and guarantee sufficient outgoing product quality to the cus-
tomer. High product quality and reliability become an absolute necessity, especially for applications such
as automotive and medical which cannot tolerate any defective chips. However, as every IC is individually
tested (typically even twice - once at the wafer level and once more after packaging), the tests also need to
be very efficient with respect to the execution time. If the cost of identifying a defective chip is $1, it costs
about $10 to detect the same defective chip when mounted on a PCB. The penalty rises to $100 when the
chip becomes a part of a bigger electronic system. Therefore, the goal of IC testing is to weed out defective
chips in the supply chain as early as possible. No amount of testing can guarantee a 100% defect free product,
but what testing does for us is, it increases our confidence in the correct and reliable operation of the Circuit
Under Test (CUT). In volume production only those chips which pass the test are shipped to the customer
and the rest are discarded.

1.2. CELL-AWARE TEST
A key step in the test development for digital logic ICs is automatic test pattern generation (ATPG). ATPG
determines the content of the IC test. The quality of the generated test patterns significantly affects the test
effectiveness. For scan-testable digital logic, manufacturing test patterns can be automatically generated by
ATPG software tools. Conventional ATPG tools operate under the assumption that defects can only occur at
the periphery of standard-cell instances, I/O ports or between interconnect lines. Any defect occurring within
a standard-cell is completely disregarded during test pattern generation. As semiconductor technology scales
further and newer transistor architectures are introduced, it is expected that the percentage of defects which
occur within the standard cells i.e cell-internal defects will increase considerably [1–3]. Therefore, test pat-
terns must be capable of detecting such cell-internal defects. Cell-aware test is a next-generation test pattern
generation methodology. Its novel feature is that it explicitly addresses cell-internal defects as opposed to
relying on serendipitous defect coverage reported by traditional ATPG tools. Cell-aware test is expected to
significantly improve the test quality, and hence reduce the test escape rate for a relatively small increase in
test execution cost. Test generation in cell-aware test flow consists of two distinct stages:

1

2 1. INTRODUCTION

1. Cell-aware library characterization (CA-LC): Library characterization begins with the extraction of transistor-
level netlists along with the parasitic resistors and capacitors from the standard-cell layouts. Parasitic
resistors and capacitors form the basis for identifying possible locations for open and short defects.
This is followed by detailed simulations to determine the cell-level test patterns which can detect such
intra-cell defects. The results are finally encoded in the form of a defect detection matrix (DDM).

2. Cell-aware automatic test pattern generation (CA-ATPG): Based on the generated DDM’s, cell-aware
ATPG generates minimum chip level test pattern set, which can cover as many as possible cell-internal
defects.

Challenges in Cell-Aware Test
As an industrial standard-cell technology library easily contains about 1,500 cells, library characterization is
a challenging task. For every cell with n-inputs all possible defect locations within the cell must be identified
and simulated with 2n input test patterns, resulting in a nested loop as illustrated in Figure 1.1. The charac-
terization process therefore is both resource and compute time intensive. Fortunately, it has to be done once
per every standard-cell library and the results of this step can be re-used multiple times for all designs based
on the same technology library.

Figure 1.1: Three nested loops in library characterization.

The cell-aware test flow uses parasitic resistors and capacitors to model possible locations for open and short
defects. If all extracted resistors and capacitors are modelled as defect candidates, then the target defect set
becomes very large. The parasitic resistors and capacitors to be chosen for cell-aware defect modeling must
be such that the defect locations are realistic. Too few implies the risk of missing defects, and too many means
expensive simulations and execution time. Since cell-aware test is a non-standard application of parasitic
extraction (PEX) tools, conventional approaches of using PEX tools may not be well-suited for cell-aware test.
Therefore, an investigation is needed for defining the suitable settings to be used by a PEX tool for generating
transistor-level netlists appropriate for cell-aware defect modelling.

1.3. CONTRIBUTION OF THE THESIS
The objective of this thesis is to improve the library characterization stage of the CAT flow based on Cadence
EDA tools. It proposes several approaches to effectively and efficiently model realistic physical defects based
on standard-cell layouts, while trying to minimize the time required for characterizing standard-cell libraries.
The main contributions of this thesis are the following:

• Proposing a set of customized settings for the Quantus parasitics extraction tool. These settings are
effective in generating transistor-level netlists which are well-suited for cell-aware defect modelling.

• A heuristics based approach for defining the threshold values for parasitic resistors and capacitors to
decide whether they are to be considered as possible defect candidates.

• Eliminating potential defects, which were superfluous elements being introduced in the netlist as a part
of the original flow. Due to this change, 1114 false detections were uncovered leading to an improve-
ment in the quality of the defect simulation results for the 45nm library (GPDK045) from Cadence.

1.4. THESIS ORGANIZATION 3

• Using super-hard defect resistance values for modelling opens and shorts resulted in an additional 99
defect detections. The simulation time required for characterizing the library cells dropped by 6%.

• Concatenating the defect-injected netlists into one large file and avoiding repeated execution of back-
ground software tasks results in a speedup of upto 12 times in simulation time.

• Modifying the short-defect insertion strategy to insert a single short between two net pairs. Conse-
quently simulation of equivalent defects exhibiting the same defect behavior is avoided. This reduces
the number of short defect candidates for the GPDK045 library by 97.7%. Once incorporated in the
software flow, this change is expected to translate to a significant savings in simulation time.

1.4. THESIS ORGANIZATION
The remainder of the thesis is organized as follows. Chapter 2 provides a background on the essentials of
IC testing, standard-cell based design flow, operation of parasitic extraction tools and Quantus QRC based
parasitics extraction flow. This sets the tone for rest of the thesis. Chapter 3 presents a detailed discussion on
cell-aware test and it’s two stages. Chapter 4 talks about the shortcomings in the existing Cadence cell-aware
flow and how it affects the quality of defect simulation results. Chapter 5 suggests various modifications to
address these issues. Chapter 6 talks about the expected improvements and experimental results obtained by
applying these changes to the the existing Cadence cell-aware flow. Finally, Chapter 7 concludes the thesis.

2
BACKGROUND KNOWLEDGE

This chapter equips the reader with the necessary background required to understand the rest of the thesis.
Section 2.1 introduces the essentials of IC testing. Section 2.2 touches upon the various aspects of the standard-
cell based design flow, which has become the de-facto standard for digital ICs. Parasitics extraction generates
a transistor-level netlist which is to used for cell-aware defect modelling. An overview of parasitic extraction
is covered in Section 2.3, followed by the specific details of the Quantus QRC parasitics-extraction tool in Sec-
tion 2.4.

2.1. INTRODUCTION TO IC TESTING
The last 40 years have been exciting times for the semiconductor industry, starting from a single transistor
we have reached a stage where billions of transistors are packed in a tiny chip. This has been possible due to
the steady decrease in the feature size of transistors and interconnect dimensions. Manufacturing chips at
such a level of complexity involves hundreds of process steps, this increases the possibilities of a small error
to result in a defective chip. The objective of IC testing is to separate the defective chips from good ones and
ensure sufficient outgoing product quality to the customer. This basic philosophy behind IC manufacturing
test is depicted in Figure 2.1.

Figure 2.1: Concept of IC manufacturing test.

5

6 2. BACKGROUND KNOWLEDGE

Input stimuli are applied to the circuit under test (CUT) during manufacturing test. If the output response
matches the expected response, the circuit (chip) passes the test and is considered to be fault-free. Those
chips which do not produce the expected response are considered to be faulty, and discarded. A defect is
defined as a physical imperfection or anomaly which results in a faulty behaviour. Some of the common
examples of manufacturing defects include: resistive bridges and opens, partially filled vias, missing con-
tacts, process variations, and impurity induced defects. Manufacturing tests can be executed based on two
paradigms - functional testing and structural testing. In functional testing, an n-input circuit under test is
subjected to all possible (2n) input combinations to verify it’s functionality. Such an approach is not feasible
because of the explosion in the number of test patterns required and prohibitive test application times. A
more practical approach is structural testing. The structural testing approach does not attempt to verify the
functionality of the circuit, rather it tries to ascertain whether the circuit has been assembled correctly using
low-level building blocks and they have been connected as expected. The quality of the manufactured chips
is measured in terms of the Defective parts per million (DPPM) i.e the number of defective chips per million
manufactured chips. Certain applications such as automotive target zero DPPM. Manufacturing yield is de-
fined as that percentage of chips which pass the manufacturing test and are acceptable, out of the total lot of
manufactured chips. Yield-loss is that fraction of good chips which are erroneously flagged to be defective.
Yield loss occurs because of over testing or badly designed test strategy. The defective chips which are passed
to the customer as good ones are known as test-escapes.

2.1.1. FAULT MODELLING

Due to the infinite possibilities in which manufacturing defects can manifest themselves, it is highly impossi-
ble to test for each one of them individually. Rather we abstract the defects in terms of their faulty behaviour
and generate test patterns to detect them. A fault model can be defined as a behavioural representation of
the actual physical defect. A variety of fault models, each targeting a particular class of defects have been
proposed. A good fault model must not only mimic the behaviour of the actual physical defect, but must be
computationally efficient and lend itself for test pattern generation. In most cases a single fault model may
not be sufficient to meet the targeted test quality. Therefore, a combination of two or more fault models are
often used for generating tests. Figure 2.2 depicts some examples of fault models defined at various levels of
abstraction.

Figure 2.2: Examples of fault models at various levels of abstraction.

Most ATPG tools are based on the use of gate-level fault models such as stuck-at, bridging, and delay faults for
generating test patterns. A stuck-at fault model operates on the principle that any interconnect line, primary
input or primary output could be permanently set to a logic-1 value (stuck-at 1) or a logic-0 (stuck-at 0). In
Figure 2.3 there are nine possible fault sites and each fault site could be stuck-at 0 or stuck-at 1. For single
stuck-at fault model based test generation, if two or more faults exhibit the same fault behaviour they are said
to be equivalent. Rather than testing for all faults in the equivalent set, it suffices to test for only one fault and
all other cases are automatically covered. In the above example, for a two-input AND gate a stuck-at 0 fault at
the input is same as a stuck-at 0 fault at the output. Similarly, for a two-input OR gate a stuck-at 1 fault at the

2.1. INTRODUCTION TO IC TESTING 7

output is equivalent to stuck-at 1 fault at one of the input lines. The process of substituting several faults with
one equivalent fault is known as fault collapsing. Fault collapsing helps reduce the length of the test pattern
set and time required for fault simulation. Fault coverage is a measure of test effectiveness, and is defined as
the percentage of faults which are detected by applying test patterns. A bridging fault is used to model the
case of two signal nets being shorted with each other. A delay fault models a defect which does not change
the value of signal, but causes a circuit to produce the correct output at slower clock speeds. A high-to-low or
a low-to-high transition is required to activate the fault effect and hence a pair of test vectors are necessary to
detect delay faults.

Figure 2.3: Circuit to illustrate concept of fault sites.

A switch level fault model targets transistor faults wherein a transistor could be permanently turned ON -
stuck-short (stuck-ON), or turned OFF - stuck-open (stuck-OFF). For detecting stuck-open faults a pair of test
vectors are necessary, whereas to detect stuck-short faults the power supply current at steady state is moni-
tored using Iddq testing. Gate-level fault models lie at the intersection of logic and physical implementation
and they have been widely used for generating manufacturing test patterns. Unfortunately, such fault models
may not be sufficient to address the testing challenges posed by today’s state of the art deep sub-micron tech-
nologies [1, 4]. Generating test patterns by considering the actual physical layouts to target realistic defects
is becoming increasingly important. One such example is the cell-aware model which forms the basis of this
thesis work.

2.1.2. FAULT SIMULATION

A circuit simulation is used to predict the behaviour of a circuit. A distinction between functional simulation
and fault simulation is necessary at this point. In functional simulation the main intent is design verification.
Functional simulation identifies design errors by comparing the circuit responses with specifications or re-
quirements of the design. Functional simulation can take place at various levels of abstraction. For example,
a simulation to verify behaviour of the gate-level netlists is often known as logic simulation. At the switch
level, analog simulations on SPICE netlists can be carried out to verify the values of functional parameters
of the circuit such as output voltage and currents. Carrying out detailed analog simulations of the circuit is
usually time consuming, gate-level or logic simulations are much faster. Fault simulation on the other hand
characterizes the circuit behaviour in the presence of faulty circuit elements. The goal is to identify a set of
test vectors which can detect these faults. It helps estimate the quality of the test pattern set in terms of the
targeted fault coverage. Fault simulation results also play a major role in fault diagnosis. Before discussing
fault simulation techniques, it is necessary to develop an appreciation of the various logic symbols used in
fault simulation. Most fault simulation methods are derivatives of logic simulation techniques and hence use
a similar etymology.

Logic Symbols - 0, 1, X, and Z
Boolean algebra uses two logic symbols - 0 and 1 to represent false and true values respectively. In CMOS
technology a 0 corresponds to voltage level Vss and 1 represents the Vdd value. In addition two more logic
symbols X (unknown state) and Z (high-impedance) are used. The symbol X is used to represent unknown
logic values on a signal net, when it is not clear whether the value is a logic 0 or logic 1. The outcomes of

8 2. BACKGROUND KNOWLEDGE

performing fundamental boolean operations on 0,1 and X are depicted in Table 2.1. It can be seen that
during a logical AND operation, 0 is the dominant value, whereas 1 is dominant during a logical OR.

Table 2.1: Logic operations on 0,1, and X.

NOT 0 1 x OR 0 1 x AND 0 1 x
1 0 x 0 0 1 x 0 0 0 0

1 1 1 1 1 0 1 x
x x 1 x x 0 x x

The logic symbol Z means a high-impedance state, it represents a node which is floating i.e. it is neither
being driven by a logic 1 nor logic 0 value. Consider the example circuit shown in Figure 2.4. If because of
a certain fault, all the drivers are disconnected from the node y , it is said to be in the high-impedance or Z
state. Since the internal node y is in high impedance state, the final output f is unknown, it can either take a
logic-1 or logic-0 value and is represented using an X symbol.

Figure 2.4: Illustration of unknown and high-impedance states.

Various techniques to improve the performance of fault simulation have been proposed in literature [1, 5],
and are widely used in practice. The simplest of all the fault simulation techniques is serial fault simulation.
A target set of faults is identified and faulty circuit elements are injected in the fault-free circuit netlist. Each
of these fault-injected netlists are subject to fault simulation by applying input test vectors. The responses
of the fault injected netlists are compared with the expected responses, in case of a mismatch the fault is
considered detected. Serial fault simulation is very intuitive and simple to implement. A major drawback
however is its slow speed. Parallel fault simulation exploits the bit wise parallelism in boolean operations to
reduce the simulation time. Faulty circuits can be simulated in parallel and their responses are compared
with that of the fault free circuit. Concurrent fault simulation or event driven simulation only simulates that
region of the circuit which is in the immediate vicinity of the fault, thereby reducing the fault simulation time
[5]. The choice of a particular simulation technique depends on various factors such as - simulation time,
available compute resources, ability to handle unknown or high-impedance states and the structure of the
circuit netlist itself [1].

2.1.3. AUTOMATIC TEST PATTERN GENERATION
Given a set of faults F and a set of test patterns T , the objective of ATPG is to determine an optimum subset
of test patterns V which can either detect all faults in F , or pre-determined fraction of the faults (i.e. targeted
fault coverage). ATPG is a well-known N P-complete problem [6]. ATPG is regarded as a huge binary deci-
sion tree, which could have an exponential search space with single, many or no solutions at all [1, 6]. The

2.2. STANDARD-CELL BASED DESIGN FLOW 9

usual approach to test pattern generation is to first start by generating random test patterns and then apply
deterministic test patterns to improve the fault coverage. Many easy to detect faults can be detected using
random test pattern generation. After subsequent iterations when fault coverage using random test pattern
generation finally saturates, test patterns are generated using deterministic algorithms such as D [7, 8], PO-
DEM [9] and FAN [10]. ATPG algorithms operate on the principles of sensitizing (activating) the fault effect,
propagating the fault effect to the primary outputs, and finally justifying all input signals by setting them to
non-controlling states so that they do not change the faulty logic values. Fault activation sets the signal driv-
ing the fault site to a logic value which is opposite to that of the faulty value. For example, to test for a stuck-at
1 fault, the fault site is set to a logic-0 value to activate the fault. Fault propagation selects a path from the fault
site to the primary output, where the fault effect can be observed. Fault justification sets the internal nets or
primary inputs to non-controlling values so that they do not negate the fault effect. Conflicts are possible
between the propagation and justification tasks, in such a scenario a new alternative path must be selected.
Consider a simple logic circuit illustrated in Figure 2.5 which has a stuck-at 0 fault at b. Let e-g-i be the cho-
sen path for propagating the fault effect to the output i. To sensitize the fault effect, b is set to logic-1. a and c
must be justified by setting them to non-controlling values of 0. After completion of the activate, propagate
and justify tasks the test pattern becomes x1 = 0, x2 = 1, and x3 = 0.

Figure 2.5: Fault sensitization and propagation.

2.2. STANDARD-CELL BASED DESIGN FLOW
A design flow can be defined as set of well-defined steps which allows a chip design team to realize a suc-
cessful implementation of chip starting from it’s specifications. The standard-cell based design flow is widely
used for designing Application Specific Integrated Circuits (ASIC’s) with substantial digital and memory con-
tent. A standard-cell is a complete logical and physical implementation of most commonly used logic or
storage function such as AND, OR, NOT gates, multiplexers, adders, flip-flop, register etc. These functions are
verified, designed and laid out in a particular technology node and the logical, timing, physical, and electri-
cal models are made available. A collection of such standard-cells in a particular technology node is called
as a standard-cell library. A highly simplified version of standard-cell based design flow is illustrated in Fig-
ure 2.6. In practice the design flow is not very straight forward and consists of several design iterations and
back-tracking steps to resolve design errors. The design flow starts with the system-level design. The de-
tailed behavioural specifications of the chip are captured using a high-level modelling language such as Sys-
temC. RTL designers then use hardware description languages such as VHDL or Verilog to achieve the desired
functionality in terms of memory elements (registers) and logical/arithmetic operations performed on them.
Functional verification confirms that the developed RTL code matches the design specifications. During the
logic synthesis phase, the RTL description is transformed to a technology dependent gate-level netlist. This
is done by mapping the logic functions to their respective standard-cell instances in the chosen technology
library. This marks the end of front-end design or logic design phase. Additional logic is inserted to improve
the testability of design. DFT features make it easy to develop and apply test patterns to detect any defects

10 2. BACKGROUND KNOWLEDGE

during manufacturing. Manufacturing test patterns are generated using ATPG tools.

Figure 2.6: Standard-cell based design flow.

The gate-level netlist from the logic synthesis step is modified during DFT insertion. To verify that such a
netlist does not violate the initial specifications a formal equivalence check is necessary. The goal of func-
tional verification is to check for functional correctness, where as formal verification checks whether two
gate-level implementations of the circuit represent the same boolean equations or not. During pre-layout
Static Timing Analysis (STA), the design is checked for setup and hold violations before being handed over
to physical design implementation. The idea is to check whether the design can operate at the designated
clock frequency. The floor planning stage decides the I/O structure of the chip, placement of standard cell
instances and macro blocks, and the design of power-ground networks. The actual placement of standard-
cell instances and other blocks happens during placement. For digital designs this step is largely automated
and determines the quality of routing. This is a key step in the physical design implementation phase as
placement of blocks directly impacts the quality of routing. The clock network is designed during the clock-
tree insertion phase. This is followed by routing of signal nets. Global routing determines the 2D map of how
standard-cell instances must be interconnected. Detailed routing stage determines the exact interconnection
path through different metal layers and vias. The physical verification phase consists of many steps. Design
Rule Check (DRC) ensures that the layout does not violate any design rules set by the fabrication house and
hence can be manufactured. Layout vs Schematic (LVS) ensures that post layout the structure of the chip has
not been modified and matches the circuit schematic. This is followed by circuit extraction step which ex-
tracts the designed and parasitic devices (RLC) from the layout. The design is then verified in the presence of
actual parasitic elements and wire delays for timing correctness during post-layout STA. Once the back-end

2.3. PARASITICS EXTRACTION 11

flow is complete, the GDSII output is generated and sent for fabrication. An initial batch of chips is subjected
to post-silicon validation to ensure all the specifications are satisfied. Any anomaly detected in this stage may
lead to back-tracking and corrections in the earlier steps. A chip design project reaches a logical conclusion
when the design is cleared for volume production. Every chip is then subjected to manufacturing test by ap-
plying test patterns. Only those chips which qualify the tests are shipped to the customer and the rest are
discarded.

Figure 2.7: 2-input AND cell from GPDK045 library.

The biggest advantage of standard-cell based design flow is that it enables design re-use and shortens the time
to market. It makes it possible to massively scale the design while most of the synthesis and implementation
details are taken care of by state of the art EDA tools. This also reduces human effort and possibility of errors
during the design cycle. The present work is based on the generic 45nm standard-cell library from Cadence
(GPDK045). Figure 2.7 illustrates a 2-input AND cell from the the GPDK045 standard-cell library. The height
of the standard-cells in a library is maintained as a constant, this makes it possible to align the standard cells
in a single row. The width of a cell varies depending on the complexity of the cell, number of transistors, and
their drive strength.

2.3. PARASITICS EXTRACTION
Parasitics extraction generates a transistor-level netlist which is to used for cell-aware defect modelling. This
section provides a brief overview of the operation of parasitics extraction tools. The process of converting the
layout view of a design to a transistor-level netlist is known as layout extraction. It serves various purposes
- estimating the timing behaviour, noise characterization, power analysis, layout vs schematic comparison,
and identifying parasitic elements. Extracting a transistor-level netlist for identifying parasitic elements is
known as parasitic-extraction. The generated circuit level netlist contains two types of devices - designed
devices and parasitic devices. Designed devices are created by the designer, parasitic devices (resistors (R),

12 2. BACKGROUND KNOWLEDGE

capacitors (C), and inductors(L)) are a result of material properties. They were not explicitly designed but they
exist in the fabricated hardware. As circuits become more complex and interconnect structures shrink further,
the effect of parasitic devices on circuit performance becomes an important concern [4]. Most parasitics-
extraction tools started out as derivatives of Design Rule Check (DRC) programs, later branching out to evolve
as specialized tools [4]. A generic parasitics-extraction flow involves the extraction of designed devices, inter-
connect and parasitic device extraction (R, L and C), and network simplification tasks as explained in [4]. The
behaviour of the extraction tool is customized by the user. These settings not only determine the quality of
extraction, but also the suitability of the extracted circuit netlist for the target application.

1. Determine the nature of extraction: Identify the target design - analog, digital, mixed signal, Radio Fre-
quency (RF) etc. Zero in on the accepted input database and required output format of the netlist to be
generated. Interoperability of EDA tools might also be worth a consideration. Finally, decide whether
the extraction would be flat, cell-level or hierarchical in nature. In the flat extraction technique entire
design is simplified to a single level of hierarchy. A cell-level extraction system performs parasitic ex-
traction on each individual cell, while only considering the the inter-cell relationships for connectivity.
A truly hierarchical system also allows for extracting inter-cell parasitic device. Because of the high so-
phistication involved in a truly hierarchical system most layout extraction happens at the flat or cell
level.

2. Correlate designed layout dimensions with actual silicon geometries: A circuit designer builds an ideal
view of the different layers of a circuit in terms of polygons which appear as perfect shapes in the soft-
ware model. The practical limitations posed by lithography and chemical mechanical polishing pro-
cesses (CMP) result in differences between the layout in a CAD tool vs what is actually achieved. For
accurate parasitic estimation an extraction tool must account for these differences. The shape and size
of the drawn geometries might be different from what is actually patterned on a silicon substrate. Also
the designer has not specified the thickness of the different layers. Empirically these details can be
determined by using the available information such as width, spacing between neighbours, density,
material properties etc. All of these dimensions are specified in a technology file and provided as input
to the extraction tool.

3. Extraction of designed devices: The designed device extraction identifies the location of devices such
as MOS transistors which have been explicitly designed in the circuit. For example in a typical CMOS
design flow a transistor is defined whenever a poly overlaps a diffusion region. A poly-silicon area forms
the gate, whereas the drain and source terminals are located in the diffusion regions. An additional step
might involve measuring the device parameters such as gate length or width. At this stage the tool might
also validate whether the device has been correctly identified or not. For example, a transistor with
three source-drain terminals is invalid unless the process architecture allows for such a configuration.
The extraction tool recognizes such instances, assigns a unique identifier to each device, makes a note
of the terminal connections, device location and parameters and stores this information in a database.

4. Interconnect or connectivity extraction: The first step in interconnect extraction is to remove the de-
signed devices, then construct monolithic net structures integrating vias and connections on different
layers. Using the information generated in earlier step the device terminals must be located. This helps
in assigning unique labels to nets and later to net segments after the parasitic resistance extraction step
is complete.

5. Parasitic device extraction: After connectivity extraction is complete, each net is broken down into sim-
pler, smaller parts known as segments and the resistance of each sub-part is estimated. The resistance
value is estimated using the dimensions(shape), it’s nature such as being a linear resistor, contact resis-
tor, bend, junction etc. and a resistance coefficient value defined in the process technology files. Some
of the challenges in parasitic R extraction include - treatment of copper interconnects which are not ho-
mogeneous, accurate estimation of contact resistors and handling of resistive via-arrays. Specialized
techniques have been developed to address these issues and most industrial grade parasitic extraction
tool provides options to handle such situations. Capacitance extraction techniques have evolved from
1D, 2D, 2.5D to highly sophisticated 3D field solvers. 1D capacitance extraction uses the area and the
perimeter information of the interconnects and routing layers to obtain the capacitance values. In 2D
capacitance extraction the lateral or surface capacitance of different layers is also taken into account.
In 2.5D extraction two 2D structures are combined to improve the accuracy of parasitic extraction. A 3D

2.4. QUANTUS QRC BASED PARASITIC EXTRACTION FLOW 13

capacitance extractor provides the highest level of sophistication and accuracy. It operates by breaking
the cross section into thousands of smaller units and simulating them with field solvers. The generated
data is co-related to fit an empirical formula and then estimate the C value between any two segments.
Inductance extraction is performed only when required. Since detailed discussion of algorithms in-
volved in parasitic extraction is out of the scope of this thesis, the reader is advised to consult other
sources such as [3, 4] for a comprehensive treatment of parasitic extraction techniques.

6. Circuit reduction: Parasitic extraction can generate a large number of resistors and capacitors. In most
use case scenarios all the extracted R and C elements, internal nodes and net segments might not be
required. A simplified version of the netlist obtained by replacing the original R and C elements with the
lumped or equivalent values is sufficient. It not only reduces the size of the netlist, but also optimizes
the computation requirements of the EDA tools which might operate on these generated netlists.

2.4. QUANTUS QRC BASED PARASITIC EXTRACTION FLOW

Quantus is a parasitics extraction tool offering from Cadence. It supports R,L and C extraction from both cell-
level and transistor level designs and is suitable for analog, digital and mixed-signal circuits. Quantus can
perform parasitic extraction from multiple process technology nodes, and has built-in support for 3D capac-
itance extraction using field-solvers. Figure 2.8 illustrates the parasitic extraction flow using Quantus. Quan-
tus can accept various input formats such as DEF, OA (Open Access Database), PVS database (PVS- Physical
Verification System) or Calibre (physical verification tool from Mentor Graphics) as inputs. In the Cadence
cell-ware flow, PVS database is used as input to generate parasitic extracted netlists in the SPICE format. PVS
is a suite of physical verification tools from Cadence which can perform DRC (Design Rule Check), LVL (Lay-
out vs Layout), ERC (Electrical Rule Check), LVS (Layout vs Schematic) and SVS (Schematic vs Schematic).
Prior to performing parasitics extraction using Quantus, PVS must be invoked to perform LVS. Firstly, the
design flow requires checking the reliability of the layout database. Secondly, PVS generates several input
files which are used during RC extraction. For example, Quantus requires information regarding port names,
layers, connectivity and device information which is generated by PVS.

Figure 2.8: Quantus parasitic extraction flow.

Quantus accepts the files produced during PVS to perform RC extraction. The settings for extraction process
are specified by the user in the form of an ASCI file known as QRC Command File (.ccl file). The CAD engi-
neer invokes a command line utility known as TechGen to generate the start-up scripts and files containing
information about resistance (layer + via) and capacitance (interconnect) models to be used for RC extrac-
tion. This is used as an input during the extraction process. Finally, Quantus generates a parasitics-extracted
SPICE netlist.

14 2. BACKGROUND KNOWLEDGE

2.5. SUMMARY
This chapter provides an overview of IC testing and it’s various building blocks - fault modelling, fault simu-
lation and ATPG. Fault modelling abstracts the actual physical defects in terms of their logical behaviour and
therefore enables test pattern generation using ATPG. Fault simulation identifies which test patterns detect
which faults. ATPG uses this information to generate test patterns for the entire design. Standard-cell based
design flow is most widely used ASIC design methodology. Parasitics extraction generates an accurate simu-
lation model of the circuit by extracting both designed devices and parasitic elements from physical layouts.
Quantus QRC is one such parasitic extraction tool which is used in the context of this thesis for generating
transistor-level netlists.

3
CELL-AWARE TEST

Related prior work leading to the evolution of cell-aware test is discussed in Section 3.1. Library characteriza-
tion and cell-aware ATPG, the two stages of cell-aware test are discussed in Section 3.2 and Section 3.3 respec-
tively. Cell-aware test has been successfully applied for testing complex circuit designs ranging from automotive
chips to 32-bit microprocessor designs. Some of these example use cases are reviewed in Section 3.4.

3.1. THE EVOLUTION OF CELL-AWARE TEST
Manufacturing tests have largely relied on the use of gate-level fault models such as stuck-at, delay, and bridg-
ing fault models [1]. Most of them operate under the assumption that a defect can only take place on the
interconnects or I/O ports of gate-level instances [11]. Though this assumption has worked quite well in the
past, with the advent of deep sub-micron technologies this is no longer the case [1]. Numerous approaches
have been suggested to improve the defect detection capabilities of ATPG-based logic tests. In n-detect testing
[12, 13] a given stuck-at fault is targeted multiple times by applying n different test patterns. New (different)
test patterns are generated in the hope that these patterns will improve the defect coverage. This leads to a
corresponding increase in the test pattern set making it expensive to apply on large designs. Embedded Multi-
detect [14] tries a different approach by making use of don’t-care bits to detect stuck-at faults. Though, this
does not lead to expensive test pattern count increase it prohibits the use of don’t care bits for compression
and low power testing [15]. The effectiveness of n-detect and EMD approaches depends on the character-
istics of the original test pattern set, which makes the improvement in test quality largely probabilistic [11].
In gate-exhaustive testing [16], all possible input test patterns are applied at the library cell-level to guaran-
tee full coverage of all cell-internal defects. For large complex designs having millions of gates, often with
multiple inputs this might lead to an explosion of test patterns. Use of SPICE netlists and analog simulations
to target transistor level defects, albeit without parasitic elements was proposed in [17]. The cell-aware test
methodology evolved as an extension of these ideas and was first introduced in [11]. The objective of cell-
aware test is to explicitly target cell-internal defects and improve the defect coverage rather than relying on
serendipitous coverage of defects as reported by conventional ATPG [11, 18, 19].This is achieved by modelling
realistic physical defects based on actual standard-cell layouts, and simulating them with an exhaustive set
of 2n inputs (where n is the number of cell-inputs). Cell-aware test methodology consists of two stages - li-
brary characterization and cell-aware ATPG as illustrated in Figure 3.1. During the library characterization
stage the cell-level test patterns which can detect the cell-internal defects are determined. The results are
then used during the subsequent cell-aware ATPG stage to generate compact set of test patterns at the chip
level. Cell-aware test is expected to provide gate exhaustive test quality at a small increase in test cost. Prior
research has already proven the usefulness of cell-aware test over n-detect [20], EMD [21], and gate-exhaustive
[22] based approaches. The subsequent sections discuss the library characterization and cell-aware ATPG in
greater details.

3.2. LIBRARY CHARACTERIZATION
Library characterization stage consists of parasitic extraction, defect location identification, defect injection,
and defect simulation as illustrated in Figure 3.1. It starts by extracting transistor-level netlists along with
parasitic elements from the physical layouts of standard-cells. Parasitic resistors and capacitors form the

15

16 3. CELL-AWARE TEST

Figure 3.1: Cell-aware test flow.

basis for identifying possible open and short defect sites. A high parasitic resistance (R) is indicative of a
long and thin wire and is therefore a potential candidate for an open defect. A large parasitic capacitance (C)
between two nets implies they are very close to each other and run in parallel for long distances. This makes
them highly susceptible to shorts during manufacturing. Parasitic Rs and Cs above a user defined threshold
are considered as target defect candidates. To simulate the defect behaviour, a parasitic resistor is replaced
with a hard-open (very high resistance), and a capacitor is replaced with a hard-short (very weak resistance
in parallel with the capacitor). Choosing a large threshold value reduces the number of opens and shorts in
the target defect set, but might lead to the skipping of some possible defect scenarios. On the other hand,
a very low threshold could lead to the modelling of unrealistic defect scenarios. After the completion of the
defect extraction step |D| + 1 netlists per cell are obtained (one defect free and |D| defect injected netlists
for |D| defects). Once the defect extraction process is completed, these netlists are subjected to detailed
simulations by using an exhaustive set of 2n patterns, where n represents the number of cell-inputs. This
defect characterization process must be repeated for every cell in the library, for all possible defect locations.
If the output response is different from the defect free case, then the pattern is considered to detect the defect.
The target defect set can be summarized as follows:

• Candidate open defects: (1) opens on long and thin wires (2) opens at the transistor source and drain
terminals.

• Candidate short defects: (1) shorts between two wires which are very close to each other (2) short be-
tween transistor drain and source terminals.

Figure 3.2: Defect Detection Matrix (DDM).

The results of this step are then encoded in the form of a Defect Detection Matrix (DDM) which is illustrated
in Figure 3.2. A DDM records which cell-level test patterns can detect which cell-internal defect candidates.
The number of rows in a DDM are equal to the number of patterns (i.e. 2n for n-input cell) and each column

3.3. CELL-AWARE ATPG 17

corresponds to a defect candidate. A 1 indicates that the particular defect d is detected by cell-level test
pattern p, 0 means it is not detected. The sum of the rows of the matrix gives the total number of cell-internal
defects which can be detected by a particular test pattern. The total number of simulations to be carried out
for a cell i in the library is given by:

Number of simulations for the i th cell = 2ni . di (3.1)

where ni is the number of inputs for the i th cell and di is the number of defects for cell i . If the entire
standard-cell library has c cells, the total number of simulations to be performed are:

Total number of simulations for the entire library =
c∑

i=1
2ni . di (3.2)

3.3. CELL-AWARE ATPG
The inputs to the cell-aware ATPG step are the DDMs for all the library cells and the circuit level netlist as
illustrated in Figure 3.3. A DDM records which cell-level test patterns can detect which cell-internal defect
candidates. This information is used by the cell-aware ATPG engine to identify a compact test pattern set at
the circuit-level which can cover the maximum number of cell-internal defect candidates.

Figure 3.3: Cell-Aware Automatic Test Pattern Generation.

A conventional ATPG engine based on stuck-at faults modelling tries to detect a fault at the cell boundary,
i.e. it has to perform a single justification and propagation activity. Cell-aware ATPG on the other hand
may have to satisfy several justification targets for a single propagation task. This is best illustrated by an
example. Consider a stuck-at 0 fault on the line A0 of the circuit shown in Figure 3.4. The fault effect is
justified by making A0 = 1. S0 = 0 and S1 = 0. The other inputs A1 and A2 are don’t care bits. The justification
and propagation for an example cell-internal defect of the same circuit is shown in Figure 3.5. The required
conditions in this case are A2 = 0, A0 = 1, S1 = 0 and S0 = 0. An additional bit A2 must be justified in order to
propagate the fault effect. Consequently, compared to stuck-at faults based ATPG, CA-ATPG requires more
logic signal values to be justified [19].

3.4. INDUSTRIAL APPLICATIONS OF CELL-AWARE TEST
The cell-aware test methodology has been applied in practice to several multi-million transistor designs laid
out in 65, 55, 32 and 28 nm process technology nodes. The results of generating static and transition test pat-
terns for 10 such industrial designs based on the CAT fault model have been reported in [19]. On an average
each design had 2.9 million transistors, leading to about 20 million stuck-at faults and 60 million possible CAT
defects. The number of potential defect candidates based on CAT model was always significantly higher than
static stuck-at faults. The improvement in test quality is attributed to the ability of cell-aware fault model to
explicitly target cell-internal defects which otherwise were not detected by conventional fault models. How-
ever, this comes at the cost of additional test-patterns. If the improvement in defect coverage is taken into
consideration then this increase is marginal. For instance, with 25% increase in test pattern count, the defect
coverage for most designs went up by 4%. Production test results of applying CAT to a 32nm notebook pro-
cessor design from AMD (Advanced Micro Devices) have been presented in [23]. The library characterization

18 3. CELL-AWARE TEST

Figure 3.4: ATPG for stuck-at fault model.

Figure 3.5: ATPG for cell-aware defect model.

was carried out on about 1900 cells. It is reported that an additional 699 failing parts were identified by ap-
plying cell-aware patterns which had escaped stuck-at and transition patterns. These statistics were further
confirmed by applying system level tests to the failing chips. In [24] production test results of a 130 nm auto-
motive chip from Infineon Technologies based on 216 standard-cell instances are presented. Even on mature
technology nodes CAT has effectively improved test quality for mission critical electronic chips which target
zero test escapes.

3.5. SUMMARY
Conventional ATPG tools have relied on serendipitous coverage of faults, which can no longer be the case with
deep sub-micron technologies. Some of the notable approaches to improving the test quality and increasing
the defect coverage include - n-detect, Embedded Multi-Detect (EMD) and Gate-Exhaustive (GE) testing. In
most cases, either the test application is very expensive, making it highly impractical for actual designs or the
improvement in test quality is probabilistic. The cell-aware test methodology has emerged as a promising
alternative which uses the actual physical layout as blueprint to identify cell-internal defects. This is done in
two stages - cell-aware library characterization and cell-aware ATPG. In cell-aware library characterization a
standard-cell library is characterized to generate a set of cell-level test patterns which can detect the targeted

3.5. SUMMARY 19

cell-internal defects. These are represented in the form of a Defect Detection Matrix (DDM). The cell-aware
ATPG stage, uses the DDMs and the circuit netlist to generate a compact set of test patterns for the whole
design. Cell-aware test is expected to significantly improve test quality and reduce test escapes at marginal
increase in test generation cost. Cell-aware test has been used for the production testing of several multi-
million transistor based designs such as microprocessors and automotive chips.

4
ORIGINAL CELL-AWARE FLOW BY CADENCE

Section 4.1 presents an overview of the Cadence cell-aware test flow and it’s two stages. Section 4.2 discusses the
various shortcomings identified in the library characterization stage and how it affects the overall test quality.

4.1. OVERVIEW OF CADENCE CELL-AWARE TEST FLOW
The Cadence cell-aware test flow is illustrated in Figure 4.1 and is executed in two stages. During the first
stage of the cell-aware test flow i.e. the library characterization stage, the cell-level test patterns which can
detect the cell-internal defects are determined. The results are stored in the form of a Defect Detection Matrix
(DDM), which are then used during the subsequent cell-aware automatic test pattern generation stage to
generate a chip level test pattern set.

Figure 4.1: Cadence cell-aware (a) library characterization (b) ATPG.

The objective of the library characterization stage is to generate a DDM per library cell. Cadence Quantus
QRC is used to generate parasitics extracted transistor-level netlists for all library cells. Using inputs from the
technology library, the tool calculates a parasitic resistance for every net segment and a parasitic capacitance
between internal nodes. A segment with a large parasitic resistance indicates a long and thin wire which has

21

22 4. ORIGINAL CELL-AWARE FLOW BY CADENCE

a higher chances of having an open defect. Parasitic capacitance can be extracted between nodes belonging
to different nets (inter-net) or between nodes of the same net (intra-net or self-capacitance). A large capaci-
tance indicates the corresponding nets between which the capacitor is located are close to each other and run
in parallel for long distances. Therefore, they have a high chance of being shorted. Based on a user-defined
threshold value, a defect location identification script is executed within the Modus software environment
which determines the parasitic resistors and capacitors to be considered as opens and shorts in the target de-
fect set. A parasitic resistor above user-defined threshold resistance is modeled as an open by replacing it with
a high resistance of 2 GΩ in the transistor-level netlist. A parasitic capacitor above a threshold is modelled as
a short by inserting a low-resistance value of 0.001Ω in parallel with the capacitor. A high threshold value re-
duces the number of opens and shorts in the target defect set but might lead to the skipping of some possible
defect cases. On the other hand, a very low threshold could mean modelling of unrealistic defect scenarios.
In case of transistors, three defects - source-open, drain-open and source-drain short are modeled. Modus
generates a separate defect injected netlist for every identified candidate defect. While generating a defect
injected netlist the defect extraction scripts inserts place holder values to negate the effect of all other defect
candidates other than the one, for which a netlist is being generated. Figure 4.2 illustrates the defect insertion
for an open defect on the PMOS transistor source terminal. A hard open of 2 GΩ, is injected on the PMOS
source terminal, whereas potential opens of 0.001Ω at the transistor source and drain terminals are inserted
at remaining source/drain terminals. A parasitic capacitor is shorted with a high resistance of 2 GΩ (potential
bridges). Similar concept is illustrated for inserting a source-drain short in Figure 4.3. Parasitic resistors and
capacitors less than the thresholds are not propagated as defect candidates but remain as a part of the netlist.

Figure 4.2: Open defect insertion and concept of potential defects.

Figure 4.3: Short defect insertion and concept of potential defects.

#---

Defect insertion based on potential defects

#---

for cell in listofCells do {

read RES_THRESH, CAP_THRESH;

read R_POTENTIAL_BRIDGE, R_POTENTIAL_OPEN

read R_OPEN, R_BRIDGE;

 # parse parasitics-extracted Spectre netlists and store netlist contents

 cellContents = readLines(cell.sp);

identify resistors, capacitors and transistor instances in the cell

 mos_primitives = findMosModels(cell, cellContents);

 listofResistor = PATTERN.MATCH(‘R’);

 listofCapacitors = PATTERN.MATCH(‘C’);

define lists to hold short, open and transistor defects

mos_defects = [];

shorts = [];

opens = [];

for capacitor in listofCapacitors

 if capacitor > CAP_THRESH:

 shorts.append(capacitor = R_BRIDGE);

 identify capacitor nodes ----- > (n1,n2)

 bridgeInstance = R_POTENTIAL_BRIDGE across (n1,n2);

 bridgeLines.append(bridgeInstance);

for resistor in listofResistors

 if resistor > RES_THRESH:

 opens.append(resistor = R_OPEN);

 # identify MOS defects

 for transistor in mos_primitives:

 drain, gate, source, bulk = identifyMosTerminals

 # drain-open defect

 mos_defects.append(drain = R_OPEN)

 identify segment ----- > (d1,d2)

 drainPotentialOpen = R_POTENTIAL_OPEN between (d1,d2);

 drainPotentialOpenLines.append(drainPotentialOpen);

 # source-open defect

 mos_defects.append(source = R_OPEN)

 identify segment ----- > (s1,s2)

 sourcePotentialOpen = R_POTENTIAL_OPEN between (s1,s2);

 sourcePotentialOpenLines.append(sourcePotentialOpen);

 # source-drain short

 mos_defects.append(sourcedrain = R_BRIDGE)

 identify source-drain node pair----- > (sd1,sd2)

 sourceDrainPotentialBridge = R_POTENTIAL_BRIDGE between (sd1,sd2);

 sourceDrainPotentialBridgeLines.append(sourceDrainPotentialBridge);

for defect in opens:

write defect injected netlists;

for defect in shorts:

write defect injected netlists;

for defect in mos_defects:

write defect injected netlists;

24 4. ORIGINAL CELL-AWARE FLOW BY CADENCE

After the completion of the defect extraction step, for D identified defects in the target defect set, |D| + 1
netlists per cell are obtained (one defect free and |D| defect injected). The list of defects along with a short
description are recorded in a faults list file per cell as illustrated in Figure 4.4. This completes the defect
extraction step. From within the Modus environment, Liberate is invoked to perform a static simulation on
each of these defect injected netlists using an exhaustive set P of cell-level test patterns (where P = 2n for
a cell with n inputs). If the target defect set is D , defect d ε D is considered detected by applying an input
pattern p ε P if the output response for this case, differs from the defect-free output. For every defect d , all
the cell-level test patterns p which can detect the defect are recorded in a defect detection file as illustrated
in Figure 4.5. The defect detection file is generated per-cell and contains the following information:

• fault number and the description of the defect such as defect location and the nature of the defect
(open/short).

• input test-patterns which can detect the defect.

• output response of the defect-free and defective netlist.

Figure 4.4: An example of a faults list file.

Figure 4.5: Example defect detection file for 2-input AND cell.

In Figure 4.5 fault number 9 is a short between the nodes \1\:A and Vss. This defect is detected by only one
input test pattern - 11, the defect-free response is 1 and the faulty response is 0. As the defect-free and faulty
outputs are not the same, this defect can be detected. It can be observed that defect number 3 is detected
by three test patterns, whereas defect 1 and defect 2 are not detected by any test pattern and therefore not
written to the defect detection file. Using the defect detection file and the list of defects generated earlier, a
DDM file per cell is derived by running a post processing script. In stage two - cell-aware ATPG, the outputs
of the library characterization stage (i.e. DDMs for all cells) along with the gate-level netlist of the entire chip
are used to perform ATPG. This generates a compact set of test patterns which covers the maximum possible
cell-internal defect candidates for all standard-cell instances in the design.

4.2. ISSUES WITH CADENCE LIBRARY CHARACTERIZATION FLOW 25

The Quantus parasitic extraction tool and Physical Verification System (PVS) were already introduced in
Chapter 2. Modus is a comprehensive Automatic Test Pattern Generation (ATPG) and silicon-diagnostics
tool. From the cell-aware test perspective, the Modus software environment forms the platform for executing
the entire cell-aware flow. Liberate is a set of tools for performing cell-level timing characterization, static-
analysis, and validation of standard-cells in a technology library. Liberate is invoked within Modus to run a
static simulation of transistor-level netlists. Spectre is an analog simulation platform for designing and ver-
ifying analog, mixed-signal, and RF circuits. Spectre is used for matching transistor instances in the netlist
with their corresponding models available in the technology library, this information is used by Liberate. The
list of EDA tools used along with their version information are listed in Table 4.1 for reference.

Table 4.1: Various EDA tools being used in library characterization flow.

Tool Version
Physical Verification System (PVS) 12.10
Quantus QRC 13.10
Modus 17.20
Liberate 17.11
Spectre 17.10

A database containing the layout files, transistor models, software scripts etc. required to execute the flow is
available to the users in the form of a Rapid Adoption Kit (RAK). Appendix B provides a brief description of the
relevant content from the RAK required for library characterization. Cadence also provides a set of parasitics-
extracted transistor-level netlists for all cells in the GPDK045 library. Several issues were identified with the
originally provided netlists and these issues are highlighted in Section 4.2. To start the library characterization
flow, from the top-level directory execute:

modus -f ./SCRIPTS/runmodus.library.cellaware.tcl

A detailed description of the software execution flow for runmodus.library.cellaware.tcl including background
setup tasks and environment initialization is available for reference in Appendix C.

userTime.py - script to measure user CPU time
The runmodus.library.cellaware.tcl cannot measure the total time spent in characterizing a particular cell.
Operating System (OS) function calls can report on three different timing values - Real, User and System times.
Real time is the wall clock time. This is the total elapsed time, including the time slices used by other pro-
cesses and time the process spends in the blocked state, e.g. is waiting for I/O to complete. User time is the
actual time spent by the CPU when executing the process. System time is the amount of CPU time spent in
performing system calls within the OS kernel. Therefore, the parameter of interest to us is the user time. This
gives the actual CPU time spent in executing our process - i.e. time spent in extracting the faulty netlists and
characterizing a particular cell. A top level Python script userTime.py (Appendix A) was created which can
read the list of cells to be characterized and automatically logs the user time per cell. This script can be run
by executing:

python userTime.py

4.2. ISSUES WITH CADENCE LIBRARY CHARACTERIZATION FLOW
This section discusses the various issues which were identified in the existing library characterization flow.

4.2.1. PARASITIC EXTRACTION SETTINGS
An investigation of the original parasitic extracted netlists provided in the RAK by Cadence revealed several
shortcomings. These observation are based on the analysis of parasitic extracted netlists, results of several ex-
periments carried out with different parasitic extraction tool settings, information provided in the tool man-
uals, and inputs provided by parasitics extraction experts from Cadence. This section highlights the issues,
possible solutions to address them are discussed in Chapter 5.

• unfortunately, no information regrading the tool settings used for extracting the originally provided
netlists for all cells in the RAK is available.

26 4. ORIGINAL CELL-AWARE FLOW BY CADENCE

• parasitic capacitors were always referenced with respect to Vss as illustrated in Figure 4.6. Further in-
vestigations revealed that there are two modes of parasitic capacitance extraction - coupled and de-
coupled. In the de-coupled mode of parasitic extraction all parasitic capacitors are extracted with re-
spect to a particular reference node. This simplifies the process of parasitic extraction but reduces the
accuracy. In the coupled mode, the parasitic capacitors are extracted as is, which increases the accuracy
but makes the parasitic extraction process much more complex. In case of the the netlists provided by
Cadence, the parasitic capacitors were extracted in de-coupled mode and had to be re-extracted in the
coupled mode.

Figure 4.6: Original parasitic extracted Spectre netlist.

• most probably no field extractor was utilized for extracting parasitic capacitors and some form of math-
ematical reduction on RC network was applied. This makes the parasitic extracted netlist to be highly
simplified and less accurate for cell-aware defect modelling.

• no information regarding the threshold for parasitic resistance and capacitance extraction used during
parasitic extraction is available. The parasitic extraction tool does not extract any resistors or capacitors
below this threshold.

• diagnostic information such as the location of the parasitic element, width of the interconnect segment
is unavailable in the extracted netlists.

• via resistors are not included, as a result open defects on vias cannot be modeled.

4.2.2. ARBITRARY THRESHOLDS FOR DEFECT INSERTION

Parasitic R’s and C’s which are below their respective thresholds are not modelled as defects. The threshold
values influence the number of candidate defects in the target defect set, thereby affecting the test quality
and also the characterization time. In the original flow by Cadence the threshold for R (to be considered as
open) was set at 100 Ω and C (to be considered as short) was set at 3 x 10−17 Ω. The reasoning behind the
choice of these values is not very clear and it seems they were chosen based on a best possible approximation
or intuition.

4.2.3. POTENTIAL DEFECTS

In the original cell-aware flow, additional resistors and capacitors which are not actually present in the library-
cell but superfluous elements to reserve a possible defect location are introduced into the netlist. These
elements known as potential defects, not only change the characteristics of the netlist but also result in inac-
curate defect simulations. They must be eliminated to improve the quality of defect simulation and the speed
of execution.

4.2. ISSUES WITH CADENCE LIBRARY CHARACTERIZATION FLOW 27

4.2.4. RESISTANCE VALUES FOR MODELLING OPENS AND SHORTS
A parasitic resistor above threshold is modelled as an open defect by replacing it with a hard-open resistance
of 2 GΩ, and a short is modelled by using a hard-short of 0.001Ω. The defect inserted values can be made even
more harder to further improve the test quality and ensure the defect behaviour is captured as accurately as
possible.

4.2.5. SIMULATION OF |D| + 1 DEFECT INJECTED NETLISTS
Based on the user-defined threshold values for parasitic resistors and capacitors a candidate set of defects is
identified. For D identified candidate defects per cell, D +1 netlists (N defect injected netlists and 1 defect-
free) are generated. Liberate, the tool being used for defect simulation must perform some background tasks
every time it encounters a new netlist. These tasks might include - reading the netlist, identifying the cell
parameters, location of the I/O pins etc. For individual cells the hardware resources and the time required
to complete these background tasks might not be very significant. But when we consider the sum total of
the time spent for all the faulty netlists this becomes a significant value. This can be accomplished more
efficiently by exploiting certain in-built features of Liberate as discussed in Chapter 5.

4.2.6. SPECTRE NETLIST FORMAT
One more important issue identified during the course of this project was regarding the format of the parasitic
extracted netlists. If the Cadence CAT flow can only accept Spectre format, this might discourage potential
customers from adopting this flow. Especially if it requires them to invest in new tools just for generating
input netlists in a specific format. Even if they decide to invest in such tools, additional steps are required
for generating netlists in Spectre format as illustrated in Figure 4.7. This might be unnecessary and a waste
of time and efforts. For example, for a relatively small subset of standard-cells (313 cells) this translates to 6
hours of additional compute time. This increases proportionately when the number of cells being considered
goes up. Because of these reasons it is advisable to modify the Cadence CAT flow to accept more generic
and widely accepted formats such as SPICE. (*ADE (Analog Design Environment) is an analog design and
verification toolkit.

Figure 4.7: Additional steps required for generating Spectre netlists.

4.2.7. REVERSAL OF TRANSISTOR SOURCE-DRAIN TERMINALS
Conceptually, a transistor is symmetric with respect to its drain and source terminals. The drain and source
terminals are decided based on the voltage levels at the two terminals. During defect extraction, the script
reads the extracted Spectre netlists and matches the transistor instances with transistor models available in
the technology library. For every transistor three defects (source-open, drain-open and source-drain short)
are inserted - and a new netlist is generated per defect. If an open is being inserted on the source terminal,
the corresponding segment must be split and a resistor is inserted in the gap to model a source-open de-
fect. It was observed that during this process of defect insertion on the transistor terminals, a software bug
caused the drain and source terminals to be reversed. This issue and the software fix added are illustrated in
Figure 4.8. Determining the drain and source terminals is important for correctly identifying the location of

28 4. ORIGINAL CELL-AWARE FLOW BY CADENCE

the the defect during later diagnosis stages. This avoids the possibility of treating an open on the source as a
drain-open or the other way round.

Figure 4.8: (a) Software bug causing reversal of transistor source-drain terminals (b) fix added.

4.3. SUMMARY
This chapter provided an overview of the Cadence CAT flow with specific details about the library charac-
terization. The flow is based on several EDA tools - Quantus/PVS, Modus, Liberate, and Spectre. Software
scripts are executed within Modus for identifying open/short defects, creating defect injected netlists, simu-
lating them with cell-level test patterns, and finally writing out the simulation results to a defects detection
file. The inputs to the library characterization stage are the cell-layouts and the technology files such as tran-
sistor models; the outputs are the defect-injected netlists, faults list file and the results of characterizing the
defective netlists using static simulation. The final results are encoded in the form a matrix and written to a
DDM file per cell. The DDMs along with the netlist of the complete circuit design are then used for generat-
ing circuit-level test patterns during the CA-ATPG stage. The original parasitic-extracted netlists provided as
a part of Cadence RAK for CAT suffer from variety of problems which need to be fixed to improve the quality
of Cadence library characterization flow. CAT is a non-standard application of parasitic extraction, therefore
it is essential to define a set of customized settings for the parasitic extraction tool to generate transistor-level
netlists which are well-suited for cell-aware defect modelling.

5
IMPROVEMENTS TO THE CELL-AWARE TEST

FLOW

Section 5.1 starts by giving an overview of the related prior work on cell-aware test and approaches to improv-
ing the cell-aware flow. Section 5.2 talks about the customized settings to be used for the Quantus parasitic ex-
traction tool for extracting transistor-level netlists targeting cell-aware defect-modelling. Section 5.3 discusses
regarding the threshold values for parasitic resistors and capacitors for considering them as defect candidates.
Section 5.4 discusses regarding the drawbacks of potential defects, which were superfluous elements being in-
troduced into the netlist and the improvements possible by eliminating them. Section 5.5 talks about using
super hard defect values for modelling opens and shorts. Section 5.6 discusses the speedup achieved by concate-
nating all defective netlists together as a part of a single large netlist prior to simulation. Finally, Section 5.7
talks about the reduction in the number of defect candidates by inserting a single short per net pair.

5.1. RELATED PRIOR WORK
It is being increasingly recognized that for newer and smaller technology nodes, a significant number of man-
ufacturing defects are occurring within the standard-cells [1, 11]. Test-pattern generation based on traditional
stuck-at fault model will not be sufficient, this is especially true for critical electronic systems such as auto-
motive and medical which cannot tolerate any defective chips. The cell-aware test methodology was first
introduced in [11] by explicitly targeting low resistive cell-internal short defects (1Ω). This paper showed
that by applying cell-aware test patterns an improvement of upto 1.2% in defect coverage was possible for
the target library over pure stuck-at test patterns. In [18] this was enhanced to cover hard opens (1 GΩ) and
weaker short defect candidates. All of this work was consolidated, apart from the inclusion of small delay
defects in [19]. Cell-aware test for sequential cells such as scan flip-flops was introduced in [25, 26]. Sev-
eral use case scenarios of applying cell-aware test patterns for the production testing of designs ranging from
notebook processors [23] to high-quality automotive chips [24] are available in the literature. Recently, the
usefulness of cell-aware ATPG for programmable chips (FPGA’s) targeting the automotive segment was pre-
sented [27]. As cell-aware test is increasingly being adopted by semiconductor companies, optimizing the
library characterization process for improving the quality of defect simulation and reducing the computation
time is a topic of great interest and ongoing research.

The effectiveness of the cell-aware test approach depends heavily on the quality of the library characteriza-
tion outputs. Most prior work does not seem to disclose the complete details about how intra-cell defects
are modelled during library characterization stage. For example, in [19] and most of the earlier work on cell-
aware test leading to this paper, no information about how exactly transistor-level netlists are extracted from
standard-cell layouts for cell-aware defect modelling is available. In [28] the authors propose an algorithm
to combine the cell layout information along with the parasitic-extracted netlists during the defect injection
process to reduce the target defect set, and hence improve defect simulation time. The process is executed in
two steps: layout identification and defect injection. During the layout identification stage the cell-layout is
converted from a binary format to a plain-text format using an open source tool gds2gdt. An algorithm iden-
tifies the rectangular polygons which are situated on the same layer and breaks them into individual blocks

29

30 5. IMPROVEMENTS TO THE CELL-AWARE TEST FLOW

or segments. Transistor terminals are identified, followed by locating the vias. Rectangular segments and vias
which are connected to each other and form a continuous structure belong to the same net and are grouped
together. Once this is done, the distance between two adjacent net pairs on the same layer is calculated. If
this distance is less than the user defined threshold, then the net pair is added to the short defect list. A trac-
ing algorithm records one open defect per all net segments of the same net located on the same routing layer.
The list of open and short defects are used in the subsequent fault injection stage to determine the exact lo-
cation and then insert an open or short defect in the parasitic- extracted netlist. Even though this algorithm
is very useful and the authors have reported a reduction of upto 80% in number of open and short defects
to be considered for cell-aware library characterization, there are some open questions. Firstly, the proposed
approach doesn’t seem to do anything radically different - it still uses parasitic extraction and additionally re-
quires a post processing step. Secondly, no information is available on how the threshold values for injecting
shorts between nets is decided. And finally, this paper is based on the assumption that inter-layer shorts are
not possible and hence excludes them. Which is not always the case, especially for smaller technology nodes
as discussed in [19]. Instead of running a post-processing script which takes up additional computation time
the above mentioned features can be directly implemented in the defect extraction script, and by appropri-
ately choosing the settings in the parasitics extraction tool itself. This is one of the objectives of this thesis
work.

5.2. PARASITIC EXTRACTION SETTINGS FOR CELL-AWARE TEST
Parasitics extraction is used for generating an accurate simulation model of the circuit. A parasitics extraction
tool uses the layout information along with the technology library files to estimate the parasitic resistance, ca-
pacitance, and inductance. The output of a parasitic- extraction process is a transistor-level netlist, which can
be used for various purposes such as signal integrity analysis and delay estimation. Cell-aware test is a non-
standard application of parasitic-extraction. For example, estimation of signal delay often involves applying
some form of circuit simplification to reduce the number of parasitic resistors and capacitors in the extracted
netlist. This might not be suitable for cell-aware test. Also, most applications of parasitics-extraction take into
account the extracted inductance parameter, which might not be necessary for cell-aware test. The objective
of cell-aware test is to use the parasitic-extracted transistor level netlists to model realistic defects, and iden-
tify cell-level test patterns which can detect these defects. These cell-internal defect candidates must include
opens on transistor source, drain and gate terminals; as well as on interconnects on same routing layer and
between layers. Shorts must be detected between transistor terminals and between interconnects within the
same layer or adjacent layers. Since parasitic extracted resistors and capacitors form the basis for modelling
cell-internal defects, the quality improvement possible because of cell-aware test depends heavily on the in-
put transistor-level netlists. Therefore, the parasitic-extraction tool must be tuned to extract transistor-level
netlists with parasitic resistors and capacitors which allow us to model defects at the above mentioned defect
sites. These settings are organized under various sub-groups and given as inputs to the extraction tool in the
form of a command control file (ccl). The process of generating, and executing parasitic extraction using the
ccl file was discussed in Chapter 2. The general settings for Quantus QRC tool are specified as follows:

• input_db -type pvs: The input database format to be read by Quantus comes from PVS outputs (dis-
cussed in Chapter 2).

• extract -type c_coupled: extract all possible parasitic resistors and capacitors from all nets, perform
capacitance extraction to extract the capacitors without coupling them with a specific reference node.
This setting addresses the issue discussed in Section 4.2.1 which is illustrated in Figure 4.6.

• output_db -add_explicit_vias true: Vias are also susceptible to manufacturing defects, by selecting this
option the Quantus parasitic extraction tool inserts a parasitic resistor for all via locations and includes
them in the netlist. This ensures such defects can also be modeled during the library characterization
stage.

• output_db -spice: generate SPICE netlists to address the issue discussed in Section 4.2.6.

• output_db -include_parasitic_res_model ’comment’
output_db -include_parasitic_res_width ’drawn’
output_db -output_xy ’PARASITIC_RES’ ’PARASITIC_CAP’

5.2. PARASITIC EXTRACTION SETTINGS FOR CELL-AWARE TEST 31

Including comments such as location of parasitic R’s and C’s, layer information, x,y coordinates and
segment widths, helps during diagnosis.

The parasitic extraction tool must be configured such that open defects on transistor terminals, and on in-
terconnects within a layer as well as between layers are identified. The Quantus tool must extract all relevant
parasitic resistors, and the associated settings are outlined below:

• extraction_setup -max_fracture_length infinite: this ensures that segments are not partitioned into
smaller parts and treated as one monolithic unit. An open defect on an interconnect segment exhibits
the same behavior whether it is located to the right, left or in the middle. So a continuous segment must
not be decomposed into smaller units. This also reduces the number of parasitic resistors and avoids
the unnecessary simulations of defects which are equivalent.

• filter_res -merge_parallel_res true: standard-cell libraries are not expected to contain parallel-segments.

• filter_res -merge_parallel_via
filter_res -max_via_array_size ’auto’:

By explicitly including a parasitic resistor for every via it is possible to model open defects on vias. How-
ever, the cell-aware defect insertion model operates on the principle of ’one-defect at a time’. Therefore
parallel vias need to be merged, and a single equivalent open defect is modelled for the resulting resis-
tance.

• filter_res -remove_dangling_res true: parasitic resistors from dangling segments do not cause any faulty
behaviour, and hence do not affect the simulation accuracy. But dangling segments can result in shorts,
by choosing this option the dangling resistors are not listed in the netlist, but the capacitors attached
to them are still included in the netlist.

• filter_res -min_res 1e-10: This threshold value i.e. MinR determines the cut-off criteria for extracting
parasitic resistors. This value must be chosen such that all possible parasitic resistors are included
in the extracted netlist. In the original netlists provided by Cadence, no information regarding this
value was available. For determining the appropriate value for MinR multiple parasitic-extractions
were performed by setting extremely low values for MinR. This was an exercise to estimate the lowest
possible range of magnitudes for extracted parasitic resistors. It was noticed that for thresholds less
than 1 x 10−10 Ω no significant variation in the quantity or characteristics of the resistors extracted was
observed. Therefore, in the modified flow MinR is set at 1 x 10−10 Ω.

A large capacitance means two nets are very close to each other, run in parallel for longer distances, and
therefore can be easily shorted. The cell-aware flow must identify shorts between terminals of a transistor,
shorts within the same layer as well as between layers which are adjacent to each other. The appropriate
settings for the Quantus parasitic extraction tool to achieve this are:

• filter_cap -exclude_self_cap -true: Self-coupling capacitors between nodes on the same net are ex-
cluded. If these capacitors are included, this would lead to irrelevant shorts of a net with itself.

• filter_cap -exclude_floating_nets true: floating nets are rare in highly optimized library-cells, even if they
occur this option removes them. Shorts with floating nets do not cause any faulty behaviour.

• filter_coupling_cap
-coupling_cap_threshold_absolute 1e-25
-coupling_cap_threshold_relative 1e-3
This threshold value i.e. MinC determines the cut-off criteria for filtering parasitic capacitors. This
value must be chosen such that parasitic capacitors between two nodes which are far apart are elimi-
nated. For determining the appropriate value for MinC multiple parasitic-extractions were performed
by setting extremely low values for MinC. This was an exercise to estimate the lowest possible range of
magnitudes for extracted parasitic resistors. It was noticed that for thresholds less than 1 x 10−25 F no
significant variation in the quantity or characteristics of the resistors extracted was observed. There-
fore, in the modified flow MinC is set at 1 x 10−25 F .

• use_field_solver high_accuracy
field_solver_type probabilistic

#---

Parasitics-extraction to generate netlists for cell-aware library characterization.

#---

for all cells ε listofCells do RC_Extraction {

 # initialize software environment

 initialize Quantus QRC environment;

 set path to read technology library;

 set working_directory path;

 # set technology library

 set process_technology_lib = ‘GPDK045’

 # set input database for parasitics extraction

 set input_db -type = ‘PVS database’

 # set output netlist type

 set output_db_type = ‘spice’

 # include diagnostics information in the netlist

 -include_cap_model "comment" \

 -include_parasitic_cap_model "comment" \

 -include_parasitic_res_model "comment" \

 -include_parasitic_res_width_drawn = true \

 -output_xy coordinates for R, C and transistor devices

set options for C extraction and use 3D field solver for C extraction

set extract \

 - selection "all" \

 - type "c_coupled" \

 - use_field_solver "high_accuracy" \

 - field_solver_type "probabilistic"

 set exclude_self_cap = true

 set filter_coupling_cap \

 - coupling_cap_threshold_absolute 1e-25 \

 - coupling_cap_threshold_relative 0.001

 - exclude_floating_nets = ‘true’

 # set options for resistance extraction

 set merge_parallel_res = true

set min_res = 1e-10

 set remove_dangling_res = true

 set -max_fracture_length = ‘infinite’

 set remove_dangling_res = ‘true’

 # set options for vias

 set add_explicit_vias = ‘true’

 set filter_res -merge_parallel_via = true

set filter_res -max_via_array_size = ’auto’

}

5.3. THRESHOLD VALUES FOR DEFECT INSERTION 33

Quantus parasitics extraction model
Based on the above mentioned settings Quantus parasitics extraction tool extracts transistor-level netlists
which are well-suited for cell-aware defect modelling. The Quantus PEX tool divides a net that electrically
connects two or more terminals into net segments, which are bounded by terminals or internal nodes. A net
is divided into multiple net-segments if a fork or a transition from one layer to the other or a sharp corner
bend is encountered. Segments can be within the same layer (intra-layer) or inter-layer (contacts, vias). This
is illustrated in Figure 5.1 and is based on the following definitions:

1. Terminals: Cell input/output pins, transistor terminals (source, drain, gate or bulk), Vdd /Vss .

2. Net: set of electrically connected terminals.

3. Segment: part of net with individual parasitic segments.

4. Node: end point of a segment.

Figure 5.1: Terminals, segments, nets and nodes.

Figure 5.2 illustrates the parasitics-extraction result for an inverter (INVX1) cell from the GPDK045 library.
The cell-library has four layers: n-diffusion, p-diffusion, poly-silicon, and metal-1. Contacts exist from metal-
1 to other layers. The inverter cell has one input and one output terminals and two transistors. The Quantus
PEX tool has also identified various internal nodes as illustrated in the figure. A script for automating the
Quantus parasitics extraction flow is presented in Appendix A.

5.3. THRESHOLD VALUES FOR DEFECT INSERTION
For cell-aware library characterization two user-defined threshold values are used, Rth and Cth . Any parasitic
resistor below Rth will not be modeled as an open, and a parasitic capacitor below Cth will not be modeled
as a short. Threshold values must be defined such that all realistic defect locations are covered and unlikely
defects are neglected, this avoids futile defect simulations and saves valuable simulation time. During resis-
tance extraction the parasitics extraction tool divides a net into multiple segments whenever it encounters an
inter-layer transition or fork. Each of these segments represents a parasitic resistor and is therefore a possible
location for an open defect. In the original cell-aware flow, the value for Rth was set at 100 Ω. That is, para-
sitic resistors below 100Ωwere not considered as open defect candidates. In the modified flow, the resistance
threshold Rth is being changed to 0.0Ω to consider all parasitic resistors as open defect locations. By setting
a zero threshold for parasitic resistors all possible open-defect locations, including possible weak-opens are
covered. The magnitude of the parasitic capacitance is indicative of the possibility of a short between two
nets. A low capacitance means the two nets are far apart in the layout, and a short between them is highly un-
likely. Two nets which are very close, run in parallel for long distances and therefore have a high capacitance
and can be easily shorted. In the original cell-aware flow, the threshold for short defect insertion was set as
3 x 10−17 F , the choice of this threshold seemed arbitrary, the reasons behind choosing this threshold were

34 5. IMPROVEMENTS TO THE CELL-AWARE TEST FLOW

Figure 5.2: Quantus parasitics-extracted cell model.

unknown. A heuristics-based approach for choosing a suitable value for Cth is proposed. By correlating the
magnitudes of the parasitic capacitors, with the locations of the nets between which they are located, a suit-
able value for Cth can be determined. Consider the annotated layout for the two input AND cell (AND2X1)
from the GPDK045 library illustrated in Figure 5.3. The two nets A and Y are relatively far from each other,
consequently the value of the parasitic capacitance between Y and A:3 (segments of net Y and A) is 5.56 x
10−21 F . On the other hand, the nets n0 and B are very close to each other and the parasitic capacitance ex-
tracted between the two nets is of the order of 10−18 F . Therefore by mapping the magnitude of the parasitic
capacitance with the location of nets between which it is located, a rough estimate of the possibility of a short
between the two nets can be predicted. Based on these approximations, the Cth for this library is set at 1 x
10−19 F . Below this threshold it is highly unlikely that a short might occur. This approach was tried on two
small cells in the GPDK045 library, a two input AND and an inverter (INVX1). Standard-cell layouts a have
uniform height but vary in widths, they share common design principles. If this approximation holds true for
the smaller cells such as inverters, then it must be true for all other cells in the library.

Figure 5.3: AND2X1 layout to illustrate heuristics for choosing Cth

5.4. ELIMINATION OF POTENTIAL DEFECTS 35

5.4. ELIMINATION OF POTENTIAL DEFECTS
As discussed in Chapter 4 the original cell-aware flow by Cadence inserted additional resistors and capaci-
tors known as potential defects in the netlist. These resistors and capacitors were not a part of the parasitic
extracted netlist, but were superfluous elements to act as place holder values for possible defect sites. The
procedure for generating defect-injected netlists is as follows. The defect-insertion script starts by parsing
the defect-free parasitic-extracted netlist. The transistor instances and their pin terminals are identified by
matching their definitions with the SPICE models available in the technology library. For every transistor,
three defect injected netlists are generated to cover source-open, drain-open, and source-drain short defects.
Source-open and drain-open defects are modeled by splitting the segments connecting the source/drain
transistor terminals and inserting a hard open. A source-drain short is modeled by inserting a hard-short
between the source and drain terminals. Apart from the defect for which a defect injected netlist is being
generated all other possible open defect locations on transitor terminals are replaced with potential opens,
whereas potential shorts are placed in parallel with parasitic capacitors. Figure 4.2 illustrates this defect in-
sertion procedure for a source-open defect on the PMOS transistor of an inverter circuit. The inclusion of
additional resistors and capacitors completely changes the characteristics of the circuit causing inaccurate
defect simulations. To eliminate ’potential defects’ the defect insertion script was modified such that only
a single defect is modeled per defect-injected netlist, and no additional resistors or capacitors are inserted.
Figure 5.4 illustrates the defect insertion process before and after eliminating potential defects.

Figure 5.4: Opens (a) based on potential defects (b) without potential defects.

5.5. INSERTION OF SUPER-HARD DEFECTS
Parasitic resistors and capacitors in a transitor-level netlist form the basis for identifying possible locations for
open and short defects. A parasitic resistor is replaced with a a very high resistance to model an open, and an
extremely low resistance is inserted in parallel with a parasitic capacitor to model a short. For an open defect,
higher the value of this defect resistance better is its ability to model an actual open. Similarly, for a short
lower the value of the defect resistance better is it is ability to accurately model an actual defect. For ATPG a
hard defect has much bigger impact and is usually much easier to be detected by a cell-level test pattern. A
weaker variant of the defect might go undetected during defect simulation. By inserting super hard defects
additional cell-level test patterns might be to able detect this defect. This is beneficial during ATPG, as the
ATPG tool now has a wider pool of of cell-level test patterns to choose from.

#---

Defect insertion without potential defects

#---

for cell in listofCells do {

read RES_THRESH, CAP_THRESH;

read R_POTENTIAL_BRIDGE, R_POTENTIAL_OPEN

read R_OPEN, R_BRIDGE;

 # parse parasitics-extracted Spectre netlists and store netlist contents

 cellContents = readLines(cell.sp);

identify resistors, capacitors and transistor instances in the cell

 mos_primitives = findMosModels(cell, cellContents);

 listofResistor = PATTERN.MATCH(‘R’);

 listofCapacitors = PATTERN.MATCH(‘C’);

define lists to hold short, open and transistor defects

mos_defects = [];

shorts = [];

opens = [];

for capacitor in listofCapacitors

 if capacitor > CAP_THRESH:

 shorts.append(capacitor = R_BRIDGE);

for resistor in listofResistors

 if resistor > RES_THRESH:

 opens.append(resistor = R_OPEN);

 # identify MOS defects

 for transistor in mos_primitives:

 drain, gate, source, bulk = identifyMosTerminals

 # drain-open defect

 mos_defects.append(drain = R_OPEN)

 # source-open defect

 mos_defects.append(source = R_OPEN)

 # source-drain short

 mos_defects.append(sourcedrain = R_BRIDGE)

for defect in opens:

write defect injected netlists;

for defect in shorts:

write defect injected netlists;

for defect in mos_defects:

write defect injected netlists;

5.6. REDUCTION IN RUN-TIME BY MODIFYING SOFTWARE FLOW 37

5.6. REDUCTION IN RUN-TIME BY MODIFYING SOFTWARE FLOW
In the original cell-aware flow, for D defects in a cell, |D|+1 netlists per cell were simulated (one defect free
and |D| defect injected). One of the drawbacks of this approach is that, it involves a lot of boilerplate code
execution which can be avoided. For example, rather than initializing the Liberate simulation environment
every time a defective netlist is encountered it can be done only once. The software scripts for invoking Liber-
ate are modified to process all the defect-injected netlists as part of one single loop. This change also requires
concatenating the defect-injected netlists one after the other to create a single large netlist file. Consequently,
the defect-injected netlists become independent sub circuits within a larger netlist file, rather than existing
as separate netlists in the memory. The repeated execution of background setup tasks is avoided reducing
the simulation time, this is depicted in Figure 5.5. For initial prototyping and verification purposes, the single
large netlist file had to be generated by hand and the Liberate software scripts were modified to accommo-
date this change. It was not practical to repeat these steps on all the 313 parasitic-extracted transistor netlists,
as the manual editing was prone to errors and could be easily automated in software. The results are being
reported for only three cells in Table 5.1. At the time of drafting of this report the integration of this fea-
ture within the software simulation environment is still a work in progress and significant speedup in defect
simulation time is expected once this change materializes.

Figure 5.5: Defect simulation (a) using D +1 netlists vs. (b) combining all defect injected netlists.

Table 5.1: Speedup - defective netlists combined as sub-circuits within a large netlist.

Cell
Original approach

(D+1) netlists
Combining all defect injected netlists

in one large file
Speedup achieved

BUFX2 6m 19s 31s 12.2 times
AND2X1 11m 40s 52s 13.5 times
OR2X1 10m 55s 51s 12.8 times

5.7. INSERTING A SINGLE SHORT BETWEEN NET PAIRS
A large coupling parasitic capacitance between two nodes belonging to different nets indicates the nets are
very close and run in parallel for longer distances, thereby have a very high chance of being shorted. During
parasitic-extraction, parasitic capacitors are extracted between all relevant nodes in the cell. Multiple capac-
itors could be present between the same net pair, as a result the number of capacitors grows rapidly. This is
especially true for large cells such as adders, and multiplexers where the number of extracted parasitic ca-
pacitors could be in the order of thousands. If the nodes belonging to a net-pair are shorted, their entire nets
are shorted and any additional shorts between other nodes exhibit the same defect behaviour and therefore

38 5. IMPROVEMENTS TO THE CELL-AWARE TEST FLOW

are equivalent. As illustrated in Figure 5.6, a short between any two nodes of A and B translates to a short
between nets A and B, and all such shorts form an equivalent set.

Figure 5.6: Shorts between nodes of a net-pair are equivalent

To minimize the number of short defects and hence the simulation time, it is sufficient to insert a single short
between two nets. One way of doing this is to insert a short between two net pairs at the location of the largest
parasitic capacitance. Figure 5.7 illustrates the algorithm for inserting a single short between two net pairs.
Let listofCells be the set of library cells to be considered, such that cell ε listofCell. Cth is the user defined
threshold value which decides which capacitors are to be considered as possible defect candidates. Per net
pair, n1, n2 ε Netsc a capacitor between nodes i ε n1 and j ε n2 is selected with the maximum C(i,j) such that
C(i,j) ≥ Cth.

Figure 5.7: Algorithm for inserting a single short between two net pairs.

5.8. SUMMARY
This chapter discussed various approaches to address the shortcomings identified in the existing library
characterization flow by Cadence. Conventional approaches to parasitics extraction are not very effective

5.8. SUMMARY 39

in generating suitable netlists for cell-aware defect modeling. Therefore, customized settings for generating
transitor-level netlists targeting cell-aware defect modelling are proposed. Inclusion of potential defects re-
sulted in inaccurate defect simulations and they had to be eliminated to improve the overall test quality. The
threshold values for parasitic resistors and capacitors to be considered for defect insertion is set at 0.0Ω and
1 x 10−19 F . By avoiding the repeated execution of software tasks, a speedup of upto 12 times in defect simu-
lation time is achieved. By inserting a single short defect between two net pairs, the simulation of equivalent
defects can be avoided. The experimental results of implementing these modifications to the existing flow
are presented in Chapter 6.

6
EXPERIMENTAL RESULTS

This chapter presents the improvements and the experimental results of applying the various modifications
presented in Chapter 5.

6.1. IMPROVEMENTS DUE TO ELIMINATION OF POTENTIAL DEFECTS
To measure the improvement in test quality and simulation time by getting rid of potential defects, the library
characterization flow was executed on the GPDK045 library with the following settings:

• With potential defects - baseline (original) flow by Cadence at the beginning of the project: the following
defect resistance values were used - open = 2 GΩ, short = 0.001 Ω, potential_open = 0.001 Ω, poten-
tial_bridge = 2 GΩ.

• Without potential defects - after eliminating potential defects and using hard defect values: open =
2 GΩ, short = 0.001Ω.

The effect of eliminating potential defects on the quality of defect simulation is obtained by comparing the
results of characterization with potential defects and without potential defects. Figure 6.1 illustrates the gain
or loss in the number of defect detections for each cell as a result of this modification. A large number of
defects changed from being detected to not detected upon eliminating potential defects. On an average each
cell lost three detections because of this change. This leads to the conclusion that a large number of defects
which were reportedly detected in the original flow, were in fact false detections. Except for the two-input
NOR cell (NOR2X2) which had 15 more defects detections, all the other cells either had no new detections
or lost detections after this change. For the entire standard-cell library, this translated to a total of 1114 less
detections out of a total 37703 defects or approximately 3% difference in defect detection results. Figure 6.2 il-
lustrates this result in terms of the net gain or loss in defect detections. The blue bars represent the fraction of
the total defects which are detected with or without potential defects. The grey bars represents those defects
which are not detected in either case, and the red bars represent the net loss in defect detections because of
eliminating potential defects.

6.2. IMPROVEMENTS DUE TO INSERTION OF SUPER-HARD DEFECTS
To measure the improvement in test quality and simulation time by inserting super-hard defect values the
results of the two runs were compared:

• Without potential defects - after eliminating potential defects and using hard defect values: open =
2 GΩ, short = 0.001Ω.

• Using super hard defects - after eliminating potential defects and using hard defect values: open =
1000 GΩ, short = 0.0Ω.

Figure 6.3 illustrates the gain/loss in the number of defect detections as a result of inserting super hard de-
fects. For the entire standard-cell library an additional 99 defects were detected by changing the defect inser-
tion value from 2 GΩ to 1000 GΩ and 0.001Ω to 0.0Ω for opens and shorts respectively.

41

42 6. EXPERIMENTAL RESULTS

Figure 6.1: Defect detections gained or lost per-cell after eliminating potential defects

Figure 6.2: Defect detections with potential defects and without potential defects.

The increase/decrease in the number of test patterns which can detect a defect is illustrated in Figure 6.4. For
instance, the library cell numbered 201 (two-input NAND, drive strength of eight - NAND2X8) has four defects
which can be detected using 1 additional pattern and two defects which can be detected using 3 additional
patterns. But there are five defects for this cell, which have 4 less patterns to detect them. In total, 109 defects
had one or more additional test patterns which could detect them, whereas 55 defects had lesser number of

6.3. EFFECT ON SIMULATION TIME 43

Figure 6.3: Defect detections gained or lost per-cell after inserting super-hard defects

test patterns.

Figure 6.4: Increase or decrease in number of test patterns upon inserting super-hard defects.

6.3. EFFECT ON SIMULATION TIME
To study the impact of eliminating potential defects and inserting very hard defects on the simulation time
the simulation times of three characterization runs - (1) with potential defects (2) without potential defects
and (3) without potential defects but inserting super hard defects were compared. This data is plotted in
Figure 6.5. The simulation time required for characterizing individual cells doesn’t vary by large magnitudes
after eliminating potential defects or inserting super hard defects. Figure 6.6 depicts the relative difference
in the simulation time between the three runs. For instance, on eliminating potential defects the average
simulation time per cell decreased by 0.33% (i.e. without potential defects vs with potential defects). The
simulation time reduced by 6.47% when potential defects were eliminated and super hard defects were in-
serted. In fact for some cells the time required for characterizing defective netlists without potential defects
was higher than time required for netlists with potential defects. The initial hypothesis of a large reduction in
simulation time, because of simpler netlists did not turn out to be true. In fact, the marginal improvement in
simulation time was due to the fact that for D defect candidates, |D|+1 defect injected netlists were simulated

44 6. EXPERIMENTAL RESULTS

(D defective netlists and one fault-free). Every time a defect injected netlist was picked up for simulation, a
number of background tasks such as variable initialization, environment setup, parsing the netlist etc. had
to be executed. As a result a noticeable improvement in simulation time was not seen in-spite of simplifying
the netlist structure prior to simulation. Section 5.6 discussed a possible approach to address this issue.

Figure 6.5: Comparison of simulation times.

Figure 6.6: ∆ simulation times.

6.4. REDUCTION IN NUMBER OF SHORTS
To measure the reduction in the number of short defect candidates, because of only inserting a single short
between two nets consider the following equations.

6.4. REDUCTION IN NUMBER OF SHORTS 45

Let N represent the total number of nets in a cell (6.1)

ni represents the number of internal nodes in net i of the cell (6.2)

The total number of internal nodes for all the nets, nt =
N∑

i=1
ni (6.3)

If a C is extracted between every node pair, the number of C’s = nt (nt −1)

2
(6.4)

Self-capacitors, shorts between nodes belonging to same net i , sci = ni (ni −1)

2
(6.5)

Total number of self-capacitors, all nets =
N∑

i=1

ni (ni −1)

2
(6.6)

After eliminating self-capacitors, number of shorts = nt (nt −1)

2
−

N∑
i=1

ni (ni −1)

2
(6.7)

Figure 6.7: Inserting a single short defect per net-pair for all cells.

Figure 6.7 illustrates the comparison between the theoretical analysis and the realistic short defect insertion.
The difference between the actual number of extracted parasitic capacitors Cextracted and capacitors above
threshold C>th grows along the horizontal axis. This is because the cell’s complexity increases along the hori-
zontal axis. In simpler cells, due to the small layout of the cell coupling capacitance between two nodes which
are far apart is still large enough, therefore the difference between Cextracted and C>th is marginal. For com-
plex cells or cells with a higher drive strength the nodes are far apart, and the difference between the actual
number of extracted parasitic capacitors and those above the user-defined threshold is large. If a short is in-
jected for every extracted parasitic capacitor in the netlist, the total number of shorts (excluding source-drain
shorts) for the entire GPDK045 library are 512201. Filtering out the unlikely shorts and only considering the
parasitic capacitors above the C>th of 1 x 10−19 F , the number of shorts reduces to 210501, or by 59%. Insert-
ing a single short between two nets for e.g. at the location of the maximum parasitic capacitance, this number
drops by a huge margin to 11527. In summary, changing the defect insertion strategy from injecting a short
for every parasitic capacitor to a single short between two net pairs, the effective reduction in the number
of short defect candidates is 97.7%. This translates to significant improvement in the run-time required for
characterizing the library cells.

46 6. EXPERIMENTAL RESULTS

6.5. ANALYSIS FOR THE GPDK045 LIBRARY

On the basis of the parasitics extraction settings outlined in section 5.2, the number of resistors, capacitors
and transistors extracted by the Quantus PEX tool for all the cells in the library are shown in Figure 6.8. A few
example cells with the number of transistors, resistors and capacitors extracted are listed in Table 6.1.

Figure 6.8: Number of transistors, resistors and capacitors for the GPDK045 library.

Table 6.1: Number of transistors, resistors and capacitors extracted for few cells.

Cell # Transistors # Resistors # Capacitors
NOR4X8 56 253 5479

NAND4X8 56 254 5834
ADDFX4 40 198 4804
INVX20 34 187 2734
MX4X2 28 132 3118
BUFX6 14 72 915

CLKINVX6 10 50 466
INVX2 4 27 156

For every transistor three defects - source-open, drain-open and source-drain shorts are inserted. The thresh-
olds for deciding which parasitic resistors or capacitors are to be modeled as defects can be set by the user.
For the current flow the threshold for parasitic resistors is set at 0.0 Ω and capacitors is set at 1 x 10−19 F .
The number of opens, shorts and transistor defects injected for the entire library are illustrated in Figure 6.9.
Only a single short is inserted between two pairs at the location of the maximum capacitance. The average
number of opens and shorts per cell are 84 and 36 respectively. When we compare the number of extracted
parasitic capacitors (possible short defect) with resistors (possible open defect) (Figure 6.8 there is a large
difference. Upon inserting a single short between two net pairs compared to injecting an open for every re-
sistor (threshold for parasitic resistance is 0.0Ω), the number of open defects injected surpasses the number
of shorts.

6.6. SUMMARY 47

Figure 6.9: Number of transistor, open and short defects.

6.6. SUMMARY
Getting rid of the potential defects led to the identification of 1114 false detections for the entire GPDK045
library. No noticeable improvement in simulation time was observed, as this seemed to be concerned with
the design of software flow. This issue was addressed by exploiting the in-built capabilities of the Liberate
simulation tool and avoiding repeated execution of boilerplate code. Shorts between two nodes belonging to
the same net pair are equivalent. By inserting a single short for every net-pair, the number of short defects to
be simulated reduced by 97.7%.

7
CONCLUSION AND FUTURE SCOPE

The primary objectives of this thesis are to improve the test quality, and to reduce the simulation time for
characterizing standard-cell libraries based on the Cadence cell-aware test flow. The thesis started by identi-
fying the following shortcomings in the existing flow.

1. Parasitics extraction settings: Cell-aware test is a non-standard application of parasitics extraction tools.
This motivated the need for defining customized settings for the parasitics extraction tool for generat-
ing transistor level netlists suitable for cell-aware defect modelling.

2. The original parasitic extracted netlists for all the library cells (offered as a part of the RAK database)
had several issues: parasitic capacitors were always referenced with respect to GND (Vss), some form of
RC reduction was used while extracting the netlists, via resistors were not included, and no diagnostic
information was available in the extracted netlists (Chapter 4).

3. Arbitrary thresholds for defect insertion: The cut-off values for deciding which parasitic resistors and
capacitors are to be considered as defect candidates were arbitrary.

4. Insertion of potential defects: Superfluous elements which actually did not exist in the circuit were being
inserted as place holder values for possible defect sites. This negatively impacted the quality of the
defect simulation results.

5. Resistance values to be used for modelling defects: The defect resistance values used for modelling opens
and shorts could be made harder.

Apart from these, during the course of executing this thesis several other issues were discovered. These in-
clude, drawbacks of using Spectre netlist format, simulation of a separate defect injected netlist per defect,
and a software bug related to reversal of transistor source-drain terminals during defect extraction. The thesis
work addressed these issues, and the major conclusions derived from this work are the following.

1. Defining customized settings for the parasitic extraction tool targeting cell-aware test: Proposal of cus-
tomized settings for generating parasitics extracted transistor-level netlists which are well-suited for
cell-aware defect modelling. (Section 5.2)

2. Threshold values for open and short defect insertion: The threshold value for inserting open defects is
set at 0.0 Ω, this ensures that maximum number of open defect candidates are covered. Based on a
heuristics based approach of correlating the magnitude of the parasitic capacitance between two nets
with their locations in the layout, the threshold for inserting a short is set at 1 x 10−19 F . (Section 5.3)

3. Effect of eliminating potential defects: Potential defects were unwanted elements being inserted into
the netlists prior to defect simulation. Getting rid of them uncovered as high as 1114 false detections,
out of the total 37703 cell-internal defects possible in the GPDK045 library. This improved the overall
quality of the defect simulation results. Elimination of potential defects does not improve the defect
simulation time by noticeable margins. (Section 5.4 and Section 5.5)

49

50 7. CONCLUSION AND FUTURE SCOPE

4. Impact of inserting super hard defects: The defect resistance value used for modeling opens was changed
form 2 GΩ to 1000GΩ and 0.001Ω to 0.0Ω for shorts. Inserting super hard defect values resulted in the
detection of an additional 99 defects. As a result of inserting super-hard defects, 109 defects had addi-
tional test patterns which could detect them. (Section 5.5)

5. Avoiding repeated execution of background tasks for runtime speedup: By avoiding repeated execution
of boilerplate code such as the initialization of startup environment for Liberate, speedups of upto 12
times in simulation time can be achieved. This requires modifying the software scripts and concate-
nating all the defect injected netlists together into a single large netlist file. (Section 5.6)

6. Inserting a short between net-pairs significantly reduces the number of defect candidates: A short be-
tween any two nodes belonging to the same net pair exhibit the same defect behaviour, hence they are
equivalent. Carrying out a defect simulation for all such shorts is futile, and a waste of valuable simula-
tion time. Inserting a single short between two net pairs reduces the number of short defect candidates
for the entire library by 97.7%. This automatically brings down the simulation time. (Section 5.7)

In conclusion, an overview of the improved flow for library characterization is illustrated in Figure 7.1.

Figure 7.1: Improved flow for cell-aware library characterization

The following ideas are suggested as a future scope of work:

• At the time of drafting this thesis, the process of incorporating these modifications into the Cadence
cell-aware flow is still a work in progress. The complete flow must be executed on a technology library
such as GPDK045.

• To further improve the test quality cell-aware defect modelling must account for timing defects.

• Static simulations yield good quality results and are much faster than analog simulations. However, the
analog simulations based approach is more accurate, library characterization flow could be modified
to use an analog simulator.

BIBLIOGRAPHY

[1] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI test principles and architectures: design for testability (Academic
Press, 2006).

[2] L.-T. Wang, C. E. Stroud, and N. A. Touba, System-on-chip test architectures: nanometer design for testa-
bility (Morgan Kaufmann, 2010).

[3] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Electronic design automation: synthesis, verification, and
test (Morgan Kaufmann, 2009).

[4] L. Lavagno, I. L. Markov, G. Martin, and L. K. Scheffer, Electronic Design Automation for IC Implementa-
tion, Circuit Design, and Process Technology: Circuit Design, and Process Technology (CRC Press, 2016).

[5] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital, memory and mixed-signal VLSI
circuits, Vol. 17 (Springer Science & Business Media, 2004).

[6] M. R. Prasad, P. Chong, and K. Keutzer, Why is atpg easy? in Proceedings of the 36th annual ACM/IEEE
Design Automation Conference (ACM, 1999) pp. 22–28.

[7] J. P. Roth, Diagnosis of automata failures: A calculus and a method, IBM journal of Research and Devel-
opment , 278 (1966).

[8] J. P. Roth, W. G. Bouricius, and P. R. Schneider, Programmed algorithms to compute tests to detect and
distinguish between failures in logic circuits, IEEE Transactions on Electronic Computers , 567 (1967).

[9] P. Goel, An implicit enumeration algorithm to generate tests for combinational logic circuits, IEEE trans-
actions on Computers , 215 (1981).

[10] H. Fujiwara and T. Shimono, On the acceleration of test generation algorithms, IEEE Transactions on
Computers , 1137 (1983).

[11] F. Hapke, R. Krenz-Baath, A. Glowatz, J. Schlöffel, H. Hashempour, S. Eichenberger, C. Hora, and
D. Adolfsson, Defect-oriented cell-aware atpg and fault simulation for industrial cell libraries and de-
signs, in Test Conference, 2009. ITC 2009. International (IEEE, 2009) pp. 1–10.

[12] I. Pomeranz and S. M. Reddy, On n-detection test sets and variable n-detection test sets for transition
faults, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 19, 372 (2000).

[13] I. Pomeranz and S. Reddy, Definitions of the numbers of detections of target faults and their effectiveness
in guiding test generation for high defect coverage, in Proceedings of the conference on Design, automation
and test in Europe (IEEE Press, 2001) pp. 504–508.

[14] J. Geuzebroek, E. J. Marinissen, A. Majhi, A. Glowatz, and F. Hapke, Embedded multi-detect atpg and its
effect on the detection of unmodeled defects, in Test Conference, 2007. ITC 2007. IEEE International (IEEE,
2007) pp. 1–10.

[15] K. Miyase, S. Kajihara, I. Pomeranz, and S. M. Reddy, Don’t-care identification on specific bits of test pat-
terns, in Computer Design: VLSI in Computers and Processors, 2002. Proceedings. 2002 IEEE International
Conference on (IEEE, 2002) pp. 194–199.

[16] K. Y. Cho, S. Mitra, and E. J. McCluskey, Gate exhaustive testing, in Test Conference, 2005. Proceedings.
ITC 2005. IEEE International (IEEE, 2005) pp. 7–pp.

[17] P. Dahlgren and P. Liden, A fault model for switch-level simulation of gate-to-drain shorts, in vts (IEEE,
1996) p. 414.

51

52 BIBLIOGRAPHY

[18] F. Hapke, W. Redemund, J. Schloeffel, R. Krenz-Baath, A. Glowatz, M. Wittke, H. Hashempour, and
S. Eichenberger, Defect-oriented cell-internal testing, in Test Conference (ITC), 2010 IEEE International
(IEEE, 2010) pp. 1–10.

[19] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava, M. Keim, J. Schloeffel, and A. Fast,
Cell-aware test, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33,
1396 (2014).

[20] F. Zhang, M. Thornton, and J. Dworak, When optimized n-detect test sets are biased: An investigation
of cell-aware-type faults and n-detect stuck-at atpg, in Test Workshop (NATW), 2014 IEEE 23rd North
Atlantic (IEEE, 2014) pp. 32–39.

[21] F. Hapke and J. Schloeffel, Introduction to the defect-oriented cell-aware test methodology for significant
reduction of dppm rates, in Test Symposium (ETS), 2012 17th IEEE European (IEEE, 2012) pp. 1–6.

[22] F. Hapke, J. Schloeffel, H. Hashempour, and S. Eichenberger, Gate-exhaustive and cell-aware pattern sets
for industrial designs, in VLSI Design, Automation and Test (VLSI-DAT), 2011 International Symposium
on (IEEE, 2011) pp. 1–4.

[23] F. Hapke, M. Reese, J. Rivers, A. Over, V. Ravikumar, W. Redemund, A. Glowatz, J. Schloeffel, and J. Rajski,
Cell-aware production test results from a 32-nm notebook processor, in Test Conference (ITC), 2012 IEEE
International (IEEE, 2012) pp. 1–9.

[24] F. Hapke, R. Arnold, M. Beck, M. Baby, S. Straehle, J. Goncalves, A. Panait, R. Behr, G. Maugard,
A. Prashanthi, et al., Cell-aware experiences in a high-quality automotive test suite, in Test Symposium
(ETS), 2014 19th IEEE European (IEEE, 2014) pp. 1–6.

[25] A. Touati, A. Bosio, L. Dilillo, P. Girard, A. Virazel, P. Bernardi, and M. S. Reorda, Scan-chain intra-cell
defects grading, in Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2015 10th Interna-
tional Conference on (IEEE, 2015) pp. 1–6.

[26] A. Touati, A. Bosio, P. Girard, A. Virazel, M. S. Reorda, E. Auvray, et al., Scan-chain intra-cell aware testing,
IEEE Transactions on Emerging Topics in Computing (2016).

[27] S. Potluri, A. Mathew, R. Nerukonda, I. Hartanto, and S. Toutounchi, Cell-aware atpg to improve defect
coverage for fpga ips and next generation zynq® mpsocs, in Asian Test Symposium (ATS), 2017 IEEE 26th
(IEEE, 2017) pp. 157–162.

[28] H.-W. Liu, B.-Y. Lin, and C.-W. Wu, Layout-oriented defect set reduction for fast circuit simulation in
cell-aware test, in 2016 IEEE 25th Asian Test Symposium (ATS) (IEEE, 2016) pp. 156–160.

[29] Encounter Test Cell-Aware Lab Instructions, 2014-15, Cadence (2014).

A
CODE LISTINGS

1 #@@
2 # L i s t i n g 1 − Top l e v e l Scr ipt for Executing Cell−Aware Flow #
3 #@@
4

5 # ! / usr /bin/python
6

7 import sys
8 import os
9 import time

10

11 # Reads the l i s t of c e l l s from l i s t o f C e l l s . t x t (in USER. INPUTS)
12 # writes a c e l l to t a r g e t . c e l l L i s t
13 # executes the n e t l i s t +characterization flow by invoking runmodus . l i b r a r y . cellaware s c r i p t
14 # creates a seperate log f i l e for each c e l l with information about real , user and system time .
15 # l i s o f C e l l s . t x t in /USER. INPUTS which now contains the l i s t of c e l l s
16 # along with index . t x t which tracks the number of c e l l s being characterized
17 # do not write the l i s t of c e l l s in t a r g e t . c e l l L i s t i f using t h i s s c r i p t
18

19

20 # read previous index (a way to keep track of number of c e l l s being processed)
21 cwd = os . getcwd ()
22 indexFileName = " index . t x t "
23 indexFile = os . path . join (cwd, ’USER. INPUTS ’ , indexFileName)
24 indexContents = open(indexFile , ’ r ’) . readline () . s t r i p ()
25 index = i n t (indexContents)
26

27 # read the l i s t of c e l l s s p e c i f i f e d in l i s t o f C e l l s . t x t
28 cwd = os . getcwd ()
29 # print " Current working directory : %s " % (cwd)
30 cellListFileName = " l i s t o f C e l l s . t x t "
31 c e l l L i s t F i l e = os . path . join (cwd, ’USER. INPUTS ’ , cellListFileName)
32 Cel lListFi leContents = open(c e l l L i s t F i l e , ’ r ’) . readlines ()
33 print " l i s t o f C e l l s . t x t contains %s \n" % (Cel lListFi leContents)
34

35 for Cel l in Cel lListFi leContents :
36 cwd = os . getcwd ()
37 # print " Current working directory : %s " % (cwd)
38 c e l l = Cel l . s t r i p ()
39 print " Current Cel l under consideration : %s \n" % (c e l l)
40

41 # write c e l l to t a r g e t . c e l l L i s t which w i l l be input to modus s c r i p t
42 t a r g e t C e l l L i s t = " t a r g e t . c e l l L i s t "
43 t a r g e t C e l l L i s t F i l e = os . path . join (cwd, ’USER. INPUTS ’ , t a r g e t C e l l L i s t)
44 t a r g e t f = open(t a r g e t C e l l L i s t F i l e , ’w’)
45 t a r g e t f . write (’%s ’ % c e l l . s t r i p ())
46 t a r g e t f . close ()
47 print "%s c e l l written to t a r g e t . c e l l L i s t f i l e \n" % (c e l l)
48 time . sleep (1)
49

50 # to check contents in t a r g e t . c e l l L i s t f i l e

53

54 A. CODE LISTINGS

51 targetfContents = open(t a r g e t C e l l L i s t F i l e , ’ r ’) . readline ()
52 c e l l = targetfContents . s t r i p ()
53 print " t a r g e t . c e l l L i s t contains %s \n" % (c e l l)
54 t a r g e t f . close ()
55

56 # s t a r t executing for each c e l l
57 # to prevent overwriting of the logs r e s u l t s per c e l l are stored in a seperate log f i l e
58 l o g F i l e = "%s_%s " % (index , c e l l)
59 # print l o g F i l e
60 # cmd = " (time modus − f i l e . / SCRIPTS/ n e t l i s t _ o n l y . t c l) &> %s " % (l o g F i l e)
61 cmd = " (time modus − f i l e . / SCRIPTS/runmodus . l i b r a r y . cellaware . t c l) &> %s " % (l o g F i l e)
62 print " Executing %s \n" % (cmd)
63 os . system (cmd)
64

65 # move the log f i l e to /RESULTS/LOGS directory
66 cwd = os . getcwd ()
67 # print cwd
68 r e s u l t s D i r = os . path . join (cwd, ’RESULTS ’ , ’LOGS ’)
69 # print r e s u l t s D i r
70 cmd = "mv %s " \
71 "%s " % (logFi le , s t r (r e s u l t s D i r))
72 print " Executing %s \n" % (cmd)
73 os . system (cmd)
74

75 # copy the DDM to /RESULTS/DDM directory
76 cwd = os . getcwd ()
77 # print cwd
78 r e s u l t s D i r = os . path . join (cwd, ’RESULTS ’ , ’DDM’)
79 # print r e s u l t s D i r
80 ddmFile = c e l l + ’ . t x t ’
81 ddmDir = os . path . join (cwd, ’ c e l l _ a w a r e _ f i l e s ’ , ’ 2 _ c h a r a c t e r i z e d _ c e l l _ f a u l t s ’ , c e l l , ’ detections ’ , ddmFile)
82 # print ddmDir
83 cmd = "cp " \
84 "%s " \
85 "%s / " % (s t r (ddmDir) , s t r (r e s u l t s D i r))
86 print " Executing %s \n" % (cmd)
87 os . system (cmd)
88

89 # copy the OR GROUPS to /RESULTS/OR_GROUP directory
90 cwd = os . getcwd ()
91 # print cwd
92 r e s u l t s D i r = os . path . join (cwd, ’RESULTS ’ , ’OR_GROUPS ’)
93 # print r e s u l t s D i r
94 o r F i l e = c e l l + ’ . gz ’
95 orDir = os . path . join (cwd, ’ c e l l _ a w a r e _ f i l e s ’ , ’ 3 _prepared_cel l_faults ’ , ’ ce l l_aware_fault_rules ’ , o r F i l e)
96 # print orDir
97 cmd = "cp " \
98 "%s " \
99 "%s / " % (s t r (orDir) , s t r (r e s u l t s D i r))

100 print " Executing %s \n" % (cmd)
101 os . system (cmd)
102 index+=1
103

104 # write index to a f i l e (a way to keep track of number of c e l l s being processed)
105 indexFileName = " index . t x t "
106 cwd = os . getcwd ()
107 indexFile = os . path . join (cwd, ’USER. INPUTS ’ , indexFileName)
108 indexf = open(indexFile , ’w’)
109 indexf . write (’%s ’ % index)
110 indexf . close ()

1 #@@
2 # L i s t i n g 2 − Script for Automating Quantus P a r a s i t i c s Extraction #
3 #@@
4

5 # ! / usr /bin/python
6

7 import sys
8 import os
9 import time

10

55

11

12 ################# CAUTION ! ######################################
13 # Once you run a complete QRC flow a cc l f i l e i s created in svdb directory
14 # Modify the input , output and svdb directory paths in generated cc l f i l e
15 # copy and rename i t to optimum_qrc_settings . c c l ’ and place i t in top l e v e l directory
16 # in batch mode change a l l paths in optimum_qrc_settings . c c l to . / autoPVS
17 # top l e v e l directory = directory from were virtuoso i s invoked
18 # Create " SPICE_Extracted "
19

20 # Assumes that PVS−LVS i s already run and required input data for QRC i s a v a i l a b l e
21 # in directory e . g . − . / autoPVS (i f PVS−LVS i s run using batch mode) or . / LVS−PVS
22 # At every i t e r a t i o n i t replaces the name of the c e l l in optimized_qrc_settings . c c l and
23 # executes the QRC−PEX flow
24 # This step i s repeated for a l l the c e l l s whose DRC−LVS and QRC input data i s avai lable ,
25 # and the have been speci f ied in the paths
26 # the t r i c k i s to use ’ sed − stream editor command in linux ’
27 # place a f i l e ’ l i s t o f C e l l s ’ with the name of a l l the c e l l s on which QRC extraction
28 # i s to be performed in the current working directory
29

30 # I n i t i a l c c l f i l e i s generated using AND2X1 c e l l , i f i n i t i a l cc l f i l e i s generated
31 # with a d i f f e r e n t c e l l name then change accordingly
32 initialCellName = ’AND2X1 ’
33

34 cwd = os . getcwd ()
35 print " Current working directory %s " % (cwd)
36

37 # Read the l i s t of c e l l s from a f i l e on which to perform a QRC extraction
38 cellListFileName = ’ l i s t o f C e l l s ’
39 c e l l L i s t F i l e = os . path . join (cwd, cellListFileName)
40 l i s t o f C e l l s = open(c e l l L i s t F i l e , ’ r ’) . readlines ()
41 # print " L i s t of Ce l l s contains : "
42 # print l i s t o f C e l l s
43

44 path = " . / autoPVS"
45 # path = " . / LVS_PVS"
46

47 for c e l l in l i s t o f C e l l s :
48 # replace the c e l l name in generated cc l f i l e with new c e l l name
49 cellName = c e l l . r s t r i p ()
50 print " Generating cc l f i l e for %s \n" % (cellName)
51 cmd = "sed − i ’ s/%s/%s /g ’ optimum_qrc_settings . cc l " %(initialCellName , cellName)
52 print "%s \n" % (cmd)
53 os . system (cmd)
54

55 #run qrc extraction using the ccl f i l e which has a new c e l l name
56 print "QRC Extraction being performed for %s c e l l " % (cellName)
57 cmd = " qrc −cmd optimum_qrc_settings . c c l "
58 print "%s \n" % (cmd)
59 os . system (cmd)
60 initialCellName = cellName

B
CADENCE CELL AWARE TEST - RAK

DIRECTORY STRUCTURE

Table B.1: The cell-aware flow RAK directory structure.

Directory Contents Description

SCRIPTS

(input)

liberatesetup.tcl
initialize and setup the
environment for Liberate startup

rcreportLibCells.tcl
report the library cells
supported for cell-aware testing

runmodus.library.cellaware.tcl
top-level script to start
cell-aware library
characterization

runrc.report.comb.cells.sh
report the combinational
cells supported by cell-aware
testing

runspectre.spp.convert.sh
script to convert netlists from
SPICE to Spectre format

USER.
INPUTS

(input)

GPDK045_45nm_Library
+
Parasitics extracted
transistor-level
netlists in
Spectre format

Process Design Kit
containing the standard-cell
layouts, SPICE models,
device parameters, rule-files,
technology data, parasitic
extracted Spectre
netlists (fault-free) etc.

usermodels.scs file to point to the devie models
target.cellList list of cells to be characterized
spectre_model_includes.spi path to include Spectre models

fast_vdd1v2_basicCells.lib
device parameters and
definitions required during
Liberate characterization

cell_aware_files

(output)

1_extracted_cell_faults
defect injected netlists and list
of defects file

2_characterized_cell_faults
results of characterizing the defect
injected netlists

3_prepared_cell_faults
fault rules for cell to be used
during ATPG

57

C
CADENCE LIBRARY CHARACTERIZATION -

SOFTWARE EXECUTION

The Modus software environment provides three ways of running the library characterization flow [29]:

1. Command line or batch mode: uses a script to initialize the execution environment, and then invokes
the Modus shell to execute the flow.

2. Interactive mode: executes the entire flow in Modus shell environment.

3. Graphical User Interface (GUI) Mode: run the flow by using point and click menu options.

The current project is carried out using the command line or batch mode. To start the library characterization
flow, from the top-level directory execute:

modus -f ./SCRIPTS/runmodus.library.cellaware.tcl

The various sub-tasks executed by runmodus.libary.cellaware.tcl script are as follows:

1. Define user-variables: user-specific variables (emphasized in italics below) are initialized to point to
various directory and file locations. These include:

• variables which hold the paths to the current working directory and output directories - workdir,
OUTDIR

• path to point to the file containing the list of cells to be characterized (target.cellList file) - TAR-
GET_CELL_LIST. In the current flow only combinational cells are supported.

• path to the transistor model files (in Spectre or SPICE format) - DEVICE_MODELS.

• define - (1) ecif_outdir (path to the directory which stores the defect injected netlists), (2) ccif_outdir
(directory which stores the output of characterizing the defective netlists) (3) pcif_outdir (direc-
tory which stores the fault rules file to be used during ATPG).

2. Verify required tools are available in the system path: The successful execution of the library character-
ization process depends on several tools. It is very important to verify that all the required tools can
be invoked and they operate without any glitches. This prevents possibilities of software errors later in
the flow. Some of the common issues during this step might include - incorrect definitions of executa-
bles in the system path and conflicts due to different Open Access (OA) database versions (format for
standard-cell layouts) supported by the tools. Such issues must be zeroed-in and resolved before the
rest of the flow can be executed.

3. Clean up leftover files from previous runs: The cell-aware flow generates several files and temporary
directories which might occupy significant memory. This step deletes any leftover files and directories
from a previous run.

59

60 C. CADENCE LIBRARY CHARACTERIZATION - SOFTWARE EXECUTION

4. Setup for extracting cell-internal defects: Define the path to directory containing the parasitics extracted
Spectre netlists - ECIF_SPECTRE_DIR. The values of the different constants which will be used during
defect extraction process are defined or initialized:

• Threshold values for resistance(R) and capacitance(C): ECIF_RES_THRESH and ECIF_CAP_THRESH
are initialized to the the user defined threshold values for modelling a parasitic resistor as an open
and a parasitic capacitor as a short. Parasitic elements with resistance or capacitance values lesser
than these thresholds are not considered as possible locations for a defect, but they remain a part
of the defect injected netlist. The default values for ECIF_RES_THRESH and ECIF_CAP_THRESH
are 100Ω and 3e−17Ω respectively. Only these R’s and C’s will be propagated as defect candidates
in the further flow. However, for every transistor three defect candidates are always considered -
source-open, drain-open, and source-drain short.

• Resistance values for modelling open and short defects: ECIF_ROPEN and ECIF_RBRIDGE are the
values to be used for modelling an open and short (bridge) defect respectively. An open defect
candidate (parasitic resistor above ECIF_RES_THRESH) is modelled using a very high resistance
value. A short (bridge) defect (a parasitic capacitor above ECIF_CAP_THRESH) is modelled with
a very low resistance in parallel across a parasitic capacitor. The default values for ECIF_R_OPEN
and ECIF_R_BRIDGE are 2 GΩ and 0.001Ω respectively.

• Potential open and potential bridge resistances: ECIF_POTENTIAL_OPEN and ECIF_POTENTIAL_
BRIDGE are the resistance values used to negate the defect behaviour at the defect location. For
example, to negate the effect of an open on the transistor terminals it is replaced with a very
low resistance value ECIF_POTENTIAL_OPEN. Similarly, a short (bridge) defect is replaced with
ECIF_POTENTIAL _BRIDGE - a high resistance to eliminate it’s effect. The default values for ECIF_
POTENTIAL_OPEN and ECIF_POTENTIAL _BRIDGE are 0.001Ω and 2G Ω respectively.

5. Setup for Liberate characterization: Initialize CCIF_LIBERTY with the path to the file from which cell
I/O and pin names can be determined (fast_vddlv2_basicCells.lib). This information is used by Lib-
erate while reading the cell-netlist for fault simulation. Set CCIF_TEMPERATURE and CCIF_VOLTAGE
for the temperature and cell-operating voltage, default values are 25 ◦C and 1.2 V respectively. Define
CA_LIBERATE_SETUP to point to the file liberate.setup.tcl, and execute it to initialize the environment
variables required for Liberate startup.

6. Defect injection and generation of defective netlists: Using the parasitic extracted Spectre netlists, tran-
sistor models, and user specified threshold values, this step creates a defects list file and a defect in-
jected netlist per candidate defect. For every cell the outputs are written to a separate directory un-
der ./cell_aware_files/cellName/01_extracted_cell _faults/cellName.scs. For every cell specified in tar-
get.cellList file pointed by TARGET_CELL_LIST :

(a) read the parasitic extracted cell-netlist.

(b) build a list of Spectre (or SPICE) primitives to identify the transistor models.

(c) identify the parasitic resistors which are above the user defined thresholds ECIF_RES_ THRESH.
For every such occurrence replace the resistor with ECIF_ROPEN value and add it to the list of
open defects. An example defects list file is illustrated in Figure 4.4. The fault effect of all other
candidate defects other than the one being considered is negated by replacing them with ECIF_
POTENTIAL_OPEN and ECIF_POTENTIAL_BRIDGE as discussed earlier and is illustrated in Fig-
ure 4.2.

(d) identify the parasitic capacitors which are above the user defined thresholds ECIF_CAP_THRESH.
For every such occurrence replace the capacitor with ECIF_RBRIDGE value and add it to the list
of short defects. The effect of all other defects other than the one being considered is negated
by replacing them with ECIF_POTENTIAL_OPEN and ECIF_POTENTIAL_BRIDGE as illustrated in
Figure 4.3.

(e) for every transistor instance generate three faulty netlists to cover source-open, drain-open, and
source-drain short defects. To model an open insert ECIF_ROPEN on the transistor terminals.
For shorts insert a ECIF_RBRIDGE resistor between source and drain terminals. Record the list of
defects in the defects list file.

61

(f) generate a separate defect injected netlist for each identified candidate defect. At the end of this
step, we are left with |D|+1 netlists and (D defect injected netlists, and 1 defect-free) along with a
defects list file.

7. Characterize the target defect set: Using the defect inserted netlists and the defects list file generated
in the previous step, Liberate characterizes these defects by performing a static-simulation. For an n
input cell, each defective netlist is simulated with 2n patterns. A defect is said to be detected if the
output response and expected response for a test pattern are different. Otherwise a test pattern cannot
detect the defect. Liberate writes this result to a defect detection file per cell as illustrated in Figure 4.5.
The defect detection file records only those defects which can be detected. A defect can be detected
by more than one cell-level test patterns. Similarly, a cell-level test pattern can detect more than one
defects. For every defect which can be detected by at least one test pattern the defect detection file
contains the following information:

• defect number and the description of the defect such as defect location and the nature of the
defect (open/short).

• input test-patterns which can detect the defect.

• response of the defect-free and defective netlist.

An example defect detection file for two-input AND cell is illustrated in Figure 4.5. In this example
defect number 9 is a short between the nodes \1\:A and Vss. This defect is detected by only one test
pattern 11 applied to the inputs. The response of the defect-free case is 1 and the and the faulty re-
sponse is 0. Because the responses of the defect-free and defective cases are not equal the defect can
be detected by this test pattern. It can be seen that defect number 3 is detected by three test patterns,
whereas defect 1 and defect 2 are not detected by any test pattern and therefore are not written to the
defect detection file.

8. Prepare cell-internal fault rules for ATPG: In this step Modus creates a faults-rule file describing the
testable faults for each cell. The faults rule file is defined using the Modus Pattern Fault Modelling
language. This is Cadence proprietary terminology, and is used by the Modus ATPG engine during
circuit level test-pattern generation (CA-ATPG stage).

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Motivation behind IC Manufacturing Test
	Cell-Aware Test
	Contribution of the Thesis
	Thesis Organization

	Background Knowledge
	Introduction to IC Testing
	Fault modelling
	Fault simulation
	Automatic test pattern generation

	Standard-cell based Design Flow
	Parasitics Extraction
	Quantus QRC based Parasitic Extraction Flow
	Summary

	Cell-Aware Test
	The Evolution of Cell-Aware Test
	Library Characterization
	Cell-Aware ATPG
	Industrial Applications of Cell-Aware Test
	Summary

	Original Cell-Aware Flow by Cadence
	Overview of Cadence Cell-Aware Test Flow
	Issues with Cadence Library Characterization Flow
	Parasitic extraction settings
	Arbitrary thresholds for defect insertion
	Potential defects
	Resistance values for modelling opens and shorts
	Simulation of |D| + 1 defect injected netlists
	Spectre netlist format
	Reversal of transistor source-drain terminals

	Summary

	Improvements to The Cell-Aware Test Flow
	Related Prior Work
	Parasitic Extraction Settings for Cell-Aware Test
	Threshold Values for Defect Insertion
	Elimination of Potential Defects
	Insertion of Super-Hard Defects
	Reduction in Run-Time by Modifying Software Flow
	Inserting a Single Short between Net Pairs
	Summary

	Experimental Results
	Improvements due to elimination of potential defects
	Improvements due to insertion of super-hard defects
	Effect on simulation time
	Reduction in number of shorts
	Analysis for the GPDK045 Library
	Summary

	Conclusion and Future Scope
	Bibliography
	Code Listings
	Cadence Cell Aware Test - RAK directory structure
	Cadence Library Characterization - Software Execution

