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A B S T R A C T

Optimization is an important tool for the operation of an energy system. Multi-carrier energy
systems (MESs) have recently become more important. Load flow (LF) equations are used within
optimization to determine if physical network limits are violated. Due to nonlinearities, the
solvability of the OF problem and the convergence of the optimization algorithms are influenced
by how the LF equations are included in the optimal flow (OF) problem. In addition, scaling
greatly influences the practical solvability of OF problems. This paper considers two ways to
include the LF equations within the OF problem for general MESs. In formulation I, optimization
is over the combined control and state variables, with the LF equations included explicitly as
equality constraints. In formulation II, optimization is over the control variables only. The state
variables are solved from the LF equations in a separate subsystem, for given control variables.
Hence, the LF equations are included only implicitly in formulation II. The two formulations
are compared qualitatively, from a theoretical perspective and based on numerical experiments.
Both formulation I and formulation II result in a solvable OF problem. Formulation I is easier to
implement and more efficient in terms of CPU time. However, formulation II ensures feasibility
and can be used for optimization in combination with dedicated load flow solvers. Both matrix
scaling and per unit scaling can be used to solve the OF problem, but they are not equivalent.

1. Introduction

Multi-carrier energy systems (MESs) have become more important, as the need for sustainable energy systems increases. Single-
arrier energy systems, such as power grids or gas networks, are coupled to form one integrated or multi-carrier energy system.
ue to increased flexibility, reliability, use of renewables and distributed generation, and due to reduced carbon emission, MESs
an give better performance than classical energy systems. An overview of MESs is given in [1].

Optimization is an important tool for the operation of an energy system. The distribution of generation over the various sources,
r the set points of controllable elements, are determined such that some objective is optimized. At the same time, the operation of
he energy system must stay within physical limits. Optimization for single-carrier systems, especially power grids, has been widely
tudied, but optimization for MESs has only been proposed recently. Most optimization problems for MESs adopt a case specific
pproach, focus on determining the most suitable objective function, or focus on including additional storage or renewable sources
uch as wind energy, to optimize design or operation. However, an important part of optimizing energy systems are the load flow
quations, or network equations, which are used in finding an optimal solution and to determine if physical limits are violated.
he way these load flow equations are included in the optimization problem influences the solvability of the optimization problem.
any optimization problems for MESs simplify these equations, or do not consider network transmission at all.
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In [2], social welfare is maximized for a combined gas and electricity network. The load flow equations are included as equality
onstraints. However, there is only a single point of coupling between the two networks, and the boundary conditions are chosen
uch that the load flow problem for electricity can be solved independently of that of gas. In [3], a general optimization framework
or MESs is introduced. They use the energy hub (EH) concept, which is a linear model for the coupling units assuming uni-directional
low, which limits the generality. In [4], the total operation costs of an integrated gas, electricity, and heat network are minimized,
lso using EHs for the coupling models. In [5], the operation costs of a combined gas and electricity network are minimized, by
ecomposing the coupled problem in a gas problem and an electrical problem. In [6], an integrated gas, electricity, and heat network
s optimized, where the thermal equations are decoupled from the other constraints, and a linear model for heat exchangers is used.
n [7], an optimal dispatch problem is used, considering only energy balances instead of detailed load flow equations. In [8],
n integrated gas, electricity, and heat network, including storage, is optimized. The optimization and network simulation are
ecoupled, such that a linear approximation of the network equations is used within the optimization. Detailed nonlinear load
low equations are used in a second stage to improve the accuracy of the linear approximation. In [9], the operational costs of an
ntegrated gas and electricity network is minimized, using AC power flow equations in the electrical network. However, the load flow
quations in the gas network are not taken into account. In [10], the operation costs of an integrated gas and electricity network are
inimized, using DC power flow equations in the electrical network and nonlinear equations for the gas pipes and the conversion
nits. These load flow equations are included as equality constraints in the optimization problem. In [11], the operational costs of
n integrated gas and electricity network is minimized, using a scenario-based stochastic approach to handle uncertainty of wind
nergy and electrical loads. For the load flow equations, which are included as equality constraints in the optimization problem,
C power flow is used for the transmission lines in the electrical network, nonlinear equations are used for the gas pipes, and the

linear) EH concept is used for the conversion units. In [12], time-dependent energy exchange with the main grid and costs for
n integrated gas and electricity microgrid with thermal loads is minimized. However, the heat network is not taken into account,
nd the gas and electricity grids are not modeled. In [13], a unit commitment problem for an integrated gas, electricity, and heat
etwork is solved, minimizing the total operation costs, using DC power flow equations in the electrical network and nonlinear
quations for the gas pipes and the conversion units. A two-stage approach is used, where the load flow equations are included as
quality constraints in the deterministic unit commitment stage.

An important part of optimizing energy systems are the load flow equations, which are used to model the physical limits and
peration of the energy system. When the detailed load flow equations are taken into account, more realistic energy flow solutions
an be found as well as other network quantities, such as pressures and voltages. Various formulations of the load flow equations
xist for modeling energy systems, both in the single-carrier and in the multi-carrier case. Nonlinearities of these equations cause
ssues with convexity and solvability of the optimization problem, as also noted in [3] and [6]. Usually, the load flow equations are
irectly included in the optimization problem as equality constraints, as is done in [2–7,10,11] and [13]. In [8], linearized load flow
quations are directly included in the optimization problem as equality constraints, and an iterative approach between optimization
nd the detailed load flow equations is used. Another option is to include the load flow equations implicitly, as subsystem, in the
ptimization problem. So far, this approach has had little or no attention in the literature on the optimization of energy systems.
ince the nonlinear load flow equations can cause issues with convexity and solvability of the optimization problem, the formulation
f the load flow equations, and the way they are incorporated in the optimization problem, greatly influence the solvability of the
ptimization problem, as well as the convergence behavior of the optimization methods used to solve it, as we will see below, but
e have not seen any studies in the literature in this direction.

Another important factor for practical solvability of optimization problems is scaling. Due to the various orders of magnitude of
he physical quantities in energy systems, an unscaled optimization problem for MESs is generally badly scaled. Therefore, scaling
reatly improves solvability of the optimization problem and convergence of the optimization algorithm. Also this effect of scaling
as, so far, drawn little attention in the literature on the optimization of MESs.

Finally, many of the recent optimization models are developed for specific cases, such that a general framework for optimization
f MESs, including the detailed load flow models, has not yet been proposed.

In this work, we provide an analysis of the effect of the load flow equations on the solvability of the optimization problem
or general MESs. We formulate an optimization problem for a general single- or multi-carrier energy system, providing a general
ptimization framework. We will restrict ourselves, however, to time-independent problems, that is, we consider the optimization
f a steady-state system. Scheduling problems are thus not included, but they are a natural extension of our formulation, and
he results obtained here are useful and intended for scheduling problems as well. Total energy generation costs are minimized,
here the optimal solution is required to satisfy the physical operational limits of the energy system. The detailed load flow
quations are included in two different ways, either explicitly as equality constraints, as is done in most of the available models,
r they are included implicitly as subsystem. In the latter, the steady-state load flow problem is solved as a subproblem of
he optimization problem. We give a qualitative analysis of the resulting optimization problems by comparing, amongst others,
onlinearity, feasibility, problem size, and solvability. Furthermore, we consider the effect of scaling on the solvability of the
ptimization problem.

We show that the optimization problem of MESs is solvable when the load flow equations are included as equality constraints
nd when they are included as subsystem. That is, we show that both of the considered ways to include the load flow equations
nto the optimization problem could lead to a solvable optimization problem. This allows for various formulations of the load flow
quations, within an optimization framework. We use the introduced optimization framework for general MESs to compare the two
ormulations qualitatively and theoretically. We find that both ways of incorporating the load flow equations have advantages and
isadvantages. Including the load flow equations explicitly as equality constraints, as is done in most of the available models, is a
2
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Fig. 1. Quantities of interest for load flow simulation of energy systems, and the network elements they are associated with. Arrows on links and terminal links
show defined direction of flow.

straightforward approach that is easily implemented, but has a large optimization space, and requires the optimization model to have
access to the detailed network equations and data. Alternatively, including the load flow equation implicitly, as a subsystem, reduces
the size of the optimization space, but increases the nonlinearity of the objective function and the constraints. In addition, the load
flow equations can be solved by a dedicated solver, which ensures feasibility of the optimal solution and means the optimization
model does not have to have access to the detailed network equations and data. The best way to formulate the optimization problem,
and the load flow equations, depends on the MES and the specific problem at hand. Furthermore, we show that scaling is crucial
for convergence of the optimizer. The thorough analysis, provided in this paper, on the effect of scaling and on the effect of the
load flow equation on the solvability of the optimization problem and convergence of the optimization algorithm, provides insights
which can be used to increase the accuracy, robustness, and efficiency of existing methods.

In Section 2, the steady-state load flow problem of general MESs is stated. In Section 3 we formulate the optimization problem.
irst, we give the objective function to be minimized. Then, the effect of which network quantities are chosen as variables and which
re considered known is discussed. We describe the two ways of including the load flow equations, that is as equality constraints
r as subsystem, within an optimization framework. Based on this, two formulations of the general optimization problem for MESs
re stated. Advantages and disadvantages of both formulations are discussed. In Section 4 we give the methods used for solving
he optimization problem. Various optimizers suitable for the two optimization problems are used. We give two ways of scaling the
ptimization problem: per unit scaling and matrix scaling. Finally, two approaches for calculating the required (partial) derivatives of
he objective function and constraints when the load flow equations are included as subsystem are introduced. The two formulations
f the optimization problem, both with and without scaling, are used to optimize example MESs in Section 5, demonstrating some
f the theoretical advantages and disadvantaged of the formulations of the optimization problem in practice.

. Steady-state load flow

Steady-state simulation of an energy system, sometimes called steady-state load flow (LF), is the problem of determining the flows
nd other quantities of interest in the energy system, given constant demands. See for instance [14] for a single-carrier electrical
ystem, [15] for a single-carrier gas system, and [16,17], or [18] for MESs. We use a slightly adjusted model of the LF model
escribed in [18] for MESs.

For the steady-state problem, the energy system is mathematically represented as a graph. The quantities of interest, and their
elation to the graph representation, are shown in Fig. 1 for a single-carrier gas, electricity, and heat network, and for a coupling
ode. In this graph representation, terminal links are used to model inflow and outflow of the energy network. Figs. 1a–1c show
ingle-carrier gas, electricity, and heat networks, consisting of one link 𝑘, connecting nodes 𝑖 and node 𝑗, which both have a terminal

link 𝑙 connected to it. In a gas network, the quantities of interest are the link mass flow 𝑞𝑖𝑗 , terminal link mass flow 𝑞𝑖,𝑙, and nodal
pressure 𝑝𝑖. In an electrical network, they are the active power 𝑃𝑖𝑗 and reactive power 𝑄𝑖𝑗 at the start of the link, and 𝑃𝑗𝑖 and 𝑄𝑗𝑖
at the end of the link, terminal link active and reactive power 𝑃𝑖,𝑙 and 𝑄𝑖,𝑙, and nodal voltage amplitude |𝑉𝑖| and voltage angle 𝛿𝑖.

he terminal link powers are also called injected powers. In a heating system, hot water is transported from a source through the
upply line to a heat demand. Then, cold water is transported back to the source through the return line. We assume the water flow
n the return line is equal in size but opposite in direction to the flow in the supply, such that we can represent the supply line and
eturn line with one link, and we can represent heat sources and demands with a terminal link. The quantities of interest are the
ink water mass flow 𝑚𝑖𝑗 , supply temperature 𝑇 𝑠

𝑖𝑗 , return temperature 𝑇 𝑟
𝑖𝑗 , and supply and return line heat powers 𝜑𝑠

𝑖𝑗 and 𝜑𝑟
𝑖𝑗 at the

start of the link, and 𝑇 𝑠
𝑗𝑖, 𝑇

𝑟
𝑗𝑖, 𝜑

𝑠
𝑗𝑖 and 𝜑𝑟

𝑗𝑖 at the end of the link, terminal link mass flow 𝑚𝑖,𝑙, temperature at the supply line side 𝑇 𝑠
𝑖,𝑙

and at the return line side 𝑇 𝑟
𝑖,𝑙, and heat power inflow or outflow 𝛥𝜑𝑖,𝑙, and nodal pressure 𝑝𝑖, supply temperature 𝑇 𝑠

𝑖 , and return
temperature 𝑇 𝑟

𝑖,𝑙. The heat powers on the (terminal) links are defined such that 𝛥𝜑 = 𝜑𝑠 + 𝜑𝑟.
Fig. 1d shows a multi-carrier network with a single coupling node. The coupling node itself has no nodal variables. The variables

of interest for a coupling node are the link variables of the single-carrier links connected to the coupling node.
Some quantities, such as demands and a reference pressure or reference voltage, are given for load flow simulations. These are

the boundary conditions (BCs) or set points of the network. Given BCs, a system of nonlinear equations has to be solved for state
3
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variables. With these state variables, all other quantities of interest in the network can be determined. As such, they are derived
variables based on the state variables. For instance, in a power grid the state variables usually are the nodal voltage amplitudes
and nodal voltage angles, and the derived variables are complex power through a line and injected reactive power at a generator
(e.g. [14]).

The division of network variables into state variables and derived variables is not unique. In a gas network, two formulations
or the LF problem are commonly used; the nodal formulation and the loop formulation (e.g. [15]). In the nodal formulation, the
tate variables are the nodal pressures, while the gas flows on the links are the derived variables. In the loop formulation it is the
ther way around, such that the state variables are the gas link flows and the nodal pressures are the derived variables. We call the
ector 𝒙, consisting of state variables 𝒙𝑭 and derived variables 𝒙𝑮, the extended state variables:

𝒙 ∶=
(

𝑥𝐺1 ,… , 𝑥𝐺𝑠 , 𝑥
𝐹
1 ,… , 𝑥𝐹𝑛

)𝑇 (1)

The LF problem is concerned with solving a (non)linear system of equations for the state variables.
In optimization problems, the derived variables are also used, either in the objective function or with respect to physical limits

of the energy system. We extend the standard LF equations and state variables with the derived variables and with the (non)linear
equations needed to derive them, leading to the extended LF problem:

𝑭
(

𝒙𝐹
)

= 𝟎 (2a)

𝑮
(

𝒙𝐺 , 𝒙𝐹
)

= 𝟎 (2b)

Here, 𝑭 ∶ R𝑛 → R𝑛 is the system of (non)linear steady-state load flow equations, 𝒙𝑭 ∈ R𝑛 are the state variables, 𝑮 ∶ R𝑛+𝑠 → R𝑠

are additional load flow equations, and 𝒙𝑮 ∈ R𝑠 are the derived variables. To solve the extended LF problem (2), the standard LF
problem (2a) is solved for the state variables 𝒙𝑭 . Then, using this 𝒙𝑭 , the additional Eqs. (2b) determine the derived variables 𝒙𝑮.

Various formulations of the LF problem (2a) exist for a given (single-carrier) network, such as the nodal or loop formulation
in a single-carrier gas network [15], or the power-mismatch or current-mismatch formulation in single-carrier power grids [19].
Moreover, the individual load flow equations within (2) can be formulated in various ways. For instance, the hydraulic flow equation
used for pipes in a gas or heating network can express the pressure drop as function of flow or the other way around. These
formulations influence the solvability of the optimization problem or the convergence behavior of the solvers, which we will show
in Section 5.

3. Optimal flow

An optimal flow problem (OF) finds an optimal solution to an objective function, while satisfying operational constraints or
physical limits of the energy system. To ensure that the optimal solution satisfies operational constraints, the LF equations are used
within OF. A solution that satisfies the operational constraints is called (physically) feasible. Unlike optimal dispatch problems, OF
not only finds the optimal energy flows but also determines voltages and pressures in the network, for instance the voltage of a
generator. Solvability of OF depends on the choice of variables, the formulation of the LF equations used to model a MES, and how
the LF equations are included within OF.

3.1. Objective function

Several objective functions are used in optimization of energy systems, such as minimizing generation costs, minimizing losses,
or minimizing carbon emissions. We choose to minimize total generation costs, which is commonly used in both single-carrier and
multi-carrier systems (e.g. [3,4], and [20]). We model the costs of a source as a quadratic function of its energy flow, such that the
objective function is

𝑓 (𝑬) =
∑

𝑒∈𝑬
𝑎𝑒 + 𝑏𝑒𝑒 + 𝑐𝑒𝑒

2 (3)

Here, 𝑬 is the vector of energy flows of the sources. For instance, for a gas source with mass flow 𝑞 and gross heating value (GHV),
we have GHV𝑞 ∈ 𝑬, and for a gas-fired generator that produces active power 𝑃 we have 𝑃 ∈ 𝑬. The parameters 𝑎𝑒, 𝑏𝑒, and 𝑐𝑒
specify the cost of the energy source related to energy flow 𝑒.

The sum of quadratic functions is twice-continuously differentiable. Moreover, the objective function 𝑓 is convex in 𝑬 for suitable
parameters 𝑎𝑒, 𝑏𝑒, and 𝑐𝑒. Both the differentiability and convexity have several mathematical advantages (e.g. [21,22]).

3.2. Variables and bounds

The variables 𝒚 of OF can be divided into control variables 𝒖 and (extended) state variables 𝒙 as 𝒚 ∶=
(

𝑢1,… , 𝑢𝑝, 𝑥1,… , 𝑥𝑛+𝑠
)𝑇 . By

definition, the state variables cannot be control variables. When a design optimization problem is considered, the control variables
can include design variables such as the diameter of a gas pipe. We consider an optimal flow problem, which is an operational
optimization problem. The control variables are quantities in the energy system that are controllable in practice. They can include set
points, which are (a subset of) the BCs of the LF problem, or model parameters such as transformer tap-ratio’s [14] or dispatch factors
of energy hubs [3]. Including model parameters as variables would require derivatives of the objective and constraint functions to

these parameters. Since the model parameters would be part of the control variables 𝒖, which are given for the LF equations,

4
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including the model parameters as variables does not change the nature of the optimization problem and the proposed framework.
Therefore, we assume the model parameters are given, leaving only the BCs of LF as possible control variables.

The LF problem determines the state variables in the network, for given BCs. That is, for any 𝒖, the nonlinear system (2) can be
olved for 𝒙𝑭 and 𝒙𝑮, assuming the LF problem is well-posed. For notational simplicity, we denote the extended LF problem (2) by

𝒉 (𝒙; 𝒖) ∶=
(

𝑮 (𝒙; 𝒖)
𝑭 (𝒙; 𝒖)

)

= 𝟎 (4)

owever, not every 𝒖 results in a physically feasible extended state 𝒙.
To ensure physical feasibility of the set points 𝒖, bounds are imposed on network quantities. Bounds imposed on variables 𝒚

are simple linear inequality constraints in the optimization problem. Bounds imposed on network quantities not in 𝒚 have to be
included as (non)linear inequality constraints that are a function of 𝒚. These inequality constraints can be highly nonlinear.

When the energy flows of sources are part of the optimization variables, i.e. when 𝑬 ⊆ 𝒚, the objective function (3) is convex in 𝒚.
However, when some of the energy flows in 𝑬 are derived quantities that are not included in the extended state 𝒙, the nonlinearity
of the objective function increases, and it may no longer be convex in 𝒚.

To avoid (highly) nonlinear inequality constraints, and to reduce the nonlinearity of the objective function, derived variables
can be included in the extended state. On the other hand, including the derived variables in 𝒙 increases the optimization space and
the number of LF equations in the (extended) LF problem. Depending on the optimizer, using extended state variables instead of
only the regular state variables can be beneficial.

3.3. Two problem formulations

The optimization problem determines a solution that minimizes the objective function, while satisfying the LF problem and while
staying within the feasibility limits. We consider two ways to formulate the optimal flow (OF) problem, which we call formulation I
and formulation II. Formulation I includes the LF equations as equality constraints, while formulation II includes them as subsystem.

3.3.1. Formulation I: LF as equality constraints
The most straightforward way to satisfy the LF equations during optimization is to include them as equality constraints directly,

and optimize over the combined control and (extended) state variables (as is done in e.g. [3,4], and [20]). This gives formulation
I of the OF problem:

min
𝒙, 𝒖

𝑓 (𝒙, 𝒖) (5a)

s.t 𝒉 (𝒙; 𝒖) = 𝟎 (5b)

𝜸 (𝒙, 𝒖) ≥ 𝟎 (5c)

𝒖𝑙𝑏 ≤ 𝒖 ≤ 𝒖𝑢𝑏 (5d)

𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏 (5e)

Here, 𝑓 ∶ R𝑛+𝑠+𝑝 → R is the objective function (3), 𝒖 ∈ R𝑝 is the vector of control variables, 𝒙 ∈ R𝑛+𝑠 is the vector of extended
state variables (1), 𝒉 ∶ R𝑛+𝑠+𝑝 → R𝑛+𝑠 are the equality constraints given by the extended system of LF Eqs. (4), 𝒖𝑙𝑏 and 𝒖𝑢𝑏 are the
lower and upper bounds for the control variables, 𝒙𝑙𝑏 and 𝒙𝑢𝑏 are the lower and upper bounds for the extended state variables, and
𝜸 ∶ R𝑛+𝑠+𝑝 → R𝑚 are inequality constraints representing the bounds for any network quantities not included in 𝒚.

3.3.2. Formulation II: LF as subsystem
Another way to formulate the optimization problem is to apply (nonlinear) elimination of variables and constraints (e.g. [21,22]).

We eliminate the extended state variables 𝒙 using the LF equations (4), to get an optimization over the control variables 𝒖 only.
This gives formulation II of the OF problem:

min
𝒖

𝑓 (𝒙 (𝒖) , 𝒖) (6a)

s.t 𝒖𝑙𝑏 ≤ 𝒖 ≤ 𝒖𝑢𝑏 (6b)

𝒈 (𝒙 (𝒖) , 𝒖) ≥ 𝟎 (6c)

with 𝒈 (𝒙 (𝒖) , 𝒖) =
⎛

⎜

⎜

⎝

𝜸 (𝒙 (𝒖) , 𝒖)
𝒙 (𝒖) − 𝒙𝑙𝑏
𝒙𝑢𝑏 − 𝒙 (𝒖)

⎞

⎟

⎟

⎠

(6d)

The relation 𝒙 (𝒖) is implicitly given by the extended LF problem (4). That is, for any given 𝒖, the (extended) state 𝒙 satisfies the LF

equations by solving 𝒙 from (4).
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3.3.3. Comparison
If bounds are only imposed on network quantities that are included in 𝒚, then 𝑚 = 0, (5c) is not included in optimization problem

(5), and 𝜸 is not included in (6d). Similarly, bounds do not have to be imposed on all variables in 𝒚. Suppose bounds are imposed
n 𝑝̃ ≤ 𝑝 of the control variables and on 𝑛̃ + 𝑠̃ ≤ 𝑛 + 𝑠 of the extended state variables. Then (5d) and (6b) consist of 𝑝̃ bounds,
hich are 2𝑝̃ linear inequality constraints, and (5e) consists of 𝑛̃ + 𝑠̃ bounds or 2𝑛̃ + 2𝑠̃ linear inequality constraints. Furthermore,
∶ R𝑛+𝑠+𝑝 → R𝑚+2𝑛̃+2𝑠̃ such that (6c) consists of 𝑚 + 2𝑛̃ + 2𝑠̃ (non)linear inequality constraints.

Formulations I and II have several advantages and disadvantages. Formulation II has a smaller optimization space compared
ith formulation I, due to the elimination of extended state variables. However, this elimination increases the nonlinearity of the

nequality constraints and objective function, and the linear bounds (5e) are turned into (non)linear inequality constraints (6c).
oreover, elimination of variables using nonlinear equations may result in errors ([22] pp. 426–428). Using nonlinear inequality

onstraints 𝜸 in (5c) or in (6d), instead of including derived variables in the extended state variables, is an example of (nonlinear)
limination of variables as well. This type of elimination is commonly used in optimal power flow problems (e.g. [14]).

An advantage of formulation II is that the extended LF problem (4) is solved separately. The LF problem can be delegated to a
edicated LF solver, instead of having the optimizer itself solve the LF problem. A user solving the optimization problem does not
eed to have access to the LF model; they only need access to the output and be able to set the input. This can be an advantage,
specially when optimizing a multi-carrier system, where the operator of each carrier might have their own LF solver. Moreover,
edicated LF solvers might be more efficient at solving the LF problem than an optimizer. In formulation II the LF equations are
atisfied at every iteration of the optimizer, ensuring feasibility of the iterates and the optimal solution. The properties are compared
o those of formulation I. There, a user solving the optimization problem does need access to the detailed LF equations and network
ata. Also, in formulation I the LF equations are not solved as such by the optimization algorithm, but they are part of the equality
onstraints. Depending on the optimizer, equality constraints are not satisfied at every iteration, such that the LF equations are not
lways satisfied when using formulation I and feasibility is not ensured.

Solving the extended LF problem separately in formulation II can also be a disadvantage, mainly related to efficiency. The LF
roblem needs to be solved (at least) once per iteration of the optimization algorithm used to solve (6). This might increase the total
omputation time of the optimizer for formulation II, compared with formulation I, depending on the efficiency of the dedicated LF
olver. On the other hand, this means the LF equations are satisfied at every iteration of the optimizer. Therefore, problem (6) can
e preferred to (5) if feasibility has to be ensured.

The same quadratic objective function is used in both problems. If the objective function depends on 𝒙, then it might have
ome nonlinear dependency on 𝒖, other than quadratic, in problem (6). The (in)equality constraints (5b) and (5c) generally are
onlinear in 𝒚, while (5d) and (5e) are linear inequality constraints. If bounds are imposed on variables in 𝒚 only, such that (5c) is
ot included, problem (5) is an optimization problem with nonlinear equality constraints and linear inequality constraints. If (5c)
s included, problem (5) is an optimization problem with nonlinear equality and nonlinear inequality constraints. The inequality
onstraints (6c) generally are nonlinear in 𝒖, regardless of whether 𝜸 is included or not. Problem (6) is an optimization problem with
onlinear inequality constraints, but has no equality constraints. Both problems (5) and (6) are nonlinearly constrained optimization
roblems.

Since the two formulations have advantages and disadvantages, we compare the two formulations using some example
ulti-carrier networks.

. Solving the optimal flow problem

OF problems (5) and (6) are nonlinear, (in)equality constrained, multivariable optimization problems. It is generally not possible
o determine analytically if the first-order, or KKT, and second-order optimality conditions are met. Moreover, when the objective
unction is concave, or when the (in)equality constraints are nonlinear, which is the case for most load flow equations, the solution
pace might be non-convex. Hence, we use numerical solvers to approximate an optimal solution.

.1. Optimizers

To solve problems (5) and (6) we consider three solvers used for nonlinearly constrained optimization problems: The ‘trust-constr’
t-c) and ‘SLSQP’ methods from SciPy [23], and IPOPT [24].

The trust-constr method is a trust-region interior-point method for large-scale nonlinear optimization problems, based on the
lgorithm developed in [25]. Inequality constraints are handled by introducing a barrier function. The resulting barrier subproblems
re solved using an adapted version of the Byrd–Omojokun Trust-Region Sequential Quadratic Programming (SQP) Method ([22]
. 549). The trust-constr method is a projected Lagrangian method.

The SLSQP method is a sequential least squares programming method, based on the algorithm developed in [26]. It is a projected
agrangian method, where a sequence of linearly constrained quadratic programming (QP) subproblems is created. The Hessian of
he Lagrangian is factorized, turning the QP problem into a least-squares problem. Hence, a sequence of least-squares subproblems
s solved. Unlike the trust-constr method, the SLSQP method does not require the Hessian of the Lagrangian.

IPOPT is a primal–dual interior-point method for large-scale nonlinear optimization problems, using the algorithm developed
n [24]. Like the trust-constr method, inequality constraints are handled by introducing a barrier function. These barrier subproblems
re solved by applying Newton’s method to the system of primal–dual equations. The search directions for the next iterate are
etermined by linearizing these primal–dual equations. The step sizes are determined by a backtracking line-search procedure,
hich is a variant of a filter method, to ensure global convergence.
6
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4.2. Scaling

Badly scaled optimization problems cause convergence issues for the optimizer [27]. In energy systems, especially in multi-carrier
ystems, the variables and model parameters can differ several orders of magnitude. For instance, gas flow 𝑞 ∼ 1 kg/s while active

power 𝑃 ∼ 107 W. Hence, the optimization problem for a MES is usually scaled badly.
Scaling does not influence the iterates of Newton’s method, which we use to solve the LF problem [27,28]. However, scaling

might influence the iterates of an optimizer [27]. For instance, scaling changes the steepest-descent direction.
We consider per unit scaling and matrix scaling [28]. Per unit scaling scales all variables and model parameters directly. This

scaling is generally used in LF and OF problems in power grids. Matrix scaling does not scale the model parameters, but scales the
variables and systems of equations using matrix multiplication. To scale the objective function using per unit scaling, the parameters
𝑎𝑒, 𝑏𝑒, and 𝑐𝑒 in (3) are also scaled. When using matrix scaling, we scale the objective function with a chosen base value instead.

4.3. Additional steps for formulation II

Formulation II of the OF problem includes the state variables 𝒙 and associated LF equations as a subsystem, which requires
additional steps in the optimization algorithm.

The trust-constr method uses the Hessian 𝐻 of the objective function. For the general objective function (3) the Hessian is a
constant diagonal matrix. This is also true for problem (5) in formulation I, where 𝑒 ∈ 𝒚 for all 𝑒 ∈ 𝑬, such that

𝐻𝑖𝑗 ∶=
𝜕2𝑓

𝜕𝑦𝑖𝜕𝑦𝑗
=

{

2𝑐𝑒, 𝑦𝑖 = 𝑦𝑗 ∶= 𝑒 ∈ 𝑬
0, otherwise

(7)

In formulation II, where 𝒙 depends (implicitly) on 𝒖, the Hessian is no longer constant if any of the energy flows 𝑒 in the objective
is part of 𝒙 instead of 𝒖. Therefore, we let trust-constr determine the Hessian numerically for formulation II.

The considered optimizers use the gradient of the objective and the Jacobian of the (in)equality constraints. For formulation II,
the gradient and Jacobian can be determined by a direct or an adjoint approach (e.g. [29] and [30]). The direct approach is also
called the forward approach, and the adjoint approach is also called the backward approach. The gradient of the objective (6a) and
the Jacobian of the inequality constraints (6c) to the control variables are given by

𝑑𝑓
𝒅𝒖

=
𝜕𝑓
𝝏𝒙

𝒅𝒙
𝒅𝒖

+
𝜕𝑓
𝝏𝒖

(8a)

𝒅𝒈
𝒅𝒖

=
𝝏𝒈
𝝏𝒙

𝒅𝒙
𝒅𝒖

+
𝝏𝒈
𝝏𝒖

(8b)

or notational simplicity, we denote partial derivatives by a subscript, e.g. 𝒈𝒖 ∶= 𝝏𝒈
𝝏𝒖 . Furthermore, we define 𝑣 ∶= 𝒅𝒙

𝒅𝒖 , such that
𝑣 ∈ R𝑛+𝑠 × R𝑝. Using the extended LF problem (4) we have:

𝒉𝒙𝑣 = −𝒉𝒖 (9)

4.3.1. Formulation II. A: Direct approach
In the direct or forward approach, (8) is determined using (9) directly. That is, the gradient and the Jacobian are given by

𝑑𝑓
𝒅𝒖

= 𝑓𝒙𝑣 + 𝑓𝒖 (10a)

𝒅𝒈
𝒅𝒖

= 𝒈𝒙𝑣 + 𝒈𝒖 (10b)

where 𝒉𝒙𝑣 = −𝒉𝒖 (10c)

ere, 𝑣 is determined by solving (10c). Hence, formulation II.A requires solving 𝑝 linear systems of size (𝑛+ 𝑠) × (𝑛+ 𝑠) any time 𝑑𝑓
𝒅𝒖

or 𝒅𝒈
𝒅𝒖 is calculated.

.3.2. Formulation II. B: Adjoint approach
In the adjoint or backward approach, we introduce 𝝀𝑇 ∶= 𝑓𝒙𝒉−1𝒙 and 𝜇𝑇 ∶= 𝒈𝒙𝒉−1𝒙 to determine (8). With these definitions of

𝝀 ∈ R𝑛+𝑠 and 𝜇 ∈ R𝑛+𝑠 × R𝑚+2𝑛̃+2𝑠̃, we have 𝑓𝒙𝑣 = −𝝀𝑇 𝒉𝒖 and 𝒈𝒙𝑣 = −𝑢𝑇 𝒉𝒖. The gradient and the Jacobian are then given by
𝑑𝑓
𝒅𝒖

= −𝝀𝑇 𝒉𝒖 + 𝑓𝒖 (11a)

𝒅𝒈
𝒅𝒖

= −𝜇𝑇 𝒉𝒖 + 𝒈𝒖 (11b)

where 𝒉𝑇𝒙𝝀 = 𝑓𝑇
𝒙 (11c)

𝒉𝑇𝒙𝜇 = 𝒈𝑇𝒙 (11d)

ere, 𝝀 and 𝜇 are determined by solving (11c) and (11d) respectively. Hence, formulation II.A requires solving 1+𝑚+2𝑛̃+2𝑠̃ linear
systems of size (𝑛 + 𝑠) × (𝑛 + 𝑠) any time 𝑑𝑓 or 𝒅𝒈 is calculated.
𝒅𝒖 𝒅𝒖

7
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4.3.3. Comparison
The direct approach requires solving (10c), which are 𝑝 linear systems of size (𝑛 + 𝑠) × (𝑛 + 𝑠). The adjoint approach requires

olving (11c) and (11d), which are 1+𝑚+2𝑛̃+2𝑠̃ linear systems of size (𝑛+ 𝑠) × (𝑛+ 𝑠). Since the linear systems in both approaches
ave the same size, the adjoint approach might be more efficient than the direct approach if 𝑝 > 1 + 𝑚 + 2𝑛̃ + 2𝑠̃. In other words,

the adjoint approach might be faster if the number of control variables is large compared to the number of (nonlinear) inequality
constraints. For optimization problems of energy systems, this is generally not the case. With our assumptions, and imposing bounds
on most of the extended state variables, we indeed have 𝑝 < 1 + 𝑚 + 2𝑛̃ + 2𝑠̃. Therefore, we expect that the direct approach is more
efficient than the adjoint approach.

4.3.4. Load flow as subproblem
Whenever one of the extended state variables 𝒙 (𝒖) is needed while solving problem (6), the extended LF problem (4) would

need to be solved. Since 𝒙 (𝒖) might be used several times per iteration of the optimizer, the system (4) might be solved multiple
imes per optimizer iteration. To increase efficiency, we store the values 𝒙 (𝒖). Furthermore, the extended LF problem (4) is only
olved to determine a new 𝒙 (𝒖) if 𝒖 has changed significantly since the last solve, or if the LF equations with the current 𝒙 are not

satisfied within a desired tolerance. Suppose 𝒙𝑘 and 𝒖𝑖 are the previous values of the extended state and control variables, and 𝒖𝑖+1

are the current control variables. The extended LF problem (4) is only solved if

‖𝒖𝑖+1 − 𝒖𝑖‖2 > 𝜏 (12a)

or ‖𝒉
(

𝒙𝑘, 𝒖𝑖
)

‖2 > 𝜀 (12b)

with 𝜏 and 𝜀 tolerances. We store ‖𝒉 (𝒙, 𝒖) ‖2 any time (4) is solved to evaluate (12b) without having to recalculate the LF equations.

5. Comparison of formulations and solvers of the optimal flow problem

Combining all possible ways described in Sections 3 and 4 to formulate and solve the OF problem leads to multiple combinations.
To compare these various formulations and aspects of the optimization problem, we optimize two different MESs. We mainly
compare the various formulations and aspects based on the efficiency of the optimizer. That is, first we determine if an optimal
solution is found. Then, the number of iterations and function calls to the objective functions required by the optimizer are used as
a measure for efficiency.

We compare formulation I and formulation II, i.e. the way that LF is incorporated into OF, for both MESs. Additionally, for each
MES we focus on some of the formulations and aspects of solving the OF problem. Scaling greatly improves the convergence of the
optimizers for the LF problem. Hence, we only consider the scaled OF problem.

The coupling of the first MES is modeled in two different ways, giving two multi-carrier network representations for the same
MES. For both versions, we use a single formulation of the LF equations. Bounds are imposed on all variables 𝒚 or on the control
variables 𝒖 only. Within the optimizers, the inequality constraints are taken as hard constraints or as soft constraints. With hard
constraints, each iteration of the optimizer must satisfy all inequality constraints. With soft constraints, iterates are allowed to violate
the inequality constraints, but the final solution must satisfy all constraints. We consider both, since hard constraints might help
keep the iterates feasible. Hence, we use this MES to focus on the inequality constraints.

The second MES is represented by one multi-carrier network, but we use multiple formulation of the LF equations. We consider
two options in the gas part and two in the heat part. Bounds are imposed on (most) variables 𝒚. We look at the effect of imposing
bounds on some derived variables. These variables might not be included in 𝒚, depending on the formulation of the system of LF
equations. Finally, the number of demands in each carrier of this MES can be changed, giving multi-carrier networks of various
sizes. Hence, this MES focuses on the effect of the LF formulation on OF.

5.1. Costs of energy sources

The cost parameters 𝑎𝑒, 𝑏𝑒, and 𝑐𝑒 in the objective function (3) are chosen to represent the variable operation and maintenance
costs of the energy sources. The focus of this research is on the mathematical formulation of the optimization problem, and the
inclusion of the load flow equations within an optimization framework. As such, the values of the cost parameters 𝑎𝑒, 𝑏𝑒, and 𝑐𝑒 are
chosen to be realistic, but are not meant to be accurate values of any specific energy source.

For non-coupling sources or (external) grid connections, we take 𝑎𝑒 = 𝑐𝑒 = 0 for all carriers, 𝑏𝑔𝑎𝑠 = 15 e/(MW h) for gas,
𝑏𝑒𝑙𝑒𝑐. = 40 e/(MW h) for electricity, and 𝑏ℎ𝑒𝑎𝑡 = 16 e/(MW h) for heat.

The operational costs of the coupling components are based on the produced energy. A combined heat and power plant (CHP)
produces both electricity and heat, but the heat is ‘waste’ from the production of electricity, such that it is considered free. We take
𝑏𝐶𝐻𝑃 = 5 e/(MW h) and 𝑐𝐶𝐻𝑃 = 0.05 e/(MW2 h) , and 𝑏𝐺𝐺 = 2 e/(MW h) and 𝑐𝐺𝐺 = 0.02 e/(MW2 h) , for the active power 𝑃
produced by a CHP and a gas-fired generator (GG), and 𝑏𝐺𝐵 = 1 e/(MW h) and 𝑐𝐺𝐵 = 0.01 e/(MW2 h) , for the heat power 𝛥𝜑

produced by a gas-boiler (GB).

8
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Fig. 2. MES network topologies, see also [18]. Network (a) is based on [31], network (b) is based on [17]. Arrows on links and terminal links show defined
irection of flow.

.2. MES 1: Effect of inequality constraints

The first MES is a small system first introduced in [31], where a gas, electricity, and heat network are connected by several
oupling components. It was later adapted to use the energy hub (EH) approach in [17]. We model the energy system by two
ifferent networks, as described in [18]. Fig. 2 shows the topology of the two networks. Network 1, see Fig. 2a, uses a GG, a GB,
nd a CHP for the coupling. Network 2, see Fig. 2b, uses EHs. In both networks, link 1𝑔–3𝑔 represents a compressor, while the other
as links represent pipes. Nodes 1 and 2 are sinks in all single-carrier networks, and node 0𝑔 has an external source. See [18] for
urther details and the specific LF equations used.

.2.1. Problem formulations
Both networks have only one external source, connected to node 0𝑔 . The electrical and heat powers are produced by the couplings.

he energy vector 𝑬 of the objective function (3) is

𝑬 =
(

−GHV𝑞0,0, 𝑃0𝑐0𝑒 , 𝑃2𝑐2𝑒 , 𝛥𝜑1𝑐0ℎ
)𝑇 , for network 1 (13a)

𝑬 =
(

−GHV𝑞0,0, 𝑃0𝑐0𝑒 , 𝑃1𝑐2𝑒 , 𝛥𝜑0𝑐0ℎ
)𝑇 , for network 2 (13b)

Table 1 gives the BCs of both networks used in the LF equations. The BCs in network 1 are slightly different from those in network
2, due to the different coupling components. We take some of these known variables as control variables in the OF problem:

𝒖 =
(

𝑝𝑔2 , |𝑉2|, 𝑝
ℎ
2 , 𝑇

𝑠
2𝑐2ℎ

)𝑇
, for network 1 (14a)

𝒖 =
(

|𝑉2|, 𝑇 𝑠
1𝑐2ℎ

)𝑇
, for network 2 (14b)

The choice for control variables is different for the two networks, since the BCs used in LF are different.
For the LF problem, we use the full formulation in the gas network, and the terminal link flow formulation in the heat network.

See Section 5.3.1 for the description of these formulations. The extended state variables for network 1 are then:

𝒙𝑮 =
(

𝑞0,0
)

(15a)
𝑭 ,𝒈 (

𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑝𝑔 , 𝑝𝑔
)𝑇
𝒙 = 01 02 32 13 1 3 (15b)

9
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Table 1
Boundary conditions for steady-state LF for the networks in Fig. 2.

(a) Network 1. Coupled with a GG, a GB, and a CHP. (b) Network 2. Coupled with EHs.

Node Node type Specified Unknown Node Node type Specified Unknown

0𝑔 ref. 𝑝𝑔 𝑞 0𝑔 ref. 𝑝𝑔 𝑞
1𝑔 Load 𝑞 𝑝𝑔 1𝑔 Load 𝑞 𝑝𝑔

2𝑔 ref. load 𝑝𝑔 , 𝑞 – 2𝑔 Load 𝑞 𝑝𝑔

3𝑔 Load 𝑞 = 0 𝑝𝑔 3𝑔 Load 𝑞 = 0 𝑝𝑔

0𝑒 PQV𝛿 𝑃 , 𝑄, |𝑉 |, 𝛿 – 0𝑒 PQV𝛿 𝑃 , 𝑄, |𝑉 |, 𝛿 –
1𝑒 Load 𝑃 , 𝑄 |𝑉 |, 𝛿 1𝑒 Load 𝑃 , 𝑄 |𝑉 |, 𝛿
2𝑒 PQV 𝑃 , 𝑄, |𝑉 | 𝛿 2𝑒 PQV 𝑃 , 𝑄, |𝑉 | 𝛿

0ℎ ref. 𝑝ℎ , 𝑚 = 0 𝑇 𝑟 , 𝑇 𝑠 0ℎ ref. 𝑝ℎ , 𝑚 = 0 𝑇 𝑟 , 𝑇 𝑠

1ℎ Load (sink) 𝑇 𝑟
1,0 , 𝛥𝜑1,0 > 0 𝑇 𝑟 , 𝑇 𝑠 , 𝑝ℎ , 𝑚1,0 1ℎ Sink 𝑇 𝑟

1,0 , 𝛥𝜑1,0 > 0 𝑇 𝑟 , 𝑇 𝑠 , 𝑝ℎ , 𝑚1,0

2ℎ Load (sink) ref. 𝑇 𝑟
2,0 , 𝛥𝜑2,0 > 0, 𝑝ℎ 𝑇 𝑠 , 𝑇 𝑟 , 𝑚2,0 2ℎ Sink 𝑇 𝑟

2,0 , 𝛥𝜑2,0 > 0 𝑇 𝑟 , 𝑇 𝑠 , 𝑝ℎ , 𝑚2,0

0𝑐 Standard – – 0𝑐 temp. 𝑇 𝑠
0𝑐0ℎ –

1𝑐 temp. 𝑇 𝑠
1𝑐0ℎ – 1𝑐 temp. 𝑇 𝑠

1𝑐2ℎ –
2𝑐 temp. 𝑇 𝑠

2𝑐2ℎ –

Table 2
Number and size of the linear systems (10c) and (11c)–(11d) for formulation II.A and II.B for network 1 (a) and network 2 (b).

(a) Network 1. Coupled with a GG, GB, and CHP. (b) Network 2. Coupled with EHs.

Bounds on OF form. # lin. sys. Size lin. sys. Bounds on OF form. # lin. sys. Size lin. sys.

𝒖 II.A 4 33 × 33 𝒖 II.A 2 34 × 34
II.B 1 33 × 33 II.B 1 34 × 34

𝒚 II.A 4 33 × 33 𝒚 II.A 2 34 × 34
II.B 67 33 × 33 II.B 69 34 × 34

𝒙𝑭 ,𝒆 =
(

𝛿1, 𝛿2, |𝑉1|
)𝑇 (15c)

𝒙𝑭 ,𝒉 =
(

𝑚01, 𝑚02, 𝑚12, 𝑚1,0, 𝑚2,0, 𝑝ℎ1 , 𝑇
𝑠
0 , 𝑇

𝑠
1 , 𝑇

𝑠
2 , 𝑇

𝑟
0 , 𝑇

𝑟
1 , 𝑇

𝑟
2
)𝑇 (15d)

𝒙𝑭 ,𝒄 =
(

𝑞0𝑔0𝑐 , 𝑞0𝑔1𝑐 , 𝑞2𝑔2𝑐 , 𝑃0𝑐0𝑒 , 𝑃2𝑐2𝑒 , 𝑄0𝑐0𝑒 , 𝑄2𝑐2𝑒 , 𝑚1𝑐0ℎ , 𝑚2𝑐2ℎ , 𝛥𝜑1𝑐0ℎ , 𝛥𝜑2𝑐2ℎ
)𝑇 (15e)

and the extended state variables for network 2 are:

𝒙𝑮 =
(

𝑞0,0
)

(16a)

𝒙𝑭 ,𝒈 =
(

𝑞01, 𝑞02, 𝑞32, 𝑞13, 𝑝
𝑔
1 , 𝑝

𝑔
2 , 𝑝

𝑔
3
)𝑇 (16b)

𝒙𝑭 ,𝒆 =
(

𝛿1, 𝛿2, |𝑉1|
)𝑇 (16c)

𝒙𝑭 ,𝒉 =
(

𝑚01, 𝑚02, 𝑚12, 𝑚1,0, 𝑚2,0, 𝑝ℎ1 , 𝑝
ℎ
2 , 𝑇

𝑠
0 , 𝑇

𝑠
1 , 𝑇

𝑠
2 , 𝑇

𝑟
0 , 𝑇

𝑟
1 , 𝑇

𝑟
2
)𝑇 (16d)

𝒙𝑭 ,𝒄 =
(

𝑞0𝑔0𝑐 , 𝑞2𝑔1𝑐 , 𝑃0𝑐0𝑒 , 𝑃1𝑐2𝑒 , 𝑄0𝑐0𝑒 , 𝑄1𝑐2𝑒 , 𝑚0𝑐0ℎ , 𝑚1𝑐2ℎ , 𝛥𝜑0𝑐0ℎ , 𝛥𝜑1𝑐2ℎ
)𝑇 (16e)

Hence, there are 37 variables for network 1, consisting of 32 state variables 𝒙𝑭 , 1 derived variable 𝒙𝑮, and 4 control variables 𝒖,
and 36 variables for network 2, consisting of 33 state variables 𝒙𝑭 , 1 derived variable 𝒙𝑮, and 2 control variables 𝒖.

The extended LF problem (4) is not solvable (for a physically feasible solution) for all values of 𝒖. The bounds imposed on 𝒖 are
chosen such that the LF problem is solvable. This requires relatively tight bounds, especially for 𝑝𝑔2 and 𝑝ℎ2 .

We can impose bounds on all variables 𝒚 or on the control variables 𝒖 only. We solve the OF problem in both cases. Moreover,
we consider hard and soft inequality constraints within the optimizer.

This gives a total of 12 different formulations and solution methods of the OF problem for both network representations of this
MES. That is, we use formulation I (5) for the OF problem, including the LF equations as equality constraints, or we use formulation
II (6), eliminating LF equations. For the latter, we can use the direct approach II.A or the adjoint approach II.B when solving the
optimization problem. For each of these, we impose bounds on 𝒖 or on 𝒚, and we use soft or hard bounds within the optimizers. In
addition to these 12 options, we use t-c, SLSQP, or IPOPT as optimizer, see Section 4.1.

Table 2 gives the number and size of the linear systems (10c) and (11c)–(11d) for formulation II.A and II.B. Using soft or hard
constraints does not change the system size. For both formulation II.A and II.B, the size of the linear systems is equal, since 𝒉𝒙 is
square. If bounds are imposed on 𝒖 only, there are no (nonlinear) inequality constraints on 𝒙(𝒖), such that the OF problem is given
by (6a)–(6b). In that case, only (8a) is needed, such that (11c) needs to be solved for formulation II.B instead of both (11c) and
(11d). Hence, formulation II.B requires solving fewer linear systems than formulation II.A when bounds are imposed on 𝒖, while
formulation II.B requires solving significantly more linear systems than formulation II.A when bounds are imposed on 𝒚.
10
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Table 3
Information on optimizers of the optimal flow problem for network 1, using matrix scaling.

Case Bounds on Constraints OF form. # iters # 𝑓

t-c SLSQP IPOPT t-c SLSQP IPOPT

1

𝒖

Soft
I – 21 – – 32 –

2 II.A – 15 – – 38 –
3 II.B – 15 – – 38 –

4
Hard

I – 21 – – 32 –
5 II.A – 15 – – 38 –
6 II.B – 15 – – 38 –

7

𝒚

Soft
I – 21 – – 32 –

8 II.A – 9 – – 42 –
9 II.B – 8 – – 42 –

10
Hard

I – 21 – – 32 –
11 II.A – 9 – – 42 –
12 II.B – 8 – – 42 –

Table 4
Information on optimizers of the optimal flow problem for network 2, using matrix scaling.

Case Bounds on Constraints OF form. # iters # 𝑓

t-c SLSQP IPOPT t-c SLSQP IPOPT

1

𝒖

Soft
I – – 15 – – 16

2 II.A 20 6 10 14 7 11
3 II.B 20 6 10 14 7 11

4
Hard

I – – 15 – – 16
5 II.A 16 6 10 10 7 11
6 II.B 16 6 10 10 7 11

7

𝒚

Soft
I 30 – 14 30 – 15

8 II.A 24 9 9 27 22 10
9 II.B 24 9 9 27 22 10

10
Hard

I 26 – 14 26 – 15
11 II.A 15 9 9 9 22 10
12 II.B 15 9 9 9 22 10

5.2.2. Results
We set the tolerance for the OF problem, for the extended LF problem 𝜀, and 𝜏 to 10−6, and use matrix scaling to scale the

problem. The maximum number of iterations for the optimizers is 40, and 10 for Newton’s method to solve the extended LF problem
(4) within formulation II.

Tables 3 and 4 give the results for network 1 and 2 respectively. A ‘–’ indicates the optimizer is unable to find a solution for
that particular case. The columns # iters and # 𝑓 give the number of iterations and number of calls to the objective function of the
ptimizer respectively.

First, we compare the optimizers. For network 1, t-c and IPOPT are not able to find a solution for any of the options, while
LSQP finds a solution for all options. For network 2, IPOPT finds a solution for all options, and t-c and SLSQP for all options using
ormulation II only.

We consider both soft and hard constraints, since hard constraints might avoid convergence issues due to infeasible iterates.
omparing cases 1–3 with 4–6 and cases 7–9 with 10–12 in Table 3 and in Table 4, we can see that there are no cases for which
ny of the optimizers find a solution with hard constraints but not with soft constraints. Furthermore, we have seen, in various
xamples, that using appropriate values for the bounds, and using a reasonable initial guess, are more effective to ensure feasible
terates than imposing hard constraints. Therefore, we see no advantage in using hard constraints compared with soft constraints.

Now, we consider imposing bounds on 𝒖 or 𝒚, that is, we compare cases 1–6 with 7–12. For network 1 and formulation I, there
is no difference between bounds on 𝒖 or 𝒚 (cf. 1 and 4 with 7 and 10 in Table 3). For network 1 and formulation II, bounds on 𝒚
reduces the number of iterations (cf. 2, 3, 5, and 6 with 8, 9, 11, and 12 in Table 3). For network 2 and formulation I, t-c is only
able to find a solution when bounds are imposed on 𝒚 (cf. 1 and 4 with 7 and 10 in Table 4). For network 2 and formulation II,
SLSQP requires fever iterations with bounds imposed on 𝒖 than with bounds imposed on 𝒚 (cf. 2, 3, 5, and 6 with 8, 9, 11, and
12 in Table 4). IPOPT seems to be affected less by which variables are bounded, for this MES. Hence, if one can choose between
imposing bounds on 𝒖 only or on 𝒚, it depends on the network and the optimizer which is best.

Finally, we consider the inclusion of the LF equations in the OF problem, that is, we compare formulation I (cases 1, 2, 7,
nd 10) with formulation II. Fig. 3 gives the error of the LF equations at every iteration of the optimizer, for the OF problem of
etwork 1 with soft bounds on 𝒚 (cases 7–9) using SLSQP, and illustrates the difference between the two formulations. As stated in
ection 3.3.3, Fig. 3 shows that the LF equations are satisfied at every iteration when using formulation II, while this is not the case

or formulation I. Table 4 shows that there are cases where a solution cannot be found using formulation I while it is found using

11
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Fig. 3. Error of scaled LF equations ‖𝑭‖2 at every iteration of the optimizer for network 1 (Fig. 2a), for the OF problem with soft bounds on 𝒚, using SLSQP.

formulation II. However, there are also cases where both formulation I and II result in a solution. Tables 3 and 4 both show that
formulation II requires fewer iterations than formulation I, for all considered cases. Formulations II.A. and II.B show very similar
performance. Hence, formulation II is more efficient than formulation I in terms of number of iterations.

Based on this MES, t-c performs worse than SLSQP and IPOPT. There is no difference between soft and hard constraints. Whether
bounds should be imposed on 𝒖 or on 𝒚 depends on the network and the optimizer. Finally, both formulation I and II can be used
for the OF problem, and formulation II is more efficient than formulation I in terms of number of iterations.

5.3. MES 2: Effect of LF formulations

The second MES consists of a base network, coupling 3-node single-carrier gas, electricity, and heat networks. For each carrier,
node 1 is a source, and node 3 is a sink. For the electrical network and the heat network, node 2 is an additional source. We choose
to couple these single-carrier networks at node 1 with a single EH, see Fig. 4a. This base case can be extended by replacing the sink
at node 3 of each single-carrier network by a tree-like structure which we call ‘streets’. There are 𝑠 streets, 𝑆1 – 𝑆𝑠, which are all
connected to node 3 of the base single-carrier network through a junction node. The streets consists of 𝑛 loads, 𝐿1 – 𝐿𝑛, connected to
the main street links by junctions, 𝑚 of which, 𝐽1 – 𝐽𝑚, are connected to two loads. Fig. 4b shows the topology of such an extended
single-carrier network, consisting of 3 + 𝑠 (2𝑛 − 𝑚 + 1) nodes and 2 + 𝑠 (2𝑛 − 𝑚 + 1) links. The extended MES is created by coupling
he single-carrier networks in the same way as for the base network. See [32] for further details and the specific LF equations used.

We consider the base network, which is the network shown in Fig. 4a, and an extended network with 163 nodes per single-carrier
etwork (𝑛 = 10, 𝑚 = 5, 𝑠 = 10).

.3.1. Problem formulations
Nodes 1𝑔 , 1𝑒, 2𝑒, and 2ℎ are external single-carrier sources. The EH produces electrical and heat power, such that is a source to

he electrical and heat networks. The energy vector 𝑬 in the objective function (3) is then

𝑬 =
(

−GHV𝑞1,0, −𝑃1,0, −𝑃2,0, 𝑃1𝑐1𝑒 , −𝛥𝜑2,0, 𝛥𝜑1𝑐1ℎ
)𝑇 (17)

here 𝑞1,0, 𝑃1,0, 𝑃2,0, 𝛥𝜑2,0 < 0 and 𝑃1𝑐1𝑒 , 𝛥𝜑1𝑐1ℎ > 0.
Table 5 gives the BCs of the base network used in the LF problem. For the extended network, the additional nodes are load or

unction nodes. We take some of these known variables as control variables in OF:

𝒖 =
(

|𝑉2|, 𝑃2, 𝑇 𝑠
2,0, 𝛥𝜑2,0

)𝑇
(18)

We use two formulations of the LF equations in the gas part, and two in the heat part. In a gas network, the general steady-state
low equation of a pipe [15], represented by a link 𝑘 from node 𝑖 to node 𝑗, can either express the link flow as a function of
12
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Fig. 4. MES network topology, see also [32]. The multi-carrier base network (a) can be extended as (b). Arrows on links and terminal links show defined
direction of flow.

Table 5
Boundary conditions for steady-state LF for the network in Fig. 4.
Node Type Specified Unknown

1𝑔 ref. 𝑝𝑔 𝑞
2𝑔 Load 𝑞 = 0 𝑝𝑔

3𝑔 Load 𝑞 𝑝𝑔

1𝑒 QV𝛿 𝑄, |𝑉 |, 𝛿 𝑃
2𝑒 gen. 𝑃 , |𝑉 | 𝑄, 𝛿
3𝑒 Load 𝑃 , 𝑄 |𝑉 |, 𝛿

1ℎ Junction ref. temp. 𝑇 𝑠 , 𝑝ℎ , 𝑚 = 0 𝑇 𝑟

2ℎ Load (source) 𝑇 𝑠
2,0 , 𝛥𝜑2,0 < 0 𝑇 𝑠 , 𝑇 𝑟 , 𝑝ℎ , 𝑚2,0

3ℎ Load (sink) 𝑇 𝑟
3,0 , 𝛥𝜑3,0 > 0 𝑇 𝑠 , 𝑇 𝑟 , 𝑝ℎ , 𝑚3,0

1𝑐 Standard – 𝑇 𝑠
1𝑐1ℎ

pressures, denoted as 𝑓 𝑞(𝛥𝑝), or express the pressure drop as a function of link flow, denoted by 𝑓𝛥𝑝(𝑞). Defining the pressure drop
by 𝛥𝑝𝑔𝑘 ∶=

(

𝑝𝑔𝑖
)2 −

(

𝑝𝑔𝑗
)2

, we have

𝑓 𝑞(𝛥𝑝)
𝑘 ∶= 𝑞𝑘 − 𝐶𝑔

𝑘 sign
(

𝛥𝑝𝑔𝑘
) (

f𝑔𝑘
)− 1

2 |
|

|

𝛥𝑝𝑔𝑘
|

|

|

1
2 = 0 (19a)

𝑓𝛥𝑝(𝑞)
𝑘 ∶= 𝛥𝑝𝑔𝑘 −

(

𝐶𝑔
𝑘
)−2 f𝑔𝑘 |𝑞𝑘|𝑞𝑘 = 0 (19b)

with 𝑞𝑘 is link flow, 𝑝𝑔𝑖 the nodal pressure, f𝑔𝑘 the friction factor, and 𝐶𝑔
𝑘 the pipe constant. We use the nodal or the full formulation

to collect the LF equations into a system of equations for the gas part. In the nodal formulation, the link Eqs. (19a) are substituted
in nodal conservation of mass. In the full formulation, the link equations are not substituted. We use link Eqs. (19b) for the full
formulation. In the nodal formulation, the link flows 𝑞𝑘 are derived variables, while they are part of the state variables 𝒙 in the full
formulation.

For the heat load nodes 𝑖, the heat exchanger is modeled by a terminal link 𝑙 connected to the node. We assume that the outflow
temperature directly after the heat exchanger is known. That is, the terminal link supply temperature 𝑇 𝑠

𝑖,𝑙 is known for sources, and
𝑟
the terminal link return temperature 𝑇𝑖,𝑙 is known for sinks. We use the standard or the terminal link formulation to collect the LF

13
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equations into a hydraulic-thermal system of equations for the heat part [32]. In the terminal link formulation, the terminal link
flows 𝑚𝑖,𝑙 are part of the state variables 𝒙, and nodal conservation of mass is a linear equation. In the standard formulation, the heat
ower equation is used to eliminate the terminal link mass flows, reducing the system size of the LF problem. Nodal conservation
f mass becomes nonlinear, and the flows 𝑚𝑖,𝑙 are derived variables.

If the link gas flows 𝑞𝑘 or terminal link mass flow 𝑚𝑖,𝑙 are derived variables, we do not include them in 𝒙𝑮. The extended state
variables are then:

𝒙𝑮,𝒈 =
(

𝑞1,0
)

(20a)

𝒙𝑮,𝒆 =
(

𝑃1,0, 𝑄2,0
)

(20b)

𝒙𝑭 ,𝒈
𝒏 =

(

𝑝𝑔2 , 𝑝
𝑔
3
)𝑇 (20c)

𝒙𝑭 ,𝒈
𝒇 =

(

𝑞12, 𝑞32, 𝑝
𝑔
2 , 𝑝

𝑔
3
)𝑇 (20d)

𝒙𝑭 ,𝒆 =
(

𝛿2, 𝛿3, |𝑉3|
)𝑇 (20e)

𝒙𝑭 ,𝒉
𝒔 =

(

𝑚12, 𝑚23, 𝑝ℎ2 , 𝑝
ℎ
3 , 𝑇

𝑠
2 , 𝑇

𝑠
3 𝑇 𝑟

1 , 𝑇
𝑟
2 , 𝑇

𝑟
3
)𝑇 (20f)

𝒙𝑭 ,𝒉
𝒕 =

(

𝑚12, 𝑚23, 𝑚2,0, 𝑚3,0, 𝑝ℎ2 , 𝑝
ℎ
3 , 𝑇

𝑠
2 , 𝑇

𝑠
3 𝑇 𝑟

1 , 𝑇
𝑟
2 , 𝑇

𝑟
3
)𝑇 (20g)

𝒙𝑭 ,𝒄 =
(

𝑞1𝑔1𝑐 , 𝑃1𝑐1𝑒 , 𝑄1𝑐1𝑒 , 𝑚1𝑐1ℎ , 𝛥𝜑1𝑐1ℎ , 𝑇 𝑠
1𝑐1ℎ

)𝑇
(20h)

ith 𝒙𝑭 ,𝒈
𝒏 and 𝒙𝑭 ,𝒈

𝒇 the gas state variables using the nodal or the full formulation, and 𝒙𝑭 ,𝒉
𝒔 and 𝒙𝑭 ,𝒉

𝒕 the heat state variables using
he standard or terminal link formulation.

The extended LF problem (4) is not solvable (for a physically feasible solution) for all values of 𝒖. The bounds imposed on 𝒖 are
chosen such that the LF problem is solvable. We also impose bounds on the (extended) state variables 𝒙𝑮,𝒈, 𝒙𝑮,𝒆, 𝒙𝑭 ,𝒈, 𝒙𝑭 ,𝒆, 𝒙𝑭 ,𝒉,
nd 𝒙𝑭 ,𝒄 . In addition, we consider imposing bounds on the gas link mass flows 𝑞𝑘, electrical link complex power |𝑆𝑘|

2 = 𝑃 2
𝑘 + 𝑄2

𝑘,
nd heat terminal mass flows 𝑚𝑖,𝑙. For the nodal and standard formulation, 𝑞𝑘 and 𝑚𝑖,𝑙 are derived variables, as is |𝑆𝑘|

2. Bounds
re imposed by (nonlinear) inequality constraints (5c) or (6c). For each gas and electrical link 𝑘 and each heat terminal link 𝑙, the
nequality constraints are:

𝜸𝒈𝒌 =
(

𝑞𝑘(𝑝𝑖, 𝑝𝑗 ) − 𝑞𝑙𝑏𝑘
𝑞𝑢𝑏𝑘 − 𝑞𝑘(𝑝𝑖, 𝑝𝑗 )

)

(21a)

𝛾𝑒𝑘 = (|𝑆𝑘|
2)𝑢𝑏 − 𝑃 2

𝑘 −𝑄2
𝑘 (21b)

𝜸𝒉𝒊,𝒍 =
⎛

⎜

⎜

⎝

𝑚𝑖,𝑙

(

𝛥𝜑𝑖,𝑙 , 𝑇 𝑠
𝑖,𝑙 , 𝑇

𝑟
𝑖,𝑙

)

− 𝑚𝑙𝑏
𝑖,𝑙

𝑚𝑢𝑏
𝑖,𝑙 − 𝑚𝑖,𝑙

(

𝛥𝜑𝑖,𝑙 , 𝑇 𝑠
𝑖,𝑙 , 𝑇

𝑟
𝑖,𝑙

)

⎞

⎟

⎟

⎠

(21c)

ere, the heat terminal link mass flow 𝑚𝑖,𝑙 is a function of terminal link heat powers 𝛥𝜑𝑖,𝑙, terminal link supply temperature 𝑇 𝑠
𝑖,𝑙,

nd terminal link return temperature 𝑇 𝑟
𝑖,𝑙 using the heat power equation.

If the full formulation is used in gas, and the terminal link formulation is used in heat, 𝑞𝑘 and 𝑚𝑖,𝑙 are part of 𝒙𝑭 . If bounds are
hen imposed on these variables, they are included as bounds (5e) or (6d) instead of using (21a) and (21c).

We have seen in Section 5.2 that there is no difference between using soft or hard constraints in the optimizers, so we only
onsider soft constraints for this network. Furthermore, we do not consider the t-c optimizer, since it performs worse than SLSQP
nd IPOPT.

This gives a total of 24 formulations and solution methods of the OF problems. That is, we use formulation I (5) for the OF
roblem, including the LF equations as equality constraints, or we use formulation II (6), eliminating LF equations. For the latter,
e can use the direct approach II.A or the adjoint approach II.B when solving the optimization problem. For each of these, we use
ne of the four possible formulation of the LF problems, based on the nodal formulation with pipe flow equations (19a) or the full
ormulation with pipe flow Eqs. (19b) in the gas part, and the standard formulation or the terminal link formulation in the heat
art. Moreover, we impose bounds on the (derived) variables 𝑞𝑘, |𝑆𝑘|

2, and 𝑚𝑖,𝑙, or we do not impose these bounds. In addition to
hese 24 options, we use SLSQP and IPOPT as optimizers.

Table 6 gives the system size of the OF problem for these 24 formulations, for the base network. The number of bounds on
∈ 𝒙 should be counted double, as they are lower and upper bounds. The system sizes are different for the various formulations.
owever, using the adjoint approach, or formulation II.B, always requires more linear systems to be solved than using the direct
pproach, or formulation II.A. For both approaches, the size of the linear systems is equal, since 𝒉𝒙 is square.

.3.2. Results
For both this MES and MES 1, there are minor differences between matrix scaling and per unit scaling. This is illustrated in Fig. 5,

hich shows the error ‖𝑭‖2 of the LF equations at each iteration of the optimizer for the base network. The results are shown for
he OF problem without bounds on 𝑞𝑘, 𝑚𝑖,𝑙, and |𝑆𝑘|

2, nodal formulation in gas, and terminal link flow formulation in heat, using
LSQP and formulation I. The figure shows that the iterates give different values of the scaled LF equations, indicating that matrix
caling and per unit scaling result in different iterates, even if the same base values are used. We have seen similar results for MES 1
nd for the extended network of MES 2. Therefore, matrix scaling and per unit scaling are not equivalent if solving the OF problem.
14
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Table 6
Size of 𝒖, 𝒙𝑮 , 𝒙𝑭 , 𝜸, and the number of 𝑥 ∈ 𝒙 on which bounds are imposed, for the various formulations of the OF problem for the base network. The last
wo columns give the number and size of the linear systems (10c) and (11c)–(11d) for formulation II.A and II.B.
Case Bounds on 𝑞𝑘, |𝑆𝑘|

2, 𝑚𝑖,𝑙 form. gas form. heat 𝒙𝑮 𝒙𝑭 𝒖 𝜸 # 𝑥 with bounds OF form. # lin. sys. Size lin. sys.

2

No

Full
term. link 3 24 4 0 23 II.A 4 27 × 27

3 II.B 47 27 × 27

5 Standard 3 22 4 0 23 II.A 4 25 × 25
6 II.B 47 25 × 25

8

Nodal
term. link 3 22 4 0 23 II.A 4 25 × 25

9 II.B 47 25 × 25

11 Standard 3 20 4 0 23 II.A 4 23 × 23
12 II.B 47 23 × 23

14

Yes

Full
term. link 3 24 4 2 27 II.A 4 27 × 27

15 II.B 57 27 × 27

17 Standard 3 22 4 6 25 II.A 4 25 × 25
18 II.B 57 25 × 25

20

Nodal
term. link 3 22 4 6 25 II.A 4 25 × 25

21 II.B 57 25 × 25

23 Standard 3 20 4 10 23 II.A 4 23 × 23
24 II.B 57 23 × 23

Fig. 5. Error of scaled LF equations ‖𝑭‖2 at every iteration of the optimizer for the OF problem of the base network, without bounds on 𝑞𝑘, 𝑚𝑖,𝑙 , and |𝑆𝑘|
2,

nodal formulation in gas, and terminal link flow formulation in heat, using formulation I and SLSQP. Comparison of matrix scaling and per unit scaling.

Table 7 gives the results for the base network, using matrix scaling. Again, a ‘–’ indicates the optimizer did not find a solution
for that particular case.

For the base network, SLSQP is able to find a solution for slightly more options of the OF problem than IPOPT. If both find a
solution, SLSPQ converges significantly faster than IPOPT.

Then, we consider the effect of imposing bounds on 𝑞𝑘, 𝑚𝑖,𝑙, and |𝑆𝑘|
2, that is, we compare cases 1–12 with cases 13–24. If

ounds are imposed (cases 1–12), Table 7 shows that an optimal solution is found for more options of the OF problem. The number
f iterations required to find a solution is roughly equal with or without these bounds, except for one case. With nodal formulation
n gas and standard formulation in heat, IPOPT requires significantly more iterations if bounds are imposed than if they are not
mposed (cf. cases 10–12 with 22–24), for all three formulations I, II.A, and II.B.

Comparing the various formulations of the LF equations in Table 7, that is, nodal or full formulation in gas and standard or
erminal link formulation in heat, we can see that the number of iterations required to find a solution are not the same for the
15
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t
f

Table 7
Information on optimizers of the optimal flow problem for the base network, using matrix scaling.

Case Bounds on 𝑞𝑘, |𝑆𝑘|
2, 𝑚𝑖,𝑙 form. gas form. heat OF form. # iters # 𝑓

SLSQP IPOPT SLSQP IPOPT

1

No

Full

term. link
I 14 41 24 59

2 II.A 15 – 46 –
3 II.B 15 – 46 –

4
Standard

I 17 13 25 14
5 II.A 6 – 16 –
6 II.B 6 – 16 –

7

Nodal

term. link
I 13 16 23 18

8 II.A – – – –
9 II.B 49 – 50 –

10
Standard

I 14 19 17 20
11 II.A 7 10 7 11
12 II.B 7 10 7 11

13

Yes

Full

term. link
I 12 27 22 33

14 II.A 7 21 7 29
15 II.B 7 21 7 29

16
Standard

I 16 36 32 42
17 II.A 7 48 7 117
18 II.B 7 – 7 –

19

Nodal

term. link
I 11 29 12 35

20 II.A 7 21 7 29
21 II.B 7 21 7 29

22
Standard

I 14 40 17 97
23 II.A 7 18 7 26
24 II.B 7 18 7 26

various formulations. These differences are minor, expect for one case. For the OF problem without bounds on 𝑞𝑘, 𝑚𝑖,𝑙, and |𝑆𝑘|
2,

nodal formulation in gas, and terminal link flow formulation in heat (cases 7–9), a solution is not found with formulation II. This
shows that the formulation of the system of LF equations influences the solvability of the OF problem and influences the convergence
of the optimizers.

Finally, we consider the inclusion of the LF equations in the OF problem, that is, we compare formulation I (cases 1, 4, 7, 10,
13, 16, 19, and 22) with formulation II. For this network, there are some options of the OF problem where a solution is found
using formulation I but not when using formulation II.A or II.B. However, if all three formulations I, II.A, and II.B find a solution,
formulation II requires significantly fewer iterations than formulation I.

Table 8 gives the results for the network with 163 nodes per single-carrier network, using matrix scaling. For this extended
network, SLSQP and IPOPT find a solution in the same cases, although IPOPT requires more iterations than SLSQP.

As for the base network, we can see in Table 8 that the formulation of the LF problem influences the solvability of the OF
problem and influences the convergence of the optimizers. Most notably, no solution is found for the OF problem with bounds on
𝑞𝑘, 𝑚𝑖,𝑙, and |𝑆𝑘|

2, full formulation in gas, and standard formulation in heat (cases 16–18). SLSQP requires more iterations for the
OF problem with bounds on 𝑞𝑘, 𝑚𝑖,𝑙, and |𝑆𝑘|

2, nodal formulation in gas, and standard formulation in heat (cases 22–24), than for
he other cases (except case 11, which also uses the nodal formulation in gas and standard formulation in heat). IPOPT requires
ewer iterations for the OF problem without bounds on 𝑞𝑘, 𝑚𝑖,𝑙, and |𝑆𝑘|

2 and nodal formulation in gas (cases 7–12), than for the
other OF formulations.

Finally, we compare formulations I, II.A, and II.B. No solution is found using formulation I, for any of the formulations of LF.
Furthermore, there are some differences between formulation II.A and II.B, both for SLSQP and IPOPT. The difference is biggest for
the OF problem without bounds on 𝑞𝑘, 𝑚𝑖,𝑙, and |𝑆𝑘|

2, nodal formulation in gas, and standard formulation in heat (cases 11 and
12), using SLSQP. This is illustrated in Fig. 6, which shows the error ‖𝑭‖2 of the LF equations at each iteration of the optimizer
for this case. We can see that formulations II.A and II.B result in different iterates and a different number of iterates. For the other
cases there are minor differences. Since formulations II.A and II.B are different methods to calculate the required gradients, see
Section 4.3, these differences are caused by numerical errors, and formulations II.A and II.B are not equivalent.

Based on this MES, we find that matrix scaling and per unit scaling are not equivalent when solving the OF problem. Neither are
formulations II.A and II.B. The formulation of the LF equations influences the solvability of the OF problem, and the convergence of
the optimizers. If a solution is found for all three formulations I, II.A, and II.B, formulation II requires significantly fewer iterations
than formulation I.

6. Conclusion

We optimize the operation of multi-carrier energy systems (MESs) by minimizing total energy generation costs while satisfying
the steady-state load flow equations (LF) and other physical network limits. We compare two ways of including the LF equations
16



A.S. Markensteijn, J.E. Romate and C. Vuik Results in Control and Optimization 5 (2021) 100050
Table 8
Information on optimizers of the optimal flow problem for the extended network (163 nodes per carrier, 𝑛 = 10, 𝑚 = 5, 𝑠 = 10), using matrix scaling.

Case Bounds on 𝑞𝑘, |𝑆𝑘|
2, 𝑚𝑖,𝑙 form. gas form. heat OF form. # iters # 𝑓

SLSQP IPOPT SLSQP IPOPT

1

No

Full

term. link
I – – – –

2 II.A 5 24 5 40
3 II.B 5 24 5 40

4
Standard

I – – – –
5 II.A 3 24 3 40
6 II.B 3 24 3 40

7

Nodal

term. link
I – – – –

8 II.A 5 15 5 40
9 II.B 5 15 5 40

10
Standard

I – – – –
11 II.A 15 14 15 22
12 II.B 3 14 3 22

13

Yes

Full

term. link
I – – – –

14 II.A 5 31 5 32
15 II.B 5 32 5 33

16
Standard

I – – – –
17 II.A – – – –
18 II.B – – – –

19

Nodal

term. link
I – – – –

20 II.A 5 30 5 31
21 II.B 5 28 5 29

22
Standard

I – – – –
23 II.A 12 28 14 30
24 II.B 12 28 13 30

Fig. 6. Error of scaled LF equations ‖𝑭‖2 at every iteration of the optimizer for the extended network (163 nodes per carrier, 𝑛 = 10, 𝑚 = 5, 𝑠 = 10), bounds on
𝑞𝑘, 𝑚𝑖,𝑙 , and |𝑆𝑘|

2, nodal formulation in gas, and standard formulation in heat, using SLSQP. Comparison of formulation II.A. and formulation II.B.

within the optimal flow (OF) problem: formulation I and formulation II. Formulation I includes the LF equations explicitly in OF, as

equality constraints, and is the most commonly used approach. Formulation II includes the LF equations as subsystem in OF, using

nonlinear elimination of variables and equations. In addition to these two formulations, we consider the effect of scaling, the effect
17
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of the formulation of the LF equations, and the effect of imposing bounds on the solvability of the OF problem. To solve the resulting
OF problems and to consider converge, we use three optimizers, and two approaches with formulation II: the direct approach (II.A)
or the adjoint approach (II.B).

Scaling is needed to solve the OF problem for MESs. Both matrix scaling and per unit scaling can be used. The are not equivalent
or optimization, resulting in different iterates of the optimizers.

The formulation of the LF equations, both the individual equations and the system of equations, influences the solvability and
onvergence of the OF problem. The formulation of the system of LF equations determines which variables are state variables and
hich are derived variables, which subsequently determines the nonlinearity of the (in)equality constraints and objective function.
he formulation of the system of LF equations is related to the choice of boundary conditions for the LF problem, which determines
he choice of control variables in the OF problem. The best formulation of the LF equations, and the best choice for the control
ariables, depends on the specific problem and network.

Bounds on the control variables are used to keep the iterates (physically) feasible, by ensuring the extended LF problem is
olvable. Hence, choosing appropriate bounds for the control variables is crucial in formulating a solvable OF problem. Additional
ounds on (extended) state variables and derived variables increase the complexity of the optimization problem and (can) increase
he nonlinearity. Hence, they influence the solvability of the OF problem and the convergence of the optimizers. Whether bounds
hould be imposed depends on the specific problem and energy system.

Including the LF equations as equality constraints or as subsystem both result in a solvable OF problem. That is, both formulation
and formulation II can be used to optimize a MES. Formulation II reduces the size of the optimization space compared with

ormulation I, but increases the nonlinearity of the objective function and constraints. In formulation II, the LF equations are
olved separately for multiple iterations of the optimizer. This allows the use of a dedicated, separate, solver for the LF problem.
urthermore, it ensures the LF equations are satisfied at each iteration of the optimizer. However, it might increase CPU time. That
s, formulation I is easier to implement and more efficient in terms of CPU time. However, if feasibility is important, or if the user
f the optimization algorithm does not have access to detailed network models or data, formulation II is the preferred method.

For the two example MESs, formulation II requires significantly fewer iterations than formulation I, if an optimal solution is
ound for both formulations. Furthermore, formulations II.A and II.B are not equivalent. For some OF problems, II.A and II.B result
n different iterates of the optimizers.

The OF problem for a MES can be formulated in various ways, with respect to choice of state variables, control variables, and
oundary condition, with respect to the formulation of the LF equations, with respect to including the LF equations in the OF
roblem, with respect to scaling, and with respect to bounds and inequality constraints. Which way is best depends on the specific
etwork and problem considered.
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