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Abstract
Spectrum sensing is a vital technology for alleviat-
ing pressure on the radio spectrum and will become
more sophisticated as billions more devices come
online. In the future, more advanced techniques
utilizing deep learning will sense which parts of the
spectrum are available to communicate on. This is
a heavily researched area, but few papers demon-
strate methods of deploying deep learning on the
resource-constrained edge devices that will ulti-
mately use them. One approach called Spectrum
Painting augments spectrograms and detects which
signals are present with a Convolutional Neural
Network. We optimize this method for microcon-
trollers by simplifying the computation of spec-
trograms and using TinyML techniques. This re-
sults in over 90% accuracy on signals with a high
signal-to-noise ratio and a latency of 159 ms on
a 64 MHz CPU. Our findings conclude microcon-
trollers are capable of utilizing deep learning for
spectrum sensing, but custom hardware will still be
required in a real-world deployment.

1 Introduction
There are an increasing number of devices using wireless
technologies, causing parts of the wireless spectrum to be-
come over-crowded. There are around 50 billion connected
devices across the world, and billions more will come online
in the decades ahead [1], leading to a “spectrum crunch” [2].
In the past, government regulators divided up the spectrum
into fixed bands, which are exclusively licensed to a single
user. A user in this context referring to a type of technology,
such as television broadcasts or Wi-Fi, and not a person using
said technology. This approach is inefficient because portions
of the spectrum are under-utilized the majority of the time,
therefore, some frequency bands resort to spectrum sharing
[3]. One example that is significantly over-crowded is the 2.4
GHz band which Wi-Fi, Bluetooth, and many other wireless
technologies use [4].

Some sharing approaches are non-collaborative meaning
users must opportunistically transmit when there are free
slots, rather than coordinating when they will each transmit.
This approach requires spectrum sensing — the ability for a
user to sense which parts of the spectrum are being used. In-
creasingly into the future, spectrum sensing will be required
to hop between different channels or frequency bands dynam-
ically [5]. As shown in Figure 1, Bluetooth devices already
use a technique called Adaptive Frequency Hopping to re-
duce interference during transmission [6]. Regulators have
also recognized this as an urgent problem, thus to alleviate
pressure they are changing their previous practice of exclu-
sive access by opening other parts of the spectrum. In 2020,
the US Federal Communications Commission opened up the
6 GHz band to unlicensed users to reduce the demand on the
aforementioned 2.4 GHz band [7]. Nevertheless, advanced
spectrum sensing techniques are still relevant because it is
conceivable that these new unlicensed bands will also experi-
ence pressure into the future.

Figure 1: A spectrogram centered on the 2.4 GHz frequency band
containing virtual Wi-Fi, Zigbee, and Bluetooth signals. Zigbee is a
protocol when low-power and low-bandwidth are required, such as
Internet of Things devices. These different protocols impede com-
munication efficiency by not collaborating while they share the same
frequency band, causing their signals to frequently interfere.

Radio environments are very dynamic and chaotic, espe-
cially when the users are not collaborating, which lends itself
well to deep learning approaches that can adapt to different
inputs [5], [8], [9], [10], [11]. The complexity of deep learn-
ing makes it challenging to minimize the latency, which is
a measure of the time to pre-process and classify the data.
Few papers discuss this aspect even though it is important be-
cause the radio environment changes within milliseconds. A
couple papers are latency-driven, such as one that presents a
method of optimizing Convolutional Neural Networks (CNN)
in general for field-programmable gate arrays (FPGA) [12],
and another introduces the DeepSense framework to achieve
real-time spectrum sensing with a CNN on custom hardware
[11]. Embedded devices using wireless technologies for in-
dustrial and household applications are becoming more ubiq-
uitous and further putting pressure on the spectrum. Applying
deep learning methods with low latency to these devices is es-
pecially challenging because they have very limited comput-
ing and memory resources. This could be achieved with Tiny
Machine Learning (TinyML), which is an emerging research
field concerned with optimizing machine learning models to
run on ultra-low-power devices [13].

Many proposed deep learning methods fail to have both
high accuracy and low latency, therefore, Li et al. developed
the Spectrum Painting [14] method to have both. Also, some
models struggle in situations (like Figure 1) where spectro-
grams with both large and small features must be classified.
So they improved on this aspect and achieved greater than
90% accuracy. Furthermore, it has low latency around 2 ms
on resource-constrained devices such as the Raspberry Pi 4B,
however, it has not been tested on microcontrollers, which
generally have a tight memory budget less than 500 KB.

The Raspberry Pi 4B is a powerful embedded device con-



taining a multicore CPU and up to 8 GB of RAM 1, and is
not representative of the performance of many edge-devices.
Therefore, the goal of this research is to optimize the Spec-
trum Painting method for microcontrollers using TinyML.
This should be possible since it is a similar problem to op-
timizing image recognition tasks for microcontrollers, which
can already be done real-time [15]. One should expect to
achieve a latency 60× higher around 120 ms on the micro-
controller we are using (Arduino Nano BLE Sense) since the
processor is 60× slower according to CoreMark benchmarks
2 3. This is not a precise estimate since the benchmarks may
not strain the processor the same way this method will.

Summary of Novel Contributions
Signal processing and deep learning are computationally ex-
pensive tasks for microcontrollers so in this paper we exper-
iment with changing multiple parameters to determine their
effect on the accuracy and latency of Spectrum Painting. We
achieve an accuracy over 90% in environments with a high
signal-to-noise ratio and a latency of 159 ms on the micro-
controller. We improve on the previous work by having 8%
higher accuracy on average from SNR 0 to 30 dB and a 32%
latency reduction when taking the power of the hardware into
consideration. This is a summary of our findings to achieve
these results.

• It is critical to reduce the number of windows for
the short-time Fourier transform when creating spectro-
grams to reduce the latency and memory footprint of
pre-processing.

• The complexity of the CNN also has an impact on la-
tency and the solution is to minimize the number of fil-
ters in each convolutional layer.

• Quantization [16] gives a marginal reduction in latency
and model size for simpler models, but it becomes sig-
nificant as the complexity of the model increases.

This paper is structured as follows. Initially, Section 2 pro-
vides background information about signal processing and
how the Spectrum Painting methods work. The details of our
methodology to optimize the Spectrum Painting method are
described in Section 3 and the results of our experiments are
in Section 4. Afterward, the results will be compared to other
literature in Section 5 and a discussion of the validity of our
results in Section 6. The paper ends with a conclusion and a
mention of future improvements to make in Section 7.

2 Background
To understand this paper, some signal processing terminology
and the Spectrum Painting method will be explained first.

2.1 Signal Processing Terminology
Signal processing terms, such as in-phase and quadrature
samples (I/Q), Fourier transform, and spectrograms will be
used throughout the paper.

1https://www.raspberrypi.com/products/raspberry-pi-4-model-b
/specifications

2https://docs.nordicsemi.com/bundle/ps nrf52840/page/keyfeat
ures html5.html

3https://www.eembc.org/viewer/?benchmark seq=13417

Figure 2: The top left image is generated by taking the real compo-
nent of the I/Q samples. The Fourier transform takes the function on
the left and outputs which frequencies are present on the top right.
The bottom left image visualizes the STFT to produce the spectro-
gram on the right.

I/Q data is a method of representing signals precisely, that
represents a signal as the sum of a sine and cosine wave. This
is represented as a complex number, where the real and imag-
inary parts correspond to the amplitude of the sine and cosine
waves, respectively.

The Fourier transform is a mathematical function that takes
one function as input and outputs the frequencies present.
Figure 2 technically uses the discrete Fourier transform be-
cause it outputs discrete frequencies rather than a continuous
function. The algorithm for this is called the Fast Fourier
transform (FFT). A spectrogram gives information about the
strength of these frequencies over time, so in essence, a
spectrogram is many Fourier transforms connected together.
More precisely, this is called the short-time Fourier transform
(STFT), which is computed by taking a window of the data
and applying the discrete Fourier transform, returning the fre-
quencies in said window [17]. Spectrograms require the mag-
nitudes of each frequency, so one takes the absolute value of
the complex output from the FFT. The STFT is visualized in
the bottom half of Figure 2.

2.2 Spectrum Painting
Spectrum Painting works by downsampling, augmenting and
“painting” the spectrograms as demonstrated in Figure 3. The
augmented image increases the size of the smaller features,
such as Bluetooth and Zigbee signals, by stretching them in
the frequency axis. The painted image is created by subtract-
ing the mean of each row in the downsampled image from the
augmented image, which effectively removes the large Wi-Fi

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications
https://docs.nordicsemi.com/bundle/ps_nrf52840/page/keyfeatures_html5.html
https://docs.nordicsemi.com/bundle/ps_nrf52840/page/keyfeatures_html5.html
https://www.eembc.org/viewer/?benchmark_seq=13417


Figure 3: A raw spectrogram (left) and the augmented (center) and
painted (right) images derived from it with the Spectrum Painting
method. In the augmented image the smaller Zigbee and Bluetooth
signals are stretched, and the Wi-Fi signal is completely removed in
the painted image.

Figure 4: The architecture of the dual-channel Convolutional Neu-
ral Network proposed by the Spectrum Painting paper [14] that can
accurately classify which signals are present in a spectrogram.

signals spanning the spectrogram. A more detailed explana-
tion of this process can be found in Section 3.1. A Convolu-
tional Neural Network (CNN) with a dual-channel architec-
ture is then trained on these images and classifies which types
of signals are present. An overview of the CNN architecture
can be seen in Figure 4.

3 Spectrum Sensing on Microcontrollers
This section describes the optimizations we made to the data
pre-processing, training, and inference steps to do spectrum
sensing with the Spectrum Painting method on microcon-
trollers. Figure 5 gives an overview of the steps.

3.1 Data Pre-processing
For the CNN to be able to classify which signals are present in
the spectrogram, the dataset must contain different in-phase
and quadrature (I/Q) samples for each combination of signal.
In this work, we aim to classify Wi-Fi (W), Bluetooth (B) and

Zigbee (Z), resulting in 7 sets of data labeled as W, B, Z, WB,
ZW, ZB and ZBW.

Computing Spectrograms
The Spectrum Painting method learns patterns in the
frequency-domain rather than the time-domain, so the short-
time Fourier transform (STFT) must be computed from the
I/Q samples to get a spectrogram, such as in Figure 1. A brief
explanation of the STFT is explained in Section 2.1. Usu-
ally, one uses a sliding window, a window function, and com-
putes the square of the magnitude when producing a spectro-
gram. But these steps were skipped because it would require
more computationally expensive FFT calculations and, due to
downsampling in later steps, they had no significant effect on
the appearance of the training images.

The number of windows and window length can be varied
to give different spectrograms that trade frequency resolution
for time resolution or vice versa. One can not have both due
to the Gabor Limit [18] and so, as demonstrated in Figure 6,
to create the same spectrogram one has to trade one for the
other. Increasing the number of windows causes a significant
increase in the latency because more FFTs must be calcu-
lated, but there are diminishing returns since the spectrogram
is downsampled regardless. More FFT bins increases the la-
tency further because it requires more calculations.

In summary, to create a spectrogram one uses the STFT
and must decide on the number of windows, how many I/Q
samples for each window, and the number of output bins for
the FFT.

Augmenting and Painting
Spectrograms are similar to images, where each pixel has
one color channel and is represented as a floating point num-
ber on an infinite scale rather than an integer. To reduce
the pre-processing and model complexity the spectrogram is
then downsampled by averaging the bins to the target reso-
lution. The best resolution for Spectrum Painting is 64×64
[14], which results in training images a couple of kilobytes
in size after augmenting. The floating point frequency val-
ues are scaled to 8-bit integers to ensure the image requires
as little memory as possible. The Spectrum Painting method
is then applied to each of the downsampled images, resulting
in the images shown in Figure 3. These are inputted into the
CNN model described in the next section.

The augmentation step requires three parameters: the num-
ber of maximum values (K) to select in each window, the
length of each window (L), and the step size (D). The pa-
per concluded K = 3, L = 16, and D = 4 give the highest
accuracy [14], so we used the same for our method as well.
Augmenting works by setting the value of each pixel as the
average of the top K values in a sliding window over each fre-
quency row. This has the effect of stretching features across
the frequency axis. This augmentation step reduces the num-
ber of frequency bins due to the sliding window mechanism
and the step size. Using 64×64 images results in 64×13 res-
olution after augmenting with the arguments mentioned. The
“painted” image is created by subtracting the average value
of the frequency bins in each time bin from the augmented
image. These steps will produce floating point numbers so
they should be digitized again between 0 and 255. These two



Figure 5: This paper presents how to detect whether Wi-Fi, Zigbee, or Bluetooth signals are present in a radio signal using the Spectrum
Painting method shown in this figure.

Figure 6: The effect of trading the number of windows and sam-
ples per window on the resolution when computing the short-time
Fourier transform. The number of samples is the same, but the left
image has higher frequency resolution due to using more samples
per window and the right has higher time resolution since it uses
more windows. The difference in frequency resolution is less appar-
ent because the same number of output bins was used for the FFT.

images are then inputted into the model described in the next
section.

3.2 Model Creation
The CNN is created with the same dual-channel architecture
presented in the Spectrum Painting paper as shown previously
in Figure 4. A more detailed breakdown of the layers is shown
in Table 1 to aid in reproducing the model. The CNN con-
sisted of three convolutional layers with 3×3, 5×5, and 7×7
filters using the ReLU activation function and 2 filters with
zero-padding. Each of these layers was followed by a 2×2
max-pooling layer. Unlike the Spectrum Painting paper, no
batch normalization layers were used because they increase
the inference latency, model size, and in our experiments it
had no negative effect on the accuracy. Batch normalization
is often used to reduce the training time and over-fitting [19],
however, our model is very small so this provides limited ben-
efit. A concatenation layer is used to join the two channels to-
gether, which is then flattened and connected to produce the

Layer Output dimensions
2x Input 64 × 13 × 1

2x Quantize 64 × 13 × 1
2x Conv1 (Relu) 64 × 13 × 2

2x MaxPooling2D 32 × 6 × 2
2x Conv2 (Relu) 32 × 6 × 2

2x MaxPooling2D 16 × 3 × 2
2x Conv3 (Relu) 16 × 3 × 2

2x MaxPooling2D 8 × 1 × 2
Concatenation 8 × 1 × 4

Flatten 32
FullyConnected 7

Quantize 7
Output 7

Table 1: A list of the layers and their dimensions in the used CNN
model which results in 871 trainable parameters. The layers marked
with 2x are duplicated for both the augmenting and painting chan-
nels.

7 output classes. This resulted in a model with 871 trainable
parameters.

The popular Adam optimization algorithm was used to
train the model. During training, we used the early stopping
technique to stop training once the test accuracy does not in-
crease after a number of epochs (the patience parameter) to
prevent the model from overfitting. The patience parameter to
use indirectly depends on the size of the training set because
more data in each epoch allows the model to learn quicker.
Higher patience allows the testing accuracy to plateau for
longer. Post-training quantization [16] was used to convert
the 32-bit floating point weights into 8-bit integers. This gives
up to a 4× reduction in model size, which is critical for fitting
larger models onto the Arduino and also reducing the infer-
ence time.



3.3 Inference
The raw I/Q samples used for one spectrogram are too large
to fit directly in a microcontroller’s RAM because it is inher-
ently very limited, and the model and intermediate variables
for pre-processing require memory as well. In our experimen-
tal setup, one test spectrogram required 256 STFT windows
and each having 256 samples. Since each sample is a com-
plex number, which has two 32-bit floating point numbers for
both the real and imaginary parts, each test image requires
524 KB of I/Q samples — more than double the RAM capac-
ity of many devices. Some microcontrollers have relatively
large amounts of flash storage, which can be used for storing
the I/Q samples instead, although, there is a slight trade-off
because reading from flash is slower than RAM. Depending
on the device, compressing the I/Q samples may still be re-
quired to fit them inside the flash memory, therefore, a simple
solution is to scale the samples to fit in one 8-bit signed inte-
ger, resulting in a 4x reduction in size. This results in a large
loss in precision when computing the FFT, but it is not an
issue since the spectrograms are downsampled and digitized
after. These compressed I/Q samples can then be comfortably
stored inside the flash memory.

To reduce the memory requirements of storing intermedi-
ate images and the latency, downsampling is done at the same
time as computing the FFTs. The augmented and painted test-
ing images are created on the microcontroller using the same
pre-processing steps outlined in Section 3.1. These images
are inputted into the model on the microcontroller, which then
outputs which classes of signals are present in the spectro-
gram.

4 Experimental Setup and Results
This section describes how our dataset was created and how
the pre-processing, training and inference steps were imple-
mented on a laptop and Arduino microcontroller. Finally, the
experimental results are shown and compared to the baseline
of not using the optimizations mentioned in the method.

4.1 Dataset Creation
The dataset was created using the same method described
in the Spectrum Painting paper. In summary, the MATLAB
Communications Toolbox was used to generate the I/Q sam-
ples for the different classes of signals: Wi-Fi, Zigbee and
Bluetooth, with transmission power of 15 dBm, 0 dBm, and
5 dBm respectively. The simulated spectrum analyzer was 2
meters away from the devices, which gives a received power
of -31 dBm, -46 dBm, and -42 dBm respectively. White-
Gaussian noise was added to the signal to simulate 7 differ-
ent signal-to-noise ratios (SNR) of 0, 5, 10, 15, 20, 25, and
30 dB, which is demonstrated in Figure 7. SNR is a mea-
sure of how clear a signal is to the background noise and this
varies in the real world, therefore, a well-performing model
should be resilient even in noisy environments. The idle time
between each packet is randomized throughout the signal to
try to simulate a real-world environment and to ensure all the
training and testing images were random. For each SNR, files
with 132 million I/Q samples were created for each of the 7
classes (W, B, Z, WB, ZW, ZB and ZBW) and the different

Figure 7: A comparison of the augmented images containing Wi-
Fi, Zigbee, and Bluetooth signals for different signal-to-noise ratios
(SNR). SNR 0 dB should result in the lowest accuracy because the
features are almost indistinguishable from the background noise.

classes all used the same Wi-Fi, Zigbee and, Bluetooth com-
ponent signals. The sampling frequency was set to 88 MHz.
Computing the STFT on this data resulted in spectrograms as
shown in Figure 1 in the Introduction. For Spectrum Paint-
ing to work, Wi-Fi signals must span the spectrogram. Thus,
we only capture the frequencies spanning Wi-Fi signals, i.e.,
every fourth I/Q sample is used.

4.2 Model Training and Deployment
Spectrograms were created with 256 windows, a window
length of 256, and 64 bins for the FFT to train the model.
This gave the lowest latency without sacrificing much accu-
racy. Using the same number of bins for the FFT as the tar-
get resolution slightly reduces the work to downsample in the
frequency axis. Spectrograms from all 7 SNRs were shuffled
and split into training and test sets with a 70/30 ratio resulting
in 17252 training and 7395 test spectrograms.

The model was created in Python 3.10 with the TensorFlow
2.15 framework and the Keras API and trained on a laptop
with 100 epochs and early stopping patience of 10. A power-
ful GPU was not required since there were very few parame-
ters and the size of the training data was relatively small. The
model was then trained on the augmented and painted images
from all the spectrograms.

The model was compressed to a TensorFlow Lite model
with full 8-bit integer post-training quantization and then de-
ployed on the Arduino shown in Figure 8 with the TensorFlow
Lite Micro framework. The minimum size that quantization
could reduce the model was to around 10 KB since there is in-
herent overhead in adding quantization metadata and layers.

4https://store.arduino.cc/products/nano-33-ble-sense-rev2

https://store.arduino.cc/products/nano-33-ble-sense-rev2


Figure 8: We use the Arduino Nano 33 BLE Sense microcontroller
in the experiment; it has a single-core 64 MHz CPU and 256 KB of
RAM.4

Step Execution time (ms) Percent
STFT, downsampling 77 48%
Augmenting 20 13%
Painting 1 1%
Inference 61 38%

Total 159 100%

Table 2: A breakdown of the total latency for each step. The STFT
was computed with 256 windows, 256 samples per window, and 64
bins for the FFT. The model contained 2 filters for each convolu-
tional layer.

The accuracy results are generated off-device because send-
ing thousands of testing images to the Arduino and waiting
for the results would take a significant amount of time. This
will give equivalent results as running on-device because the
TensorFlow Lite Micro 5 framework just provides a means to
execute the same model. Latency testing was done on-device
by following the pre-processing and inference steps in Sec-
tion 3 using the Arduino standard library and the KISS FFT
library 6.

4.3 Results

These results were generated by training 10 models with the
experimental setup described prior and having a different
shuffling of the training and test data each time. The baseline
accuracy and latency are the SP-64 results from the Spectrum
Painting paper [14], which has none of the optimizations we
presented, such as no batch normalization layers, quantiza-
tion, and a simplified method of computing the STFT. The
latency of our method will not be directly compared to theirs
because they used a much more powerful Raspberry Pi 4B,
and they did not specify the number of filters for the con-
volutional layers in the model, which both have a significant
impact on the latency. Rather, we use a baseline latency of
120 ms equivalent to their 2 ms result with the assumption
the processor on the Arduino is 60× slower than the Rasp-
berry Pi according to CoreMark benchmarks.

5https://www.tensorflow.org/lite/microcontrollers
6https://github.com/mborgerding/kissfft

Figure 9: Our method achieves 8% higher accuracy on average com-
pared to the Spectrum Painting paper’s results. The accuracy of this
model is 94.1% at SNR 30 dB, decreasing to 43.9% at SNR 0 dB.

Figure 10: The confusion matrix of the TensorFlow Lite model
tested with SNR 30 dB images.

Accuracy and Latency
Our model achieved an accuracy of 94.1% for SNR 30 dB,
which is 1.2% higher than the 92.9% baseline accuracy as
shown in Figure 9. There was an average improvement of
8.0% across all SNRs and SNR 15 dB had the greatest in-
crease of 13.0% from 70.0% to 83.0%. The results for high
SNRs from 20 to 30 dB are very similar because the aug-
mented images in Figure 7 are almost indistinguishable.

The confusion matrix in Figure 10 shows why 5.9% accu-
racy was lost for SNR 30 dB. 13% of BW images were mis-
classified as ZBW and 6% vice versa, which may be caused
by the Zigbee signals sometimes being completely occluded
by the Wi-Fi signal in the randomly generated spectrograms.
This confusion matrix is different to the baseline, which mis-
classified 9% of B as BZ and 16% of WBZ as WZ. This dif-
ference may be due to subtle differences in our pre-processing
steps that caused some signals to be clearer than others.

Computing the spectrogram and inference are the most de-

https://www.tensorflow.org/lite/microcontrollers
https://github.com/mborgerding/kissfft


Figure 11: The number of I/Q samples was kept constant and only
the number of windows was changed. Computing the STFT with
more windows significantly increases the overhead.

Figure 12: There is a weak correlation between increasing the num-
ber of windows when computing the STFT and the subsequent ac-
curacy of the model. Our results used 256 windows.

manding steps in this method as shown in Table 2; consuming
86% of execution time. The augmenting and painting algo-
rithms have low complexity hence the minor impact on la-
tency. The 2 ms result in the Spectrum Painting paper does
not include the time to compute the STFT and downsampling
so achieving 82 ms for augmenting, painting, and inference
improves on the expected latency of 120 ms by 32%. Com-
puting the STFT took 48% of the time, therefore, it is critical
to minimize the number of windows for a target accuracy. In-
ference takes 38% of the time and so the complexity of the
model should be also be reduced.

STFT Optimizations
When optimizing STFT-based methods for signal classifica-
tion, one must decide how many windows to use because it
has a minor effect on the accuracy and a considerable ef-
fect on the latency. Figure 12 demonstrates how reducing
the number of windows can potentially cause a 15% differ-
ence in accuracy for spectrograms with a lower SNR. Fig-
ure 11 shows the dramatic reduction in latency when comput-
ing fewer STFT windows. The effect of changing the number
of windows on the spectrograms is shown previously in Fig-
ure 6. One can conclude that for Spectrum Painting, time res-

Figure 13: This graph shows how the inference latency and accuracy
of the model increases with the number of filters in each convolu-
tional layer.

Figure 14: The model size and latency increase with the number of
filters and quantization significantly reduces this effect for complex
models.

olution is more important than frequency resolution because
it augments along the frequency-axis. Based off this data,
we determined 256 windows gave the best trade-off between
accuracy and latency, since it gave similar accuracy to 1024
windows in just 77 ms rather than 245 ms.

CNN Optimizations
Since the number of filters was unspecified in the baseline pa-
per, the first goal was to determine what effect this had on the
latency and accuracy of the model. We chose 2 filters based
off the data in Figure 13, which shows it has similar accuracy
(94.9%) to 8 filters but a much shorter inference latency of
61 ms compared to 154 ms. There are diminishing returns
in terms of accuracy when more filters are used, but if this
method was applied to more complicated images then it may
be more significant.

Figure 14 demonstrates the benefits of quantization. There
is a notable reduction in latency and model size with 8 filters
— decreasing from 364 ms to 153 ms. Quantization gives
limited improvement when the model has one or two filters.
If a model with a single filter were to be used, then quantiza-
tion could still be worth the trade-off if memory is extremely
limited because the tensors and input images require 4× less
space.

The batch normalization used in the baseline CNN causes
a significant increase in the latency across all model sizes, so



Figure 15: The effect of batch normalization on the latency across
models with a different number of filters.

we removed them from our model and still improved on the
accuracy. In Figure 15 it caused a 38% reduction in latency
on average, and for 2 filters it reduced from 95 ms to 61 ms.
This is similar to the 30% decrease another paper observed in-
vestigating the effect of batch normalization layers on CNNs
[19].

To summarize, our results provide empirical evidence for
how the optimizations we presented improved on the baseline
paper in both latency and accuracy.

5 Discussion
This section discusses the accuracy and latency of our solu-
tion compared to other research and how representative the
results are of real-world performance.

5.1 Accuracy
To verify whether Spectrum Painting can be deployed, new
models should be trained and tested on images captured from
real-world environments where more sources of interference
could be present. In addition, the generated dataset could
mimic the real-world more accurately by containing more
sources of randomness, such as the signals varying in receiv-
ing power during transmission.

The accuracy of our model declines significantly for lower
SNRs, which limits itself to environments with powerful sig-
nals. It is important for any deep learning based spectrum
sensing implementation to have high accuracy because other-
wise more interference could occur if a device transmits on
an already occupied channel/technology, defeating the pur-
pose of spectrum sensing and contributing to the problem.

5.2 Latency
It is invalid to directly compare latency between papers be-
cause the testing hardware varies significantly, so we dis-
cuss how ours compares taking this into account. One paper
claims their results with a latency of one second is near real-
time on an Nvidia Jetson Nano [20], whereas the DeepSense
paper claims real-time to be 1000× faster under 1 ms on an
FPGA [11]. Our results are promising because it lies in the
middle and on much weaker hardware than the Nvidia Jetson
Nano, but less efficient than the FPGA DeepSense used. The

FPGA was optimized for a neural network with 12,272 pa-
rameters, thus our 871 parameter model has the potential to
be real-time as well on similar hardware. Their model was
trained on the I/Q samples directly rather than spectrograms
so our pre-processing steps would introduce extra latency. On
the contrary, the FFT calculations and downsampling could
be parallelized to minimize this effect.

6 Responsible Research
There are a few threats to validity in this research, especially
with how the dataset is created.

First, no real-world test data was used to train or test
the model because the necessary hardware was unavailable.
There is a potential that this method may not generalize well
to real world data because the dataset contains only three de-
vices and the spectrograms have been deliberately cut to en-
sure the Wi-Fi signals span the width of the image. This is
because Spectrum Painting is only beneficial in the case that
there are large characteristic features, such as Wi-Fi signals,
obscuring smaller features and spanning the image. Other-
wise, creating a single-channel CNN trained on spectrograms
without augmenting and painting yields similar accuracy with
lower latency because less pre-processing is required. In
a real-world deployment, the radio receiver will have to be
tuned to a specific Wi-Fi channel to solve this problem. De-
spite this, the augmenting and painting steps are only respon-
sible for 14% of the latency, so the optimizations for calcu-
lating the STFT and inference can be applied to more flexible
methods.

The dataset was generated with closed-source code and
so these results can not be reproduced and validated, which
makes it difficult for others to explain the difference in accu-
racy between this paper and the baseline Spectrum Painting
paper.

The accuracy can vary by a few percent every time a new
model is trained, so to mitigate the effect of this on the con-
clusion, 10 models were trained with different training and
test splits and the accuracy was averaged.

7 Conclusion and Future Work
This paper presents a latency-driven method of optimizing
CNN-based spectrum sensing for microcontrollers. Several
steps are outlined throughout the pre-processing, training and
inference stages to reduce the latency and memory footprint,
which ultimately increases the accuracy by 8% from the base-
line paper. It has a latency of 159 ms on a 64 MHz CPU and
greater than 90% accuracy at high SNRs. Further areas of
research are to integrate this method into custom hardware
similar to the DeepSense framework and to test the accuracy
for other frequency bands.
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