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Wheelchair power to the people

‘Imagine that you just drove your wheelchair for half an hour over bumpy roads and some
grassy spots (Google Maps told you that this would be the shortest way). While taking a short
break, you feel sweaty. Your shoulders hurt. Your smartwatch informs you that you took only 50
steps, burned virtually no calories and that it’s “time to stand up”.” Wearable sensors have
become more and more part of our daily lives and are widely used to encourage a healthy
lifestyle. However, despite rapid developments in this field, these systems are obviously not
well adjusted for every type of user yet.

This dissertation outlines the possibilities of monitoring power during daily wheelchair (sports)
practice. Although the dissertation focuses on estimating power, i.e., calories per second, in
wheelchair sports, this could be the start of a wheelchair-specific smartwatch that allows
wheelchair athletes and users to self-track their activities, to get warned when they tend to
overuse their shoulders, and to eventually take over Strava. With all data that will be collected
in this way, Google Maps may suggest wheelchair accessible routes, municipalities gain insight
into the wheelchair (in)accessibility of their public areas, and wheelchair design can be
optimized. Starting with ‘wheelchair power to the people’, I hope that this dissertation will
ultimately bring some ...

Power to the wheelchair people
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Introduction

The power of monitoring power

‘Imagine a beautiful sunny day in September. You are cycling home from work. While you cycle
with exactly the same speed as in the morning, the ride in the afternoon feels much tougher. This
may be caused by the long working day at which you have struggled with writing a proper start of
your dissertation. However, it may also be thatyou are facing a strong head wind on the way back,
that you have a flat tire, or that your house is located on a hill. In this case, although the speed
and duration of your ride is the same, the energy you use to maintain this speed is much higher
on the way back. Each of the mentioned factors, or external forces (such as air resistance, rolling
resistance or gravity), require a higher power to produce on your bike when returning home.’ The
example clarifies that power is a more valid measure of intensity, i.e. amount of effort, required
in a certain period than speed. Besides speed, this also applies to other subjective measures
such as number of steps or minutes performing an activity.

In everyday life, however, we do not often come across the term power. Instead, we talk
about energy expenditure (e.g. expressed in kcal) over a certain period of time. The last decades,
energy expenditure or power has been related to many societal health factors, such as mental
and physical well-being. For example, the university of Kansas reported that recent studies
‘show that walking 10,000 steps can improve cardiovascular health and reduce risks of both
dementia and cancer better than any pill or injection currently available’ [1-4]. In addition, an
increased energy expenditure was reported to be strongly associated with a lower risk of
mortality in healthy older adults [5], and 'physical activity' has been found to reduce chronic
disease risk and enhances functional capacity [6]. Monitoring power production or energy
expenditure is therefore an important first step towards overall health benefits.

For wheelchair users, the relevance of power monitoring may be even larger. Wheelchair
users, in general, have a higher risk for diseases and cardiovascular events [7], and are more
prone to - mainly shoulder - injuries compared to non-wheelchair users [8]. Monitoring power of
wheelchair users may help to prevent injuries, and to design specific ‘physical activity’
guidelines for wheelchair users [9]. In addition, monitoring and giving feedback on power may be
used to stimulate wheelchair users in performing physical activity such as taking a ride or
performing wheelchair sports, to study aspects of different propulsion techniques [10-13], to
investigate a person’s physical capacity [14, 15], to analyze sport performance [16, 17] or as an
extra measurement tool to evaluate wheelchair design [15]. Monitoring power has thus many
benefits for both non-active, active and ‘athletic’ wheelchair users.

What is power?
The previous paragraphs clarified that power is considered a useful measure. But whatis power?

Power is the energy transferred or converted per unit of time, usually expressed in Watts or
normalized to Watts per kg. It is a broad concept which is all around in our daily lives. Think of a
light bulb that converts oil (or electricity) into light, the water boiler that converts electricity into
heat and your car that converts gasoline into wheel rotation. The human body works in a similar
way albeit using other power sources. In human locomotion, metabolic energy (originating from
food) is converted into muscle power (to generate muscle force). Subsequently, muscle force
enables body segments to overcome internal and external friction to, eventually, produce
locomotion (by propelling the push-rims of a wheelchair forinstance). In the present dissertation
| will focus on ‘locomotion power’, also called ‘power output’, which is the power that is
transferred between a - in this case - wheelchair user and the environment. This type of power
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be approached purely mechanical, as it equals the sum of the user’s forces multiplied by the
linear velocities of (the points of application of) these forces; and the sum of the user’s moments
multiplied by their angular velocities (see Eq. 1.1). We therefore refer to it as ‘mechanical power’.

Puser = 2 Fuser * l7F,user + Z Muser * wM.user (1 ~1)

Im)possibilities for measuring power in wheelchair propulsion
When force (and/or moment) and (angular) velocity is known, mechanical power can be
obtained. Determining wheelchair velocity during (overground) wheelchair propulsion is
relatively straight-forward and is done for decades [18, 19]. The force applied on the push-rims
of a wheelchair, on the other hand, can only be measured with specialized equipment [15].
Wheelchair propulsion laboratories have been used to measure wheelchair propulsion
forces and moments, and to gain insights into wheelchair propulsion techniques [20, 21]. So-
called wheelchair ergometers have been measuring mechanical power for severalyears [14, 22].
Whereas the wheelchair was previously integrated in the wheelchair ergometer, such that all
experiments were done on the same (adjustable) chair [11, 15], a new ergometer has been
developed recently, allowing wheelchair users to be measured in their own wheelchair [23]. With
these ergometers, the gap between lab and field has already narrowed. However, the ecological
validity of such a system is still low. To understand this, some crucial aspects of wheelchair
dynamics will be explained below.

Figure 1.1. A propulsion cycle with the ‘push’ phase and the ‘recovery’ phase and
corresponding (common) upper body moments (obtained from Salimi and Ferguson-Pell
[24]).
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Look mummy, no hands! Some background on wheelchair propulsion dynamics

Contrary to many other locomotion activities, during wheelchair propulsion, the wheelchair is
not propelled continuously. A propulsion cycle is commonly subdivided into a ‘push’ phase and
a ‘recovery’ phase (see Fig. 1.2). During the push phase, a wheelchair user applies force to the
rim of the wheelchair. If a wheelchair user has sufficient upper body function, this movement is
often accompanied by inclining the upper body, such that the range of motion of the arms and
hands is increased, and a longer push can be obtained. After the push phase, the wheelchair
user returns to the initial position, which is called the ‘recovery phase’. When the upper body
accelerates backwards (e.g., to return its initial position), the user unconsciously pushes the
wheelchair forward (without using his/her hands) [25]. This is visible in a forward acceleration of
the wheelchair. In our paper ‘Look mummy, no hands! The effect of trunk motion on forward
wheelchair propulsion’, this phenomenon was further investigated in which upper body motion
was represented by the movements of the trunk. The interaction between trunk motion and
wheelchair acceleration is visible in Figure 1.2. Here, the trunk angle, wheelchair acceleration,
hand contact (push phase) and hand release (recovery phase) are presented during a propulsion
cycle at normal intensity (left figure) and during a propulsion cycle at maximal intensity (right
figure). As is visible in Figure 1.2, the wheelchair is ‘propelled’ (i.e., accelerated) not only during
the push phase, but also during a part of the recovery phase.

0% 20% 40% 60% 80% 0% 20% 40% 60% 80%

Figure 1.2. Example of propulsion force (N; solid line) and trunk angle (degrees, with respect to
the vertical; dashed line) over time for one push cycle at normal intensity (left) and one push
cycle at high intensity (right). The grey surface indicates the push phase, the white surface
indicates the recovery phase [25].

Given some background on wheelchair propulsion dynamics, it may be clear that measuring
power with a wheelchair ergometer (see Fig. 1.3) has limited ecological validity. First, on a
wheelchair ergometer, the (own) wheelchair is fixed to an ergometer device positioned in the lab,
such that the wheelchair dynamics differ from overground propulsion (i.e., no wheelchair
acceleration/deceleration during recovery) and forces that are exerted on the wheelchair seat
will be neglected. Second, resistive forces, like air resistance and rolling resistance will not be
realistic on wheelchair ergometers. Whereas air resistance depends on the air velocity relative
to the athlete-wheelchair system (which is near zero on a lab-based ergometer), rolling
resistance is commonly imposed by the ergometer as a constant force [23]. However, rolling
resistance for overground wheelchair propulsion usually varies within a stroke cycle due to

14 CHAPTER 1




trunk-motion induced upper body movements [26, 27]. Therefore, while the force applied on the
push-rims of a wheelchair can be measured with a wheelchair ergometer, the translation of
ergometer-based power values to real-life situations is complex and error-prone.

Figure 1.3. Wheelchair fixed on a wheelchair ergometer (obtained from Bougenot et al. [28])

An ambulatory system that measures force on the push-rims was first reported in 1993 [29].
Similar to power meters in for example road cycling and rowing, force sensors can be integrated
in the push-rims of a wheelchair to measure the force or torque applied on the push-rims. These
force-instrumented push-rims have been used to analyze wheelchair propulsion techniques, to
study force applications and to assess propulsion technique changes with fatigue [30]. However,
one major drawback is that force-instrumented push-rims nowadays weight about 6-9 kg [31],
such that it adds 60-90% to the average mass of a wheelchair and has therefore a large impact
on the wheelchair dynamics and propulsion technique. Moreover, force-instrumented push-
rims are expensive and not sufficiently robust to be used during everyday wheelchair use or
wheelchair sports. At present, force-instrumented push-rims are thus not feasible to monitor
propulsive force and power in wheelchair sport practice.

Power in wheelchair sports

In wheelchair sports, on-field monitoring of mechanical power is requested by coaches, athletes
and sports scientists. When power is monitored during, for instance, every training session or
competition, valuable information can be gained on the athlete’s performance (‘Can my athlete
produce more power on the racing wheelchair than one month ago?’) and on their fitness level
(‘The heartrate is higher, while power produced is the same as yesterday, maybe | am fatigued
and should take some rest’). Moreover, when the power values are lower than expected, overuse
or fatigue can be identified in an early stage such that coaches or athletes can act upon this and
reduce the risk of injuries. After recovery of an injury or period of rest, power can again be used
to specify and individualize training programs to bring the athlete back on its elite level. Lastly,
power can be used to optimize wheelchair settings. If, for example, an athlete maintains a
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certain power output, but reaches a higher speed in Wheelchair A than in Wheelchair B, than the
first one will be the best choice.

As power in sports is used more and more to enhance performance and to reduce the
risks of injuries in a variety of sports disciplines [16, 32-34], much knowledge has already been
accumulated. Monitoring power during daily wheelchair sports practice would thus provide
many opportunities for both wheelchair field and court sports (such as wheelchair basketball,
rugby, tennis) as well as wheelchair racing (from 100m sprints to marathon or triathlon
disciplines). To provide coaches and athletes with feedback on power during regular training
sessions and in match-like situations, without interrupting their daily training routine, a non-
invasive ambulatory method to monitor power should be developed.

Problem statement and research aim:

In wheelchair sports, on-field power monitoring is essential to enhance performance and
reduce injury risk. However, a non-invasive and inexpensive method to determine
mechanical power during wheelchair sports is not yet available. Therefore, the aim of this
dissertation is to enable non-invasive and inexpensive mechanical power monitoring during
overground hand-rim wheelchair propulsion, mainly in the context of wheelchair sports.

In unmotorized wheelchairs, athletes’ mechanical power is used to change the speed and
direction of the wheelchair. In addition, in wheelchair field and court sports, power is also used
to change the speed and direction of the ball (with or without racket or stick). Even though
determining power during all these activities would provide the most complete overview, the
demand from wheelchair sports practice is mainly focused on the propulsive part instead of
power loss due to ball handling. Moreover, as turning may involve additional unknown and
complex factors such as rotational inertia and increased rolling resistance, this dissertation
focuses on straight-line wheelchair propulsion.

Outline of the dissertation
The present dissertation is subdivided in three sub-sections. Below, the different aims of the
subsections are explained.

From theory to practice: Estimating mechanical power during on-field wheelchair propulsion
The main aim of this subsection is to identify an ambulatory method to estimate mechanical
power during wheelchair propulsion. As wheelchair propulsion can be seen as a cyclic sport,
Chapter 2 reviews the present literature on using wearable sensors to estimate mechanical
power in different cyclical sports. Inspired by this, Chapter 3 presents a theoretical framework
for modelling the mechanical power transferred between the athlete-wheelchair combination
and the environment, and validates mechanical power derived from inertial sensors against a
reference.

Pushing further: The role of trunk motion on estimating power during wheelchair propulsion

As several studies reported on the interaction between trunk motion and wheelchair dynamics
[25-27, 35], the second sub-section investigates the role of trunk motion on power prediction in
hand-rim wheelchair propulsion. Therefore, in Chapter 4, a method is developed that measures
instantaneous trunk inclination during on-field wheelchair propulsion. Chapter 5 investigates
how trunk motion influences the mechanical power estimations during wheelchair propulsion.
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Power for all: Meeting the demands of different wheelchair user populations

Besides elite athletes, recreational athletes and daily wheelchair users may benefit from
monitoring power as well (see ‘The power of monitoring power’). However, the demands of a
daily wheelchair user with respect to a power monitoring device (cheap, simple) may differ from
those of a recreational athlete (accurate but feasible) or an elite athlete (high accuracy, peak
powers). Moreover, demands for elite athletes may differ during the day or week as well. To this
end, section 3 specializes towards the different user requirements. On the one hand, Chapter 6
focuses on the elite athlete by further improving the accuracy of power estimates based on the
prediction of mass distribution between the front- and rear wheels. In Chapter 7 this is followed
by the application of the improved power estimates during overground wheelchair tennis sprints.
On the other hand, Chapter 8 investigates to what extent decreasing the number of inertial
sensors would affect the accuracy of wheelchair kinematics, such that power monitoring
becomes more accessible to the daily wheelchair users and/or recreational athlete. Lastly, a
novel RHIDE (Rim HIt DEtection) system is presented in Chapter 9, that — in addition to
wheelchair kinematics - identifies time and location of hand contact, and might be used to
monitor push technique and as an activity tracker suitable for all wheelchair users.
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Using wearable sensors to estimate mechanical

A Review
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Abstract

More insight into in-field mechanical power in cyclical sports is useful for coaches, sport
scientists, and athletes for various reasons. To estimate in-field mechanical power, the use of
wearable sensors can be a convenient solution. However, as many model options and
approaches for mechanical power estimation using wearable sensors exist, and the optimal
combination differs between sports and depends on the intended aim, determining the best
setup for a given sport can be challenging. This review aims to provide an overview and
discussion of the present methods to estimate in-field mechanical power in different cyclical
sports. Overall, in-field mechanical power estimation can be complex, such that methods are
often simplified to improve feasibility. For example, for some sports, power meters exist that use
the main propulsive force for mechanical power estimation. Another non-invasive method
usable for in-field mechanical power estimation is the use of inertial measurement units (IMUs).
These wearable sensors can either be used as stand-alone approach or in combination with
force sensors. However, every method has consequences for interpretation of power values.
Based on the findings of this review, recommendations for mechanical power measurement and
interpretation in kayaking, rowing, wheelchair propulsion, speed skating, and cross-country
skiing are done.
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Introduction

Mechanical power is a useful and objective variable to monitor in cyclical endurance sports for
several purposes. First of all, it can be used as a performance measure since the average
velocity, and therefore performance, largely depends on the mechanical power sustained for a
given distance [1]. In addition, mechanical power includes environmental factors such as wind
velocity, which makes it an objective measure to assess the external load of a training or
competition [2,3]. Furthermore, mechanical power can be used for fitness and fatigue
assessments [3], and consequently, for prevention of overtraining and training periodization [4].
Therefore, estimations of mechanical power may be of great value for coaches, sport scientists,
and athletes.

Most of the applications of mechanical power require day-to-day monitoring of mechanical
power in an ecological valid environment. Therefore, in-field mechanical power estimation might
be favorable for coaches and athletes as opposed to laboratory-based mechanical power
estimation. Accordingly, in-field estimation of mechanical power in cycling is well-integrated in
various cycling power meters, which are widely used by coaches, sport scientists, and athletes
[5-7]. In cycling, power meters are often used to gain insight in power profiling, training load, and
performance assessments and for establishing training zones [7]. As these applications of power
are successfully developed in both professional and recreational cycling, the use of cycling
power meters is an inspiration to provide methods for mechanical power estimation in other
cyclical sports as well. However, having access to a commercially available power meter or a
properly defined method to estimate mechanical power is not as common in any given cyclical
sportasitisin cycling.

To estimate mechanical power in any sport of interest, it is important to understand its
principle. In physics, power is defined as the rate of transferring energy from or to an object (i.e.,
doing work) with respect to time. Power associated with a force is calculated as the scalar
product of the force vector and the velocity vector of its point of application, or F - v. In sports,
mechanical power can be defined as the power transferred by the athlete to the environment,
which is the main focus of this review. Mechanical power in sports can be estimated by solving
the power equation while treating the human body as a chain of a number of linked rigid bodies
[1]. Van der Kruk et al. [8] defined this power equation based on five terms: joint power, kinetic
power, gravitational power, environmental power, and frictional power [8], with the following
relationship:

Pi= P +P;-P,-P, (2.1)

where P; is joint power, P is kinetic power, P is frictional power, F is gravitational power, and
F, is environmental power. Translated into words, an athlete generates power (P;) to (partially)
overcome power losses due to resistive forces (Pr, F; and F) resulting in velocity and
acceleration of the athlete (Py).

According to van Ingen Schenau and Cavanagh [1] and van der Kruk et al. [8], mechanical
power generated by an athlete can either be estimated by estimating the joint power (left-hand-
side of Equation (2.1)) or through the sum of the kinetic power and power losses due to resistive
forces (right-hand-side of Equation (2.1)). Joint power is calculated as the sum of the scalar
products of joint moments and angular velocity per joint (3, M; - w;) using inverse dynamics [1].
The power associated with resistive forces is calculated through the scalar product of the force
and the velocity of its point of application. Hence, the right-hand-side of Equation (2.1),

considering every acting force as an external force, simplifies to Z(di%) —YF,-v,—YM, -
w,, [1]. Therefore, the equation in Equation (2.1) can be rewritten as:
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ZMj'wjzz%_zFe've_zMe'we (2.2)
Obtaining an estimation of the power transferred from the athlete to its environment (e.g., rower
on oar or boat, athlete to the wheelchair) using Equation (2.2), however, can be a very laborious
procedure due to the number of variables that have to be measured and processed. Therefore,
to increase feasibility for mechanical power estimation, simplifications of the power equation
(Equation (2.2)) are often made. Frequently used simplifications and their consequences are
extensively discussed by van der Kruk et al. [8]. One of these simplifications is using a single-
body modelin which the athlete is treated as a point mass located at the center of mass (CoM).
Another simplification is the neglection of parts of the power equation: for example, by only
taking what is considered as the main propulsion force into account for mechanical power
estimation.

Using the power equation (Equation (2.2)) with or without simplification to obtain an in-field
estimation of the power transferred from the athlete to its environment, requires wearable
devices or sensors, such as strain gauges for force measurement or inertial measurement units
(IMU) for measuring body segment kinematics [5,9]. IMUs are small and lightweight sensors that
typically consist of an accelerometer, gyroscope, and magnetometer, which measure linear
acceleration, angular velocity, and local magnetic field, respectively. With these outputs, IMUs
can be used to determine segment kinematics such as orientation and angular velocity [9]. IMUs
can also be useful for estimation of external forces [9], such that they could be used as a
standalone approach for in-field mechanical power estimations. As many options and
combinations for power estimation exist, and the optimal solution differs between sports, a
sport-specific method is needed.

To summarize, a lot of possibilities exist for estimating mechanical power during in-field
cyclical sports. There are different methods (P; or P + Pyegiseive) @and multiple simplifications
that can be made. Many decisions have to be made to establish a power model for a sport of
interest, which can be challenging for coaches or sport scientists. To date, no overview of the
methods to estimate mechanical power in different cyclic sports exists. Therefore, the aim of
this review is to evaluate the literature on chosen approaches for estimating mechanical power,
including the methods, devices and assumptions. By providing an overview and discussion of
the existing methods, this review intends to guide coaches and sport scientists to form a well-
founded model for mechanical power estimation in line with their intended aim.

As several reviews discuss the application of power meters in cycling [5-7], cycling will be
omitted from this review.

2. Method
2.1. Literature Search

For this search, Scopus and PubMed were used. The last search was performed in May 2022. The
complete search consisted of three search strings. The first search string included the following
terms: mechanical power OR external power OR power output OR mechanical energy
expenditure OR joint power OR internal power OR work rate. The second search included the
following terms: cyclic sport OR swim * OR wheelchair OR kano * OR cross-country skiing OR
speed skating OR skating OR rowing OR kayak. The third string included: IMU OR inertial sens *
OR inertial measurement unit OR wearable sens * OR 3D acceler * OR force sens * OR power
meter OR wearable devices OR wearable tech*. The strings were then combined using the AND
modifier.
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2.2. Selection of Studies

After removing duplicates, this search resulted in 16 records (Fig. 2.1). Titles and abstracts were
read to inspect whether the record was suitable for the current review. Records were included if
they were focused on the method of estimation of mechanical power or any of the terms that are
essential to estimation of mechanical power output and used healthy participants, with healthy
meaning within the scope of the sport-specific requirements.

)
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Screening

[

Identification of studies via databases and registers

Identification of studies via other methods

Records identified from:
Databases (n = 2)
Scopus (n = 14)
Pubmed (n = 12)
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Records removed before
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Duplicate records removed
(n=21)
Records marked as ineligible
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Citation searching
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y automation tools (n = 0)
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studies
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Figure 2.1. PRISMA diagram of included studies.

Records were excluded if one of the following exclusion criteria were present: published before
the year 2000, focusing on non-cyclic sports, proposing methods that include energy harvesting
of human locomotion, and not written in English. Applying the inclusion and exclusion criteria
resulted in 8 relevant studies. Reference lists and citations of the selected studies were
inspected for additional relevant reports, resulting in a total of 17 studies. The number of

published studies over the years is shown in Fig. 2.2.

S P N W B U O g @

2000-2002 2002-2007 2008-2012 2013-2017 2018-2022

Figure 2.2. The number of published studies plotted against the year of publication.
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3. Overview

An overview of the literature that estimated mechanical power using wearable devices is
provided in Tables 2.1 and 2.2. To identify the acting forces on a rigid body, drawing a free body
diagram of that rigid body is a useful tool. The column ‘rigid body definition’ clarifies the
boundaries of the rigid body that is used and therefore designating the forces and torques to
consider. The studies of interest mainly estimate mechanical power as output (see Table 2.1).
However, some studies in Table 2.2 estimated only subparts of the power equation, such as the
acceleration of the center of mass [10] or push-off force [11,12]. These subparts are useful for
future estimation of mechanical power and need to be accurately estimated as a first step
towards mechanical power estimation in, respectively, rowing, speed skating, and cross-country
skiing. Whichever term is estimated is displayed in the ‘estimated term’ column. Force or torque
from a source acting on an object is displayed as Foyurce,onject OF Msource,object In the column
‘force measurement’. The kinematics of an object relative to a reference frame such as the linear
velocity orangular velocity is displayed as Vop ject /ref OF Wop ject /ref» FeSPECtively, inthe column
‘kinematic measurement’. If known, the type of sensor used to measure the force and/or velocity
component is given between brackets. If the type of sensor used to measure the force and/or
velocity component is unknown, it is displayed as (-). In Table 2.1, if a measuring system is
commercially available, the name of the system is given.

3.1. Model

The studies are divided in two main categories based on the used rigid body: transportation
object as a rigid body (Section 3.1.1) and athlete as a rigid body (Section 3.1.2). In one case, a
combination of the transportation object and athlete is used as a rigid body [13].

3.1.1. Transportation Object as the Rigid Body

Nine studies estimated mechanical power by multiplying what is considered as the main
propulsion force or torque with the corresponding linear or angular velocity (see Table 2.1) [14-
23].

For kayaking and rowing, the paddle or oar, respectively, were chosen as the rigid body (see
Fig. 2.A1) [14-18]. These studies considered the propulsive force as the force of the hands on
the paddle or oar perpendicular to the oar or paddle (Fyang paadie O Frand,oar) @and multiplied
this with the corresponding linear velocity of the hand relative to the world (Vhanajworia) t0
obtain mechanical power. In rowing, Fpqn4 04 Can directly be measured at the hand placement
on the oar [16,18]. Alternatively, it can be derived from the normal force in the oarlock
(Foar,oariock)> cOmbined with the inboard and outboard length of the oar (respectively, [;, and
lout) [16,17]. By assuming that the blade is a stationary point and the oar mass is negligible, this
results in the following relation:

l
= L_out (2.3)

Fhands,oar oarlock,oar 1 i
in T lout

The linear hand velocity (Vhana woria) Was derived by multiplying the inboard length with either
the change in angle of the oar relative to the oar pin on the boat (¢oqr/poa:) divided by the
corresponding change in time or the angular velocity of the oar relative to the oar pin on the boat
(Woar/boatr) [16-18]. Holt et al. [18] did not specify how the state-measured variables were
derived. Since the PowerlLine (Peach Innovations, Cambridge, UK) and EmPower (Nielsen-
Kellerman, Boothwyn, PA, USA) measure Fygri0ck,0ar [18], it is most likely that Fpgp45.0ar 1S
derived using Equation (2.3), whereas Vpgna/woria Was derived similar to [16,17]. For the
OarPowerMeter (Weba Sport, Wien, Austria), Franas,oar Was directly measured and woqr/poat
is likely multiplied with inboard length to obtain linear hand velocity [18].
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Table 2.1.
Overview of studies that estimated mechanical power output by using a part of the
transportation object (i.e., paddle, oar, or wheel) as a system.

Rigid Body Force Measurement Kinematic Commercially
Sport Study g' - v Measurement (Sensor Available
Definition (Sensor Type)
Type) (Name)
2 Hogan etal.[14]
£ ) . Ashaft/worta and Yes (Kayak
% Macdermid and Fink Paddle F (SG) S
é (5] hand,paddle Wshastjworta (IMU)  Power Meter)
Baudouin and Oar Frand,oar (SG) Poar/voat (POT) No

Hawkins [16]

Foaroariock (2D load ¢oar/boat (POT) and
transducers) Apoatjwortda (ACC)
PowerLine:

Doyle etal. [17] Oar No

PowerlLine: Woar/poat

Yes (PowerLine,
EmPower: ¢oar/boat (

Foar,oarlock

Holtetal.[18 Oar EmPower: F, EmPower, Oar-
=4 18] oar,0arlock o, powerMeter:
s OarPowerMeter: PowerMeter)
[} F ¢oar/boat
o hand,oar

Yes (PowerTa

Congeretal.[19]  Wheel Mpy, i rim (SG) Wrearwheel/WC S+ (Track Hut?)
c
k=l Yes (OptiPush,
£ deGrootetal.[20] Wheel M pnarim Wrearwheel/WC SMARTWheel)
o
S deKlerketal.[21]
£ van der Scheer et al. Wheel Mphand,n.m Wrearwheel /WC Yes (OptiPush)
5 [22]
3 Yes
< Masonetal. [23] Wheel MFy andrim Wrearwheel/WC (SMARTWheel)

ACC = accelerometer, IMU = inertial measurement unit, POT = potentiometer, SG = strain gauge, WC =
wheelchair

In kayaking, the normal force of the hand on the paddle (Fp,4n4 paadaie) Was measured at the hand
placement on the oar [14,15]. The hand velocity was derived using shaft acceleration
(@shaft/worta), @angular velocity of the shaft (wspqft/woria), and the hand placements [14,15].

In wheelchair propulsion, the wheel is chosen as a rigid body and the main propulsive force
is considered the force of the hands on the rim tangential to the rim (Fyqpq +im), resulting in a
torque around the rear wheel axis (Mphand'ﬂm) [19-23]. This torque is then multiplied with the
angular velocity of the rear wheel around the rear wheel axis (Wrearwheerywc) t0 Obtain
mechanical power.

3.1.2. Athlete as the Rigid Body

Alternatively, six studies estimated power using all forces acting on the athlete as a single or
multibody model (see Table 2.2) [10-12,24-26]. One study estimated mechanical power by
considering the athlete and transportation object as a single rigid body (see Table 2.2) [13].

A multibody model is used by both Kleshnev [24] and Lintmeijer et al. [10] in rowing.
Kleshnev [24] determined all forces acting on the rower and their corresponding velocities to
estimate mechanical power generated by the athlete (see Fig. 2.A2). The force of the foot
stretcher on the feet in the propulsive direction (Freet footstretcher) Was measured in the foot
stretcher and Fy gy nana Was derived as Far oariock- The velocity of the feet is equal to boat

velocity (vboat/warld )and Vhands/world is derived using ¢oar/boat [24].
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Table 2.2.
Overview of studies that estimated mechanical power or another essential term by using the
athlete as a rigid body. In some estimations, a single body (SB) is used.

Rigid Body
Sport  Study Definition

Estimate Force Measurement Kinematic Measurement
dTerm (Sensortype) (Sensor Type)

VUseat/boatsVtrunk/boats
¢oar/boat (POT):

) VUboat/world (other),
aboat/world (ACC)

Foar,oarlock
Kleshnev [24] Rower PO (instrumented gates)

Ffeet,footstretcher (SG

o0
f=
% Lintmeijer et al. [10]Rower Acom/boar Qgeg/worta * (IMU)
o
van der Kruk et al. FR feet (3D force
o0 Skat F ’ -
B S 1] ater GR.feet sensors)
L g
Q
[7p B
Feratn =
oo Gloersenetal.[25] Skier (SB) PO (Meot@com v_ Fy— Veomjworta (IMU)
o
S Fa—Fp) 3
w
>
£ Ohtonenetal.[12] Skier Ferfeer Ferpeet (SG) -
3
Q@
é Uddinetal.[26]  Skier (SB) PO - QAseg/worta ** (IMU)
(&)
E 5 Wheelchai F
S8 eelchair + drag,ath = Mtot *
S §_ Rietveld et al. [13] athlete (SB) PO e pworta (IMU) Vwc world (IMU)
e
= s

ACC = accelerometer, IMU = inertial measurement unit, POT = potentiometer, SG = strain gauge, PO =
mechanical power, SB = single-body model, WC = wheelchair. * seg = pelvis, abdomen plus thorax, head,
the left and right thighs, shanks, feet, upper arms and the forearms plus hand. ** seg = chest, upper and
lower back, left and right wrists, left and right skate

Based on a preliminary study of Hofmijster et al. [27], Lintmeijer et al. [10] determined the
acceleration of the CoM of the rower relative to the boat (acom/poat) In anterior-posterior
direction. Multiplying acom/poar With the mass of the rower and the velocity of the boat and
adding this to the power generated by the hands on the oar, results in an alternative mechanical
power estimation for the rower, that, according to the authors, does not neglect any force in
accordance with Equation (2.2).

Gloersen et al. [25] and Uddin et al. [26] used a single-body model of the athlete to improve
the feasibility of mechanical power estimation in cross-country skiing, which was imitated with
roller ski skating (see Fig. 2.A3). To further simplify the approach, both studies only used
kinematic data and estimated the resistive forces to estimate mechanical power. Gloersen et al.
[25] estimated the propulsive force of the ground on the athlete in the skiing direction (Fgg q¢n)
as the total mass of the athlete multiplied by the acceleration of the CoM of the athlete
(Mot @com) Minus the sum of power associated with gravity (F,), rolling resistance (Fy), and
aerodynamic drag (Fy) (right-hand-side of Equation (2.2)). An air drag model and rolling
resistance coefficients were used to estimate the corresponding forces. The propulsive force
(Fgr,aen) Was multiplied with the velocity of the CoM to obtain a mechanical power estimation.
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Uddin et al. [26] performed their experiments on a treadmill, eliminating air drag. Mechanical
power was calculated as the sum of power against gravity and rolling resistance. After obtaining
an estimation of mechanical power, Uddin et al. [26] used a Long Short-Term Memory neural
network to estimate the mechanical power during in-field roller ski skating based on data of
seven IMUs, treadmill incline, and velocity and body mass. The relative error of the user-
dependent model was 3.5%, while the relative error of the user-independent model was 11.6%.
Considering this, the user-independent model s less accurate in estimating mechanical power,
but it might be useful to recreational skiers.

Two studies determined the push-off force (i.e., the force of the ground on the athlete;
Fgratniete) €xerted by the athlete in speed skating and cross-country skiing (see Fig. 2.A3)
[11,12]. These push-off forces are essential for mechanical power estimation and can be used
in combination with kinematics to obtain a mechanical power estimation.

Only one study used a combination of athlete and transportation object as a rigid body [13].
Rietveld et al. [13] modelled the wheelchair with the athlete as a single body located at a point
on the wheelchair. They assumed that the total CoM of this body is located at the wheelchair,
which is rather acceptable over a push cycle. Mean drag forces were estimated based on the
deceleration of the wheelchair during the non-push phase of wheelchair propulsion. However,
in the non-push phase, the deceleration of the wheelchair is not necessarily equal to the
deceleration of the CoM of the athlete plus the wheelchair since the upper body moves relative
to the wheelchair in this phase. To obtain mechanical power, the mean drag force obtained in
the non-push phase was multiplied with the velocity of the wheelchair [13]. However, Rietveld et
al. [13] concluded that this method for mechanical power estimation is not yet suitable in
wheelchair sprinting, due to the relative CoM movement, which is not taken into account.

3.2. Sensors

The sensors that were used in the considered literature can be divided into two main categories.
The first category involves sensors that are able to directly measure mechanical power (Section
3.2.1.), such as power meters. The second category uses separate kinematic and/or force
sensors to obtain mechanical power (Section 3.2.2.).

3.2.1. Direct Mechanical Power Measurement
Seven studies used commercially available systems that are able to directly provide mechanical
power (see Table 2.1) [14,15,18-23].

For kayaking, the Kayak Power Meter (One Giant Leap, Nelson, New Zealand) is designed
and is reported to be applicable to both flat-water slalom and sprint kayaking. This power meter
is validated by comparing mechanical power to the velocity of the kayak relative to water cubed
(Viayak water) OF to the velocity of the kayak relative to land cubed (V34yqk/1ana) in flat water
conditions [14,15].

For rowing, three power meters are commercially available: the Powerline, the
OarPowerMeter and the EmPower. Holt et al. [18] recommended to use the PowerLine for
measurement of mean and stroke-to-stroke mechanical power in rowing because of the higher
sensitivity compared to the other two power meters.

Lastly, for wheelchair propulsion, three systems are available that can be used for
mechanical power estimation. The OptiPush (Max Mobility, LLC, Antioch, TN, USA) and
SMARTWheel (Three Rivers Holdings, Mesa, AZ, USA) were specifically designed for wheelchair
propulsion. These two systems are not designed for mechanical power estimation; however,
they provide the variables allowing for mechanical power estimation. The third system used in
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wheelchair propulsion is the PowerTap SL+ Track Hub (Saris Cycling Group, Madison, WI, USA),
which is a power meter originally designed for cycling but modified to fit on a wheelchair.

To date, based on the current literature search, no commercially available power meter for
speed skating and cross-country skiing exist.

3.2.2. Force and Kinematic Measurement

For force measurement, mostly strain gauges were used, as can be seen in Tables 2.1 and 2.2
[12,14-16,24]. Van der Kruk et al. [11] used three-dimensional piezoresistive force sensors to
measure push-off force in speed skating (see Table 2.2). Several studies did not specify whatever
type of force-measuring sensor was used [18,20-23]. Others modelled force as a function of
other known components, such as acceleration [13,24].

For kinematic measurements after the year 2010, mainly IMUs were used (see Tables 2.1
and 2.2) [10,12,13,15,25,26]. Before the year 2010, mainly potentiometers, occasionally in
combination with accelerometers, were used [16,17,24]. Nowadays, these studies can be
performed by replacing the potentiometers, used with or without accelerometers, with IMUs. For
the studies in Table 2.2 which are not using commercially available power meters but are only
using IMUs [10,13,25,26], any IMU can be used.

4. Discussion

The aim of the present review was to provide an overview and discussion of the present methods
to estimate in-field mechanical power in different cyclical sports. Based on the sixteen studies
considered in this review, the differences and similarities of the used mechanical power
estimation methods were identified for application in kayaking, rowing, wheelchair propulsion,
speed skating and cross-country skiing. By providing an overview of the current possibilities in
mechanical power estimation in cyclical sports, this paper can be used as a guideline for
coaches, sport scientists, and those interested in making well-informed decisions for estimation
and interpretation of mechanical power.

The most extensive approach to estimate mechanical power is the joint power method (left-
hand-side of Equation (2.2)) as discussed by van Ingen Schenau and Cavanagh [1] and van der
Kruk et al. [8]. As this approach involves analyzing the full-body kinematics, the obtained
mechanical power can be used as a measure of mechanical energy expenditure. However, this
joint power method is quite laborious, which causes it to be less practical for coaches. In
addition, if the aim is to obtain an accurate measure for an energy expenditure, doing a full-body
kinematic analysis may defeat its purpose. It is probably more convenient to obtain an energy
expenditure measure by directly measuring oxygen uptake with a wearable respiratory gas
analysis device (e.g., Cosmed K5). Moreover, measuring oxygen uptake is a more accurate
parameter for energy expenditure than mechanical power. Alternatively, heart rate can be used
to indirectly estimate the oxygen uptake. This is, however, not recommended as the accuracy is
low. Therefore, if the aim is to obtain an accurate measure for energy expenditure, direct
measurement of oxygen uptake might be more favorable than using the joint power method.

Every other method to estimate mechanical power can be considered as a simplification of
the joint power method to improve feasibility, such as the often-used main propulsion method.
This method revolves around using the main propulsion force or torque in the specific sport, such
as the force of the hands on the oar, paddle, or wheel. The main propulsion method is widely
used in cycling power meters, where the force of the feet on the paddles is considered as the
main propulsion force [5-7]. By multiplying the main propulsion force or torque with the
corresponding linear or angular velocity vector, one obtains the mechanical power responsible
for most of the propulsion. The main propulsion method is therefore useful when mechanical
power is obtained to gain insights about performance.
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Simplifications, however, are mostly accompanied by assumptions and implications to
consider. For example, in rowing and wheelchair propulsion, there is a CoM movement of the
athlete relative to the transportation object causing possible mechanical power transfer of the
athlete to the transportation object, which is not accounted for with the main propulsion
method. A simple thought experiment can clarify this: consider an athlete in a wheelchair moving
his upper body in a periodic manner without applying force to the push rims. By doing so, the
wheelchair is also moved periodically in a direction opposed to the trunk [28]. Since the
wheelchair is moving, there is power loss due to rolling resistance. However, since there is no
mechanical power input from the hands on the push rims, there has to be another location where
mechanical power is added to the wheelchair. This situation was also explained by Hofmijster et
al. [27] for rowing, where it presents itself when a rower in a boat only moves its body relative to
the boat. However, over a cycle, it may be that the influence of this power input towards
propulsion and therefore towards performance has no net contribution. The influence of other
forces should be examined per sport in order to assess whether the main propulsion force
method is sufficient or that other kinematics or forces should be measured.

If a sport, therefore, involves a transportation object and the intended aim is to obtain a
mechanical power as a performance measure, it is advised to determine it with the main
propulsion force. If the sport involves a transportation object and the intended aim is to obtain a
measure for energy expenditure, consider using a respiratory gas analysis device instead of
determining mechanical power using the joint power method. If a sport does not involve a
transportation object and a measure for performance is desired, consider whether a
simplification of the athlete such as a single-body model is sufficient. By doing so, the power
associated with relative segment movements is neglected. However, it can provide information
about general performance. If a sport does not involve a transportation object and a measure for
energy expenditure is desired, again consider using a respiratory gas analysis device instead of
determining mechanical power using the joint power method. A schematic overview to assist
practitioners in the selection of a suitable power measurement method given their intended aim
and type of sportis given in Fig. 2.B1.

If the main propulsion method is considered suitable for the set purpose, some
commercially available power meters for kayaking, rowing, and wheelchair propulsion can be
used. Although power meters are ambulatory and need almost no post-processing, the
suitability of a power meter differs between sports. For kayaking and rowing, power meters are
lightweight and thus, there is no influence on moving the equipment + power meter. However,
for wheelchair propulsion, using the OptiPush or SMARTWheel for estimating mechanical power
implies adding a considerable extra mass (7-9 kg per wheelchair). Chenier et al. [29] designed
an instrumented wheel for wheelchair racing, which also adds 5.6 kg to an already lightweight
racing wheelchair (8-10 kg). As those instrumented wheels increase the total weight of the
wheelchair with ~50-90%, they will influence wheelchair dynamics. On top of that, these
instrumented wheels may not be robust to collisions, making them not suitable for wheelchair
field sports. To summarize, although instrumented wheels may be of use for assessing
wheelchair biomechanics, the power measurements may not be convenient for daily wheelchair
sport situations.

If power meters are not available or not practical, the appropriate kinematics and forces can
be measured by means of IMUs or strain gauges. The future perspectives on using IMUs for
mechanical power estimation are especially promising. Moreover, in some cases, measuring
forces might be redundant with the use of IMUs. For instance, in wheelchair propulsion, it might
be possible to estimate rolling resistance by placing an IMU on the wheelchair and one on the
trunk [30]. Force on the rear and caster wheels could be modelled as a function of trunk angle
and in combination with coast down tests for rolling resistance coefficients, rolling resistance
could be estimated. Consequently, mechanical power can be estimated with the power lost to
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rolling resistance in combination with the estimation of the kinetic power (right-hand-side of
Equation (2.2)). Power lost to air drag is then neglected, which is acceptable for low-speed
indoor wheelchair sports, such as wheelchair basketball. Another option with IMUs is to use
machine learning to estimate forces. For example, Uddin et al. [26] already used a Long Short-
Term Memory neural network to estimate the mechanical power during roller ski skating by only
using IMUs. This could also be an option for similar sports, such as speed skating or roller blade
skating. Although some improvement is needed to make the method of Uddin et al. [26] suitable
to implement on elite sport levels, this shows that IMUs in combination with machine learning
have the potential to estimate mechanical power.

Lastly, the cost-effectiveness of estimating in-field mechanical power is useful to take into
account when choosing the most appropriate approach. For equipment that can be used by
multiple athletes or teams, such as a rowing boat, acquiring expensive power meters is soon
affordable. In addition, once installed, the devices can remain on the boat. On the contrary, for
wheelchair sports of speed skating, equipment should be purchased and installed for each
individual wheelchair or skate. As athletes commonly have their own personalized equipment,
using instrumented equipment for all athletes of a team will be both money- and time-
consuming. Therefore, for sports with individualized equipment, non-invasive and cheaper
solutions such as IMUs may be more feasible.

Although this literature review discusses the theory and practical implications of different
in-field power measurement methods across different sports, some limitations should be noted.
First of all, as this review was based on reported power measurement methods in kayaking,
rowing, wheelchair propulsion, speed skating, and cross-country skiing, the most prominent
pitfalls of those sports were discussed. Pitfalls of other sports may exist as well. However, as the
concepts discussed in this review can be used as a guideline for mechanical power estimation
in any other cyclical sport of interest, for example, swimming, canoeing, or roller blade skating,
the main pitfalls of any other sport can be reasoned based on this review as well. Second, running
was not taken into account in the present review. As the main focus of this review was defined
by the power transferred from the athlete to the environment, which is only a fraction of the total
mechanical power produced in running [1], running was considered beyond the scope of this
review.

In conclusion, the most appropriate method to obtain mechanical power in cyclical sports
differs for sports with transportation object compared to sports without a transportation object,
and depends on whether performance or energy expenditure is the main interest. On top of that,
the availability of a power meter, financialincentives, and mass of measurement equipment may
influence the choice of a specific approach. This review provides useful handles to choose the
most appropriate power measurement method for a given aim and type of sport, and explains
the biomechanical underpinnings behind the different methods. A schematic overview to assist
in selecting the proper power estimation method is given in Appendix A. With these insights,
coaches, sport scientists, or any other person interested in measuring mechanical power can
make their own, well-founded choices for measuring in-field mechanical power in any sport of
interest.
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Appendix A

Figure 2.A1. The oar as arigid body. The force of the hands on the oar is displayed as Frands,oar, the
force of the oarlock on the oar is displayed as Foanock0ar and the force of the water on the oar is
displayed as Fuateroar- This figure can also be used for kayaking. With the paddle as rigid body, the
word oar can be replaced with paddle. Fnangs 0ar must then be replaced with force of the top hand
on the paddle and the force of the bottom hand on the paddle replaces Foarockoar- This figure is
adapted from Hofmijster et al. [27].

E

oarhands

F

seat,rower

stretcher, feet

Figure 2.A2. The rower as a rigid body. The force of the oar on the hand is displayed as Foar nands,
the force of the stretcher on the feet is displayed as Fsuetcnereet, the force of the seat on the rowers
is displayed as Fsca,ower and the gravitational force is displayed as Fq. This figure is also applicable
for kayakers if the rower is replaced by kayaker and oar is replaced by paddle. This figure is
adapted from Hofmijster et al. [27].
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Figure 2.A3. The speed skater as a rigid body. The drag force is displayed as Fq, the gravitational
force is displayed as Fg, the frictional force of the skates with the surface as F; and the push-off
force is displayed as Feranete- This figure is also applicable for cross-country skiing. This figure is

adapted from Noordhof et al. [31].
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Appendix B

Figure 2.B1. A schematic overview to assist in the selection of a suitable power measurement
method given their intended aim and type of sport.
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Abstract

An important performance determinant in wheelchair sports is the power exchanged between
the athlete-wheelchair combination and the environment, in short, mechanical power. Inertial
measurement units (IMUs) might be used to estimate the exchanged mechanical power during
wheelchair sports practice. However, to validly apply IMUs for mechanical power assessment in
wheelchair sports, a well-founded and unambiguous theoretical framework is required that
follows the dynamics of manual wheelchair propulsion. Therefore, this research has two goals.
First, to present a theoretical framework that supports the use of IMUs to estimate power output
via power balance equations. Second, to demonstrate the use of the IMU-based power
estimates during wheelchair propulsion based on experimental data. Mechanical power during
straight-line wheelchair propulsion on a treadmill was estimated using a wheel mounted IMU
and was subsequently compared to optical motion capture data serving as a reference. IMU-
based power was calculated from rolling resistance (estimated from drag tests) and change in
kinetic energy (estimated using wheelchair velocity and wheelchair acceleration). The results
reveal no significant difference between reference power values and the proposed IMU-based
power (1.8% mean difference, N.S.). As the estimated rolling resistance shows a 0.9-1.7%
underestimation, over time, IMU-based power will be slightly underestimated as well. To
conclude, the theoretical framework and the resulting IMU model seems to provide acceptable
estimates of mechanical power during straight-line wheelchair propulsion in wheelchair (sports)
practice, and it is an important first step towards feasible power estimations in all wheelchair
sports situations.
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Table 3.1. Table of definitions

l

Point of application

Foei External force(s) actingon i

My External moment(s) acting on i

Froni Rolling resistance of i

Foiri Air resistance of i

Fgy; Gravity of i

Fpropuision Propulsive force

Fy ; Normal force acting on wheelj

Foource,i Force of source oni

a; Acceleration of /

a, Cycle-average acceleration of j

w; Angular velocity of /

v; Linear velocity of /

v, Cycle-average linear velocity of i

Vi/ref Velocity of j relative to reference

P; Power generated or dissipated by i (i can be a model or a source)
Proder Cycle average power according to defined model
dEy;,/dt Change in kinetic energy of the chosen system

0; Inclination angle of object j with respect to the horizontal
Uj Rolling resistance coefficient of wheel j

Cair,j Air resistance coefficient of object j
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Introduction

Wheelchair sports have become increasingly popular over the last decades (Cooper and De Luigi
2014; vanLandewijck and Thompson 2011). In line with their popularity, monitoring performance
in wheelchair sports is becoming more common. Wheelchair sport performance can be
monitored by recording time and velocity (Goosey-Tolfrey and Moss 2005; van der Slikke et al.
2016; de Witte et al. 2018). However, velocity can be biased as a measure of exercise intensity.
A large head wind or uneven surface, for example, will generally decrease the velocity, while
exercise intensity may be equal. In contrast, the mechanical power exchanged between the
athlete-wheelchair combination and the environment, here referred to as mechanical power, is
amore objective measure for exercise intensity as not only velocity but also forces are included
(van Ingen-Schenau and Cavanagh 1990). For this reason, mechanical power is often used to
provide information on, for instance, training load, physical and physiological capacity, and
fatigue, which may support coaches and athletes to reduce injury risks and improve
performance (Halson 2014; Mujika 2017; Soligard et al. 2016). It should therefore be monitored
during wheelchair sports.

In contrast to the well-integrated power meters in professional cycling, obtaining
mechanical power during in-field wheelchair sports is challenging. While bicycles can be
equipped with power meters integrated into cranksets or pedals, directly measuring mechanical
power in wheelchairs would involve force-instrumented push-rims (de Groot et al., 2014).
However, as these systems are expensive, heavy and not sufficiently robust to be used during
court sports such as wheelchair basketball or rugby, a non-invasive and inexpensive method to
monitor power during wheelchair sports is needed.

One possible method is the use of inertial measurement units (IMUs). IMUs are small
wearable sensors that generally contain an accelerometer, gyroscope, and magnetometer, to
measure three-dimensional linear acceleration, angular velocity, and the magnetic field,
respectively. IMUs can easily be attached to body parts or wheelchair segments and have been
used to estimate mechanical power in sports like rowing and cross-country skiing (Glgersen et
al. 2018; Uddin et al. 2021; de Vette, Veeger, and van Dijk 2022). As IMUs are used to monitor
velocity, acceleration and rotations in wheelchair practice (Bakatchina et al. 2021; Poulet et al.
2022; Rupf et al. 2021; van der Slikke et al. 2015; de Vries et al. 2023), it would be possible to
use IMUs for power monitoring as well.

To validly apply IMUs for mechanical power assessment in wheelchair sports, a well-
founded and unambiguous theoretical framework is required that follows the dynamics of
manual wheelchair propulsion. Although several wheelchair models have been reported
previously, they are focused on specific aspects of wheelchair propulsion (e.g. rolling resistance
(Cooper 1990; Sauret et al. 2009; Silva et al. 2017; Teran and Ueda 2017), athlete/user dynamics
(Chenier et al. 2016; Cooper 1990; Schnorenberg et al. 2014; Veeger, Rozendaal, and Van Der
Helm 2002; Veeger, van der Woude, and Rozendal 1991), or roller systems (Chénier, Bigras, and
Aissaoui 2015; Cooper 1990) and are, therefore, incomplete or too extensive.

Therefore, the present paper has two goals. First, to present a theoretical framework that
supports the use of IMUs to estimate mechanical power via power balance equations. Second,
to demonstrate the use of the IMU-based power estimates during wheelchair propulsion based
on experimental data.
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Theoretical framework

Definition(s) of power

Power is the energy transferred or converted per unit of time and is expressed in Watts. In human
locomotion, metabolic energy is converted into muscle power. Subsequently, muscle power
enables body segments to overcome internal friction to, eventually, produce external power
(e.g., on the push-rims of a wheelchair). However, not all power liberated from metabolic energy
is available for locomotion. As energy is required to, for instance, operate the cardio-respiratory
system, produce heat, and stabilize the human body, the (metabolic) power input differs from
the (mechanical) power output. Power inputis essentially equal to the metabolic rate (van Ingen-
Schenau and Cavanagh 1990) and is often measured with respiratory gas analysis systems.
Power output is transferred from a - in this case - wheelchair athlete to the environment and it
can be approached purely mechanical (see Eqg. 3.1). We therefore refer to power output as
‘mechanical power’. Power can be measured with a wheelchair ergometer, a force-instrumented
push-rim, or estimated from kinematic data.

The power balance for wheelchair propulsion
Following the classic ‘power equations in endurance sports’ of van Ingen-Schenau & Cavanagh
(1990), the mechanical power balance of an athlete equals:

Pathlete = - 2 Fext,athlete * Vext,athlete — 2 Mext,athlete * Wext,athlete + Z dEkin/dt (3-1)
Pathlete = - Pf‘riction - Lfgravity — Penvironmental + Pkinetic (3-2)

Mupper ) Y
body,seat. E

upperbody,seat X
Fair,wc
¢ F
Mhand,rim
FN,rear FN,fron't
F Frall,frunt

roll,rear

Fig. 3.1a-b. Rigid body diagrams with forces acting on the segments. The left figure (a) shows the
athlete-wheelchair model. The right figure (b) shows the wheelchair model. Note that the actual
direction of the force vectors may be differ from the directions as drawed here. Note also that
My, ona rim is drawn at the wheel axes as it represents the moment that the athlete applies on the push-
rims around the wheel axes. However, M}, 44 +im Will also apply a moment from the hands on the
push-rims around the hand which is described by Van Der Woude et al. (2001) as the ‘hand moment’.
As this moment is assumed to produce no power, we drawed , M}, 44 rim around the wheel axes.
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In Eq. 3.1, the effects of gravity are included as an external force (van Ingen-Schenau and
Cavanagh 1990). An alternative way to represent the power equation is given in Eq. 3.2 (van der
Kruk et al. 2018), in which the athlete generates power (P,;pee) t0 (partially) overcome power
losses due to resistive forces ( Prrictions Pgravity a0d Peppironmentar) €SUlting in a (changing)
velocity of the athlete (Py;ne:ic)- TO apply the power balance to a wheelchair athlete, a suitable
system must be defined. Two complete yet concise model options are presented below.

Athlete-wheelchair model

The simplest approach is to consider the athlete-wheelchair combination as a single rigid body.
The free body diagram corresponding to this ‘athlete-wheelchair model’ is presented in Fig. 3.1a.
The external forces acting on the athlete-wheelchair model are normal forces (F ;), rolling
resistance (Fyqy;;), air resistance (Fg;-;), and gravity (Fg ;). Throughout this article, internal
resistance is considered part of the rolling resistance. No external moments are identified. In the
power balance corresponding to the free body diagram, F.oyreqr and Foroy fron: are
summarized by F,.,;; ; (see Eq. 3.3). As normal force is perpendicular to the movement direction
of its point of application, it does not produce power and is not included in the power balance.
As the rigid bodies are assumed to have no rotations, rotational kinetic energy is not included.
Note thatthe left hand-side of Eq. 3.3 could be replaced by Fp,-opuision,com * Vcom (S€€ EQ. 3.4).
In all equations, COM refers to the center of mass of the athlete-wheelchair combination (AW).
In the text, COMawis used to avoid confusion.

1 2
Paw = —Froucom * Veom = Fair,com * Vcom — Fg,com * Veom + 7 (0.5 muw * Veon®) (3.3)
PAW = Fpropulsion,COM * vCOM (34)
Wheelchair model

An alternative approachis to model all forces, moments, and corresponding (angular) velocities,
acting on the transportation object, in this case the manual wheelchair (W), see Eq. 3.5. This
approach is often used in rowing and kayaking (Doyle, Lyttle, and Elliott 2010; Hogan et al. 2022;
Holt et al. 2021; Macdermid and Fink 2017). For wheelchair propulsion, Chenier et al. (2016)
used a similar model to predict instantaneous wheelchair velocity from net force (consisting of
average rolling resistance, measured propulsion forces and upper body mass and acceleration).
The free body diagram representing this ‘wheelchair model’ is presented in Fig. 3.1b. With
respect to Fig. 3.1a, four additional terms are introduced: Fypper pody,seat AN Mypper body,seat
representing the force and moment of the upper body on the wheelchair seat induced by upper
body movements, My, 4,4 »im fepresenting the moment that the athlete applies on the push-rims
around the wheel axes (consisting of both the ‘pure’ moment and the tangential force applied by
the hands to the push-rim), and w,n.e; representing the wheel angular velocity. As the
wheelchair is assumed to have no angular velocity in the sagittal plane, Mypper pody,seat
produces no power. Consequently, the power produced by the athlete consists of two terms (see
Eq. 3.6).

1
Py = —Frouw * Yy — Fopw * Uy — Fgy * Dy + 2 (0.5 x myy vy?) (3.5)

PW = Mhand,rim * Wy heel + Fupper body,seat * Dy (3-6)
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Model comparisons

Although the instantaneous power graphs of the two models will generally differ from each other,
the models are based on the same mechanical principles and can both be used to estimate
wheelchair athlete power. To understand the differences between the models, let’s assume that
upper body movements produce no net power on the wheelchair seat (see Appendix A for the
situation in which upper body movements do produce net mechanical power). In this case, P,y
will be non-zero when the hands propel the push-rims, and zero otherwise. Therefore, P4y, may
be easier to interpret and the instantaneous power graph will be similar to that of a force-
instrumented push-rim or ergometer (de Groot et al. 2014); note, however, that P,y will slightly
differ from power measured by force-instrumented push rims as force-instrumented push-rims
assume that the wheelchair velocity equals the velocity of the COMaw which is not a valid
assumption. In the wheelchair modelinstead, Fpper pody,seat 1S inCluded as a force exerted by
the athlete as well. Although F,pper pody,seat 1S ZEIO ON average, this force fluctuates within a
stroke cycle due to mass displacements of the upper body. Consequently, Py, fluctuates more
within a stroke cycle than Py,y,. However, as Py, consists of mainly wheelchair kinematics
(instead of COMaw kinematics, see Eq. 3.3 and 3.5), P,,, may be easier to approach with IMU data.
Because both models have advantages, both were used to underpin and compare with IMU-
based power estimates.

Power output assessment during wheelchair propulsion with IMU’s - from theoretical
framework to wheelchair sports practice

In this section, four assumptions are presented to explain how IMU data can be used to approach
the different components of the above-mentioned power balance equations.

Assumptions for power monitoring using IMUs
Assumption 1: Mechanical power during wheelchair propulsion can be assessed by monitoring

the cycle-average power: cycle-average velocity thus suffices

To estimate power output from IMU data, the velocity of the COMaw (Eq. 3.3) or the velocity of the
wheelchair (Eq. 3.5), should be determined. Whereas wheelchair velocity and acceleration can
already be measured accurately with an IMU attached to the wheelchair (van Dijk et al. 2022; van
der Slikke et al. 2015), obtaining the instantaneous velocity and acceleration of the COMaw is
complex. During propulsion, the COMaw moves with respect to the wheelchair due to trunk, head
and arm movements (van Dijk et al., 2021). Chenier et al. (2016), accurately modeled the
kinematics of the upper body COM with one IMU on the upper arm. However, they assumed trunk
dynamics to be negligible in their spinal cord injury population, which is not reasonable for all
wheelchair athletes. Given the differences in movement pattern and heterogeneity of wheelchair
athletes, establishing a model that accurately estimates COMaw kinematics from IMU data
during wheelchair propulsion is complicated and requires multiple body-worn IMUs (Glgersen
et al. 2018; Refai et al. 2020).

However, determining the instantaneous COM,w velocity and acceleration may not be
necessary. Many applications in cyclical sports use average power output per push to monitor
athletes (Holt et al. 2021; Leo et al. 2022), and this may suffice for wheelchair sports as well. As
athletes remain in their wheelchairs during propulsion, one can assume thatv .o, = v, Over
multiple propulsion cycles, in which v, represents cycle average velocity.
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Assumption 2: Air resistance can be neglected during indoor wheelchair field and court sports
During wheelchair propulsion, one resistive force acting on the athlete-wheelchair combination
is air resistance (see Eq. 3.3 and 3.5). To determine air resistance, both the air velocity relative
to the wheelchair (vy,/q;) and the air resistance coefficient (cq;;- ) should be known (see Eq.
3.7, Coe 1979; Forte et al. 2018). As v,,/4; Varies with wind and wheelchair velocity, and with
‘relative’ movement direction; and ¢, v depends on air density, streamline and frontal area
(de Koning et al. 2005), the information required to calculate air resistance cannot be derived
from IMU data. However, in the present paper we focus on indoor wheelchair court sports. As
these sports consist of short sprints and lots of braking, the wheelchair velocities are generally
below 2.5 m/s (Chénier et al. 2022; van der Slikke et al. 2020). In addition, we assume that air
velocity is zero indoors. In these circumstances, the proportion of air resistance is around 5% of
the total resistance force (Barbosa et al. 2014). Therefore, v; ;- can be assumed negligible for
indoor wheelchair field and court sports.

Fuiri = Cairi * Vijair * |[Vijair| (3.7)

Assumption 3: The rolling resistance force during wheelchair propulsion can be determined by a
deceleration test
During indoor wheelchair field and court sports, rolling resistance is the main resistive force (van
der Woude et al. 2001). This force can be calculated from the normal forces acting on the rear-
and front wheels, and the rolling resistance coefficients of the wheels (see Eq. 3.8). However, as
rolling resistance is influenced by factors such as tire pressure and surface characteristics (Ott
and Pearlman 2021), rolling resistance coefficients may differ for each wheelchair and surface.
In addition, the normal force may vary within a propulsion cycle. Sauret et al. (2013) assessed
the instantaneous normal force acting on the wheelchair wheels and reported that the total
normal force varied between 80-130% of the gravitational force. Also, they reported that the
normal force at the front wheels fluctuated from 24-31% (minimal values) to 61-83% (maximal
values) of the total load within each push cycle, which might be caused by upper body motions
(van Dijk et al., 2021). As, in court sports, the front wheels generally have higher rolling
resistance coefficients (usyonc) cCoOmpared to the rear wheels (i, ¢4r), this causes intra-cyclical
variations in rolling resistance force. To account for these variations, rolling resistance
coefficients of each pair of (front or rear) wheels should be determined, and instantaneous
normal forces should be known. Unfortunately, normal forces cannot yet be derived from IMU
data as this requires information about the COMaw position and vertical acceleration.

Most studies, however, assume the rolling resistance to be a constant (Chénier et al.
2015; De Groot et al. 2006; Rietveld et al. 2021), that can be determined by a deceleration test
(Hoffman et al. 2003; Sauret et al. 2013). During this test, the wheelchair is decelerated from an
initial velocity [at which air resistance is assumed negligible, i.e., < 2.5 m/s], at a horizontal
surface and while the wheelchair athlete keeps a static posture. Consequently, the resistance
force can be calculated from the total mass times the (IMU-based) wheelchair acceleration.
During wheelchair propulsion, rolling resistance may thus be estimated by a deceleration test.
Note that this test should be repeated once the user, wheelchair (tires) or surface has changed.

Froll,i = FN,front * Mfront + FN,rear * Urear (3-8)
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Assumption 4: The role of gravity can be determined from a wheel(chair)-mounted IMU

If the surface has a slope, power is transferred to potential energy and should thus be considered
inthe power balance (see Eq. 3.3 and 3.5). The gravitational force (F ;) can be determined from
the inclination angle of the wheelchair with respect to the horizontal () and the total mass
(according to Eg. 3.9). With an IMU on the wheelchair frame or wheel and a sensor fusion
algorithm that calculates the angle of the wheelchair with respect to the direction of the gravity
vector (van Dijk etal., 2021), 8 can be determined with relative ease. For indoor wheelchair court
sports, 6 (and thus F 4,,) can be considered zero.

F

g, = M; * 9.81 = sin (6;) (3.9)

Implication of assumptions: Simplified power balance for IMU-based estimates

Considering above-mentioned assumptions for wheelchair field and court sports, mean power
exchanged between the athlete-wheelchair combination and the environment over multiple
stroke cycles can be estimated using one wheel-mounted IMU. Consequently, the power
balance for IMU-based power is given in Eq. 3.10. Here, Tis the duration of one complete stroke
cycle in seconds. If the assumptions are valid and the wheelchair is unmotorized, the cycle
average power output derived from IMU data (P,,,,) should be similar for the athlete-wheelchair
model (P,,,) and the wheelchair model (P,,), see Eq. 3.11.

S T
Py = (1/T) = fo —Frouw *vw + i(O.S * My * V%) (3.10)

Piyy = Pyw = Py (3.11)

Monitoring power using IMUs in practice
To demonstrate the use of IMU-based power estimates, power was estimated from IMU data

(i.e., Pppy) during wheelchair propulsion and compared to the power estimated according to the
two proposed models (i.e., P, and Py,) using optical motion capture (MOCAP) data. Although
demonstrating this during overground wheelchair propulsion - including curves and turns - would
be ideal, the measurement area is limited when using MOCAP and rolling resistance cannot be
determined accurately during curves and turns. Therefore, experiments were performed on a
large (3.0 x5.0 m) treadmill. We consider all velocities and accelerations relative to the treadmill
belt.

Methods

This study was approved by the ethical committee of Delft University of Technology (Nr. 1530)
and written informed consent was obtained from all participants prior to data collection. Eleven
participants (8 female, mean age=30+19 years, mean body mass=72+8 kg) without wheelchair
experience received a 10-minute training protocol for both overground and treadmill wheelchair
propulsion to familiarize with the measurement setup. An IMU (NGIMU, X-io Technologies,
Colorado Springs, United States; 100 Hz) was attached to the wheelchair right wheel axle, and
marker clusters (Optotrak Certus, Northern Digital, Waterloo, Canada; 100 Hz) were attached to
the wheelchair, and participants’ body segments (see Fig. 3.2). The position of anatomical
landmarks and wheelchair landmarks relative to the marker clusters was determined. In
addition, mass and center of pressure (COP) of the participants + wheelchair was measured on
aseparate 1.0x 1.0 m custom-made strain gauge force plate (Kingma et al. 1995). Subsequently,
participants propelled an all-court sports wheelchair (13.2 kg) on a large motor-driven treadmill
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(Bonte, Zwolle, the Netherlands). First, participants propelled at a constant velocity of 1.2 m/s
for 90 seconds, while following a metronome of 25 beats/min (to naturally impose effective
strokes and keep a constant power per push). Following this, participants accelerated from 1.2
to 1.7 m/s over a 7-second period imposed by gradually increasing treadmill speed. During the
treadmill sessions, three-dimensional kinematics were measured using the IMU and MOCAP
system. As performing a deceleration test is not feasible on a treadmill, drag tests were used to
obtain F,,;. After each treadmill session, drag tests were performed at 1.7 m/s while the
participants were instructed to sit as still as possible for a period of 30s in six conditions. The
(2x3) conditions consisted of sitting with vertical trunk and sitting bent forward while no mass
was added, while 10 kg was added at the footrests and while 10 kg was added on the upper legs.
Simultaneously, F,.,;; insc Was measured with a S-beam load cell (Revere Transducers, Lisse, the
Netherlands).

Fig. 3.2. Overview of the measurement setup.
Participants were measured with a MOCAP system
with marker clusters (A) on the wheelchair frame,
trunk (sternum), head, upper arm and lower arm, and
IMUs ([J) on the wheel axle and on the center of the
wheelchair frame. Both the 3.0 x 5.0m treadmill and
the 1.0 x 1.0 force plate (below the treadmill) are
visible in the figure.

Data analysis

Based on the landmark positions from the MOCAP system, total body length and mass, the upper
body segment lengths and COM’s were estimated based on the non-linear regression equations
as described by Zatsiorsky (2002). Subsequently, upper body segment COM’s, my,,, and COP of
the wheelchair + participant were used to determine the COP of the lower body + wheelchair with
respect to the rear-wheel axes. With this information, the horizontal COMaw position (and COMaw
velocity vector as its time derivative) relative to the rear-wheel axes could be determined from
MOCAP data during the treadmill sessions. COMaw velocity was obtained by summing this
‘relative’ COMaw velocity to wheelchair velocity. Wheelchair velocity for all models was
determined from the wheel-mounted IMU data, wheel circumference, track width and camber
angle according to Rupf et al. (2021) and van der Slikke et al. (2015).

Subsequently, instantaneous normal forces were calculated from the horizontal COMaw
position relative to the wheels and vertical COMaw acceleration times total mass. Rolling
resistance coefficients were numerically solved based on the drag tests with varying load
distributions and Eq. 3.8 (Sauret et al. (2013). The instantaneous normal forces and rolling
resistance coefficients were used to determine the instantaneous rolling resistance (Fy,; inst)
accordingto Eq. 3.8. Fry qrag, determined by a drag test in upright position, was used for Py .
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To compare the three different models (P, Paw and Py,), data were 2 order low-pass
filtered at 6 Hz, after which the instantaneous rolling resistance, dE«» and instantaneous power
values were calculated according to Eq. 3.3, 3.5 and 3.10. Subsequently, pushes were identified
by the time instance at which the horizontal position of the wrist relative to the wheelchair
reaches its maximum. Accordingly, the average values of three consecutive pushes were
calculated and again averaged for each participant per condition. The differences between the
models were tested statistically using a Wilcoxon signed-rank test (Shapiro-Wilk test revealed
no normal distribution) with a significance level of 0.05.

Results and discussion of results

The instantaneous power graphs of the three models (see Fig. 3.3) show that P,y (i.e., athlete-
wheelchair model) has a shape similar to the typical shape reported for force-instrumented
push-rims (de Groot etal. 2014), while Py, (i.e., wheelchair model) fluctuated within a push cycle
due to mass displacements of the upper body. As expected, P,y fluctuates similarly to Py, as
both are based on wheelchair kinematics, with a larger amplitude for Py Since myy,, (Eq. 3.10)
is larger than my, (Eq. 3.5). The differences between P,y and Py, are due to differences
between the wheelchair velocity and acceleration (which fluctuates substantially due to upper
body motion) and that of the COMaw (which fluctuates much less, see Appendix B).

Cycle average power values of P;,,; were similar to Py, during constant velocity and
acceleration. However, Py, deviated from Py, and Py, during acceleration, because in the
wheelchair model, the inertial forces of the upper body (in this case accelerating the upper body
mass) isincorporated as athlete force instead of changing kinetic energy. As interpretation of P,
may thus be confusing when the velocity is not constant, the wheelchair model is not
recommended for estimating power during overground wheelchair propulsion.

Fig. 3.3. Typical example of the instantaneous power graph of P4w (black solid line), Pw (blue solid
line) and P;uy (black dotted line) of approximately four pushes at 1.2 m/s.

However, dE,;,/dt did differ significantly between Py, and P,y (see Table 3.2). As the first
assumption must be true over a longer time duration, dE,;,/dt differences between Py, and
P, should be similar over time. The difference may be caused by the low number (three)
consecutive pushes that have been used for calculation. Due to missing data points in the
motion capture data, a larger number of consecutive pushes would load to insufficient data
points. Assuming that dE;;,, /dt differences diminish over several pushes, the accuracy of power
output largely depends on the estimated rolling resistance. However, Frouarag ShOwed an average
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underestimation of 0.9% (during acceleration) to 1.7% (at a constant velocity) of the
instantaneous rolling resistance. Moreover, at a constant velocity, this underestimation ranged
from -0.9% to 4.6% between participants (see Fig. 3.4 and 3.5). As this underestimation might
be induced by upper body movements, improving the rolling resistance estimate (e.g., by adding
an additional IMU on the trunk to correct for trunk-induced effects (Chenier et al., 2016; Poulet
etal.,, 2022; van Dijk et al., 2021), might eventually improve power estimates as well.

To summarize, P;y; Seems an acceptable estimation for power. As it depends largely on
the accuracy of the rolling resistance estimate, Py, will be slightly underestimated over several
pushes and will improve when rolling resistance estimates improve.

Table 3.2.

Mean (S.D.) values and mean (S.D.) differences for power (P), change in kinetic energy (dEy;, ;/dt) and
power loss due to rolling resistance (Py.q;, i-€., F,o1; * v;) per cycle averaged over three consecutive
pushes. The differences are determined by subtracting the variable of the IMU model from the AW model
(e.g., Paw- PIMU)-

Absolute values in Watt Differences

IMU model AW model W model in Watt in%of Paw  p-value
Constant velocity
P 10.7(1.0) 10.5(0.9) 10.8(0.9) -.19(.25) -1.8% 0.11
dEgni/dt  -0.1(0.3) -0.3(0.3) -0.2(0.3) -.41 (.30)* -3.9% 0.02
Prowi 10.4 10.6 10.6 18 (.14)* 1.7% 0.02
Accelerate
P 16.4(2.7) 15.7 (2.6) 13.9(2.1) -.71(.76) -4.5% 0.05
dEgn/dt  4.1(1.3) 3.3(1.3) 1.5(1.0) -.81(.73)* -5.2% 0.03
Prowi 12.3(1.6) 12.4(1.6) 12.4(1.6) .15(.06) 0.9% 0.08

* p-value < 0.05, ** p-value < 0.01

roll,drag

lel,ins(

105

95}

Resistance force (N)

85

246 2465 247 2475 248 2485 249
Time (s)

Fig. 3.4 and 3.5. Figure 3.4 (left) shows a typical rolling resistance graph during two pushes. The dotted
horizontal line shows the resistance force determined from a drag test (Fruaag), and the black curve
shows the instantaneous resistance force (Fouinst), in Which intra-cyclical changes are taken into account.
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Figure 3.5 (right) shows the differences between the resistance values of the drag test (Fiouarag) and the
average values + standard deviations of the instantaneous resistance force (Fouinst) fOr each participant.
The measurements took place on a treadmill.

Concluding remarks & practical implications

This article proposes a theoretical framework for monitoring mechanical power in wheelchair
sports practice. With a well-executed deceleration test and one wheel-mounted IMU,
acceptable power estimates can be obtained during wheelchair field and court sports. Based on
this feasible approach and the underlying framework, one can elaborate and finetune power
estimates for each specific application.

As our results are based on straight-line wheelchair propulsion and rolling resistance
usually increases during curves and turns (Chénier et al. 2015; Fallot et al. 2021) one should be
aware that the resistance (and thus power) underestimation may be larger when applied in
match situations. To accurately monitor power during all match conditions, more knowledge
about rolling resistance during turning and trunk inclination is required. External forces due to
ball handling and contact with other players will further complicate power estimates.
Additionally, accelerations during the experiments were lower than those typically observed
during matches. However, as IMUs accurately measure wheelchair accelerations, similar
accuracies of power estimates are expected at higher acceleration levels. To apply IMU-based
power estimates in wheelchair racing, air resistance and gravity should be included as velocities
are usually between 5-10 m/s (Fuss 2009; Poulet et al. 2022) and long distance races might
contain slopes. For everyday wheelchair use, the power estimates can already be used.

To conclude, we believe that the theoretical framework and the resulting IMU-model is well
suited to estimate mechanical power during straight-line (non-contact) wheelchair propulsion
inwheelchair field and court sports. In addition, the framework is an important first step towards
feasible power estimates in all wheelchair (sports) situations. As this study is no validation
study, the accuracy of Py, may be assessed using force-instrumented push-rims.
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Appendix A

Explanation of the differences between the athlete-wheelchair model and the wheelchair
model (and the difference between power estimates based on these models compared to
force-instrumented push rims or wheelchair ergometers) when the upper body movements
do produce net mechanical power

When the upper body movements do produce net power

When the upper body movements do produce net power on the wheelchair seat, for example,
when a wheelchair athlete tries to move the wheelchair by using mass displacements only
(without touching the rim), this means that My, ;.4 i from the wheelchair model (see Eq. 3.5)
is zero, while Fypper body,seat * Vwce Will 0n average be equal to Fpropuision,com * Veom Of the
athlete-wheelchair model (see Eq. 3.3). However, when using a force-instrumented push-rim,
power won’t be measured. In addition, in a wheelchair ergometer, Fy,ner pody,sear WOUL NOt be
able to produce power since the wheelchair frame is fixed. When we translate this to normal
wheelchair propulsion situations, it becomes clear that any (net) propulsive power produced by
Fpper body,seat 1S Neglected by force-instrumented push-rims and wheelchair ergometers. In
rowing this phenomenon was also reported and may cause an underestimation of up to 10%
(Hofmijster et al. 2018"). As both the wheelchair and athlete-wheelchair model will not have this
problem, we assume that comparing the IMU-based power with the power estimates based on
these models is a suitable way to demonstrate the usefulness of IMU-based power estimates.

" Hofmijster, Mathijs J., Lotte L. Lintmeijer, Peter J. Beek, and A. J. Knoek van Soest. 2018.
“Mechanical Power Output in Rowing Should Not Be Determined from Oar Forces and Oar
Motion Alone.” Journal of Sports Sciences 36(18):2147-53.
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Appendix B

Fig 3.6 and 3.7. Typical velocity (left) and acceleration (right) graphs of the COMaw (based on motion
capture data - solid line) and the wheelchair (based on IMU data - dotted line) during steady state
wheelchair propulsion for two pushes. vw and aw represent the velocity and acceleration of the
wheelchair and vcom and acom represent the velocity and acceleration of the COMaw. Accelerations are
calculated by differentiating velocity over time. The velocity and acceleration of the wheelchair vary more
than the velocity and acceleration of the COMaw due to the effect of upper body motion. The negative
wheelchair acceleration during recovery can be explained by the upper body movements. Immediately
after each push, the upper body accelerates backwards (the small aw peak right after large aw peak), and
consequently decelerates backwards - until the upper body and wheelchair reach the same velocity when
the trunk approaches the back rest - to prepare for the next push. This backward deceleration of the upper
body, causes a backward acceleration of the wheelchair (i.e., negative acceleration and decreasing
velocity) during recovery as is seen between 114 and 115.5 s.
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Abstract

In sports, inertial measurement units (IMUs) are often used to measure the orientation of human
body segments. A Madgwick (MW) filter can be used to obtain accurate IMU orientation
estimates. This filter combines two different orientation estimates by applying a correction of the
(1) gyroscope-based estimate in the direction of the (2) earth frame-based estimate. However,
in sports situations that are characterized by relatively large linear accelerations and/or close
magnetic sources, such as wheelchair sports, obtaining accurate IMU orientation estimates is
challenging. In these situations, applying the MW filter in the regular way, i.e. with the same
magnitude of correction at all time frames, may lead to estimation errors. Therefore, in the
present study, the MW filter was extended with machine learning to distinguish instances at
which a small correction magnitude is beneficial from instances at which a large correction
magnitude is beneficial, to eventually arrive at accurate body segment orientations in IMU
challenging sports situations. Amachine learning algorithm was trained to make this distinction
based on raw IMU data. Experiments on wheelchair sports were performed to assess the validity
of the extended MW filter, and to compare the extended MW filter with the original MW filter
based on comparisons with a motion capture-based reference system. Results indicate that the
extended MW filter performs better than the original MW filter in assessing instantaneous trunk
inclination (7.6° versus 11.7° RMSE), especially during the dynamic, IMU challenging situations
with moving athlete and wheelchair. Improvements up to 45% RMSE were obtained for the
extended MW filter compared to the original MW filter. To conclude, the machine learning-based
extended MW filter has an acceptable accuracy and performs better than the original MW filter
for the assessment of body segment orientation in IMU challenging sports situations.
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1. Introduction

In sports, inertial measurement units (IMUs) are often used to measure the orientation of human
body segments [1]. When an IMU is attached to a body segment, the segment’s orientation
relative to the earth field can be estimated using an orientation estimation algorithm. Although
optical motion capturing is widely accepted as a reference system for kinematic measurements,
IMUs are often preferred over optical motion capture systems, since they are generally small,
wearable (wireless), cheap and easy to use outside the lab. IMU accuracy has shown its validity
for severalapplicationsin sports [2-7]. Some examples of this are upper body orientations during
walking and running on a treadmill [2], pelvis orientation during swimming [3] and trunk
orientation during sports motions that last for only short time periods (<30 s) such as sprint
starts, tennis serves and the golf swing [4-7].

An IMU generally consists of an accelerometer, a gyroscope and a magnetometer, which
measure the three-dimensional (3D) linear accelerations (including gravity), the angular velocity
and the local magnetic field, respectively. To estimate the orientation from these raw IMU
signals, the data can be fused together using an Attitude and Heading Reference System (AHRS).
A commonly used AHRS method is to first obtain two different orientation estimates which are
subsequently combined. First, the orientation of the IMU is estimated by integrating the angular
velocity, based on the gyroscope signals. As this orientation estimate is distorted by integration
drift, the gyroscope-based orientation is ‘corrected’ using a second orientation estimate; the
IMU orientation estimated relative to the direction of gravity (down; based on the accelerometer)
and the direction of the earth’s magnetic field (north; based on the magnetometer). The second
estimate will be referred to as the ‘earth frame-based’ orientation estimate. To estimate the
earth frame-based orientation, it is assumed that the accelerometer only measures gravity and
that the magnetometer only measures the earth’s magnetic field, such that the orientation of the
sensor relative to the earth frame, i.e., down and north, is obtained.

In many applications, this assumption can be made since linear accelerations in
directions other than gravity are much smaller than gravity, such that they have a negligible effect
on the direction of the acceleration vector. However, in sports activities characterized by
relatively large and continuously present linear accelerations (e.g., every push in speed-skating
or in wheelchair propulsion) or by the presence of close magnetic sources (e.g., from a bike or a
wheelchair), the accelerations in directions other than gravity affect the direction of the
acceleration vector and the close magnetic sources affect the direction of the local magnetic
field. Therefore, during these sports activities, the earth frame-based orientation estimate is
often incorrect such that the integration drift is corrected in the wrong direction. In the current
paper, such sports activities are referred to as ‘IMU challenging sports situations’.

Some studies solve this problem by combining data of the IMU sensors with that of other
sensor types such as force sensors or GPS [8,9]. These sources provide additional (indirect)
information about the sensor orientation. Another (magnetometer-free) solution that is used to
detect the direction of gravity without assuming that only gravity is measured, is to attach
multiple sensors on connected body segments [10,11]. Although those approaches previously
produced accurate orientation estimates [8,9], the benefits of using a single sensor (easy to use
and cheap) diminish. Obtaining accurate estimates based on one or two IMUs only is therefore
preferred.

To implement the algorithms in already existing sports applications (e.g., smartphones
or sports watches) and to enable real-time orientation estimations, the computational efficiency
of the algorithms is of interest. A computationally efficient filter that previously provided
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accurate results in sport settings based on IMU signals only is the Madgwick (MW) filter [12]. The
MW filter is resilient against short-term disturbances [13] and is widely used in sports settings.
The filter combines the gyroscope-based estimate and earth frame-based estimate by correcting
the gyroscope estimate in the direction of the earth frame-based estimate at each time instance.
In this way, the filter corrects for integration drift. The magnitude of this correction, or correction
size, is the same at each time instance and its value is therefore crucial to performance [12].
Since the optimal correction size depends on the extent to which integration drift is expected
(which depends on the sensor used and the nature of the measurements, i.e. static or dynamic
[12]), the correction size should be determined for each sensor and application. Commonly, the
correction size is determined based on the smallest difference with a reference system and is
maintained henceforth [7,12].

To obtain accurate orientation estimates in IMU challenging sports situations, applying a
MW filter in the regular way, i.e., with the same correction size at all time frames, will lead to
estimation errors. During these sports situations, the correction will be too small to correct for
drift or too large such that drift is corrected in the wrong direction (due to a wrong earth frame-
based orientation estimate). Therefore, during instances at which the earth frame-based
orientation estimate is likely to be wrong, it may be beneficial to temporarily decrease the
correction size, i.e., limit the impact of the earth frame-based estimate. In line with this, the
correction size should be increased again when the earth frame-based orientation estimate is
correct, such that the drift can be controlled. Adapting the correction size in this way has already
led to improved orientation estimates in (aerial) vehicles [14,15]. However, these studies only
took the effect of acceleration into account and implemented self-designed filters. To ensure
usability in sports settings, we present a proof of concept in which the widely used MW filter is
extended with an adaptive correction size to make it applicable in IMU challenging sports
situations. Since the combined effect of linear accelerations and magnetic sources is expected
to be indirect and non-linear, machine learning was used to predict the right time instances for
each correction size.

In the present study, the MW filter is extended with machine learning to distinguish
instances at which a small correction size (in the direction of the earth frame-based orientation
estimate) is advantageous from instances at which a large correction size is advantageous, to
eventually arrive at accurate body segment orientation in IMU challenging sports situations. To
this end, a machine learning model was trained to classify whether or not the earth frame-based
estimate is likely to be correct based on raw IMU data. Experiments were performed to assess
the validity of the extended MW filter, and to compare the extended with the original MW filter.
The experiments involved indoor wheelchair sport activities. The presence of a wheelchair and
the accelerate-decelerate nature of this sport makes it a representative IMU challenging sport
situation. During wheelchair propulsion, trunk motion is used to prevent the chair from tipping
over during large accelerations and may be used to increase stroke length. In addition, trunk
motion causes continuous displacements of the center of mass such thate.g., rolling resistance
is affected. Therefore, trunk motion is expected to have a significant role in wheelchair
propulsion. Since wheelchair kinematics, such as speed and rotational speed, can already be
measured accurately using IMUs in wheelchair match settings [16], adding instantaneous IMU-
based trunk motion would result in more information about the wheelchair-athlete interaction
which is beneficial for training purposes.

The aim of the current study was to investigate whether machine learning-based
classification could be used to extend the existing MW filter and, in this way, improve the
obtained body segment orientation in IMU challenging sports situations.
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2. Methods

2.1 Procedure

Eleven differently skilled participants (Table 4.1) performed a series of wheelchair sport-specific
activities with IMUs attached to their wheelchair and trunk, while simultaneously being
measured with an optical motion capture (MOCAP) analysis system to serve as reference
system. Video recordings were made to distinguish between different activities afterwards. The
experiment was approved by the ethical committee of the Technical University of Delft. Prior to
the experiment, participants were informed about the aim and procedure of the study and
provided a written informed consent.

Based on the obtained data, a machine learning-based classification model was trained
to classify for each time instance whether a small or large correction size is advantageous. This
classification was used to extent the MW filter (see section 2.5.1). To assess the validity of the
resulting extended MW filter, trunk inclination was calculated based on MOCAP data and IMU
data processed with the extended MW filter. Also, comparisons with the original (not extended)
MW filter were made.

Table 4.1.

Subject characteristics (mean + standard deviation)

Type N Age (years) Class'
Elite wheelchair athlete? 3 25.0+3.0 3.2%£13
Active wheelchair user 3 46.3+11.0 25+0.5
Non-experienced user 5 25.0+1.2 -

'The classes were indicated by the points as used in (elite) wheelchair basketball.
2 Two wheelchair basketball players (premier league) and one wheelchair hockey player (Dutch national
team).

2.2 Equipment

Two IMUs (NGIMU, x-io technologies) were used to collect 3D inertial sensor data of the trunk
and the wheelchair with a sample frequency of approximately 100 Hz. A ten camera optoelectric
MOCAP system (OptiTrack Prime, National Point) with a sampling rate of 120 Hz was used to
record the 3D orientation of the segments of interest. The trunk marker cluster frame was
constituted of four markers connected to a rigid body, and was attached to the sternum
(manubrium sterni). The wheelchair marker cluster frame was constituted of five markers
connected to different positions on the wheelchair frame. The video camera (Casio Exilim)
recorded the entire track lay-out with a sample frequency of 60 Hz.

2.3 Wheelchair sport-specific activities

The wheelchair sport-specific test session is described in Table 4.2 and Fig. 4.1 and covers the
main aspects of wheelchair basketball, tennis, rugby, triathlon and racing. Certain tests were
similar to ones used in prior research on wheelchair IMUs [16,17], while tests 1, 10 and 11 in
Table 4.2 were added to put more focus on trunk motion. Prior to the session, the tests were
explained and participants without wheelchair experience were instructed to ride in the
wheelchair for approximately five minutes to familiarize with wheelchair propulsion. The
participants were instructed to adopt a neutral pose for at least 20 s at the start and end of the
session. All tests were performed in a motion lab.
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Table 4.2.

All sport-specific tests, together with a description of each test and the
speed at which the participants were instructed to perform the test (see
also Fig. 4.1). All tests were carried out in immediate succession.

Test Speed Description
1 Isolated trunk no 3x flexion/extension, left/right lateral
rotations flexion and left/right axial rotation

2 Straight5m norma  3xsprint with static trunk
L
Straight5m low 3x
Straight5m norma  3X
L
Straight5m high 3x
3 Straight skid high 2x sprint (stop with skidding wheels)

4 Slalom norma  around 3 cones (Fig. 4.1B)
L
Slalom high around 3 cones (Fig. 4.1B)
5  Figure8 norma (Fig.4.1C)
L
Figure 8 high (Fig. 4.1C)
6 Uturn norma 180° clockwise turn (Fig. 4.1D)
L
Uturn high 180° clockwise turn (Fig. 4.1D)
Uturn norma 180° anti clockwise turn (Fig. 4.1D)
l
Uturn high 180° anti clockwise turn (Fig. 4.1D)

7  Turnon spot norma  360° clockwise turn
l
Turn on spot norma  360° anti clockwise turn
l
Turn on spot high 360° clockwise turn
Turn on spot high 360° anti clockwise turn

8  Startwist free Star wise bi-directional rotation
Star twist free As previous, combined with back-and-

forth movement (Fig. 4.1E)

9  Collision free 2x 2m sprint and collision against a
block of 30 kg (Fig. 4.1F)

1 Tennis no Do two service- and two backhand

0 movements motions with tennis racket

1 Ball handling  no Pick up ball from the ground (2x) and

1 throw ball away with one hand

Figure 4.1 (Ato F). Track lay-out with dimensions in cm (A) corresponding to the tests as explained in Table
4.2. Cones and collision block (CB) were removed during test parts in which they were not used. During
tests with ‘no’ speed, the wheels of the wheelchair were blocked. This figure was adopted from Van der
Slikke et al. [16].

Data pre-processing

Pre-processing of MOCAP data

OptiTrack 3D position data of the frame and trunk markers were acquired in Motive 2.2.0 (Natural
Point), converted to a C3D format and imported in MATLAB (R2019b, The Mathworks Inc.).
Missing values were interpolated if the duration of the gap was < 0.2 s and subsequently
resampled from 120 to 100 Hz using a spline interpolation. Based on the first sample of each
time series, the 3D local coordinate frames of the trunk and the wheelchair were determined
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based on the positions of the three markers with the lowest number of missing values [18]. The
local marker coordinate frames with respect to the global marker coordinate system were
tracked over time.

Pre-processing of IMU data

First, the magnetometer (hard iron) offset of the IMU data was corrected [19]. Subsequently,
sample frequency deviations were corrected by resampling the data to 100 Hz using a spline
interpolation. Given the obtained 3D accelerometer, 3D magnetometer and 3D gyroscope data,
the IMU orientation was determined using the MW filter and the correction size [12]. First, an IMU
orientation estimate was obtained using the original MW filter to enable time alignment of the
IMU and marker data (see next paragraph). For this, a correction size of 0.033 was used as
reported by Madgwick et al. [12]. A grid search for different beta values on the current dataset
supported the use of this value. Second, the earth frame-only estimate (without gyroscope data)
was obtained, which will be used to generate the classification model (see section 2.5). For this
estimate, the direction of the acceleration vector was regarded ‘down’ and the direction of the
magnetometer vector was regarded ‘north’.

Determining trunk inclination

To convert the IMU- and MOCAP-based orientations into a one-dimensional inclination angle
between the trunk and the wheelchair, a helical approach was used. First, the rotation matrix
between the proximal (wheelchair) segment and the distal (trunk) segment was obtained.
Subsequently, this rotation matrix was represented relative to the first static sample, in which
the person was positioned in neutral pose. Neutral pose was considered 0 degrees trunk
inclination, in which positive values indicate trunk flexion. Accordingly, the helical angles could
be calculated [20]. After obtaining the helical angles of both IMU and MOCAP systems, they were
synchronized with respect to time using the cross-correlation of the helical angle time series
[21]. After synchronization, the helical angles were determined again to ensure that all
orientations were relative to the same static (neutral pose) sample.

Figure 4.2. A simplified block diagram of the MW filter (left) and a block diagram of the machine learning (ML)-based
extended MW filter (right). Within the extended MW filter, the correction size (B) may change over time (i.e. B;), which
differs from the original application of the MW filter. The filters use IMU data consisting of 3D gyroscope data (w!"Y),
3D magnetometer data (m:Y) and 3D accelerometer data (a}MV) as input and IMU orientation (q:Y) as output.

Note that the white box in the left figure corresponds to the white box in the right figure.
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2.4 Data analysis

2.4.1 Filterdesign

Using the data collected, trunkinclination angles are determined using the original MW filter and
the extended MW filter, which are explained in more detail in this section. Fig. 4.2 (left) shows a
representation of the original MW filter, which corrects for integration drift on the gyroscope-
based estimate (Aq,,) based on the earth frame-based estimate. The earth frame-based
correction (Aqqm,) is determined by a gradient descent algorithm based on the accelerometer
and magnetometer data [12]. Subsequently, the correction step is normalized to a pre-
determined magnitude, the correction size or B, such that the resulting orientation at time t
(q{MU) is calculated according to Eq. 4.1. The correction size is the only parameter to be tuned
when using the MW filter.

g’ = qi7 + (Aquwe — B Aqame) At (4.1)

Fig. 4.2 (right) shows the proposed extension of the MW filter. Instead of one correction size (B),
two different correction sizes were determined for the extended filter; a large correction size for
situations at which the earth frame-based estimate is expected to be correct, and a small
correction size otherwise. To apply each correction size at the right instance in time, the validity
of the earth frame-based estimate should be determined based on the raw IMU data (which is
the only available data at this point). Therefore, the MW filter was extended with a machine
learning-based classification model, that predicts whether or not the earth frame-based
estimate will be correct based on IMU data. Accordingly, this prediction will be used to adapt the
correction size (B) to a high value when a correct earth frame-based estimate was predicted (i.e.
Bhign) and to a low value (i.e. B,w) otherwise. This ‘decoding’ results in a correction size for each
instance intime, i.e., B, which is an input of the MW filter (see Fig. 4.2). Fig. 4.3 shows a step-by-
step explanation of model generation, implementation and validation.

2.4.2 Model generation

Labelsamples

To generate the classification model, training samples were created with known input (raw IMU
data) and output (labelled correct [1] or in-correct [0] earth frame-based orientation estimate)
data. These output labels were obtained by comparing the ‘earth frame-only’ orientation
estimate with the MOCAP-based orientation on a sample-to-sample basis. A sample was
labelled ‘correct’ (i.e., 1) if the difference between the ‘earth frame-only’ and the MOCAP-based
trunk inclination was <1 degree + noise, and was labelled ‘incorrect’ (i.e., 0) otherwise. To
determine noise, the standard deviation of the difference between the MOCAP-based inclination
and the earth frame-only estimate during 20 s neutral pose was assessed for all participants,
and accordingly averaged. The labels were saved as ‘EFcorrect’.

Labelling this way, may cause some samples to be falsely labelled ‘correct’ due to
coincidental intersections between the MOCAP system and a deviating earth frame-only
estimate. Therefore, a second, more conservative, outcome variable was defined in which a
sample is labelled ‘correct’ only if the maximal difference of five consecutive samples (that
sample, two preceding samples and two following samples) was <1 degree + noise. These labels
were saved as ‘EFcorrect_S5’. The labels of ‘EFcorrect’ and ‘EFcorrect_S5’ were determined for
all samples and added to the dataset.
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Figure 4.3. Overview of the model generation, implementation and validation steps and corresponding
in- and outputs in the current study. Model implementation for the original MW filter (left blue) is
compared to that of the extended MW filter (right blue) as proposed in the current study. Model generation
and validation is done using MOCAP data and was performed only once. Those steps are therefore
indicated by dashed lines (--). Before the classification model was chosen, several models were trained,
implemented and compared with MOCAP data, after which the best model was selected (see model
selection) using data of the validation set. This loop is indicated by grey dashed lines (--). The solid lines
indicate the steps that should be taken each time one wants to estimate the IMU orientation. Note that
the light-blue box corresponds to the light-blue box in Fig. 4.2.

Model training

First of all, the participants were divided into a training set, a validation set and a test set (with 6,
3 and 2 participants, respectively [see Fig. 4.3]). The training set included one elite, one active
and four non-experienced wheelchair users, the validation set included two active and one non-
experienced wheelchair user and the test set included two elite wheelchair athletes.
Subsequently, all data were imported in Python (version 3.7, Python Software Foundation) to
perform machine learning. Before learning, all input data were standardized using z-
normalization [22] and the training data were balanced (by randomly removing samples of the
majority class) such that the number of samples labelled 1 was equal to that labelled 0 [23].
Accordingly, the 18 features (2 sensors with each 3D accelerometer, magnetometer and
gyroscope [2*3*3]) were ranked on importance using recursive feature selection on a Random
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Forest classification algorithm [23] with a leave-one-subject-out cross-validation (LOSO-CV) on
the training set [23]. Using a LOSO-CV, the model is trained on all-but-one participant of the
training set, and accordingly evaluated on the participant that was left out. Subsequently, the
feature ranking was used to select the best number of features. The best five sets (based on
precision, recall and F1-score of the LOSO-CV) were selected for further model training.

To determine which learning algorithm is the most suitable, four different classification
algorithms were trained. Since the data are tabular and relations are expected to be non-linear,
a Gaussian Naive bayes algorithm, a logistic regression, a decision tree algorithm, and arandom
forest algorithm were compared [23]. Also, the two different outcome variables (EFcorrect and
EFcorrect_S5) were compared. Since five sets were left from the feature selection procedure, 40
models (four learning algorithms, two outcome variables and five sets of features) were trained.

2.4.3 Implementation

Decode to B, and apply MW filter

After applying a model, the outcome matrices consist of predicted 1’s (correct earth frame-
based estimation) and 0’s were decoded to Bng and Buw, respectively. Subsequently, the IMU
orientations were calculated by the MW filter and the helical angles were determined (see Fig.
4.3). The best values for Bhg: and B, Were chosen by applying the extended MW filter on the
EFcorrect labels of the training and validation set. All combinations of B, from 0 to 0.01 (steps
of 0.001) and Bng from 0.5 to 1 (steps of 0.025) were applied. The root-mean-squared error
(RMSE) between the IMU-based trunk inclination and the MOCAP-based trunk inclination was
used to determine the final values for Bng, and Biow.

Model selection

After training all 40 models, the best model was selected by comparing the models on the
validation data. Therefore, all models were fit to the validation data and trunk inclination angles
were determined. The best model was selected based on the lowest mean absolute error (MAE)
and RMSE between the IMU-based angles and the MOCAP-based angles. To evaluate the
performance of the final classification model, precision, recall and accuracy were reported.
Also, the hyperparameters of the particular algorithm were tuned using a random search LOSO-
CV on the training set. Subsequently, the final model was trained on the training set and was
implemented on the test set to assess its performance.

2.4.4 \Validation

To determine the accuracy of trunk inclination based on the extended MW filter and to determine
the difference between the extended and the original MW filter, the mean error, RMSE and MAE
with respect to the MOCAP-based inclination angles were determined for both filters. Also, the
correlation between trunk inclination determined using MOCAP data and the trunk inclination
determined using the IMU data with both filters was determined.
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To compare the filters for activities with different levels of dynamics, a distinction was
made between ‘slow to moderate sprints’ (Table 4.2.2 with speeds ‘normal’ and ‘low’), ‘fast
sprints’ (Table 4.2.2 and 4.2.3 with speed ‘high’) and ‘agility exercises’ (Table 4.2.4-4.2.9). The
parts were selected manually using the video frames. For each of the three parts, MOCAP-based
trunk inclination was plotted against the original and extended MW filter-based trunk inclination
to assess eventual angle dependencies. Also, a Bland-Altman analysis [24] was performed on
the three parts to compare mean differences and 95% confidence intervals between MOCAP-
based trunk inclination angles and those determined by the extended MW filter. To compare
situations in which the wheelchair was fixed to the ground, i.e., ‘fixed wheelchair’ part, and in
which it was not, sprints and agility exercises were taken together to represent the ‘free
wheelchair’ part. Mean error, MAE and RMSE between both filters and the MOCAP-based trunk
inclination were determined for both the fixed wheelchair part and the free wheelchair part. In
addition, the evolution of trunk inclination over time was presented for isolated trunk rotations
(Table 4.2.1) in the fixed wheelchair part and for both star twists (Table 4.2.8) in the free
wheelchair part.

To gain more insight into the behaviour of the machine learning model, an analysis was
performed of the situations at which small and large correction sizes were applied and their
durations.

3 Results

Eleven participants were included (6 in training set, 3 in validation set, 2 in test set) with a mean
session duration of 14.6 minutes. Of this, 14.4% of the samples was labelled 1 (<2.27° difference
with MOCAP-based trunk inclination) according to the criteria as defined for ‘EFcorrect’ and
12.5% of the samples were labelled 1 for ‘EFcorrect_S5’. After balancing, the training set
consisted of 155032 and 133426 samples for EFcorrect and EFcorrect_S5 respectively, with
equally represented labels.

3.1 Implementation

Applying the extended MW filter on labelled data for different values for Bng and Biw yielded the
smallest RMSE’s with the reference system when Bhg, ranged from 0.925 to 1, and B ranged
from 0 to 0.003. Therefore, the mean of these values was taken such that Bhign = 0.9635 and Biow
=0.0015.

Based on feature selection, the final set of features consisted of @ 1ryniks My trunk
My runk Mz wheelchairs Mxwheeichair 1N Which X represents the sagittal axis (forward-
backward), y represents the transversal axis (left-right) and z represents the longitudinal axis
(up-down). Using this feature set, the models were trained and implemented to determine trunk
inclination. The IMU-based trunk inclination based on the different models were compared with
the MOCAP-based trunk inclination (see Table 4.3). The smallest difference with the MOCAP-
based trunk inclination was found for the Random Forest classification with label ‘EFcorrect’.
Compared with the labelled data, this model showed a precision, recall and accuracy of 0.90,
0.95 and 0.86, respectively.
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Table 4.3.

Performance of the eight models left after selecting the final set of features in terms of mean absolute error
(MAE) and root-mean-squared error (RMSE) between MOCAP-based trunk inclination and the trunk inclination
of the extended MW filter based on validation data.

Classification algorithm MAE (°) RMSE (°)

EFcorrect EFcorrect_S5 EFcorrect EFcorrect_S5
Decision Tree 9.6 9.2 13.3 13.4
Random Forest 8.9 10.3 13.6 15.8
Naive Bayes 14.2 14.4 23.5 24.0
Logistic Regression 11.7 12.0 18.7 18.9

3.2 Validation

To gain more insight into the performance of the original and the extended MW filter,
comparisons were presented for parts in which the wheelchair could move (free wheelchair) and
could not move (fixed wheelchair), separately (see Table 4.4). Results indicate that the extended
MW filter outperforms the original MW filter, and performs particularly better during 'free
wheelchair’ instances (MAE decreased from 9.5° to 5.9° and RMSE from 11.7° to 7.6°, on
average) with improvements up to 47% MAE and 45% RMSE. During ‘fixed wheelchair’ instances,
the models show equal performances with average RMSEs of 6.0° and 5.3° for the original and
the extended MW filter, respectively. The extended MW filter showed correlations of .86 (fixed
wheelchair) and .92 (free wheelchair) with the MOCAP data, which were stronger than those of
the original MW filter in all situations.

Fig. 4.4 shows the trunk inclination of the original (blue) and the extended MW filter (red)
against the reference system for isolated trunk rotations and star twists (Table 4.2.1 and 4.2.8).
Instances at which Biign was applied are indicated by the black dots in Fig. 4.4. Fig. 4.5 shows the
trunk inclination of both filters against the MOCAP-based inclination for three ‘free wheelchair’
parts of the session. Bland-Altman analyses reveal a mean difference of 3.5° for slow to
moderate sprints, 1.4° for fast sprints, and 2.0° for agility exercises between extended MW filter-
based and MOCAP-based trunk inclination. The corresponding 95% limits of agreement were -
7.6° and 14.6° (slow to moderate sprints), -12.3° and 15.2° (fast sprints), and -13.0° and 16.9°
(agility exercises).

Table 4.4.

Comparison of the mean error, mean absolute error (MAE), root-mean-squared error (RMSE) and correlation (r)
between the MOCAP data and the original MW filter and between the MOCAP data and the extended MW filter.
Results were presented for parts in which the wheelchair could not move (Fixed wheelchair), and for parts inwhich
the wheelchair could move (Free wheelchair) for subject 1 (S1) and subject 2 (S2) of the test set.

Condition MW filter Mean error (°) MAE (°) RMSE (°) '
S1 S2 S1 S2 S1 S2 S1 S2
Fixed wheelchair Original -1.3 0.3 4.5 4.3 5.5 6.5 .88 .95
Extended 0.0 2.2 4.1 4.0 5.2 5.4 .88 .97
Free wheelchair Original -8.2 -5.5 10.2 8.8 12.4 11.0 72 .80
Extended 1.6 2.7 5.4 6.5 6.8 8.4 .87 .86
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Figure 4.4. Typical plots of the trunk inclination angles over time of the original MW filter (red) and that of the
extended MW filter (blue) for the isolated trunk rotations in a static wheelchair, i.e. Test 1, (upper figure) and
star twists in a free wheelchair, i.e. Test 8, (lower figure). The MOCAP-based trunk inclination is indicated by
the grey surface (which is interrupted at some time frames due to insufficient marker visibility). The black dots
indicate time instances at which Biign was applied. The data was from an elite wheelchair basketball athlete
(classification 3.0).

To gain more insight into the behaviour of this model, the time instances at which large or small
correction sizes were applied were analysed. The black dots in Fig. 4.4 indicate that Bhg was
most common in static situations, while B,w was most common in dynamic situations. The
duration of successive Bow-instances had a median of .05 and .03s for subject 1 and 2 in the test
set, respectively, and ranged from 0.01 to 15.3s for subject 1 and from 0.01 to 2.05s for subject
2. The median duration of successive Bng-instances was .03 and .05s for subject 1 and 2,
respectively, and duration ranged from 0.01 to 0.99s for subject 1 and from 0.01 to 34.3s for
subject 2.

4 Discussion

The aim of the present study was to explore whether machine learning-based classification
could be used to extend the MW filter, to make it applicable for highly dynamic situations (where
assumptions on earth-frame based estimates are invalid). We specifically studied our proposed
algorithms for estimating the instantaneous trunk inclination in wheelchair sports. Results
indicate that the extended MW filter performs better than the original MW filter in assessing
instantaneous trunk inclination (7.6° versus 11.7° RMSE), especially during the dynamic, IMU
challenging situations with moving athlete and wheelchair. Compared to the extended MW filter,
the difference between the original filter and the reference system increased for lower trunk
inclination angles. This might be due to the slight underestimation of large trunk inclination
angles by the IMU-based approaches, such that deviations due to drift are mainly visible at lower
inclination angles, while they diminish at higher angles.
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Figure 4.5. Scatter plots of the inclination of the original filter (red) and that of the extended filter (blue) against the
MOCAP-based trunk inclination for the ‘agility’ part (left), ‘slow-mod sprint speed’ part (middle) and ‘fast sprint
speed’ part (right) of subject 1 (upper three figures) and 2 (lower three figures) in the test set.

To our knowledge, no previous studies investigated the accuracy of IMU-based body segment
orientation during wheelchair activities or other dynamic IMU challenging situations. Therefore,
only trunk inclination accuracy of the fixed wheelchair parts, i.e., the less dynamic parts, allows
for comparison with previous studies. The 5.3° RMSE for trunk inclination in the present study is
comparable to the trunk inclination accuracy of 5° RMSE during postural disturbances when
walking on atreadmill[2] and the 3.0°to 4.9° RMSEs for the estimation of trunk orientation during
dynamic sports motions with both legs on the ground [7]. Although the latter results were more
accurate, the measurement duration was much shorter (< 30 s [7]) than the session durations in
the present study (~15 minutes). Also, some studies reported somewhat better accuracies of
the IMU-based estimation of body segment orientations [4,27], but those studies measured for
very short periods [4] or studied tasks with a small range of motion [27]. Of the mentioned
studies, all studies reported a Kalman filter [2,4,27] or a MW filter [7] as AHRS and all studies
validated the IMU-based estimations using an optical motion capture system. Overall, it can be
concluded that the better performance of our method for highly dynamic situations has not been
gone at the cost of a lower accuracy than that of previously reported results during less dynamic
situations.

Since, to our knowledge, trunk inclination accuracy during highly dynamic sports
situations is not reported in the literature yet, comparing the present study’s results of the
original and the extended MW filter may provide more insight. A major difference between the
filters is their performance during dynamic situations; the extended MW filter performed better
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than the original MW filter in the dynamic ‘free wheelchair’ situations. This can be explained by
the extent to which accelerations were present in these situations. When the wheelchair is
propelled, continuous accelerations and decelerations are present and the magnitude of
accelerations is determined by the acceleration of the wheelchair plus the acceleration of the
trunk relative to the wheelchair. Therefore, the earth frame-based estimate is wrong relatively
often during ‘free wheelchair’ instances causing the original filter to deviate, while the extended
MW filter remains accurate by reducing the impact of this estimate. A similar trend was obtained
from the time evolution of IMU-based trunk inclination in which the filters perform equally well
in long-term static pose, while the original MW filter shows an increasing deviation during
dynamic instances. Moreover, during static instances following dynamic instances, the
extended MW filter immediately increases the correction size to ‘reorient’ towards the earth
frame-based estimate such that accumulated drift is corrected at once. For the original filter,
this ‘reorientation’ takes much longer, which may be a second explanation for the larger errors
observed at smaller inclination angles for the original MW filter.

From the previous paragraphs it may be concluded that the extended MW filter provides
considerable improvements compared to the original MW filter. Crucial for this performance is
the machine learning-based classification model. To gain more insight into the behaviour of this
model, the time instances at which large or small correction sizes were applied were analysed.
As expected, Biw Was most common in dynamic situations such that the orientation estimate
was hardly affected by (wrong) earth frame-based estimates, whereas Bng was most common
in static situations such that the effect of drift was limited. Since the orientation estimates during
Bww instances rely mainly on integrating the gyroscope signal, integration drift will accumulate
for each successive B instance. Therefore, the duration of successive B instances should not
be too long. According to the durations observed in the present study (maximum durations of
15.3s and 2.05s with only two occurences > 10s), it is assumed that drift was corrected before it
may have caused any noteworthy deviations. In general, this relatively simple machine learning
model seems to predict the most ‘advantageous’ correction size at each instance well and
seems suitable for AHRS extension. Although the MW filter was used in our study, applying this
extension to other orientation estimation filters may be promising as well.

Although the extended MW filter performed better compared to the original MW filter, the
question whether the method can be seen as sufficiently accurate depends on its application
and the aim that is to be accomplished. McGinley et al. [27] performed a systematic review on
the reliability of 3D kinematic gait measurements with regard to clinical interpretation.
According to McGinley et al. [27], errors below 5° will be widely considered acceptable to
reasonable, while errors exceeding 5° may mislead interpretation. Since gait motions
considerably differ from body motions during wheelchair propulsion and the range of trunk
motion during wheelchair sports will exceed that of body segments during clinical gait, the
minimal acceptable error may be somewhat higher in wheelchair propulsion. Considering the
7.6° RMSE obtained here, and a range of motion of 70 to 80 degrees (see Fig. 4.4 and 4.5) during
wheelchair propulsion, the system should be able to differentiate trunk inclinations higher then
11% of the range of motion. For application in wheelchair sports, trunk inclination angle can be
used to approximate the center of mass displacement, or to analyse motion patterns. A RMSE of
7.6°or 11% is expected to have an effect on above-mentioned analyses of trunk inclination only
to a limited extent and will therefore be regarded acceptable.

In this study, externalvalidity had priority above acquiring the smallest possible error and
it was aimed to avoid any unnecessary complexity, such that sports scientists will be able to
implement the extended MW filter with limited effort. In this regard, some choices were made
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that may have influenced the final results. Some examples that might have produced more
accurate results are (1) measuring all participants in the same wheelchair instead of using their
own wheelchair, (2) compensate for magnetic distortions in the motion lab by performing a
specific ‘mapping’ of the laboratory [28], (3) start a new measurement for each specific exercise,
(4) optimize Brignand B after training the final model and (5) add more refinement in 8 values,
instead only Bngnand Bww. To put the focus on external validity and repeatability, these examples
were not applied. Therefore, we expect our results to be well translatable and implementable to
sports and rehabilitation practice.

Limitations

Although this study provided useful outcomes with regard to orientation estimation in dynamic
sports situations, some limitations should be noted. First of all, the trunk markers that were used
to determine the MOCAP-based trunk inclination, were placed on the upper sternum (to ensure
visibility), while the trunk IMU was attached to a lower location on the sternum using a chest
strap (to enhance reproducibility and usability and to limit skin artefacts). Since the sternum is
rigid, the use of different locations was assumed to have no effect on the measurements.
Second, in the current study, helical angles were used to determine trunk inclination during
wheelchair sports activities. Therefore, caution should be exercised in generalizing the present
results to situations in which trunk motion is analysed in terms of anatomical angle definitions.
Third, a relatively low number of subjects was included in this study. However, since the results
of the measurements with the subjects in the test set showed the same trends and was based
on over 100k samples, similar results are expected to be obtained when a larger sample of
subject was included.

Future perspectives

For measuring trunk inclination in wheelchair sports, the machine learning-based extended MW
filter is ready to use. Since differently skilled participants were used in this study, it may be
assumed that the extended MW filter works well for trunk inclination estimation in all types of
wheelchair-users, for all types of wheelchairs and in both rehabilitation as well as (elite) sports
practice. Measuring trunk inclination during on-site wheelchair sports offers many
opportunities. When trunk inclination is combined with wheelchair kinematics during
wheelchair sports [16], the (simplified) kinematic state of the wheelchair-athlete combination
can be obtained. In this way, center of mass displacement can be approximated, and field-based
power losses and power production can be more accurately obtained than based on the
wheelchair motions only. This enables more insight into training load, fitness and the effect of
different push techniques. Also, information about trunk inclination can be fed back directly to
the coach and/or athlete for specific training purposes.

For application in other IMU challenging sports situations, it is expected that the
extended MW filter will also work. From the raw IMU data, only two simple additional steps; (1)
run the classification model on the raw IMU data
(ax,distal segment> my,distul segment> My gistal segment> mz,proximal segment mx,proximal segment)
and (2) decode the outcomes to Bhign and Biw (0.9635 and 0.0015 in the present study), have to
be performed to convert the original MW filter into the proposed extended MW filter. These steps
are schematically represented on the left size of Fig. 4.3. After obtaining ;, the MW filter can be
executed such that IMU-orientation is obtained. The approach to determine the best values for
Bhign and Bw is equal to that in the original MW filter [12] and may differ between sensors and
situations. Although the classification model should be verified for other sports, it is expected to
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be transferable to other situations since (1) the model was based on raw IMU data only and (2)
works on a sample-to-sample basis such that differences in movement pattern should not cause
any problems. If only one IMU was used, or accelerations in multiple directions (relative to the
IMU) were common, a custom-made random forest classification model is recommended for
optimal results.

Conclusion

The extended MW filter with machine learning-based classification improved orientation
estimation in sports applications that are challenging for IMU usage. The extended MW filter
resulted in accurate trunk inclination angles during wheelchair sport-specific exercises. During
exercises in which the wheelchair was moved unrestrictedly, the extended MW filter performed
better than the original MW filter. During situations in which the wheelchair was static (by
blocking the wheels), both the original and the extended MW filter performed equally well. In
conclusion, the extended MW filter is a promising application for the estimation of body segment
orientation using IMU’s in highly dynamic sports situations and is ready to be used in (elite)
wheelchair sports and rehabilitation practice.
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Abstract

In wheelchair sports, there is an increasing need to monitor mechanical power in the field. When
rolling resistance is known, inertial measurement units (IMUs) can be used to determine
mechanical power. However, upper body (i.e., trunk) motion affects the mass distribution
between the small front and large rear wheels, thus affecting rolling resistance. Therefore, drag
tests - which are commonly used to estimate rolling resistance - may not be valid. The aim of this
study was to investigate the influence of trunk motion on mechanical power estimates in hand-
rim wheelchair propulsion by comparing instantaneous resistance-based power loss with drag
test-based power loss. Experiments were performed with no, moderate and full trunk motion
during wheelchair propulsion. During these experiments, power loss was determined based on
1) the instantaneous rolling resistance and 2) based on the rolling resistance determined from
drag tests (thus neglecting the effects of trunk motion). Results showed that power loss values
of the two methods were similar when no trunk motion was present (mean difference [MD] of
0.6+1.6%). However, drag test-based power loss was underestimated up to -3.3+2.3% MD when
the extent of trunk motion increased (r=0.85). To conclude, during wheelchair propulsion with
active trunk motion, neglecting the effects of trunk motion leads to an underestimated
mechanical power of 1 to 6% when it is estimated with drag test values. Depending on the
required accuracy and the amount of trunk motion in the target group, the influence of trunk
motion on power estimates should be corrected for.
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Introduction

In manual wheelchair propulsion, wheelchair athletes produce mechanical power to overcome
resistance forces and to accelerate their wheelchair (van Dijk et al., 2023; van Ingen-Schenau
and Cavanagh, 1990). Mechanical power is therefore crucial to performance in wheelchair
sports. In addition, monitoring mechanical power on a regular basis can provide insight into
training load, physical capacity, and fatigue, which is useful for coaches, athletes, and sport
scientists. During hand-rim wheelchair propulsion, mechanical power can be monitored by
determining the power lost due to resistance forces and the change in kinetic energy (de Vette
etal., 2022; van Ingen-Schenau & Cavanagh, 1990).

To determine resistance force and, consequently, power during ergometer-, treadmill-
and wearable sensor-based measurements of wheelchair propulsion, drag or deceleration tests
are commonly used (de Groot et al., 2013; de Klerk et al., 2020; Mason et al., 2014; van der
Woude et al., 1986; Veeger, H.E.J. & van der Woude, L.H.V., 1989). However, in our previous
study, deviations of -4.6 to 0.9% were found between the drag test-based resistance force and
the reference resistance force (van Dijk et al., 2023). Also, deviations were much larger for some
participants than for others. As during drag tests, the user is instructed to maintain a static
position (Rietveld et al., 2021), while during wheelchair propulsion most wheelchair users
incline their upper body - mainly trunk - within a push cycle, these deviations may be due to the
(neglected) effects of trunk motion on the rolling resistance (Sauret et al., 2013). In this regard,
larger deviations are expected when larger trunk inclinations are observed. However, the relation
between trunk motion and deviations in rolling resistance (and thus power) estimates during
wheelchair propulsion is not yet known.

During wheelchair propulsion, trunk inclination influences the rolling resistance in two
ways. First, rolling resistance coefficients of the small castor wheels on the front are usually
largerthan that of the - much larger - rear wheels (Sauret et al., 2013). Thus, the rolling resistance
increases when the load (or COM) is shifted towards the castor wheels and vice versa. Second,
trunk motion causes vertical accelerations of the COM such that the total load on the wheels
increases when the COM accelerates upward and vice versa. In practice, forward trunk
inclination will thus cause a varying rolling resistance force due to two different mechanisms.

Sauret et al. (2013) investigated the ‘effects of users actions on rolling resistance’ in
everyday wheelchairs and investigated both changes in forward-backward load distribution, and
vertical COM accelerations. Based on three participants, they found the total load to vary from
80-130% of the gravitational force, indicating the effect of the vertical acceleration of the COM.
In addition, the forward and backward shift of the COM, mainly due to inclination resulted in a
castor wheel load ranging from 24-31% (minimal values) to 61-83% (maximal values) of the total
load within each push cycle. However, they did not quantify the relative contribution of the two
mechanisms. Once this is known, the effects of trunk motion could be corrected for when
estimating rolling resistance, such that more accurate power values are obtained. Therefore, the
relative contribution of the two mechanisms that cause a varying rolling resistance during
wheelchair propulsion should be investigated.

The first aim of this study was to investigate the relation between trunk motion and the
difference between the reference power loss (calculated from instantaneous rolling resistance),
i.e., P, and drag test-based power loss, i.e., Py.q4, during wheelchair propulsion. The second
aim of this study was to quantify the relative contributions of 1) changes in forward-backward
load distribution, and 2) vertical COM accelerations, to the difference between Py, and Pyrq 4.
To this end, wheelchair propulsion experiments were performed while load on the front wheels
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was measured with custom-made load pins, and trunk and wheelchair kinematics were obtained
from inertial sensors. P; and Py,.q, were compared for three levels of trunk motion: no trunk
motion, moderate trunk motion and full trunk motion.

Methods

1. Data collection
1.1 Outline of the study
Twenty-four able-bodied individuals (18 females and 6 males, mean age: 25+13 years, mean
body mass: 76+13 kg, mean body height: 1.70+0.07 m) without wheelchair experience propelled
the hand-rims of a wheelchair on a large treadmillin three different conditions; ‘no trunk motion’,
‘moderate trunk motion’ and ‘full trunk motion’. During the ‘no trunk motion’ condition,
participants were instructed to keep the trunk static, whereas the other two conditions were
imposed by following a metronome making participants to propel with long strokes
accompanied by (natural) trunk motion (Goosey et al., 2000). During this experiment, trunk and
wheelchair kinematics were measured using three IMUs attached to the participants’ sternum,
the wheelchair’s frame, and right wheel axle. Custom-made load pins in the castor wheel axes
measured the vertical load on the castor wheels (see Fig. 5.1). Before the treadmill session,
participants received a 10-minute overground wheelchair training to get familiar with the
wheelchair, a force plate session in which they stationary performed ‘fake’ wheelchair strokes
on a force plate, and a 10-minute training on the treadmill (see Fig. 5.2). After the treadmill
session, drag tests were performed on the treadmill to obtain rolling resistance coefficients of
each pair of wheels. Lastly, participants’ body mass was determined. All measurements were
performed with a rear wheel tire pressure of 5.25 bar.

The study was approved by the ethical committee of the Technical University of Delft (Nr.
1530). Prior to the measurements, participants were informed about the aim and procedure of
the study and provided written informed consent. The data used in this study were collected
simultaneously with the data of another study (van Dijk et al., 2023).
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Figure 5.1a-b. Measurement set-up during the treadmill sessions. The custom-made load pins were
integrated in each of the castor wheels (normal castor wheel axle were replaced by the load pins)

-

Overground Force plate  Treadmill Treadmill Dragtests  Mass
training session training session assessment

Figure 5.2. Schematic overview of the measurement sessions consisting of overground wheelchair
training, a force plate (FP) session, treadmill training and three treadmill sessions which were performed
atdifferent rear wheel tire pressure. Within each 3.5-minute treadmill session, participants propelled the
wheelchair in three conditions: ‘no trunk motion’, ‘moderate trunk motion’, and ‘full trunk motion’. In
addition, drag tests were performed and participants’ body mass was assessed.

1.2 Instrumentation

All treadmill measurements took place on a large (3.0 x 5.0 m) motor-driven treadmill (Bonte,
Zwolle, the Netherlands) located at the Vrije Universiteit Amsterdam. A large treadmill was used
to make participants feel safe to move forwards, backwards and sideways on the belt. An S-beam
load cell (Revere Transducers, Lisse, the Netherlands) was used to measure the horizontal (drag)
forces during the drag tests. An RGK Chrome all-courts wheelchair was used for the
measurements (see Table 5.1). Wheelchair setup was equal for all participants. Load pins
(Batarow Sensorik, Germany) were integrated in the castor wheel axes of the wheelchair to
measure the vertical load on the castor wheels. Three IMUs (NGIMU, X-io Technologies,
Colorado Springs, CO, United States) were used to collect 3D inertial sensor data with a sample
frequency of 100 Hz. In addition, the NGIMU analogue input channels of the frame-mounted
sensor were connected to the load pins to act as power source and data logger. Ground reaction
forces were measured at 200 Hz using a 1.0 x 1.0 m custom-made strain gauge force plate as
described in the study of Kingma et al. (Kingma et al., 1995). The load cell and force plate were
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calibrated with known masses at the start of each measurement day. The load pins were
calibrated during each force plate session by positioning the castor wheels on the force plate
(while rear wheels were positioned at the same height).

Table 5.1.
Wheelchair dimensions of the RGK Chrome all-courts wheelchair that was used for all measure-
ments. The rear wheels had pneumatic tyres. The front wheels were solid rubber castor wheels.

Mass 13.5kg
Wheel radius (rear) 0.61m
Wheel radius (front) 0.075m
Camber angle (rear) 13 degrees
Seat position (horizontal distance between backrest and rear wheel axis) 0.08 m
Distance front-rear wheels 0.39m

1.3 Treadmill session

The treadmill sessions consisted of 30s familiarization, followed by 60s propelling at a low
velocity (1.2 m/s) with no instruction (condition ‘moderate trunk motion’), 60s propelling at a low
velocity with the instruction to keep the trunk vertical (condition ‘no trunk motion’) and 60s
propelling at a high velocity (1.7 m/s) with no instruction again (condition “full trunk motion’).
Participants were instructed to maintain a constant stroke frequency indicated by a metronome
(set at 25 beats/minute during the first 90s, and 40 beats/minute thereafter). Adherence to the
instructions was monitored by observation. Safety was guaranteed by an automatic and a
manual security stop.

After each treadmill session, drag tests were performed at 1.7 m/s, while the participants
were instructed to sit as still as possible for a period of 30s in six conditions. The (2x3) conditions
consisted of sitting with vertical trunk and sitting bent forward while no mass was added, while
10 kg was added at the footrests and while 10 kg was added on the upper legs. Conditions with
varying load distributions were required to be able to solve Eq. 5.2 numerically, as front wheel
load was measured, and rear wheel load could be determined.

2. Data analysis

Acceleration, gyroscope and load pin force data were 2™ order low-pass filtered at 6 Hz. The
gyroscope data of the wheel sensor were used to obtain wheelchair velocity (van der Slikke et
al., 2015). Trunkinclination angle relative to the global vertical (in which 0 degrees was assumed
vertical) was obtained using an extended Madgwick filter as described by van Dijk et al. (van Dijk,
Kok, et al., 2021), with the $-value being 0.0015 (if |wheelchair acceleration| < 0.1 m/s? for at
least 5 consecutive samples) or 0.9635 (otherwise). In addition, vertical trunk acceleration was
determined. To this end, the sine of trunk inclination angle was determined to obtain vertical
trunk (IMU) displacement, and subsequently differentiated twice.

The drag test-based rolling resistance forces were obtained by averaging the last 10
seconds of the S-beam force data. Subsequently, the rear (r) and front (f) wheelrolling resistance
coefficients, ¢, and ¢, were determined by solving Eq. 5.2 numerically based on the average S-
beam force and average load pin force (Fy ) of the series of drag tests. Accordingly, ¢; and ¢,
were used to estimate the instantaneous resistance force (F;g) during all treadmill sessions.
Power loss was obtained by multiplying the resistance force with wheelchair velocity.

Knowing cf, ¢, and Fy r, the only unknown left to determine F;r during the treadmill
sessions is the instantaneous vertical acceleration of the system’s COM (acoy 2, See Eq. 5.3).
Therefore, acop,, Was estimated from vertical trunk acceleration (see above). The relation
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between acqy , and vertical trunk acceleration was determined using a force plate session in
which participants performed a 2-minute protocol consisting of ‘fake’ wheelchair strokes.
Simultaneously, vertical trunk acceleration and the acop , (calculated from the instantaneous
vertical force on the force plate) were measured. A linear regression analysis was performed to
predict acop . from vertical trunk acceleration for each participant.

FIR = Cf * FN,f + CT * FN,T (5.2)
FN,r = (m *g+mx acom,z) - FN,f (5.3)
Fira=0 =c¢r*Fyys + ¢ % (m=*g— FN,f) (5.4)

2.1 Influence of trunk motion on estimation of power loss

To investigate to what extent trunk motion affects IMU-based power estimates during wheelchair
propulsion, the resistance force and resulting power loss were estimated for each condition of
trunk motion during the treadmill sessions. Fg,.q4 Was obtained from the drag test with vertical
trunk and no added mass, which is essentially the same as an overground deceleration test (Ott
& Pearlman, 2021) and was subsequently compared with F;z during wheelchair propulsion.
Subsequently, the mean differences and mean absolute differences between Fgy.q, and
Fig (and corresponding power losses, i.e., Pyrqq and Pg) were determined per condition for
each participant. To assess the relation between trunk inclination and the difference between
Pyrag and Pyg, trunk inclination range was determined for each participant by determining the
maximal difference (i.e., maximum-minimum) in trunk angle per push, which were then
averaged over the entire trial.

2.2 Relative contribution of changing load distribution and vertical COM accelerations

To determine the mechanism underlying potential deviations between Py, 4, and Py, the relative
contribution of 1) changes in forward-backward load distribution and 2) vertical COM
accelerations on the rolling resistance was determined. Therefore, rolling resistance as
presented in Eq. 5.2 and 5.3 was compared with the rolling resistance when a.,,, , was ‘ignored’
by setting it at 0 (see Eq. 5.4). In this way, Fjp -0 only considers the effect of load distribution
(note that both the mass distribution as well as horizontal forces of the wheelchair user on the
wheelchair can influence this). Subsequently, the percentage of error due to changes in load
distribution (i.e., Fira=0 — Farag/ Fir*100%) and that due to a.yy, ; (i-€., Fir = Fira=o/ FR*100%) were
calculated.

3. Statistical analysis

A one-way repeated measures ANOVA was used to assess whether the mean differences
between (cycle-average) Pyrq4 and (cycle-average) P varied significantly between the three
conditions of trunk motion. If the Greenhouse-Geisser epsilon = 0.75, the Huynh-Feldt
correction was used, otherwise the Greenhouse-Geisser correction was used. Subsequently,
the correlation between trunk inclination range and the difference between (cycle-average)
Pyrag and (cycle-average) P were analysed using a repeated measures correlation. A QQ-plot
and a Shapiro-Wilks test of the residuals were performed to verify the assumption of normality.
This assumption was not violated. Statistical analysis was conducted using software R (R Core
Team, 2023). The significance level was set at p<0.05.

Results
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In total, 24 treadmill sessions were analysed. During the sessions, the average trunk inclination
was 4to 14 degrees in the ‘no trunk motion’-condition (trunk inclination range (TIR): 7.14+3), 7 to
61 degrees in the moderate trunk motion condition (TIR: 23.5+12) and 9 to 47 degrees (TIR:
25.0%10) in the full trunk motion-condition. The mean absolute trunk angular velocity was 10
deg/s for no trunk motion, 21 deg/s for moderate and 33 deg/s for full trunk motion. The drag
tests revealed rolling resistance coefficients of .0147 for the set of castor wheels and .0104 and
.0089 (the tires were replaced after 8 participants) for the rear wheels.

Influence of trunk motion on estimation of power loss

Over time, drag test-based resistance force (Fy.qq4) and power l0ss (Pyrq4) differ from the
instantaneous resistance-based force (F;z) and power loss (P;r), see Fig. 5.3 and 5.4. On
average, P44 is underestimated in both moderate and full trunk motion conditions (see Table
5.2). A one-way repeated measures ANOVA showed a significant effect for the condition
(F(1.6,36.4)=55.1, p<.001) on the difference between Py;.q, and Ppz. Post-hoc Bonferroni test
for multiple comparisons showed a significant difference between the conditions no and
moderate trunk motion (p<.001), no and full trunk motion (p<.001) and moderate and full trunk
motion (p<.01).
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Figure 5.3-5.4. Typical example of resistance force (left figure) and corresponding power loss (right
figure) derived from the drag test-based resistance force, i.e., Fag (dotted line), and the instantaneous
resistance force, i.e., Fig (solid line). These data are obtained from the condition with full trunk motion
for two pushing cycles.

Table 5.2.

Mean (SD) drag test-based and instantaneous resistance-based power (P) and resistance force (F)
values for each condition. The mean difference (MD) and the mean absolute difference (MAD) is
presented. In addition, the average trunk inclination range is given for each condition.

Condition  Variable Drag IR MD (%) MAD (%) Range of trunk

inclination (°)

No F 8.4(1.3) 8.4(1.3) 0.6 (1.6) 1.4(1.0) 7(3)
P 10.0(1.6) 10.0 (1.6) 0.6 (1.6) 1.4(1.0)

Moderate F 8.4(1.3) 8.6 (1.3) -2.3(2.0) 2.5(1.8) 24 (12)
P 10.0(1.6) 10.3(1.6) -2.4(2.0) 2.6(1.9)

Full F 8.4(1.3) 8.7(1.3) -3.2(2.3) 3.2(2.3) 25(10)
P 14.3(2.3) 14.8 (2.3) -3.3(2.3) 3.3(2.3)
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Moreover, a negative correlation (r(47)=-.85, p<.001) was found between trunk inclination range
and the difference between Py, 4 and Py, for all conditions (see Fig. 5.5).
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Figure 5.5. Difference between Py.qy and Pp  Figure 5.6. The mean difference between Fgpqg
againstthe trunkinclination range (i.e., the maximal and F;z, compared with the mean differences
difference (i.e., maximum-minimum) in trunk angle due to (changes in) mass distribution and COM
per push averaged over the entire trial) for all accelerations only. The difference is
participants and all conditions. The condition with ~ determined by (Fyrqg - Fir) / Fig-

no trunk motion is indicated by ‘+’, the condition

with moderate trunk motion is indicated by ‘*’, and

the condition with full trunk motion is indicated by

‘0’. The difference is determined by (Pgrqq - Prg) /

Pig.

Relative contribution of changing load distribution and vertical COM accelerations

Substantial differences were observed for the relative contribution of changing load distribution
and vertical COM accelerations to the differences between Fg,.. 4, and Fg (see Fig. 5.6). For full
trunk motion, changes in load distribution caused an underestimation of -0.310 9.4% (MD 3.1%),
while vertical COM accelerations caused an underestimation of -0.2 to 0.2% (MD 0.02%). From
the total difference, 103% (no), 99% (moderate) and 99% (full) is explained by changes in load
distribution, compared to negligible effects (-3%, 1% and 1%) for vertical COM accelerations.
The deviation between Fy,,4 and Fig is thus caused by changes in load distribution only.

Discussion

The first aim of this study was to investigate the relation between trunk motion and the difference
between power calculated from instantaneous rolling resistance, i.e., P;r, and drag test-based
power loss, i.e., Pgq4, during wheelchair propulsion. Comparisons between Pjg and Pyrqg4
showed almost no difference for wheelchair propulsion without moving the trunk (mean
difference [MD]0.611.6%), and a small underestimation of Py, for wheelchair propulsion with
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moderate (MD -2.4+2.0%) and full (MD -3.3+2.3%) trunk motion. A significant negative
correlation was found between the trunk inclination range and the difference between Py,.q 4 and
P;R, indicating a larger underestimation when trunk motion increases. In addition, the results
show that the difference between Py, and Pig (when trunk motion is present) is for 99%
caused by changes in forward-backward load distribution, whereas the effects of vertical COM
accelerations were negligible.

Compared to previous studies, the rolling resistance coefficients, drag forces and power
values as found in the present study were similar to the values reported previously during
treadmill and overground wheelchair propulsion (Mason et al., 2014, Rietveld et al., 2021). In
addition, the larger relative influence of forward-backward load distribution (compared to
vertical COM acceleration, or, total wheel load) was reported by a previous study of de Saint
Rémy et al. (2003). However, their results were based on deceleration tests with different (static)
masses and mass distributions, and the findings were not related to a measured trunk or upper
body motion. The present study is, as far as we know, the first to quantify the relation (and its
underlying mechanisms) between trunk motion and the difference between drag test-based
rolling resistance and actual rolling resistance during wheelchair propulsion.

The present study found an underestimation of 1 to 6% for the drag test-based power loss
when no instructions on trunk motion were given, and a larger underestimation when more trunk
motion was measured. This underestimation can be explained by the differences between the
small castor wheels (high rolling resistance coefficient, i.e., .0147) and large rear wheels (low
rolling resistance coefficient, i.e., .0104 and .0089) in combination with a changing load
distribution. Whereas, in the present study, the rear wheel coefficients were 30-40% smaller
than the front wheel coefficients, the relative differences between rolling resistance coefficients
differ over wheelchairs. In this regard, the underestimation will be smaller when rolling
resistance coefficients become more similar, for instance, due to a lower rear wheel tyre
pressure (see Appendix A). When interpreting rolling resistance or power (loss) based on drag
tests, both trunk motion and the relative difference between rolling resistance coefficients of the
rear and castor wheels should thus be considered.

As drag tests are used to determine rolling resistance in many wheelchair measurements
based on IMUs, ergometers or treadmills, the results of the present study may impact previously
reported results on drag-test based rolling resistance or power loss. For example, Rietveld et al.
(2021) reported differences in rolling resistance for different tennis court surfaces, like grass and
hardcourt. However, as most wheelchair tennis players propel with considerable trunk
movements (Ju etal., 2021), the actual values for rolling resistance during wheelchair propulsion
would be higher than reported by Rietveld et al. (2021). Moreover, as a larger rolling resistance
is associated with increasing trunk motion (Chow et al., 2000), actual differences between
‘resistive’ surfaces and ‘less resistive’ surfaces may also be larger than the ones reported by
Rietveld et al. (2021). In addition, results of studies that compared the effect of tyre pressure on
rolling resistance based on standard drag tests may not be valid as well (de Groot et al., 2013).
As the accuracy of rolling resistance depend on 1) relative differences between rolling resistance
coefficients and 2) amount of trunk motion, which are both intentionally or unintentionally
altered when rear wheel tyre pressure is changed, making comparisons regarding actual rolling
resistance based on drag tests is not valid. Overall, previously reported results regarding rolling
resistance or power that were based on drag-test based rolling resistance should be handled
with caution.

Inwheelchair field sports, the results of the present study may have implications as well.
In disciplines like wheelchair basketball or wheelchair rugby, differences are seen in the amount
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of trunk motion between athletes from different classifications and between accelerating from
standstill versus steady-state wheelchair propulsion (Altmann et al., 2016; van Dijk et al., 2021).
Ignoring the effects of trunk motion may thus lead to an underestimation in power for athletes
with high classifications compared to athletes with lower classifications. In addition, within a
short sprint starting from stand-still, the power during the first pushes will be underestimated
more than the power in the later pushes. When monitoring power in wheelchair sports practice,
and mainly when comparisons between or within athletes are made, trunk motion should be
determined and ideally be corrected for.

For future measurements one may, depending on the extent of trunk motion, correct for
this to obtain accurate rolling resistance (and power) estimates. As the load pins used in this
study are not convenient to use in daily practice, an additional IMU on the chest - in combination
with a proper prediction model - may be used to estimate changing (upper body) mass (and thus
load) distribution. This was already done in one of our previous studies by determining rolling
resistance based on three different drag tests each having a different (known) trunk angle and,
subsequently, determining the relation between trunk angle and drag test-based rolling
resistance (van Dijk et al., 2021). However, no gold standard was determined such that the
accuracy of this method could not be determined. All in all, the underestimated rolling
resistance may be corrected by adding (IMU-based) information on trunk motion.

For the present study, some limitations should be noted. First, all experiments were
executed on a treadmill. However, as several precautions were taken to stimulate natural
wheelchair propulsion (such as using a large treadmill and a respectable familiarization period),
we believe that the relations and conclusions found in this study translate well to the field.
Second, in this study, drag tests were used to determine Fg,4, While, in the field, deceleration
tests are more convenient. As drag tests and deceleration tests are both indirect methods to
determine Fyq4, they should result in the same value when circumstances are equal (Ott &
Pearlman, 2021). Lastly, this study focused on four-wheeled wheelchairs, whereas in wheelchair
racing, another type of wheelchair is used. Because the rolling resistance coefficients of
wheelchair racing wheels are more similar, arm movements may have more influence on the
resistance force, and velocities are higher, our results are not expected to translate well to
wheelchair racing.

Conclusion

During wheelchair propulsion with active trunk movement, ignoring the effects of trunk motion
leads to an underestimated mechanical power of 1 to 6% when this is based on drag test values.
In addition, more trunk motion was related to a larger underestimation of power. Therefore,
depending onthe required accuracy of power output and the amount of trunk motion in the target
group, the influence of trunk motion should be considered. As the power difference was caused
by (trunk motion-induced) changes in load distribution between the front wheels and rear wheels
during wheelchair propulsion, future studies should assess changes in forward-backward load
distribution to obtain accurate rolling resistance and power values.

To conclude, including trunk motion in the mechanical power estimation improves the
accuracy of power output estimations during hand-rim wheelchair propulsion and is crucial to
ensure fair comparisons between and within athletes.
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Appendix A

To assess to what extent the differences between Fy.., and Fjz depend on the relative
difference between front- and rear-wheel rolling resistance coefficients, the treadmill session
and drag tests were repeated two more times with different tire pressures (immediately after the
first set of drag tests). Based on these data, differences between Fy,., 4 and F;r were determined
for the two additional situations in which the tyre pressure of the rear wheel tyres was lowered
with 33% (to 3.5 bar) and 76% (to 1.75 bar), respectively. Table 5.3 shows that when the relative
difference between front- and rear-wheel rolling resistance coefficients becomes smaller, Fy,q g

and F; become more similar.

Table 5.3.

Mean (S.D.) drag force and mean difference (MD) for the three conditions and for different tyre
pressures of the rear wheels are presented. The corresponding rolling resistance coefficients (i.e., ¢)
of the rear and castor (or front) wheels is given. Due to a tyre change after the 9" participant, the first
value for ¢, COrresponds to the participant 1-9, the second value to participant 10-25.

Crront Crear Faog(N)  MD(%)  MD(%)  MD (%)
Trunk motion No Moderate  Full
Normal .0147 .0104-.0089 8.4(1.3) 0.6(1.6) -2.3(2.0) -3.2(2.3)
Tire pressure-33% .0147 .0112-.0100 9.0(1.4) 0.5(1.1) -0.9(4.7) -2.2(2.4)
Tire pressure-76 % .0147 .0139-.0123 10.6(1.6) 0.3(0.4) -0.6(0.6) -0.9(0.8)
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Abstract

Accurate assessment of rolling resistance is important for wheelchair propulsion analyses.
However, the commonly used drag and deceleration tests are reported to underestimate rolling
resistance up to 6% due to the (neglected) influence of trunk motion. The first aim of this study
was to investigate the accuracy of using trunk and wheelchair kinematics to predict the intra-
cyclical load distribution, and more particularly front wheel loading, during hand-rim wheelchair
propulsion. Secondly, the study compared the accuracy of rolling resistance determined from
the predicted load distribution with the accuracy of drag test-based rolling resistance. Twenty-
five able-bodied participants performed hand-rim wheelchair propulsion on a large motor-driven
treadmill. During the treadmill sessions, front wheel load was assessed with load pins to
determine the load distribution between the front and rear wheels. Accordingly, a machine
learning modelwas trained to predict front wheel load from kinematic data. Based on two inertial
sensors (attached to the trunk and wheelchair) and the machine learning model, front wheel
load was predicted with a mean absolute error (MAE) of 3.8% (or 1.8 kg). Rolling resistance
determined from the predicted load distribution (MAE: 0.9%, mean error: 0.1%) was more
accurate than drag test-based rolling resistance (MAE: 2.5%, mean error: -1.3%).
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Introduction

Rolling resistance is an important resistive force in hand-rim wheelchair propulsion and can be
very different between wheelchairs, tyres and surface types [1-4]. Accurately assessing the
rolling resistance is crucial to estimate power output[1, 5] or to optimize wheelchair settings [2].
For this assessment, a drag or deceleration test is commonly used. During a drag test, the force
required to pull a wheelchair across a surface is measured. Likewise, during a deceleration test,
the wheelchair is accelerated to an initial velocity (at which air resistance can still be assumed
negligible) and subsequently passively decelerated. When the deceleration is known and the
wheelchair user does not move, the rolling resistance can be determined from this deceleration
and the total mass. However, recent studies [5, 6] report a difference between rolling resistance
during propulsion and that obtained during these commonly-used tests.

The difference between rolling resistance during propulsion and that obtained during
drag or deceleration tests can be explained by considering a four-wheeled wheelchair which is
typically used for court sports or everyday use (neglecting the anti-tip wheels which only
sporadically hit the ground) and a wheelchair user that actively moves the upper body during
propulsion. As, in such wheelchairs, the front wheels are smaller than the rear wheels, the front
wheels have a higher rolling resistance. Due to this difference, inclining the (relatively heavy)
trunk - which will shift the mass forward and accelerates the centre of mass vertically - causes
the rolling resistance to vary within a push cycle. In addition to upper body motion, a backward
‘tipping over’ moment — that mainly occurs during wheelchair acceleration [7] - may also
influence the load distribution between the rear and front wheels. Since intra-cyclical changes
in load distribution are neglected by drag and deceleration tests, rolling resistance estimates
based on these tests have been found to deviate up to 6% from the actual rolling resistance [6,
8] (see Fig. 1). Note that the extent of upper body movement during wheelchair propulsion varies
greatly among wheelchair users due to differences in trunk impairment [9] or environmental
demands. Therefore, the above-mentioned deviation is only present and relevant for users and
athletes that actively move their trunk during wheelchair propulsion.

As previous studies reported that a 30% difference in tyre pressure in wheelchair tennis
resulted in a 3.3% difference in rolling resistance [3], and a power difference (determined from
rolling resistance times velocity) up to 7% between different wheel configurations [10], a
deviation of 6% is too much to accurately calculate power output or optimal wheelchair settings.
Therefore, more accurate rolling resistance estimates are needed.

To estimate rolling resistance accurately, a continuous determination of load
distribution is required. This might be done by measuring the vertical force on the (front and/or
rear) wheelchair wheels. However, implementing force sensors is complex, expensive, and not
sufficiently robust for wheelchair (sports) practice. An alternative is to measure kinematics and
derive the instantaneous load distribution from that. Whereas marker-based motion capturing
has previously been used for this [5, 11], inertial sensors (IMUs) are preferred as they are less
invasive, inexpensive, and readily used in wheelchair (sports) practice. Upper body motions can
be approximated by IMU-based trunk motion (ignoring arm movements) and wheelchair
kinematics can be obtained from a wheel-mounted IMU [12-14]. However, a model that predicts
load distribution from (IMU-based) trunk and wheelchair kinematics is yet to be developed.

The first aim of this study was to investigate the accuracy of using trunk and wheelchair
kinematics to predict the instantaneous load distribution, and more particularly front wheel
loading, during straight-line hand-rim wheelchair propulsion in a four-wheeled wheelchair. With
this prediction, a more accurate (and instantaneous) estimate of rolling resistance may be
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obtained. Therefore, the second aim of this study was to compare the accuracy of rolling
resistance determined from the predicted load distribution with the accuracy of drag test-based
rolling resistance. In addition, the robustness of this method was investigated for variations in
wheelchair and subject characteristics and trunk use. If the method appears to be accurate and
robust, itcan be applied in each wheelchair (sport) situation to obtain accurate rolling resistance
estimates and, eventually, e.g. power output.

Figure 6.1. Image of ‘actual’ rolling resistance
(black line) and rolling resistance based on a
static drag test (blue line). This image is
adapted from the image reported by Sauret et
al. [1]. Note that -in this example - the drag
test-based rolling resistance is similar to the
average ‘actual’ rolling resistance. However,
depending on the upper body pose during
deceleration or drag test, this value may be
higher or lower.

Materials and methods

Data collection protocol

Experimental data from a previous study on wheelchair propulsion were used in this study [6].
Twenty-five able-bodied participants (19 females, mean (S.D.) age 30 (11) years, mean body
mass 68 (11) kg, body height 170 (7) cm) with no wheelchair experience were included in the
study. Participants propelled the hand-rims of a wheelchair on a large (3.0 x 5.0 m) motor-driven
treadmill, while their kinematics were measured with three IMUs (attached to the participant’s
sternum, the wheelchair’s frame, and right wheel axle) and the front-wheel load was measured
using custom-made load pins (in both front wheel axes). Before the treadmill sessions,
participants received a 10-minute overground wheelchair training to get familiar with the
wheelchair and a 10-minute training on the treadmill (see Fig. 6.2). In addition, drag tests were
performed on the treadmillto obtain rolling resistance coefficients of the (small) frontand (large)
rear wheels.

To simulate different wheelchair characteristics and pushing styles, the treadmill
session was repeated six times with different tire pressures (1.75 bar, 3.5 bar, 5.25 bar) [16] or
added mass (0 kg, 5 kg, 15 kg) [17], see Fig. 6.2, and with three pushing styles (no trunk motion
at 1.2 m/s [style 1], unrestricted trunk motion at 1.2 m/s [style 2], unrestricted trunk motion at
1.7 m/s [style 3] [18, 19]). By following a metronome (25 beats/min in pushing style 2 and 40
beats/min in pushing styles 1 and 3), participants were encouraged to make effective pushes,
which -in style 2 and 3 - were accompanied by forward-backward trunk motion. Each treadmill
session consisted of 30s familiarization to the new situation, after which participants propelled
60s in each pushing style. In this way, a dataset was composed of eighteen (three pushing styles
and six treadmill sessions) 60s-time trials per participant. The order of the treadmill sessions
differed per participant.
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Drag tests were performed at 1.7 m/s, while the participants were instructed to sit as still
as possible for a period of 30s in six conditions to evoke varying load distributions. The drag test
conditions consisted of sitting with an upright trunk and sitting bent forward while no mass was
added, while 10 kg was added at the footrests and while 10 kg was added on the upper legs. The
drag test-based rolling resistance forces, measured by an S-beam load cell, were obtained by
averaging the final ten seconds of each drag test condition. Subsequently, the rear (r) and front
(f) wheel rolling resistance coefficients, ¢, and ¢, were numerically determined by solving Eq.
6.2 based on the average drag force (which equals F; in static situations) and average load pin
force (Fy s ) of the series of drag tests which is similar to previous studies [20, 21]. Accordingly,
¢r and ¢, were used to estimate the gold standard rolling resistance during all treadmill
sessions. Fyy .o, Was assumed equal to total mass times 9.81 m/s*

This study was approved by the ethical committee of Delft University of Technology (Nr.
1530) and written informed consent was obtained from all participants prior to data collection.

Fntor =Fyg + Fnr (6.1)

FIR = Cf * FN,f + Cp * FN,‘I" (62)

Figure 6.2. Schematic
overview of measure-
ments during different
sessions. The ‘original’
treadmill session refers to
the condition with no
added mass (0 kg) and
fully inflated rear wheel
tyres (5.25 bar). Mass (i.e.,
total mass of participant
and wheelchair) was
assessedona1.0x1.0m
force plate.

Instrumentation

All treadmill measurements took place on a large (3.0 x 5.0 m) motor-driven treadmill (Bonte,
Zwolle, the Netherlands) at the Vrije Universiteit Amsterdam. A large treadmill was used to make
participants feel safe to move forwards, backwards and sideways on the belt. An S-beam load
cell (Revere Transducers, Lisse, the Netherlands) was used to measure the horizontal (drag)
forces during the drag tests. An RGK Chrome all-courts wheelchair (13.5 kg, camber angle of 13°)
was used for the measurements. Load pins (Batarow Sensorik, Germany) were integrated in the
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front wheel axes of the wheelchair to measure the vertical load on the front wheels. Three IMUs
(NGIMU, X-io Technologies, Colorado Springs, CO, United States) were used to collect 3D
inertial sensor data with a sample frequency of 100 Hz. In addition, the NGIMU analogue input
channels of the frame-mounted sensor were connected to the load pins to act as power source
and data logger. The load cell was calibrated with known masses at the start of each
measurement day. The load pins were calibrated before each measurement session by
positioning the front wheels on a 1.0 x 1.0 m custom-made strain gauge force plate (while the
rear wheels were positioned on a dummy plate at the same height) [22].

Predicting load distribution between front- and rear wheels

Preprocessing

After data collection, the force plate calibration data were used to convert voltage of the two
individual load pins to vertical force. Subsequently, the summed vertical force on the front
wheels was normalized to percentage of the total vertical force on all four wheels (i.e., total mass
times gravitational force). As vertical accelerations of the upper body were previously shown to
have no effect on rolling resistance [15], vertical accelerations were assumed to be zero.

In addition, predictor features that represented different aspects of trunk and wheelchair
motion were generated based on IMU data (see Table 6.1). Subsequently, all data were 2™ order
low-pass filtered with a cut-off frequency of 3 Hz. This cut-off frequency was chosen based on
the assumption that load is influenced mainly by trunk motion, which has a maximal frequency
of around 2 Hz. The last 60s in each pushing style were analyzed.

Table 6.1.
Overview of the abbreviations and calculation method of all predictor features and outcome feature
that were used in the predictive model.

Predictor feature Determined by
Ve Wheelchair velocity in m/s (Gyroscope signal of IMU around wheel axis -
rear wheel diameter - ) / 360 [13]'
Ay Wheelchair acceleration in m/s? Derivative of v,
Per Trunk inclination angle in rad Based on extended Madgwick filter [8] with B-

value being 0.0015 (if | wheelchair
acceleration| < 0.1 m/s2 for at least 5
consecutive samples) or 0.9635 (otherwise)

Der Angular velocity of trunk (around sagittal Gyroscope signal (around sagittal axis) of
axis) inrad/s trunk-mounted IMU
Der Angular acceleration of trunk (around Derivative of ¢,
sagittal axis) in rad/s?
Agr) Trunk acceleration perpendicular to the Acceleration signal (directed perpendicular to
frontal plane of the trunk in m/s? frontal plane) of trunk-mounted IMU
Ay Trunk caudal-cranial accelerationinm/s*>  Acceleration signal (in caudal-cradial
direction) of trunk-mouned IMU
lae| Magnitude of trunk acceleration vector in Euclidean norm of the three-dimensional
m/s? acceleration signal of the trunk-mounted IMU
subtracted by 9.81
Outcome feature Determined by
ﬁN,f normalized relative front wheel-load in % Force data from the front wheels’ load pins,

calculated as Fy r / Fy ¢or * 100%

'In case of curves and turns, the linear velocity obtained from the wheel should be corrected for turning

using the algorithm described by van der Slikke et al. [13]
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To generate the final dataset, all treadmill session data were sequenced into one large dataset
consisting of the ‘outcome’ feature (relative front wheel load, or F‘Nf ), ‘predictor’ features (v,
Awer Pers Pers Pers Aer, 15 Aery» | A ]), @and ‘descriptive’ variables (participant number, pushing style
and session-type) (see Table 1). The outcome and predictor features were standardized to a z-
score. Since the best predictive model could contain linear or non-linear relations, both linear
methods as well as (non-linear) machine learning methods were examined for predicting the
relative front wheel load from the predictor features.

Training, validation and test set

From the full dataset, three random participants and two test configurations (+5 kg and -1.75
bar, see Fig. 6.2) were removed to act as ‘test’ set for model evaluation in a later stage. The
reduced dataset based on 22 subjects and four configurations was split randomly - while each
treadmill session was kept in the same set - a training set (80% or 66 treadmill sessions) and a
validation set (20% or 17 treadmill sessions). The training set was used to determine the best set
of predictive features to predict the relative front wheel load (ﬁN_f), and to ‘train’ allmodels. The
validation set was used to select the best model and the best model hyperparameters. Finally,
the test set was used once the final model was obtained to determine how well the model
performs on unseen data (i.e., data that was not previously used to train the model or to make
decisions). This was done by comparing the predicted relative front wheel load (and resulting
rolling resistance) with the measured relative front wheel load (and resulting rolling resistance).
The test set was assumed to be representative for any new dataset.

Feature, model and hyperparameter selection

As the inclusion of outcome-unrelated features may result in overfitting, a feature selection was
performed to select the best feature combination. In this study, an exhaustive feature selection
method based on a random forest regressor and 7-fold cross validation (leaving 1/7" of the
subsets out during each iteration) was used. A random forest regressor was used as this model
is fast and robust to overfitting. According to the results of the exhausting feature selection, the
best trade-off between maximal accuracy (more features) and chance of overfitting (less
features) was found with three features: linear wheelchair velocity, linear wheelchair
acceleration and linear acceleration perpendicular to the trunk (i.e., vy, ayc, and a,. ;, see
Table 6.1).

With the above-mentioned three-feature combination, five different model types were
trained on the training set: a simple linear regression model (LR), a random forest regressor
(RFR), a multiple layer perceptron (MLP), a long short-term memory (LSTM) and a gate recurrent
unit (GRU) model. The LR model was used to investigate whether a linear relation may be used
to solve the relation between trunk and wheelchair motion, and front wheel-load. The RFR has
been known as a robust and fast algorithm and may therefore be suitable to predict front wheel-
load. In addition, three (deep) neural networks have been tested. The long short-term memory
(LSTM) and gate recurrent unit (GRU) models both take previous time samples into account,
which mightyield good results as well. MLP, LSTM and GRU have all been proved useful to predict
ground reaction forces from IMU data in walking and running [23]-[28]. After training, the most
predictive model was selected by applying the five models to the validation set data and
determining the mean error (ME; i.e. the mean difference between the observed and predicted
relative front wheel load), mean absolute error (MAE), and root-mean-squared error (RMSE). The
model with the overall best performance was assumed the best model type. To maximize
performance of the final model, hyperparameters were tuned based on the validation set. Lastly,
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the best model type with selected hyperparameters was trained again based on all data from the
training set. The predictions from the final model were evaluated hereafter. Based on the final
model, the relative front wheel load was predicted for all test set data.

Evaluating predicted load distribution

1-How well does the final model predict relative front wheel load?

To determine the accuracy of the model predictions, the relative front wheel load was predicted
for all test set data and compared with the measured relative front wheel load. Differences
between the two values were expressed in ME, MAE and RMSE. To assess whether the modelwas
prone to overfitting, a second version of the final model was obtained based on the training
dataset and a Gaussian noise layer that was added to the original model architecture. A large
difference between the results of both models indicates that the model's output is influenced by
white noise on the input data, and thus overfits the data.

2 - Does adding a trunk-mounted IMU and a prediction model result in a more accurate rolling
resistance estimate than drag test-based rolling resistance estimates?

To convert proportions (%) to absolute normal forces, the proportions were multiplied by Fy ¢o¢,
and subsequently, rolling resistance was calculated according to Eq. 6.1 and 6.2. To evaluate
whether the model improves the rolling resistance estimates, the predicted rolling resistance
was compared to the ‘gold standard’ load pin-based rolling resistance. Secondly, the predicted
rolling resistance was compared to the drag test-based rolling resistance. Therefore, the drag
test-based rolling resistance was determined based on the rolling resistance coefficients that
were determined previously, and the load distribution corresponding to the drag tests in upright
position.

3 - Is the model robust for different wheelchair characteristics and pushing styles?

To evaluate model robustness, the final prediction model was used to predict load distribution
in situations that were not used to train the model with only the participants that were not used
to train the model (i.e., unseen conditions and unseen subjects, so 6 treadmill sessions).
Subsequently, these load distributions were used to determine rolling resistance force. ME, MAE
and RMSE were reported for different propulsion styles and for different wheelchair
configurations (averaged over three ‘unseen’ participants).

Results

In the present study, 143 treadmill sessions were included of which 83 were used to train and
select the final machine learning model (i.e., training and validation set) and 60 were used to
evaluate the results (i.e., the test set). Seven sessions were left out due to incompleteness
(caused by empty batteries or connection errors). As expected, the largest variation (and largest
value) in front wheel load was found for the 3" pushing style that was characterized by the largest
trunk motion (see Table 6.2 and Fig. 6.3). The average front wheel load differed considerably
between participants (see ‘Range’ in Table 6.2). The total mass (participant + wheelchair) in the
testsetwas on average 76.9149.1 kg. Overall, the test set seems a decent reflection of the training
dataset.
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1-How well does the final model predict relative front wheel load?
Exhaustive feature selection resulted in wheelchair velocity, wheelchair acceleration and trunk
acceleration (perpendicular to the frontal plane of the trunk) to be the most predictive features
for relative front wheel loading. With these features, five different model types were trained.
Overall, LSTM turned out to yield the most accurate predictions (see Table 6.3). The
hyperparameter combination that resulted in the lowest MAE value consisted of one hidden
layer, 50 neurons, learning rate of 0.01, batch size of 128, drop out-rate of 0.1, and 20 time steps.
This final model showed an MAE of 3.8+1.8% relative front wheel load corresponding with about
(68 kg * 3.8 =) 2.6+1.2 kg on average compared to the actual measured load on the front wheels,
and an RMSE of 4.4+1.6% (see Table 6.3).

The finalmodel and the second version of the final model in which a Gaussian noise layer
was added resulted in comparable accuracies (see right side of Table 6.3), indicating that the
model does not overfit the data.

Table 6.2.

Mean (variation) and range of relative front wheel loads (expressed as percentage (%) of the total load)
for all participants per pushing style (characterized by the amount of trunk motion, i.e., TM) in the
training & validation and test set. The range consists of the average front wheel load of the participant
with the lowest load and the average front wheel load of the participant with the highest load. The
variation is determined by the average of the standard deviations per person. The values are based on
60s of propulsion per pushing style per person.

Style 1: No Style 2: Moderate Style 3: Full trunk
trunk motion trunk motion motion
Mean (training & validation set) (%) 20.0(4.9) 24.9 (6.9) 27.1(9.2)
Range (training & validation set) (%) 12.8-26.3 14.0-32.1 17.5-35.4
Mean (test set) (%) 20.7 (4.4) 24.0(6.4) 24.9(7.6)
Range (test set) (%) 15.2-26.2 16.3-31.5 17.0-31.2
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Figure 6.3. Typical example of the relative load on the front wheels of the wheelchair (expressed as % the
total mass of the wheelchair and user) of a representative subject in the original wheelchair condition
during one propulsion cycle (0% representing the start of the push) for propulsion style 1 (no trunk motion
at 1.2 m/s), style 2 (normal trunk motion at 1.2 m/s), and style 3 (normal trunk motion at 1.7 m/s).
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Table 6.3.

The results in terms of mean error (ME), mean absolute error (MAE), and root-mean-squared error
(RMSE) of the five model types that were trained to predict the front wheel load as a percentage of the
total mass of wheelchair and user (i.e., RFWL). Models were trained on the training set (with default
hyperparameters) and evaluated on the validation set for which the results are shown.

Evaluated on validation set Evaluated on test set
LSTM
LR RFR MLP LSTM GRU LSTM (final) +
(final) .
noise
ME (RFWL) 1.9 1.8 1.6 1.0 1.2 0.5 0.5
MAE (RFWL) 4.4 3.8 3.4 2.7 29 3.8 3.8
RMSE (RFWL) 5.9 5.1 4.6 3.5 3.6 4.4 4.4
Comp.timeE®(s) 0.0 0.1 0.4 1.8 1.8 - -

2 - Does adding a trunk-mounted IMU and a prediction model result in a more accurate rolling
resistance estimate than drag test-based rolling resistance estimates?

As the third pushing style (full trunk motion) showed larger variations in normal force and has
previously been shown to deviate more from drag test-based rolling resistance estimates, data
are reported for the third pushing style in Table 6.4. The rolling resistance estimates based on
the final (LSTM) model had a similar shape as those based on the gold standard load pin force
(Fig. 6.4). Whereas drag test-based rolling resistance tend to be underestimated (ME of -1.3),
with application of the prediction model these underestimations were absent (ME of 0.1). A
similar trend was seen for MAE and RMSE (see Table 6.4).

Original -3.5 bar + 5 kg
—Gold standard

g 95 ——MD model

e -~ Drag test

2

s 9

=

Es

3

&~ gl

21 22 23 24 25 21 22 23 24 25 21 22 23 24 25

Time (s) Time (s) Time (s)

Figure 6.4a-c. Gold standard rolling resistance (black line), load distribution model-based rolling
resistance (purple line) and drag test-based rolling resistance (dotted line) for the ‘original’ condition,
condition with -3.5 bar tire pressure and condition with + 5 kg added mass.

3 - Is the model robust for different wheelchair characteristics and pushing styles?

Looking at different wheelchair characteristics and pushing styles, again, the deviations with the
gold standard are considerably smaller for the prediction model compared to the drag test-
based rolling resistance (see Fig. 6.4 and Table 6.5). The errors are similar for the different
conditions. Therefore, the model seems to be robust for different unseen characteristics.

112 PART Ill | CHAPTER 6



Table 6.4.

Comparisons between the accuracies of the load distribution model-based rolling resistance (Frouo
modget) @Nd the drag test-based rolling resistance (Frouarag) based on the ‘original’ condition-data from the
test set (pushing style: full trunk motion). Accuracies were determined by comparison with the ‘gold
standard’ load pin-based rolling resistance (Frougold standars) @nd expressed in mean error (ME), mean
absolute error (MAE) and root-mean-squared error (RMSE). The actual gold standard rolling resistance
values were reported as well. The measures are given for each subject in the test set.

Froll,gold standard (N) Froll.LD model © Frolt,gold standard (%) Frotl,drag - Froll,gold standard (%)
ME MAE RMSE ME MAE RMSE
Subject1  8.6(1.0) 0.5 0.7 0.9 1.1 1.4 1.8
Subject2  9.9(1.0) -04 1.0 1.3 -0.4 3.3 4.0
Subject3  9.4(0.9) 0.3 1.0 1.4 23 28 3.9
Mean 9.3 0.1 0.9** 1.2* -1.3 2.5 3.2

*p<0.05 **p<0.01

Table 6.5.

Comparisons between the accuracies of the load distribution model-based rolling resistance (Frouwo
modet) @nd the drag test-based rolling resistance (Frouaag) based on the *-3.5 bar’ and ‘+5 kg’ condition-
data from the test set (for each pushing style). Accuracies were determined by comparison with the
‘gold standard’ load pin-based rolling resistance (Frougowastandara) and expressed in mean error (ME), mean
absolute error (MAE) and root-mean-squared error (RMSE). The actual gold standard rolling resistance
values were reported as well.

PUShing Style Froll,gotd standard I:roll,LD model ~ Froll,gotd standard (0/0) Frcll,drag - Frotl,gold standard (%)
(N)
ME MAE RMSE ME MAE RMSE
-3.5 bar condition
Style 1 8.5(0.7) 0.5 0.8 1.0 0.4 15 1.9
Style 2 8.7(0.8) -0.4 1.0 1.3 -1.1 2.3 2.8
Style 3 8.7(0.8) -0.1 1.0 1.3 1.2 2.7 3.4
+5 kg condition
Style 1 8.4 (0.5) 0.2 1.1 1.3 16 2.7 3.3
Style 2 8.5(0.5) -0.1 15 2.0 -0.2 3.2 3.8
Style 3 8.6 (0.6) 0.2 1.4 1.8 -0.9 3.7 4.5
Discussion

The aim of this study was to investigate the accuracy of using trunk and wheelchair kinematics
to predict the instantaneous load distribution, and more particularly front wheel loading, during
hand-rim wheelchair propulsion, such that - eventually - rolling resistance estimates could be
improved. Based on two inertial sensors (one at the trunk and one at the wheelchair wheel), and
a machine learning model (which is publicly accessible — see Appendix A), the front wheel load
could be predicted up to 2.6% (or 1.8 kg) accuracy (MAE). When this front wheel load is
subsequently used to estimate rolling resistance, rolling resistance estimates have an accuracy
of about 0.9% (MAE) and a mean error of 0.1%, which was significantly lower than the rolling
resistance estimates without the model. Moreover, the robustness of the model was tested for
different wheelchair characteristics and pushing styles. As the accuracy did not differ between
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different wheelchair characteristics and pushing styles (i.e., MAE ranging from 0.8 to 1.5 and ME
ranging from -0.5 to 0.2), we assumed the model to be robust for different circumstances.

The average front wheel loads in the present study (24.9+6.9%) were lower than the
average front wheel loads of about 40% reported by Sauret et al. [8] and Brubaker [29]. This may
have to do with the different types of wheelchairs used. In wheelchairs designed for everyday
use, stability of the wheelchair (not falling over) is often regarded more important than the rolling
resistance of the wheelchair (by limiting the weight on the front wheels), such that the seat (and
thus the centre of mass) is put more forward deliberately. Hence, sports wheelchairs typically
exhibit lower rolling resistances in comparison to everyday use wheelchairs. Besides these
differences, the front wheel load development over a push cycle in the present study is similar
to those reported by Sauret et al. [8]. Overall, our results are well in line with previously reported
values and patterns of front wheel load.

Based on the results of the present study, the front wheel load can continuously be
determined during wheelchair propulsion. In this way, the effects of upper body motion and
wheelchair accelerations on rolling resistance can be incorporated such that accurate rolling
resistance estimates can be obtained. As the presented model makes the rolling resistance
values sensitive to different circumstances (i.e., large vs small upper body motions and high vs
low accelerations), the estimates are more accurate and more individualized than rolling
resistance values determined based on drag or deceleration tests.

An important implication of this higher accuracy and more individualized rolling
resistance is that comparisons between and within wheelchair athletes are much fairer.
Traditional drag test-based estimates lead to unfair comparisons, especially when trunk motion
varies between athletes. For instance, during a sprint, the initial pushes involve higher rolling
resistance due to acceleration and larger trunk inclination, contrasting with periods of constant
velocity with less trunk inclination. Ignoring these variations (as is done during deceleration or
drag tests) results in inaccurate power comparisons within a wheelchair sports team. The
present load distribution model offers more accurate estimates of rolling resistance and power,
ensuring fairer comparisons between and within wheelchair users and athletes compared to
traditional drag test-based methods.

For wheelchair (sports) practice, the presented method is ready to be applied. When
trunk and wheelchair kinematics are obtained (e.g., using inertial sensors), and a set of
deceleration tests is performed to obtain the rolling resistance coefficients, accurate estimates
of rolling resistance can be determined. Subsequently, accurate rolling resistance estimates
can be used to monitor mechanical power or to optimize wheelchair setup and/or tire pressure.
However, it should be noted that the improved rolling resistance estimates with the prediction
model comes with extra information that is required about trunk motion and a machine learning
model that should be executed. As the error based on drag or deceleration tests only - without
incorporating changes in load distribution - is on average 3% (see right side of Table 4), and
differs from 110 6% (as reported in our previous study [6]) this may be accurate enough for some
purposes such as for recreational wheelchair sports or everyday wheelchair use. Therefore,
depending on the required accuracy one may choose to base the rolling resistance on drag- or
deceleration tests only — instead of applying the load distribution model - and accept some
inaccuracies.

Limitations
For this study, some limitations should be noted. First, wheelchairs with different front- to rear-
wheel distances or different seat positions were not tested in the present study. However, as
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front- to rear-wheel distances are assumed to differ <20 cm in general, and a similar front wheel
load pattern was observed in the study of Sauret et al. (2013) with a ‘general use’ wheelchair, we
assume the model is suitable for other wheelchair dimensions. Second, the participants that
were tested in the present study had no disabilities. The model should ideally be tested with
wheelchair users with different movement strategies or different physique (e.g., missing body
parts) to assess whether the model is robust for movement strategies (e.g., non-symmetrical
trunk motion) used by this group. Lastly, participants in this study had no wheelchair experience
which may affect their propulsion technique. However, the estimation of load distribution is
expected to be independent of propulsion technique as it reflects trunk motion and the resulting
centre of mass displacement. Therefore, the experience level of participants will not influence
the translatability of our model to experienced wheelchair users.

Conclusion

In hand-rim wheelchair propulsion, the estimation of the continuous intra-cyclic load
distribution between front and rear wheels could be determined with an accuracy of 3.8% MAE
(or 1.8 kg) based on two inertial sensors and a machine learning model. Rolling resistance
determined from the predicted load distribution (MAE: 0.9%, mean error: 0.1%) was more
accurate than the rolling resistance based on drag tests only (MAE: 2.5%, mean error: -1.3%).
Since the model is based on a relatively large number of participants, a considerable variation in
front wheel load between participants, and different wheelchair characteristics and pushing
styles, the model is considered valid to estimate rolling resistance in a wide range of wheelchair
(sports) situations and for a wide range of wheelchair users.
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Appendix A: Instruction on how to apply the LD model on kinematic data

Step-by-step explanation on how to collect and pre-process IMU data, use the LD model to
predict load distribution, and export the full dataset to a csv-file. The dataset that was used for
the current study is publicly available via: 10.4121/bc9a8588-5e50-4dff-aa77-5114ff7626f7.v2.

1. Download model from: 10.4121/14883927.v1
2. Collect kinematic data
- of coast-down tests with different (known) load distributions
- of the situation / actions of interest (if IMUs are used to collect the data: Attach one
IMU to the wheelchair wheel axle, one IMU to the center of the wheelchair frame and
one IMU around the chest against the sternum)
3. Determine from the data:
- Therolling resistance coefficients per pair of wheels
- The acceleration vector perpendicular to the trunk
- The wheelchair velocity
- The wheelchair acceleration
- Time
4. Save the above-mentioned variables in the following order:
i.e., df["samples","time","v_wc", "a_wc", "trunk_acc_3"]
5. Runthe code below in Python
6. Done
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Abstract

This study examined associations between wheelchair sprint and anaerobic power (measured
in the lab) and wheelchair mobility performance (measured in the field) among wheelchair
tennis players. Additionally, construct validity was assessed for all tests. Nine amateur and nine
elite wheelchair tennis players performed a Sprint and Wingate test on a wheelchair ergometer
in the lab and a Sprint, Illinois and Spider test in the field, with inertial measurement units
mounted on their wheelchairs. Associations were assessed using regression analyses, while
construct validity was assessed with an independent t-test (elite vs. amateur). The strongest
associations were observed between lab outcomes and field sprint power output (R2 > 90%),
followed by peak linear velocity and test duration (R2 = 77-85%), while peak rotational velocity
showed the lowest associations with lab outcomes (R2 = 69-80%). The elite group outperformed
the amateur group on all test outcomes. Despite differences in lab- and field-testing
methodologies (e.g., trunk influence, linear/rotational components, skill involvement), the
strong associations indicate overlap in measured constructs. While field testing provides
valuable insight in practical performance, lab testing allows a broad additional array of in-depth
biomechanical and physiological analyses. Furthermore, all tests could effectively discriminate
between elite and amateur wheelchair tennis players.
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1 Introduction

Wheelchair tennis has been incorporated in the programs of all four Grand Slam tennis
tournaments and the Paralympics Games. Wheelchair tennis distinguishes from able-bodied
tennis, using a wheelchair and a second allowed bounce before contact. Wheelchair tennis
demands linear velocities, accelerations and rotations of the wheelchair-user combination.” The
anaerobic energy system is assumed to be crucial for this short-term work and wheelchair skills
are required for high velocities and rotations.?® To gain insights into their performance,
wheelchair tennis players and their coaches can monitor these characteristics through testing,
either in a standardized laboratory or natural field environment.*®

Lab testing offers researchers standardized conditions to collect detailed physiological,
kinetic or kinematic data.” Wheelchair sprint and anaerobic power are commonly assessed
using Sprint and Wingate tests on a computer-controlled wheelchair ergometer.® Such a
wheelchair ergometer accommodates the player’s sports wheelchair and measures mechanical
power output.® To achieve velocities similar to those experienced on court, the Sprint test is
performed against a resistance that aims to mimic realistic overground conditions. Conversely,
a Wingate test is performed against a higher resistance, which decreases rim velocity, thereby
limiting upper-body coordination difficulties at higher velocities, allowing higher power
production.

Field-testing is conducted on-court, is easier to perform and is suggested to enhance
externalvalidity.® Wheelchair mobility performance, i.e., the wheelchair player’s ability on-court,
can be systematically tested using a 10m straight Sprint test, Illinois agility test and Spider
manoeuvrability test.® Attaching inertial measurement units (IMUs) to the wheelchair enables
assessment of dynamic aspects like linear and rotational accelerations and velocities." Recent
work by van Dijk et al. (2023) showed that, using the same IMU set-up, with one additional IMU
on the trunk, power output per push during straight-line sprinting can be determined.’>' The
Sprint test gives insight in linear velocities and power output, the Illinois test assesses linear and
rotational velocities and the Spider test focuses on rotational velocities. These field tests are
construct-valid, meaning that they can distinguish between elite and youth athlete
performances.®

Tests conducted under lab and field conditions are thought to be complementary,
allowing us to benefit from their respective strengths. The previous discussed lab and field tests
clearly show overlap in their tested constructs. All tests are of short duration (< 40s), implying
they mostly rely on anaerobic power output.? Moreover, all tests are performed in the player’s
own sports wheelchair, without altering the wheelchair-user interface.’ Additionally, with
exception of the Wingate test, all tests are performed with a racket and high (linear or rotational)
velocities are achieved that require a certain skill level. Besides similarities, differences exist.
During wheelchair propulsion in the field, the athlete’s weight constantly shifts between the
smaller front wheels and the larger rear wheels, leading to fluctuating rolling resistances (with
the smaller wheels experiencing more resistance).’ Conversely, in a lab setting, the large rear
wheels of the wheelchair are strapped onto the rollers of the wheelchair ergometer, resulting in
a more constant rolling resistance. Furthermore, when fixed on the wheelchair ergometer, the
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influence of the player’s trunk is constrained, rotational aspects cannot be assessed and there
is no need for small steering adjustments to prevent or correct directional errors. Conversely, in
the field, trunk motion has a greater impact, rotational movements are involved, and immediate
self-correction is essential to address directional errors."®

These similarities and differences lead to the question whether both testing
environments together provide a more in-depth understanding of the players performance.
Assuming a degree of overlap between the test environments, detailed power output analyses in
the lab can directly be used for on-court training, for example, an inefficient stroke pattern with
high negative and peak powers can be distilled from lab testing and should be a focus point for
training.” To our knowledge, only one study associated the performance (mean and peak power)
on a wheelchair-specific Wingate test with time needed to perform a 20 meter Sprint and an
agility test, and found good associations in wheelchair basketball players.'

The current study aims to examine associations between wheelchair sprint and
anaerobic power, assessed in a standardized lab-environment, and wheelchair mobility
performance, assessed in the field, among experienced wheelchair tennis players. It is
hypothesised that the strongest associations will be found between the power output and
velocity of lab tests (Sprint and Wingate) and the power output, velocity, and test duration of the
field Sprint test. Weaker associations are expected between the power output and velocity of lab
tests (Sprint and Wingate) and the peak linear velocity, peak rotational velocity and test duration
of the Illinois and the Spider test. Furthermore, construct validity will be assessed comparing an
elite and amateur adult wheelchair tennis group. It is expected that, in line with Rietveld et al.
(2019), elite athletes will achieve a higher power output and linear and rotational velocities in
the field, resulting in faster end times.® In the lab, elite athletes are expected to achieve higher
power output and velocities, compared to amateur players.

2 Material and methods

2.1 Participants

Wheelchair tennis players (elite and amateur players) were included in this cross-sectional
study between May 2022 and July 2023. Inclusion criteria were to practise wheelchair tennis on
a regular basis (at least one time a week) and the absence of medical contra-indications
according to the Physical Activity Readiness Questionnaire (PAR-Q, ACSM: 2009). The local
ethics committee of the Centre for Human Movement Sciences, University Medical Centre
Groningen, University of Groningen, the Netherlands approved the study protocol (202000455).
All participants gave their written consent prior to participation.

2.2 Measurement set-up

Lab measurements were performed in two different laboratories with similar facilities (University
Medical Centre Groningen and Reade Rehabilitation centre Amsterdam). Field tests were
performed at different training facilities (National Tennis Centre Amstelveen, Drachtster Lawn
Tennis Club Drachten and Tennis and Squashclub Haren) on the same acrylic hardcourt surface.
There was a minimum period of two days and a maximum of one month between lab and field
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measurements. For both testing modalities (lab and field), players used their own sports
wheelchair and racket. Before testing, tires of the wheelchair were inflated up to their
recommended pressure.

2.2.1 Standardized lab testing

The computer-controlled Esseda wheelchair roller ergometer was available at both testing
locations and used for testing (Fig. 7.1, Lode BV, Groningen, The Netherlands). This commercial
dual-roller wheelchair ergometer provides an accurate individual simulation of inertia and
resistance, while allowing for accurate measurements (100 Hz) of both left and right-hand
propulsion characteristics.® Before each test, the individual-wheelchair combination was
calibrated on the ergometer to account for static and dynamic friction.®

2.2.2 On-court field testing

Inertial Measurement Units (IMU) were placed on the hub of both wheels, the frame of the
wheelchair and the chest of the participant (Fig. 7.2)."" The IMUs consist of a gyroscope,
accelerometer and magnetometer. The three IMUs on the wheelchair allow measurements of
covered distance, and linear and rotational velocities over time. The IMU on the chest was used
to calculate the orientation of the trunk with respect to the global earth frame, which was used
to determine power output with more accuracy.' All data were collected at 200Hz via Wi-Fi,
which enabled all four IMUs to collect data synchronously.

Figure 7.1 (left). Wheelchair tennis
player in sports wheelchair on
Esseda wheelchair ergometer

Figure 7.2 (right). Placement of
three Inertial Measurement Units
on wheelchair and a 4" on the
player’s chest

2.3 Test protocols

2.3.1 Standardized lab testing

After a familiarisation period of five minutes, participants were asked to perform three tests on
the wheelchair ergometer: 1) an isometric strength test without racket, 2) a 10s Sprint test with
racket and, 3) a 30s Wingate test without racket. These test protocols are extensively described
by Janssen et al (2022).* In short, regarding the isometric strength test, players are instructed to
exert maximum force on the hand rime three times with both hands for a duration of 5s, pushing
along the tangential direction of the hand rim. The 10s Sprint test from a standstill was performed
on a resistance resembling the resistance typically found on an average gym court (resistance
coefficient = 0.012). Because the current test was part of a larger standardized test battery for
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wheelchair athletes of multiple sports, resistance was not similar to an indoor tennis court,
which has a slightly lower resistance coefficient of 0.008." Lastly, the 30s Wingate test, also
from a standstill, was performed against a high individualized resistance, based on their
performance on the isometric strength test.* In the current study, the isometric strength test was
solely used to calculate the Wingate resistances but was not used as outcome measure in the
current study.

2.3.2 On-court field testing

Participants were asked to complete three field tests: a 10m Sprint test, an Illinois test and a
Spider test, all with racket. Each test was performed twice. These tests are specifically
developed for wheelchair tennis and extensively described by Rietveld et al. (2019) (Fig. 7.3).
Although analysing the average of the two attempts is considered the most reliable approach for
these field tests®, not all included players showed consistent performance in the two tests,
resulting in instances where two good attempts were not achieved. Consequently, the test with
the fastest end time was chosen for further analyses. Before every test, players stood still with
the castor wheels behind the starting line and completed the trajectory as fast as possible. After
each trial there was a resting period of at least 2 minutes.

Figure 7.3. Lay-out of set up and trajectory of the three field tests.

To be able to determine power output during the 10m Sprint test, four coast-down trials were
performed to determine drag forces.?® Players were instructed to push the wheelchair with two
pushes, place theirhands ontheir knees, sit as still as possible and let the wheelchair decelerate
naturally for a minimum of two seconds. The first two trials were performed in an upright position
during deceleration, and in the last two trails, players were instructed to bend forward during
deceleration. This was performed to evoke a variance in load distribution, such that the rolling
resistance coefficients of each pair of wheels could numerically be solved.?'

2.4 Data analyses
All analyses were done with custom-written Python scripts, all used functions can be found in
the following two packages: Worklab and Wheeltennis.??2
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2.4.1 Standardized lab testing

Torque and velocity data were directly measured from the wheelchair ergometer and filtered
using a fourth order low-pass Butterworth filter with a cut-off frequency of 10Hz.%* The
instantaneous mechanical power output (PO [W]) at each side was calculated from the
measured torque (M [Nm]), wheel radius (r. [m]) and wheel velocity (vw [m-s™]):

PO = Mx*7,"txy, (7.1)

Regarding the 10s Sprint test, only data of the first 10m was analysed for more resemblance with
the 10m Sprint test in the field. Sprint peak velocity (vVpea[M.s]) was calculated over the average
of left and right wheel velocity, as the highest peak sample. Average Sprint power output (POmean
[W-kg]) and Wingate anaerobic power (P30 [W-kg']) were calculated as the sum of left and right
wheel, averaged over 10m or 30s, respectively, and divided by body mass.

2.4.2 On-court field testing
Start time for every test was defined as when initial linear velocity exceeded 0.1 m-s™". End time
for the 10m Sprint test was defined as the moment when the average distance covered by hoth
wheels was 10m. For the Illinois and Spider test, end times were set based on analyses of plots
created in Python (Fig. 7.2). A zero line was set at the starting point, when this line was crossed
at the end of the trial, time was automatically defined.®

The three-dimensional gyroscopes of the four attached IMUs were used to derive all
variables. Data was filtered with a low-pass second order recursive Butterworth filter with a cut-
off frequency of 10Hz."* Due to the camber angle and horizontal rotations of the sports
wheelchair, angular wheel velocity was first corrected using the sinus of the camber angle and
the gyroscope data of the frame sensor in the Z-direction (Eq. 7.2).%° Linear velocity (vin[m-s™])
was subsequently calculated from angular wheel velocity (vang [°-5']) and wheel circumference
(WC [m]) (Eq. 7.3). Rotational velocity (vt [°-s™]) was directly obtained from the GyroZframe.?

Vang = (GYT0Yypeer + sin(camber)) * GyroZsyrgme (7.2)
Viin = WC /360° * Ugng (7.3)

Cycle-average mechanical power (PO [W]) was determined by summing the power losses due to
resistive force and the change in kinetic energy. As the wheelchair is assumed to have no angular
rotations during the sprint, air resistance is assumed negligible, and the floor is assumed flat, PO
was determined by summing the power loss due to rolling resistance (F..u [N]) and the change in
kinetic energy (Eq. 7.4). F.ou Was determined from the coast-down tests and corrected for trunk
inclination to obtain realistic rolling resistance forces.’®2' The change in kinetic energy was
determined from wheelchair velocity (vin [M-s]) and total mass of wheelchair and user (Mt
[kg])." Cycle time is represented by T [s]. To obtain cycle-average power output, the weighted
average of power output per cycle was calculated.
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T 1
PO = (I/T) * fo —Frou * Vyn + at (0.5 % mygpqy * Uanz) (7.4)

Mean power output (POmean [W]) was only calculated for the Sprint test. Peak linear velocity (Vpeak-
in[mM-s7]) was calculated for the Sprint and Illinois test and peak rotational velocity (Vpeakrot[°-5™"])
for the Illinois and Spider test. Test duration [s] was an outcome measure for all three field tests.

Table 7.1.
Participant characteristics

N or mean (SD)

Elite group Amateur group
Men /woman (N) 5/4 5/4
Age (years) 23(7) 42 (18)
Body mass (kg) 61(7) 81(21)
Wheelchair tennis experience (years) 10(8) 13(13)

2.5 Statistical analyses

All statistical analyses were done using Python 3.8 (Python Software Foundation). Average and
standard deviation for the outcomes were calculated, separately for elite and amateur players.
All data were normally distributed (Shapiro-Wilk test). To check for systematic differences
between elite and amateur players (e.g., construct validity), an independent t-test with
Bonferroni correction was performed. This implies that the chosen alpha level (0.05) was divided
by the amount of t-tests (i.e., eleven for construct validity).?” Significance level for the t-test was
thus setat 0.05/11 = 0.0045.

Linear or curvilinear regression analyses were performed between outcome variables
from standardized lab tests versus the outcome variables from on-court field tests. The
regression (linear or curvilinear) with the highest explained variance (R?) was reported. Lastly,
since mean power output and peak linear velocity were identical variables for lab and field
sprints, a dependent t-test was used to check for systematic differences.

3 Results

All participants completed all lab and field tests, which led to a total of eighteen wheelchair
tennis players in this study, nine elite and nine amateur players (Table 7.1). Due to technical
issues of the wheelchair ergometer two participants had missing data for the 10s Sprint lab tests,
and one participant had missing data for the Wingate test. Power output of the 10m field Sprint
test was missing for six players. Three elite players did not perform the coast-down tests, two
amateur players had pushes in their coast-down tests and for one amateur player, the data file
was corrupted. Table 7.2 reports the main test outcomes and typical examples of the lab and
field tests results are displayed in Fig. 7.4. The independent t-test showed that the elite group
performed consistently better on all tests, compared to the amateur group (Table 7.2, p <0.001).
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Table 7.2

Primary test outcomes for the Sprint and Wingate test in the lab, and for the Sprint, Illinois and Spider
testin the field. Differences between the amateur group and elite group are significant (p < 0.001) for

all tests.
Amateur group Elite group

N Mean (SD) N Mean (SD)
Lab tests
Sprint test
POmean [W-kg "] Average power over 10m 8 1.1(0.5) 8 2.2(0.6)
Vpeak [M-S™'] Peak velocity over 10m 8 2.6(0.4) 8 3.5(0.4)
Wingate test
P30 [W-kg"] Average power over 30s 8 1.2(0.5) 9 2.5(0.4)
Field tests
10m Sprint test
POrmean [W-kg "] Average power output 6 0.8(0.3) 6 2.3(0.4)
Vpeakeiin [M-S7] Peak linear velocity 9 3.2(0.6) 9 4.6(0.4)
Test duration [s] Total time needed 9 4.9(0.6) 9 3.5(0.2)
Illinois test
Vpeak-in[M-S™] Peak linear velocity 9 2.8(0.4) 9 4.0(0.4)
Vpeakrot[°+S7'] Peak rotational velocity 9 173(17) 9 240 (21)
Test duration [s] Total time needed 9 31.3(6.7) 9 18.9(1.3)
Spider test
Vpeakrot [°+S™'] Peak rotational velocity 9 176 (24) 9 260 (23)
Test duration [s] Totaltime needed 9 24.4(3.8) 9 15.6(1.2)

Figure. 7.4. Typical example of outcomes from lab (top row) and field tests (row below). Velocity is shown
in red, power output in green and completed trajectory in black. Peak linear and rotational velocity is
annotated and the Illinois and Spider test are highlighted when linear velocity is above 3 m/s (purple) or
rotational velocity is above 180 °/s (light blue).
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3.1 Associations among lab and field tests

All associations were determined with seventeen or sixteen individual data points, except for the
power output of the field sprint with the lab tests; those three regressions were constructed with
only eleven individuals.

The strongest associations (R? > 90%) were found for the power output in the field Sprint
test with all three lab outcomes. Peak linear velocity and time needed for all field tests showed
slightly lower explained variances (R? = 77-85%) with the three lab outcomes. Peak rotational
velocity showed the lowest explained variances (R? = 69-80%) with lab outcomes. Fig. 7.5 shows
the associations between the lab and field test outcomes.

Peak linear velocity and average power output were both measured in the lab and field
sprints and a line of identity is shown in these two plots in Fig. 7.5 (dotted line). Peak linear
velocity was on average significantly 26 = 14 % higher in the field sprint (p < 0.001) and mean
power output was not significantly different in the field sprint (p = 0.31), compared to the sprint
in the lab.

Figure 7.5. Association between lab and field test outcomes. Lab tests are displayed at the vertical axis,
field tests at the horizontal axis. Plots are annotated with the explained variance (R?), if the curvilinear
regression gave the best fit, an # is added to the R2. Two plots show the line of identity (dotted line)
because POmean and vpeak Were measured in both lab and field sprints. Orange dots designated the amateur
players and blue doths are elite players.

4 Discussion

The associations between wheelchair sprint and anaerobic power, assessed within a lab setting,
and wheelchair mobility performance, evaluated on the field, are strong for experienced
wheelchair tennis players. As expected, the field Sprint test outcomes showed the strongest
associations with the lab Sprint and Wingate test outcomes. However, the Illinois and the Spider
test outcomes, which mainly focused on rotational velocities and require different skills, also
showed strong associations with the lab tests outcomes. Thus, although there are some
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differences in set up between lab and field testing (i.e., influence of trunk, linear or rotational
components, skill involvement), the strong associations show that these tests partly measure
the same construct (i.e., sprint performance, anaerobic power and wheelchair mobility).
Furthermore, the expected construct validity of both lab and field tests was confirmed, as all
tests outcomes differentiated between elite and amateur players.

Associations between results of the wheelchair-specific lab and field test battery were
strong. As far as we know, only one previous study reported wheelchair-specific associations
between a Wingate test and field sprint test among wheelchair basketball players and found
comparable associations (R? = 86% in their study, compared to 85% in this study).”® No
wheelchair-specific studies investigated the relation with more-rotational based tests, like the
Illinois and the Spider test, but the strong associations in the current study showed that there is
overlap in test requirements. In contrast, studies using an arm-crank ergometer for the Wingate
test exhibited weaker associations with linear field wheelchair sprints (R = 48%) and wheelchair
agility field tests (R? = 32%).%%% The stronger associations between wheelchair-specific testing
modalities highlights the need for wheelchair-specific lab testing methodologies, instead of arm-
cranking.

The current study additionally showed the construct validity of both lab and field tests,
which means that a distinction can be made between amateur and elite players. This validation
aligns with findings reported by Rietveld et al. (2019) on wheelchair tennis field tests and extends
it to lab testing.® Although groups differed significantly from each other, regression analyses
were conducted on the entire group of players without playing level as confounder, due to the
small sample size. To examine the influence of playing level on the associations, a larger sample
size should be included. The current study already showed some curvilinear relations (Fig. 7.5),
suggesting an influence of playing level. Curvilinear associations were found between test
duration of the 10m field Sprint, Illinois and Spider tests with the lab Sprint and Wingate test (Fig.
7.5), indicating that amateurs perform relatively better in the lab but require more time for the
field tests. The higher skill level of elite players becomes more apparent in field tests. After
making an error when pushing the hand rim, immediate correction is needed in the field, whereas
these adjustments are not necessarily required on the wheelchair ergometer.

Graphs for sprint velocity between lab and field differ in amount of deceleration after
every push (Fig. 7.4). In the lab, the wheelchair is fixed to the wheelchair ergometer and allows
no movement in relation with the trunk. Conversely, in the field, the wheelchair counteracts with
the movement of the trunk and thus exaggerates the actual velocity of the total wheelchair-user
combination, both in a positive and negative direction. Moreover, rolling resistance is assumed
close to constant on the wheelchair ergometer (rear wheels are strapped onto the rollers), but
fluctuating in the field because the mass of the user shifts between the smaller front castor-
wheels (that have a larger rolling resistance) and the larger rear wheels. Not only deceleration
after every push differed, peak velocity was also significantly higher in the field (26 + 14 %). This
can at least partly be explained by the lower resistance coefficient of 0.008 on hard-court,
compared to 0.012 used on the wheelchair ergometer.' Future studies should use similar
resistances to better isolate and investigate the impact of trunk motion.
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In contrast to velocity, mean power output did not differ significantly between lab and
field sprints. Power output also showed a strong association between lab and field (R? = 92%).
Caution is warranted in the interpretation of the association due to the limited data for power
output in the field (N=11) and clustering among players in the scatter plot, i.e., amateur players
are in the lower left corner, elite players in the upper right corner (Fig. 7.5). The analysed players
exhibited values closely aligned with the line of identity (indicating similar values in both lab and
field sprints, as shown by the dotted line in Fig. 7.5) and did not show a significant difference in
POmean (p = 0.31). Therefore, it is expected that any missing values in the current study
(specifically, six out of eighteen values were missing for field power output) would also fall near
this line of identity, thereby preserving the strong association. Wheelchair tennis players may
encounter varying levels of rolling resistance, arising from different surfaces or slight disparities
in tyre pressure, that will influence the achieved velocity.' In contrast, while power output takes
rolling resistance and velocity into account, it emerges as a more objective measure to utilize.

Practical implications
Strong associations suggest that detailed biomechanical analyses from lab testing can guide
training to improve player’s wheelchair mobility on-court. Lab testing offers unique advantages,
including detailed power output, independent left-right measurements, and its suitability for
tests against higher resistances. Detailed power output can, for example, be used to analyse
negative and peak power output during wheelchair propulsion with a tennis racket, which has
led already to the development of a new, more efficient hand rim for wheelchair tennis.” The lab
setting, without the need for immediate corrections due to directional errors, provides players
with more insights into their maximal capacities for the left and right arm separately.*® Lastly,
higher resistance tests in the lab can be used to measure anaerobic power and to construct
force-velocity curves, informing whether players should prioritize training on force or velocity.®

Where lab tests can give a deeper understanding of the biomechanics behind a sprint,
field tests show the wheelchair mobility on-court, including linear and rotational aspects. An
earlier study distracted six key mobility components during wheelchair tennis matches and
found that four of them were based on rotations, that can only be tested in the field." Moreover,
field tests are also more similar to match situations, as it is performed on the same court as
matches, resulting in a higher ecological validity. Lastly, field testing demands immediate
correction when deviating from the desired trajectory and requires thus more skill compared to
lab testing.®

Furthermore, combining both testing environments will give a complete overview of the
players’ performance and it can also provide direction for training. Lab and field tests outcomes
showed strong associations, but there also remains an unexplained variance (1 - R?), due to test-
retest variation and to the different focus of the tests.3? Because elite players are often seeking
for the last few percentages to improve their performance, they will benefit from both lab and
field testing, while for amateur players, field tests may also be sufficient to track performance.
Additionally, looking at the constructed regression lines, those to the right of the ‘rotational
velocity-anaerobic power trend line’ excelin rotational skills, suggesting power-focused training,
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whereas those with higher power but less rotational skills could benefit more from rotational
(skill) training.

To track wheelchair performance, it is recommended to adopt the field test battery,
which is easier to perform, regularly throughout the season (e.g., four times a year). Lab testing
should complement this regimen for more in-depth biomechanical analyses. Due to the strong
associations between lab and field outcomes and the increased effort required for lab visits, the
frequency of lab testing may be less frequent, such as twice a year. Lab tests are ideally
performed around the same time as the field tests, or conducted when specific biomechanical
questions arise.

Future research

The current research focused on standardized wheelchair performance testing. However, the
actual performance takes place during competition what requires a holistic integration of all
skills such as sprinting, rotating, racket handling, and tactical decisions.>*3* A next step would
be to investigate how much these standardized lab and field tests contribute to wheelchair
tennis match performance. Additionally, current methods for determining power output are
established for straight-line sprints. As turning involves unknown factors such as rotational
inertia and increased rolling resistance due to e.g. slipping, the accuracy of IMU-based power
estimation during turning is yet to be determined.® Further developments are necessary to
extent power monitoring to turning, enabling objective assessments in tests, training sessions,
and competitions for a comprehensive understanding of the players’ workload throughout their
season.

Conclusion

Associations between wheelchair lab sprint and anaerobic power with wheelchair mobility field
performance are strong among a group of experienced wheelchair tennis players. Although there
are some differences between lab- and field-testing methodologies (i.e., influence of trunk
motion, linear and rotational velocity profile, skill involvement), the strong associations indicate
overlapping measured constructs (i.e., sprint performance, anaerobic power and wheelchair
mobility). This implies that field testing provides us with valuable wheelchair mobility insights,
and lab testing gives a broad additionally array of in-depth biomechanical and physiological
analyses. Construct validity of both lab and field tests was confirmed, as all tests outcomes
differentiated between elite and amateur players.

References

1. Rietveld T, Vegter RJK, van der Slikke RMA, Hoekstra AE, van der Woude LH V, de Groot S.
Six intertial measurement unit-based components describe wheelchair mobility
performance during wheelchair tennis matches. Sport Eng. 2023;26(32).
doi:https://doi.org/10.1007/s12283-023-00424-6

2. Gastin P. Energy system interaction and relative contribution during maximal exercise.
Sport Med. 2001;31(10):725-741.

3. Janssen RJF, de Groot S, Van der Woude LHV, Houdijk H, Goosey-Tolfrey VL, Vegter RIK.

COMPARING LAB AND FIELD TESTS IN WHEELCHAIR TENNIS 133



10.

11.

12.

13.

14.

15.

16.

17.

Force-velocity profiling of elite wheelchair rugby players by manipulating rolling
resistance over multiple wheelchair sprints. Scand J Med Sci Sport. 2023;33(8):1531-
1540. doi:10.1111/sms.14384

Janssen RJF, Vegter RJK, Houdijk H, Van der Woude LHV, de Groot S. Evaluation of a
standardized test protocol to measure wheelchair-specific anaerobic and aerobic
exercise capacity in healthy novices on an instrumented roller ergometer. PLoS One.
2022;17(9):e0274255. doi:10.1371/journal.pone.0274255

Rietveld T, Vegter RJK, van der Slikke RMA, Hoekstra AE, van der Woude LHV, De Groot S.
Wheelchair mobility performance of elite wheelchair tennis players during four field
tests: Inter-trial reliability and construct validity. PLoS One. 2019;14(6).
doi:10.1371/journal.pone.0217514

Van der Slikke RMA, Sindall P, Goosey-Tolfrey VL, Mason BS. Load and performance
monitoring in wheelchair court sports: A narrative review of the use of technology and
practical recommendations. EurJ Sport Sci. Published online 2022.
doi:10.1080/17461391.2021.2025267

de Klerk R, Vegter RIK, Goosey-Tolfrey VL, et al. Measuring handrim wheelchair
propulsion in the lab: A critical analysis of stationary ergometers. IEEE Rev Biomed Eng.
2020;13:199-211. doi:10.1109/RBME.2019.2942763 LK

van der Woude LHV, Houdijk HJP, Janssen TWJ, et al. Rehabilitation: mobility, exercise &
sports; a critical position stand on current and future research perspectives. Disabil
Rehabil. 2021;43(24):3476-3491. doi:10.1080/09638288.2020.1806365

de Klerk R, Vegter RIK, Veeger HEJ, van der Woude LHV. Technical note : a novel servo-
driven dual-roller handrim wheelchair ergometer. IEEE Trans Neural Syst Rehabil Eng.
2020;28(4):1-9. doi:10.1109/TNSRE.2020.2965281

Bar-Or O. The Wingate Anaerobic Test An Update on Methodology, Reliability and
Validity. Sport Med. 1987;4(6):381-394. doi:10.2165/00007256-198704060-00001

van der Slikke RMA, Berger MAM, Bregman DJJ, Lagerberg AH, Veeger HEJ. Opportunities
for measuring wheelchair kinematics in match settings; reliability of a three inertial
sensor configuration. J Biomech. 2015;48(12):3398-3405.
doi:10.1016/j.jpbiomech.2015.06.001

van Dijk MP, Hoozemans MJM, Berger MAM, Veeger HEJ. From theory to practice:
monitoring mechanical power output during wheelchair field and court sports using
inertial measurement units. J Biomech. 2023;(January).

van Dijk MP, Kok M, Berger MAM, Hoozemans MJM, Veeger DJHEJ. Machine Learning to
Improve Orientation Estimation in Sports Situations Challenging for Inertial Sensor Use.
Front Sport Act Living. 2021;3(August). doi:10.3389/fspor.2021.670263

Mason BS, Van Der Woude LHV, Goosey-Tolfrey VL. The ergonomics of wheelchair
configuration for optimal performance in the wheelchair court sports. Sport Med.
2013;43(1):23-38. d0i:10.1007/s40279-012-0005-x

Van Dijk MP, Van Der Slikke RMA, Berger MAM, Hoozemans MJM, Veeger HEJ. Look
Mummy, No Hands! the Effect of Trunk Motion on Forward Wheelchair Propulsion. 39th
Int Soc Biomech Sport Conf Canberra, Aust. Published online 2021:312-315.
https://commons.nmu.edu/isbs/vol39/iss1/80

Dijk MP Van, Hoozemans MJM, Berger MAM, Veeger DHEJ. Trunk motion influences
mechanical power estimates during wheelchair propulsion. J Biomech.
2024;163(January):111927. doi:10.1016/j.jpiomech.2024.111927

Rietveld T, Vegter RJK, van der Woude LHV, de Groot S. A newly developed hand rim for

134

PART Ill | CHAPTER 7



wheelchair tennis improves propulsion technique and efficiency in able-bodied novices.
Appl Ergon. 2022;104(January):103830. doi:10.1016/j.apergo.2022.103830

18.  Vanlandewijck YC, Daly DJ, Theisen DM. Field test evaluation of aerobic, anaerobic, and
wheelchair basketball skill performances. Int J Sports Med. 1999;20(8):548-554.
doi:10.1055/5-1999-9465

19. Rietveld T, Mason BS, Goosey-Tolfrey VL, van der Woude LHV, de Groot S, Vegter RIK.
Inertial measurement units to estimate drag forces and power output during
standardised wheelchair tennis coast-down and sprint tests. Sport Biomech.
2021;00(00):1-19. d0i:10.1080/14763141.2021.1902555

20. deKlerkR, Vegter RIK, Leving MT, de Groot S, Veeger DHEJ, van der Woude LH V.
Determining and Controlling External Power Output During Regular Handrim Wheelchair
Propulsion. J Vis Exp. 2020;(156). doi:10.3791/60492

21.  SauretC, Vaslin P, Lavaste F, de Saint Remy N, Cid M. Effects of user’s actions on rolling
resistance and wheelchair stability during handrim wheelchair propulsion in the field.
Med Eng Phys. 2013;35(3):289-297. d0i:10.1016/j.medengphy.2012.05.001

22. DeKlerk R, Rietveld T, Janssen RJF, Braaksma J. Worklab: a wheelchair biomechanics
mini-package. Published online 2023. doi:https://doi.org/10.5281/zen0d0.8362963

23. Rietveld T. Wheeltennis: a wheelchair tennis data analysis package. Published online
2022.

24.  CooperR, DiGiovine C, Boninger C, Shimada S, Robertson R. Frequency analysis of 3-
dimensional pushrim forces and moments for manual wheelchair propulsion.
Automedica. 1998;16:355-365.

25.  Van Der Slikke RMA, Berger MAM, Bregman DJJ, Veeger HEJ. Wheel skid correction is a
prerequisite to reliably measure wheelchair sports kinematics based on inertial sensors.
Procedia Eng. 2015;112(0):207-212. doi:10.1016/j.proeng.2015.07.201

26. PansiotJ, ZhangZ, Lo B, Yang GZ. WISDOM: Wheelchair inertial sensors for
displacement and orientation monitoring. Meas Sci Technol. 2011;22(10).
doi:10.1088/0957-0233/22/10/105801

27.  Sedgwick P. Multiple significance tests: The Bonferroni correction. BMJ.
2012;344(7841):1-2. doi:10.1136/bmj.e509

28.  Molik B, Laskin JJ, Kosmol A, Marszatek J, Morgulec-Adamowicz N, Frick T. Relationships
between anaerobic performance, field tests, and functional level of elite female
wheelchair basketball athletes. Hum Mov. 2013;14(4):366-371. doi:10.2478/humo-
2013-0045

29. Marszatek J, Kosmol A, Morgulec-Adamowicz N, et al. Laboratory and non-laboratory
assessment of anaerobic performance of elite male wheelchair basketball athletes.
Front Psychol. 2019;10:1-10. doi:10.3389/fpsyg.2019.00514

30. Goosey-Tolfrey VL, Vegter RIK, Mason BS, et al. Sprint performance and propulsion
asymmetries on an ergometer in trained high- and low-point wheelchair rugby players.
Scand J Med Sci Sport. 2018;28(5):1586-1593. d0i:10.1111/sms.13056

31. Bakatchina S, Weissland T, Astier M, Pradon D, Faupin A. Performance, asymmetry and
biomechanical parameters in wheelchair rugby players. Sport Biomech. 2021;00(00):1-
14.doi:10.1080/14763141.2021.1898670

32.  ZaghlulN, Goh SL, Razman R, Danaee M, Chan CK. Test-retest reliability of the single leg
stance on a Lafayette stability platform. PLoS One. 2023;18(1 January):1-12.
doi:10.1371/journal.pone.0280361

33. Sanchez-Pay A, Martinez-Gallego R, Crespo M, Sanz-Rivas D. Key physical factors in the

COMPARING LAB AND FIELD TESTS IN WHEELCHAIR TENNIS 135



serve velocity of male professional wheelchair tennis players. Int J Environ Res Public
Health. 2021;18(4):1-11. doi:10.3390/ijerph18041944

34. Abuwarda K, AkLAR. Changes in Electromyographic Activity of the Dominant Arm
Muscles during Forehand Stroke Phases in Wheelchair Tennis. Sensors (Basel).
2023;23(20). doi:10.3390/523208623

35.  CaspallJJ, Seligsohn E, Dao PV, Sprigle S. Changes in intertia and effect on turning effort
across different wheelchair configurations. J Rehabil Res Dev. 2013;50(10):1353-1362.

136 PART Ill | CHAPTER 7



COMPARING LAB AND FIELD TESTS IN WHEELCHAIR TENNIS 137






CHAPTER 8

only? The trade-off hetween number of inertial
sensors and accuracy for measuring wheelchair

Published in: Journal of Biomechanics 2022, 130.
https://doi.org/10.1016/j jbiomech.2021.170879

Marit P. van Dijk | Rienk M.A. van der Slikke | Rob Rupf | Marco J.M. Hoozemans
Monique A.M. Berger | DirkJan H.E.J. Veeger



Abstract

In wheelchair sports, the use of Inertial Measurement Units (IMUs) has proven to be one of the
most accessible ways for ambulatory measurement of wheelchair kinematics. A three-IMU
configuration, with one IMU attached to the wheelchair frame and two IMUs on each wheel axle,
has previously shown accurate results and is considered optimal for accuracy. Configurations
with fewer sensors reduce costs and could enhance usability, but may be less accurate. The aim
of this study was to quantify the decline in accuracy for measuring wheelchair kinematics with a
stepwise sensor reduction. Ten differently skilled participants performed a series of wheelchair
sport specific tests while their performance was simultaneously measured with IMUs and an
optical motion capture system which served as reference. Subsequently, both a one-IMU and a
two-IMU configuration were validated and the accuracy of the two approaches was compared
for linear and angular wheelchair velocity. Results revealed that the one-IMU approach show a
mean absolute error (MAE) of 0.10 m/s for absolute linear velocity and a MAE of 8.1 degrees/s
for wheelchair angular velocity when compared with the reference system. The two-IMU
approach showed similar differences for absolute linear wheelchair velocity (MAE 0.10 m/s), and
smaller differences for angular velocity (MAE 3.0 degrees/s). Overall, a lower number of IMUs
used in the configuration resulted in a lower accuracy of wheelchair kinematics. Based on the
results of this study, choices regarding the number of IMUs can be made depending on the aim,
required accuracy and resources available.
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Introduction

Inwheelchair court sports, kinematic variables like forward acceleration and angular velocity are
important for the quantification of the athlete’s wheelchair mobility performance (van der Slikke
et al., 2018), which is an important aspect of overall game performance. In wheelchair racing,
the relationship between wheelchair kinematics and overall performance is even more
profound, with the highest average speed resulting in the best race time. Therefore, the ability to
measure wheelchair kinematics using inertial sensors offers multiple opportunities for many
wheelchair sports.

Van der Slikke et al. (2015) used inertial measurement units (IMUs) attached to the rear
wheels and frame to measure wheelchair kinematics on the court. By using the gyroscope data
of the wheel-mounted IMUs to obtain wheel speed, and those of the frame IMU to obtain frame
rotation speed, wheelchair kinematics could be assessed with relative ease. To further increase
accuracy in vigorous sports conditions, van der Slikke et al. (2015) developed a skid detection
algorithm to correct for misinterpretations due to wheel skidding. This three-IMU configuration
was validated using an optical motion capture system and provides accurate linear- and angular
wheelchair displacement and speed (van der Slikke et al., 2015).

Although the three-IMU configuration might be considered optimal for accuracy, a two-
IMU configuration (with IMUs attached to the frame and right wheel) is more accessible by
reducing cost and enhance usability. A two-IMU configuration still allows for the same
calculations as described by van der Slikke (2015), except for wheel skid correction. As wheel
speed was initially determined by a weighted average of the two wheel-mounted IMUs, wheel
speed may be less accurate in the two-IMU configuration.

Recently, Rupf et al. (2021) developed an IMU-based method that enables detection of
wheelchair kinematics using only a single IMU. This method used a single IMU mounted on the
wheel to derive both frame rotation and angular speed. Frame rotation was obtained by fusing
the accelerometer and gyroscope data such that the attitude of the sensor was determined in a
globalreference frame. Although this one-IMU configuration is promising and was already tested
and compared to the three-IMU configuration, validation with an optical motion capture system
has yet to be performed.

The aim of this study is to quantify the decline in accuracy for measuring wheelchair
kinematics using a stepwise sensor reduction. Errors in outcome parameters due to skidding
may affect the results of one- and two-IMU configurations, whereas additional errors may be
introduced in the one-IMU configuration as rotation is measured at the wheel instead of the
frame center. It is therefore hypothesized that a lower number of IMUs would result in a lower
accuracy of the measured wheelchair kinematics. To test this hypothesis, the one-IMU and two-
IMU configurations were validated in a wheelchair sport specific test setting. Secondly, the
accuracy of the two approaches was compared for linear and angular wheelchair velocity.

Methods

Procedure

Ten differently skilled participants (Table 8.1) performed a series of wheelchair sport-specific
activities, while simultaneously being measured with two IMUs on their wheelchair and a marker-
based optical motion capture system serving as reference. Calculated outcomes based on the
one-IMU configuration, two-IMU configuration and reference system were compared to test the
accuracy. Prior to the measurements, participants were informed about the aims and
procedures of the study and provided written informed consent. The study was approved by the
Human Research Ethics Committee of the Technical University of Delft (nr. 1530).
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Table 8.1.
Subject characteristics (mean + standard deviation)

Type N  Age(years) Class’ Wheel base Camber angle Wheel
diameter
Elite wheelchair athlete? 3 25.0+3.0 3.2%+1.3 0.75+0.05 18,18 0.63+0.02
Active wheelchair user 3 46.3%11.0 25%0.5 0.62+0.23 18,2,3 0.62+0.02
Non-experienced user 4 245+0.6 - 0.62+0.11 18,4,4,4 0.61+0.01

"The classes were indicated by the point scores as used in elite wheelchair basketball classification.
2Two wheelchair basketball players (premier league) and one wheelchair hockey player (Dutch national team).

System overview

Two IMUs (NGIMU, x-io technologies) were used to collect 3D inertial sensor data (100 Hz) of the
right wheel and the wheelchair frame. A ten-camera optical motion capture system (OptiTrack
Prime, National Point) with a frame rate of 100 Hz was used to record the 3D orientation and
position of the wheelchair. The wheelchair marker cluster frame consisted of five retro-reflective
markers attached to the front and back of the wheelchair frame.

Wheelchair sport-specific activities

The measurement session (see Table 8.2 and Figure 8.1) included sprints and agility exercises
that represent some main aspects of wheelchair basketball, tennis, and rugby games (Pansiot
etal.,2011;van der Slikke et al., 2015; van Dijk et al., 2021). At the start and end of each session,
participants were instructed to keep a static posture for 20 seconds. Wheelchair athletes
performed the session in their own wheelchair if feasible, whereas untrained participants used
an ADL (Progeo) or all court sports (Quickie) wheelchair and were instructed to familiarize
themselves with the chair (Vegter et al., 2014).

Optical motion capture analysis

OptiTrack three-dimensional position data of the wheelchair markers were acquired in Motive
2.2.0 (Natural Point), converted to a C3D format and imported in MATLAB (R2019b, The
Mathworks Inc.). Missing values were interpolated if the duration of the gap was < 1/6 of a
second. Accordingly, the rotation matrix and translation vector of the wheelchair segment
relative to the first (static) sample was determined using the singular value decomposition
described by S6derkvist & Wedin (1993). This required position data of at least three markers at
both time instants. The derivative of the angle in the sagittal plane was determined and low-pass
filtered at 6 Hz (Cooper et al., 2002) to obtain wheelchair angular velocity. The translation
vectors were filtered at 10 Hz (van der Slikke et al., 2015) to filter marker positioning noise. Linear
wheelchair velocities were determined according to Eq. 8.1, with x and y being the positions in
the horizontal plane.

| /(ds,/d6)? + (ds,/dt)? | (8.1)
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Table 8.2.

All sport-specific tests, together with a description of each test and the speed
atwhich the participants were instructed to perform the test (see also Fig. 8.1).
All tests were carried out in immediate succession.

Test Speed  Description

1 Straight5m normal 3x sprint with static trunk
Straight5m low 3x
Straight5m normal 3x
Straight5m high 3x

2 Straight skid high 2x sprint (stop with skidding wheels)

3  Slalom normal around 3 cones (Fig. 8.1B)

Slalom high around 3 cones (Fig. 8.1B)

4 Figure8 normal (Fig. 8.1C)

Figure 8 high (Fig. 8.1C)

5 Utun normal 180° clockwise turn (Fig. 8.1D)
Uturn high 180° clockwise turn (Fig. 8.1D)
Uturn normal 180° anti clockwise turn (Fig. 8.1D)
Uturn high 180° anti clockwise turn (Fig. 8.1D)

6  Turnonspot normal 360° clockwise turn
Turn on spot normal 360° anti clockwise turn
Turn on spot high 360° clockwise turn
Turn on spot high 360° anti clockwise turn

7  Startwist free Star wise bi-directional rotation
Star twist free As previous, combined with back-and-

forth movement (Fig. 8.1E)

8  Collision free 2x 2m sprint and collision against a block

of 30 kg (Fig. 8.1F)

Figure 8.1 (A to F). Track lay-out with dimensions in cm (A) corresponding
to the tests as explained in Table 8.2. Cones and collision block (CB) were

removed during test parts in which they were not used. This figure was
adopted from Van der Slikke et al. (van der Slikke et al., 2015).

Two-IMU analysis

Wheelchair linear and angular velocity based on the two-IMU configuration were calculated as
reported by van der Slikke et al. (2015). Wheelchair angular velocity was directly measured by
the gyroscope signal around the vertical axis of the frame IMU, and low-pass filtered at 6 Hz.
Wheelchair linear velocity was determined based on the gyroscope signal around the wheel axis
of the wheel IMU (see Eq. 8.2.1-2.4 in Appendix A). Wheel angular velocity was low-pass filtered
at a 10 Hz cut-off frequency, corrected for camber angle (Eg. 8.2.1; Pansiot et al., 2011; van der
Slikke et al., 2015) and multiplied by the wheel circumference (Eq. 8.2.2) to obtain linear velocity
of the wheel. To obtain the linear velocity of the frame center instead, an additional correction
was performed (Eq. 8.2.4).

One-IMU analysis

To analyze the one-IMU configuration, only data from the wheel-mounted IMU were used. A
Madgwick filter (Madgwick et al., 2011), with a tuning parameter set at 0.03 (Rupf et al., 2021),
was used to derive the attitude of the sensor. The resulting Euler angles were differentiated with
respect to time (Rupfet al., 2021) and low-pass filtered at 6 Hz. Wheelchair angular velocity was
defined by the angular velocity in the horizontal plane. Since the sensor orientation was obtained
relative to the global earth frame, no correction for camber angle was required. Wheelchair linear
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velocity was derived in the same way as for the two-IMU configuration (see Eq. 8.2.1-8.2.4 in
Appendix A).

Comparisons

IMU data and reference data were synchronized with respect to time using a cross-correlation of
the angular velocity. Mean error, mean absolute error (MAE), root mean squared error (RMSE),
maximal error and the 95% confidence intervals of the difference between different sensor
configurations and reference data were reported for linear (absolute linear velocity > 0.1 m/s)
and rotational (angular velocity > 5 °/s or < -5 °/s) wheelchair movements. Further, the start and
end of each exercise of interest was selected manually based on the plots.

Results

Table 8.2 shows the error measures for the two different configurations compared to the
reference system. Table 8.3 shows characteristics and error measures per subject group as
definedinTable 8.1. Figure 8.2 and 8.3 show typical examples of the linear and angular velocities
measured by the one-IMU configuration, two-IMU configuration and reference system.

Table 8.2.

Differences between the given sensor configuration and the reference system expressed as mean absolute error
(MAE), root-mean-squared error (RMSE), mean error, maximal error, and upper and lower bound of the
confidence interval (Cl). The mean (SD) of the outcome measures over all participants was reported.

Config. MAE RMSE Mean error  Max error Cl lower bound Cl upper bound
Angular velocity in deg/s

One IMU 8.1(2.5) 11.2(3.3) -0.1(0.3) 55.6(22.1) -0.2(0.3) 0.0(0.3)

Two IMUs 3.0(3.3) 4.6 (4.9) -0.2(0.3) 23.9(15.3) -0.2(0.3) -0.1(0.3)
Linear velocity in m/s

One IMU .10(.06) 19(.11) -.03(.05) 1.55(1.52) -.03(.05) -.03(.05)

Two IMUs .10(.05) .20(.10) -.02(.05) 1.44(1.47) -.02(.05) -.01(.05)

Table 8.3.

Mean and maximal values of the angular and linear velocities, and differences between the one- and two IMU
configurations and the reference system expressed as MAE and RMSE averaged for each subject group.

Group*  Sensors Angular velocity in deg/s Linear velocity in m/s
Mean Max MAE RMSE Mean Max MAE RMSE

EA IMU1vsOpti 17.5 450 71 9.8 0.41 3.51 .15 .28
EA IMU2vsOpti - - 2.5 3.8 - - 14 .28
EU IMU1vsOpti 18.2 328 8.8 12.5 0.41 3.15 .10 21
EU IMU2vsOpti - - 6.3 9.3 - - .10 22
NU IMU1vsOpti 15.0 272 8.3 11.2 0.36 2.75 .07 12
NU IMU2vsOpti - - 1.0 1.7 - - .06 1

*EA = Elite Athlete, EU = Experienced wheelchair user, NU = non-experienced user
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Figure 8.2. Typical examples of the angular velocity and linear velocity during two linear sprints at low speed and
two linear sprints at normal speed (see Table 8.2, test 1). The results from the two-IMU analysis are indicated in
blue, One-IMU analysis are indicated in red, and those of the optical motion capture system were indicated in
grey. Although both IMU configurations match the patterns of the reference system, striking differences for the
one-IMU frame angular velocity show in sinusoidal deviations in straight forward motion.

Figure 8.3. Typical examples of the angular velocity and linear velocity during a bidirectional star twist (see Table
8.2, test 7). The results from the two-IMU analysis are indicated in blue, one-IMU analysis are indicated in red, and
those of the optical motion capture system were indicated in grey.

Discussion
The aim of this study was to quantify the decline in accuracy for measuring wheelchair
kinematics using a stepwise sensor reduction. Compared to the reference system, the one-IMU
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approach show a MAE of 0.10 m/s for wheelchair linear velocity and a MAE of 8.1 degrees/s for
angularvelocity. The two-IMU approach showed similar differences for linear wheelchair velocity
(MAE 0.10 m/s), and smaller differences for angular velocity (MAE 3.0 degrees/s). Plots to
compare the different approaches show a small sinusoidal deviation for the one-IMU approach
which is mainly visible in angular wheelchair velocity.

To put the present results into perspective, the accuracy obtained for linear and angular
velocity were compared with those previously reported for wheelchair sports. Van der Slikke et
al. (2015) validated the three-IMU configuration with an optical motion capture system and
reported an average RMSE of 0.07 m/s (ranging from 0.03 to 0.27 m/s) for linear velocity, which
is smaller than the 0.19 and 0.20 m/s for the one and two-IMU configurations in this study,
respectively. The increased accuracy of the three-IMU configuration is likely due to skid-
correction. As skidding causes a mis-match between wheel rotation and frame displacement,
larger errors in frame displacement occur when skidding is not identified. Since the skid-
detection algorithm is based on two wheel-mounted sensors, this can only be applied in the
three-IMU algorithm. However, further development of IMU analyses in the global reference
frame may enable skid correction with less than three IMUs as well.

Regarding angular velocity, van der Slikke et al. (2015) reported an average RMSE of 4.8
degrees/s (ranging from 3.1 to 6.8 degrees/s) among different wheelchair specific tests. This
error is smaller than the 11.2 degrees/s RMSE for the one-IMU configuration and similar to the
4.6 degrees/s RMSE for the two-IMU configuration which were found in our study. One
explanation for the larger error and the sinusoidal deviation (see Fig. 8.2), found for the one-IMU
configuration, may come from the way the IMU was mounted around the wheel axle. Due to the
wheel camber angle and a non-zero axle diameter, a small lateral displacement relative to the
frame center was induced with each wheelrotation. Since the one-IMU algorithm determines the
IMU attitude with respect to the global reference frame (Rupf et al.,, 2021), these lateral
displacements may be interpreted as small wheelchair rotations. Better results might be
obtained by attaching the IMU to the lateral side of the wheel axle or by correcting for the lateral
displacement induced by wheel rotation. Another possibility is to lower the cut-off frequency of
the low-pass filter as done by Rupf et al. (2021). Eventually, optimization of the sensor fusion
tuning parameter may further enhance the potential of one-IMU analyses (van Dijk et al., 2021).

Practical implications and limitations

Overall, the hypothesis that a lower number of IMUs would result in less accurate wheelchair
kinematics was confirmed by this study. Given the mean error (0.03 m/s) with regard to linear
wheelchair velocity for the one-IMU configuration, this configuration may well be used to
determine average velocity or distance covered over a certain time interval (e.g., over a 3-minute
interval at 1.4 m/s [low-point player], the distance covered deviates approximately 2%, or 5m,
over 250m). However, to assess wheelchair (angular) velocity at the push level or to accurately
determine field position, the three-IMU configuration is advised. Depending on the intended
accuracy and resources available, fewer than three sensors may be used to obtain wheelchair
kinematics.

Although this study provides a clear overview on the trade-off between number of
sensors and accuracy regarding wheelchair kinematics, a few limitations should be noted. The
number of wheelchair athletes was relatively low and top speeds that were achieved during the
measurements were lower than during wheelchair sports matches due to the limited
measurement area. Still, the results of this study are expected to be well transferable to
wheelchair match settings since all subject groups showed similar trends, most participants
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performed the measurements in their own wheelchair and a wide variety of wheelchair sport-
specific situations were included.

Conclusion

The present study aimed to quantify the trade-off between the number of sensors and accuracy
for measuring wheelchair kinematics in wheelchair court sports. Results revealed that a lower
number of IMUs used in the configuration would result in a lower accuracy of wheelchair
kinematics. While one IMU seems sufficient to determine average wheelchair velocity, three
IMUs are advised to analyze wheelchair kinematics on a push level. Based on the present results,
choices regarding the number of IMUs can be made depending on the aim, required accuracy
and resources available.
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Appendix A

AVuneeicorrected = AViuneor+ tan(@camer) * Frame angular velocity * coS(¢ camoer) (8.2.1)
LV wheet = AViheeicomrected * WheelCircumference (8.2.2)
Oaxte,conter = WheelBase / 2 - Sin(Q camver) * 0.5 * WheelDiameter (8.2.3)
Frame linear velocity = LViwneer - (tan(Frame angular velocity / fS) * daxecenter) * TS (8.2.4)

In which, AV,see the angular wheel velocity, @ camser is the camber angle of the wheels, LVinee is the linear wheel
velocity and daecenter iS the distance from the wheel axle to the frame center. For clarity purposes, wheelchair
angular and linear velocity (as indicated in the text) are referred to as frame angular and frame linear velocity. The
calculations are based on the approach as described by van der Slikke et al. (2015).
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CHAPTER 9
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In 2023, the World Health Organization has released their Wheelchair Provision Guidelines [1],
in which they aim ‘to support improved access to appropriate wheelchairs’ and describe an
‘overall strategy for strengthening assistive technology capacity in any context’ for wheelchair
users. Moreover, in this document, the first recommendation towards wheelchair provision
includes to define an individual assessment based on physical, functional, environment and
lifestyle needs and preferences.

To stimulate a healthy wheelchair population, the ability to monitor push technique and
track physical activities over time may be helpful [2]. However, monitoring push technique, joint
load or force and, e.g., energy expenditure, is not straight-forward. Whereas force-instrumented
push-rims can determine those variables by measuring the force applied on the push-rim [3], [4],
such a system is expensive and not accessible to wheelchair users. Inertial measurement units
(IMUs) are accessible, but in one of our previous studies, we concluded that some crucial
parameters, such as push and recovery phase, and force applied, cannot be determined based
on IMUs only [5]. Therefore, a system able to distinguish push and recovery phase, while still
being inexpensive and lightweight, is required.

In the same study, a preliminary design of such a system, called the RHIDE (rim hit
detection) system, was presented. The design consisted of two strips of conductive tape, closely
parallel to each other along the perimeter of the push-rim. A voltage was applied to one of the
strips to detect a short circuit in the system due to hand contact. Since this system was
automatically synchronized with the IMU data, it proved to be very useful. Validation based on
visual video images revealed an average underestimation of contact time of 0.03s. Despite the
success of this system, it was not usable when hands or rims were wet (e.g. due to sweat) and
installing the tape on the rim was relatively time-consuming. The idea of combining existing
push-rim covers with the electronics required for the RHIDE system then led - after several
design iterations - eventually to the current version of the RHIDE system. The current system can
be easily installed around the push-rim of a wheelchair, is robust in wet conditions, and works
with (thin) gloves, and it has therefore developed in a suitable system to determine push- and
recovery phase during overground wheelchair propulsion. Because it has remained affordable
and lightweight, the system would be accessible for all wheelchair users, athletes, coaches,
scientists, and therapists, and may serve as a smart watch for wheelchair users. However, some
developments still need to be made to translate the current version into a marketable product.

Recognizing the RHIDE system's potential to strengthen assistive wheelchair technology
and offer insights into individual physical and functional capabilities within wheelchairs, the
invention has been patented. This chapter elucidates the RHIDE system's design, presents its
output parameters, and reports the corresponding patent publication, marking a significant step
towards stimulating further development and market introduction.

System design: Mechanical and Electronic design

After several design iterations, the latest version of the system consists of two sensing systems,
a capacitive sleeve with integrated sensor array to detect the angular position and time instant
of each hand (or limb) contact, and a wireless IMU to measure wheelchair kinematics.

The first component is a capacitive sleeve (see Fig. 9.1a and 9.2), similar to already
existing push-rim covers that have been used to increase grip, comfort or aesthetics. The sleeve
consists of a 2 mm rubber PVC hose, with the same length as the circumference of the
wheelchair rim, on which 24 (10 x 3 cm) copper tapes are attached. The hose is cut in the length
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direction so it can be clamped around the rim. The copper tapes are connected to a capacitive
touch sensor module (MPR121), such that the proximity of hands (and other limbs) can be
detected. Subsequently, the micro-controller (see Fig. 9.1b) was set in such a way that only
touching the rim (i.e., proximity equal to the thickness of the copper-covering layer) would lead
to a detectable signal.

The second component is the IMU (NGIMU, X-io Technologies, Colorado Springs, United
States [used in Prototype I]; 100 Hz; see Fig. 9.1c), which is a lightweight sensor that measures
three-dimensional angular velocity and three-dimensional linear acceleration. With these
measures, the wheelchair's acceleration, velocity, covered distance and rotations can be
obtained as described in a previous study [6]. Data of the capacitive sleeve can be saved to the
IMU (which sends all data to a laptop via WIFI-connection and X-io Technologies software).

In the most recent prototype (March 2024) the two components are integrated in an ‘integrated
unit design’ making the system easier to install, more robust and lighter weight. To increase
compatibility and avoid wireless connection errors, data are saved to an SD-card (see Fig. 9.3).

Figure 9.1a-c. The RHIDE system [prototype version November 2022] and its different components. Fig.
9.1a (left) shows the capacitive sleeve attached to a wheelchair push-rim, Fig. 9.1b (middle) shows how
the cables from the capacitive sleeve connect with the left side of the microcontroller unit (black square)
and the cable of the IMU (around the wheel axis) is connected via a red wire to the microcontroller unit.
Fig. 9.1c (right) shows the IMU.

Figure 9.2 (left) and 9.3 (right). Fig. 9.2 is a schematic figure of a wheelchair push-rim (nr. 33) —which is
not part of the RHIDE system, the inner sleeve (nr. 2A), two separated capactitive sensors (nr. 3 and 4)
and an outer layer (nr. 2B). Fig. 9.3. Block diagram of the integrated unit design of the RHIDE system.
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Output: contact time & duration

The output data of the RHIDE system consists of an electric potential for each capacitive sensor
(i.e., for each of the 24 pieces of copper tape) over time (see Fig. 9.4a and 9.4b). Based on this,
contact time and contact duration can be assessed. Since the RHIDE system is synchronized
with the IMU data, contact information can easily be coupled to wheelchair velocity, wheelchair
acceleration and other IMU-based variables.

Figure 9.4a-b. In Fig. 9.4a (left) the raw signal of the RHIDE system is visualized. During one touch,
multiple capacitive sensors —each represented by a different color - can be ‘touched’ simultaneously. In
Fig. 9.4b (right) the signal of each conductive element is transferred to a ‘contact Boolean’ in which 1
represents ‘contact’ and 0 represents ‘no contact’.

Output: contact position

Once the relative position of (at least) one electrode with respect to the wheel-mounted IMU is
known, the IMU orientation [6] can be used to obtain information about the position of touch as
well. Inthis way, initial contact angle, contact release angle and push angle can be obtained (see
Fig. 9.5).

Figure 9.5a-b. In Fig. 9.5a (left) the definitions of push angle (A), initial contact angle (@) and contact
release angle (f) are indicated. The time duration between the time instant of initial contact (i.e., T:) and
contact release (i.e., T) is referred to as contact time. Fig. 9.5b (right) shows a way of visualizing these
data.
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Accuracy

The accuracy was assessed by comparing the RHIDE data (contact time and contact location)
with video data. Mean differences between the two systems are 0.00+£0.01 s for contact time and
around -0.5+14.0 degrees for contact location (either initial contact angle or hand release
angle). More details will be published as soon as a manuscript about this validation of the RHIDE
system is ready. The writing is currently in progress.

Conclusion

This chapter outlines the aim and design underlying the patent publication (reported below) of
the RHIDE system. As the system seems to be accurate in determining push time, duration, and
push angle, it has great potential to become a wheelchair-suitable activity tracker. When the
system is combined with an IMU on the wheelchair wheel, it could be used to monitor and give
feedback regarding push- and recovery phase, contact angles and, eventually, (tangential) force
applied to the rim. Future research should investigate the accuracy of these variables. In
addition, the usability and acceptance of the system in daily practice is yet to be investigated.
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CHAPTER 10
General discussion



The aim of this dissertation was to enable non-invasive and inexpensive mechanical power
monitoring during overground hand-rim wheelchair propulsion, mainly in the context of
wheelchair sports. Based on the well-founded theoretical framework for wheelchair propulsion
(Chapters 2 and 3), amethod was developed to monitor power output in straight-line wheelchair
field- and court sports by placing one IMU on the wheel axis and one IMU on the wheelchair
frame. With these two sensors, a deceleration test in the environment of interest (see Fig. 10.1),
and a known rear wheel diameter and total mass, mechanical power can be monitored with an
average accuracy of 2.4% (Chapter 5) for situations in which air resistance can be assumed
negligible (i.e., velocity < 2.5 m/s). The accuracy, however, is reduced to 6% for wheelchair users
that show considerable forward-backward trunk motion during wheelchair propulsion (Chapters
4 and 5). These inaccuracies can be corrected up to 0.5% by adding an additional IMU attached
to the chest in combination with a (machine learning-based) prediction of load distribution
(Chapter 6). When the power output correction was applied during 10m overground sprints of
amateur and elite wheelchair tennis players, mean power outputs were comparable with mean
power output of 10m sprints on a wheelchair ergometer (Chapter 7). As the demands of different
wheelchair populations differ, depending on the required accuracy, only one IMU on the wheel
axle can be used to obtain wheelchair kinematics and thus power (Chapter 8). Arim hit detection
(RHIDE) system can be used to distinguish push and non-push phases, and to obtain contact
angle (Chapter9). To summarize, depending on the wheelchair user demands, one may use one,
two or three IMUs (with or without RHIDE system) for on-field monitoring of mechanical power
during straight-line wheelchair propulsion in wheelchair (sports) practice (see Table 10.1).

Figure 10.1. Overview of a deceleration test of a wheelchair athlete with the advised sensor set, i.e., one
IMU attached at the trunk and one around the wheel axle. A third IMU can be placed on the wheelchair
frame (notvisible in the present figure) to determine wheelchair rotations.
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Table 10.1.

An overview of the accuracies for different kinematic variables during wheelchair propulsion obtained
from different sensor configurations and for different type of sensors. The accuracies are obtained from
Chapter 8 (1 and 2 IMUs), van der Slikke et al. [12] (3 IMUs) and Chapter 9 (RHIDE). Errors of the RHIDE
system were calculated based on manual comparisons with video data. Errors of the IMUs are based
on comparisons with optical motion capture data.

Linearvelocity | Ang. Velocity Contact time Contactangle | Initial contact
(m/s) (deg/s) (s) (deg) angle (deg)
Mean error
11MU -0.03 (0.05) -0.1(0.3) - -
2IMU’s -0.02 (0.05) -0.2(0.3) - -
3IMU’s -0.01-0.01 -0.22-0.14 - -
RHIDE - - .008 +-.085 -4.8+-17.6 -0.5+-14.0
RMSE
11MU 0.19(0.11) 11.2(3.3) - -
2IMU’s 0.20(0.10) 4.6 (4.9) - -
3IMU’s 0.02-0.09 3.1-6.8 - -
RHIDE - - .085 18.2 14.0

Putting into perspective — choices made and consequences for interpretation

Before interpreting the results of this dissertation, some considerations are discussed. Firstly,
to create the power balance and to validate IMU-based power calculations (as explained in
Chapters 2, 3, and 5) we used a model in which the athlete-wheelchair combination is
considered a rigid body (athlete-wheelchair model, see Chapter 3) or the wheelchair is
considered a rigid body (wheelchair model, see Chapter 3). However, both models are a
simplification of the reality, because manually propelling the rear wheels of a wheelchair
obviously results from moving (body) parts relative to each other. Although moving these body
parts will cost (muscle) force and thus power [1], this energy is disregarded in the external, or
mechanical power, due to the assumption that the ‘bodies’ are rigid. One should thus be aware
of this assumption, when interpreting power values. In wheelchair rugby, for example,
overcoming a ‘block’ of opponents may cost a lot of energy (mainly due to muscle power), but as
long as the wheelchair is blocked, and the wheels of the wheelchair are thus not moving (velocity
= 0), no power is transferred to the environment, and mechanical power is zero given the two
models as described in Chapter 3. However, when considering propulsive power, we believe that
the rigid body models as presented in Chapter 3 are the most suitable for monitoring power and
provide a solid foundation to build upon in future studies.

Secondly, both the reference mechanical power and the IMU-based power were
calculated based on the same drag tests (the drag tests to determine Fqrag Used in the IMU-model
was used to determine the rolling resistance coefficients for the gold standard power values as
well). Ameasurement error in F4g Would therefore not resultin a decreased accuracy. Given that
previous studies found a standard deviation of 16% in the IMU-based deceleration during
standardized coast-down tests on different surfaces [2], the actual deviation of our power
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estimates might be larger than the values found in Chapters 3 and 5. This means that an error of
(2.4% * 1.16 =) 2.8% for moderate trunk motion and (3.3% * 1.16 =) 3.8% for full trunk motion
may be realistic. Assuming an average error of 4% will be thus safe. Chapter 5 reveals that the
degree of trunk inclination is related to the ‘underestimation’ of rolling resistance. In addition,
during the first pushes from stand-still, a wheelchair athlete (with sufficient trunk function)
inclines his or hertorso 60-70 degrees (Chapter 4). Arealistic maximum error will thus be around
(8% * 1.16 =) 9.3%.

Athird design choice in the present dissertation was to use a large (3.0 x 5.0m) treadmill
to validate our IMU-based estimates. The treadmill is a suitable medium 1) to gain insight into
wheelchair propulsion dynamics and the influence of upper body movements, 2) to validate
power estimates based on gold standard motion capture data [3], and 3) is more similar to
regular overground wheelchair propulsion compared to wheelchair ergometers or force-
instrumented push-rims. However, small differences exist between treadmill-based wheelchair
propulsion and overground wheelchair propulsion, as air friction during treadmill measurements
is minimal - velocity relative to the air is almost zero - and accelerating from stand-still cannot
well be replicated. Despite these remarks, van der Woude et al. [4] reported that ‘treadmill
wheelchair propulsion is mechanically realistic, showing a natural form of wheelchair
propulsion’. Treadmill-based validations were thus considered the best choice for this phase of
power monitoring development. This choice is supported by a recent study of Maier at al. [3] that
used a similar method to assess the accuracy of cycling power meters based on a mechanical
model of treadmill cycling. Nevertheless, additional validation or our IMU-based model could
have been performed with measurement wheels. Despite adding unrealistic masses - which
leads to unrealistic wheelchair dynamics - and invalid values in situations where the upper body
adds power to the system, these measurement wheels could help to demonstrate the validity of
the IMU-based power once again during (real) overground wheelchair propulsion.

—— Real (measured) power
-------- Power based on 2 IMUs on wheelchair
—— Power based on 2 IMUs on wheelchair + 1 at chest

Power in Watt

81 81.5 82 825 83 835 84
Time in seconds

Figure 10.2. Comparison between measured mechanical power (blue), power estimated with two IMUs
on the wheelchair (black dotted line, see Chapters 3 and 5), and power estimated with two IMUs on the
wheelchair and one IMU at the chest (black solid line, see Chapter 6).
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Comparison with other state-of-the-art power meters

Given a safe margin of 4% accuracy for power estimates with a maximal deviation of 9.3%, the
next question is: What do these numbers actually mean? Therefore, comparisons with other
state-of-the-art power meters were done. For wheelchair sports, Vegter et al. [5] performed
measurements with two types of instrumented wheels during a 4-minute block of hand-rim
wheelchair propulsion on a motor-driven treadmill. They reported an average difference of -0.03
W for different intensities and participants. However, the mean absolute error between the
reported values of the two systems was 7% over 4 minutes, and for the participant in which the
largest deviations were found a 14% difference was reported. In road cycling, power meters are
reported to deviate on average 0.9-3.2% [3]. For rowing, errors of 8-17% were found for the most
accurate power meters [6], which was similar to the 11.6% found for (user-independent) power
in roller ski skating [7]. Given these numbers, the accuracies of the IMU-based power estimates
as reported in this dissertation can be assumed to be at least comparable to other power
measurement systems.

Practical implications: New possibilities for monitoring power in wheelchair (sports) practice

In the introduction, the drawbacks of previous systems that measure power during wheelchair
propulsion were discussed. Whereas the wheelchair ergometer imposes unrealistic wheelchair
dynamics which differ from overground propulsion, the force-instrumented push-rims affect
propulsion dynamics by their heavy mass. With the newly developed method to estimate power
from IMU data, both drawbacks are overcome since IMUs are lightweight and can be used during
overground wheelchair propulsion. Moreover, IMUs are much cheaper (ca. €60,-) than an
ergometer device (> €50.000,-) or force-instrumented push-rims (> €20.000,-). Unlike other
systems, IMU-based power monitoring is non-invasive and inexpensive.

The IMU-based method therefore allows athletes to be monitored on a daily basis and to
get feedback on mechanical power from the coaching staff. Consequently, coaches can use the
information to monitor and enhance athlete performance, to track fitness and fatigue and to,
eventually, reduce the risk of injuries. In addition, to support the interpretation of power data an
athlete power profile can be developed in which the physical capacities of athletes are
objectively represented. One example of a power profile that has been used in cycling is a
diagram in which the maximal power that can be obtained per time duration is given (e.g.,
maximal power that an athlete can maintain for 1-5 seconds versus the maximal power that an
athlete can obtain for 0.5-1 hour) [8, 9], see Fig. 10.3. Such a power profile may be used to
identify strengths and weaknesses, and to individualize the training programs based on this.
Lastly, as high associations were found between lab and field tests (see Chapter 7), the salient
(power-related) features that were identified in the field may subsequently be analyzed in more
detail during periodic lab-based ergometer measurements. These analyses may result in
recommendations for training. For example, when lab analyses point out that less force can be
produced at high wheelchair velocities, i.e., an athlete has a steep force-velocity curve [10], the
recommendation could be: ‘practice power production at a high velocity’. Subsequently, IMUs
can be used to monitor the athlete’s progression during daily practice in the field.
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Figure 10.3. Example of a power profile as reported in the study of Leo et al. [8].

In addition to power, athletes and coaches can obtain information about push technique
using the RHIDE system as explained in Chapter 9. As the system measures hand contact angle
and push duration, useful push characteristics can be obtained. Coaches can compare push
techniques between athletes or between fit and fatigue states and can, in this way, gain more
insight into the most effective push technique. This will be mainly beneficial in wheelchair racing
as push technique is crucial in this discipline, but may also be used for wheelchair tennis,
basketball, and rugby. In addition, the RHIDE system can be used in rehabilitation practice, as
hand contact angle has been associated with shoulder loading [11]. Lastly, tracking push
characteristics and performance can act as an additional motivator for both novel as well as
experienced wheelchair users and athletes to maintain a healthy lifestyle.

The results of the present dissertation led to an accessible and ambulatory power
monitoring system. Therefore, the IMU-based methods can be used to collect wheelchair
propulsion data on a larger scale for many different objectives. For example, more insight could
be gained into wheelchair propulsion technique, the development of injuries, different power
requirements between field positions in ball sports like wheelchair basketball, the influence of
different training modalities on power gains (and losses), and differences between
classifications in different wheelchair sports.

Lastly, the new insights on wheelchair propulsion technique and, e.g., the intra-cyclic
and inter-cyclic variations in rolling resistance during wheelchair propulsion, may be used to
improve the interpretation of ergometer data. As, with a trunk-mounted IMU, the instantaneous
load distribution between the front- and rear wheels during propulsion can be estimated (see
Chapter 6), a realistic load profile can be obtained. Currently, wheelchair ergometers have a
static resistance force programmed, which becomes lower when a wheelchair user inclines the
trunk (less load on the rollers located below the rear wheels) and higher when a user has an
upright position (more load on the rollers). With the instantaneous load distribution prediction
from Chapter 6, a realistic resistance force may be imposed depending on the upper body
movements of the wheelchair user. In this way, wheelchair dynamics might be made more
realistic and better translatable to overground wheelchair propulsion.
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The missing pieces of the power puzzle
Despite the wealth of new possibilities regarding measuring mechanical power during
wheelchair propulsion with our novel method, still some pieces of the puzzle need to be found.

First, the presented methodology is only tested during straight-line wheelchair
propulsion. As turning involves unknown factors such as rotational inertia and increased rolling
resistance due to e.g. slip [12], the IMU-based power estimations are not yet valid for turning.
This implies that information on power should be gained during the straight-line propulsion parts
of atraining or competition, which can be identified from IMU-based frame rotation [13]. This still
provides useful data for wheelchair basketball and rugby, although for wheelchair tennis - which
is characterized by continuous rotations - selecting straight-line propulsion parts may yield
limited information. Further development of the current methodology for turning would allow
power to be monitored during an entire training session or competition of wheelchair field sports,
such that more complete picture can be obtained, and specific power aspects could be
distinguished.

Second, power monitoring is not yet available for wheelchair racing. The velocities during
wheelchair racing are much higher compared to wheelchair field sports, such that air resistance
plays a considerable role and cannot be ignored like in indoor field sports (see Chapter 2).
Moreover, air resistance varies with relative wind velocity and direction (which might change any
moment), such that resistance values should ideally be updated every minute. In addition,
during outdoor training sessions or competitions (outside the track), the surface - and thus
rolling resistance - may change continuously as well. Therefore, monitoring power during
situations in which the circumstances continuously change will lead to biased estimates.

Third, to make the application of power monitoring using IMUs even more feasible,
standardized deceleration tests should be made redundant. To this end, multiple attempts were
made to estimate (rolling) resistance forces based on short deceleration periods during a
training routine or competition, which are so-called non-standardized deceleration tests. Also,
(rolling) resistance forces have been estimated during the recovery phase of a single push. Below
some (unpublished) results are presented based on the World Championships Wheelchair
Rugby in 2022. Rolling resistance estimates based on standardized deceleration tests (as
proposed in this dissertation) and non-standardized deceleration tests were compared for
periods in which the wheelchair decelerated in a (more or less) linear trajectory. Unfortunately,
the results show that rolling resistance estimated from non-standardized deceleration tests are
not sufficiently accurate for power estimates (see Fig. 10.4). It is likely that athletes actively
brake during deceleration, or make turns, or move the upper body, such that the values obtained
from these non-standardized deceleration periods are not accurate enough for power
monitoring. For now, regardless of the type of sport, standardized deceleration tests should thus
still be included in the warming-up of cooling-down routine to ensure accurate power estimates.
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Figure 10.4. (Rolling) resistance forces estimated from ‘standardized’ deceleration tests (as proposed in
Chapter 3 - in black) versus ‘non-standardized’ deceleration tests (striped) for periods in which the
wheelchair decelerated in a (more or less) linear trajectory. Data were collected during the World
Championships Wheelchair Rugby in 2022.

Future directions for power in wheelchair propulsion

The present dissertation adds valuable information to both wheelchair (sports) practice as well
as in wheelchair-related scientific research. Future studies can build upon the results and
algorithms presented in this dissertation. Some suggestions for future directions are presented
below.

Resulting from the ‘impossibilities’ mentioned in the previous section, the first goal to
improve power monitoring in wheelchair practice in the future will be to investigate the power
balance during turning or cornering. Second, enabling power monitoring in situations with
changing circumstances, forinstance because of wind or different surfaces, is desired. When an
‘adaptive’ resistance value can be determined, power monitoring can be applied in wheelchair
racing as well. The reason for this is that, in wheelchair basketball, rugby or tennis, the surface
will not change during a training or competition (such that rolling resistance parameters remain
more or less constant), while in wheelchair racing, both the surface as well as the wind velocity
and wind direction - affecting air resistance - are likely to change. Our first attempt in a
preliminary study to determine this ‘adaptive’ resistance value during the recovery phases in
wheelchair racing yielded unrealistic predictions, likely because the trunk and arms move a lot
during wheelchair racing. Third, more research is required to make standardized deceleration
tests redundant. To this end, the results of Chapter 6 may be useful as variations in rolling
resistance play a key role in predicting the rolling resistance coefficients.

In addition, the IMU-based method presented in this dissertation gives a cycle-average
mechanical power, which is the average power over both push and recovery phase. Extending
the methodology with the estimation of peak power and push-phase power might be a valuable
addition, since peak power is acommonly used performance measure [14, 15], and ‘push’ power
may be easier to interpret as this measure is commonly given by wheelchair ergometers and
force-instrumented push-rims [16, 17]. Push-phase power can already be determined, by
combining the RHIDE system (see Chapter 9) - distinguishing ‘push’ and ‘recovery’ phases - with
the cycle average power. When the RHIDE system is also combined with the predicted front
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wheel load from Chapter 6, instantaneous power and thus peak power can be estimated as well.
Future studies should investigate how accurate these estimates will be.

Lastly, new developments in the field of power measuring in wheelchair propulsion are
continuously presented. Recently, two novel force-instrumented push-rims have been
developed that, with less mass, can measure power during wheelchair propulsion [18, 19]. In
addition, artificial intelligence has been used throughout the present dissertation to solve pieces
of the puzzle that could not easily be solved using classic mechanics. If the application of Al is
chosen wisely, it will yield many more solutions in the field of wheelchair sports.

Figure 10.5. Typical example of the instantaneous power graph of power determined from optical motion
capture data according to the athlete-wheelchair model described in Chapter 3 (black solid line),
according to the wheelchair model described in Chapter 3 (blue solid line) and the IMU-based
mechanical power (black dotted line). The data is of approximately four pushes on a treadmill at 1.2 m/s.

Conclusion

With two IMUs attached to the wheelchair (attached to the wheelchair wheel and frame), a
proper deceleration testin the environment of interest, and a known rear wheel diameter and
total mass, mechanical power can be monitored relatively accurate during straight-line
hand-rim propulsion in indoor wheelchair field- and court sports. For daily wheelchair users
and recreational-level athletes, the use of one IMU will suffice for decent power estimates.
In addition, for 1) a more accurate power estimation, 2) situations with considerable trunk
motion or 3) determining peak power, the use of an additional wearable (i.e., a trunk-
mounted IMU and/or a hand-rim touch-detection [RHIDE] system) is advised. IMUs and/or a
RHIDE system are suitable to enhance performance and reduce injury risk in a non-invasive
and inexpensive way. As these power estimates assume that air resistance is negligible,
some additional steps are required to make the method valid for wheelchair racing as well.
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Power to the wheelchair people

Whereas the present dissertation mainly focused on wheelchair sports, the findings are also
applicable to everyday wheelchair use. The results presented in this dissertation indicate that
power can be monitored relatively accurately using just one or two IMUs, and that the RHIDE
system can readily give feedback on push- and recovery phase, push length and push angle.
This valuable information can be integrated into an activity tracker. Given that the wearables
proposed in this dissertation are non-invasive, user-friendly, and affordable, we are on the
brink of making wheelchair activity tracking accessible to every wheelchair user.

In a perfect world, the RHIDE system could serve as the next-generation smartwatch, or rather

‘smart-rim’, designed specifically for wheelchair users. This innovative system would provide

timely reminders like “Time to take a break” when your shoulders are at risk of overuse, offer

accurate calorie tracking for various activities, and count pushes instead of steps. The wealth
of data collected through this smart-rim could help identify wheelchair-accessible routes,

enhancing Google Maps with a dedicated 'wheelchair' icon. Perhaps the best part of it all? Say
goodbye to bumpy roads and grassy terrain, and compete with your peers to become the

reigning King of the rolling Mountain."
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SAMENVATTING

Vanuit de rolstoelsportpraktijk is er een groeiende behoefte om feedback te geven over
vermogen. Vermogen kan namelijk worden gebruikt om o.a. de fitheid en vermoeidheid van
sporters te monitoren en daarmee overtraining en evt. blessures te voorkomen, om training
programma’s te individualiseren en te analyseren, en het is bovendien een objectieve maat voor
inspanning of intensiteit. Het bepalen van mechanisch vermogen gebeurt bij voorkeur zonder dat
sporters of coaches hier hinder van ondervinden. Deze dissertatie is daarom gefocust op het
ontwikkelen van een non-invasieve en betaalbare methode om mechanisch vermogen te
monitoren in de dagelijkse rolstoel(sport)praktijk. We richten ons met name op
rolstoelbasketbal, rolstoeltennis, rolstoelrugby en rolstoelracen, ook wel wheelen genoemd.

From theory to practice: Estimating mechanical power during in-field wheelchair propulsion
Om niet het wiel opnieuw uit te vinden, beginnen we in Hoofdstuk 2 met een samenvatting van
de literatuur over het schatten van vermogen met behulp van draagbare sensoren in cyclische
sporten. Hieruit komt naar voren dat vermogensmeters in veel cyclische sporten al goed
geintegreerd zijn, maar dat dit voor rolstoelsporten nog niet het geval is. Daarnaast missen we
een volledige en beknopte uiteenzetting over het bepalen van mechanisch vermogen tijdens
rolstoelrijden. In Hoofdstuk 3, hebben we daarom een theoretisch raamwerk ontwikkeld, waarin
de vermogensvergelijking voor rolstoel rijden wordt gedefinieerd en stap voor stap uitgelegd. In
het kort komt het erop neer dat vermogen tijdens rolstoel veldsporten, zoals rolstoeltennis,
rolstoelbasketbal en rolstoelrugby, kan worden berekend uit 1) de snelheid en versnelling van de
rolstoel en 2) de rolweerstand van de sporter en rolstoel samen. In dit hoofdstuk wordt uitgelegd
hoe draagbare (inertiéle) sensoren, IMUs, kunnen worden gebruikt om vermogen per push te
bepalen. Rolweerstand wordt hierbij bepaald met behulp van de veelgebruikte uitroltest. Tijdens
deze test laat men de rolstoel vanuit een beginsnelheid passief uitrollen, en wordt de gemeten
vertraging gebruikt om rolweerstand te berekenen. Op basis van metingen op een
gemotoriseerde loopband, wordt IMU-gabaseerd vermogen per cyclus vergeleken met de
schattingen van een referentie systeem. Hieruit blijkt dat het vermogen kan worden geschat met
behulp van IMUs, maar dat de rolweerstand tijdens de uitroltest voor sommige personen afwijkt
van de rolweerstand tijdens het rolstoel rijden. Mogelijk wordt dit veroorzaakt door de
bewegingen van het bovenlichaam. Meer inzicht in de invloed van de romp(beweging) tijdens
rolstoelrijden zou dus interessant zijn.

Pushing further: The role of trunk motion on estimating power during wheelchair propulsion
Om de invloed van de romp(beweging) tijdens rolstoelrijden beter te begrijpen, ontwikkelen we
in Hoofdstuk 4 een methode om de romp-inclinatiehoek tijdens het rolstoelrijden te meten met
behulp van IMUs. Een IMU op de borst wordt gebruikt om de oriéntatie van de romp te bepalen.
Met slimme wiskundige trucjes kunnen we uit de IMU data op ieder moment bepalen wat de
oriéntatie van de IMU - en dus de romp - is ten opzichte van de aarde. Echter, deze wiskundige
trucjes worden misleid tijdens het rolstoelrijden, omdat er continu versnellingen en vertragingen
in het signaal zijn, en het magnetische veld wordt verstoord door het materiaal van de rolstoelen.
In dit artikel hebben we daarom machine learning gebruikt om op de juiste momenten de
orientatie-schatting te resetten en zo toch een goede schatting te maken van de IMU-orientatie
en dus de romphoek. Nu rompbeweging gemonitord kan worden met een extra IMU op de borst,
gaat Hoofdstuk 5 dieper in op de invloed van rompbeweging op rolweerstand. De essentie van
dit artikel is het beter begrijpen van de invloed die bewegingen van het bovenlichaam hebben op
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de rolweerstand tijdens hand-aangedreven rolstoelrijden. Veel rolstoelgebruikers buigen hun
bovenlichaam namelijk naar voren en achterentijdens hetrijden. Omdat in de meeste rolstoelen
de voorwielen kleiner zijn dan de achterwielen, hebben de voorwielen een hogere rolweerstand.
Door dit verschil zorgt het buigen van de (relatief zware) romp - waardoor de massa naar voren
verschuift - ervoor dat de rolweerstand binnen een push-cyclus varieert. We hebben
experimenten gedaan met veel, weinig en geen beweging van de romp tijdens het rolstoelrijden,
en hebben gekeken naar de invloed van de mate van rompbeweging op de schatting van de
rolweerstand. En wat blijkt? Bij weinig rompbeweging komen de rolweerstand tijdens rolstoel
rijden en de rolweerstand tijdens de uitroltest overeen. Echter, hoe meer de romp beweegt, hoe
groter het verschil tussen deze twee, en dus hoe slechter de schatting van de veelgebruikte
uitroltest. Met andere woorden: uitroltesten negeren het effect rompbeweging en ditis daardoor
geen nauwkeurige methode om rolweerstand tijdens het rolstoelrijden te bepalen. Corrigeren
voor de verandering in gewichtsverdeling tussen voor- en achterwielen is dus nodig om een
nauwkeurigere rolweerstand, en dus vermogen, te bepalen.

Power for all: Meeting the demands of different wheelchair user populations

Uit de vorige alinea volgt dat een betere schatting van rolweerstand mogelijk is als de
gewichtsverdeling tussen voor- en achterwielen bekend is, zodat hiervoor kan worden
gecorrigeerd. Hoofdstuk 6 presenteert daarom een methode om de gewichtsverdeling te
voorspellen op basis van IMU data van de romp en rolstoel. Hiervoor hebben we deelnemers
laten rolstoelrijden op een loopband waarbij we de gewichtsverdeling tussen voor- en
achterwielen continu hebben gemeten met speciale krachtsensoren. Vervolgens werd een
machine learning model getraind om de kracht op de voorwielen te voorspellen uit alleen IMU
data. Dit resulteerde in een nauwkeurige voorspelling van de gewichtsverdeling. De
rolweerstand die hieruit volgde was veel nauwkeuriger (gemiddelde fout: 0,1%) dan de
rolweerstand op basis van de uitroltest. In Hoofdstuk 7 wordt bovenstaande informatie
samengevoegd om het mechanisch vermogen van rolstoeltennissers te schatten tijdens een
10m sprint in het veld met uitsluitend IMUs. En wat blijkt? Deze is vergelijkbaar met het
mechanisch vermogen wat sporters leveren in het lab. Ten slotte wordt in Hoofdstuk 8 en 9
aandacht besteed aan het toegankelijker maken van metingen voor de alledaagse
rolstoelpraktijk. Hoofdstuk 8 wordt de trade-off tussen het aantal IMU-sensoren en
nauwkeurigheid onderzocht. Hieruit blijkt dat met slechts één IMU op het wiel, de
rolstoelsnelheid, versnelling en rotaties bijna net zo nauwkeurig zijn als met twee of drie IMUs.
Ten slotte wordt in Hoofdstuk 9 een contact-detectie-systeem, het RHIDE-systeem,
gepresenteerd. Door elektronica, ingebouwd in een hoes welke over de push-rim kan worden
geplaatst, kan dit systeem timing en positie van handcontact meten. Het systeem is goedkoop
en makkelijk in gebruik en daarmee een mooie voorzet voor rolstoelvriendelijk ‘activity trackers’.

Almet al kan, met twee IMU's op de rolstoel en een goede uitroltest in de betreffende omgeving,
het mechanische vermogen relatief nauwkeurig worden gemeten tijdens rechtlijnig
rolstoelrijden in indoor rolstoelveld- en baansporten. Voor dagelijkse rolstoelgebruikers en
recreatieve atleten is het gebruik van één IMU voldoende voor fatsoenlijke schattingen van het
vermogen. Daarnaast wordt voor 1) een nauwkeurigere vermogensschatting, 2) situaties met
een aanzienlijke rompbeweging of 3) het bepalen van push techniek het gebruik van een extra
wearable (d.w.z. een op de romp gemonteerde IMU en/of een contact-detectiesysteem [RHIDE])
geadviseerd. IMU's en/of RHIDE-systemen zijn daarom geschikt om de prestaties te verbeteren
en hetrisico op blessures te verminderen op een niet-invasieve en goedkope manier.
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SUMMARY

From the perspective of wheelchair sports practice, there is a growing need to provide feedback
on power output. Power can be used to monitor athletes' fitness and fatigue levels, thereby
preventing overtraining and potential injuries, to individualize and analyze training programs,
and it is also an objective measure of effort or intensity. Determining mechanical power
preferably occurs without inconveniencing athletes or coaches. Therefore, this dissertation
focuses on developing a non-invasive and affordable method to monitor mechanical power in
daily wheelchair (sports) practice. We specifically target wheelchair basketball, wheelchair
tennis, wheelchair rugby, and wheelchair racing, also known as wheeling.

From theory to practice: Estimating mechanical power during in-field wheelchair propulsion
To avoid reinventing the wheel, Chapter 2 begins with a literature review summarizing power
estimation using wearable sensors in cyclic sports. It reveals that power meters are well-
integrated in many cyclic sports but not yet in wheelchair sports. Additionally, there is a lack of
comprehensive and concise explanation regarding determining mechanical power during
wheelchair propulsion. Therefore, in Chapter 3, we develop a theoretical framework defining the
power equation for wheelchair propulsion and explain it step by step. In essence, power during
wheelchair field sports, such as wheelchair tennis, basketball, and rugby, can be calculated
from 1) the wheelchair's speed and acceleration and 2) the combined rolling resistance of the
athlete and wheelchair. This chapter explains how wearable (inertial) sensors, IMUs, can be
used to determine power per push. Rolling resistance is determined using the commonly used
decelleration test, where the wheelchair is passively rolled from an initial speed, and the
measured deceleration is used to calculate rolling resistance. Based on measurements on a
motorized treadmill, IMU-based power per cycle is compared with estimates from a reference
system. It shows that power can be estimated using IMUs, but rolling resistance during the
decelleration test deviates for some individuals from rolling resistance during wheelchair
propulsion. This might be caused by upper body movements. Therefore, gaining more insightinto
the influence of trunk (movement) during wheelchair propulsion would be interesting.

Pushing further: The role of trunk motion in estimating power during wheelchair propulsion

To better understand the influence of trunk (movement) during wheelchair propulsion, we
develop a method in Chapter 4 to measure trunk inclination angle using IMUs. An IMU on the
chest is used to determine trunk orientation. With clever mathematical techniques, we can
determine the orientation of the IMU - and thus the trunk - relative to the ground at any given
moment from the IMU data. However, these mathematical techniques are misled during
wheelchair propulsion due to continuous accelerations and decelerations in the signal, and the
magnetic field is disturbed by the wheelchair materials. In this article, we thus use machine
learning to reset the orientation estimation at the right moments and thus make a good
estimation of the IMU orientation and hence the trunk angle. Now that trunk movement can be
monitored with an additional IMU on the chest, Chapter 5 delves into the influence of trunk
movement on rolling resistance. The essence of this article is to better understand the influence
of upper body movements on rolling resistance during manual wheelchair propulsion. Many
wheelchair users lean their upper body forward and backward while driving. Because in most
wheelchairs, the front wheels are smaller than the rear wheels, the front wheels have higher
rolling resistance. Due to this difference, the bending of the (relatively heavy) trunk - which shifts
the mass forward - causes rolling resistance to vary within a push cycle. We conducted
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experiments with full, moderate, and no trunk movement during wheelchair propulsion and
examined the influence of the degree of trunk movement on the estimation of rolling resistance.
And what did we find? With little trunk movement, rolling resistance during wheelchair
propulsion matches rolling resistance during the decelleration test. However, the more the trunk
moves, the greater the difference between these two, and thus the worse the estimation of the
commonly used decelleration test. In other words, decelleration tests ignore the effect of trunk
movement, making it an inaccurate method to determine rolling resistance during wheelchair
propulsion. Therefore, correcting for the change in weight distribution between front and rear
wheels is necessary to determine more accurate rolling resistance, and thus power.

Power for all: Meeting the demands of different wheelchair user populations

From the previous paragraph, it is evident that a better estimation of rolling resistance can be
obtained when the weight distribution between front and rear wheels is known, allowing for
correction. Therefore, Chapter 6 presents a method to predict weight distribution based on IMU
data from the trunk and wheelchair. For this, we had participants drive wheelchairs on a
treadmill while measuring the weight distribution between front and rear wheels with special
force sensors. Subsequently, a machine learning model was trained to predict the force on the
front wheels based solely on IMU data from the trunk and wheelchair. This resulted in highly
accurate predictions of weight distribution, and the rolling resistance determined from this was
much more accurate (average absolute error: 0.9%, average error: 0.1%) than rolling resistance
based on the decelleration test. In Chapter 7, the above information is combined to estimate the
mechanical power of wheelchair tennis players during a 10m sprint on the field. With this
information from only IMUs, we estimated power per push. After comparison with power
generated by the athletes in the lab, we found comparable values. Finally, Chapters 8 and 9
focus on making measurements more accessible for everyday wheelchair practice. Chapter 8
focuses on reducing the number of required IMU sensors and their influence on the accuracy of
wheelchair measurements. We demonstrate in this chapter that with just 1 IMU on the wheel
axis, wheelchair speed, acceleration, and rotations are almost as accurate as with 2 or 3 IMUs.
Finally, Chapter 9 presents a contact detection system, the RHIDE system. By embedding
electronics in a cover that can be placed over the wheel rim (or push rim), this system can
measure the timing, duration, and position of hand contact. The system is inexpensive and easy
to use, making it a great addition for a wheelchair-friendly ‘activity tracker'.

Overall, with two IMUs on the wheelchair and a good decelleration test in the respective
environment, mechanical power can be measured relatively accurately during straight-line
wheelchair propulsion in indoor wheelchair field and track sports. For daily wheelchair users and
recreational athletes, the use of one IMU is sufficient for decent power estimates. Additionally,
for 1) a more accurate power estimate, 2) situations with significant trunk movement, or 3)
determining push technique, the use of an additional wearable (i.e., an IMU mounted on the
trunk and/or a contact detection system [RHIDE]) is recommended. IMUs and/or RHIDE systems
are therefore suitable for improving performance and reducing the risk of injuries in a non-
invasive and inexpensive manner.

177



DANKWOORD

Wow, wat een jaar. Wat een hoge pieken en wat een diepe dalen. Wat begon als een voortvarend
vierjarenplan met hoge ambities, eindigde in een rollercoaster waar het belang van de
wetenschappelijke artikelen ver naar de achtergrond verdween. Wat een begon als een mooi
avontuur - werken binnen de muren van het indrukwekkende TU Delft - werd al snel werken
binnen de muren van een kleine studio in Eindhoven en eindigt op wonderbaarlijke wijze in een
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werk dat voor u ligt is geschreven op werkplekken in Eindhoven, Amsterdam (VU), Den Haag
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Delft. Op al deze plekken voelde ik me gesteund, geliefd en geinspireerd. Via deze weg wil ik
iedereen bedanken die hier een bijdrage aan heeft geleverd.

Dirklan, vanaf het begin had ik meteen een klik met jou. Bedankt voor je luisterend oor, je steun,
je begrip, je vertrouwen, het meedenken wat goed voor mij is, het afmaken van m’n zinnen ;), en
de koffietjes, autoritjes en zelfs ski-tochtjes in Zwitserland. Toen ik jou mailde dat ik even een
week niet wilde werken, heb je me meteen opgebeld. Je hebt me alle ruimte en vertrouwen
gegeven en hebt me geholpen waar je kon. Ik heb veel van je geleerd, zowel over de wetenschap
als over het leven, en je weet vaak de vinger op de zere plek te leggen. Onze samenwerking liep
als eentrein, dat ga ik echt missen. Ik had me geen betere mentor kunnen wensen.

Marco en Monique, bedankt voor alle uurtjes sparren over rolstoelonderzoek en over andere
dingen (schuttingen, omgezaagde bomen, kapotte verwarmingen, vroeger, mijn nieuwe vriend
en natuurlijk... de was — welke wel of niet hing te drogen op de achtergrond bij Marco). Tijdens de
discussies over mijn artikelen of experimenten werd jullie tegenspraak niet altijd direct in dank
afgenomen, maar gelukkig konden we daar achteraf altijd om lachen. Marco, bedankt dat je altijd
beschikbaar bent en de tijd neemt. Bedankt voor je luisterend oor en voor de aandachtige en
grondige feedback op al m’n stukken. Monique, bedankt voor je betrokkenheid, vrolijkheid en
enthousiasme. Je bent een voorbeeld voor hoe ik mijn ideale werk-privéleven zou willen leiden.

Knoek, door jou ben ik biomechanica echt leuk gaan vinden, en heb ik ontdekt dat dit bij me past.
Jij en Peter geloofden in me en enthousiasmeerden me voor het doen van onderzoek. Bedankt!
BWSB’ers en docenten, bedankt voor de uitdagingen en gezelligheid, ik ben nog altijd trots op
het zijn van een BWSB’er. Roald, Sander, InnoSportLab, bij en van jullie ik heb zo veel geleerd!
Bedankt voor alle kansen die jullie me gaven en de geweldige tijd. Medical Delta, ondanks dat ik
maar kort bij jullie heb gewerkt, heb ik hier geleerd wat collegialiteit echt inhoudt. Wat een fijne
mensen zijn jullie. WheelPower team, rolstoelsporters, en coaches, jullie enthousiasme en
gedrevenheid zijn een grote inspiratiebron. Rowie, m’n WheelPower-PhD-zusje, wat fijn dat jij er
was. We konden samen onze struggles delen, hebben leuke congressen bezocht, veel te veel
betaald voor een hotelkamer waarin we maar één uur hebben geslapen, en uiteindelijk toch nog
een gezamenlijk paper geschreven. DEMO, bedankt voor de prettige samenwerking en het
meedenken bij het ontwikkelen van het RHIDE-systeem. Wiebe, het was een eer om je te leren
kennen. Bedankt voor het opnemen in jullie groep, de leuke eet-avondjes en gezamenlijke
zwemsessies in Zwitserland.
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Beste studenten, Robert, Ganesh, Twan, Nathalie, Victor, Marije, het was leerzaam om jullie te
begeleiden tijdens jullie afstudeeronderzoek en ieder van jullie heeft op zijn manier bijgedragen
aan nieuwe inzichten, kennis of onderzoek. Thomas, Jesper, wat een energie leverden jullie.
Jullie kregen een super ambitieus project om krachtsensoren in de voorwielen te maken, met de
opdracht om direct te beginnen vanwege het krappe tijdschema. Binnen 10 weken hebben jullie
een 3D-model van de voorwielsensor gemaakt, prototypes geprint, getest, problemen opgelost,
opnieuw geprint, getest, en een bedrijf gevonden om dit te leveren. Jullie samenwerking is voor
mij hét voorbeeld van de wederzijdse versterking tussen de aanpakkers- en ‘trial-and-error’
mentaliteit van het toegepast onderwijs en berekenende modelmatige aanpak van de
universiteit. Vera en Louise, dreamteam. Letterlijk bloed, zweet en tranen heeft het ons gekost
om de loopbandmetingen tot een goed einde te brengen. Louise, jij nam het stokje van Jesper en
Thomas over door de sensoren te leren bedienen. Wat je ook moest doen, je deed het met veel
enthousiasme. Je hebt een ontzettend goed oog voor detail, blijft nadenken over het grote geheel
en neemt feedback razendsnel op. Tijdens de metingen zat jij uren op de grond met ‘jouw’ sleutel
10 om de schroeven aan te draaien of de sensoren te resetten. Als we weer nieuwe stappen
bedachten voor in het protocol, noteerde je alles, en voor we het wisten had jij een uitgebreid
stappenplan opgezet om te voorkomen dat we iets zouden vergeten tijdens de metingen. Later
heb je dit weer ingekort, om te voorkomen dat we de draad kwijtraakten in alle kleine stappen die
we inmiddels hadden geautomatiseerd. Vera, jouw inzet, gedrevenheid, punctualiteit en
stabiliteit waren onmisbaar voor zo’n groot meetproject als dit. Als ik aan iemand de systemen
toe durfde te vertrouwen ben jij het. Waar ik soms alle kanten op kan schieten, bleef jij rustig en
zorgde je voor de veiligheid van de proefpersonen. Ook was je altijd scherp en kritisch op de
biomechanica achter wat we deden, en als ik even begon te twijfelen, plande ik een
brainstormsessie metjou in. Met jullie twee was ik dan ook niet in paniek toen ik de eerste meet-
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experimenten, met een Kkiller-planning en de meest uiteenlopende errors zonder al te veel
problemen uitgevoerd en is dit de basis voor vele artikelen in dit proefschrift. Meiden, bedankt
voor de geweldige tijd en het keiharde werk! Puck, jouw nieuwsgierigheid is aanstekelijk. Dankzij
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en weet je waar je mee bezig bent. Hopelijk resulteert dit in twee mooie artikelen. Charlie, Neal,
Wendy, Oscar, en Sander, het was een eer jullie te mogen begeleiden tijdens jullie stages in
uiteenlopende richtingen. Jeroen, neefje, ik heb altijd al gehoopt een keer met jou samen te
mogen werken aan een project, en wat leuk dat dit werkelijkheid werd! Omdat jij een stage zocht
enikiemand met een mechatronica-achtergrond kwam dit samen. Het was bijzonder om samen
te brainstormen en elkaars werelden wat beter te leren kennen. Wellicht ooit nog eens!

Liefste collega’s van Kantoor 1, tegenwoordig doorontwikkeld tot Office 1, bedankt voor alle
leuke momenten. Bart, filosoof op hardloopschoenen, van SportCie tot InnoSportLab tot TU
Delft, we blijven elkaar steeds tegenkomen en ik vind het gek om me voor te stellen dat dit
misschien stopt. Bedankt voor alle inzichten, het brainstormen, voor onze high-speed sport-
cultuur-reis in Japan, de slappe lach en nog veel meer! Martijn, we hebben veel goede
gesprekken gevoerd en uren gebrainstormd over het ontwerp van een duw-rolstoel, nieuwe
toepassingen voor jouw stuurbare naalden, en later over de MDR. Bedankt voor deze
ontspanmomentjes tussen het harde werken door! Marco, Teddy, Ton, Anton, Christoff, Sam,
Gabrielle, Hassan, het was gezellig om met jullie op kantoor te werken, te padellen of te kletsen
over gele auto’s (toch Teddy?), de kleur geel (Fayence oid), fietsen of Italiaans eten. Teddy,
bedanktvoor de dans-inspiratie, de grapjes en nutteloze feitjes. Ton, bedankt voor al het lachen!
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de fantastische zeiltocht op het ljsselmeer, gezellige pauzes, borrels, zeldzame stapnachten en
het bijschaven van m’n Engels. Haagse hogeschool collega’s, Daniel, Melle, Carlijn, bedankt
voor jullie betrokkenheid, hulp, het meedenken, de pepernoten OF paaseitjes en de heerlijke
sfeer! Daniel, je bent speciaal voor mij tijJdens Corona naar de HHS gegaan om me bij alle
metingen te helpen. Hoofdstuk 4 ligt er mede dankzij jouw inzet, bedankt! En dan nog alle lieve
bewegingswetenschappers, waar ik als adoptie-bw’er vaak toch nog even binnen sneakte. Bij
jullie blijf ik me toch het allermeeste thuis voelen. Vanuit Rotterdam is het reizen niet meer zo
handig, maar het was fijn om af en toe onderdeel van jullie te mogen zijn. Bedankt voor de leuke
feestjes, bruiloftsweekend in limburg, ECR-weekenden, vrijmibo’s, zaalvoetbalpartijen, lunches
en koffiemomentjes. Ik blijf jullie vast zien. Dear Phutsal Doctors, thanks for the fun, laughs,
drinks and great phutsal play!

Lieve familie, ik ben dankbaar dat ik deel mag uitmaken van zo’n lieve, betrokken en gezellige
familie als van Dijk. Pap, bedankt voor je betrokkenheid, luisterend oor, nuchterheid, het
meedenken over bandenspanningsmetingen van mijn rolstoelwielen en voor je trots. Mariette,
Rob, bedankt voor de fijne gesprekken, lekkere etentjes en voor jullie stralende aanwezigheid.
Familie Koot, wat een inspiratie, zelfstandigheid en ambitie is hier aanwezig. Marc, Marja,
bedankt voor de steun en geborgenheid. Oma Koot, ik koester alle momenten en de diepe
connectie die we samen hadden. Ik ben ongelooflijk trots op u. Oma van Dijk, ik ben eindelijk
afgestudeerd! Bedankt voor alle liefde, knuffels, goede gesprekken, en de momentjes gewoon
lekker samen liggen en naar het plafond kijken. Lieve oma’s, jullie zijn mijn grootste voorbeeld.
Annet, Carlo, Renee, bedankt voor het warme welkom.

Isabelle, wat een avonturen hebben wij al samen meegemaakt. Van pioniers op de amstel gold
race (toen het nog bijzonder was om twee jonge vrouwen alleen op de racefiets te zien), tot
schaatsen op de nieuwkoopse plassen, zware trainingen of toertochten waarbij ik altijd nét iets
te vroeg juich dat we het hebben gehaald en trailruns waarbij we achteraf complimenten krijgen
hoe wij toch ‘let-ter-lijk de vol-le-di-ge 16 kilometer aan één stuk door kunnen lopen kletsen’.
Bedankt voor de lach, traan, luchtige en diepe gesprekken en alle sportieve uitdagingen! Lies,
Marloes, mede PhD-aapies, wat fijn datjullie als één van de weinigen niet-collega’s wél begrijpen
waarom een PhD doen leuk is. Enjoy the trip! Sel, ik mis jouw projectjes op Uilenstede, waarbij
ik de hele dag achter je aan kon lopen en m’n dagelijkse perikelen kon vertellen. Ik hou van jouw
rust, creativiteit en relativering. Simon, je was m’n eerste BW-vriendinnetje, en tegenwoordig zie
ik je gelukkig weer veel. Je hebt me door het afgelopen jaar heen gesleept, we hebben veel
gelachen en we begrijpen elkaar goed. Ik ga je heel erg missen in Rotterdam, maar we blijven
elkaar zien! Lieve Suus, ik ken niemand die vriendinnen hoger op de prioriteitenlijst heeft staan
dan jij. Bedankt voor alle liefde, luchtigheid, gieter-avondjes, goede wijn en leuke momenten
samen. let, wij kunnen elkaar maanden (en soms zelfs langer) niet spreken, maar het is altijd
meteen weer als vanouds. Je bent m’n favoriete turn-, zeil-, snoepverzamelings-, windsurf- en
bovenal n/lepel-maatje. Lee, ik vind het zo leuk dat we elkaar weer meer zien! Bedankt voor het
meedenken met de voorkant, alle slappe lachen en goede gesprekken. Puck, Niels, het is altijd
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museumbezoekjes en patisserie-bijscholing. Franka, ik ben zo blij met jou als huisgenootje en
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en bentde beste kritische vragensteller die ik ken. Liesje, Simon, of we nu met z’n drieénin Salou
op een slaapkamer liggen te chapnatten of in een 120m-bedje in Londen lepeltje-lepeltje de
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