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Abstract

We simulate focusing surface gravity wave groups with directional spreading using the modified nonlinear Schrodinger
(MNLS) equation and compare the results with a fully-nonlinear potential flow code, OceanWave3D. We alter the direction
and characteristic wavenumber of the MNLS carrier wave, to assess the impact on the simulation results. Both a truncated
(fifth-order) and exact version of the linear dispersion operator are used for the MNLS equation. The wave groups are based
on the theory of quasi-determinism and a narrow-banded Gaussian spectrum. We find that the truncated and exact dispersion
operators both perform well if: (1) the direction of the carrier wave aligns with the direction of wave group propagation; (2)
the characteristic wavenumber of the carrier wave coincides with the initial spectral peak. However, the MNLS simulations
based on the exact linear dispersion operator perform significantly better if the direction of the carrier wave does not align with
the wave group direction or if the characteristic wavenumber does not coincide with the initial spectral peak. We also perform
finite-depth simulations with the MNLS equation for dimensionless depths (k,d) between 1.36 and 5.59, incorporating depth
into the boundary conditions as well as the dispersion operator, and compare the results with those of fully-nonlinear potential
flow code to assess the finite-depth limitations of the MNLS.

Keywords Surface gravity wave groups - Third-order interactions - Finite depth - MNLS - OceanWave3D

1 Introduction

oB

The modified nonlinear Schrédinger (MNLS) equation is fre-
quently used in studies of “rogue” or “freak” ocean waves
due to the low computational expense and high fidelity of the
simulations. A comprehensive overview of rogue wave stud-
ies can be found in Kharif and Pelinovsky (2003), Kharif
et al. (2008), Dysthe et al. (2008) and Adcock and Taylor
(2014). Schrodinger equations are also frequently used to
investigate optical rogue waves (Akhmediev et al. (2013),
Onorato et al. (2013), Dudley et al. (2014)) including the
dynamics of optical solitons (see, e.g., Pinar et al. (2020)).
In this study, we use the MNLS equation for the first har-
monic of the surface elevation as presented in Trulsen et al.
(2000), based on the work of Trulsen and Dysthe (1996):
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to simulate directionally-spread, steep groups of ocean waves
formed by dispersive focusing. Here, B represents the com-
plex wave envelope based on the first harmonic of the surface
elevation and the characteristic wavenumber and angular fre-
quency of the carrier wave are denoted by k¢ and wg. Note
that the velocity potential expression corresponding to (1)
reverses the sign of the BZ(d B*/dx) term to be negative, as
listed in Trulsen and Dysthe (1996). The dispersion operator
£in (1) may be based upon a truncated version of the linear
dispersion relationship (see Trulsen and Dysthe (1996)) or
an alternative pseudo-differential operator that preserves the
exact linear dispersion relationship (see Trulsen et al. (2000)).
We contrast the performance of the two dispersion opera-
tors and compare the results with a fully-nonlinear potential
flow solver. We also consider the effect of selecting differ-
ent characteristic wavenumbers and directions for the MNLS
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carrier wave. Finally, we perform finite-depth simulations
with (1) using the arbitrary-depth linear dispersion relation-
ship, w = +/gk tanh (kd) to evaluate the exact version of £B
with finite-depth also incorporated into the boundary condi-
tions to assess the finite-depth limitations of (1). We focus
on the impact of four-wave, or “quartet”, interactions on the
shape and spectral evolution of the focusing wave groups and
assess the fidelity of the various MNLS formulations.

The MNLS formulation is based upon a carrier wave that
requires a characteristic wavenumber and direction. In ran-
dom seas, the selection of the characteristic wavenumber
and direction is typically based on the background sea state.
Examples of MNLS simulations of random seas include Dys-
the et al. (2003), Socquet-Juglard et al. (2005), Gramstad and
Trulsen (2007), Xiao et al. (2013) and Adcock et al. (2015).
An appropriate value for the characteristic wavenumber may
be clear if the wave spectrum is symmetric about a spec-
tral peak. Similarly, a sea state featuring a concentration of
wave components aligned to a particular direction provides
a clear choice for the carrier wave direction. However, sea
states without a clear spectral peak or dominant wave direc-
tion provide less clarity for the carrier wave parameters. For
long simulations there may also be a change in the spectral
peak due to non-linear physics and, if activated, energy input
or damping. Furthermore, the characteristics of an individual
steep wave event in a random sea may not be consistent with
the background sea state. Individual wave events may form
at an angle to the dominant wave direction and local spec-
tral distortions may also arise in the vicinity of a steep wave
event due to nonlinear wave—wave interactions. Thus, the
selection of the characteristic direction and wavenumber for
the MNLS carrier wave can present obstacles. We investigate
the sensitivity of our results to the selection of the character-
istic wavenumber and direction of the MNLS carrier wave.
We deliberately test the MNLS equations beyond the param-
eter range expected in practice, to ascertain the limits of the
various formulations.

We simulate isolated wave groups formed by dispersive
focusing rather than random seas. An isolated wave group,
based on a coherent phase distribution, features the same
nonlinear wave—wave interactions observed in random seas.
However, the effect of the nonlinear interactions can be more
easily identified and the computational expense is lower. Fig-
ure 1 shows focused wave groups simulated with a potential
flow code. Identical initial conditions were used for the wave
groups shown in Fig. la, b. However, Fig. 1la shows the
focused wave event with linear free-surface boundary con-
ditions and Fig. 1b shows the focused wave event with the
fully-nonlinear free-surface boundary conditions. As can be
seen, the shape of the focused wave event in Fig. 1b dif-
fers from Fig. 1a. The largest crest sits in the center of the
wave group in Fig. 1a but has moved to the front of the wave
group in Fig. 1b. Energy transfers to oblique components also
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Fig. 1 Surface elevation of wave groups at focus with a steepness
(Akp) of 0.3, simulated with identical initial conditions using the fully-
nonlinear potential flow solver OceanWave3D: a time marched with
linear free surface boundary conditions; b time marched with nonlin-
ear free surface boundary conditions. The formation of wing waves is
indicated with WW

results in the formation of “wing waves” in Fig. 1b, denoted
with V. Thus, nonlinear wave—wave interactions can signif-
icantly influence the formation of a steep wave event, and
we investigate the fidelity of various MNLS formulations
in resolving the nonlinear interactions. The wing-waves are
themselves propagating at approximately 12° to the mean
direction and are thus an example of the phenomena which
may be poorly captured by an MNLS type model.
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The MNLS equation accounts for linear dispersion of the
wave components as well as nonlinear wave—wave interac-
tions. The MNLS equation of Trulsen and Dysthe (1996)
performs an expansion on the linear dispersion operator with
truncation at the fifth order. In contrast, the MNLS equation
of Trulsen et al. (2000) retains the exact linear dispersion
relation by numerical evaluation of the linear dispersion oper-
ator. Use of the exact linear dispersion relation by Trulsen
et al. (2000) is expected to increase the bandwidth limits of
the MNLS equation while improving the resolution of four-
wave “quartet” interactions and eliminating energy leakage.
In this study, we contrast the results of the two dispersion
operators. We note that the MNLS equations of Trulsen and
Dysthe (1996) and Trulsen et al. (2000) are both fourth-order
in steepness, shown by Stiassnie (1984) to only resolve quar-
tet interactions. Thus, all the spectral changes observed in
this study are attributed to quartet interactions.

The impact of finite depth on quartet interactions has
been previously investigated. Benney and Roskes (1969)
and McLean (1982) showed that the dominant directions
of energy transfer for a degenerate quartet depend upon
the dimensionless water depth. A variety of MNLS formu-
lations have been proposed to account for the impact of
depth on quartet interactions. Third-order “cubic” Nonlinear
Schrodinger (NLS) equations for three-dimensional waves
at finite depths have been presented by Benney and Roskes
(1969) and Davey and Stewartson (1974). A fourth-order
equation for water waves at finite depths has been presented
by Brinch-Nielsen and Jonsson (1986). The classic MNLS
equation of Trulsen and Dysthe (1996) does, however, incor-
porate finite-depth into the boundary conditions and the exact
dispersion operator of Trulsen et al. (2000) allows depth
effects to be included in the dispersion relationship with
ease. Trulsen and Dysthe (1996) show that the classic MNLS
formulation captures the bifurcation of the most unstable
perturbation for a Stokes wave at finite depths, suggesting
that the classic MNLS equation may be appropriate for some
finite-depth simulations. Depth-sensitive coefficients for the
nonlinear terms of the MNLS equation have also been pro-
posed by Sedletsky (2003) and we use these coefficients
together with the exact linear dispersion operator of Trulsen
et al. (2000) as a potential finite-depth MNLS model. To
assess the performance of our finite-depth MNLS simula-
tions, we compare the results with those of a fully-nonlinear
potential flow code.

2 Numerical methodology

We perform simulations with the MNLS equation as well as
the fully-nonlinear potential flow code OceanWave3D based
on wave groups formed by dispersive focusing. Our simu-
lations follow a three-step process: (1) We use the theory

of quasi-determinism to determine the shape of the wave
group at focus; (2) Using the linear dispersion relation, we
propagate the wave components for 15 characteristic wave
periods backwards in time to calculate the initial conditions at
t/Ty = —15; (3) We initialise the simulations at ¢ /Ty = —15
and run the simulation forwards in time for 30 characteristic
wave periods until /7o = +15. Steps 1 and 2 are identical
for the OceanWave3D and MNLS simulations, i.e., we use
identical initial conditions for the two types of simulations.
Only step 3 differs, in terms of which code is used to do the
forward propagation of the wave components in time.

2.1 Initial conditions

Implementation of the theory of quasi-determinism requires
the underlying wave spectrum of the sea state. We define
the variance density spectrum F(k, 0) as the product of a
wavenumber magnitude spectrum S (k) and a spreading func-
tion D(0). We use a Gaussian function as the wavenumber
magnitude spectrum:

—(k = kp)2>

k2

S(k) = Soexp ( (2

where k is the wavenumber, k;, is the wavenumber corre-
sponding to the initial spectral peak, and ky, is the spectral
width. A Gaussian distribution has also been used for the
spreading function:

D(O) =

(6 — )2
® - ) 3)

vt
exp
con/ 2 25‘3

based on the initial spreading parameter (o) and the direction
of the wave component (6). Here, x represents the dominant
angle of propagation for the wave components. The variance
density spectrum F (k, 6) is thus defined as the product of two
Gaussian functions, and Table 1 lists the values used in this
study. All the simulations considered in this investigation
are based upon a fixed steepness (Ak,) with fixed spectral
parameters (kp, kw, ¢o). Only the parameters of the MNLS
carrier wave and the dimensionless depth (kpq) of the domain
are varied. Barratt et al. (2021) showed that the absence of the
spectral tail can result in augmented wave—wave interactions.
Thus, the spectra used in this study represent a conservative
test of the MNLS equation, since more realistic spectra are
likely to result in weaker wave—wave interactions than those
observed in this investigation. The initial spectrum used is
reasonably narrow-banded and thus one would expect the
MNLS model to perform well. However, the rapid weakly
nonlinear wave—wave interactions will cause a broadening of
the bandwidth in the mean wave direction (Gibbs and Taylor
(2005); Adcock et al. (2012)) which potentially invalidates
the narrow-banded assumption.

@ Springer
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Table 1 Initial condition parameters

Table 2 Grid parameters for OW3D and MNLS simulations

Akp kp kw < Grid Ny Ny, N, Ax Ay

0.3 0.02796 m~! 0.004606 m~! 15° OW3D 1025 257 9 7.5m 10 m
MNLS Inter. 513 257 - 15m 20 m
MNLS Fine 1025 513 - 7.5m 10 m

Quasi-determinism (QD) theory, based on Boccotti (2000)
and Lindgren (1970), indicates that the average shape of an
extreme event in a random, linear Gaussian field is the scaled
auto-correlation function. The linear surface elevation of the
wave group is, thus, given by:

with Cartesian coordinates (x, y, z). Table 2 lists the horizon-
tal grid resolution (Ax, Ay), which is uniform throughout the
domain, together with the number of grid points (N, Ny) in

nL(x,y, t) = AL
Zi,j F(ki’ej)

Zi’j F(ki, 0;) cos (ki cos 6 x + ki sin®; y — w;t + ¢o)

“)

Here, k; is the magnitude of the wavenumber component, 6;
is the propagation direction and Ar is the linear amplitude
of the wave group at focus. A phase offset ¢ is included in
(6) to implement the “phase separation” method of remov-
ing bound harmonics (see Fitzgerald et al. (2014)). For the
MNLS simulations, removal of the bound harmonics is not
necessary and ¢y is set to zero, causing linear focus to occur
at (x = 0,y = 0, /Ty = 0). For the OceanWave3D
simulations, each simulation is repeated with ¢g values of
0°, 90°, 180° and 270° to remove the bound harmonics
with four-phase separation, as used by Barratt et al. (2021).
The angular frequency of each component (w;) is calcu-
lated from the arbitrary-depth linear dispersion relationship,
w; = +/gk; tanh (k;d), allowing the initial conditions to be
calculated at r/Ty = —15. We calculate the corresponding
velocity potential and apply exact second-order correction of
the initial conditions using Dalzell (1999). The surface eleva-
tion and velocity potential are prescribed as initial conditions
for the potential flow simulations.

For the MNLS simulations, we calculate the initial com-
plex envelope B(x, t) using the linear surface elevation nr,
and the Hilbert transform of the linear surface elevation nE
following Osborne (2010):

B(x.1) = {nL + inl!}exp (~ilko - x — wo1]). )
Here, ko and wq are the properties of the carrier wave.

2.2 Potential flow simulations

OceanWave3D numerically solves the governing equations
of potential flow for surface gravity waves (Currie 1993, pp.
201-204), including the fully-nonlinear free surface bound-
ary conditions. Described in detail by Engsig-Karup et al.

(2009), OceanWave3D is based on an Eulerian frame of refer-
ence and the three-dimensional spatial domain is discretized

@ Springer

the x and y-directions. We utilise a symmetry plane along
the centreline of the wave group (y = 0) for the potential
flow simulations. Thus, the domain width based on Table 2
only represents half the effective domain width for the poten-
tial flow simulations. The vertical distribution of grid points
follows the symmetric half of a Chebyshev—Gauss—Lobatto
(CGL) distribution with the vertical number of grid points
(N;) listed in Table 2.

We use eighth-order finite differencing of the spatial
derivatives throughout the domain combined with fourth-
order Runge—Kutta time marching and a Courant—Friedrichs—
Lewy (CFL) condition of 0.5, based on the phase speed (cg)
associated with the wavenumber of the spectral peak (kp)
and the horizontal grid resolution in the x direction (Ax).
Our selection of the simulation parameters is informed by the
numerical error assessment of Barratt et al. (2020) based on
similar simulations. The simulations of Barratt et al. (2020)
were found to agree well with other potential flow codes with
total energy conservation within 0.04% over 40 wave peri-
ods. For comparison against the MNLS simulations, we use
the four-phase separation technique (Fitzgerald et al. (2014)),
to remove the bound harmonics from the potential flow sim-
ulations and approximate the linear surface elevation (1r).
Using the Hilbert transform of the linear surface elevation
(nE), we calculate the absolute value of the complex wave
envelope, |B|:

|B] = /()2 + (1iH2, (©6)

to compare the envelope steepness between the potential flow
and MNLS simulations. Note that the ability of the MNLS
formulation to model bound harmonics has been considered
by Adcock and Taylor (2016).
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T

Fig. 2 Coordinate systems for MNLS simulations. Contour levels
depict the surface elevation n of the wave group, evenly distributed
between 1 and 5 m in intervals of 1 m. The direction of the carrier wave
coincides with the x-axis and the wave group propagates in the direction
of the x*-axis. The angle between the axes is denoted as x

2.3 MNLS simulations

We perform simulations with the MNLS equations of Trulsen
and Dysthe (1996) as well as Trulsen et al. (2000). We repeat
the MNLS simulations based upon different characteristic
wavenumbers for the carrier wave. We also alter the direction
of the carrier wave relative to the direction of wave group
propagation using the parameter x as included in (3). The
carrier wave is always aligned with the x-axis, corresponding
to 6 = 0°, while the direction of wave group propagation is
determined by y.

The MNLS formulation assumes that the surface elevation
n(x, t) may be represented by modulation of a carrier wave
with the characteristic wave vector kg = (kg, 0) based upon
a characteristic wavenumber magnitude kq. In this study, we
normalise ko by the wavenumber of the initial spectral peak
kp to define the ratio:

B = ko/kp. ™

We perform simulations with 8 values between 0.7 and 1.3 in
increments of 0.1. We define the direction of the carrier wave
relative to the direction of wave group propagation, follow-
ing the coordinate system shown in Fig. 2. Our coordinate
system aligns the carrier wave with the x-axis and the direc-
tion of wave group propagation aligns with the x*-axis. The
angle between the axes is denoted y and we perform simula-
tions with x values between 0° and 30° in intervals of 5°. In
the spectral domain, wavenumbers k, and k, correspond to
the x and y-axes respectively while wavenumbers k} and k7
correspond to the x* and y*-axes, respectively. All spectral
evolution plots are shown in terms of ky and k7 based on the
coordinate system of the wave group.

The nonlinear evolution of the complex envelope is sim-
ulated with the MNLS equation, see (1), subject to the free
surface and bottom boundary conditions, as well as continu-
ity for the mean flow potential ¢:

90  wo 0
= B

= t = O, 8
9z~ 2 ox as ®
53
¥ _0 w z=—d, 9)
0z

V2$ =0 for —-o00<z<O. (10)

In (1), £ represents a dispersion operator, acting upon the
complex envelope B, which can be expressed as:

£B =

1 o0
Lﬁ/imw+m—mmmwbu—WMxmmw
(11)

Here, u = (A, ) is the modulation wavenumber and wy is
the frequency corresponding to the characteristic wavenum-
ber ko based on the linear dispersion relation. Expansion of
(kg + p) in (11) utilising the linear dispersion relation, fol-
lowed by truncation at the fifth order, yields the linear part
of the Trulsen and Dysthe (1996) equation. Direct numerical
evaluation of (11) avoids truncation, retaining the exact lin-
ear dispersion relation, as shown by Trulsen et al. (2000).
Retention of exact linear dispersion in (11) increases the
bandwidth limits of the MNLS equation and improves the
resolution of four-wave interactions while eliminating energy
leakage (see Martin and Yuen (1980) and Yuen and Lake
(1980)), with almost no additional computational cost. We
use both the truncated and exact versions of (11) in our sim-
ulations and compare the results to assess the impact of the
truncated/exact linear dispersion operators. To perform our
MNLS simulations, we incorporate the boundary conditions,
(8) and (9), directly into the MNLS equation, (1), using the
continuity condition for the mean flow, (10), as done with the
fourth-order envelope equation of Janssen (1983). A single
governing equation is, thus, obtained:

9B 1 3 3B 1 9 B*
= 4+ £B+ —iwok?|BI*B + Zwoko|BI*— + ~woko B> ——
or T LB F Fieokg|BIPB + Swokol BT 4 Zwoko BT
(12)
pikgpr e L oo d poll
i —_— ~ A =V
0 k| tanh((k|d)” | 2 9x

where F denotes a 2D Fourier transform in x and y and
F~! denotes the inverse operation. Note that (12) includes
a depth-dependent return current term which results from
the incorporation of finite depth into the bottom bound-
ary condition in (9). For our simulations based on (12),
we use the arbitrary-depth linear dispersion relation, v =
J/ gk tanh (kd), to evaluate the dispersion operator £ B with
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the exact version of (11). We also perform MNLS simulations
based on infinite depth (|k|d goes to oo) with the correspond-
ing expression:

9B 1. 5 5 3 3B
2 L ©B+ ~iwgk?|BI*B + Zapko| B2 22
o1 + +21w0 olBl +2wo ol Bl o
I I B* ike [wo 0 (13)
~woko B2 ikgBF U X AL 20 7 g2t o
+geotoBT s ik {|k| 2 ox B!

For our simulations based on (13), we use the deep-water
linear dispersion relation, w = 1/gk, to evaluate the disper-
sion operator £ B. Our comparison of the truncated and exact
versions of (11) is based upon (13). We directly discretize and
numerically solve (12) and (13) using a split-step algorithm.
We use spectral methods to evaluate both the exact and trun-
cated versions of (11), using the Fourier transform to treat
the spatial derivatives as multiplier operators for the linear
dispersion terms presented in Trulsen and Dysthe (1996). We
use fourth-order finite differencing with symmetric stencils
for the spatial derivatives in the nonlinear terms. Time march-
ing is performed with the classic fourth-order Runge—Kutta
scheme. We perform simulations with Courant—Friedrichs—
Lewy (CFL) conditions of 0.5 and 1.0 to assess the effect,
based on the group speed (cg) of the wave group (kp) and
the horizontal grid resolution in the x-direction (Ax). Note
that the definition of the CFL differs between the potential
flow and MNLS simulations since the group speed (c,) is the
characteristic velocity of the wave envelope in the MNLS
simulations while the phase speed (c¢) is the characteristic
velocity of the free surface in the potential flow simulations.

We also perform finite-depth MNLS simulations by com-
bining the exact version of (11), based on the arbitrary-depth
linear dispersion relation, with depth-sensitive coefficients
for the nonlinear terms proposed by Sedletsky (2003):

dB 9B
T £ B + qsiwok]| BI* B + Q41a)0ko|B|2a—x
(14)

*

0B
+ Qapwoko B>
0x

=0,

denoted as g3, Q41 and Q47 in (14) and plotted against dimen-
sionless depth (kod) in Fig. 3. We note that the coefficients
were first derived by Sedletsky (2003) and later confirmed
by Slunyaev (2005). However, Slunyaev (2005) includes one
additional term in the expansion of the mean flow and we use
the versions of g3, Q41 and Q45 listed in Gandzha and Sedlet-
sky (2017), consistent with the results of Slunyaev (2005). An
expansion of the induced mean flow allows the effect of the
return current term to be encompassed within the coefficients
g3, Q41 and Q4. Thus, (14) does not contain a return current
term. Finite-depth is known to suppress quartet interactions
and Fig. 3 shows that the values of g3, Q41 and Q4 decline as
the dimensionless depth (kod) is reduced from 5.592 to 1.363.
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Fig. 3 Coefficients g3, Q41 and Q4> for dimensionless depths (kod)
between 1.363 and 5.592 based on the expressions in Gandzha and
Sedletsky (2017). The solid lines represent the coefficient values, used in
(14), and the dotted lines represent the asymptotic infinite-depth limits,
used in (12) and (13)

Table 3 MNLS convergence study based on grid resolution/CFL

Grid CFL  ny mny Ak t*/To AL [%]
Inter. 1.0 90.9 429 0.304 1.42 4.08e—02
Inter. 0.5 90.9 429 0.304 1.66 1.06e—02
Fine 1.0 181.9 85.8 0.305 1.66 1.34e—03
Fine 0.5 181.9 85.8 0.305 1.66 7.33e—04
OW3D 0.5 - - 0.283 1.27 -

Notably, the value of g3 goes to zero at kod = 1.363, the
critical depth of vanishing modulational instability for uni-
directional waves, and Q4 turns negative for kod < 1.731.
Thus, (14) may present a finite-depth MNLS model that cap-
tures the suppression of quartet interactions by finite-depth
and we assess its performance.

2.4 Grid resolution and CFL

We have analysed the discretization error for the MNLS sim-
ulations. The OceanWave3D simulations in this study are
based on the same parameters as Barratt et al. (2020) and a
detailed assessment of the discretization errors can be found
therein. The MNLS simulations have been performed with
two grid levels, termed “intermediate” and “fine”, with the
parameters listed in Table 2. Note that a symmetry plane has
not been used for the MNLS simulations. We have assessed
the effect of the grid resolution and CFL with the results
listed in Table 3. We consider the maximum steepness of the
wave group (Ak;‘), observed at any time in the simulation,
as well as the corresponding time at which the maximum is
reached (1*/Tp). The Nonlinear Schrodinger (NLS) equation
has an infinite number of conserved quantities (Zakharov and
Shabat (1972)) and we consider the conserved quantity /5.
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L= |B(xi, y)I, (15)

iJ

typically associated with energy conservation. We calculate
I> at each time step and the maximum discrepancy in I rel-
ative to the initial value (denoted as AIZ* ), has been recorded
and listed in Table 3 for the different grid resolutions and
CFL conditions. Our assessment of grid resolution is based
on dimensionless length scales for the wave envelope (A,
Ay)in the x and y directions:

_27r _ 2

Ay = PR - )
! ky Y kp§0

(16)

based on the spectral bandwidth (ky ), the initial peak
wavenumber (kp) and the initial spreading parameter (go)
in radians. Dimensionless metrics for grid resolution, in the
x and y-directions can, thus, be defined as:

Ay A,

= —, = — 17
Ax "y Ay 17

Ny

which approximately represent the number of grids spanning
the wave envelope in the x and y-directions. Table 3 lists the
values of ny and n, for the different MNLS grid resolutions.

Table 3 indicates that the maximum steepness of the wave
group does not differ significantly between the different grid
resolutions and CFL conditions for the MNLS simulations.
An Ak; value of 0.304—0.305 occurs in all the cases. How-
ever, the time at which the max steepness occurs does show
a dependency on the CFL condition. A combination of the
intermediate grid resolution with a CFL value of 1.0 results
in premature focusing of the wave group. Thus, we use the
intermediate grid resolution with a CFL value of 0.5 which
shows close agreement in focal time with the fine grid cases.
We note that the AT} value of 0.0106% indicates negligible
changes to the conserved quantity I, associated with energy
conservation. The maximum steepness Ak;)k and focal time
t* /Ty of the MNLS simulations do differ from the potential
flow results. We attribute the differences to an overestimation
of nonlinear interactions by the MNLS equation, as discussed
in the results section.

3 Results and discussion

We investigate focusing wave groups, in deep and finite
depths, and compare the results of MNLS simulations, based
on exact and truncated versions of the dispersion operator,
with fully-nonlinear potential flow simulations performed
with OceanWave3D. The impact of the carrier wavenumber
for the MNLS simulations is assessed as well as the impact
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Fig. 4 Envelope steepness over time for OceanWave3D (OW3D) and
infinite-depth MNLS simulations, based on (13), performed with exact
linear dispersion operator (‘MNLSO00’) and truncated linear dispersion
operator (‘MNLS96’). The amplitude A(¢) is based on the maximum
elevation of the wave envelope at time ¢

of the carrier wave direction, relative to the direction of wave
group propagation. Our analysis considers the steepness of
the wave envelope over the course of the simulations as well
as the spectral evolution of the wave group.

3.1 Comparison of OceanWave3D and MNLS results

We compare the simulation results from OceanWave3D with
infinite-depth MNLS simulations based on (13), both in terms
of envelope steepness and spectral evolution. Figure 4 depicts
envelope steepness A(t)kp over time for the OceanWave3D
and MNLS simulations. The envelope amplitude A(¢) is the
maximum elevation of the envelope at time . The general
agreement between the potential flow and MNLS results is
good, although the MNLS simulations tend to overpredict
the steepness of the wave group at focus. The construction
of the wave group implies that the steepness curve shown in
Fig. 4 should be symmetric about the time of focus (r = 0)
if the evolution were linear. Thus, asymmetry in the steep-
ness curve and a delay in focus beyond ¢ = 0 are the result
of nonlinear wave—wave interactions. The competing effects
of dispersion and nonlinear wave—wave interactions are cap-
tured by the Benjamin—Feir index, as discussed by Janssen
(2003), impacting the lifespan of focused wave events. The
potential flow results in Fig. 4 show evidence of suppressed
dispersion causing the wave group to focus after t = 0
and remain steep after focus, extending the lifespan of the
focused wave event. Suppressed dispersion is also apparent
for the MNLS simulations, but the effect is less noticeable
than observed in the potential flow simulations, with only a
small degree of asymmetry apparent for the steepness curve
shown in Fig. 4. The MNLS results based on the exact and
truncated dispersion operators also agree closely. The MNLS
results based on the different dispersion operators are almost
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identical in the early stages of wave focusing but discrepan-
cies arise during and after the nonlinear focused event.

The MNLS equation is limited in terms of bandwidth and
steepness. Thus, the discrepancies may be caused by the
increasing steepness of the wave group approaching focus
and the oblique energy transfers which increase the spec-
tral bandwidth. The exact dispersion operator is expected
to have broader bandwidth limits and improved resolution
of four-wave interactions. Thus, discrepancies between the
exact and truncated dispersion operator may be expected
for wave groups which are particularly steep or broad-
banded, accounting for the difference observed during and
after focus. Agreement between the MNLS simulations
improves towards the end of the simulation, once the post
focus wave group has dispersed and the steepness of the
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group is again reduced. Both of the MNLS results appear
to overestimate nonlinearity, resulting in wave groups which
are steeper at focus than the OceanWave3D result. How-
ever, the discrepancy in envelope amplitude at focus is
less than 4%, indicating good agreement between the fully-
nonlinear potential flow simulations and the approximate
MNLS results.

We also compare the spectral evolution of the Ocean-
Wave3D and MNLS simulations to assess the resolution of
four-wave interactions. Figure 5 shows the OceanWave3D
result, depicting the amplitude spectrum of surface eleva-
tion for the initial condition (¢/Typ = —15) in Fig. 5a and
near the time of focus (¢/7p = 0) in Fig. 5b. Post focus
results are depicted at /Ty = 7.5 in Fig. 5c and ¢t /Ty = 15
in Fig. 5d. The initial condition shows a concentration of
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Fig. 8 Envelope steepness over time for infinite-depth MNLS sim-
ulations, based on (13), with different characteristic wavenumbers
(B = ko/kp), performed with: a exact linear dispersion operator; b
truncated linear dispersion operator. The amplitude A(#) is based on
the maximum elevation of the wave envelope at time ¢

wave components around the spectral peak consistent with
the wave spectrum defined by (2) and (3). Approaching non-
linear focus, the wave spectrum exhibits energy transfers to
higher wavenumbers and oblique wave components, as can
be seen in Fig. 5b. Post focus, the energy transfers to oblique
components intensifies, as can be seen in Fig. 5c, d.

Figures 6 and 7 show the corresponding results from the
MNLS simulations. Figure 6 is based on the MNLS equation
of Trulsen et al. (2000), using the exact version of (11). Figure
7 is based on the MNLS equation of Trulsen and Dysthe
(1996), using the fifth order truncated version of (11). As
can be seen, both versions of the MNLS equation capture the
spectral evolution of the wave group. The energy transfers
to oblique and high-wavenumber components are captured
in the MNLS wave spectra, near the time of focus and post
focus, in Figs. 6 and 7.

3.2 Wavenumber of MNLS carrier wave

The effect of the carrier wavenumber on the evolution of the
wave envelope is shown in Fig. 8 for infinite-depth MNLS

simulations based on (13). The results based on the exact dis-
persion operator are shown in Fig. 8a and the results based on
the truncated dispersion operator are shown in 8b. Both fig-
ures depict the increasing envelope steepness during focusing
followed by a post-focus decline in steepness as the wave
group disperses. Figure 8a demonstrates that 8 values less
than unity do not significantly alter the evolution of the wave
envelope if the exact dispersion operator is used. However,
B values greater than unity do alter the evolution of the enve-
lope for the exact dispersion operator; a B of 1.3 reduces the
amplitude of the focused event by 4.0%. If the truncated dis-
persion operator is used, Fig. 8b reveals that § values both
great and less than unity can impact the evolution of the wave
group, indicating a 9.6% reduction in amplitude at focus for
a B of 0.7. Thus, the truncated operator appears to be more
sensitive than the exact operator to the selection of the g
value. Selecting a carrier wavenumber above/below the spec-
tral peak effectively tests the bandwidth limits of the equation
since the largest amplitude wave components exist around the
spectral peak. Moving the carrier wavenumber away from the
spectral peak, thus, shifts some large amplitude components
away from the characteristic wavenumber. The superior per-
formance of the exact dispersion operator, thus, demonstrates
the improved bandwidth limits of the MNLS equation with
exact dispersion, as indicated by Trulsen et al. (2000).

The impact of the 8 value on spectral evolution is demon-
strated by Figs. 9 and 10 with the results for the exact
dispersion operator shown in Fig. 9 and the results for the
truncated dispersion operator shown in Fig. 10. The ampli-
tude spectrum of surface elevation is shown at the end of
the simulation for various B values, including: 8 = 0.7 in
Figs. 9a and 10a; B = 0.8 in Figs. 9b and 10b; B = 1.0
in Figs. 9c and 10c; § = 1.2 in Figs. 9d and 10d. Notably,
both the exact and truncated dispersion operators appear to
under predict oblique energy transfers for B values less than
unity and both appear to over predict oblique energy trans-
fers for B values greater than unity. As can be seen Figs. 9
and 10, the exact and truncated dispersion operators exhibit
similar spectra for 8 values of 1.0 and 1.2. However, for
values less than unity, differences in the spectra arise between
the exact and truncated dispersion operators. The truncated
dispersion operator exhibits energy leakage to wavenumbers
above the spectral peak forming a local peak at k¥ /kp, = 1.67
for B = 0.7. However, no such energy leakage is apparent
with the exact dispersion operator for 8 values of 0.7 and 0.8.
Energy leakage in the MNLS equation, reported by Martin
and Yuen (1980), is a source of inaccuracy which can con-
taminate the solution, particularly in the context of long-term
random sea simulation in which the effect accumulates over
time. Trulsen et al. (2000) indicate that the exact dispersion
operator eliminates energy leakage, and no significant evi-
dence of energy leakage can be seen in Fig. 9 for all 8 values.
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Fig.9 Amplitude spectra of surface elevation for infinite-depth MNLS
simulations, based on (13), performed with the exact linear dispersion
operator. The spectra correspond to the end of the simulations, /7y =

15, performed with different characteristic wavenumbers (8 = ko/k)):
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Fig.10 Amplitude spectra of surface elevation for infinite-depth MNLS
simulations, based on (13), performed with the truncated linear disper-
sion operator. The spectra correspond to the end of the simulations,
t/Ty = 15, performed with different characteristic wavenumbers

3.3 Direction of MNLS carrier wave

The impact of the carrier wave direction on the evolution
of the wave envelope is shown in Fig. 11 for infinite-depth
MNLS simulations based on (13). The results for the exact
dispersion operator are shown in Fig. 11a and the results for
the truncated dispersion operator are shown in Fig. 11b. The
steepness of the wave envelope over time is shown for relative
angles () between 0° and 30° in intervals of 5°. The exact
dispersion operator performs well even for a large relative
angle between the carrier wave and direction of wave group
propagation; an angle of 30° results in a 3.1% reduction in
amplitude at focus. The truncated dispersion operator per-
forms well for small relative angles, an angle of 10° results
in a 4.5% reduction in amplitude at focus. However, the trun-
cated dispersion operator performs less well for large relative
angles; an angle of 30° results in a 18.5% reduction in ampli-
tude at focus. A relative angle between the carrier wave and
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the direction of propagation for the wave group is another
means of testing the bandwidth limits of the MNLS equa-
tions. Introducing an angle between the carrier wave and
the components which comprise the wave group effectively
shifts the characteristic wavenumber in the azimuthal direc-
tion away from the spectral peak. Thus, the lower sensitivity
of the exact dispersion operator to the relative angle demon-
strates the superior bandwidth limits of the MNLS equation
based on exact dispersion.

The spectral evolution of the wave group for various angles
of the carrier wave (x) is shown in Figs. 12 and 13 for the
exact dispersion operator and the truncated dispersion oper-
ator, respectively. The amplitude spectrum at the end of the
simulation is shown for various angles of the carrier wave,
including: x = 0°in Figs. 12aand 13a; x = 10° in Figs. 12b
and 13b; x = 20° in Fig. 12c and 13c as well as x = 30°
in Figs. 12d and 13d. The wave group is spatially symmet-
ric about the y*-axis, corresponding to spectral symmetry
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Fig. 11 Envelope steepness over time for infinite-depth MNLS sim-
ulations, based on (13), with different carrier wave directions (yx),
performed with: a exact linear dispersion operator; b truncated lin-
ear dispersion operator. The amplitude A () is based on the maximum
elevation of the wave envelope at time ¢

about the k-axis if all four-wave interactions are properly
resolved. For the exact dispersion operator, Fig. 12 shows
a low sensitivity to the angle of the carrier wave; an angle
of x = 10° introduces minor asymmetries into the spectral
evolution but the result is highly consistent with the y = 0°
result. An angle of x = 30° intensifies the asymmetries but
the exact dispersion operator still facilitates the resolution
of oblique energy transfers to positive and negative k, com-
ponents. The truncated dispersion operator shows a higher
sensitivity to the angle of the carrier wave, as depicted in
Fig. 13. Oblique energy transfers to positive and negative
ky components continue to be resolved for a relative angle
of x = 10°. However, signs of energy leakage to oblique
high-wavenumber components are apparent, resulting in sig-
nificant asymmetry for x = 20° and ¥ = 30°. Thus, oblique
energy transfers to positive ky, components are not resolved
for large angles of x with the truncated dispersion operator.
Thus, the results shown in Figs. 12 and 13 demonstrate the
superior bandwidth limits of the exact dispersion operator
as well as the improved resolution of four-wave interactions.

The resonance conditions of Phillips (1960) are based upon
the linear dispersion relation. Thus, accurate resolution of
four-wave interactions is expected to depend on the disper-
sion operator. Trulsen et al. (2000) indicate that improved
resolution of four-wave interactions is expected for the exact
dispersion operator, and Fig. 12 demonstrates that high-angle
oblique energy transfers continue to be resolved if the MNLS
equation is combined with an exact linear dispersion opera-
tor.

3.4 Finite-depth MNLS simulations

We compare finite-depth MNLS simulations, based on (12)
and (14), with the results of OceanWave3D for various
dimensionless depths. Our comparison is based upon ampli-
tude spectra of surface elevation at the end of simulation
(t/Tp = 15) for dimensionless depths (kpd) of 5.59, 3.14,
2.60, 2.00, 1.60 and 1.36. The OceanWave3D results are
shown in Fig. 14, demonstrating a weakening of wave—wave
interactions with a reduction in depth as observed in pre-
vious studies. The spectra corresponding to kpd = 5.59
show energy transfers along the k,-axis and towards oblique
high-wavenumber components, as expected in deep water—
McLean (1982) showed that deep-water waves of finite
amplitude feature unidirectional as well as oblique instabil-
ities. The unidirectional energy transfers are expected to be
suppressed by depth due to an interplay between the modula-
tion instability and the return current, as found by Benjamin
(1967) and Whitham (1974) and discussed by Janssen and
Onorato (2007). Furthermore, Benney and Roskes (1969) and
McLean (1982) showed that the dominant/fastest component
growth rates become oblique in waters of intermediate depth.
In Fig. 14, the spectra all exhibit a significant reduction in
energy transfers along the k,-axis while the oblique energy
transfers show less sensitivity to depth. Thus, the potential
flow simulations exhibit an increasing dominance of oblique
over unidirectional energy transfers as the water depth is
reduced.

The corresponding MNLS results are shown in Figs. 15
and 16. Finite-depth MNLS simulations based on (12), the
classic MNLS equation with arbitrary-depth linear disper-
sion and a depth-sensitive return current term, are shown
in Fig. 15. Figure 16 shows the results based on (14), a
combination of the exact version of (11), with arbitrary-
depth linear dispersion, and the depth-dependent coefficients
for the nonlinear terms proposed by Sedletsky (2003). Both
finite-depth MNLS formulations exhibit weakening collinear
energy transfers along the k,-axis as depth is reduced from
kpd = 5.59 to kyd = 1.36 accompanied by oblique energy
transfers. Thus, both MNLS codes capture the shift of the
dominant component growth rates away from the k,-axis to
oblique components as the dimensionless depth is reduced.
However, the results based on the classic MNLS formula-
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tion in (12) show excellent agreement with OceanWave3D
for the full range of depths, 1.36 < kpd < 5.59. In contrast,
the results based on (14) agree well with OceanWave3D for
depths in the range 2.00 < kpd < 5.59 but the agreement
deteriorates for k,d < 2.00. Figure 16e, f depict a clear
suppression of the oblique energy transfers for depths of
kpd = 1.60 and kpd = 1.36 with negligible changes to
the spectrum, throughout the entirety of the simulation, for
the case of kpd = 1.36. Thus, the dimensionless depth kpd
of 1.36 appears to be completely stable for the simulations
based on (14), presumably since g3 goes to zero and the
two remaining nonlinear respectively diminish in amplitude
or turn negative. In contrast, the potential flow simulations
continue to feature oblique energy transfers for kyd = 1.60
and k,d = 1.36 and the case of k,d = 1.36 still results in

k k] k /]

oblique energy transfers and significant changes to the spec-
trum during the focused wave event. Thus, the formulation
presented in (14) appears to under estimate the extent of the
oblique energy transfers for kpd < 2.00. The good agreement
between Figs. 15 and 14 suggests that the coefficients of the
nonlinear terms do not require modification for the range of
finite-depths considered in this study. The scale of the return
current beneath the wave group implies that the return current
is especially sensitive to depth and the depth-sensitive return
current term in (12) accounts for this effect. Combined with
the arbitrary depth linear dispersion relation and the exact
dispersion operator of Trulsen et al. (2000), the evidence
suggests that (12) provides an excellent finite-depth MNLS
model for narrow-banded wave groups with dimensionless
depths between 5.59 and 1.36.
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4 Conclusion

We have simulated directionally-spread surface gravity wave
groups, formed by dispersive focusing, in deep and finite
depths using the MNLS equation. We have compared the
results with a fully nonlinear potential flow code and find
that the fifth-order truncated dispersion operator of Trulsen
and Dysthe (1996) and the exact linear dispersion operator
of Trulsen et al. (2000) both perform well if the wavenumber
of the carrier wave coincides with the spectral peak and the
carrier wave direction is aligned with the direction of wave
group propagation. The truncated dispersion operator shows
marginally higher levels of diffusivity, impacting the steep-
ness of the wave group after focus, but the spectral evolution
agrees well between the truncated and exact dispersion opera-
tors. Selecting carrier wavenumbers above/below the spectral
peak significantly impacts the results obtained with the trun-
cated dispersion operator, reducing the steepness of the wave
group at focus. Selecting a carrier wavenumber below the
spectral peak can also aggravate energy leakage if the trun-
cated dispersion operator is used. In contrast, the exact
dispersion operator exhibits less sensitivity to the selection
of the carrier wavenumber. Selecting a carrier wavenumber
below the spectral peak does not significantly influence the
steepness of the wave group at focus, if the exact dispersion
operator is used, but carrier wavenumbers above the spec-
tral peak can marginally reduce the steepness of the wave
group at focus. Similarly, the truncated operator is more
sensitive than the exact dispersion operator to misalignment
between the carrier wave and the direction of wave group
propagation. The steepness of the wave group at focus is
significantly impacted by misalignment of 10° or more, if
the truncated operator is used. The exact dispersion opera-
tor demonstrates low sensitivity to misalignment, providing
similar wave group steepnesses even for angles as large
as 30°. The spectral evolution results show that misalign-
ment aggravates energy leakage, if the truncated operator is
used, reducing the resolution of oblique energy transfers. In
contrast, the exact dispersion operator continues to resolve
oblique energy transfers, even for the largest angles of mis-
alignment, with no evidence of significant energy leakage.
Thus, this study provides evidence that the exact dispersion
operator of Trulsen et al. (2000) does extend the bandwidth
limits of the MNLS equation for steep wave groups with
directional spreading, while improving the resolution of four-
wave interactions and suppressing energy leakage. We find
that the MNLS equation of Trulsen et al. (2000) also works
well at finite depths if the arbitrary depth linear dispersion
relation is used to evaluate the dispersion operator and the
bottom-boundary condition is imposed at finite depth. We
observe good agreement with our fully-nonlinear potential
flow code for narrow-banded wave groups with dimension-
less depths between 5.59 and 1.36.
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