
 
 

Delft University of Technology

A comparison of smooth basis constructions for isogeometric analysis

Verhelst, H. M.; Weinmüller, P.; Mantzaflaris, A.; Takacs, T.; Toshniwal, D.

DOI
10.1016/j.cma.2023.116659
Publication date
2024
Document Version
Final published version
Published in
Computer Methods in Applied Mechanics and Engineering

Citation (APA)
Verhelst, H. M., Weinmüller, P., Mantzaflaris, A., Takacs, T., & Toshniwal, D. (2024). A comparison of
smooth basis constructions for isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering, 419, Article 116659. https://doi.org/10.1016/j.cma.2023.116659

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cma.2023.116659
https://doi.org/10.1016/j.cma.2023.116659


Computer Methods in Applied Mechanics and Engineering 419 (2024) 116659

A
0
(

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

A comparison of smooth basis constructions for isogeometric
analysis
H.M. Verhelst a,b,∗, P. Weinmüller c, A. Mantzaflaris d, T. Takacs e, D. Toshniwal a

a Delft University of Technology, Department of Applied Mathematics, Mekelweg 4, Delft 2628 CD, The Netherlands
b Delft University of Technology, Department of Maritime and Transport Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
c MTU Aero Engines AG, Dachauer Straße 665, 80995, Munich, Germany
d Inria centre at Université Côte d’Azur, 2004 route des Lucioles - BP 93, 06902 Sophia Antipolis, France
e Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria

A R T I C L E I N F O

Keywords:
Isogeometric analysis
Unstructured splines
Kirchhoff–Love shell
Biharmonic equation

A B S T R A C T

In order to perform isogeometric analysis with increased smoothness on complex domains,
trimming, variational coupling or unstructured spline methods can be used. The latter two
classes of methods require a multi-patch segmentation of the domain, and provide continuous
bases along patch interfaces. In the context of shell modelling, variational methods are widely
used, whereas the application of unstructured spline methods on shell problems is rather scarce.
In this paper, we therefore provide a qualitative and a quantitative comparison of a selection
of unstructured spline constructions, in particular the D-Patch, Almost-𝐶1, Analysis-Suitable
𝐺1 and the Approximate 𝐶1 constructions. Using this comparison, we aim to provide insight
into the selection of methods for practical problems, as well as directions for future research.
In the qualitative comparison, the properties of each method are evaluated and compared. In
the quantitative comparison, a selection of numerical examples is used to highlight different
advantages and disadvantages of each method. In the latter, comparison with weak coupling
methods such as Nitsche’s method or penalty methods is made as well. In brief, it is concluded
that the Approximate 𝐶1 and Analysis-Suitable 𝐺1 converge optimally in the analysis of a
bi-harmonic problem, without the need of special refinement procedures. Furthermore, these
methods provide accurate stress fields. On the other hand, the Almost-𝐶1 and D-Patch provide
relatively easy construction on complex geometries. The Almost-𝐶1 method does not have
limitations on the valence of boundary vertices, unlike the D-Patch, but is only applicable
to biquadratic local bases. Following from these conclusions, future research directions are
proposed, for example towards making the Approximate 𝐶1 and Analysis-Suitable 𝐺1 applicable
to more complex geometries.

1. Introduction

Present day engineering disciplines depend on Computer-aided design (CAD) and numerical simulation models for physics for
design and analysis. Typically, geometries designed in CAD are converted to meshes for an analysis with numerical techniques like
Finite Element Methods (FEMs). Since the geometry description in CAD is based on splines whereas meshes for simulation are based
on linear geometry approximations, geometric data is lost during this conversion. Isogeometric analysis [1] is the bridge between
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Fig. 1. General workflow for solving a physics problem and optimizing a geometry or topology coming from CAD and CAE processes. Starting from CAD and
CAE, the IGA Setup is performed. In this block, a computational basis is extracted from the geometry, to be used for simulation. Then, the Simulation block
involves assembly of the operators of the physics problem on the computational basis coming from the IGA Setup. In case of shape or topology optimization
problems, the simulation results are evaluated and the shape/topology is modified. From this changed shape/topology, a new computational basis can be obtained
and the process can be repeated. The IGA Setup block is marked to be elaborated further on in Fig. 2.

CAD and Computer-Aided Engineering (CAE), since it is employing splines as a basis for geometric design and numerical analysis. In
practice, an isogeometric analysis and optimization workflow can be seen as depicted in Fig. 1. Starting with a geometry from CAD
as well as from material parameters, boundary conditions et cetera from CAE, isogeometric simulations and eventually geometry or
topology optimization can be performed. The step connecting the inputs from CAD and CAE is referred to as IGA Setup in Fig. 1.
This step takes care of the preparation for the simulation step, including the pre-processing of the geometry, if needed, and the
construction of the isogeometric discretization space.

Due to the arbitrary smoothness of spline basis functions, isogeometric analysis has several advantages over conventional finite
element methods. For example: (i) the introduction of 𝑘-refinements, which are proven to provide high accuracy per degree
of freedom [2,3]; (ii) high accuracy in eigenvalue problems, e.g. for structural vibrations [4–6]; or (iii) geometric exactness in
parametric design and interface problems, e.g. applied to the parametric design of prosthetic heart valves [7]. Furthermore, the
𝐶1-smooth discretization spaces allow to solve equations such as the biharmonic equation, the Cahn–Hilliard equations or the
Kirchhoff–Love shell equations without introducing auxiliary variables. However, due to the tensor-product structure of the spline
basis, higher-order smoothness can be enforced easily only on domains that allow simple patch partitions (e.g. an L-shape or
an annulus), whereas on geometrically and topologically more complicated domains alternative approaches are required to solve
equations that require basis functions of higher-order continuity.

For more complicated domains, the IGA setup block in Fig. 1 involves a pre-processing step of either the geometry, the system
of equations or the solution space to solve the original system of equations. In Fig. 2, this pre-processing step is subdivided into
three options: trimmed domain approaches, unstructured splines and variational coupling methods. Given an initial geometry (cf.
Fig. 3(a)), the trimmed domain approaches alter the tensor-product domain by defining parts of the domain that are physical
or non-physical (cf. Fig. 3(b)). In case of unstructured splines or variational coupling methods, the geometry is decomposed into
multiple different patches (cf. Fig. 3(c)) on which continuity conditions are enforced by constructing a smooth basis (unstructured
splines) or by adding extra terms to the system of equations (variational coupling approaches). In Section 2 of this paper, a review
of trimmed domain approaches, unstructured splines and variational coupling methods is provided. Examples include immersed
methods, degenerate patches and Nitsche’s method, respectively. In case of simple geometries (and given the right inputs) the
methods are identical.

As shown in Fig. 2, each class of methods has its own characteristics and previous work has provided several comparisons
of methods among each other, which are elaborated more in Section 2. In the context of the workflow sketched in Fig. 1,
unstructured splines provide a valuable alternative to the other methods, since they are constructed for a fixed topology and hence
the computational costs of their construction are not related to changing shapes or moving domains. However, recent developments
mainly focused on different unstructured spline methods separately, rather than providing a valuable comparison. In this paper,
we therefore provide a qualitative and a quantitative comparison of a selection of unstructured spline constructions. We consider
finite, piece-wise polynomial spline constructions, hence we do not include rational constructions or infinite representations, such as
subdivision surfaces. More precisely, we compare examples of (globally) 𝐺1-smooth multi-patch constructions (the Analysis-Suitable
𝐺1 construction of [8] and the Approximate 𝐶1 construction of [9]), the D-Patch method of [10] and the Almost-𝐶1 construction
of [11], motivated in Section 2.3. The selected methods are qualitatively compared based on their properties, and quantitatively
based on several different examples with biharmonic and Kirchhoff–Love shell equations. The aim of this paper is to provide a fair
comparison1 of these methods, providing a good overview of the strengths and weaknesses of each method in different cases.

1 We believe that a comparison like the one presented in this paper is never fully unbiased, since the authors have contributed to different methods in
2

revious publications and do not represent the entire research community.
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Fig. 2. Inside the IGA Setup block from Fig. 1, three methods are distinguished. Firstly, trimmed domain approaches use trimming curves or surfaces to identify
parts of a tensor-product domain as the actual domain. However, since elements can be trimmed poorly, specialized quadrature rules and solver preconditioners
are typically needed. Alternatives to trimming are weak coupling or unstructured spline methods. For both classes of methods, a geometry with a given topology
needs to be decomposed into multiple sub-domains (i.e. patches) via quadrilateral meshing. Given a quadrilateral mesh, weak methods assemble extra penalty
erms into the equation to be solved, or add extra equations to be solved to satisfy continuity constraints. Lastly, unstructured spline constructions can be used to
ouple multiple domains by constructing a continuous basis. These methods, however can only be used on manifold geometries and conforming meshes. When these
equirements are satisfied, unstructured spline pre-processing is required before the unstructured spline construction can take place. The pre-processing is highlighted

and will be elaborated on more in Fig. 7 in Section 3.

Fig. 3. Given an initial geometry 𝛺 (a), trimming (b) uses the curves of the boundary of the original geometry to define the interior domain 𝛺int and the
exterior domain 𝛺ext. An alternative approach for modelling the domain is to use domain segmentation (c). Here, the domain is decomposed into several patches
𝛺𝑖 which together define the full domain 𝛺.
3
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The paper is outlined as follows: in Section 2, a detailed overview of the methods appearing in Fig. 2 is provided. In Section 3 we
rovide a qualitative analysis of the four constructions that are discussed in this paper, while in Section 4 we provide a quantitative
nalysis of all methods. There, we present five benchmark problems solving either a biharmonic or a Kirchhoff–Love equation.
hese benchmark problems serve different purposes and we compare which method, in which setting, performs best. In Section 5,
e conclude this paper based on the findings from the previous sections and we provide directions for future research.

. Multi-patch isogeometric analysis: literature review

As discussed in the introduction of this paper, in particular in Fig. 2, three classes of methods for the modelling of complicated
omains can be characterized: trimmed domain approaches, variational coupling methods and unstructured splines. The goal of all
ethods is to achieve a certain level of continuity across the whole analysis domain such that multi-patch isogeometric analysis can

e performed for example for the Kirchhoff–Love shell model [12], the biharmonic equation or the Cahn–Hilliard equation [13].
s shown in Fig. 3, trimmed domain approaches use the fact that parts of tensor-product geometries are trimmed away, using

rimming curves to separate regions of interest and regions that should be omitted, see Fig. 3(b). Variational coupling approaches
nd unstructured splines are defined on multi-patch domains, typically following from a segmentation of the original domain, see
ig. 3(c). In case of variational coupling methods, the system of equations is enriched with terms that will enforce continuity
typically in a weak sense) between the patches. In case of unstructured spline constructions, a basis is constructed on the multi-patch
bject, where certain smoothness is enforced strongly. When starting from a trimmed geometry, the step of creating a multi-patch
omain decomposition (i.e. untrimming) from an arbitrary geometry with an arbitrary topology is a very important step in the

application of weak coupling methods and unstructured spline constructions, as can be seen in the flowchart in Fig. 2. In this paper,
however, the topic of untrimming will not be discussed as it is out of scope of our study. Hence, the reader is referred to [14,15]
for an overview of these methods.

In this section, an overview of the trimmed domain approaches (Section 2.1), variational coupling methods (Section 2.2) and
unstructured splines (Section 2.3) is provided. A fourth method, which will not be discussed in this section, is to introduce auxiliary
variables for derivatives of the solution, so that 𝐶1 continuity requirements are reduced to 𝐶0 and standard interface coupling can
e used. These so-called mixed formulations are common in conventional FEM, although recent advances have also been made for
irchhoff–Love plates and shells and the biharmonic eigenvalue problem [16–18].

.1. Trimming approaches

Trimming is a technique where so-called trimming curves or surfaces separate parts of tensor-product spline domains to define a
eometry. Trimming is a common technique to represent complex geometries in CAD, and typically geometries consist of multiple
rimmed patches with boundary and interface curves trimming the actual patches. We refer to the work [19] for an overview of
rimming methods in isogeometric analysis. Generalizing the idea of trimming to techniques where curves or surfaces are used
o define the domain of interest as trimmed domain approaches, several approaches have been proposed to perform simulations
n complex geometries, including the finite cell method [20–22], Cut-FEM [23] or immersed methods [24,25]. The advantage of
hese methods is that the trimmed CAD geometries could directly be used for analysis. However, when only small parts of the
hysical domain are cut, leading to small cut elements, numerical difficulties can occur in the conditioning of the system, leading
o solver instabilities or accuracy problems [26]. Therefore, the analysis of complex trimmed geometries via methods like the FCM
ypically require special quadrature schemes to take into account small cut cells [27] or preconditioners to stabilize the numerical
nalysis [28]. In the context of Kirchhoff–Love shell modelling, isogeometric analysis on trimmed geometries has been performed
n several studies [29–31] including some with focus on multi-patch coupling [31–35].

.2. Variational coupling methods

We define variational coupling methods as methods that modify the system of equations to enforce certain continuity across patch
nterfaces. Examples of these methods are penalty methods, Nitsche’s methods, mortar methods or Lagrangian penalized methods.
n the context of Kirchhoff–Love shell analysis, these weak coupling methods have received a lot of attention in previous studies
nd an overview is provided by [36]. Firstly, an in-plane coupling was proposed in [37] together with a method for coupling
on-manifold patches using the so-called bending strip method [38]. Later, weak coupling approaches have been developed for
ulti-patch domains. Here, coupling terms can be added inside the existing variational formulation (referred to as Nitsche’s or
enalty methods) or imposed by Lagrange multipliers (referred to as mortar methods).

Several works on Nitsche techniques (cf. [39]) for isogeometric analysis have been published starting from the imposition of
oundary conditions [40], towards multi-patch coupling and the coupling of patches [41], later using a non-symmetric parameter-
ree Nitsche’s method [42]. Nitsche’s methods have been applied to Kirchhoff plates [43], Kirchhoff–Love shells [29,44,45],
yperelastic 2D elasticity [46] and the biharmonic equation [9,47] and for modelling local subdomains [48] for elasticity
imulations. The advantages of Nitsche’s methods are that the formulation is variationally consistent and requires only mild
tabilization, which can be performed automatically, by estimating the stability parameter. However, the involved integral terms
re complicated expressions that impose high implementation and assembly efforts. Therefore, coupling approaches using only
enalization have been developed [49–53]. Although several improvements have been made in these works, the main disadvantage
4

f penalty methods is that a suitable penalty parameter has to be chosen. Using the super penalty approach [33,54], the computation
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of the penalty parameter can be automated. However, this method has not yet been tested for non-linear shell problems or on ‘dirty’
geometries. Both Nitsche’s and penalty methods can be used to couple geometries that are non-manifold, i.e. geometries that have
out-of-plane connections like stiffened structures by penalizing changes in the angle of patches on an interface. Furthermore, the
methods can handle interfaces with non-matching parameterizations.

Instead of adding coupling terms in the variational form, as is done in Nitsche’s and penalty methods, mortar methods [55] add
xtra degrees of freedom by introducing Lagrange multipliers which are required to resolve additional coupling conditions. The use
f mortar methods to couple non-conforming isogeometric sub-domains was first done by [56]. In [57] the FEA-based approach
f [55] was extended for NURBS-based IGA, but the aim was to develop a method for 𝐶0-coupling for Reissner–Mindlin shells,
ence insufficient for isogeometric Kirchhoff–Love shells. A mortar method aiming to establish 𝐶1 coupling is given in [58] and a
ethod that provides 𝐶𝑛 continuity was given by [59,60]. Furthermore, 𝐺1 mortar coupling, referred to as extended mortar coupling,
as presented in [61] for Kirchhoff–Love shells, based on a coupling in least square sense. On the other hand, in [62] a mortar
ethod to enforce 𝐶1 coupling for the biharmonic equation was developed, where the Lagrange multiplier spaces are constructed

imilarly to [63] for 𝐶0-coupling. An approach to reduce computational costs involved in finding Lagrange multipliers is called
ual mortaring [64], where Lagrange multipliers are eliminated using a compact dual basis. This approach has been developed for
ezier elements [65] and it has been applied for Kirchhoff–Love shells [66] and a bi-orthogonal spline space has been presented
or weak dual mortaring for patch coupling [67]. In [68], a hybrid method was provided and applied to Kirchhoff plates, which
ombines mortar methods and penalty methods. Lastly, a comparison of Nitsche, penalty and mortar methods is given by [69]. For
more complete overview of mortar methods for isogeometric analysis, the reader is referred to [70]. In general, mortar methods
ave the advantage over Nitsche’s methods that there are no parameters involved and that the implementation efforts are lower.
owever, the disadvantage is that a suitable spline space needs to be found for the Lagrange multipliers [62,63,71]. Like Nitsche’s
nd penalty methods, mortar methods can handle non-matching parameterizations and non-manifold interfaces, the latter by similar
enalization of interfacing patches.

.3. Unstructured splines

Compared to weak coupling methods, unstructured spline constructions do not alter the system of equations to be solved. Instead,
he computational basis is modified such that it satisfies continuity conditions across patch interfaces. Unstructured splines are
ypically constructed for in-plane (i.e. manifold) interfaces and not on out-of-plane (i.e. non-manifold) interfaces, since the notion
f smoothness is uniquely defined only in the former setting. However, unstructured spline constructions for non-manifold interfaces
re possible, e.g. as in [72–74] in the context of subdivision. Furthermore, unstructured spline constructions are typically constructed
n conforming interfaces, i.e. interfaces with matching meshes, but, as long as the patch parameterizations are matching, this can
e overcome by taking the knot vector union of the interface patches. However, the advantage of unstructured spline constructions
s that as soon as the basis is constructed for a certain untrimmed geometry, there are no additional costs involved other than
valuation costs for changing shapes, which make unstructured spline bases suitable for shape optimization problems. In case of
opology changes or large changes of the shape, however, the mesh topology of the unstructured spline space has to be changed as
ell. Unlike weak methods, which are typically based on the introduction of penalties (e.g. in terms of energy), unstructured spline

onstructions are typically provided as generic geometric methods that are applicable to any equation that requires 𝐶1 coupling
cross multi-patch interfaces. With the advance of isogeometric analysis, the interest in parametrically 𝐶1 and geometrically 𝐺1

plines has grown. An overview of smooth multi-patch discretizations for isogeometric analysis can be found in [75], and a small
verview is provided below. We distinguish between enforcing parametric continuity, i.e., the type of continuity between mesh
lements within a regular tensor-product spline patch, and general geometric continuity, cf. [76]. In the following, three types of
onstructions are classified, depending on their continuity on patch interfaces, around vertices and in the patch interior:

• Patch coupling with geometric continuity on patch interfaces and parametric continuity inside patches.
• Patch coupling with parametric continuity everywhere.
• Patch coupling with parametric continuity almost everywhere.

Although other constructions outside of these categories exist, e.g., [77,78], our review is restricted to the aforementioned
ategories since the methods considered in Sections 3 and 4 fall into these categories.

eometric continuity on patch interfaces and parametric continuity inside patches
This first category of unstructured spline constructions assumes that a fixed 𝐶0-matching multi-patch parameterization is given.

n this multi-patch domain, a 𝐶1-smooth isogeometric space is constructed. As shown in [76], for any isogeometric function the
1 condition over each interface is equivalent to a 𝐺1 geometric continuity condition of the graph surface corresponding to the

unction. If the domain is planar and the patches are bilinear, then the 𝐶1 constraints can be resolved and a 𝐶1 spline space was
onstructed by [79] and applied to the isogeometric analysis of the biharmonic equation in [80]. It could be shown in [81,82] that
1 splines over bilinear quadrilaterals and mixed (bi)linear quadrilateral/triangle meshes possess optimal approximation properties.
urthermore, the work [83] studied the arbitrary 𝐶𝑛-smooth spline space for bi-linear multi-patch parameterizations, based on their
reviously published findings.

Considering general 𝐶0-matching multi-patch domains, the work of [84] introduces the class of analysis-suitable 𝐺1 (AS-𝐺1)
ulti-patch parameterizations which includes bi-linear patches. This AS-𝐺1 condition is in general required to obtain optimal

1

5

pproximation properties. The condition implies that the gluing data for 𝐺 continuity is linear, which is explained in more detail in
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Section 3.1. While it could be shown in [85] that all planar multi-patch domains possess AS-𝐺1 reparameterizations, creating AS-𝐺1

surface domains is more difficult. Several strategies to achieve this were introduced in [8], thus making 𝐶1-smooth multi-patch
parameterizations applicable to biharmonic equations and isogeometric Kirchhoff–Love shell models [86]. In the work of [87] the
construction of [84] is used to develop a scaled-boundary model for smooth Kirchhoff–Love shells, similar to the approach of [88]
for Kirchhoff plates.

Alternatively to constructing an AS-𝐺1 parameterization, one can relax the smoothness conditions. This was done in [9], where
the construction of an approximate 𝐶1 (Approx. 𝐶1) space is presented. The basis construction is explicit, possesses the same degree-
of-freedom structure as an AS-𝐺1 space, but the 𝐶1 condition is not satisfied exactly but only approximately. It defaults to the
AS-𝐺1 construction when the AS-𝐺1 requirements are met. In [47] a comparison of the presented space with Nitsche’s method was
performed, yielding optimal convergence results without the need of a coupling terms. More details on the Approx. 𝐶1 method are
provided in Section 3.2.

Parametric continuity everywhere
The starting point for this class of constructions is different from the previous. Here we create smooth splines in a parametric

sense between neighbouring mesh elements. Such parametric 𝐶1 conditions are easy to resolve, but they lead to singularities at
vertices of valencies other than four, so-called extraordinary vertices. This is due to the conflicting coupling conditions on partial
derivatives around the EVs, which lead to all partial derivatives to vanish there. Inspired by the Degenerate Patch (D-Patch) approach
from [89], the works of [10,90] provide 𝐶1 smooth spline spaces for multi-patch geometries with parametric smoothness everywhere.
On extraordinary vertices (EVs), which is a junction between 3 or 5 or more patches (i.e. valence 𝜈 > 2, 𝜈 ≠ 4), the original D-Patch
method shows a singularity of the basis in EVs combined with a reduction of degrees of freedom in this point. An improvement of the
D-Patch method was presented in [90], by splitting elements around the EVs such that every element is associated to four degrees
of freedom. However, this construction does not have non-negativity and is based on PHT splines, which have limited smoothness.
A new design and analysis framework for multi-patch geometries was presented in [10], based on D-Patches with T-splines for
refinement and non-negative splines yielding optimal convergence properties. This was also demonstrated in [91] for isogeometric
Kirchhoff–Love shells. In the work [92], it is motivated that this construction can also be used if only one element around the EV
is isolated. More details on the D-Patch method are provided in Section 3.3.

Alternatively, subdivision surface based constructions lead to unstructured splines that are parametrically continuous everywhere,
cf. [93–97]. However, such approaches require an infinite number of polynomial pieces around each EV. Thus, we discard them for
our comparison. Moreover, in general their approximation properties are severely reduced near EVs [98].

Parametric continuity almost everywhere
As mentioned previously, imposing parametric continuity everywhere leads to singularities at all EVs. Thus, instead of

constructing a space with full parametric continuity, spaces with parametric continuity almost everywhere except around the EVs
can also be considered. This way, one ends up with regular, smooth rings around EVs which then need to be filled in some way.
Such so-called hole-filling techniques are commonplace in geometric modelling and can also be used to construct smooth spaces for
isogeometric analysis, cf. [99–104]. We focus here on the simplest possible way of resolving this issue, which is to enforce only
𝐶0-smoothness near the EVs and 𝐺1 at the EV, namely the Almost-𝐶1 construction proposed in [11]. Similar constructions, which
enforce no additional smoothness near EVs were proposed for mixed quadrilateral/triangle meshes in [105] and for arbitrary degree
multi-patch B-splines with enhanced smoothness (MPBES) in [106].

The Almost-𝐶1 construction we consider here yields piece-wise biquadratic splines which are 𝐶1 in regular regions and which
have reduced smoothness around extraordinary vertices, independent of the valence or the location (i.e. interior or boundary EVs).
In contrast to that, most commonly used hole-filling approaches yield exactly 𝐶1-smooth spaces but introduce locally polynomials of
higher degree, or require a higher degree to start with, such as the construction presented in [107], which converts Catmull–Clark
subdivision surfaces to 𝐺1-smooth piece-wise biquintic elements. While exact smoothness is of relevance for geometric modelling,
it is not necessary from an analysis point of view.

3. Qualitative comparison

In the qualitative comparison of this paper, we focus on the properties of different unstructured spline constructions and their
implication on the application of these constructions in a workflow as in Fig. 1. More precisely, we comment on the continuity of
each construction and their nestedness properties and we aim to provide a set of requirements for the unstructured spline pre-processing
block in Fig. 2. Since the qualitative comparison of the considered methods in this paper mostly covers properties of the methods
and their implications, mathematical details about the construction or convergence properties are not provided. For more details,
the reader is referred to [8] for the Analysis-Suitable 𝐺1 (AS-𝐺1) method, which extends the 2D construction from [108], to [9]
for the Approximate 𝐶1 (Approx. 𝐶1) method, to [10] for the Degenerate Patches (D-Patch) and to [11] for the Almost-𝐶1 method.
However, for the qualitative comparison, some key terms are introduced as preliminaries.

Firstly, a quadrilateral mesh (quad mesh) is a mesh of quadrilateral elements, representing a (planar) surface geometry. The
quadrilaterals can be represented by tensor B-splines of any degree which can be mapped onto a parametric unit-square. Typically,
when the tensor B-spline quadrilaterals have different sizes in different directions or even different refinement levels, assemblies
of these patches are typically referred to as multi-patches. An example of a multi-patch is given in Fig. 3(c). The conversion of a
6

quad-mesh with many elements to a multi-patch with a smaller number of patches derived from groups of elements can be done
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Fig. 4. Procedure to find a multi-patch segmentation from a given mesh. The original mesh in (a) has 46 vertices, 81 edges and 45 faces and the final multi-patch
c) has 20 patches. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

sing the procedure described in Fig. 4. Here, a half-edge mesh is traversed and elements are collected into groups corresponding
o final patches. The vertices of the elements in one group (i.e. patch) form the control net of the bi-linear patch.

Secondly, for parametrically smooth constructions, different classes of vertices are considered. For so-called extraordinary vertices
(EVs), these constructions typically are different. An interior extraordinary vertex (interior EV ) is a vertex on a quad mesh on which
three or more than four patches meet. The number of patches coming together at a vertex is referred to as the valence, denoted by
𝜈. Furthermore a boundary extraordinary vertex (boundary EV ) is a vertex on the boundary of the quad mesh with valence 𝜈 ≥ 3.
or geometrically smooth constructions, the construction depends on the geometry around the vertex rather than the valence of the
ertex. Hence, for these constructions the notion of EVs is irrelevant.

Lastly, a refinement of a spline space is called nested if the refined spline space is fully contained in the unrefined space. As a
onsequence, the geometry is exact under element refinement, which is beneficial from an analysis point of view.

.1. Analysis-suitable 𝐺1

The analysis-suitable 𝐺1 (AS-𝐺1) construction is a novel approach in isogeometric analysis that was introduced for planar
eometries and surfaces in [84], but a construction which extends [108] for planar domains to surfaces is detailed in [8]. This
onstruction ensures that basis functions at interfaces have 𝐶1 continuity, while basis functions at vertices have 𝐶2 continuity. The
pproach is based on the concept that 𝐺𝑘-smooth surfaces can produce 𝐶𝑘-smooth isogeometric functions [76]. When dealing with
eneral 𝐶0-matching multi-patch domains, the so-called AS-𝐺1 conditions must be satisfied to ensure optimal approximation. If these
onditions are met, a 𝐶1-smooth subspace of the isogeometric space can be constructed, which is sufficiently large. Such geometries
re referred to as analysis-suitable geometries. However, it should be noted that the 𝐶1-smooth multi-patch isogeometric space
enerally depends on the geometry, as discussed in [109]. To overcome this issue, an Argyris-like space was proposed in [108],
hich has a dimension that is independent of the geometry.

Given an interface between two patches, the 𝐶1 continuity condition at the interface is defined by a linear combination of
angent vectors and transversal derivatives, which is referred to as gluing data [84]. The 𝐶1 smooth basis functions at the interface,
r more generally at the edge, can be described by the first order Taylor expansion of the trace and the transversal derivative.
t is shown in [84], that the ideal choice for the space-representation of the trace and transversal derivative is (𝐩, 𝐫 − 1,𝐡)2 and
(𝐩−1, 𝐫 −2,𝐡), respectively. These basis functions have local support and are linearly independent, but they depend on the gluing
ata and, therefore, on the geometry reparameterization itself. To ensure that the basis functions form a 𝐶1-smooth subspace of
he isogeometric space, and to maintain the nestedness of the spline spaces, it is necessary to have gluing data as a linear function
hich fulfils all analysis-suitable geometries. For instance, all bi-linear patches meet this requirement. However, if a geometry is
ot analysis-suitable, it can be reparameterized using the technique presented in [85].

2 The notation (𝐩 = (𝑝, 𝑝), 𝐫 = (𝑟, 𝑟),𝐡 = (ℎ, ℎ)) indicates a two-dimensional spline space with 𝑝 as the polynomial degree, 𝑟 as the regularity and ℎ as the
7

mesh size in both directions.
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For any vertices in the quad mesh, to describe the 𝐶1 condition is not that straight-forward. In order to keep it general, the vertex
basis functions is constructed by the 𝐶2 interpolation using the 𝐶1 basis functions from the corresponding edges. As a consequence,
the vertex basis functions also have local support and are linearly independent.

Summarizing, the AS-𝐺1 construction can be constructed by three different, linearly independent sub-spaces: interior, edge and
vertex space. They can be described as follows:

• Interior space: basis functions that have zero values and derivatives on the patch edges and vertices.
• Interface space: basis functions that have vanishing function values up to the second derivatives at the vertices.
• Vertex space: 𝐶2 interpolating functions at the vertex, i.e., basis functions that have non-vanishing 𝐶2 data at the vertex.

The AS-𝐺1 construction with the interface and vertex constructions as described above are fully 𝐶1 over the whole domain. In
ddition, the AS-𝐺1 construction can only be constructed when the degree of the basis is 𝑝 ≥ 3 and the regularity is reduced as
≤ 𝑝 − 2.

Fig. 5(a) presents a local region around and EV with valence five with line styles indicating different continuity levels on patch
r element boundaries (see the caption of Fig. 5). For the AS-𝐺1 construction, the continuity at the vertex is 𝐶2 by construction.
urthermore, the continuity at the interior element interfaces is 𝐶𝑝−2 due to the restriction on keeping the isoparametric concept.
astly, since the AS-𝐺1 construction provides a 𝐺1 surface, the patch interfaces are 𝐶1 by construction [76].

In sum, the core ideas behind the AS-𝐺1 construction are as follows:

• Degree, regularity, continuity
The spline space is fully 𝐶1, hence suitable to solve fourth-order problems. However, the computation of the space requires
analysis-suitability of the parameterization as well as degree 𝑝 ≥ 3 and regularity 𝑟 ≤ 𝑝 − 2 for the basis functions.

• Limitations on construction
The space can be constructed on fully unstructured quadrilateral meshes with both interior and boundary extraordinary
vertices. The construction of the basis functions is independent of the location or valence of the EVs. However, the analysis-
suitability condition imposes a requirement on the geometries on which the construction can be constructed. Furthermore, the
geometry parameterization is not changed.

• Nestedness
The spline spaces are nested.

• Refinement procedure
Refinement procedure is standard (by knot insertion) since the parameterization does not change.

3.2. Approximate 𝐶1

The Approximate 𝐶1 construction [9] provides, as the name suggests, approximately 𝐶1 continuity on interfaces and vertices,
more precisely the construction provides 𝐶1 continuity in the refinement limit. The Approx. 𝐶1 construction shares similarities
with the AS-𝐺1 construction, but the main difference between the construction of the Approx. 𝐶1 and the AS-𝐺1 spaces is that it
relaxes the AS-𝐺1 condition on the geometry, i.e., it allows geometries with non-linear gluing data. In fact, the exact gluing data
are splines with higher polynomial degree and lower regularity or even piece-wise rational. As a consequence, trying to extend the
construction for AS-𝐺1 parameterizations directly to non-AS-𝐺1 geometries yields complicated basis functions that are challenging
to evaluate and integrate accurately. To overcome this issue and obtain a construction with more easily definable basis functions,
the gluing data are approximated. However, this approximation means that the 𝐶1 condition is no longer satisfied exactly but only
approximately.

By utilizing the approximation of the gluing data, the Approximate 𝐶1 construction incorporates the concept of different spline
spaces found in the AS-𝐺1 construction. In this case, the interior, vertex, and interface basis functions fulfil the same conditions
as in the AS-𝐺1 construction, but the degree and regularity differ between these spaces. Specifically, the sub-spaces for the AS-𝐺1

construction have 𝑝 ≥ 3 and 𝑟 ≤ 𝑝−2, while the Approximate 𝐶1 construction employs an interior space with 𝑝 ≥ 3 and 𝑟 ≤ 𝑝−1, along
ith vertex and interface spaces that have locally reduced smoothness based on the approximation of the gluing data. Consequently,
n the one hand the Approximate 𝐶1 construction restores the potential for maximal smoothness of isogeometric functions in the
efinement limit, but the nestedness of the basis is lost. On the other hand, the approximation of the gluing data in the Approximate
1 construction does not require analysis-suitability for the optimal convergence rate, unlike the AS-𝐺1 construction. This feature
akes the method applicable to more complex geometries. When the Approximate 𝐶1 construction is applied to an analysis-suitable

eometry with 𝑝 ≥ 3 and 𝑟 ≤ 𝑝 − 2, and the gluing data approximation is exact, the construction becomes equivalent to the AS-𝐺1

onstruction.
Fig. 5(b) presents a local region around and EV with valence five with line styles indicating different continuity levels on patch

r element boundaries (see the caption of Fig. 5). For the Approx. 𝐶1 construction on a fully smooth basis (𝑝 ≥ 3 and 𝑟 = 𝑝−1), the
interior basis recovers full smoothness on element boundaries, hence 𝐶𝑝−1 continuity. In the shaded region around the interfaces
and the EV, the continuity is locally reduced by construction of the locally reduced continuous subspace and the approximation of
the gluing data. Similar to the AS-𝐺1 construction, the continuity on the EV is 𝐶2 by construction and the element boundaries are
𝐶1 approximately.

1

8

In sum, the core ideas behind the Approx. 𝐶 construction are as follows:
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f

Fig. 5. Schematic representation of the continuity across element boundaries and patch interfaces for the (a) AS-𝐺1 construction, (b) Approx. 𝐶1 constructions.
Thin lines indicate element boundaries and thick lines indicate patch interfaces. Solid lines represent 𝐶𝑝−1 continuity, dashed lines represent 𝐶𝑝−2 continuity,
thick dashed lines represent 𝐶1 interfaces and loosely dashed lines represent approximate 𝐶1 interfaces. A double lined circle represent a 𝐶2 continuous vertex,
a filled circle represent a singular vertex and a white filled circled with a single line represents a 𝐶1 continuous vertex. The grey shaded area for the Approx. 𝐶1

represents local reduced continuity.

• Degree, regularity, continuity
The spline space is approximately 𝐶1 and fully 𝐶1 in the limit of refinement. This makes the spline space suitable to solve
fourth-order problems. Contrary to the AS-G1 construction, the spline space approximates the gluing data, allowing maximal
smoothness in the interior space (𝑟 = 𝑝 − 1) for degrees 𝑝 ≥ 3.

• Limitations on construction
The space can be constructed on fully unstructured quadrilateral meshes with both interior and boundary extraordinary
vertices. The construction of the basis functions is independent of the location or valence of the vertices. Contrary to AS-𝐺1

the analysis-suitability condition is not needed. However, the construction requires a 𝐺1 condition at the interfaces of surfaces.
• Nestedness

The spline spaces are not nested.
• Refinement procedure

Refinement procedure is standard since the parameterization does not change.

3.3. D-patch

The relative ease of imposing parametric smoothness for splines has led to the development of degenerate Bezier patches, or D-
patches [89], which can be used to build 𝐶1 smooth splines on unstructured quadrilateral meshes with no boundary extraordinary
vertices. The constructions can be formulated for splines of any bi-degree [75], and there are no restrictions on their smoothness
in the locally-structured regions of the mesh. In the locally-unstructured regions of the mesh (i.e., in a neighbourhood of an
extraordinary vertex), the splines are 𝐶1 smooth and first-order degenerate. Note that this degeneracy means that the spline spaces
are not necessarily 𝐻2-conforming, but numerical evidence shows that they can still be used to solve fourth-order problems.

Specifically, imposition of strong 𝐶1 smoothness around an extraordinary vertex requires that the splines vanish up to first order
at the extraordinary vertex. This degeneracy trivially implies matching first derivatives at the extraordinary vertex (since all of
them vanish) but does not imply 𝐶1 smoothness of the resulting spline functions and the geometries built using them. As shown
in [89], additional conditions can be imposed upon certain higher-order mixed derivatives to ensure this desired 𝐶1 smoothness.
Furthermore, the effect of these additional constraints can be localized to a neighbourhood of the extraordinary vertex by imposing
them on a subdivided representation of the splines [90]. This means that a patch-based representation of 𝐶1 D-patch splines takes
unctions that are in (𝐩, 𝐫,𝐡∕2) on each patch, where almost all basis functions are in (𝐩, 𝐫,𝐡), except a few basis functions

supported in a neighbourhood of extraordinary points (the number of basis functions depends on the valence).
The D-patch construction allows for nested refinements of the spline spaces [89]. If different orders of smoothness are being

imposed in locally-structured and locally-unstructured regions of the mesh, then nested refinements produce spline spaces with a
higher number of basis functions supported in the vicinity of extraordinary points (the number depends on the refinement-level),
see [10] for instance. On the other hand, a patch-based approach allows for a simpler implementation by limiting the smoothness
across patch interfaces to 𝐶1; the smoothness in patch-interiors can still be arbitrarily chosen. However, special care should be
taken when using D-patches with nested refinements — the degeneracy of the splines near extraordinary vertices means that, with
9
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mesh refinements, the shape regularity of the mesh starts to worsen with refinements and the finite element matrices become very
ill-conditioned.

In sum, the core ideas behind the D-patch spline construction are the following:

• Degree, regularity, continuity
The spline space is fully 𝐶1. In general, the degeneracy of derivatives means that the spaces are 𝐻2-nonconforming, however
numerical evidence supports their use in solving fourth-order problems. The construction can be formulated for splines of any
degree and the smoothness away from extraordinary vertices can be chosen arbitrarily.

• Limitations on construction
The space can be constructed on unstructured quadrilateral meshes with no boundary extraordinary vertices.

• Nestedness
The spline spaces can be refined in a nested manner, however the resulting mesh have poor shape regularity and the
corresponding finite element matrices may be very ill-conditioned.

• Refinement procedure
Refinement procedures can be derived from standard B-spline knot insertion.

.4. Almost 𝐶1

Almost-𝐶1 splines are defined on a general, conforming quadrilateral mesh. They are piece-wise biquadratic and possess mixed
moothness, i.e., they are 𝐶1 in regular regions, while the smoothness near extraordinary vertices, i.e., vertices with valence different
rom four, is reduced. To be precise, they are 𝐶1 smooth at all vertices (including extraordinary vertices) and across all edges except
or the ones emanating from an extraordinary vertex. Moreover, while they are defined to be biquadratic on all regular elements,
hey are piece-wise biquadratic splines (with one inner knot in each direction) on all elements that are neighbouring an extraordinary
ertex. Details can be found in [11]. As a consequence, a patch based representation of Almost-𝐶1 splines takes functions that are
n (𝟐, 𝟏,𝐡∕2) on each patch, where almost all basis functions are in (𝟐, 𝟏,𝐡), except a few basis functions supported in a 1-ring
eighbourhood of extraordinary points (the number depends on the valence).

A central feature of Almost-𝐶1 splines is the mixed smoothness imposition described above. In particular, this choice of mixed
moothness only depends on the current refinement level of the mesh. That is, standard 𝐶1-smoothness is enforced across all
dges at the current refinement level except the ones that are incident upon extraordinary vertices, where only 𝐶0 smoothness
s enforced. Additionally, these smoothness conditions are combined with 𝐺1 smoothness imposition at each extraordinary vertex.
his means that almost-𝐶1 splines do not yield nested spaces when refining. As a result, the refinement process essentially amounts
o a projection of coarse Almost-𝐶1 splines onto the refined Almost-𝐶1 spline space. This projection can be chosen in many different
ays and can have a significant impact on the limit surface description as well as isogeometric simulations using these spaces.

n [11] a smoothing and refinement procedure is proposed that results in a 𝐶1-smooth limit surface for sufficiently regular input
ata.

Let us briefly summarize the refinement procedure here. We assume that we are given a quad mesh and associate a control
oint with each face of the mesh. The initial smoothing step guarantees that all control points associated to the one ring around
n extraordinary vertex are coplanar. Having given such an initial control point grid, we then refine the geometry using explicit
ubdivision rules as specified in [11,105]. The rules are the same as for quadratic tensor-product B-splines in regular regions and
aintain the coplanarity near extraordinary vertices.

In sum, the core ideas behind the Almost-𝐶1 spline construction are the following:

• Degree, regularity, continuity
The spline space locally reproduces biquadratic polynomials and it is sufficiently smooth to be able to solve fourth order
problems.

• Limitations on construction
The splines can be constructed on fully unstructured quadrilateral meshes, in particular, those that contain both interior and
boundary extraordinary vertices.

• Nestedness
Since the spaces are not nested, the convergence behaviour of Almost-𝐶1 splines depends on how the geometry parameteriza-
tion is refined.

• Refinement procedure
An initial geometry and a refinement procedure can be constructed in such a way, that the limit geometry parameterization
is normal continuous everywhere.

Thus, the concept introduced in [11] is quite flexible, since the initial smoothing procedure and the refinement procedure
re not unique and can be tailored to the needs coming from geometric modelling, e.g., one may want to reproduce Doo-Sabin
ubdivision surfaces, thus having to modify the subdivision rule for refinement accordingly. The spline space that is introduced on
ach refinement level can be seen as a simple hole-filling construction, which is sufficient for numerical analysis.
10
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Fig. 6. Schematic representation of the continuity across element boundaries and patch interfaces for the (a) D-Patch and (b) Almost-𝐶1. Line styles are as in
Fig. 5.

Table 1
Summary of the requirements for the construction and the properties for each of the considered bases. The construction requirements include the degree and
regularity of the basis used for construction as well as geometrical or topological properties of the input geometry. The properties include the continuity on
interfaces, vertices and in the interior of the unstructured spline construction, as well as the nestedness property.

Requirements AS-𝐺1 Approx. 𝐶1 D-Patch Almost-𝐶1

(i) Degree 𝑝 ≥ 3 𝑝 ≥ 3 𝑝 ≥ 3 𝑝 = 2
(ii) Regularity 𝑟 ≤ 𝑝 − 2 𝑟 ≤ 𝑝 − 1 𝑟 ≤ 𝑝 − 1 𝑟 = 1
(v) Geometrical/topological limitations Analysis-suitability 𝐺2 continuity BEVs: 𝜈 ≤ 3, 𝐶1 continuity 𝐶1 continuity

Properties AS-𝐺1 Approx. 𝐶1 D-Patch Almost-𝐶1

(iii) Interface & Vertex Continuity 𝐶1 𝐶1 in the limit 𝐶1 𝐶1 in the limit
(iv) Interior continuity 𝐶𝑝−2 𝐶𝑝−1 𝐶𝑝−1 𝐶1

(vi) Nestedness Yes No Yes No

3.5. Conclusions

In this section, a summary of the construction and the properties of the analysis-suitable 𝐺1 (AS-𝐺1), the approximate
𝐶1 (Approx. 𝐶1), the degenerate patches (D-patch) and the Almost-𝐶1 methods have been provided, referring to the relevant
ublications for the mathematical details. For each method, comments have been provided on the degree, regularity and continuity
f the space, on the limitations of the construction in terms of the quadrilateral mesh, on nestedness for refinement and on the
efinement procedure itself. In addition, Figs. 5 and 6 provides detailed information on the local continuity of the constructions
round an extraordinary vertex.

The aim of the qualitative analysis of the methods in this paper is to provide a comparison of a set of properties and requirements
f each method and their implications on their applicability. While the subsections presented before provide a brief description of
he properties of the methods and the reason behind these properties and requirements, Table 1 provides a side-by-side comparison
f each method based on the subsections before. In particular, the table lists the (i,ii) requirements on degree and regularity for the
onstructions, iii geometrical or topological limitations if applicable, (iv,v) the continuity of the constructed bases in the interior
nd on the interfaces and element boundaries and vi nestedness of the constructed basis.

Following from Table 1, the requirements for construction of the unstructured spline bases are summarized in Fig. 7 as pre-
rocessing conditions that have to be satisfied for each unstructured spline construction in the process depicted in Fig. 2. The
egree and regularity conditions (cf. i,ii in Table 1) must be satisfied for each construction, e.g. by performing projections on suitable
pline spaces or by knot insertion routines. Furthermore, the geometric or topological limitations (cf. iii in Table 1) impose additional
onstraints that the geometry must satisfy.

. Quantitative comparison

In this section a quantitative comparison between the methods provided in Section 3 is provided. In addition, variational coupling
ethods are compared if applicable. The quantitative comparison is composed of various benchmark problems, each providing a
ifferent conclusion with respect to the methods considered:
11
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Fig. 7. Inside the unstructured spline pre-processing block from Fig. 2. The unstructured spline requirements are depicted in diamond-shaped blocks for methods
AS-𝐺1, Approx. 𝐶1, D-Patch and Almost 𝐶1. The first row represents requirements on degree 𝑝 and regularity 𝑟. If not satisfied, the geometry can be projected
onto a space that satisfies the requirement, or degree elevation or reduction steps can be performed together with refinement operations. The second row depicts
the requirements on the geometry parameterization; these blocks can be satisfied by changing the geometry.

Biharmonic problem on a planar domain (Section 4.1) The first example entails solving the biharmonic problem on a planar
domain. The goal of this example is to assess the convergence properties of all considered unstructured spline constructions,
hence the problem will be solved on a simple analysis-suitable geometry without EVs on the boundary, such that every
method from Section 3 can be applied and compared to the manufactured solution.

inear Kirchhoff–Love shell analysis on a surface (Section 4.2) The second example entails solving the Kirchhoff–Love shell
equation on curved domains. The goal of this example is to demonstrate the performance of the unstructured spline
construction for simple shell problems. Therefore, comparison will be made to single-patch results and penalty coupling
from [51].

pectral analysis on a planar domain (Section 4.3) In the third example, spectral analysis of a plate equation is performed. The
goal of this example is to assess the spectral properties of the unstructured spline methods compared to a variational approach
and a single patch, since the spectral properties of highly continuous bases have been demonstrated to be superior over
non-smooth bases [110].

odal analysis of a complex geometry (Section 4.4) In the fourth example, a modal analysis is performed on a complex
geometry extracted from a quad-mesh. The goal of this example is to demonstrate the applicability and performance of
the unstructured spline methods on a large-scale, more complicated geometry.

tress analysis in a curved shell (Section 4.5) Lastly, the fifth example involves the analysis of stress fields in shells. The goal
of this example is to assess the performance of unstructured spline constructions and a penalty method when it comes to
stress reconstruction in shells. For the Kirchhoff–Love shell, the stresses are obtained by taking gradients of the deformed
geometry, hence of the solution. This means that for 𝐶1 bases, stresses are 𝐶0. This might be unfavourable in engineering
applications where local stress fields are of importance, e.g. fatigue analysis.

In all examples except the complex geometry in Section 4.4, the domain decomposition from Fig. 8 is used to decompose a simple
omain into a domain with extraordinary vertices in the interior. Domains with EVs on the boundary are left out of scope, since the
-patch construction would change the outer boundaries of the domain, hence the comparison would involve a significantly different
eometry. Since different methods have different constraints on the degree and regularity of the basis, different combinations of
he degree 𝑝 and regularity 𝑟 are tested throughout the benchmark problems. In Table 2 the combinations of 𝑝 and 𝑟 and the
ethods that are compared for these bases are provided. For the biharmonic problem and the spectral analysis (Sections 4.1 and
.3) Nitsche’s method is used for comparison, see [47] for more details. When solving the Kirchhoff–Love shell equations, the penalty
ethod is used for comparison, see [51] for more details. In all examples, Dirichlet boundary conditions are applied at the control
12
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Fig. 8. Multi-patch decomposition of a simple domain into six patches. The domain has two EVs in the interior (valence 3 and 5) and no boundary EVs.

Table 2
Degree 𝑝 and regularity 𝑟 constraints for each considered method from Section 3,
see Table 1.

𝑝 = 2, 𝑟 = 1 𝑝 = 3, 𝑟 = 1 𝑝 = 3, 𝑟 = 2

D-patch ★ ★ ★

Almost-𝐶1 ★

Approx. 𝐶1 ★ ★

AS-𝐺1 ★

Nitsche/Penalty ★ ★ ★

points and clamped boundary conditions are applied weakly as in [51]. All results are obtained using the Geometry + Simulation
modules [111,112] and will be published in a separate publication.

As discussed in Section 3, the D-patch and Almost-𝐶1 constructions involve a pre-smoothing of the geometry. In case of mesh
onvergence results, refinements can be performed in different ways. On the one hand, the original geometry can be refined and
new construction with a new geometry approximation can be performed. On the other hand, the geometry resulting from the

onstruction in the first refinement level can be refined in a nested way, such that the geometry does not change after the first
esh. In the quantitative comparison, all refinements are performed in a nested way, unless specified otherwise.

.1. Biharmonic equation on a planar domain

The first benchmark entails the biharmonic equation on a planar domain. The purpose of this example is to assess the convergence
roperties of the unstructured spline methods described in Section 3. We mainly follow the structure of [47]. The biharmonic
quation is solved on a unit square 𝛺 = [0, 1]2 with the patch segmentation from Fig. 8. The biharmonic equation is defined by

𝛥2𝜑 = 𝑓. (1)

n the present example, convergence is analysed with respect to a manufactured solution

𝜑̃(𝑥1, 𝑥2) = (cos (4𝜋𝑥1) − 1)(cos (4𝜋𝑥2) − 1), (2)

such that the right-hand-side function becomes:

𝑓 (𝑥1, 𝑥2) = 256𝜋4(4 cos (4𝜋𝑥) cos (4𝜋𝑦) − cos (4𝜋𝑥) − cos (4𝜋𝑦)) (3)

Furthermore, on all boundaries of the domain, the manufactured solution and its derivatives are imposed as Dirichlet and Neumann
boundary conditions, respectively:

𝜑 = 𝜑̃(𝑥1, 𝑥2)

𝜕𝐧𝜑 = 𝜕𝐧𝜑̃

}

on 𝛤 , (4)

where 𝛤 = 𝜕𝛺, 𝐧 is the unit outward normal vector on 𝛤 . The biharmonic equation from Eq. (1) with boundary conditions Eq. (4)
can be discretized by obtaining the weak formulation, see [47], inserting Eq. (4) and by defining an approximation of the solution
𝜑 as 𝜑ℎ. Furthermore, a weak coupling can be established through Nitsche’s method. For the mathematical details behind the
discretization of the biharmonic equation and optionally adding Nitsche interface coupling terms, we refer to [9,47]. For the D-
Patch and Almost 𝐶1 constructions, the geometry is smoothed upon construction. The geometry used for evaluation of the weak
13
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Fig. 9. Errors for the AS-𝐺1, Approx. 𝐶1, D-Patch and Almost-𝐶1 construction for the biharmonic problem on the domain in Fig. 8. The 𝐿2, 𝐻1 and 𝐻2 errors
with respect to the analytical solution are plotted with different line styles in the top row. Furthermore, all results are plotted against the element size ℎ and
the expected convergence rates are given by the triangles.

formulation is constructed by using an 𝐿2-projection of the geometry from the coarsest space which is projected onto the smooth
basis of each refinement level. For the D-Patch, the non-negative smoothness matrix for vertex smoothing is used. Although this
matrix produces non-nested meshes, it provides the highest rates of convergence. Furthermore, the factor 𝛽 (cf. [10, sec. 5.1]) is
chosen as 𝛽 = 0.4 as used by [10], or 𝛽 = 1.2, and halved in each refinement level.

To evaluate the unstructured spline constructions from Section 3, the numerical approximation 𝜑ℎ is compared to the
manufactured solution 𝜑̃ in the 𝐿2-, 𝐻1- and 𝐻2-norms on the multi-patch segmentation from Fig. 8. The bi-linear segmentation is
refined and degree elevated until the desired degree 𝑝 and regularity 𝑟 from Table 2 are obtained. In addition, a Nitsche coupling
of the patches is employed for comparison.

The results for the comparison are presented in Fig. 9. For degree 𝑝 = 2 and regularity 𝑟 = 1 the Almost-𝐶1, D-patch and Nitsche
coupling methods are compared. As expected, the results show consistency between the Almost-𝐶1, D-patch and Nitsche’s method
with expected convergence. The results also show a slight dependency on the factor 𝛽 for the D-Patch. For degree 𝑝 = 3 and regularity
𝑟 = 1, the Approx. 𝐶1, AS-𝐺1, D-patch and Nitsche’s method can be compared. The results of the Approx. 𝐶1 and AS-𝐺1 are exactly
the same, since the original geometry is analysis-suitable and contains only bi-linear patches. Then applying the Approx. 𝐶1 to
an analysis-suitable geometry with regularity 𝑝 − 2, the approximate gluing data becomes exact, hence the same as in the AS-𝐺1

construction. The D-patch in this case shows better convergence of the 𝐿2, 𝐻1 and 𝐻2 errors for 𝛽 = 1.2 than for 𝛽 = 0.4. Though,
for both choices of 𝛽, the convergence is sub-optimal, as was observed in the work by [91]. Furthermore, the 𝐿2-norm increases at
the last point of the D-Patch results, due to ill-conditioning of the system of equations. Lastly, for degree 𝑝 = 3 and regularity 𝑟 = 2
the Approx. 𝐶1, D-patch and Nitsche’s method are compared. The observations are as for the 𝑝 = 3, 𝑟 = 1 case.

Overall, the results show expected convergence behaviour for all considered spline constructions compared to theoretical results
and compared to a Nitsche coupling method. However, the D-Patch method does not converge for very fine meshes, due to
ill-conditioning of the system matrix.

4.2. Linear Kirchhoff–Love shell analysis on a surface

We solve the linear Kirchhoff–Love shell equations on two geometries to demonstrate the convergence behaviour of the methods
on curved surfaces. To this end, two benchmark examples are considered. Firstly, a hyperbolic paraboloid surface is constructed
with shape, inspired by [8]:

𝐫(𝜉1, 𝜉2) =
[

𝜉1 𝜉2 𝜉21 − 𝜉22
]

(5)

The left-side of the hyperbolic paraboloid is clamped (𝐮 = 𝟎) and the other sides are free. Furthermore, a distributed load with
magnitude 8000𝑡 is applied with 𝑡 the thickness, see Fig. 10. Secondly, an elliptic paraboloid shaped-domain is modelled, with
equation

𝐫(𝜉 , 𝜉 ) =
[

𝜉 𝜉 1 − 2
(

𝜉2 + 𝜉2
)]

(6)
14
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Fig. 10. Hyperbolic paraboloid shell geometry with coordinates 𝐫(𝜉1 , 𝜉2) =
[

𝜉1 𝜉2 𝜉21 − 𝜉22
]

, 𝜉1 , 𝜉2 ∈ [−1∕2.1∕2]. The left-edge of the hyperbolic paraboloid is
clamped, i.e. the displacements and rotations are zero (𝐮 = 𝟎 and 𝜕𝑢𝑧

𝜕𝑥
= 0).

Fig. 11. Elliptic paraboloid shell geometry with coordinates 𝐫(𝜉1 , 𝜉2) =
[

𝜉1 𝜉2 1 − 2
(

𝜉21 + 𝜉22
)]

, 𝜉1 , 𝜉2 ∈ [−1∕2.1∕2]. On the corners of the domain, the vertical
displacements are set to zero 𝑢𝑧 = 0 and one corner is fixed in-plane as well. Furthermore, a point load with magnitude 𝑃 = 108𝑡 is applied in the middle of the
geometry.

For this shape, a point load with magnitude 108𝑡 is applied in the middle of the domain. The corners of the domain are only fixed
in vertical 𝑧 direction to allow sliding in the 𝑥𝑦-plane. One corner is fixed in all directions to create a well-posed problem. For
both hyperbolic paraboloid (Fig. 10) and elliptic paraboloid (Fig. 11) the multi-patch segmentation from Fig. 8 is used. In both
cases, the shells are modelled with a thickness of 𝑡 = 0.01 [mm] and with a Saint-Venant Kirchhoff material with Young’s modulus
𝐸 = 200 [GPa] and Poisson’s ratio 𝜈 = 0.3 [-]. The refinement procedure as described in Section 4.1 is used for the D-Patch and
Almost-𝐶1 constructions.

The results of both analyses are given in Figs. 12 and 13. Here, different unstructured spline constructions are tested on patch-
bases with different degrees and regularities, as reported in Table 2. For each combination of degree 𝑝 and regularity 𝑟, the energy
norm 𝑊 ℎ

int = 1
2𝐮

⊤
ℎ𝐾ℎ𝐮ℎ is plotted against the number of degrees of freedom, with 𝐮ℎ the discrete displacement vector and 𝐾ℎ the

discrete linear stiffness matrix. From the results in Figs. 12 and 13, a few observations can be made. Firstly, the Approx. 𝐶1 and
AS-𝐺1 methods show slow convergence on the hyperbolic paraboloid geometry, while the convergence on the elliptic paraboloid
geometry is similar to the single-patch convergence. The slow convergence for the hyperbolic paraboloid shell is also observed
in [8]. Since the results of the same constructions on the elliptic paraboloid geometries do not show slower convergence, the slow
convergence is hypothetically a result of the double curvature with different signs of the shell. Secondly, the D-Patch and Approx. 𝐶1

show comparable convergence to the penalty method on both geometries, which is slightly slower than the convergence of the
single-patch results. This is explained by the fact that the degrees of freedom are more optimally allocated for the single-patch
parameterization. Lastly, the results obtained by the penalty method for different penalty parameters 𝛼 show convergence with a
rate similar to the D-Patch and Almost-𝐶1 methods for penalty parameters 𝛼 ∈ {1, 10}. For 𝛼 = 100 the penalty method is still
converging to the same solution, but convergence starts after a few refinement steps.

4.3. Spectral analysis on a planar domain

In this example, the spectral properties of the unstructured spline constructions on a multi-patch domain are considered. From [4]
it is known that isogeometric analysis has the advantage over 𝐶0 Finite Element Analysis with respect to spectra for eigenvalue
problems. Smooth isogeometric discretization provide converging spectra with spline degree 𝑝, whereas the spectra obtained by 𝐶0

FEA diverge with 𝑝 and typically have optical branches. Similarly, when patches with 𝐶0 continuity are considered, optical branches
are introduced and the accuracy of the spectral approximation decreases [113]. In this benchmark problem, we compare the basis
constructions from Table 2 on Fig. 8 on their spectral properties. For Nitsche’s method, we use different values for the coupling
parameter to assess its influence on the spectrum.
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Fig. 12. Bending energy norm 𝑊 ℎ
int =

1
2
𝐮⊤ℎ𝐾ℎ𝐮ℎ for the hyperboloid geometry from Fig. 10 with a patch segmentation as in Fig. 8. The results are presented for

different combinations of the degree 𝑝 and regularity 𝑟 for all unstructured spline constructions. In addition, the results for a penalty method with parameter
𝛼 ∈ {1, 10, 100} are provided for comparison.

Fig. 13. Bending energy norm 𝑊 ℎ
int =

1
2
𝐮⊤ℎ𝐾ℎ𝐮ℎ for the paraboloid geometry from Fig. 11 with a patch segmentation as in Fig. 8. The results are presented for

different combinations of the degree 𝑝 and regularity 𝑟 for all unstructured spline constructions. In addition, the results for a penalty method with parameter
𝛼 ∈ {1, 10, 100} are provided for comparison.

For the problem at hand, we consider a unit-square domain with parametric lay-out from Fig. 8 for simplicity. We consider modal
analysis using the plate equation. The stiffness operator of the free vibration plate equation is similar to the biharmonic equation
from Eq. (1), and the inertia is included on the right-hand-side:

𝐷𝛥2𝑤 = −𝜌𝑡 𝜕
2𝑤
𝜕𝜏2

(7)

Assuming that 𝑤(𝑥, 𝑦, 𝜏) is harmonic, i.e. 𝑤(𝑥, 𝑦, 𝜏) = 𝑤̂(𝑥, 𝑦)exp𝑖𝜔𝜏 with 𝜔 a frequency, the equation simplifies to

𝐷𝛥2𝑤̂ = 𝜔2 𝜕2𝑤̂
𝜕𝜏2

. (8)

Here, 𝐷 = 𝐸𝑡3∕(12(1 − 𝜈2)) is the flexural rigidity of the plate with 𝐸 = 105 [Pa] the Young’s modulus of the plate, 𝑡 = 10−2 [m] the
thickness and 𝜈 = 0.2 [-] the Poisson’s ratio. Furthermore, 𝜌 = 105 [kg] is the material density. Eq. (8) is a generalized eigenvalue
problem with eigenpairs (𝜔𝑖, 𝑣𝑖) where 𝜔𝑖 is the ith eigenfrequency and 𝑣𝑖 the ith mode shape. The mode shape for a simply supported
unit plate with 𝑛 × 𝑚 half-waves is given by

𝑣𝑛𝑚(𝑥, 𝑦) = sin (𝑛𝜋𝑥) sin (𝑚𝜋𝑦) (9)

with corresponding eigenfrequency

𝜔𝑛𝑚 = (𝑛2 + 𝑚2)𝜋2
√

𝐷 . (10)
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Fig. 14. Eigenvalue spectra for the biharmonic eigenvalue problem on the domain from Fig. 8. The horizontal axes depict the eigenvalue index 𝑖 over the total
umber of eigenvalues 𝑁 . The vertical axes represent the numerical eigenvalue 𝜔𝑖,ℎ over the analytical eigenvalue 𝜔𝑖, both with index 𝑖. The results are plotted
or different combinations of the degree 𝑝 and regularity 𝑟 of the basis. The results for a Nitsche method are given for different penalty parameters 𝛼.

n addition, the numerical solution to Eq. (8) is obtained by solving the following generalized eigenvalue problem

𝐷 ∫𝛺
𝛥𝑤𝛥𝜑 d𝛺 = 𝜔2𝜌𝑡∫𝛺

𝑢𝜑 d𝛺 (11)

ith 𝜑 a test function, see Section 4.1. In further representation of the solutions, we employ the index 𝑖 such that 𝜔𝑖 < 𝜔𝑖+1 and we
use the subscript ℎ for numerically obtained solutions.

Fig. 14 presents the spectra for different degrees, regularities and for different methods. Here, the vertical axis represents the
ratio of the numerically obtained eigenfrequency over the analytical eigenfrequency with index 𝑖, thus 𝜔ℎ,𝑖∕𝜔𝑖. The horizontal axis
represents the fraction of the eigenfrequency index 𝑖 over the total number of eigenmodes. The total number of eigenmodes is equal
to the number of degrees of freedom in the system. The results are presented for the degrees and regularities as in Table 2.

Firstly, the 𝑝 = 2, 𝑟 = 1 plot shows that Nitsche’s method oscillates for all considered values of the penalty parameter.
Furthermore, in the part where it is not oscillating, the ratio 𝜔𝑖.ℎ∕𝜔𝑖 is higher than for the D-patch and Almost-𝐶1 method.
Additionally, the D-patch and Almost-𝐶1 methods show a significant difference with respect to the single patch result, which is
due to the non-Cartesian multi-patch segmentation of Fig. 8 and the fact that the analytical mode shapes are Cartesian. For the
𝑝 = 3, 𝑟 = 1 and 𝑝 = 3, 𝑟 = 2 bases similar conclusions can be drawn. Although for the 𝑝 = 3, 𝑟 = 1 case the Approx. 𝐶1 method
seems worse than the D-patch method, the opposite is true for 𝑝 = 3, 𝑟 = 2. Hence, it can be concluded that no method outperforms
another, but that all unstructured spline constructions perform better than Nitsche’s method.

4.4. Modal analysis of a complex geometry

The next example for the quantitative analysis in this paper involves the modal analysis on a larger-scale complex geometry,
depicted in Fig. 15(a). The goal of this example is to show the usability of the considered constructions on an off-the-shelf industrial
geometry. The geometry is represented as a mesh consisting of 15895 vertices, 31086 edges and 62172 faces. This geometry is
converted to bi-linear patches using the procedure discussed in Fig. 4 in Section 3. The interface and boundary curves of the
patches are given in Fig. 15(b) and the final multi-patch object is given in Fig. 15(c). The latter has 3 EVs of valence 3, 10 EVs
of valence 5 and 16 bEVs. Moreover, the material parameters specified for a steel material. That is, the density of the material is
𝜌 = 7850 ⋅10−6 [tonnes∕mm3], the shell thickness is 𝑡 = 10 [mm], the Young’s modulus is 𝐸 = 210 ⋅103 [MPa] and the Poisson’s ratio is
𝜈 = 0.3 [−]. All the sides of the geometry are kept free, meaning that the modal analysis results will consist of six modes with zero
eigenfrequencies: the rigid body modes. In the sequel, we list the results for deformation modes only.

After the creation of the linear multi-patch object, ℎ-, 𝑝- and 𝑘-refinement steps can be performed to construct a multi-basis
corresponding to the patch lay-out on which unstructured splines can be constructed. For the Almost-𝐶1 and D-Patch constructions,
the bases are constructed by refining and elevating the initial linear basis up to the desired degree and regularity, after which the
Almost-𝐶1 and D-Patch basis and geometry are computed. An Almost-𝐶1 geometry is provided in Fig. 15(c).

The AS-𝐺1 construction requires an analysis-suitable geometry, which can be constructed following [8], is based on the planar
0
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construction developed in [85]. However, the geometry from Fig. 15(b) is only 𝐶 -smooth due to the original linear mesh it is
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Fig. 15. Geometry of the side panel of a car. The original mesh (a) is traced with the procedure from Fig. 4, yielding a set of boundary and interface curves
(b). From these curves, the multi-patch segmentation (c) for isogeometric analysis is constructed following Fig. 4(c).

constructed from. An algorithm to automatically pre-process the geometry to obtain an analysis-suitable 𝐺1 surface is not yet
developed. The algorithm from [8] requires AS-𝐺1 gluing data, which cannot be prescribed directly on a 𝐶0 surface. If the surface
is not pre-processed to be AS-𝐺1, no suitable gluing data can be found and the basis construction is not applicable. Although the
Approx. 𝐶1 construction does not require an analysis-suitable re-parameterization, it does require 𝐺1 smoothness at the interfaces.
If this condition is not satisfied there exists no 𝐶1 construction that can be approximated by this method. For both methods, the
required pre-processing efforts are non-trivial or not demonstrated on industrial geometries, and therefore left out of the scope of
this paper.3

Furthermore, penalty methods have been used in the context of modal analysis on a 27 patch composite wind-turbine blade
in [51], where the variation of the element size of interface elements seems rather small. In the present paper, an attempt was made
to apply the penalty method on the geometry in Fig. 15(c), but unidentifiable vibration modes were obtained, possibly because
of the large variation of element lengths across the interfaces of the domain, challenging the determination of a suitable penalty
parameter 𝛼.

Table 3 presents the eigenfrequencies for the first four deformation modes of the car side panel for the D-Patch and the Almost-
𝐶1 constructions with degree 𝑝 = 2 and regularity 𝑟 = 1 for the Almost-𝐶1 construction and with (𝑝, 𝑟) = (2, 1), (𝑝, 𝑟) = (3, 1) and

3 In the case of a different starting point for this benchmark, such as a smooth mesh composed of higher-order quadrilateral elements, e.g. derived from a
subdivision surface, instead of a bi-linear mesh, the pre-processing efforts required for the AS-𝐺1 and Approx. 𝐶1 will be different.
18
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Table 3
Eigenfrequencies of the Almost-𝐶1 and D-Patch constructions for the car geometry in Fig. 15.
The results of an ABAQUS FEA simulation using the S4R element are provided as a reference.
The mode-shapes are plotted in Fig. 16.

Method # DoFs Mode 1 Mode 2 Mode 3 Mode 4

Almost-𝐶1, 𝑝 = 2, 𝑟 = 1

13,731 15.740 25.567 43.829 56.654
49,758 15.762 25.564 43.429 56.778
189,654 15.776 25.552 43.269 56.785
740,814 15.774 25.531 43.177 56.746

D-Patch, 𝑝 = 2, 𝑟 = 1
49,437 15.785 25.607 43.641 56.902
189,333 15.780 25.561 43.323 56.807
740,493 15.775 25.533 43.191 56.748

D-Patch, 𝑝 = 3, 𝑟 = 1
136,839 15.749 25.593 43.348 56.786
630,459 15.760 25.581 43.231 56.801

D-Patch, 𝑝 = 3, 𝑟 = 2
71,760 15.771 25.539 43.224 56.744
226,524 15.755 25.582 43.235 56.807

ABAQUS S4R
10 mm 126,966 15.303 24.881 42.629 54.887
5 mm 440,076 15.224 24.780 42.516 54.627
2.5 mm 1,653,030 15.119 24.640 42.338 54.277

(𝑝, 𝑟) = (3, 2) for the D-Patch. Fig. 16 provides the corresponding mode shapes on the D-Patch geometry with 𝑝 = 3, 𝑟 = 2 and the
mode shapes have been qualitatively matched to construct Table 3. From these results, it can be observed that the Almost-𝐶1 and
D-Patch methods provide eigenfrequencies in the same range and that the eigenfrequencies are mostly converging in the second
digit. Moreover, the eigenfrequencies of the D-Patch and Almost-𝐶1 methods for coarse meshes and 𝑝 = 2, 𝑟 = 1 already provide
reasonable estimates compared to higher degrees and refinements. On the other hand, the results obtained using an ABAQUS S4R
element show convergence in the second digit, and slightly lower frequencies than the IGA results, possibly because the FEM uses
a different geometry approximation. Overall, it can be concluded from this benchmark problem that the Almost-𝐶1 and D-Patch
are more robust for industrial and large scale geometries, that are represented by at least 𝐶0-conforming quadrilateral meshes,
compared to the Approx. 𝐶1 and AS-𝐺1 methods due to the pre-processing efforts required by the latter. Furthermore, these methods
re parameter-free, making them robust also with respect to penalty methods.

.5. Stress analysis in a curved shell

An interesting application for smooth unstructured spline construction is for the use of thin shell analysis for engineering
pplications. Not only displacements (Section 4.2) or vibrations (Section 4.4) are of interest, but also stress evaluations, for example
or fatigue analysis. In the last example, we demonstrate the performance of all methods in Table 2 on the evaluation of stresses in a
urved Kirchhoff–Love shell. Since the Kirchhoff–Love shell formulation is displacement-based, the displacements are 𝐶1 continuous
cross patch interfaces for 𝐶1 constructions. The stresses, however, are based on the gradients of the displacements, hence their
ontinuity theoretically is 𝐶0 for a perfect 𝐶1 coupling. In this example, we elaborate on the Von Mises membrane stress field
esulting from the 6-patch elliptic paraboloid from Fig. 13. The stress fields are plotted for bases with degree and regularity from
able 2 and additionally for a basis with 𝑝 = 4, 𝑟 = 2. Note that the regularity 𝑟 of these bases is the regularity in the patch interior.

In Fig. 17(a), the stress fields for the elliptic paraboloid example from Fig. 13 are provided. From these results, it can immediately
e seen that the stress field for a single patch parameterization with basis 𝑝 = 2, 𝑟 = 1 exposes the elements of the basis because of

the 𝐶0 continuity across elements. Similar effects are seen for the D-patch, Almost-𝐶1 and the penalty method. Increasing the degree
f the basis while keeping the regularity the same results in a 𝑝 = 3, 𝑟 = 1 basis. The element continuity is still 𝐶0 for the stresses,
ut the higher continuity of the basis within the element results in a slightly improved stress field, as can be seen from the single
atch, the D-patch and penalty methods. The Approx. 𝐶1 and AS-𝐺1 methods in addition show a better stress field around the EVs
ompared to the D-patch with only small wiggles in the inner contour. Increasing the smoothness by going to 𝑝 = 3, 𝑟 = 2 shows
hat the Approx. 𝐶1 method predicts the stress field very well over the whole domain but with the wiggles in the inner contour,
nd that the D-patch suffers from the singularity at the EVs. Lastly, the 𝑝 = 4, 𝑟 = 2 plots show that the wiggles in the inner contour
re eliminated for the Approx. 𝐶1 and the AS-𝐺1 methods and that the artifacts of the D-patch around the EV are still there but to
lesser extent. Finally, the results of the penalty method in Fig. 17(b) show it is able to provide an accurate representation of the

tress fields. As seen from Fig. 13, penalty factors 𝛼 = 1 and 𝛼 = 10 provide good convergence in the bending energy norm. Indeed,
he stress fields for the fixed 64 × 64 element meshes in Fig. 17(b) confirm that for these penalty factors the stress fields accurately
epresent the single patch stress fields, despite small artifacts around the EVs for 𝛼 = 1. For a higher penalty factor of 𝛼 = 100, the
tress fields following from the penalty method are not guaranteed to be accurate, showing the downside of this method.

Overall, the stress analysis for multiple combinations and regularities shows that the Almost-𝐶1 method is generally unfavourable
ince it is only applicable for 𝑝 = 2, 𝑟 = 1 hence 𝐶0 stress fields, suffering from a lack of continuity over the whole domain. This also
akes the D-patch as applicable as the Approx. 𝐶1 method in terms of degree and regularity combinations. Comparing the D-patch
ith the Approx. 𝐶1 and the AS-𝐺1 methods, it is shown that the D-patch suffers from the singularity in the EVs when reconstructing
19

tresses, whereas the other two methods are able to recover the stress fields without problems. Moreover, this example has also
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Fig. 16. Out-of-plane deformations of the first four vibration modes of the side of the car from Fig. 15. The results on the left represent the results obtained by
the D-Patch construction and the results on the right represent results obtained using ABAQUS (10 mm). The mode shapes are all deformation modes warped
by the deformation vector and plotted over the undeformed (transparent) geometry.

shown the advantage of smooth unstructured spline constructions for stress analyses, since their continuity across (almost) all of the
domain is ensured, contrary to the penalty method. Lastly, this example shows the advantage of IGA in general over lower-order
methods like FEA, since the higher-degree bases (e.g. 𝑝 = 4, 𝑟 = 2) provides smooth stress fields compared to lower-degree bases
(𝑝 = 2, 𝑟 = 1).

4.6. Conclusions

In this section a quantitative comparison of the AS-𝐺1, the Approx. 𝐶1, the D-Patch and the Almost-𝐶1 constructions is provided.
The methods have been assessed on different aspects: (i) convergence of the biharmonic equation (Section 4.1); (ii) convergence
of the linear Kirchhoff–Love shell (Section 4.2); (iii) eigenvalue spectrum approximation (Section 4.3); (iv) application to a large-
scale complex geometry (Section 4.4) and; (v) the reconstruction of stress fields (Section 4.5). From these analyses, the following
conclusions can be drawn:

• All methods converge in a theoretical setting to the same solution for the biharmonic equation (Sections 4.1 and 4.2). However,
the convergence behaviour of the D-Patch method is sub-optimal and affected by conditioning issues for large meshes.
Furthermore, the Approx. 𝐶1 and AS-𝐺1 methods give worse convergence compared to other methods for the hyperbolic
paraboloid shell but good convergence rates for the elliptic paraboloid shell example.
20
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Fig. 17. Von Mises membrane stress fields for the single patch, unstructured splines and penalty-coupled multi-patch paraboloid from Section 4.2 and Fig. 13
with 64 × 64 elements per patch. The results are provided for different combinations of degree 𝑝 and regularity 𝑟. The colour bar represents the stress and the
contours are plotted for stress levels 𝜎𝑉𝑀 ∈ {105 , 106 , 107} [MPa].. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

• From a spectral analysis on the biharmonic equation Section 4.3 it can be concluded that there is no best unstructured spline
construction. Depending on the degree and regularity, small difference in the eigenvalue spectra are observed between the
methods. Comparing with Nitsche’s method, however, it is concluded that the unstructured spline constructions considered in
this paper perform consistently better. This is also confirmed by the applied modal analysis on the car geometry Section 4.4,
where penalty method fails to find accurate eigenfrequencies, possibly because of an unsuitable penalty parameter.

• From the applied modal analysis on a complex geometry, it can also be concluded that the Almost-𝐶1 and D-Patch constructions
are more straight-forward to apply to a complex geometry extracted from a mesh. This is due to the fact that the Approx. 𝐶1

and AS-𝐺1 constructions require, respectively, a 𝐺2 geometry and an analysis-suitable geometry, which are both not trivial to
construct from an originally 𝐶0-continuous mesh. Instead, the D-Patch and Almost-𝐶1 constructions require a 𝐶1 geometry,
which is easier to construct in general.

• From the stress fields presented in Section 4.5 following from the analysis in Section 4.2, it can be concluded that the AS-𝐺1

and Approx. 𝐶1 methods provide excellent stress fields. The D-Patch also provides good stress fields, but inaccuracies are
found around the EVs, possibly because of the singularity close to the EV. The Almost-𝐶1 method is considered inaccurate
for stress analysis because of a lack of higher-degree generalizations. Lastly, comparison with penalty methods shows that
21
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Fig. 17. (continued).

the unstructured spline constructions generally provide a robust parameter-free approach for coupling, whereas the penalty
method requires careful selection of the penalty parameter.

Overall, our finding suggest that the Almost-𝐶1 and D-Patch are generally easier to construct, but for certain problems they have
limited accuracy. On the other hand, the AS-𝐺1 or Approx. 𝐶1 discretizations require more pre-processing efforts, but provide
optimal convergence, hence accuracy. This, however, depends on the input geometry: generic quad-meshes might require more pre-
processing efforts than 𝐶1-matching parameterizations. Lastly, the results provided in this section have shown that strong coupling
methods have certain advantages over weak methods, and therefore provide an interesting alternative.

5. Conclusions and future work

In this paper, we provide a qualitative and quantitative comparison of unstructured spline constructions for smooth multi-
patches in isogeometric analysis. The general advantage of unstructured spline constructions over trimming or variational coupling
methods is that they are parameter-free, do not require specialized solvers and are typically once constructed in a shape optimization
workflow. The goal of this paper is to compare the analysis-suitable 𝐺1 (AS-𝐺1) the approximate 𝐶1 (Approx. 𝐶1), the degenerate
patches (D-Patch) and the Almost-𝐶1 constructions with respect to qualitative aspects (i.e. constraints for application) and
quantitative aspects (i.e. numerical performance).

From the qualitative analysis, it followed that each method required a different set of constraints to be satisfied before the
constructions could be applied, see Fig. 7 and Table 1. Degree and regularity constraints can be satisfied by knot insertion routines
or re-fitting, which are relatively straight-forward. The constraint on analysis-suitability for the AS-𝐺1 and the constraint on 𝐺2

continuity for the Approx. 𝐶1 method require dedicated reparameterization routines, such as the one presented by [85]. The fact
that D-Patches are restricted to geometries without boundary extraordinary vertices requires redefinition of the quadrilateral mesh.
Lastly, the fact that the Almost-𝐶1 method is only defined for bi-quadratic bases (𝑝 = 2) restricts the inter-element continuity to 𝐶1
22
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through the whole domain. Depending on the application and the availability of existing routines in software, different unstructured
spline constructions are favourable, depending on the geometric flexibility or desired degree and regularity .

From the quantitative analysis, some conclusions can be drawn on the considered unstructured spline constructions and between
nstructured spline constructions compared to variational methods such as Nitsche’s method or a penalty method. From the analysis,
t was in general observed that depending on the problem type, the different methods have their advantages and disadvantages.
irstly, simple biharmonic equations (see Section 4.1) and linear shells (see Section 4.2) provided good results for all methods.
owever, the AS-𝐺1 and Approx. 𝐶1 methods showed slow convergence for the double-curved shell and the D-patch suffered from

ill-conditioning for fine meshes. The Almost-𝐶1 provided good results in general, however it is only applicable on bi-quadratic
splines. Secondly, all methods showed superiority over Nitsche’s method for the computation of an eigenvalue spectrum for plate
vibrations (see Section 4.3) and no significant differences between the unstructured spline constructions have been observed. Thirdly,
the D-Patch and Almost-𝐶1 showed straight-forward applicability on the problem of a complex geometry (see Section 4.4), whereas
the analysis-suitability requirement of the AS-𝐺1 method and the smoothness requirement of the Approx. 𝐶1 method are non-trivial
to satisfy on off-the-shelf industrial geometries.

For the penalty method, no suitable penalty parameter was found, and probably optimal penalty parameters should be chosen
per interface rather than globally. Lastly, the AS-𝐺1 and Approx. 𝐶1 methods provided superior results for stress reconstruction,

here the D-Patch suffered around the EVs due to its singular parameterization and the Almost-𝐶1 method provided bad results
ue to a lack of higher degrees.

In conclusion, both comparisons give an overview of the applicability of the methods with respect to the requirements needed to
onstruct them, on the notions of nestedness and in general on the performance of the methods. Overall, it can be concluded from
oth analyses that among the compared methods, there is no general best construction. More precisely, the quantitative analysis
hows that different methods perform differently in different applications, given that they can be constructed. Furthermore, with the
ackgrounds and properties provided in the qualitative analysis section, we hope that the present paper provides valuable insights
or application of the considered methods to multi-patch problems.

In addition, the comparisons in the present paper give directions for the improvements of the considered methods. For the AS-𝐺1

nd Approx. 𝐶1 methods, restrictions on geometry and parameterization are a bottleneck in the industrial applications. Therefore,
t is recommended to expand the applicability of these methods by developing dedicated geometric pre-processing routines. For the
-Patch construction, the limitation of the construction of the basis near 𝜈 > 3 boundary EVs calls for the development of routines

o eliminate these EVs in quadrilateral multi-patches, as discussed in the qualitative comparison. Furthermore, the example of the
i-harmonic equation has shown that the D-Patch can suffer from ill-conditioned system, hence development of pre-conditioners for
-Patch constructions is advised. Lastly, although the Almost-𝐶1 resolves the downsides of the D-Patch construction, its restriction
n the degree of the spline-space is a major disadvantage when plotting stress fields in shell analysis. Therefore, for the Almost-𝐶1

onstruction it is recommended to explore expansion to higher degrees.
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