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Abstract

Traditional target tracking using monostatic radar systems
typically relies on centralized or decentralized architectures, where
all data is transmitted to a fusion center for processing the posi-
tion and velocity of mobile targets. This approach not only in-
troduces a single point of failure and can lead to increased data
transmission times, particularly when the fusion center is distant
from individual radar nodes, but it also faces scalability issues
and potential bottlenecks when data accumulates at the fusion
center. To address these challenges, we introduce a Distributed
Alternating Direction Method of Multipliers (DADMM) for tar-
get localization within a radar network, wherein each radar node
shares its observed data only with immediate neighboring nodes,
achieving consensus on the estimated target locations and veloci-
ties. Our simulations, which incorporate critical parameters such
as the number of radar nodes, radar geometry, and Signal-to-
Noise Ratio (SNR), assess their impact on estimation accuracy
and convergence speed. The results demonstrate that the pro-
posed DADMM not only effectively eliminates the single point of
failure, but also enhances system efficiency and robustness. We
also incorporate two distinct stopping criteria for position and ve-
locity estimations, enabling us to promptly fix the first accurately
estimated parameter and reallocate computational resources to
more effectively refine the remaining parameters, which stream-
lines computational efforts by focusing on unresolved parameters.
We highlight the additional benefits of our proposed framework,
and present directions for future work.
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Abstract

Traditional target tracking using monostatic radar systems typically relies on cen-
tralized or decentralized architectures, where all data is transmitted to a fusion
center for processing the position and velocity of mobile targets. This approach not
only introduces a single point of failure and can lead to increased data transmission
times, particularly when the fusion center is distant from individual radar nodes,
but it also faces scalability issues and potential bottlenecks when data accumulates
at the fusion center. To address these challenges, we introduce a Distributed Alter-
nating Direction Method of Multipliers (DADMM) for target localization within
a radar network, wherein each radar node shares its observed data only with im-
mediate neighboring nodes, achieving consensus on the estimated target locations
and velocities. Our simulations, which incorporate critical parameters such as the
number of radar nodes, radar geometry, and Signal-to-Noise Ratio (SNR), assess
their impact on estimation accuracy and convergence speed. The results demon-
strate that the proposed DADMM not only effectively eliminates the single point
of failure, but also enhances system efficiency and robustness. We also incorporate
two distinct stopping criteria for position and velocity estimations, enabling us to
promptly fix the first accurately estimated parameter and reallocate computational
resources to more effectively refine the remaining parameters, which streamlines
computational efforts by focusing on unresolved parameters. We highlight the
additional benefits of our proposed framework, and present directions for future
work.
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Introduction 1
1.1 Background: Target Detection & Estimation Methods

in Current Radar Systems

In today’s technologically driven world, the detection of targets and the estimation
of their key parameters with radar systems stand out as pivotal technologies
essential to the functionality and safety of numerous industries and applications.
Urban traffic control systems rely for example on these technologies to monitor
and manage the flow of vehicles, ensuring efficient traffic patterns and reducing
congestion. In the aviation industry, the precise detection and estimation of
aircraft are crucial for maintaining orderly skies and safeguarding passenger safety.
Similarly, indoor target localization technologies are becoming increasingly vital
in security systems and logistics, enabling accurate monitoring within complex
environments such as shopping centers, warehouses, and large public venues.

At the core of these sophisticated radar systems is the significant advancement
in technology, particularly in enhancing the signal-to-noise ratio (SNR) to detect
small targets or targets designed to exhibit a low reflectivity. A higher SNR
enables clearer differentiation between relevant targets and noise, leading to more
accurate detection and estimation of key parameters. Additionally, viewing the
target of interest from various spatial positions with a radar network enhances
target localization and identification further, providing a more comprehensive
understanding of the target’s location and movement within the monitored
environment [6].

Modern radar networks enhance target detection and localization capabilities
through the use of multiple collaborative nodes, each configured to meet specific
operational demands. Common setups include monostatic radars, where the sim-
plicity and cost-effectiveness of co-located transmitters and receivers make them
a popular choice [7]. For improved coverage and reduced interference, bistatic
[8] and multistatic [9] configurations employ separately located transmitters and
receivers, ideal for complex environments. More advanced systems like Multiple
Input and Multiple Output (MIMO) [10] utilize numerous transmitting and
receiving antennas, either co-located or distributed, to form a high-resolution,
robust detection grid, crucial in cluttered settings where maximizing target
resolution and detection probability is necessary. Additionally, cognitive radar
systems [11], which adjust their parameters in real-time to respond to changing
environments and target behaviors, are among the most advanced radar technol-
ogy, offering unparalleled effectiveness in dynamic and unpredictable scenarios.
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As radar systems grow more complex and generate increasing volumes of
data, the need for effective and efficient data processing to accurately localize
targets becomes paramount. This is particularly important when considering
radar networks, where the data exchange needs to be implemented across
potentially long distances, and often in conditions of congested and contested
electromagnetic spectrum. To manage and utilize this data in radar networks, two
primary methodologies are currently employed: centralized [10] and decentralized
approaches [4].

With centralized processing, all data collected by the radar network’s nodes
are transmitted to a single fusion center. This center takes on the crucial role
of integrating, processing, and analyzing all incoming data, thereby providing a
unified output for target localization. This method ensures comprehensive data
handling but concentrates the workload and responsibility in a single location,
which could be one of the radar nodes themselves.

Conversely, decentralized processing decentralizes data handling responsibil-
ities, with each node managing its own segment of data. Nodes independently
process their data to compute partial localization information or preliminary
assessments. These partial results are then transmitted to a fusion center, where
they are aggregated to produce the final decision on the target’s position and
velocity in 2D space. This approach not only reduces the computational load
on the fusion center but also decreases the volume of data that needs to be
transmitted there, potentially enhancing the overall efficiency of the system.

These methodologies are designed to harness the full potential of the radar
data collected, optimizing how it is processed and analyzed to achieve the most
accurate localization and velocity estimation of targets. However, open challenges
remain, as detailed in the following sections.

1.2 Motivation of this work

Though decentralized methods provide almost the same detection rate at high
signal-to-noise ratios (SNRs) as centralized methods [4], both approaches have
several drawbacks that can compromise their effectiveness in radar data handling.
A primary issue is the potential for a single point of failure [12][4]. In centralized
systems, this risk arises from reliance on one fusion center to process all incoming
data in their entirety, which could lead to systemic failure if the center encounters
problems. Similarly, in decentralized systems, while each node processes data
locally, the final aggregation and decision-making still depend on a single fusion
center, maintaining the risk and vulnerability of a critical failure point.

Additionally, as the number of radar nodes increases to attempt to enhance
target detection and tracking accuracy, both systems struggle with scalability.
The increased data volume demands more substantial computational resources
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and more sophisticated data management strategies, which can lead to bottlenecks
in data processing, especially in centralized systems where all data converge on
one single point. Moreover, the physical distance between radar nodes and the
fusion center can exacerbate these issues, as transmitting large volumes of data
over long distances introduces delays and increases the likelihood of data loss,
corruption or interception. These challenges require careful consideration to
ensure the robustness and reliability of radar networks in critical applications.

Given the limitations inherent in traditional 2D target estimation methods,
the work of this thesis is motivated to enhance these techniques by adopting
distributed optimization approaches that have proved applicable and successful
in other types of sensor networks such as Wireless Sensor Network (WSN) and
Internet of Things (IoT) [13][14]. These areas can serve as references to guide
further advancements in our work. These approaches address specific challenges
posed by both centralized and decentralized methods, incorporating consensus
mechanisms and neighbor communication to solve issues such as the single point of
failure, and reduce computational redundancy. By enabling multiple radar nodes
to collaboratively adjust parameters through iterative communication, distributed
optimization not only decentralizes decision-making, but also significantly reduces
the load on each node to estimate target parameters. This leads to increased
system resilience and improved efficiency, providing robust and reliable target
estimation. More details on different distributed techniques will be presented in
Chapter 2.

1.3 Research Goal

The goal of this thesis is to investigate an approach to transition from traditional
methods of estimating target position and velocity in 2D space within radar
networks, to implementing distributed optimization techniques which can be
beneficial in applications such as Air Traffic Control or Urban Traffic Monitoring,
where such advancements could significantly improve operational efficiency. This
approach aims to eliminate the single point of failure by enabling consensus
among all radar nodes, and to reduce the computational load by facilitating data
exchanges primarily between neighboring nodes.

The proposed approach begins with developing a simulator to generate range
and Doppler measurements of a target. A decentralized framework is then used
to estimate the target’s parameters of interest. Following this, a distributed
framework is implemented, aiming to maintain the same level of accuracy in
target estimation as for the decentralized methods. This progression ensures
that we effectively integrate distributed optimization techniques, enhancing the
precision and efficiency of 2D target localization.

In this thesis, three main novel points are introduced within distributed target
estimation methods, moving beyond traditional approaches to address and solve
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the challenges within radar networks in the current literature.

• First, we transition from traditional approaches, which often have a single
point of failure, to distributed approaches. Primal and dual residual mon-
itors have been specifically designed for convergence within the distributed
approach. Furthermore, the relationship between the number of radar nodes
each node communicates with and the number of update iterations required
to achieve convergence has been explored. This analysis includes an exam-
ination of the extent of communication and data processing needed at each
node to make accurate estimations.

• Second, a subproblem of the main issue has been addressed by implement-
ing two distinct stopping criteria—one for position and another for velocity
estimation. This approach allows the parameter that is estimated first to
be fixed, subsequently redirecting computational resources to focus solely on
the remaining parameter. By focusing on unresolved parameters, rather than
recalculating all variables continuously, this method significantly reduces the
computational effort.

• Third, another subproblem identified in the first novelty has been addressed
by analyzing the relationship between the penalty terms used for conver-
gence in distributed methods and the signal-to-noise ratio (SNR). It has been
demonstrated that selecting appropriate penalty terms can reduce the num-
ber of update equations required for convergence, thereby streamlining the
process and enhancing the efficiency of the distributed estimation method.

This work is currently undergoing review for the IEEE International Conference
on Acoustics, Speech, and Signal Processing 2025 (ICASSP) at the Workshop on
Distributed Signal Processing and Machine Learning for Autonomous Systems.

1.4 Thesis outline

In this section, the outline of the whole thesis has been defined as follows.

• Chapter 2 serves as a literature review that explores various radar system
configurations and the current state-of-the-art techniques used in 2D target
estimation. It reviews traditional methods for determining range and Doppler
measurements in radar systems, offering a comprehensive understanding of
the underlying principles and technologies. This review also looks at dis-
tributed techniques found in the open literature, exploring how they are used
and their potential to improve radar data processing and target estimation.

• Building on the comprehensive review in Chapter 2, Chapter 3 describes the
design and development of our simulator, which is tailored specifically for
this thesis. The simulator uses simplified models based on key assumptions
to approximate real-world applications, employing techniques from the liter-
ature to reflect the geometrical configurations of radar nodes accurately. This
chapter explains the simulator’s technical specifications and design decisions,
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emphasizing its ability to generate a data model. This model is essential for
implementing both decentralized and distributed methodologies to accurately
estimate the position and velocity of a target in 2D space.

• Chapter 4 explores two methodologies for estimating a target’s position using
the data model from our simulator. First, we examine the decentralized
approach, currently the standard method in radar target estimation. Next,
we introduce the Alternating Direction Method of Multipliers (ADMM), a
newer, distributed approach. This chapter clearly outlines how each method
processes the simulated data to estimate target positions, preparing for their
further application and evaluation in the chapters that follow.

• Chapter 5 presents the simulations conducted and analyzes the results to
evaluate the methodologies described in Chapter 4. Initially, we utilize the
decentralized approach to validate the statistical correctness of the measure-
ments generated by our simulator and to fine-tune the simulator’s parameters.
Following this, we transition to the distributed approach using the Alternat-
ing Direction Method of Multipliers (ADMM). This section demonstrates
how radar nodes, by sharing data with their neighbors, can estimate the po-
sition and velocity of a target effectively, thus eliminating the single point of
failure that is often a drawback in decentralized systems. The chapter also
discusses various techniques designed to foster faster convergence.

• Chapter 6 encompasses the thesis’s conclusion, providing a summary of the
efforts and outcomes related to the proposed research objectives. Addition-
ally, it outlines potential future avenues for this project, highlighting the
limitations encountered during the thesis work and offering related recom-
mendations and suggestions for future research.
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Literature Survey 2
The literature review is structured into two main sections. The first section fo-
cuses on radar systems and the different methods employed for target estimation,
including techniques for extracting range and Doppler measurements. The sec-
ond section presents distributed techniques, exploring their fundamental concepts
and how they can be applied effectively, particularly in addressing challenges like
scalability and eliminating single points of failure.

2.1 Review of Current Radar Techniques for 2D Target
Estimation

This section begins with an overview of traditional radar systems that are currently
in use, followed by an analysis of methodologies, both centralized and decentral-
ized, for estimating targets in 2D space. This analysis will include a detailed
examination of these approaches, assessing their scalability and efficiency in oper-
ational scenarios.

2.1.1 Radar Networks

For target localization, radar systems like monostatic, bistatic, and multistatic
are commonly used. Monostatic radars, where the transmitter and receiver are
in the same location and often use the same antenna, are simple and reliable.
They are especially effective in situations where having a strong and steady signal
is important for accurate detection [4][7][15]. Bistatic radars, which have the
transmitter and receiver separated at different physical locations, are valuable in
scenarios where it is beneficial to detect objects from different angles or when the
radar’s physical security is a concern, as they are harder to jam or detect, at least
in their receiver-only unit [8][16]. Multistatic radars, involving one transmitter
and multiple receivers, excel in extensive area coverage and reducing blind spots,
providing superior detection capabilities over larger geographical areas [9][6][17].

Given the scope of this thesis, the focus will remain strictly on radar networks
made of distributed, independent monostatic radar systems for several reasons.
Firstly, the monostatic configuration minimizes path loss by keeping the signal
travel distance short, which supports accuracy in 2D target localization [7][15].
This arrangement also allows for a more predictable performance, essential for
developing reliable localization algorithms. Additionally, the scalability of mono-
static radars, when arranged in an array, enhances detection and localization ac-
curacy without the logistical complexity, transmitter-receiver synchronization re-
quirements, and higher costs associated with managing the more dispersed setups
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of bistatic and multistatic systems. This makes monostatic radars a suitable choice
for study, as they provide a practical and efficient framework for in-depth study
and application in target localization, particularly within controlled environments
or specific operational contexts where scalability is also a consideration. A basic
block diagram illustrating how a monostatic radar is structured is shown in Fig-
ure 2.1 The configuration of the monostatic radar when tracking a single target is
illustrated in Figure 2.2. In this diagram, ’R’ represents the range of the target
from the radar, and ’v’ denotes the velocity of the target.

Antenna Duplexer Power
Amplifier Upconverter Waveform

Generator

Local
Oscillator

DownconverterRF Amplifier Pulse
Compression

Doppler
Processing

DetectorThresholdingParameter
Estimation

Data Capture

Signal Processing

Detection

Information Extraction

Figure 2.1: Block diagram showing generic monostatic radar structure [1].

Target

Figure 2.2: Monostatic Radar Configuration [2].

2.1.2 Current Methodologies for 2D Target Estimation

Once we have established our focus on monostatic radar, it is important to note
that a single monostatic radar primarily provides raw radar signal data, from
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which estimates of target range and Doppler shift frequency can be derived [1][18].
These raw signals are the unprocessed reflections received from targets, containing
information about their distance and velocity relative to the radar. To effectively
localize a target in 2D space, multiple monostatic radar nodes must be arranged
in a given geometric configuration to then use approaches such as multilateration
[7][15]. In this section, we will explore the current methodologies prevalent in
radar literature for estimating both the position and velocity of targets in 2D
space, which are categorized into centralized and decentralized approaches.

2.1.2.1 Centralized Framework

In the centralized approach, each radar node receives raw radar signal data and
processes it locally to create range profiles. These range profiles, which represent
the distances of targets from the radar based on the travel time of the radar
signals, are then sent to the central fusion center [19][10]. By combining these
range profiles from all radar nodes at the fusion center, the system can accurately
and synchronously estimate the target’s position. This centralized processing
framework is depicted in the basic block diagram in Figure 2.3.

At the fusion center, range profile from all the nodes is superimposed with
others to form a unified profile [10][20]. This profile integrates the data from every
node within the radar system. By combining these outputs and positional data, the
fusion center can produce a detailed and comprehensive estimation of the target’s
location, effectively utilizing the processed data from the entire radar network to
maximize accuracy and detail in target detection and localization [21][22].

System
Nodes

Raw Signal
Data

Signal
Processing

Network
Communications

Fusion Thresholding

Figure 2.3: Block diagram showing general system flow for centralized approach.

2.1.2.2 Decentralized Framework

The decentralized methodology is an improvement over the centralized approach
because it simplifies data handling. In this method, each node in the system
independently collects raw radar signal data, and performs signal processing and
monostatic thresholding and detection locally [4][12]. The result of this local
processing is a set of range estimates and Doppler frequency shifts derived from a
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specific Coherent Processing Interval (CPI).

The decentralized detection method capitalizes on its multiple radar nodes
to enhance detection capabilities while reducing the volume of data that needs
to be transmitted to a fusion center [23][4]. This approach involves data fusion
at a high level of abstraction, where data processing and analysis occur locally
at each radar node before any information is shared. This method streamlines
the system’s operation by limiting the data exchange to only essential, processed
information, thereby optimizing both the bandwidth usage and the responsiveness
of the radar network [4].

System
Nodes

Raw Signal
Data

Signal
Processing

Thresholding

Network
Communications

Fusion

Figure 2.4: Block diagram showing general system flow for decentralized approach.

In monostatic radar systems, as previously discussed, the primary outputs from
signal processing, thresholding, and detection are estimates of range and Doppler
frequency shift. The methods used to extract these estimates at each radar node
will be explored in the following section.

2.1.3 Methods for Extracting Range and Radial Velocity in a Decen-
tralized Approach

Radar systems use several techniques to derive crucial information about target
characteristics, such as range and radial velocity, from returned signals. Two
prominent methods are widely utilized for estimating these parameters: the Fast
Fourier Transform (FFT) and the range rate method. The FFT method is em-
ployed to calculate the radial velocity of a target by analyzing in the frequency
domain. This technique effectively determines how the frequency of the returned
signal has shifted due to the Doppler effect, which is indicative of the target’s ra-
dial velocity towards or away from the radar. Conversely, the range rate method is
used to estimate the radial velocity in the time domain. This approach measures
the rate at which the distance between the radar and the target changes over time,
providing a direct calculation of the target’s velocity along the line of sight but
does not yield Doppler shift frequency directly.
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2.1.3.1 FFT method

Within a single Coherent Processing Interval (CPI), the radar system organizes
the received echo signals into a two-dimensional matrix. Each row of this matrix
corresponds to one of the L signals transmitted during the CPI, while each column
represents a sample within an individual pulse. The process of applying a Fast
Fourier Transform (FFT), which is depicted as a block in Figure 2.5, is critical
for analyzing the signal in both the range and Doppler domains. The matrix is
structured along two axes: the fast-time axis, which captures the time delay of
the echo within each pulse and is pivotal for range estimation, and the slow-time
axis, which represents the temporal evolution across the L signals. The slow-time
axis encodes phase shifts caused by the relative motion of the target, providing
critical information for Doppler frequency estimation. This matrix framework
underpins the processing of range and velocity data in radar systems.

To calculate the range of targets, the radar system processes the signals it
captures. For Frequency Modulated Continuous Wave (FMCW) radar, a Fast
Fourier Transform (FFT) is applied along the fast-time axis, resulting in range
profiles. In contrast, for pulse radar systems, matched filtering is employed to
extract the matched outputs from the received signals, enhancing the detection of
range to the targets. This process in FFT for FMCW, transforms the time-domain
data of each pulse into its frequency-domain counterpart, which correlates directly
to the range of the targets due to the time delay of the received echoes [2][24].
By converting these time delays into frequency information, the system achieves
a precise determination of target distances from the radar, leveraging the detailed
resolution offered by frequency domain analysis. This structured approach in
processing and interpreting radar signals is integral to modern radar systems,
enabling accurate and efficient target detection.

Simultaneously, to measure the target’s velocity, the radar employs Doppler
processing. This involves performing an FFT along the slow time axis, which
corresponds to the time interval across the L signals. The Doppler processing
analyzes the frequency shift caused by the target’s motion relative to the radar.
Motion towards the radar increases the frequency of the reflected signal (positive
Doppler shift), while motion away from the radar decreases it (negative Doppler
shift). This frequency shift provides accurate measurements of the target’s
velocity along the line of sight [2][24].
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Figure 2.5: Example of estimating range and Doppler measurements from received sig-
nals using FFT method [1].

The Range-Doppler map provides a representation of the target’s range and
Doppler frequency, displaying the power density at each combination of range
and Doppler frequency. Assuming a point target, the point with the highest
power density on the map corresponds to the target’s precise range and Doppler
frequency. This accuracy allows the radar to effectively estimate the target’s
position and velocity. Consequently, the radar can distinguish between stationary
and moving objects and track the speed and direction of multiple targets within
its field of view [2][1].

2.1.3.2 Range Rate Method

In radar systems that employ pulse signals, the range rate method is used to
calculate the distance to a target. This is done by measuring the time it takes
for a radar pulse to travel to the target and return as an echo. To enhance the
radar’s resolution and sensitivity, pulse compression is applied through matched
filtering. This technique maximizes the signal-to-noise ratio (SNR) of the received
signal and compresses the pulse width of the echo, enabling more precise timing
of the echo’s arrival, which is crucial for accurately determining the range [1][24].
The formula used to estimate the range is

R =
ct

2
(2.1)

where c is the speed of light, approximately 3 × 108m/s, and t represents the
round-trip time of the radar signal. The division by 2 accounts for the distance
the signal travels to the target and then back to the radar.

To calculate the radial velocity of a target directly in the time domain, the range
rate is utilized. This measures how quickly the distance between the radar and the
target changes over time, providing direct insights into the target’s motion toward
or away from the radar. [1][24]. The formula to determine the radial velocity in
the time domain directly is given by

vr =
∆R

∆t
(2.2)

where, vr represents the radial velocity of the target relative to the radar.
Radial velocity refers to the component of the target’s overall velocity that is
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directed along the line of sight connecting the radar and the target.
In addition to the FFT method and Range Rate method, other methods for

estimating range and radial velocity include the Vector Phase Change and Scalar
Phase Change techniques, as discussed in [24].

2.1.4 Overview and research gap in current methods

Based on our literature review of current methodologies for estimating a target’s
position and velocity in 2D using multiple monostatic radar systems in a network,
we have identified two prevailing approaches. The first is a centralized approach
where all preprocessed time series data from the radar nodes are sent in their
entirety to a fusion center for analysis. The second approach, which offers
improvements over the first, involves each radar node locally estimating range
and Doppler shift before sending these data to the fusion center for final position
and velocity estimation. This method reduces the computational burden on the
fusion center by limiting the data sent to essential range and Doppler frequency
shift estimates.

However, both approaches rely on a centralized fusion center to aggregate and
process data, which introduces potential issues such as a single point of failure
and increased power requirements for data transmission, especially from nodes
that are located farther away from the center. Additionally, a central processing
hub may become a bottleneck as the number of radar nodes increases, potentially
compromising system scalability and efficiency. To address these challenges and
mitigate the risks associated with a single point of failure and scalability issues,
we are exploring distributed techniques that can offer a more robust and scalable
solution for radar network operations. The field of distributed optimization has
seen significant growth, particularly within Wireless Sensor Networks (WSN) and
the Internet of Things (IoT). These areas can serve as foundational reference points
for understanding and developing distributed optimization strategies.

2.2 Distributed Optimization

Distributed target tracking is commonly addressed in research, often involving
a state space model of the target [25][11]. However, our focus diverges from
this norm as we aim to localize the target using a measurement model instead.
This method utilizes direct inputs from range and Doppler frequency shift
measurements, circumventing the complexities of constructing and updating a
state space model. By focusing solely on measurement data, we take a step
back from developing a state space model, allowing us to concentrate on directly
utilizing the data obtained from measurements.

To understand how we can effectively localize a target in 2D, it is essential
to explore the various distributed signal processing techniques currently employed
within the distributed systems community and their benefits, especially in terms
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of eliminating the risk of a single point of failure—a critical goal of our study. Dis-
tributed techniques distribute data processing and decision-making tasks across
multiple nodes or systems, enhancing both system resilience and reliability. This
decentralized approach not only balances the computational load but also mini-
mizes system vulnerability to localized failures, thereby ensuring operational con-
tinuity even if some nodes fail.

2.2.1 Prevalent Distributed Optimization Techniques in Current Re-
search

There are several distributed techniques employed for data processing and
decision-making across networks, each with its specific applications and benefits.
These include distributed averaging, which involves calculating the average of
values stored at each node to reach consensus [26]; gossip algorithms, which allow
information to spread through a network as nodes randomly communicate with
each other [27]; proximal methods, designed to handle optimization problems by
breaking them down into simpler sub-problems that are easier to solve locally
[28]; and the method of multipliers, a strategy to solve constrained optimization
problems by decomposing them into more manageable parts [29]. Each of these
techniques offers different advantages depending on the network’s structure,
the nature of the data, and the specific goals of the system, such as efficiency,
accuracy, or robustness against failures.

Distributed averaging is a widely recognized consensus technique in distributed
systems [30][26], but it has its limitations when applied to the task of target
localization. This method typically operates directly on 2D estimates of a target’s
position and velocity. However, in our case, we only have a data model available,
which presents unique challenges. Specifically, when position and velocity of
a target are estimated at each radar node—by communicating with only a
few neighboring nodes within the radar network—averaging these estimates
across the entire network can lead to biased results. This bias occurs because
each radar node measures the target’s radial velocity, which is the component
of the target’s velocity directed along the line of sight from the radar to the
target. Since each node may be positioned differently relative to the target,
their measurements of radial velocity can vary. As a result, when these diverse
measurements are averaged together, the combined value may not accurately
represent the actual velocity of the target. This discrepancy arises because the
averaging process does not account for the differences in each node’s perspective,
potentially distorting the overall estimation of the target’s true motion parameters.

Gossip-distributed protocols are communication schemes used in networks
where nodes iteratively exchange information with randomly selected peers to
achieve data consistency or aggregation across the network [31][32][33]. While
these protocols are prized for their simplicity and fault tolerance, they have
notable disadvantages. First, they often exhibit slow convergence rates, especially
in large networks, due to the inefficiencies in random communication patterns that
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require numerous iterations to reach a consensus. Another drawback is the lack of
determinism; the stochastic nature of these protocols can lead to unpredictability
in performance and outcomes, which is problematic in applications demanding
reliable and consistent results. Lastly, gossip protocols are not inherently designed
to handle constrained optimization problems efficiently.

Proximal distributed algorithms are a class of optimization methods used for
solving large-scale problems that can be decomposed into simpler sub-problems,
each solvable in a parallel or distributed manner [28]. However, they exhibit
some drawbacks. For one, the convergence rate of proximal methods can be
relatively slow, especially in scenarios involving non-smooth functions or when
precise adjustment of hyperparameters, such as the step size, is necessary [34][35].
This can make them less efficient for rapidly changing or real-time systems, such
as radar networks tracking moving targets. Additionally, proximal methods are
primarily designed to handle unconstrained or simply constrained optimization
problems. When faced with complex constraints, including multiple equality
and inequality conditions, their performance and applicability can significantly
diminish, requiring more sophisticated approaches to effectively manage and
incorporate these constraints within the optimization process [29].

After careful consideration, we have chosen to focus on the Alternating Direc-
tion Method of Multipliers (ADMM) for the scope of this thesis [29]. ADMM is a
powerful optimization technique that combines the strengths of dual decomposition
and augmented Lagrangian methods, making it highly effective in distributed op-
timization scenarios. This method is particularly advantageous because it breaks
complex optimization problems into smaller, more manageable sub-problems that
can be solved independently and in parallel across different nodes or agents. Each
sub-problem involves its own local constraints and variables, while ADMM coordi-
nates these local solutions to conform to global objectives and constraints through
iterative updates of dual variables [29][36]. This approach not only enhances com-
putational efficiency but also significantly improves scalability and robustness in
distributed environments [37]. Moreover, ADMM is capable of handling both con-
vex and certain non-convex problems, providing flexibility in addressing a wide
range of practical optimization challenges in distributed settings [38].

2.2.2 Application of ADMM in Wireless Sensor Networks

To address the literature gap in distributed optimization within radar networks,
we approached the problem by conceptualizing a wireless sensor network (WSN)
as analogous to a radar system, with each WSN node functioning similarly to a
radar network node. This analogy enabled us to utilize the extensive research and
methodologies already developed for WSNs and apply them to radar networks.
Our investigation included reviewing several papers that discuss the use of
the ADMM in WSNs [29][39]. These studies describe how ADMM facilitates
network-wide optimization while accommodating node-specific constraints, pro-
viding crucial insights into how similar distributed optimization techniques can
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be adapted for radar network operations [40][14][13].

The foundational concepts of ADMM and its application towards achieving
global consensus in distributed systems are thoroughly explained in S.Boyd et al.
[29]. In the context of wireless sensor networks (WSNs), the papers I. D. Schizas
et al. [14] and P. A. Forero et al.[13] delve into the specifics of how ADMM is
adapted to handle local constraints within these networks. Further exploration
into the efficiency of ADMM, specifically regarding its convergence criteria, is
provided by J. He et al. [41]. Additionally, the implementation of ADMM in more
complex non-convex scenarios is discussed in depth in Y. Wang et al. [38] and M.
Hong et al. [42], highlighting its versatility and robustness in handling a variety
of optimization challenges.

After reviewing the current literature on radar and distributed optimization, a
transition can be made from the existing decentralized approach—where range and
Doppler frequency shift measurements are sent to a fusion center for estimating
the position and velocity of targets in 2D—to employing distributed optimization
techniques. In the distributed approach, range and Doppler frequency shift mea-
surements are transmitted to nearby nodes for local estimations. The goal will
be to resolve these measurements using the ADMM, with data sharing limited
to neighboring nodes. This method aims to compute the position and velocity
of the target in 2D and achieve consensus among all nodes, thereby enhancing
network resilience and promoting decentralized decision-making. This distributed
optimization approach helps reduce the computational load at each radar node
and eliminates the single point of failure by enabling radar nodes to communicate
with their nearest neighbors and reach consensus.
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Simulator Design for Target
Range and Doppler Shift
Measurements 3
This chapter details the design and functionality of the simulator developed
for this thesis, which focuses on simulating target range and Doppler shift
measurements for targets observed by a radar network. The simulator employs a
Rectangular Pulse Linear Frequency Modulated (LFM) waveform as the transmit
signal. Unlike traditional radar systems that utilize pulse compression techniques
to enhance resolution and signal-to-noise ratio as mentioned in 2.1.3, our ap-
proach directly generates range and Doppler measurements by simply adding
theoretical noise to the true values. This noise, modeled as a Gaussian process
with zero mean and a specified covariance matrix, is added to the true range
and Doppler values to simulate the inaccuracies and uncertainties inherent in
actual radar measurements. This simple method bypasses complex signal process-
ing stages, allowing us to control and manipulate the data for our simulation needs.

3.1 LFM Pulse Signal Model

Rectangular Pulse Linear Frequency Modulated (LFM) signals are extensively
utilized in modern radar systems for their superior range resolution and robustness
to Doppler effects [1][43]. These signals maintain a constant amplitude while
the frequency linearly increases or decreases across the pulse duration, making
them ideal for complex radar applications. This simplicity in implementation
and the ability to process these signals for enhanced target differentiation and
tracking in cluttered environments are key reasons for their widespread use [44][1].
Incorporating frequency modulation within each pulse maximizes the utility of the
rectangular pulse waveform, defining it as an LFM pulse—a preferred waveform
in pulse Doppler radar systems for its signal clarity and interference mitigation
capabilities.

The real-valued representation of an LFM pulse waveform at RF, as used in a
pulse-Doppler radar, with an instantaneous frequency that increases throughout
the pulse, is given by [1]

s(t) = A cos

(
2π

(
ft +

B

2T
t

)
t+ δ

)
(3.1)

where A represents the amplitude of the transmitted signal, which dictates the
signal’s strength. The term ft is the transmit frequency, setting the baseline/s-
tarting frequency of the waveform. B denotes the bandwidth, which defines the
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frequency range over which the signal sweeps, while T is the pulse duration, indi-
cating the length of time over which this frequency sweep occurs. Lastly, δ is the
initial phase, representing the phase offset at the beginning of the pulse.

Figure 3.1: Example of an LFM (Linear Frequency Modulation) waveform with a pulse
duration of 100µs [3].

3.2 Designing a Custom Simulator: Integrating Noise into
True Measurements

To simplify our simulation and model validation process, we opt to circumvent the
detailed sequence of transmitting and processing actual radar pulses as outlined
previously in Section 2.1.3. Instead, each radar node in the simulation transmits a
series of L pulses at regular Pulse Repetition Intervals (PRI) within the Coherent
Processing Interval (CPI). From this process, we extract a single true measurement
of range and Doppler shift. We directly utilize these theoretical values for range
and Doppler measurements, to which we intentionally introduce a specific amount
of noise. This method facilitates the simulation of real-world signal behavior under
controlled conditions, allowing us to approximate semi-realistic operational scenar-
ios. This process is applicable at high SNRs, where target estimation uncertainty
approaches the theoretical CRLB [45]. Each radar node collects M measurements
of range and Doppler shift, meaning the time spent tracking the target is M×CPI
before sending all measurements to the fusion center for target localization. Figure
3.2 illustrates the design of our custom simulator for obtaining range and Doppler
measurements, with the procedure detailed in the following sections.
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Figure 3.2: Measurement generation process for the nth radar node and mth measure-
ment where noise is added to true values to produce immediate range and Doppler
estimates, mimicking semi-realistic measurement outputs.

3.2.1 Uncertainties

When the signal transmitted by the radar and reflected back by targets reaches
each receiver, it is a noisy, time-delayed version of the transmitted signal, with
additive noise affecting the true signal. The uncertainties in the received signal
are assumed to follow the theoretical Cramér-Rao Lower Bound (CRLB), as this
represents the ideal conditions for an unbiased estimator, making the measure-
ments as realistic as possible [46]. The CRLB provides a fundamental benchmark
for the minimum variance or error that can be achieved in an unbiased estimator,
thereby setting a theoretical limit on the precision of our measurements. To
simulate a more accurate depiction of actual radar performance under operational
conditions, the added noise is designed to adhere to the CRLB.

By incorporating these CRLB-based noise levels, the simulated measurements
attempt to mirror the practical limitations and statistical errors encountered
in actual radar systems, thereby providing a better framework for evaluating
radar performance and developing algorithms that are effective in semi-realistic
scenarios [46][45]. An important aspect of using LFM waveforms in radar systems
is the phenomenon of range-Doppler coupling, where any uncompensated Doppler
shift introduces an apparent range shift in the detected signal. This effect, known
as range migration, can complicate the accurate localization of targets, especially
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when they are moving at high relative velocities [1][6]. However, in this thesis, we
will not consider the impact of range migration as the targets are moving at slow
speeds.

3.2.1.1 Range Uncertainty

The uncertainty in radar range measurement primarily stems from the estima-
tion of time delay (t0), represented mathematically in the context of radar signal
processing as

s[n; t0] = s[nTs − t0] (3.2)

where Ts is the sampling interval in fast time. The variance of the time-delay
estimation, σ2

t0
, is fundamentally linked to the system’s noise characteristics and

signal properties through the equation [18][1][44]

σ2
t0
≥ 2E

N0

1

B2
rms

=
1

SNR ·B2
rms

(3.3)

Here, E denotes the energy of the signal s, N0 is the noise power spectral
density, and Brms is the root mean square (rms) bandwidth of the signal. The term
2E
N0

represents the peak signal-to-noise ratio (SNR) at the output of a matched filter.
This relationship indicates that the variance in time-delay estimation improves
with increases in both SNR and bandwidth. Given that range R is proportional
to the time delay t0 through the relation [2]

R =
ct0
2

(3.4)

where c is the speed of light, the precision in range estimation can also be
derived by scaling the time-delay variance. Taking the square root to obtain a
standard deviation measure, the precision in range measurement is expressed as

σR ≥
c

2
√

SNR ·B2
rms

(3.5)

This formulation shows that range precision improves with higher SNR and
wider bandwidth. Recalling that range resolution is typically defined as [1]

∆R =
c

2B
(3.6)

where B is an appropriate measure of bandwidth, this precision can further be
related to the inherent resolution limit of the radar system

σR ≥
∆R√
SNR

(3.7)

Connecting this to the context of Linear Frequency Modulated (LFM) wave-
forms, the range uncertainty in such systems can be further elucidated. Specifically,
the CRLB for range measurement under the influence of a known range rate, and
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using an LFM waveform with a rectangular envelope, is mathematically expressed
as [1]

σ2
n ≥

3c2

8π2B2
nSNRn

(3.8)

where, σ2
n represents the lower bound on the variance of the range estimate at

the nth radar node, c is the speed of light, Bn is the swept bandwidth of the LFM
waveform, and SNRn is the Signal-to-Noise Ratio at the nth node. The swept
bandwidth Bn of nth is a crucial parameter, as it directly impacts the precision of
range measurement—the wider the bandwidth, the finer the resolution, and the
lower the minimum variance.

The inverse relationship between measurement precision and both SNR and
bandwidth is highlighted in Equation 3.8. As SNR increases or bandwidth widens,
the lower bound on variance decreases, leading to higher precision in range esti-
mation. This relationship is fundamental, guiding trade-offs between waveform
design parameters and achievable accuracy, which is essential for optimizing radar
performance across different operational scenarios.

3.2.1.2 Doppler Uncertainty

The CRLB for radar frequency estimation, especially when multiple unknown
parameters are involved, such as the initial phase and amplitude of a signal is
rigorously derived and widely acknowledged in the literature [46][1][18]:

ρ2n ≥
3

2π2T 2L(L2 − 1)SNRn

≈ 3

2π2T 2L3SNRn

(3.9)

where, T is the slow-time sampling interval (PRI), L denotes the number of
measurements, and SNRn is the signal-to-noise ratio associated with the nth mea-
surement. The CRLB here demonstrates a cubic decrease with respect to L, indi-
cating that the precision of frequency measurements significantly improves as the
number of measurements increases [1]. This improvement has several dimensions:
the L component boosts the Signal-to-Noise Ratio (SNR) by integrating multiple
samples, which consolidates signal power and diminishes noise impact. Further-
more, the squared term (L2) improves frequency resolution, quadratically because
the variance of the frequency estimate decreases with the square of the increase in
observation time (L × PRI), leading to more precise Doppler shift measurements.
This dual enhancement of both SNR and resolution underscores the benefit of ex-
tensive data collection in radar systems for achieving precise frequency estimates
[1].

3.3 Measurement Model

In this section, we discuss the design of the measurement model for each radar node
in the network. As mentioned earlier, for simplicity we bypassed the standard FFT
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procedure for target position and Doppler estimation, instead directly using the
generated measurements.

3.3.1 Target Parameters

Target parameters are key characteristics of a detected target, derived from
the echo signals reflected off the target. These parameters include the target’s
range, bearing, location, radial and cross-range velocity, overall velocity vector,
size, shape, symmetry, and material properties. The primary challenge in radar
operations is to estimate these parameters accurately, representing the true state
of the target based on observed data.

Once a target is detected against a background of noise and clutter, the next
step is parameter estimation. The assumption here is that the signal-to-noise
ratio (SNR) is sufficiently high and there is no significant clutter, indicating that
detection has already been successfully achieved. This allows for the reliable
extraction of detailed characteristics from the detected signals [46][45].

In the context of this thesis, we focus on estimating the position and velocity
of targets in two-dimensional space, hence four distinct parameters. The specific
parameters under consideration are represented as

θ = [x, y, ẋ, ẏ] (3.10)

where x and y denote the target’s position along the x and y directions,
respectively, and ẋ and ẏ represent the velocity components along these directions.

3.3.2 True Range Measurements

To compute the true range measurements from each radar node, we employ the
Euclidean distance formula to ascertain the direct line-of-sight distance to the tar-
get. This calculation assumes an unobstructed path between the radar node and
the target, negating any potential occlusion from obstacles or variations in terrain.

The true range measurement (rn(θ)) between the target and the nth radar
node is calculated using [6][17]

rn(θ) =
√
(xn − x)2 + (yn − y)2 ∀n = 1, 2, · · · , N (3.11)

where pn = [xn, yn]
T is the position of the nth radar node and p = [x, y]T is

the position of the target. This approach guarantees that the range measurements
accurately represent the spatial relations under optimal conditions.

3.3.3 True Doppler Shift Measurements

The true Doppler shift measurement (fn(θ)) from the nth radar node is determined
using [6][17]
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fn(θ) =
v

λ

(pn − p)

|pn − p|
(3.12)

where v represents the target’s actual velocity, and λ is the wavelength of the

radar signal. The term (pn−p)
|pn−p| represents the unit vector pointing from the radar

node position pn to the target position p. This unit vector effectively captures the
directional component of the target’s movement relative to the radar node. The
Doppler shift is crucial as it indicates not only the speed but also the direction
of the target relative to the radar, with positive values indicating motion towards
the radar and negative values indicating motion away. This Doppler frequency
shift directly affects the observed frequency of the radar return and is crucial for
tracking and velocity estimation in radar systems.

3.3.4 Measurement Model for nth radar node

For each burst of L pulses, a single set of range and Doppler measurements is
obtained, representing the target’s position and doppler shift at that moment. In
our simulations, we assume the target moves at a constant velocity and remains
nearly stationary over the observational time (M × CPI), allowing for M range
and Doppler measurements within this short period. If the target moves rapidly,
the PRI must be high enough to capture data so that the target does not move
much within a CPI. The M range and Doppler shift measurements over a single
observational time for θ̂ are presented in Equation 3.13 [6]. Here, θ̂ represents the
estimated values of θ, which are the target’s parameters, specifically its position
and velocity in 2D.

zn =



r̂n,1
f̂n,1
r̂n,2
f̂n,2
...

r̂n,M
f̂n,M


=



rn,1(θ)
fn,1(θ)
rn,2(θ)
fn,2(θ)

...
rn,M(θ)
fn,M(θ)


+



ern,1

efn,1

ern,2

efn,2

...
ern,M

efn,M


(3.13)

where r̂n,m and f̂n,m represent the position and Doppler frequency shift esti-
mates of the target at nth radar node and mth measurement, and ern,m and efn,m

are range and doppler frequency shift errors of mth measurement at nth radar
node. These measurements are dependent on the target’s characteristics and the
location of the nth radar node. The M measurements combined at the nth radar
node in the radar network is represented as [6][17]

zn = µn(θ) + en (3.14)

where zn represents the vector of observed measurements at the nth node,
encompassing both range and Doppler shifts. The term µn(θ) denotes the true
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values of these measurements, dependent on the parameter vector θ, which typ-
ically includes the target’s movement and positional data relative to the radar.
The en vector signifies the Gaussian measurement errors, characterized by a zero
mean and a covariance structure defined by Σn, which is given as [6][17]

Σn = blkdiag(Σn,1,Σn,2, . . . ,Σn,M) (3.15)

where Σn,m for the nth node at mth measurement is given as

Σn,m =

[
σ2
n,m γn,m

γn,m ρ2n,m

]
(3.16)

with σ2
n,m and ρ2n,m from equations 3.8 and 3.9 respectively and the correlation

between range and Doppler is given by γn,m, where

γn = ησnρn (3.17)

The variances indicate the expected variability or noise level within each type
of measurement, providing a metric of their reliability. The γn,m, on the other
hand, reveals the extent to which variations in range measurements are linked to
variations in Doppler measurements, offering insights into their interdependencies.

The covariance matrix Σn,m is symmetric and it is Positive Semi-Definite
(PSD) [47], ensuring consistent variation between range and Doppler. The PSD
nature of the matrix guarantees that the variances are positive and adheres
to the Cauchy-Schwarz inequality. This implies that the covariance γ does
not surpass the geometric mean of the variances of σ and ρ, mathematically
expressed as γ2 ≤ σ2 × ρ2. This inequality ensures that the correlation between
range and Doppler does not reach an unrealistically high level. The covariance
matrix provides valuable insights into the joint behavior of range and Doppler
measurements [47][46].

In a similar way, measurements can be obtained for all nodes in the radar net-
work. Each radar node’s measurements depend on its position and the target’s
characteristics, represented by θ. In Chapter 4, we will explore how the measure-
ment model is used to estimate the target’s parameters, denoted as θ.
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Methodologies for Parameter
Estimation: Decentralized and
Distributed Approaches 4
In this chapter, we will explore the methodologies utilized to determine the
target parameters, denoted as θ. Our approach is twofold: first, we employ a
Decentralized Approach, where all radar nodes transmit their individual range
and Doppler shift measurements to a central fusion center. Here, a state-of-the-art
estimator is applied to compute the estimated parameters θ̂.

The second methodology involves a Distributed Approach. Unlike the de-
centralized method, each radar node in this approach communicates only with
a number of its immediate neighbors. These nodes collaboratively estimate the
target’s location and direction of movement, gradually achieving consensus on
the target parameters after k iterations, reaching a solution asymptotically. This
distributed methodology is innovative to this research and, to the best of the
author’s knowledge, has not been previously implemented for radar networks in
this format. Before delving into the methodologies for estimating θ̂, we introduce
the triangulation property, which determines the minimum number of radar nodes
required to localize the target.

4.1 Triangulation Property

Since omnidirectional monostatic radars are being used, there is no directional
information about the target, making it impossible to estimate its exact location
from a single radar node [4]. Additionally, obtaining a reliable velocity estimate
from a single monostatic radar is challenging.

Radar
Node
n

Figure 4.1: Omnidirectional Monostatic Target Range Estimation [4].
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From Figure 4.1, we observe that in monostatic radar target estimation, there
is an equal probability of the target being located anywhere along a circle centered
at radar node n, with a radius equal to r̂n [4][22]. The measure of target location
uncertainty is the area of this gray-shaded region, denoted as U . This uncertainty
arises from the noise and other factors described in Chapter 3. When there is more
noise, the gray region expands, indicating greater uncertainty; with less noise, the
region contracts. The dashed circles, U0 and U1 represent the lower and upper
bounds. The target’s possible location p is contained within the area between
these boundaries, determined by the established uncertainty and range estimates.

Figure 4.2: Triangulation Property: Requires at least three omnidirectional monostatic
radar nodes for precise target location estimation [5].

To estimate the target’s position in 2D space, data from at least three radar
nodes is necessary, a principle known as the triangulation property [5][48]. Trian-
gulation is fundamental to many geometry-based algorithms used in wireless sensor
networks. As shown in Figure 4.2, the target is likely located at the intersection of
the range estimates from the three radar nodes (indicated within the red circle).
Therefore, data from a minimum of three radar nodes is required to determine the
target’s position.

4.2 Decentralized Approach

We begin with the Decentralized Approach, wherein each radar node gathers M
measurements of target range and Doppler shift during a single observation period
as shown in section 3.3.4. These measurements are then transmitted to a central
node or fusion center. At this hub, the collected data is used to estimate the
overall target’s position and velocity within a two-dimensional space. This method
is widely adopted in current radar systems literature due to its robustness and
effectiveness [4][12].
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Figure 4.3: Illustration of the Decentralized Approach: Estimated range and Doppler
shift measurements from each radar node are transmitted to a central node for the
estimation of θ.

Referencing figure 4.3, each radar node transmits its collected measurements
of range and Doppler shift, indicated as zn, along with its position in 2D space,
pn. It is essential to understand that these measurements are influenced by the
configuration of the radar network and the relative position and velocity of the
target relative to the radar nodes. This relationship is fundamental since radar
systems specifically measure range and radial velocity, which are directly affected
by the spatial dynamics between the radar node and the target.

4.2.1 Maximum Likelihood Estimator

In Section 3.3.4, the measurement model is characterized as non-convex. A
significant challenge with non-convex functions is their tendency to have multiple
local minima points where the function value is lower than at all neighboring
points. Optimizing such functions can result in becoming trapped in one of
these local minima, potentially missing the global minimum that represents the
optimal solution [35]. Despite this, the Maximum Likelihood Estimator (MLE) is

employed to solve for θ [46][6][4]. At high SNRs, it is shown that the estimated θ̂
converges to the true value θ [45][17][6]. MLE involves estimating the parameters
of a presumed probability distribution based on observed data. The essence of
MLE is to maximize a likelihood function, which adjusts the parameters so that
the observed data becomes most probable under the chosen statistical model
[46]. Renowned for its intuitive appeal and flexibility, MLE has emerged as a
predominant method for statistical inference across various applications. This
approach allows for effective and efficient estimation of θ, essential for accurate
target parameter determination in our study.

The likelihood function p[z;θ] quantifies the probability of observing the
parameter vector θ given the measurement vector z. The log-likelihood function,
which is crucial for parameter estimation in statistical models, transforms this
likelihood into a log-scale to simplify calculations, particularly when dealing with
products of probabilities.

The log-likelihood function for the observed data, given the parameter vector
θ, is expressed mathematically as
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ln[p(z;θ)] =
1

2

N∑
n=1

[zn − µn(θ)]
T Σ−1

n [zn − µn(θ)] +
N

2
ln(2π) +

1

2
ln |Σ| (4.1)

Here, N represents the total number of radar nodes in the system. The first
term represents the sum of the squared deviations of the measurements zn from
their expected values µn(θ), weighted by the inverse of the covariance matrix
Σ−1

n . The second term adjusts for the scaling effect of the multi-dimensional
Gaussian distribution, and the last term accounts for the determinant of the
covariance matrix, reflecting the spread and correlation of the data dimensions.
This formulation effectively combines all these factors to assess the plausibility of
the observed data under the assumed model parameterized by θ.

To determine the parameter vector θ that maximizes the likelihood of the
observed data, we undertake an optimization process. The goal is to find the value
of θ that results in the highest probability of observing the given measurement
vector z, under the statistical model specified. This is achieved by maximizing the
log-likelihood function. However, because optimization routines commonly focus
on minimization, the problem is often reframed as minimizing the negative of the
log-likelihood function. The optimization problem can be formulated as follows:

θ̂ = argmin
θ

[
− ln[p(z;θ)]

]
(4.2)

Here, θ̂ represents the estimated parameters that minimize the negative log-
likelihood, thereby maximizing the log-likelihood itself. This optimization effec-
tively seeks the parameters that make the observed data most probable under the
assumed model. The summation aggregates the log-likelihoods computed for each
observation, ensuring that the solution reflects the best fit across all data points.

4.2.2 Matlab solver

We employ the MATLAB solver ‘fmincon’ to solve the optimization function,
which is outlined in Equation 4.2. Fmincon is a Matlab solver [49] for finding the
minimum of constrained nonlinear multi-variable function. Here we do not have
any inequalities so we set the lower and the upper bound to be unbounded that
is -inf and inf respectively. Here, the optimization problem is addressed using
the interior point algorithm, an inbuilt feature of the fmincon solver [50]. The
interior-point algorithm is often chosen in Matlab’s ‘fmincon’ for solving large-
scale constrained optimization problems due to several advantageous features.
Firstly, it is designed to handle large-scale problems efficiently, making it ideal for
scenarios with a significant number of variables and constraints. This efficiency
extends to its adept handling of sparse matrices, which are common in various op-
timization scenarios, allowing for more manageable computations as the problem
size grows. Additionally, the algorithm is favored for its robust global convergence
to global minima in nonlinear convex problems [51] [52]. However, our problem
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involves a nonconvex problem where it converges to true values only at high SNRs.

In an unconstrained optimization setting using the interior-point method, the
primary focus is on efficiently using Newton’s method to approach the minimum
of the objective function. Despite its design for constraints, the interior-point
algorithm leverages its robust handling of the Hessian and gradient calculations to
find a global minimum effectively. The artificial barrier is a technique that adds a
penalty to the objective function to deter solutions near the boundaries of feasibil-
ity in constrained optimization problems. This penalty increases significantly as a
solution approaches the constraint limits, acting like a protective barrier to ensure
that the solution remains within acceptable bounds. However, in unconstrained
cases, where there are no such limits to consider, this artificial barrier is not
necessary, but the iterative, Newton-based approach is maintained. The algorithm
outlines the steps to estimate θ̂ using the ‘fmincon’ optimization function. Here,
g(θ) is the function we aim to minimize, specifically the log-likelihood, ln[p(z;θ)].

4.2.2.1 Fmincon Algorithm Steps

1. Initial Guess and Setup: The algorithm starts with an initial guess θ(0)

and typically initializes parameters such as a barrier parameter b (if artifi-
cially introducing a soft boundary to stabilize steps early in the process), and
a tolerance ϵ for convergence.

2. Iteration: At each iteration, the algorithm performs the following steps:

(a) Calculate Gradient and Hessian: Compute the gradient ∇g(θ) and
the Hessian ∇2g(θ) of the objective function at the current point.

(b) Search Direction: Determine a search direction d by solving the New-
ton system:

∇2g(θ) · d = −∇g(θ) (4.3)

(c) Line Search: Perform a line search to find an appropriate step size α
along the direction d that sufficiently reduces g(θ). We do not explicitly
set the step size α in fmincon when using the interior-point method,
as MATLAB manages it adaptively via an internal line search strategy.
One can influence the behavior of this process through various settings
that adjust the optimization’s precision and convergence criteria.

3. Update: Update the current point:

θ(l+1) = θ(l) + α · d (4.4)

where θ(l) is the value at iteration l and θ(l+1) is the updated value.

4. Convergence Check: Check for convergence using a criterion based on the
gradient norm:

∥∇g(θ(l+1))∥ < ϵ (4.5)

If the criterion is met, the algorithm stops; otherwise, it returns to the Step
2.
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4.2.3 Cramér Rao Lower Bound

To verify whether the estimates θ̂ are theoretically optimal, given that the mea-
surements are generated with specific SNR and bandwidth conditions, we assess
them against the CRLB for each parameter individually. The CRLB serves as a
standard for evaluating how well an estimator performs. By measuring an estima-
tor’s actual performance against the CRLB, we can see how closely it approaches
the ideal estimation process. When an estimator matches the CRLB, it means
it’s as accurate and consistent as possible, given the specific conditions like SNR
and bandwidth. This shows that the estimator is performing at its theoretical best.

The CRLB sets a minimum threshold for the Mean Square Error (MSE) of
any unbiased estimator when estimating unknown parameters [53]. For a given

parameter of interest, θ, and its unbiased estimate θ̂, the estimate must meet the
following condition [46]

Eθ{(θ̂i − θi)(θ̂j − θj)
T} ≥ [I−1(θ)]i,j (4.6)

In this subsection, we simplify our notation. We denote θ as θ =
[θ1, θ2, θ3, θ4]

T = [x, y, ẋ, ẏ]T , where I(θ) represents the Fisher Information Ma-
trix (FIM). The FIM when dealing with a Gaussian random vector is described as
follows [46] [

[I(θ)]i,j

]
n

=
∑
i,j

[
∂µn(θ)

∂θi

]T
Σ−1

n

[
∂µn(θ)

∂θj

]
(4.7)

Since, the covariance matrix Σ is structured as a block diagonal matrix, it can

be expressed as the sum of individual matrices. And ∂µn(θ)
∂θ

is a 2 × 4 Jacobian
Matrix (Jn(θ)) for the nth radar node [6][17].

The partial derivatives of the range with respect to each parameter of interest
are outlined below. These derivatives are crucial for calculating how changes in
each parameter affect the calculated range.

∂rn(θ)

∂x
=

x− xn√
(xn − x)2 + (yn − y)2

(4.8a)

∂rn(θ)

∂y
=

y − yn√
(xn − x)2 + (yn − y)2

(4.8b)

∂rn(θ)

∂ẋ
= 0 (4.8c)

∂rn(θ)

∂ẏ
= 0 (4.8d)

The partial derivatives of the Doppler shift with respect to all the parameters
of interest are outlined below:

29



∂fn(θ)

∂x
= −
−ẋ × r + (ẋ(xn − x) + (yn − y)) xn−x√

(xn−x)2+(yn−y)2

λ (
√

(xn − x)2 + (yn − y)2))2
(4.9a)

∂fn(θ)

∂y
= −
−ẏ × r + (ẋ(xn − x) + (yn − y)) yn−y√

(xn−x)2+(yn−y)2

λ (
√

(xn − x)2 + (yn − y)2))2
(4.9b)

∂fn(θ)

∂ẋ
= − x− xn

λ (
√
(xn − x)2 + (yn − y)2)

(4.9c)

∂fn(θ)

∂ẏ
= − y − yn

λ (
√
(xn − x)2 + (yn − y)2)

(4.9d)

So, the Jacobian Matrix is given as

Jn(θ) =

[
∂rn(θ)
∂x

∂rn(θ)
∂y

∂rn(θ)
∂ẋ

∂rn(θ)
∂ẏ

∂fn(θ)
∂x

∂fn(θ)
∂y

∂fn(θ)
∂ẋ

∂fn(θ)
∂ẏ

]
(4.10)

FIM = I(θ) =
N∑

n=1

Jn(θ)
TΣ−1Jn(θ) (4.11)

The FIM is a 4D matrix, the inverse of which is the CRLB estimating θ [46].

CRLB = I−1(θ) (4.12)

In Chapter 5, Section 5.1, we explore how changes in specific parameters impact
the uncertainties in the estimation of θ̂ and assess their alignment with the the-
oretical CRLB. We demonstrate that the measurements we generated match the
theoretical CRLB, which is the lowest variance bound for an unbiased estimator,
confirming that our estimator adheres to this theoretical standard. Later in Chap-
ter 5 Section 5.1, we utilize the Root Cramer-Rao Lower Bound (Root CRLB) to

verify if the estimated target parameters (θ̂) match the theoretical RCRLB. This
analysis helps confirm that the measurements generated align with the theoretical
CRLB, ensuring the accuracy and reliability of our estimation methods.

4.3 Distributed Approach

In the Decentralized approach, there is a risk of a single point of failure since all
measurements from individual nodes are sent to a fusion center. Additionally,
latency increases due to the potential long distance between nodes and the fusion
center, and as the number of nodes grows, the computational burden to estimate
θ on the fusion center escalates.

To address these issues, a distributed approach is introduced, where each
radar node communicates with its neighboring nodes, sharing data and estimating

30



θ until a consensus is reached as shown in Figure 4.4. In this setup, all radar
nodes collaborate to estimate the target’s position. The failure of a single node
has minimal impact, eliminating the risk of a single point of failure. Latency is
reduced since each node only communicates locally with its neighbors, and the
computational load on each node is lighter, as the data they process is smaller,
allowing for faster estimation calculations.

Figure 4.4: Illustration of the Distributed Approach: Each radar node communicates
within a specific radius, gathering measurements from neighboring nodes to estimate θ

4.3.1 Network Communication

In the distributed approach, each radar node establishes communication links
with its neighbors to share measurements. This data transmission can be
visualized using a graph where nodes represent radar nodes and edges represent
the communication links between them. The resulting structure is captured in
an adjacency matrix A ∈ RN×N , where each entry Anj = 1 if j ∈ Nn if node j
is in the neighborhood of node n i.e., j ∈ Nn, where Nn ⊆ [1, N ] and Anj = 0 if
j /∈ Nn. Since j ∈ Nn if and only if n ∈ Nj, the adjacent matrix is symmetric i.e.,
A = AT . To satisfy the triangulation property we need to have cardinality of Nn

greater than 1, i.e. |Nn| > 1.

Various network graphs, such as the Erdős-Rényi model [54] and K-Nearest
Neighbors [55], are used for communication. However, in this thesis, we opt for
the Unit Disc Graphs (UDG) model to define the communication links between
radar nodes [56][48]. The UDG model is chosen because it considers both the
position of the nodes and their communication range. It is a simple and widely used
graph model in Wireless Sensor Networks (WSNs) because it effectively accounts
for node positions and transmission radius [48][40]. In the UDG model, two nodes
can communicate if the distance between them is less than a specified transmission
radius.

4.3.2 Reformulated Cost Function

Once the neighbors of node n (Nn) are established, the amount of data each node
handles is significantly reduced compared to the decentralized approach. The plot
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illustrating this is shown in Figure 5.14 in Chapter 5 Section 5.2.2. Each radar
node then estimates its own θ̂n by exchanging information with its neighbors. The
log-likelihood function for the nth radar node is expressed as

ln[pn(Zn;θn)] =

[
[zn − µn(θn)]

TΣ−1
n [zn − µn(θn)]

+
∑
j∈Nn

[zj − µj(θn)]
TΣ−1

j [zj − µj(θn)]

] (4.13)

Here, each radar node takes into account its own measurement as well
as the measurements of its neighboring nodes for the estimation of θn i.e.,
Zn = {zn} ∪ {zj | j ∈ Nn}.

Since each radar node estimates the target’s parameters θ̂n by communicating
with its neighbors, the estimates will vary across nodes. This is because each
radar node observes the target from a different angle, resulting in varying radial
velocity and range measurements. While triangulation generally leads to accurate
position estimates, velocity estimates can differ significantly between each radar
node. Traditionally, a fusion center would be used to reconcile these differences
by averaging the θ̂n estimates and redistributing the averaged data to all nodes,
but this would reintroduce the fusion center, which we aim to avoid.

To address this issue, we introduce an auxiliary variable ϑ, which acts as
an edge constraint between nodes. This allows nodes to reach consensus by
communicating directly with their neighbors, eliminating the need for a central
fusion center. We can think of the auxiliary variable ϑnj as a localized “fusion
center” between the nth and jth nodes, facilitating consensus through neighbor-
to-neighbor communication.

The new cost function at the nth radar node with edge constraints can be
formulated as [14][29]

θ̂n = argmin
θn

[
− ln[pn(Zn;θn)]

]
s.t. θn = ϑnj, θj = ϑnj ∀j ∈ Nn

(4.14)

In this formulation, each radar node n seeks to minimize the negative log-
likelihood of its own measurements and its neighbors, subject to the constraint
that its parameter estimate θ̂n matches the auxiliary variable ϑnj, which is shared

with its neighbor j. Similarly, node j’s estimate θ̂j must match ϑnj, ensuring
consensus between neighboring nodes without the need for a central fusion center.
The radar node communication network is designed to be fully connected and
symmetric, ensuring that consensus is achieved among all nodes in the network.
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4.3.3 Alternating Direction Method of Multilpliers

While many distributed processing approaches, such as proximal methods or
gossip algorithms, can be used in this distributed framework, this thesis employs
the Alternating Direction Method of Multipliers (ADMM) to solve the presented
estimation problem [29]. This procedure will yield to distributed estimation

algorithm where local iterates θ̂n(k) will converge to MLE θ̂, where k is the
update ADMM iteration number [57][14]. The ADMM is particularly well-suited
for distributed optimization due to several key advantages. First, its decompos-
ability allows complex problems to be divided into smaller subproblems, making
it ideal for large-scale data or variables typical in distributed environments [13]
[58]. Second, ADMM’s flexibility in handling various constraints and objectives,
including different forms of regularization, makes it applicable to a wide range
of optimization problems [29]. Third, it is highly scalable, efficiently addressing
the extensive optimization tasks commonly encountered in big data applications,
which is crucial for performance in distributed computing systems [14][14].
Additionally, ADMM’s robustness to parameter settings ensures that it performs
well even with suboptimal parameter choices, reducing the need for extensive
tuning and making it practical for diverse applications. However, the effective-
ness of ADMM is contingent on the problem structure, particularly benefiting
when the problem can naturally be partitioned in a way that aligns with the
algorithm’s splitting strategy. This combination of decomposability, flexibility,
scalability, and robustness makes ADMM a compelling choice for distributed opti-
mization tasks, especially in fields such as radar systems and signal processing [29].

4.3.3.1 Augmented Lagrangian

Augmented Lagrangian is used to formulate subproblems of ADMM. The aug-
mented Lagrangian method for handling equality constraints was originally called
the method of multipliers ([36], [59]). Augmented Lagrangian is an extension
of the classical Lagrangian method by adding a penalty term to the Lagrangian
function. It is a hybrid approach that combines features of both the Lagrangian
multiplier method and penalty methods. The Augmented Lagrangian method en-
forces constraints more strictly due to the penalty component, without requiring
an infinitely large multiplier. The Augmented Lagrangian is given by

La [Θ,ϑ,ψ,Φ] =
N∑

n=1

(
− ln [pn (Zn;θn)] +

∑
j∈Nn

(
ψT

nj (θn − ϑnj) +

∥∥∥∥Φ2 (θn − ϑnj)

∥∥∥∥2
2

))
(4.15)

where, Θ = [θ1,θ2, . . . ,θN ] represents the estimates from all radar nodes, and
Zn contains measurements of the nth radar node and those of its neighboring nodes
i.e., Zn = {zn}∪{zj | j ∈ Nn}, while ϑ = [ϑ1,ϑ2, . . . ,ϑN ] represents the auxiliary
variables, where ϑn = [ϑn1,ϑn2, . . . ,ϑnj] ∀j ∈ Nn is the edge constraint between
nodes nth radar node and its neighbors Nn. Similarly, ψ = [ψ1,ψ2, . . . ,ψN ]

33



represents the Lagrangian multipliers, where ψn = [ψn1,ψn2, . . . ,ψnj] ∀n ∈ Nn.
The Augmented Lagrangian at nth radar node for equation 4.14 is given by

La [θn,ϑn,ψn,Φ] =

(
− ln [pn (Zn;θn)] +

∑
j∈Nn

(
ψT

nj (θn − ϑnj) +

∥∥∥∥Φ2 (θn − ϑnj)

∥∥∥∥2
2

))
(4.16)

The Lagrangian multipliers (ψ) are used to find the local maxima or min-
ima of the objective function, subject to equality constraints. The matrix
Φ ∈ R4×4 is a penalty matrix with diagonal entries corresponding to posi-
tion (x and y) and velocity (ẋ and ẏ) penalty terms. Position and velocity
penalty terms are different because these quantities have varying sensitivities.
The penalty terms for position x and y are equal, as are those for velocity ẋ and ẏ.

The objective function’s non-convex nature, stemming from the true mea-
surement equations for range and Doppler shift (see Equations 3.11 and 3.12),
means that convergence to the global optimum cannot be assured. However, when
applying the ADMM to non-convex optimization problems that exhibit a positive
semi-definite (PSD) Hessian, the algorithm capitalizes on local convex regions
within the objective function. This local convexity, evident from areas where the
function curves upward or remains flat, ensures stability in ADMM’s iterative
updates. By leveraging these locally convex properties, ADMM can navigate
more effectively through the non-convex landscape of the optimization problem,
avoiding the pitfalls of local minima and making steady progress toward finding
an optimal solution [42][29].

Enhanced convergence with non-convex functions is achieved by incorporating
higher penalty terms in ADMM [42] [38]. The Augmented Lagrangian framework
used in ADMM leverages these penalty terms alongside dual variables to enforce
uniformity across distributed variables, ensuring consensus. By imposing large
penalty parameters, ADMM aggressively penalizes discrepancies among nodes,
fostering uniform convergence and facilitating consensus.

At higher signal-to-noise ratios (SNRs), the low uncertainty ensures that all
radar nodes asymptotically converge to the true value as iterations progress [46][6].
The Augmented Lagrangian’s penalty terms not only support the enforcement
of equality constraints but also enhance convergence speed by smoothing the
optimization process and mitigating the risk of ill-conditioning. Further details on
selecting penalty terms and their effects on convergence are discussed in Chapter
5, Subsection 5.2.3.

4.3.3.2 Distributed ADMM Update Equations

Here we will look into ADMM update at the nth radar node to reach convergence
to the optimal point and reach consensus. ADMM iteratively updates the primal
variables θn and ϑnj and the dual variable ψ as
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• Update θn (Target Estimate at nth radar node)

θn(k + 1) = argmin
θn

[
− ln [pn (Zn;θn)] +

∑
j∈Nn

(
ψT

nj(k) (θn − ϑnj(k))

+

∥∥∥∥Φ2 (θn − ϑnj(k))

∥∥∥∥2
2

)]
(4.17a)

• Update ϑnj (Edge Contraint to reach consensus in a distributed way)

ϑnj(k + 1) =
1

2

[
Φ−1

(
ψnj(k) +ψjn(k)

)
+ θn(k + 1) + θj(k + 1)

]
(4.17b)

• Update ψnj (Lagrange Multiplier)

ψnj(k) = ψnj(k − 1) +Φ [θn(k)− ϑnj(k)] (4.17c)

4.3.3.3 Convergence Monitoring

To ensure that the updates in the ADMM process are behaving as expected and
do not diverge, we monitor the convergence using both primal and dual residuals.
These residuals help us assess whether the solution is stabilizing and approaching
the optimal point.

Primal residual measures the difference between the updated primal variables
and the auxiliary variables, ensuring that the estimates θn and ϑnj are converging
toward consensus [29]. This approach checks how well the radar nodes are aligning
their estimates with their neighbors.

rn(k + 1) =

√∑
j∈Nn

∥θn(k + 1)− ϑnj(k + 1)∥22 (4.18)

The dual residual measures the change in the dual variables ψnj from one
iteration to the next, providing insights into how well the constraints are being
enforced over time in the ADMM process [29].

sn(k + 1) =

√∑
j∈Nn

∥∥ψnj(k + 1)−ψnj(k)
∥∥2
2

(4.19)

Currently, our distributed approach uses a convergence monitor that tracks
both position and velocity estimates together under a single stopping criterion.
The algorithm is as follows
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Algorithm 1: Distributed ADMM for Localization (nth node)

Input: Initialize ψnj(0), θn(0) and ϑnj(0) randomly j ∈ Nn; Define Φ
based on SNR. Set k = 0;

1 while (rn(k + 1) > ϵpri) do
2 Update θn(k + 1) using (4.17a);
3 Transmit ψnj(k) and θn(k + 1) to neighbors j ∈ Nn;

4 Update ϑnj(k + 1) using (4.17b);
5 Transmit ϑnj(k) to neighbors j ∈ Nn;
6 Update {ψnj(k)}j∈Nn using (4.17c);

7 Increment k;
8 end

Output: θ̂ = θ̂n

The simulated results from Algorithm 1 will be presented in Section 5.2.1.

4.3.3.4 Computationally Efficient Distributed Algorithm

We have implemented distinct primal residuals as the stopping criteria for the
position and velocity estimation to optimize computational efficiency. Each radar
node refines estimates for position and velocity concurrently at the outset. Once
either the position or velocity estimates stabilize—typically by iteration kq—we
lock in those values and reallocate computational resources to exclusively refine
the remaining estimates (position if velocity has stabilized, and vice versa) from
iteration kq to k. This strategy significantly reduces the computational burden
on each radar node by discontinuing the computation of the first stabilized esti-
mates (position or velocity) beyond their point of convergence. The modified cost
function is given by

θ̂n = argmin
θn

[
− ln[pn(Zn;θn)]

]
s.t. θnp = ϑnjp , θnj

= ϑnjp ∀j ∈ Nn,

θnv = ϑnjv , θvj = ϑnjv ∀j ∈ Nn

(4.20)

Here, θn = [θnp ,θnv ]
T represents the parameter vector, splitting into position

and velocity components. We apply the same ADMM update equations as before,
but with a modified stopping criterion to verify whether consensus on the posi-
tion and velocity estimates has been reached. If consensus is achieved for either
parameter, we fix that variable as constant and continue solving for the remaining
variable. This approach is a practical adaptation typical of engineering solutions.
The separate primal residuals for position and velocity are given by

rnp(k + 1) =

√∑
j∈Nn

∥∥θnp(k + 1)− ϑnjp(k + 1)
∥∥2
2

(4.21)
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rnv(k + 1) =

√∑
j∈Nn

∥θnv(k + 1)− ϑnjv(k + 1)∥22 (4.22)

Due to the presence of two primal residuals for position and velocity, Algorithm
1 has been modified to include two separate convergence monitors, one for position
and the other for velocity. This modification is presented as Algorithm 2.

Algorithm 2: Computationally Efficient Distributed ADMM for Localization
(nth node)

Input: Initialize ψnj(0), θn(0) and ϑnj(0) randomly j ∈ Nn; Define Φ
based on SNR; Set k = 0;

1 while (rnp(k + 1) > ϵprip & & rnv(k + 1) > ϵpriv ) do
2 Update θn(k + 1) using (4.17a);
3 Transmit ψnj(k) and θn(k + 1) to neighbors j ∈ Nn;

4 Update ϑnj(k + 1) using (4.17b);
5 Transmit ϑnj(k) to neighbors j ∈ Nn;
6 Update {ψnj(k)}j∈Nn using (4.17c);

7 if (rnp ≤ ϵprip ) then
8 θnp(k)← θnp(k + 1);
9 Set θnp using stored value for further iterations;

10 else if (rnv ≤ ϵpriv ) then
11 θnv(k)← θnv(k + 1);
12 Set θnv using stored value for further iterations;
13 end
14 Increment k;
15 end

Output: θ̂ = θ̂n

The simulated results from Algorithm 2 will be presented later in Chapter 5
Section 5.2.1.1.

In this chapter, it is demonstrated that measurements from at least three radar
nodes are required due to the triangulation property essential for localizing the
target. The implementation of the decentralized approach, as referenced in radar
literature in Chpater 2 Section 2.1.2.2, is explored; it is solved using the state-
of-the-art estimator, Maximum Likelihood Estimator, with the MATLAB solver
’fmincon’. Additionally, the novel topic of this thesis, the distributed approach,
is introduced. This approach estimates the position and velocity of the target
in 2D space by facilitating communication with the nearest neighbors, which are
established using Unit Disc Graphs.
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Simulations and Results 5
In this chapter, we conduct several simulations to analyze both decentralized and
distributed approaches. Initially, we explore the decentralized approach, examin-
ing how the position and velocity parameters are influenced by variables such as
the number of radar nodes and the geometries of these nodes. Upon identifying
an optimal scenario, we then shift our focus to the distributed approach. Here,
we assess the performance of the algorithm we developed and explore strategies to
expedite consensus.

5.1 Decentralized Approach

In the decentralized approach, all measurements are collected at a central node
where the estimation of target parameters (θ) occurs. This method serves as a
baseline for testing various configurations in our experiments, which help define
the setup for the validation of the proposed distributed algorithm. These tests
include examining the impact of radar node placement, the number of nodes, and
target movement on parameter estimation accuracy. Based on the outcomes of
these experiments, we then establish a simulation framework for our distributed
algorithm.

5.1.1 Influence of Node Geometry on Target Estimation

In this section, we discuss how the arrangement of radar nodes affects the ability to
estimate target position and velocity in 2D space. Among various configurations,
linear, circular, and semi-circular arrays are commonly used. The Uniform Linear
Array (ULA) is straightforward and provides focused detection along its axis
but lacks uniform coverage across all directions because its sensitivity decreases
for targets that are off-axis [60]. The Uniform Circular Array (UCA), while
more complex and larger, offers consistent detection capabilities in all directions,
making it ideal for comprehensive 360-degree coverage [60, 61]. The Semi-Circular
Array is an adaptable solution that provides wide coverage when full circular
deployment isn’t feasible, making it suitable for environments with physical or
spatial constraints.

We examine the three configurations of radar nodes: circular, linear along
the x-axis, and semicircular geometries, with the target moving along the y-axis.
The specific simulation parameters used in these configurations are detailed in
Table 5.1. These setups and their respective directions are illustrated in Figure 5.1.
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Parameter Value

Radar Nodes (N) 10
Initial Position (m) (200, 0)
Constant Velocity (m/s) 20
Measurements (M) 32
Number of Pulses (L) 32
Monte Carlo Simulations 1000
Geometry Radius (m) 3000

Table 5.1: Simulation Parameters for Different Geometries and Directions

199.94 199.96 199.98 200 200.02 200.04 200.06

X Position (meters)

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Y
 P

os
iti

on
 (

m
et

er
s)

Radar Nodes and Target Movement Simulation

Target Path
Radar Nodes
Initial Position

(a)

199.94 199.96 199.98 200 200.02 200.04 200.06

X Position (meters)

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Y
 P

os
iti

on
 (

m
et

er
s)

Radar Nodes and Target Movement Simulation

Target Path
Radar Nodes
Initial Position

(b)

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

X Position (meters)

-3000

-2000

-1000

0

1000

2000

3000

Y
 P

os
iti

on
 (

m
et

er
s)

Radar Nodes and Target Movement Simulation

1

2

34

5

6

7

8 9

10

Target Path
Radar Nodes
Initial Position

(c)

-3000 -2000 -1000 0 1000 2000 3000

X Position (meters)

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

Y
 P

os
iti

on
 (

m
et

er
s)

Radar Nodes and Target Movement Simulation

1 2 3 4 5 6 7 8 9 10

Target Path
Radar Nodes
Initial Position

(d)

-3000 -2000 -1000 0 1000 2000 3000

X Position (meters)

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

Y
 P

os
iti

on
 (

m
et

er
s)

Radar Nodes and Target Movement Simulation

1

2

3

4
5 6

7

8

9

10

Target Path
Radar Nodes
Initial Position

(e)

Figure 5.1: Simulation Configurations Across Geometries and Movement Directions:
Target movement from x-axis a) 90◦; b) 270◦. Radar nodes are arranged in c) Circular
Geometry; d) Straight Line Geometry; and e) Semi Circular Geometry.
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From Figure 5.2, it is apparent that a directional bias is present in the
straight-line geometry. This configuration would lead to a consistent high uncer-
tainty in estimating ˆ̇y, primarily because the straight-line setup of radar nodes
does not capture or measure motion perpendicular to the x-axis in an effective
manner. When the target moves along the y-axis, this particular motion fails
to induce a significant Doppler shift within the straight-line radar configuration.
Consequently, since ŷ does not affect the distance between the radar and the
target, Doppler radar techniques cannot detect this well, resulting in significant
uncertainty.

This bias is less pronounced in circular and semicircular geometries. In a cir-
cular arrangement, radars are more evenly distributed compared to a semicircular
setup, providing broader coverage and deeper insights into target movements. This
is particularly advantageous in a radar network with multiple nodes, as the cir-
cular geometry enhances detection capabilities across various directions of target
motion.
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Figure 5.2: Variation in estimation accuracy for target movements at 90◦ and 270◦ across
circular, straight line, and semicircular geometries, highlighting increased y-velocity error
in straight line configurations when targets move perpendicular to nodes aligned along
the x-axis.
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5.1.2 Node Count Impact on Target Estimation

In this section, after establishing a circular geometry for the radar nodes due to its
neutral impact on the direction of target movement, we examine the influence of
varying the number of nodes within a Uniform Circular Array (UCA) on the esti-
mation of the target’s position and velocity in two-dimensional space. As outlined
in Section 4.1, a minimum of three radar nodes is necessary for target localization.
We explore how changes in the node count affect the accuracy of position and
velocity estimates. Figure 5.3 illustrates the placement of nodes with counts of 5,
10, and 20. The target moves towards a direction of 135◦ from the x-axis, start-
ing from the coordinate (1000, 1000)m, with the simulation parameters detailed
in Table 5.2. This trajectory, as depicted in Figure 5.3d, will be maintained in
subsequent simulations unless a change of direction is specifically noted.

Parameter Value

Geometry Circular
Initial Position (m) (1000, 1000)
Constant Velocity (m/s) 20
Measurements (M) 32
Number of Pulses (L) 32
Monte Carlo Simulations 1000
Direction 135◦ along x-axis
Geometry Radius (m) 3000

Table 5.2: Simulation Parameters for Different Node Count
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Figure 5.3: Simulation setting for circular geometry with fixed radius and different node
count Radar Node Count: a) 5 Radar Nodes; b) 10 Radar Nodes; c) 20 Radar Nodes
with d) Target Movement in 135◦ along x-axis in all simulations.

The augmentation of radar nodes, as shown in Figure 5.4, significantly dimin-
ishes the uncertainty associated with estimating θ̂. This increase in nodes not
only provides a greater volume of data within the same processing timeframe, but
also offers diverse perspectives on the target, thereby enhancing the accuracy of
its localization. Furthermore, the Root Craḿer-Rao Lower Bound (RCRLB) for
all node counts aligns with the estimated uncertainty of the target’s parameters.
This observation suggests that, despite its simplicity, the simulator we developed
to generate range and Doppler measurements adheres to the theoretical CRLB as
shown in Chapter 4 Section 4.2.3, providing a reliable baseline for our evaluations.
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Figure 5.4: θ̂ Uncertainty by Node Count and SNR: Impact on target estimation preci-
sion with radar node counts of 5, 10, and 20.
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5.1.3 Effect of Transmitted Pulse Count per CPI on Target Estimation

In this analysis, we focus on the number of transmitted pulses, denoted as
L, within a single Coherent Processing Interval (CPI). Table 5.3 presents the
parameters to run this simulation. Each CPI is processed collectively to yield
a singular range and Doppler estimate for each target detected by the radar
node. Considering a higher number of pulses (L) with a fixed PRI results in
more time spent observing the target, which can improve the accuracy of the
velocity estimate. However, this extended observation time also introduces greater
uncertainty in the range estimate, as the target may continue to move during this
extended interval.

Understanding this trade-off is crucial for optimizing radar performance. In-
creasing L enhances velocity measurement precision but at the expense of range
accuracy. Therefore, this analysis is essential for achieving a balanced approach
in obtaining more reliable range and Doppler estimates, enabling more effective
radar operation and target tracking.

Parameter Value

Radar Nodes (N) 10
Initial Position (m) (1000, 1000)
Constant Velocity (m/s) 20
Measurements (M) 32
Geometry Circular
Monte Carlo Simulations 1000
Geometry Radius (m) 3000

Table 5.3: Simulation Parameters for Different Pulses sent in a Single CPI

Increasing the number of pulses from 16 to 128 does not significantly alter
the position uncertainty for a slow-moving target, as evidenced in Figure 5.5.
This observation suggests that for certain target speeds, the benefits of additional
pulses in reducing uncertainty may plateau. This is because the target does not
move much during the observation period, so adding more pulses does not have
much effect on position uncertainty. However, one should notice a significant
improvement in velocity uncertainty with more pulses. The duration of observing
the target directly impacts how precisely we can estimate its velocity—the longer
we observe, the more accurate the velocity estimate becomes. This illustrates
a trade-off in radar settings: extending observation times enhances velocity
measurements without substantially affecting position accuracy.

However, if the target were moving quickly, increasing the number of pulses
could negatively affect range measurements. A fast-moving target travels a signifi-
cant distance within the longer CPI, which can increase errors in range estimation.
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Figure 5.5: Pulse Count Impact on θ̂ Uncertainty: Estimation accuracy variance with
16, 32, 64, and 128 pulses per burst across SNR levels.
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5.1.4 Impact of Measurement Count (M) on Target Estimation

In this analysis, we focus on the number of measurements each radar node
gathers before transmitting this data to a centralized node to estimate the
target’s parameters θ. Table 5.4 presents the parameters to run this simulation.
The variable M represents the number of Coherent Processing Intervals (CPIs)
collected, where each CPI consists of L pulses. From each CPI, we obtain a single
range estimate and one Doppler shift estimate. Increasing M effectively means
transmitting more data, which can enhance the localization accuracy of the target.

Parameter Value

Radar Nodes (N) 10
Initial Position (m) (1000, 1000)
Constant Velocity (m/s) 20
Number of Pulses (L) 32
Geometry Circular
Monte Carlo Simulations 1000
Geometry Radius (m) 3000

Table 5.4: Simulation Parameters for Measurements Estimated by Each Radar Node
Before Transmission to Fusion Center.

The variation in the uncertainty of theta estimation relative to SNR for differ-
ent values of M, the number of range and Doppler shift frequency measurements
collected before transmission to the fusion center, is illustrated in Figure 5.6. We
observe that when the target moves slowly, a higher quantity of data generally
results in better estimation accuracy. Based on these findings, we initially set M
to 32. However, this configuration needs to be reevaluated for fast-moving targets,
as accumulating a large number of measurements before transmission can lead to
range ambiguity. Despite this, it enhances Doppler velocity estimation because
more time is spent collecting data on the target before it is sent to the fusion
center.
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Figure 5.6: Analyzes θ̂ uncertainty with 8, 16, 32, and 64 measurements sent to the
central node by each radar node across varying SNR levels.

5.1.5 Effect of Array Radius on Target Estimation

This analysis explores the role of the radar geometry’s radius in providing com-
prehensive views of the target from various angles, enhancing our understanding
of the target’s behavior within different spatial contexts. Table 5.5 presents the
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parameters to run this simulation. The impact of the radius on the uncertainty
in target estimation is examined both when the target is positioned outside and
inside the circular radar node array. The specific configurations of the radar geome-
tries with varying radii are illustrated in Figure 5.7. Additionally, the movement
of the target, oriented at 135◦ along the x-axis. This setup allows us to assess
how changes in the radar array’s radius influence detection capabilities and the
precision of target estimation under different geometrical radius arrangements.

Parameter Value

Radar Nodes (N) 10
Initial Position (m) (1000, 1000)
Constant Velocity (m/s) 20
Measurements (M) 32
Geometry Circular
Monte Carlo Simulations 1000
Number of Pulses (L) 32

Table 5.5: Simulation Parameters for Different Geometry Radii
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Figure 5.7: Simulation Setup for Variable Circular Geometry Radii: Different circular
geometry radii with same initial target position at (1000,1000)m. Radii configurations
are: a) 500m; b) 1000m; c) 3000m.
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The uncertainty in target estimation is greater when the target is positioned
outside the circular radar node array compared to when it is inside, as observed
in Figure 5.8. This pattern holds true for the considered trajectory, indicating
how the positioning of radar nodes relative to the target’s path significantly
affects the accuracy of the estimations. When the target is inside a circular array
of radar nodes, the nodes surround it and gather range and Doppler frequency
shift measurements from multiple angles. This arrangement allows for effective
triangulation, accurately capturing the target’s position and velocity in both the
x and y directions. The favorable geometry reduces uncertainties because the
lines of sight from different nodes intersect at wide angles, enhancing the precision
of the estimates.

In contrast, when the target is outside the array, all the radar nodes are
approximately on the same side relative to the target. Their measurements are
thus more aligned and provide less information about certain components of the
target’s velocity. This leads to higher uncertainties because the lines of sight are
more parallel with each other, which reduces the spatial diversity of the radar
network and the effectiveness of triangulation, and so increases sensitivity to
measurement errors.

In designing a radar network with a circular geometry, a key consideration is
the radius of the array with respect to the area where targets are expected to
move. A larger radius, with a fixed number of nodes, means the radar nodes are
more spread out. This spacing allows the target, once within the array, more
time and distance to maneuver while still being tracked by the radar, providing
enhanced opportunities to observe the target from various angles. This extended
coverage and observation time improve range and Doppler estimations, thereby
enhancing the accuracy of target tracking in 2D space. However, the increased
distance between nodes and the fusion center introduces a drawback: longer data
transmission times and potentially more power, which can impact the promptness
and utility of the data in real-time applications.
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Figure 5.8: Effect of 500m, 1000m, and 3000m geometry radii on estimating θ̂: Analysis
with 10 nodes and a target starting at (1000, 1000)m across varying SNR levels.
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5.1.6 Key Takeaways in Decentralized Approach

• In Section 5.1.1, we analyze how uncertainties in position and velocity along
the x and y directions are affected by varying SNR levels and different an-
tenna array geometries. While the Uniform Linear Array (ULA) is easier to
design and implement, it introduces directional bias, as shown in Figure 5.1.
To eliminate this bias, we use a Uniform Circular Array (UCA) in further
simulations, which is not affected by the target’s movement direction.

• In Section 5.1.2, we investigate how varying the number of radar nodes im-
pacts the uncertainties in position and velocity estimates within a 2D space.
Increasing the node count provides more data and leads to better estima-
tion accuracy. However, this improvement comes with the trade-off of higher
computational demands to process a single estimate. Therefore, for future
simulations, we choose to use 10 nodes as an optimal balance between en-
hanced accuracy and manageable computational requirements.

• In section 5.1.3, we investigate how the number of pulses in a single burst
affects the accuracy of range and Doppler shift measurements. For a slow-
moving target, increasing the number of pulses significantly reduces velocity
uncertainty, leading to more precise measurements. However, for a fast-
moving target, we cannot spend as much time collecting pulses because the
target moves considerably during a single burst, introducing range uncer-
tainty. This creates a trade-off: using more pulses improves velocity esti-
mates but can degrade range accuracy for fast-moving targets. Balancing
this trade-off is essential in radar system design.

• In Section 5.1.4, we examine how the number of measurements (M) collected
before sending data to the fusion center affects the final estimation. Col-
lecting more measurements improves the estimation accuracy and reduces
uncertainty. However, this also increases bandwidth requirements and com-
putational complexity due to the larger data volume. To balance accuracy
with resource constraints, we use 32 measurements in our simulations.

• In Section 5.1.5, we examine how the geometry radius of the circular array
affects target estimation. A larger radius allows the target to remain within
the array for a longer time, improving estimation accuracy due to extended
observation. However, this also increases latency because the fusion center
may be farther from some radar nodes, leading to delays in data processing.
Conversely, a smaller radius means the radar nodes are closer together, but
if the target moves outside the array, uncertainties in estimating all four
parameters—position and velocity in both the x and y directions—increase.
This highlights a trade-off between improved accuracy and increased latency
based on the geometry radius, emphasizing the need to balance array size
with operational requirements.
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5.2 Distributed Approach

In the distributed approach, each radar node functions within a specified commu-
nication range, using the Alternating Direction Method of Multipliers (ADMM) to
independently estimate θ and to achieve consensus among all nodes in the network.
Following the simulation setup determined from the results of the Decentralized
approach, we execute the distributed approach at higher Signal-to-Noise Ratios
(SNRs).

5.2.1 Reaching Consensus

Parameter Value

Radar Nodes (N) 10
Initial Position (m) (1000, 1000)
Constant Velocity (m/s) 20
Measurements (M) 32
Geometry Circular
Monte Carlo Simulations 1000
Number of Pulses (L) 32
Signal to Noise Ratio (SNR) 30dB

Table 5.6: Simulation Parameters for Distributed Approach

The parameters for the simulation setup are outlined in Table 5.6, demon-
strating the distributed approach utilized throughout the study. The simulation
setup utilizes a Unit Disk Graph (UDG) as the communication network, as
detailed in Chapter 4 Section 4.3.1. To effectively localize the target, the
triangulation property necessitates at least three radar nodes as explained in
Section 4.1. Consequently, each radar node is configured with a communication
radius of 3 kilometers. This setup ensures that every node communicates with
at least two neighboring nodes in a circular configuration, facilitating efficient
data transfer. This arrangement optimizes local information sharing among
adjacent nodes, which is instrumental in collectively converging toward the
accurate estimation of the target’s parameters. Additionally, the system operates
with a Signal-to-Noise Ratio (SNR) of 30dB, which enhances the quality of
the data exchanged between the radar nodes, facilitating more accurate and
reliable target estimation. This framework illustrates the effectiveness of localized
node communication in achieving collective accuracy in a distributed radar system.

In the simulation described in Figure 5.9, the convergence of the velocity
parameters, ˆ̇x and ˆ̇y, requires more iterations than the position parameters. Each
radar node measures the radial velocity of the target, which is the component
of the target’s velocity directed along the line of sight from the radar to the
target. Since the target’s orientation relative to each radar node varies, the
measured radial velocity also varies from node to node. Essentially, each radar
node perceives the target’s motion differently based on its unique viewpoint. This
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variation in perceived velocity means that averaging out these measurements to
determine the true velocity vectors, ˆ̇x and ˆ̇y, across the network requires more
iterations. The radar nodes can only exchange information with their two nearest
neighbors due to the 3000m communication radius. This localized communication
restricts the rate at which information disperses across the network, slowing down
the process of aligning these diverse velocity measurements into a consensus on
the target’s actual velocity.

However, despite this slower convergence, it is notable that the nodes, by
merely communicating with adjacent neighbors, successfully align to the true
value. This method of data exchange effectively eliminates the single point of
failure inherent in Decentralized systems, enhancing the reliability and robustness
of the radar network.

The performance of our algorithm across different radar node geometries is
depicted in Figure 5.10: circular, straight line, and semicircular, all within a com-
munication radius of 3000 meters. Observations indicate a similar convergence
pattern among all radar nodes in the straight line geometry. This similarity in
convergence is due to the alignment and viewing angles of the nodes towards the
target, which are more uniform in the straight line setup compared to the circu-
lar and semicircular geometries. Additionally, in the straight line geometry, each
radar node communicates with a greater number of nodes within the 3000m radius,
compared to the other two configurations where the nodes are more spread out.
Moreover, it is observed that the number of iterations required to reach stability
is nearly the same across all configurations, typically around 60-70 iterations for
all nodes.
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Figure 5.9: Convergence Dynamics in Circular Geometry: Each node’s behavior at all k
iterations with a communication radius of 3000 meters at 30dB SNR.
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Figure 5.10: Convergence Dynamics Across Geometries: Consensus behavior of radar
nodes across Circular, Straight Line, and Semi-Circular geometries with a 3000-meter
communication radius and 30 dB SNR.
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5.2.1.1 Consensus Achievement with Operational Efficiency

In this section, we display the outcomes using distinct stopping criteria for
position and velocity primal residuals, detailed in Algorithm 2 in Chapter 4.3.3.4.
Unlike the previous approach that utilized a single stopping criterion for the
entire equation, we now apply separate criteria for position and velocity. This
division reduces the computational load of the algorithm.

As illustrated in Figure 5.11, the position parameters in the simulation reach
consensus more quickly than the velocity parameters. Specifically, the position
parameters typically converge within about 10 iterations. In contrast, the velocity
parameters, due to the complexity of averaging out diverse measurements from
various viewpoints, require significantly more iterations to reach consensus, usu-
ally around 70 to 80 iterations. This discrepancy underscores the challenge in
aligning velocity data across the network, as each radar node contributes unique
radial velocity measurements based on its specific line of sight to the moving tar-
get.Once the stopping criteria for the position are met, we fix the position values
and subsequently focus solely on the velocity parameters. This approach lightens
the algorithm’s load by reducing the number of variables to solve for from four
to two. While this may not drastically decrease the number of iterations (’k’)
required to achieve consensus across all the nodes for velocity parameter, it does
mean that, beyond a certain point, optimization occurs with only two variables at
each iteration instead of four.
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Figure 5.11: Convergence Dynamics with Distinct Parameter Stopping Points: Differing
convergence iterations for each parameter, in contrast to simultaneous convergence in
Figure 5.9
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5.2.2 Impact of Communication Radius on Convergence Speed

In this simulation, we adjust the communication radius to assess its impact on
the speed of convergence to the true value within a circular geometry setup. The
number of iterations required for convergence is directly influenced by the size
of the communication radius. While a larger communication radius allows each
radar node to interact with more nodes, potentially speeding up convergence,
it also requires the processing of more data, thus increasing the processing load
on each radar node. This trade-off suggests that significantly increasing the
communication radius may not be as beneficial if the gains in convergence speed
are minimal compared to the additional resource expenditure.

Furthermore, the initial guess from which the convergence process starts also
plays a crucial role in achieving faster convergence. A more accurate initial guess
can significantly reduce the number of iterations needed, making the process more
efficient. Thus, optimizing both the communication radius and the accuracy of
the initial estimates is key to enhancing the performance of the radar network in
simulations. The selection of the initial guess will not be discussed here and left
for future investigation.

Increasing the number of nodes that each radar communicates with leads
to faster convergence towards the true value, as observed in Figure 5.12. The
specific reduction in the number of iterations required is detailed in Figure 5.13,
highlighting the significant impact of enhanced network connectivity on the
efficiency of consensus among the radar nodes. This simulation was conducted
using 100 Monte Carlo runs for each of the different communication radii
scenarios. Specifically, we analyzed three settings: a communication radius of
3000m where each radar communicates with 2/10 neighboring nodes, 4500m
where each communicates with 4/10 neighboring nodes, and 5500m where each
communicates with 6/10 neighboring nodes. Whenever ratios such as 4/10 or 6/10
are mentioned, they refer to the number of nodes each node is communicating
with relative to the total number of nodes in the system.

Figure 5.13 provides a deeper analysis of the number of iterations required to
achieve convergence for each communication radius. A significant reduction in the
number of iterations is noted when the number of neighboring nodes each radar
communicates with increases from 2 to 4, from around 100 to 67. However, once
each node starts communicating with more than half of all nodes in the network
(anything above 5 neighbors in this case), adding more connections does not speed
up consensus significantly. This is because the essential information needed to
form an accurate estimate is already being captured with the existing connections.
Adding more connections beyond this point does not appear to contribute much
new information. The iterations it takes beyond this are primarily to reach an
accurate consensus among all the radar nodes in the system.

Figure 5.14 illustrates the data volume processed by each node to estimate θ.
The figure illustrates the total data volume managed by each radar node, assuming
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that each range and Doppler measurement, essential for estimating θ̂, is stored as
a 64-bit float, occupying 8 bytes of data. This data is transferred between radar
nodes to facilitate the accurate estimation of θ̂.

Data Sizen = (|Nn|+ 1)×M × 2× 64 (5.1)

where, (|Nn| + 1) denotes the number of nodes from which data is collected,
including the node itself and its neighbors, and M indicates the number of
measurements each node collects. As explained in Chapter 4 Section 4.3.1,
(|Nn| + 1) represents the cardinality, indicating the number of nodes the nth
node is communicating with. In Equation 5.1, the ’2’ accounts for the range
and Doppler measurements, and ’64’ refers to the data size in bits (8 bytes)
for one measurement. Technically, one node sends 32 measurements (where
M = 32) to its neighbors, and each measurement consists of one range and one
Doppler frequency shift estimate, with each estimate comprising 64 bits. The
plot compares the data calculated by each node against the node range, under
varying communication radii. It is noted that if each radar node achieves faster
consensus by communicating with only half of the total nodes, the amount of
data processed significantly decreases, thus reducing the processing load on each
radar node. This graph provides an example of how the data load on each radar
node is reduced when estimating θ in a distributed framework.

Mean Squared Error (MSE) calculations, used to analyze convergence dynam-
ics, are depicted in Figures 5.12 and 5.15. It is observed that fluctuations in velocity
MSE occur during the convergence process when each radar node communicates
with fewer than half of the total nodes.This occurs because velocity estimation in
2D relies on radial velocity measurements from each radar node. When each radar
node communicates with only a few others—less than half of the nodes in the
system—it can lead to inconsistencies in the velocity estimates across all the radar
nodes. This happens because each node bases its calculations on radial velocity
measurements from only its nearest neighbors. Without a broader range of data
from more nodes, these limited interactions might produce different velocity re-
sults compared to nodes that are receiving information from different or additional
neighbors. During consensus efforts, the influence of nodes with divergent velocity
estimates may cause some spikes in MSE, prompting adjustments in the primal
and dual variables within the proposed algorithm to mitigate this error. In con-
trast, smoother convergence is achieved when each radar node communicates with
more than half of the nodes in the network, as this allows for more comprehensive
data gathering, thereby enhancing the accuracy of the target’s velocity estimation
in 2D.
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Figure 5.12: Convergence Dynamics of θ̂1 in circular geometry with communication radii
of 3000m, 4500m, and 5500m at 30dB.
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Figure 5.13: Iterations for convergence across different communication radii averaged
across all the radar nodes in the system.
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Figure 5.15: Convergence Dynamics of θ̂1 for Circular, Semi-Circular and Straight Line
geometries for Communication Radii of 3000m and 4500m at 30dB SNR.
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5.2.3 Impact of Penalty Parameters on Convergence Accuracy

The impact of penalty terms on convergence is explored in Section 4.3.3.1,
specifically within Equation 4.15, and plays a pivotal role in the ADMM update
equations for the estimation of θ̂n. These terms are instrumental in steering the
solution towards the optimal value during the convergence process. These terms
are quite sensitive; a small adjustment, such as altering a penalty term by a factor
of 10, can result in inaccurate estimates. This sensitivity underscores the need for
careful calibration of these parameters. Table 5.7 in the thesis details the specific
penalty parameters we employed in our analysis.

SNR (dB) Position Penalty Velocity Penalty

5 109 3× 107

10 108 3× 106

15 8× 107 2× 106

20 107 3× 105

25 106 3× 104

30 8× 105 2× 104

Table 5.7: Penalty Parameters for Different SNR Values
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Figure 5.16: Relationship between SNR levels and penalty terms for position and veloc-
ity. Same data as Table 5.7.

The relationship between penalty terms and Signal-to-Noise Ratio (SNR) is
visually depicted in Figure 5.16, which presents the same data as Table 5.7. This
illustration highlights how the penalty terms are adjusted in response to varying
levels of SNR. At higher SNRs, the measurements each radar node receives are less
affected by noise. This results in higher loglikelihood values, reflecting reduced
uncertainty and indicating that the parameters estimated by each node align more
precisely with the actual values. Consequently, smaller penalty terms are sufficient
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to facilitate consensus among nodes, as less correction is needed to reconcile
the estimates. Conversely, at lower SNRs, the increased noise in measurements
leads to lower loglikelihood values and greater uncertainty. To compensate for
these inaccuracies and achieve agreement across nodes, larger penalty terms are
required. Therefore, the adjustment of penalty terms is intricately connected to
SNR.

One effective way to enhance the convergence speed of ADMM is by adaptively
updating the penalty matrix. In Equation 5.2, ADMM employs an adaptive ap-
proach to modifying the penalty matrix, which not only accelerates convergence
but also reduces the algorithm’s dependency on the initial penalty terms listed
in Table 5.7. The key idea is to adjust the penalty matrix based on the primal
and dual residuals in ADMM. The primal residual measures the violation of the
consensus constraints, while the dual residual reflects the consistency between suc-
cessive updates of the variables in the optimization process, indicating how well
the dual variables are converging toward optimality [29]. Here τinc is τ , and τdec is
1
τ
.

Φ(k + 1) =


τinc ×Φ(k), if ∥rn(k)∥22 < 10 · ∥sn(k)∥22
τdec ×Φ(k), if ∥sn(k)∥22 < 10 · ∥rn(k)∥22
Φ(k), otherwise

(5.2)

The Distributed ADMM with Adaptive Penalty Matrix for Target Localization
at the nth radar node is detailed in Algorithm 3. This algorithm builds upon
the foundation laid by Algorithm 1, incorporating a new feature that adaptively
changes the penalty matrix, as specified in Equation 5.2.
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Algorithm 3: DADMMwith Adaptive Penalty Matrix Update for Localization
(nth node)

Input: Initialize ψnj(0), θn(0) and ϑnj(0) randomly j ∈ Nn; Define Φ(k)
based on SNR; Set k = 0;

1 while (rn(k + 1) > ϵpri) do
2 Update θn(k + 1) using (4.17a);
3 Transmit ψnj(k) and θn(k + 1) to neighbors j ∈ Nn;

4 Update ϑnj(k + 1) using (4.17b);
5 Transmit ϑnj(k) to neighbors j ∈ Nn;
6 Update {ψnj(k)}j∈Nn using (4.17c);

7 if (∥rn(k)∥22 < 10 · ∥sn(k)∥22) then
8 Update Φ(k) using (5.2);
9 else if (∥rn(k)∥22 > 10 · ∥sn(k)∥22) then

10 Update Φ(k) using (5.2);
11 else
12 Φ(k) = Φ(k − 1);
13 end
14 Increment k;
15 end

Output: θ̂ = θ̂n
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Figure 5.17: Effect of τ on convergence iterations and reaching consensus.
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Figure 5.18: Impact of various τ values on convergence and consensus for θ̂1.

The adaptation of the penalty matrix based on primal and dual residuals
substantially enhances convergence, as illustrated in Figures 5.17 and 5.18.
This adaptation effectively demonstrates how changes in the multiplier factor,
τ , influence the number of iterations required for convergence. Notably, when
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τ increases from 1 to 2, the number of iterations needed dramatically reduces
from 500 to 90. Further increases in τ beyond 4 yields no significant reduction
in convergence iterations. Importantly, the simulations conducted up to now
utilized a τ = 2, under which it takes about 80-90 iterations to reach consensus.
Meanwhile, Figure 5.18 illustrates that at high Signal-to-Noise Ratios (SNRs),
varying τ enables all parameters to converge to their true values, showcasing
the effectiveness of the adaptive update strategy across different τ values. From
Figure 5.18, it is confirmed that the true value is reached with various values of
tau, and the number of iterations required to reach consensus changes accordingly.
When tau is set at 1, it takes about 500 iterations to reach consensus, while a tau
of 2 requires around 90 iterations; however, both settings ultimately converge to
the true value.

5.2.4 Key takeaways in Distributed Approach

• In Section 5.2.1, we transition from a Decentralized approach to a Distributed
approach where each radar node communicates only with its nearest neigh-
bors. Through local interactions, the nodes collectively reach consensus after
a few iterations, eliminating the need for a central coordinator. Figure 5.10
demonstrates this distributed consensus algorithm applied to all three geome-
tries we initially discussed, showcasing its effectiveness across different array
configurations. In Subsection 5.2.1.1, we demonstrate a method where we
terminate the iterations for one set of parameters early, allowing us to con-
centrate on optimizing the remaining parameters. This strategy effectively
reduces the computational effort required to reach the optimal solution.

• In Section 5.2.2, we investigate the impact of increasing the communication
radius—that is, how many radar nodes each node communicates with—on
the number of iterations required for convergence in a distributed optimiza-
tion setting. We find that when each radar node communicates with more
than half of the nodes in the entire system, the number of iterations to
converge becomes almost constant. The iterations needed are primarily for
achieving consensus (satisfying the constraints), suggesting that beyond this
point, increasing the communication radius does not significantly reduce the
convergence iterations.

• In Section 5.2.3, we demonstrate the inverse relationship between penalty
terms and SNR in distributed optimization. Lower SNR implies more noise
and poorer initial estimates, more variance. As a result, we require higher
penalty terms to reduce the primal residual and achieve consensus among the
radar nodes. Furthermore, we show that convergence can be accelerated by
adaptively updating the penalty terms based on monitoring the primal and
dual residuals during the iterative process.
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Conclusion and Future Scope 6
In this chapter, we outline the main conclusions of this thesis and discuss possible
directions for further improvement.

6.1 Conclusion

This section summarizes the contributions of this thesis and reflects on the
research objectives introduced in Chapter 1. The thesis presents a Distributed
ADMM method for estimating the position and velocity of a single target in 2D
space, addressing critical gaps identified in existing methods. Specifically, issues
such as single points of failure and excessive data processing loads at the fusion
center were highlighted in Chapter 2 as significant challenges to the scalability
and robustness of radar networks. The Distributed ADMM method proposed
here overcomes these challenges by allowing each node to independently calculate
the target’s position and velocity while communicating only with adjacent nodes
to achieve consensus. This approach is novel and, to the author’s knowledge, has
not been documented in prior research.

Initially, a basic simulator is developed, detailed in Chapter 3, which generates
range and Doppler frequency shift measurements by introducing noise to true
values to adhere to CRLB standards. This simple simulator served as a foundation
for basic analysis and testing within a decentralized approach to estimate the
position and velocity of a target in 2D space. This step was essential to check the
simulator’s accuracy and ensure it matched existing methods, confirming that the
generated measurements were reliable for further experiments and analysis. Build-
ing on the simulation scenario established, the Distributed ADMM Algorithm was
implemented. This approach eliminates single points of failure and significantly
reduces computational demands at each node by limiting communication to a
nearby radius, effectively addressing scalability issues. The simulations have
confirmed that the algorithm can accurately estimate the target’s position and
velocity at high SNRs.

To enhance computational efficiency, an algorithm with separate convergence
monitors for position and velocity has been introduced. This method effectively
reduces unnecessary calculations by applying dual stopping criteria, allowing
position estimates to converge quickly and be stored after approximately 10
iterations. Subsequently, the algorithm shifts its focus exclusively to velocity,
which requires around 70 iterations to converge in a scenario involving a 3000 m
communication radius.
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The selection of penalty terms in relation to SNRs has been effectively demon-
strated to ensure that consensus is reached without destabilizing the system.
The penalty terms decrease by approximately 10 times for every 5dB increase
in SNR. Additionally, an adaptive penalty matrix has been implemented, which
significantly reduces the iterations required for nodes to converge from about
450 to just 50 at high SNRs by incorporating a multiplication constant ′τ ′ that
adjusts based on the primal and dual residuals.

In summary, this thesis presents a transition from a decentralized to a dis-
tributed approach, addressing the issue of a single point of failure while signifi-
cantly reducing the computational load at each node to ensure smooth and effi-
cient operation. Consensus has been achieved by sharing only range and Doppler
frequency shift measurements with neighboring nodes, thus improving scalabil-
ity and reliability. The optimization of penalty terms relative to SNRs for faster
convergence has been explored, and a two-stopping-criteria method has been im-
plemented to streamline local computations and enhance efficiency.

6.2 Future Scope

This project introduces an approach where data distribution and estimations are
performed locally at each radar node, offering a foundational framework for fur-
ther exploration. However, it’s important to acknowledge that the measurements
generated in this study are based on a range of assumptions and are relatively sim-
plistic in nature. Several avenues for future research have been identified, which
could build upon the findings of this thesis. Some of the future recommendations
to further this work is mentioned below:

• For future development, instead of introducing errors to the true values,
we could generate range and Doppler estimates using the traditional Fast
Fourier Transform (FFT) method. Specifically, for Linear Frequency Modu-
lation (LFM) signals, the range profile could be obtained through matched
filtering, followed by an FFT performed along the slow time axis. Addition-
ally, introducing elements such as clutter, which were not initially considered,
would create a more realistic simulation environment. This method would
provide a more conventional and robust baseline for estimating these pa-
rameters, thereby enhancing the simulator’s capability to reflect real-world
complexities.

• Currently, as outlined in Chapter 5, Section 5.2.3, it takes approximately
80-90 iterations to converge when the parameter τ is set to 2 and there are
2 neighboring nodes. Future work could focus on reducing the number of
update iterations required to achieve convergence while still reaching con-
sensus on the true values. The distributed computing literature presents
various methods aimed at accelerating convergence. One potential improve-
ment could involve making τ adaptive rather than fixed, allowing it to adjust
in response to the rate of convergence, which could enhance the convergence
process. Additionally, we have not observed how convergence behaves when
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the target travels at higher velocities. This aspect could also be explored
to further understand and improve the system’s performance under different
operational conditions.

• Currently, our focus has been primarily on the performance of Distributed
ADMM (DADMM) methods, without extensive comparison to other algo-
rithms. There are several alternative algorithms, such as the Primal Dual
Method of Multipliers (PDMM) [62], known for its faster convergence, and
Geographic Gossip [63], which could be explored further. Future research
could compare these methods to DADMM in terms of convergence speed,
computational efficiency per iteration, and overall robustness, to better un-
derstand their potential advantages and trade-offs, , including whether the
theoretical boundaries meet and what implications this has for further opti-
mization.

• Future research could extend the current model to incorporate tracking capa-
bilities, enabling the radar to simultaneously collect data and communicate
with neighboring nodes for faster convergence and consensus. Ideally, the
time taken to achieve convergence and reach consensus should be shorter
than the time required for data collection, facilitating real-time processing
and decision-making. This enhancement would be especially beneficial once
we refine our simulator to more accurately replicate real-world conditions,
such as incorporating realistic noise, clutter, and other environmental fac-
tors, as well as scenarios where targets move at varying speeds. Further, by
comparing the enhanced model’s performance with established state space
distributed tracking approaches like Distributed Kalman Filters [64] and Par-
ticle Filtering methods, we could gain deeper insights into the efficiency and
accuracy of our approach.

• In the future, attention can be directed toward analyzing the data flow within
the network and addressing potential congestion in the distributed approach.
Investigating how data flow impacts the system’s performance, particularly
under bandwidth limitations, could provide valuable insights. Key consider-
ations include understanding how such constraints affect the accuracy and
speed of estimations and determining the optimal amount of data that should
flow through the network during a single iteration. Additionally, power con-
sumption is a critical factor to explore, as efficient data flow can help minimize
the energy required for communication and computation at each node. Bal-
ancing bandwidth usage, power consumption, and estimation accuracy will
be essential for improving the overall efficiency and practicality of distributed
radar systems.
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