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The electrostatic instability (pull-in) of a flat electrode in a parallel plate capacitor has been shown

to be highly sensitive to external mechanical loads such as pressure. In this paper, we substantiate

the possibility of prompting additional unstable configurations in such a system, with a remarkable

sensitivity to the applied pressure. This additional instability has significant advantageous

properties for sensing purposes. In addition to the high sensitivity and robustness of the pull-in volt-

age measurements, it can be adjusted so that after the unstable configuration is met, a snap-through

to a new stable configuration occurs. As a result of this bi-stable behavior, the contact between the

electrodes, which is the main drawback of pull-in phenomena, will be easily avoided. The results

of this paper particularly suggest the suitability of this mechanism for two different methods of

pressure measurements. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.5003223]

Electrostatic instability has been employed for both actua-

tion and sensing in many electrostatic micro-electromechanical

systems (MEMS).1–3 The latter typically consists of a simple

parallel plate capacitor using at least one movable or flexible

electrode. When an electric potential is applied to the capaci-

tor, an attractive electrostatic load is induced between its elec-

trodes, leading to deformation of the flexible electrode(s). The

instability of parallel plate capacitors occurs due to the nonli-

nearities in the electrostatic load and the elastic structural

response.4 At a critical deflection of the flexible electrode, the

stiffness of the structure in the transverse direction vanishes

and a small increase in the bias voltage, or an external load,

leads to abrupt pull-in.5 When operating the micro- or nano-

electro mechanical systems close to their critical (unstable)

configurations, it is possible to benefit from their reduced stiff-

ness and high sensitivity while still avoiding pull-in.6–8 It

should be noticed that increasing the sensitivity by decreasing

the stiffness will amplify the noise effects as well.

Although generally considered as a failure mechanism,

pull-in is a unique feature of MEMS/NEMS devices,1 and it

can provide information on the mechanical and physical char-

acteristics of the system.9,10 Hence, it can be used for measur-

ing the mechanical properties of nano-structures,11 sensing

the adsorbate stiffness,12 detecting gas,13 and measuring the

residual stress in clamped structures.5 In addition, theoretical

studies have shown that the pull-in voltage is highly sensitive

to external mechanical loads applied to the electrode, such as

pressure or in-plane tension,14–18 which suggests the pull-in

instability as a potential mechanism for load sensing.

The pull-in instability as a sensing mechanism has a major

problem. After pull-in, the contact between the electrodes

causes failures including short circuits, sticking, and wear.4,19

If the sensor employs a bi-stable flexible electrode (such as an

arched plate), after reaching the pull-in voltage, the electrode

snaps to another stable configuration which is not in contact

with the other electrode,20,21 and if the voltage is released, it

snaps back to its original configuration. Hence, the contact

between the electrodes is avoided, and multiple measurements

can be performed without failure. However, arched structures

are relatively stiff compared to their equivalent flat plate,

which in turn reduces their sensitivity as a sensor.

In this paper, we show that a capacitive pressure sensor,

with a completely flat flexible electrode, is capable of exhib-

iting bi-stability, and a snap-through behavior after the insta-

bility is reached. This bi-stability can be achieved by proper

tuning of the applied electrostatic potential and external pres-

sure and is a potential proxy for the pressure. Such a sensor

can benefit from a remarkable sensitivity and robustness of

pull-in measurements and still avoid contact failure.

To confirm this argument, an analytical estimation and a

finite element model are used to study the behavior of a capac-

itive pressure sensor with a very thin, circular, fully clamped

plate as the flexible electrode. The schematic model is shown

in Fig. 1. The radius of the flexible electrode is R, and its

thickness is t. The Young’s modulus and Poisson ratio of the

plate are considered to be E and �, respectively. The plate is

suspended over a grounded electrode with a similar radius,

and the gap between the two electrodes is d. As a test case, we

consider R¼ 100 lm, t¼ 0.2 lm, d¼ 2 lm, E¼ 80 GPa, and

� ¼ 0:2.

The flexible electrode is loaded with a differential

pressure P, and an electric potential Vdc is applied to the

FIG. 1. (a) Schematic of the pressure sensor and its cross section, (b) unde-

formed configuration, and (c) deformed under combined electrostatic and

differential pressure.a)Author to whom correspondence should be addressed: b.sajadi@tudelft.nl
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electrodes. The principle of minimum total potential energy

is employed to approximate the deflection in the equilibrium

state. A simple approximate parametrized displacement field

satisfying the kinematic boundary conditions is used for the

mid-plane of the flexible electrode

w ¼ n1dð1� q2Þ2;
u ¼ Rqð1� qÞðn2 þ n3qÞ;

(1)

where q is the non-dimensional radial coordinate, u and w are

the radial and transverse displacement components, respec-

tively, and ni (i¼ 1–3) is the generalized degrees of freedom.

Using the Kirchhoff plate theory, the total potential energy of

the system is expressed in terms of u and w and their deriva-

tives. The total potential energy consists of four contributions

associated with the electrostatics, the differential pressure,

and the bending and stretching of the plate. Thus,
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where � is the electric permittivity of the dielectric between

the electrodes and D ¼ Et3

12ð1��2Þ is the bending stiffness of the

flexible plate.1,22 Note that the nonlinear terms due to the

stretching and the non-uniformity of the electrostatic pressure

are included in this formulation. By finding the stationary val-

ues of the total potential energy (U), we can determine the

values of ni in equilibrium states.

Due to the nonlinearity, the equilibrium path might

exhibit unstable solution branches and limit points. The cor-

responding limit voltage(s) can be calculated analytically as

a function of the applied pressure, by analyzing the determi-

nant of the tangent operator (½@U
@ni
�). In fact, an equilibrium

configuration is stable if the corresponding tangent operator

is positive definite and unstable otherwise. The critical or

limit points are the configurations at which the tangent oper-

ator is singular. To verify the accuracy of the analytical esti-

mation, the commercial finite element software COMSOL

was employed, and the worst case error was found to be less

than 6% (see the supplementary material for details).

Figure 2 shows the obtained normalized deflection at the

center of the flexible electrode (w/d), as a function of the nor-

malized applied voltage, for three different differential pres-

sures. The voltage is normalized with the limit (pull-in) voltage

of the capacitor when no pressure is applied (P¼ 0 Pa). In this

case, the pull-in voltage is Vp ¼ 16:7 V, and the midpoint of

the thin plate can deflect up to 73% of the gap size before pull-

in occurs. This difference with the engineering estimation (1/3

of the gap) occurs due to accounting for both the nonuniform

electrostatic load and the geometrical nonlinear behavior of the

micro-plate.19

As Fig. 2 shows, a small pressure on the flexible elec-

trode can significantly affect the shape of the equilibrium

path. A non-zero mechanical pressure on the plate introduces

an initial deflection. Obviously, the initial deflection depends

on the amount and direction of the applied pressure. Second,

a differential pressure would influence the position and/or
number of limit points (i.e., the local maxima or minima of

the voltage). When a negative (downward in Fig. 1) pressure

is applied, the pull-in voltage drops and the critical deflection

increases slightly, whereas the overall shape of the equilib-

rium path remains the same.

For positive pressures, however, the shape of the equi-

librium path exhibits essential shape changes. As Fig. 2 indi-

cates, now, the system might exhibit three critical points.

One limit point occurs when the deflection of the plate is still

in the positive direction (see Fig. 2). We refer to this point as

the primary limit point. This limit point only occurs if the

pressure is higher than a certain amount. The primary critical

deflection varies between 0 and 50% of the initial gap size,

though in the positive direction. Another limit point corre-

sponds to a local minimum in the applied voltage. This point

will be referred to as the secondary limit point. The last limit

point is near the pull-in voltage when no pressure is applied,

only at a slightly different voltage and deflection. We refer

to this point as the ultimate limit point. At the ultimate limit

point, the deflection of the plate is 65–73% of the initial gap

size, depending on the applied pressure.

In order to understand the underlying physics of exis-

tence of such bi-stability, in the presence of pressure, the gen-

eralized electrostatic and restoring loads are illustrated in Fig.

3. The loads are obtained as the derivative of the associated

potential energy with respect to the transverse deflection and

divided by the area (pR2). Clearly, when the electrostatic load

and restoring loads are equal, the system is in equilibrium.

Due to geometric spring hardening, the elastic restoring

load is a cubic function of the deflection. First, consider the

case where no pressure is applied on the system [i.e., P¼ 0 in

Fig. 3(a)]. If the applied voltage is smaller than the pull-in

voltage, at two configurations, the electrostatic and elastic

restoring loads are equal. One solution is a stable equilibrium,

and the other one is unstable. If the applied voltage is higher

than the pull-in voltage, the electrostatic load is always larger

FIG. 2. The normalized deflection of the circular flexible electrode as a

function of the normalized voltage, for different differential pressures: —–,

stable equilibrium; - - - -, unstable equilibrium; and � � � �, COMSOL

simulations.
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than the elastic restoring load. Therefore, no equilibrium

solution can be found.

Clearly, a differential pressure in the opposing direction

of the electrostatic load adds up to the restoring loads.

Therefore, the restoring load is shifted up, and in that case,

instead of two points, the plate might have four equilibrium

configurations, two of which would be stable [see Fig. 3(b)].

It should be noticed that the existence of two additional solu-

tions is only due to geometrical nonlinearity of the clamped

plate. In fact, if the stiffness was constant, the elastic restor-

ing load was linear and the additional solutions would have

not been observed. By increasing the pressure further, again

only two equilibrium solutions can be found [see Fig. 3(c)].

If we increase the voltage around the primary limit point

or decrease the voltage around the secondary limit point, the

electrode snaps from one stable configuration to the other. In

fact, after the system passes the primary limit point, the post-

instability behavior strongly depends on the applied pressure

(see Fig. 4). For smaller pressures, a snap-through to another

stable state is observed (e.g., P¼ 200 Pa in Fig. 4), whereas,

for higher pressures, the primary limit voltage might exceed

the ultimate pull-in voltage and, thus, a small perturbation—

increase of voltage for example—can lead to total failure

(see P¼ 400 Pa in Fig. 4). For very large pressures, the sec-

ondary and ultimate limit points vanish.

The deflection and voltage at the primary limit point can

provide information on the mechanical load applied to the

structure. Thus, a measurement of the primary limit point can

serve as a proxy for the applied load. In order to demonstrate

the suitability of the primary instability for load measure-

ments, the sensitivity of the primary limit voltage to an applied

differential pressure is studied. Figure 5 shows how the pri-

mary and ultimate limit voltages change with the applied pres-

sure. It can be seen that both limit voltages are very sensitive

to any change in pressure. For negative (downward) pressures,

there is a monotonic near-linear relationship between the pres-

sure and the ultimate pull-in voltage.

For positive (upward) pressures, a primary limit point

exists and the corresponding voltage monotonically increases

with the initial pressure, albeit at a much higher rate. Notice

that the sensitivity of the primary limit voltage exceeds

25 mV Pa–1 for the pressure changes, which is equivalent to

a sensitivity of nearly 0.95 mV nm–1 for deflection. This

number is clearly just for the proposed geometry and mate-

rial properties. However, it shows the potential of the pri-

mary instability in comparison to the pull-in mechanism for

pressure measurements. In the specified range of pressure in

Fig. 5, the primary limit voltage is smaller than the ultimate

limit voltage, and thus, only in this range, snap-through may

occur.

It should be noticed that although the snap-through was

illustrated for constant pressure and a sweep over voltage, a

similar behavior is noticed if the voltage is preserved and the

pressure is varied. As an example, the deflection of the center

of the flexible electrode for a constant voltage (13.9 V)

below the pull-in voltage is shown in Fig. 6. The associated

limit points (primary, secondary, and ultimate pull-in) are

shown in this figure. If the pressure is increased around the

secondary limit point or decreased around the primary limit

point, the micro-plate snaps from one stable branch to the

other.

The noticed snap-through behavior can be achieved only

for a certain combinations of pressure, radius, thickness, and

material properties, which can be identified by both the

analytical and finite element models. For instance, for the

assumed material and radius (100 lm), the admissible range

of pressure as a function of thickness is shown in Fig. 7. If the

applied differential pressure is too small, the primary limit

point does not exist. On the other hand, if the applied differen-

tial pressure is too high, the primary limit voltage would

exceed the ultimate pull-in voltage. In such a case, the pri-

mary instability leads to a failure without snapping to a new

stable configuration. Evidently, the snap-through is a dynamic

FIG. 3. The electrostatic and the

restoring loads per unit area as a func-

tion of deflection for (a) P¼ 0, (b)

P¼ 250 Pa, and (a) P¼ 500 Pa.

Equilibrium configurations are indi-

cated with dots (�).

FIG. 4. The equilibrium path of the midpoint of the circular flexible elec-

trode for different differential pressures: ——, stable solution; - - - -, unsta-

ble solution.

FIG. 5. Ultimate and primary limit voltages as functions of the differential

pressure; the primary and ultimate limit voltage are highly sensitive to the

pressure; —–, analytical solution; and � � � �, COMSOL simulations.
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process, and when the flexible plate snaps from an unstable to

a stable configuration, it has a nonzero velocity. To ensure

that the ultimate limit point is not passed in this process, the

total potential energy in both primary and ultimate limit

points needs to be compared. In fact, the total potential at the

primary limit point should be less than that at the ultimate

limit point. The graphs in Fig. 7 are obtained based on this

criterion. It is worth to mention that the pressure range for the

existence of snap-through increases monotonically with the

Young’s modulus of the micro-plate, and it increases with a

decrease in the radius. In fact, to benefit from the bi-stability

of a micro-plate in a range of pressure, the proper thickness

and radius of the flexible electrode shall be selected.

To employ the primary instability for sensing pressure,

two techniques can be envisaged. The first is to subject the

sensor to the measurand pressure and then ramp up the volt-

age to the primary limit voltage. This unstable point can be

detected by a sudden change in capacitance (which for a con-

trolled voltage will be detectable in current) or other mea-

surement methods. Then, the corresponding pressure can be

calculated. The second possible method would be a binary

mechanism for detecting a certain differential pressure. In

this method, the voltage is kept close to the primary (or sec-

ondary) limit voltage of the target pressure. Then, if the pres-

sure drops (or inclines) to less (or more) than the target

pressure, the system snaps. Hence, a precise binary mecha-

nism for pressure measurement will be achieved.

It should be mentioned that in practice, two factors of

noise and imperfections can disturb the performance of the

present sensor. Noise can determine the limit of detection

(resolution) of the measurand.24 Moreover, when the mea-

surement is performed close to an unstable configuration,

noise can introduce small vibrations around each stable equi-

librium state, or large perturbations, allowing for jumps.23

To evaluate the robustness of each stable configuration, we

performed a series of dynamic transient analyses. The results

indicate that compared to pull-in voltage measurements, a

stochastic source of energy can more easily lead to an early

jump before the primary limit point is reached. Furthermore,

based on a preliminary calculation, a significantly low detec-

tion limit of 0.1 Pa is obtained for this sensor (see the supple-

mentary material for the discussion on noise).

Imperfection and initial deflection can also significantly

affect the stability of the micro-plate. Hence, this influence

has been investigated using the COMSOL model. Initial

deflections have been modeled similar to the first two buck-

ling modes of a circular micro-plate as the most influential

imperfections for its stability.25 The results indicate that

micro-plates with large symmetric initial deflections (for this

case, with a maximum deflection larger than 0.15 times the

distance between the electrodes) are inherently bi-stable.

Moreover, a-symmetric initial deflections cause a noticeable

change in the deformation of the system. However, such an

initial deflection, if relatively small, only shifts the required

pressure range for snapping behavior.

In summary, the nonlinearities of the elastic potential and

electrostatic field can be used to tune the equilibrium curve of

a flat flexible electrode and its instabilities. As a result, the

flexible electrode can exhibit a primary instability and a snap-

through behavior before the electrostatic pull-in occurs. The

noticed primary instability is significantly sensitive to pres-

sure. Therefore, it can be used as a sensing mechanism for

highly sensitive pressure measurements. Moreover, such a

measurement can benefit from snap-through behavior which

prevents the system from failure. Although this mechanism

does not allow for continuous sensing methods, it benefits

from the simplicity of pull-in voltage measurements. The pri-

mary limit voltage of a pressure loaded parallel plate capaci-

tor is potentially a suitable mechanism for sensing other types

of mechanical loads such as surface stress or in-plane residual

stress.

See supplementary material for details of COMSOL

simulations and considerations on the effects of noise.
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