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1Applied Sciences, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
2Biomedical Engineering, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40,
Rotterdam, 3015 GD, The Netherlands
3Ultrasone Lab, Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Oude Waalsdorperweg 63, Den Haag,
2597 AK, The Netherlands

ABSTRACT:
Shear wave elastography (SWE) has the potential to determine cardiac tissue stiffness from non-invasive shear

wave speed measurements, important, e.g., for predicting heart failure. Previous studies showed that waves traveling

in the interventricular septum (IVS) may display Lamb-like dispersive behaviour, introducing a thickness-frequency

dependency in the wave speed. However, the IVS tapers across its length, which complicates wave speed estimation

by introducing an additional variable to account for. The goal of this work is to assess the impact of tapering thick-

ness on SWE. The investigation is performed by combining in vitro experiments with acoustic radiation force (ARF)

and 2D finite element simulations, to isolate the effect of the tapering curve on ARF-induced and natural waves in

the heart. The experiments show a 11% deceleration during propagation from the thick to the thin end of an IVS-

mimicking tapered phantom plate. The numerical analysis shows that neglecting the thickness variation in the

wavenumber-frequency domain can introduce errors of more than 30% in the estimation of the shear modulus, and

that the exact tapering curve, rather than the overall thickness reduction, determines the dispersive behaviour of the

wave. These results suggest that septal geometry should be accounted for when deriving cardiac stiffness with SWE.
VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005646
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I. INTRODUCTION

Shear wave elastography (SWE) has been the subject of

research for some time now because of its potential to

improve clinical diagnoses by non-invasively determining

tissue stiffness1–3 in radiology. In particular, SWE could

have important applications in the field of cardiac imag-

ing4–8 as a way to assess the stiffness of the heart muscle,

which has been identified as a relevant parameter in the

diagnosis of heart failure.9,10

In cardiac ultrasound SWE, waves are typically tracked

along the interventricular septum (IVS), and can have two

different excitation sources: either they are generated by the

natural physiology of the heart, e.g., valve closure,7,11–14 or

they are generated by an external source, such as acoustic

radiation force (ARF).15–18 After wave excitation, the waves

are recorded using high frame rate imaging, and their propa-

gation pattern in the time domain is used to extract their

propagation speed. Under idealized conditions (i.e., in a

bulk, purely elastic, time-invariant, linear, and isotropic

material), the speed of a shear wave is proportional to the

shear modulus of the medium, following the relation

G ¼ qc2
s ; (1)

where q is the density of mass (in kg/m3), cs is the bulk

shear speed (in m/s), and G is the shear modulus (in Pa).

However, the IVS is far from these idealized conditions,

and waves traveling along the plate-like heart wall show a

dispersive behaviour similar to that of Lamb waves.4,19–22

These are waves characterized by two infinite sets of guided

modes (symmetric and antisymmetric) that propagate with

speeds dependent not only on the shear modulus, but also on

the thickness of the medium and the frequency of the waves

themselves.23 Moreover, when a plate is loaded by a fluid

(as is the case with the IVS, which separates the two blood-

filled ventricles), the dispersive behaviour also depends on

the properties of that fluid,23,24 further complicating the rela-

tion between wave speed and muscle stiffness. Varying
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thickness of the IVS could further affect wave propagation

speed, and might be one of the underlying causes for the

large reported variability of shear wave speeds in literature

on healthy volunteers: natural shear wave studies report

speeds with differences of up to 60% between studies8,25

and up to 20% within individual works,8 while studies

employing acoustic radiation force can show inter- and

intra-study differences of 60%.17,18

Efforts have been made in the cardiac SWE field to

account for the dispersive behaviour of the wave in the

material characterization algorithms. Instead of studying the

wave propagation characteristics in the space-time (x-t)
domain, various studies4,19,20,26,27 have analysed waves in

the frequency-wavenumber (f-k) domain to reconstruct the

dispersion curves. When approaching the IVS as a fluid-

loaded elastic plate, the shear modulus can be extracted by

fitting a theoretical Lamb wave dispersion curve to the

experimental ones. The advantage of this approach is that

the dispersion curves allow one to directly retrieve the bulk

shear speed of a medium rather than the dispersive propaga-

tion speed in a plate. The first can be easily translated into

the stiffness via Eq. (1), while the latter cannot. In fact, it

was shown for ARF-based SWE in flat28 and curved plates26

that space-time analyses based on Eq. (1) could underesti-

mate the shear modulus, while analysis in the frequency-

wavenumber domain yielded more accurate values of the

shear modulus, compared to mechanical elasticity tests.

An underlying assumption of the dispersion curve anal-

ysis is that the thickness of the plate is constant. However, it

is generally known that the cardiac wall thickness can vary

by up to a factor 3 from the equatorial point to the apex in

healthy volunteers, with values reported around 8–10 mm

and 1–3 mm, respectively,29,30 and this variation could be

even more dramatic in hypertrophic patients.31 Thickness

variations are expected to have a significant impact on the

propagation of guided waves due to their dependency on the

frequency-thickness product, which is especially strong at

lower frequencies for zero-order modes. In fact, it has

already been shown that, when the slowly varying thickness

of a waveguide reaches the frequency-thickness cut-off of a

certain mode, mode conversion and reflections take

place.32–34 Interestingly, natural and ARF-generated waves

are expected to be affected differently by the thickness vari-

ation, due to their different frequency contents (up to around

150 Hz and 1000 Hz, respectively19,22,27,28).

To the best of our knowledge, the effects of cardiac

thickness variations on shear wave propagation characteris-

tics have not been studied yet. The goal of this work is to

determine if and how the natural IVS thickness variations

could affect cardiac SWE measurements. Therefore, to

untangle the complex relationship between wave properties

and myocardial material characteristics, we isolated the

effects of geometry by studying an elastic plate with varying

thickness using numerical simulations and experiments. The

experiments were analysed in space-time domain and were

used as a proof-of-principle to show that the speed of the

waves typically used in SWE varies along the tapered plate.

They also served for validation purposes of our simulation

settings; the numerical settings were further verified by

comparing quantitatively the simulation results in a flat

fluid-loaded plate to the theoretical Lamb wave propagation.

The simulations allowed a greater degree of flexibility in

modelling different excitation sources and geometries: the

effects of geometry on both natural and ARF-induced waves

were studied in space-time as well as in frequency-

wavenumber domain, and it was possible to assess whether

the waves are affected only by the total amount of thickness

reduction, or rather depend on the specific tapering curve.

II. METHODS

A. Experimental setup

To isolate the effects of tapering on wave propagation,

a polyvinyl alcohol tissue-mimicking phantom was created

following the recipe in Ref. 35. A mould was shaped to pro-

duce a phantom plate with a tapered section: 12 cm long,

5 cm wide and with thickness varying between 9 and

3 mm.29 In terms of geometry, the phantom can be schemati-

cally divided into three sections, each 4 cm long: first, a flat

section with a constant thickness of 9 mm, followed by a

section in which the thickness decreases linearly from 9 to

3 mm, and, finally, another flat section with a constant thick-

ness of 3 mm [see Fig. 1(a)]. The flat sections of the phan-

tom served two purposes: they extended the propagation

medium, reducing boundary effects at the edges of the

tapered section, and they provided flat regions of the same

sample that were used to obtain reference measurements.

The phantom was then entirely submerged in a water tank to

simulate the blood that surrounds the IVS. The plate was

held in position halfway across the depth of the water tank

by 3D printed supports, ensuring that the central section of

the sample was loaded by water on both sides and the sam-

ple would not float [see Fig. 1(b)].

SWE measurements were performed using a P4–2

probe (ATL, Bothell, Washington, U.S.) connected to a

Verasonics Vantage 256 research platform (Verasonics,

Kirkland, WA, U.S.). A wave was generated in the centre of

the phantom by focusing a push pulse with frequency of

2 MHz, F-number of 1.9, duration of 400 ls, and a focus

depth of 40 mm. After wave generation, the probe switched

into tracking mode to record the traveling wave for 20.2 ms

using high frame rate imaging with plane wave compound-

ing (�7�; 0�; 7�) resulting in an effective frame rate of

3223.5 Hz.

B. Experimental data analysis

Analytic data were obtained by beamforming the radio

frequency (RF) data using the Verasonics software. One-lag

autocorrelation36 was applied to the IQ-data to obtain the

axial particle velocity field. Before calculating the phase dif-

ferences, the tissue velocity data were smoothed with a

Gaussian spatial smoothing filter with total sigma-widths of

0.47� in the azimuthal direction by 0.5 mm in the axial

direction. The obtained velocity matrix has a temporal
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resolution of 0.3 ms, and a spatial resolution of 0.24 mm in both

the lateral (x) and axial (z) direction. All post-processing was

performed using MATLAB R2018b (MathWorks, Natick, MA,

U.S.).

Particle velocity data in the z direction was extracted

along nine M-lines (virtual lines of receivers) approximately

2 cm long, which were placed at a depth of 10% to 50% of

the phantom thickness with respect to its top surface, in

increments of 5%. The velocity data in the lower half of the

phantom had too low signal-to-noise ratio (SNR) and was

therefore excluded from shear wave speed analysis. The

extracted data along each line was then spatially up-sampled

to a spacing of 0.015 mm. As the ARF was applied in the

centre of the x direction, a left and right propagating shear

wave was observed. The space-time trajectories of both

waves were subsequently analysed by means of a Radon

sum algorithm37 to determine their slopes, which correspond

to wave propagation velocities. The difference in speed of

the left- and right-propagating waves was calculated for all

the m-lines. The average and standard deviation of the speed

differences were then computed and used to compare wave

propagation in the flat and the tapered sections.

C. Numerical configuration

The numerical model was implemented in Abaqus CAE

(Abaqus Inc., Providence, RI, U.S.) using the finite element

method (FEM), which has already been extensively used for

modelling ARF-based SWE in biological tissue38–40 and for

waves in curved plates.26 Similar to the experimental geom-

etry, the IVS was modelled as a 2D plate under plane strain

assumption, with its thickness tapering linearly from 9 to

3 mm24 and a length of 4 cm, as shown in Fig. 2. Symmetric

boundary conditions were applied in the x-direction to the

FIG. 1. (Color online) Schematic representation of the experimental setup. (a) Rear view, (b) side view, (c) B-mode image, where the phantom boundaries

are highlighted by the red dashed line. The phantom (in light gray) consists of a 4 cm long, 9 mm thick flat section, followed by a 4 cm long section that

tapers from 9 to 3 mm, and ends in another 4 cm long flat section, 3 mm thick. 3D printed supports (dark blue) held the phantom halfway through the depth

of the tank, while allowing the central section of the plate to be loaded by water on both sides.

FIG. 2. (Color online) The simulation setup. On the left the numerical FE model is shown, with the plate highlighted in blue and the water in gray. The top

right image depicts the 9 mm thick flat plate, below which is shown the plate with linear tapering and, at the bottom, the plate with convex tapering.
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left side of the plate in Fig. 2 to avoid boundary effects on

the wave excitation. The other sides of the plate were sur-

rounded by a 4 cm thick layer of water, the motion of which

was coupled to that of the plate through tie-constraints. The

outer boundaries of the water were modelled with non-

radiating boundary conditions, to prevent reflections of the

outgoing waves. In this model, the plate was described as

an isotropic nearly incompressible elastic material with a

density q of 1045 kg/m3,26 a Poisson’s ratio �¼ 0.49999,41

and a Young’s modulus of E¼ 9 kPa,18 to represent the

cardiac muscle in its diastolic phase. This corresponds to

a shear modulus of 3 kPa and thus a bulk shear speed

of 1.69 m/s. The water was modelled as an acoustic

medium, with a bulk modulus of 2.2 GPa and a density of

1000 kg/m3, corresponding to a bulk compressional wave

speed of 1483 m/s.

The plate was modelled with quadrilateral elements

with a length and thickness of 0.2 mm (in the flat plate) or

length of 0.2 mm and thickness between 0.2 and 0.07 mm

(for the tapered plates). Based on the bulk shear speed, these

mesh sizes resulted in frequencies up to 600 Hz being sam-

pled with at least 15 points per wavelength. The solution

computed by Abaqus was then sampled with a temporal res-

olution of 0.038 ms, corresponding to at least 43 samples per

period in the frequency range mentioned. To reduce compu-

tation time, the water domain was meshed with quadrilateral

elements with length and thickness of 0.2 mm only in prox-

imity of the plate domain. The mesh size was then allowed

to increase up to 2 mm at the outer boundaries of the water

domain (see also Fig. 2).

Natural and ARF waves were simulated by applying a

Gaussian-shaped velocity pulse in the transversal direction

at the left edge of the plate (see Fig. 2), with peak ampli-

tudes of 2 cm/s. The pulse simulating natural waves had a

total duration of 10 ms, while the ARF wave was simulated

with a 2 ms pulse, corresponding to full-width half-maxi-

mum frequency contents of around 100 Hz and 500 Hz,

respectively.

The wave propagation was simulated for a total dura-

tion of 40 ms, which is long enough for one pulse to be

excited and reach the opposite side of the plate. The simula-

tions were run using an explicit solver.

D. Numerical model validation

The model validation of the numerical model consisted

of two steps. First, the chosen numerical settings of our

FEM model were verified for a fluid-loaded tissue-mimick-

ing plate by comparing the dispersion characteristics of the

simulated ARF wave to those of theoretical Lamb waves.

For this purpose, we considered a 4 cm long plate with a

constant thickness of 9 mm, surrounded by water, as illus-

trated in the top right panel of Fig. 2. The material properties

of plate and water were the same as described in Sec. II C.

The theoretical A0 curve was calculated with the equation

for soft tissue mimicking plates in blood,24

4k3
LbcoshðkLhÞsinhðbhÞ�ðk2

s �2k2
LÞ

2
sinhðkLhÞcoshðbhÞ

¼ k4
s coshðkLhÞcoshðbhÞ; (2)

where kL ¼ x=cL is the Lamb wave number, cL is the fre-

quency dependent Lamb wave velocity, ks ¼ x=cs is the

shear wave number, cs is the bulk shear wave speed,

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

L � k2
s

p
, and h is half the thickness of the plate.

The A0 mode was chosen for validation because the

employed source generated mainly antisymmetric modes,

and because the zeroth- order mode is present at all frequen-

cies, thus yielding more data for comparison with a theoreti-

cal curve.

Second, a more qualitative validation of our FEM

model was performed with the tapered plate model,

described in Sec. II C, by analysing the simulated ARF wave

in space-time, as well as the speed difference between left

and right halves of the M-lines, in comparison to the experi-

mental ones. The duration of the pulse used in the simula-

tions of this validation step was 5 ms, corresponding to a

full-width half-maximum frequency content of around

250 Hz, to better match our experimental data.

E. Numerical data analysis

The simulated data were processed in MATLAB. A 2.5 cm

long M-line was positioned at a depth of 10% of the plate

thickness. The M-line was drawn 1 cm away from the left

edge of the model (where the source is applied), in order to

reduce the effects of proximity to the source.42 The particle

velocity data were then interpolated from the FEM-grid to

an equidistant grid with 0.05 mm spacing along each M-line.

Distances were consequently measured along the M-lines.

The simulated wave propagated from one end of the plate to

the other, thus providing a single, one-directional propaga-

tion branch. To observe possible decelerations, therefore,

the propagation path was split into two halves (the first com-

prising of the wave traveling from the left edge of the plate

to the centre, the second encompassing the propagation

from the centre to the right end), and each half was analysed

with the Radon sum algorithm separately.

For the wave analysis in the frequency-wavenumber

domain, the space-time velocity data recorded on one single

M-line (at a depth of 10% of the plate thickness) was further

processed with a Tukey window (with cosine fraction

r¼ 0.2) to reduce windowing-related artefacts after Fourier

transformation. The data were then converted to the f-k
domain by means of a 2D fast Fourier transform, where the

areas of maximum amplitude correspond to the dispersion

curves. To reduce clutter, an amplitude mask was applied to

the f-k data, filtering out amplitudes below 20% of the maxi-

mum. Only data for frequencies up to 600 Hz was consid-

ered during the analysis, to guarantee correct sampling of

every wavelength included.

Only for the validation step, nine M-lines were drawn at

depths from 10% to 50% of the thickness of the plate, with

5% increments, to enable a comparison with the experi-

ments. The propagation measured on the nine M-lines were
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then split in left- and right-halves, and the difference

between left- and right-speeds at all depths was computed

and averaged.

F. Numerical dispersion curve analysis and error map
reconstruction

While space-time domain analysis based on Eq. (1) is

still common in cardiac SWE studies, a more appropriate

and theoretically sound approach to extract stiffness from

wave propagation measurements is to analyse dispersion

curves. The approach used to analyse f-k domain data is

summarised in Fig. 3. For each of the simulated waves, the

data were extracted following the method described in Sec.

II E (panels 1–3 in Fig. 3). The extracted curve was then

compared to a theoretical A0 curve with a specific bulk

shear speed and thickness (panel 4 in Fig. 3). A root mean

squared (RMS) percentage difference (PD) error function

was introduced to quantify the comparison,

Err ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i

ð100ðKi � KT
i Þ=KT

i Þ
2

N

vuut ; (3)

where Err is the RMS-PD error, ki is the wavenumber of the

extracted curve at the ith frequency, kT
i is the wavenumber

of the chosen theoretical curve at the same frequency, and

the sum runs over all N frequencies at which the curve was

extracted. This comparison was repeated for all the theoreti-

cal curves within the parameter space (panel 5 in Fig. 3),

which comprised bulk shear speeds between 0.5 and 3.0 m/s

(with a resolution of 0.001 m/s) and thicknesses between

2 mm and 10 mm (with a resolution of 0.1 mm). Plotting the

RMS-PD value of each comparison in the same figure

results in a 2D RMS-PD map (panel 6 in Fig. 3). The theo-

retical A0 curve that best fits the simulated one can then be

identified as the minimum in the RMS-PD map. At the same

time, the map shows how much the error grows when mov-

ing in the parameter space, and allows one to fix one param-

eter (e.g., thickness) and identify which value of the other

one generates the lowest RMS-PD.

The shear speeds extracted from the x-t data and from

the best fitting curves in the f-k domain were converted into

values of the shear modulus G through Eq. (1), which is

commonly used in most cardiac SWE studies. However, this

equation only holds when c is the bulk shear speed. It should

be kept in mind, therefore, that the speed derived from the

x-t data does not represent the bulk speed, since dispersion

is occurring. At the same time, the f-k analysis extracts the

bulk shear speed for a flat plate, which is used as an approxi-

mation for the bulk shear speed in tapered plates in this

study. To study how to minimize the impact of this approxi-

mation, different values of constant thickness were consid-

ered when extracting the speed from the RMS-PD maps: the

extremal thicknesses of the plate (9 and 3 mm), the arith-

metic mean of the thickness, and its harmonic mean. It can

be shown that, at low frequencies, an A0 wave propagates

across a tapered plate in approximately the same time it

would take it to propagate across a plate of constant

FIG. 3. (Color online) Procedure to reconstruct RMS-PD maps. (1) Retrieve f-k data, (2) mask out 20% lowest amplitudes, (3) identify coordinates of maxi-

mal amplitude at every frequency, (4) compare with a theoretical A0 curve corresponding to one point in the parameter space and compute its RMS-PD, (5)

repeat for all points in the parameter space, (6) make RMS-PD map for all parameters.
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thickness equal to the harmonic mean of the tapered thick-

ness; at higher frequencies, the same result holds true for the

arithmetic mean of the tapered thickness.

G. Effects of different IVS shapes

Since the real IVS can present a variety of different

shapes, we simulated another tapered plate with the same

material properties as before, the same total amount of

tapering (i.e., a thickness variation between 9 and 3 mm),

but a different shape, specifically a convex one (see Fig. 2).

This model, in combination with the linearly tapered plate,

allowed us to investigate whether the effects of tapering

depend on how the thickness varies over space or rather just

on the total thickness variation. For the purpose of this

comparison, the M-lines in the two tapered plates were

drawn along their entire modelled length to ensure the same

initial and final plate thickness along the M-line.

III. RESULTS

In this section we will first present the results of the

experiments on a tapered phantom (Figs. 4 and 5), showing

that waves propagate differently when they travel towards

the thin or the thick ends of the plate. Then we show numer-

ical results that allow a comparison of the simulations with

theory and with the experiments (Figs. 6 and 7), for valida-

tion purposes. All subsequent results (Figs. 8 and 9, Tables I

and II) are produced by simulations to investigate in more

FIG. 4. (Color online) Snapshots of experimental wave propagation recorded in the flat (above) and tapered (below) sections of the PVA phantom, and B-

mode view of the two sections (rightmost column). The ARF push was applied at t¼ 0.0 ms and was centered at x¼ 34 mm. The white arrows point at the

propagation fronts. The colors in the propagation snapshots represent particle velocity in the z-direction.

FIG. 5. (Color online) Experimental wave propagation recorded in the flat section (left) and tapered section (right) of a PVA phantom. The m-line (in red)

was placed at about 1 mm of depth with respect to the top surface of the phantom (red line in the B-mode panels), centred with respect to the lateral coordi-

nate of the focus of the ARF push beam. The propagation speed of the two wave branches is comparable in the flat section, whereas it decreases with thick-

ness in the tapered part of the phantom. Colors represent particle velocity in the z-direction.
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detail the effects of tapering on the propagation of Lamb

waves.

A. Experiments

Experiments were conducted on a PVA phantom to

assess whether there are measurable differences in the prop-

agation of a wave along flat and tapered sections of a plate.

Figure 4 show snapshots of the propagating wave in two

sections of the phantom (the upper panels depict the flat part

of the phantom, whereas the lower panels illustrate the

tapered part of the phantom). Three key features can be

observed in the propagation patterns. First, the waves propa-

gating in the tapered section attenuate less rapidly than the

one in the flat section. Second, the wave traveling in the flat

section develops, during propagation, a split in left and right

wavefronts at depths greater than approximately 20% of the

thickness; this feature has already been reported in literature

and is probably associated with the presence of the A1 mode

besides the A0 mode.26,43 Third, close to the top surface in

the flat section, the split is not present and the attenuation

appears to be weaker.

In Fig. 5, the two panels show the experimental wave

propagation measured along a single M-line at a depth of

FIG. 6. (Color online) Simulated ARF wave propagation obtained along a 2.5 cm long m-line in a 4 cm long, 9 mm thick flat plate, at a depth of 0.9 mm. On

the left, the wave is represented in the x-t domain: the colour scheme represents particle velocity and the white lines show a Radon sum estimation of the tra-

jectory of the wave. On the right, the wave is represented in the f-k domain, with the white line representing the theoretical A0 dispersion curve for a plate

surrounded by water with the same geometry and medium properties. The colour scheme represents the magnitude of the Fourier-transformed velocity

recorded along the M-line.

FIG. 7. (Color online) Snapshots of the propagation of a simulated ARF wave in a 4 cm long, 9 mm thick flat plate (top) and 9 to 3 mm tapered plate (bot-

tom), both submerged in water.
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about 10% of the plate thickness in the flat (left panel) and

tapered (right panel) sections. In the flat section, both

branches of the wave propagate with a speed of 1.55 m/s,

whereas, in the tapered section, the two branches have dif-

ferent speeds: the branch propagating towards the thicker

end travels at 1.13 m/s, while the other branch travels at

1.07 m/s. Analysing nine M-lines across the phantom thick-

ness in the flat section, the average speed difference (with

standard deviation) between left and right branch is

0.01 6 0.04 m/s, which is negligible in magnitude with

respect to the standard deviation. In contrast, performing the

same analysis on data measured in the tapered section, and

taking into account nine M-lines again, the average differ-

ence between left and right speeds is 0.16 6 0.07 m/s, which

is considerably larger than its standard deviation. We can

conclude that tapering causes the wave to decelerate during

propagation towards the thinner end. An example wave

propagation pattern of the top M-line in the tapered plate is

shown in the right panel of Fig. 5, where the wave branches

traveling towards the thick and thin ends have speeds of

1.13 and 1.07 m/s, respectively.

B. Simulations

1. Validation

The two panels in Fig. 6 present the propagation of sim-

ulated ARF waves obtained in the flat plate along a 2.5 cm

long M-line placed at a depth of 0.9 mm in x-t and f-k
domains (left and right panels, respectively). In the x-t
domain plots, the superimposed white lines show the propa-

gation trajectory estimated by the Radon sum algorithm,

corresponding to speeds of 1.35 and 1.38 m/s. The white

line in the f-k domain plots represent the theoretical A0

mode, computed for a flat 9 mm thick fluid-loaded plate.

The gradient of this line indicates a propagation speed that

ranges between 0.5 m/s for f¼ 10 Hz and 1.4 m/s for

FIG. 8. (Color online) Space-time propagation of ARF waves (left) and naturally generated waves (right) in a plate with linear tapering between 9 and

3 mm. The black lines show the Radon sum estimation of the wave trajectories, considering the first and the second half of the travel path separately.

FIG. 9. (Color online) RMS-PD maps for the ARF (left) and natural (right) waves in a plate with linear tapering between 9 and 3 mm. The white star shows

the coordinates of the curve with minimal RMS-PD; the white filled polygons indicate the coordinates of the best fitting curves at a fixed thickness of 3 mm

(star), 5.5 mm (square), 6 mm (circle), and 9 mm (triangle). The dashed line shows the true value of bulk shear speed in the simulated material. The colour

scheme represents the amplitude of the fitting error, i.e., the RMS-PD value.
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f¼ 600 Hz. In particular, the good match between the theo-

retical A0 curve and the curve extracted from the simulated

wave (RMS-PD of 0.12%) confirms that the numerical set-

tings employed in our model are adequate for reliable

simulations.

To compare numerical and experimental results, the

speeds were further analysed separately for the left and right

halves of nine M-lines at depths between 0.9 and 4.5 mm.

The speed difference between left and right branches was

averaged over these nine M-lines, yielding an average dif-

ference of 0.01 6 0.02 m/s, confirming that the simulated

wave does not undergo variations of speed in a plate with

constant thickness. Moreover, performing the same analysis

for the simulated tapered plate, the average propagation

speed difference between left and right halves was found to

be 0.10 6 0.05 m/s, confirming that the simulations capture

correctly the deceleration introduced by tapering.

Figure 7 shows snapshots of the propagation of the sim-

ulated ARF waves propagating in a flat 9 mm thick plate

(top) and a plate with thickness tapering between 9 and

3 mm (bottom). Comparing qualitatively the experimental

and simulated propagation snapshots in the flat plate, we can

notice that the three features identified in the experimental

data are also present, to some extent, in the simulations: the

wave appears to attenuate less in the tapered plate and closer

to the surfaces, and the wavefront in the central section of

the simulated plate presents a distortion similar to the

wavefront splitting observed in the experiments. In the sim-

ulated data, however, a wavefront with positive amplitude

also appears in front of the original wave, which was not

observed in the experimental data and which appears to

increase in amplitude during propagation.

2. ARF versus natural waves in a linearly tapered plate

Due to their different frequency contents, natural and

ARF-generated waves can be expected to be affected differ-

ently by the tapering of the plate. To investigate this, Fig. 8

shows two simulated waves (one ARF-based and one natu-

ral) in the x-t domain, tracked on an M-line at a depth of

10% of the plate thickness. The black lines indicate the

Radon sum extracted trajectory. While the ARF-induced

wave propagates with an essentially constant speed along

the entire length of the M-line (1.40 m/s in the first half,

1.39 m/s in the second half), it is clear that the x-t trajectory

of the natural wave is curved: two lines with different incli-

nations fit the first and the second halves of the trajectory,

resulting in speeds of 1.27 and 0.99 m/s, respectively. This

result is in agreement with theoretical expectations, since

the phase speed of the A0 mode is lower at lower frequency-

thickness products.

Figure 9 displays the error maps corresponding to an

ARF wave (left panel) and a natural wave (right panel),

computed as described in Fig. 3. As can be observed in

TABLE I. Percentage error in the estimation of modelled G (3 kPa), based on the bulk shear speed extracted from x-t data and by fitting the simulated A0 of

a linearly tapering plate. For the A0 fitting, theoretical curves were considered corresponding to flat plates with different constant values of thickness (h).

6 mm is the arithmetic mean of the thickness of the plate, 5.5 mm is its harmonic mean. The best fitting curve for the ARF data corresponds to a thickness of

5.7 mm, while for the natural wave it corresponds to a thickness of 5.9 mm. In the x-t domain column, two percentages are given, representing the values

computed for the left and right halves of the M-lines. The positive sign indicates overestimation, the negative sign underestimation.

Error in shear modulus estimation

f-k domain analysis

Excitation type x-t domain analysis h¼ 9 mm h¼ 6 mm h¼ 5.5 mm h¼ 3 mm Best fit

ARF �34.7% (left) �4.0% �2.9% �2.8% þ7.9% �2.9%

�35.6% (right)

Natural �46.2% (left) �27.8% þ0.7% þ11.6% þ192.9% þ3.0%

�67.3% (right)

TABLE II. Percentage error in the estimation of modelled G (3 kPa), based on the bulk shear speed extracted from x-t data and by fitting the simulated A0

of a convex tapered plate. For the A0 fitting, theoretical curves were considered corresponding to flat plates with different constant values of thickness (h).

7.7 mm is the arithmetic mean of the thickness of the plate, 6.9 mm is its harmonic mean. The lowest RMS-PD curve at a thickness of 3 mm, for the natural

wave, corresponded to a bulk shear speed greater than 3 m/s, outside the boundaries of the parameter space considered. The best fitting curve for the ARF

data corresponds to a thickness of 6.7 mm, while for the natural wave it corresponds to a thickness of 7.3 mm. In the x-t domain column, two values of per-

centages are given, representing the values computed for the left and right halves of the M-lines.

Error in shear modulus estimation

f-k domain analysis

Excitation type x-t domain analysis h¼ 9 mm h¼ 7.7 mm h¼ 6.9 mm h¼ 6 mm h¼ 3 mm Best fit

ARF �25.7% (left) �2.9% �1.7% �1.7% �1.7% þ10.4% �1.7%

�27.7% (right)

Natural �35.6% (left) �5.2% þ7.9% þ19.2% þ39.3% >þ213.5% þ12.9%

�44.7% (right)
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Fig. 9, the RMS-PD maps for ARF waves and naturally gen-

erated waves are quite different, with the natural waves

showing a greater sensitivity to the thickness parameter, as

can be expected: at the higher frequencies typical of ARF

waves, the A0 curve is flat and insensitive to thickness var-

iations, whereas at the low frequencies of natural waves the

dispersion curve is slanted and the phase speed varies con-

siderably with the thickness. Indeed, with natural waves,

depending on which thickness value is used as input to iden-

tify the best-fitting bulk shear speed, the value of the latter

can vary greatly. Moreover, it can be seen for both waves

that neglecting the tapering and assuming a thickness of

9 mm results in a higher RMS-PD than, for instance, assum-

ing a thickness of 6 mm (corresponding to the average thick-

ness of the plate). Underestimating the thickness also leads

to higher RMS-PD, as well as higher estimated speed for

both waves.

To obtain Table I, first the curves with lowest RMS-PD

were identified for different fixed values of plate thickness.

Then, the shear modulus G was computed via Eq. (1) using

the corresponding bulk shear speed. Finally, the value of G
thus obtained was compared with the input value of the sim-

ulation. As can be seen from this table, assuming an

unchanged equatorial thickness of 9 mm leads to underesti-

mation of G, resulting in especially large errors when analy-

sing natural waves (4% underestimation for ARF waves,

27% underestimation for natural waves). Furthermore, as

was already visible from the error distribution portrayed in

Fig. 9, underestimating the thickness of the plate (e.g.,

assuming a thickness of 3 mm) can lead to overestimations

of G for both wave types, especially severe in the case of

natural waves. Finally, Table I reports the results of assum-

ing a constant thickness corresponding to either the arith-

metic mean (6 mm) or harmonic mean (5.5 mm) of the plate

thickness.

3. ARF versus natural waves in a convex tapered plate

The RMS-PD maps for the curves extracted for the con-

vex plate were used to produce Table II, from which it can

be seen that the shape plays a role on how the wave is

affected by the tapering. The difference between the G esti-

mated for the left and right halves of the M-line in x-t
domain is smaller in the convex plate, meaning that the

wave decelerates less during propagation. Moreover, we

note that fitting the A0 mode assuming a thickness of 6 mm,

a viable solution in the linearly tapered plate, now can result

in severe overestimation of the shear modulus, especially

for the natural waves. Smaller deviations from the actual

implemented shear modulus are obtained by setting the

thickness to either 6.9 or 7.7 mm, the harmonic mean and

arithmetic mean of the thickness of the convex slab, respec-

tively. Moreover, the bulk shear speed of the curve with

lowest RMS-PD for a thickness of 3 mm was greater

than 3 m/s, outside the boundaries of the parameter space

considered to build the RMS-PD maps (as indicated by

> þ213.5% in Table II).

IV. DISCUSSION

A. Effects of tapering on SWE measurements

In this work, we have investigated how cardiac SWE

measurements of material properties may be affected by the

tapering of the IVS. The effects of tapering have already

been investigated32–34 in the non-medical field for waves

with relatively high frequency contents (e.g., from 0.7 to

3.3 MHz33) where multiple higher order symmetric and anti-

symmetric modes are present. These studies showed that

such higher modes, which only appear above well-defined

values of the frequency-thickness product, can be reflected

or converted into lower order modes when the thickness

decreased sufficiently. However, the waves analysed in car-

diac SWE have a relatively low frequency content (typically

within 1000 Hz19,22,27,28) and are therefore characterized

mainly by the zero-order modes and the first-order modes:

the former are present at all frequency-thickness products,

and, for the latter, cardiac thickness reductions are not large

enough for mode conversion. Therefore, the effects

described in literature would be hardly observed in the con-

text of cardiac SWE.

Nevertheless, the thickness variation of the IVS can

introduce effects that are relevant for cardiac SWE, espe-

cially for natural waves, as these are characterised by a

stronger dispersion due to their lower frequency-thickness

product. Both experiments and simulations showed that the

wave speed extracted in the x-t domain can vary consider-

ably along the plate with decreasing thickness, especially

for waves with lower frequency contents (a �10% speed

decrease between the two branches in the experimental ARF

data, and �29% speed variation in the simulations of the

natural waves, as shown in Figs. 5 and 8). As shown in

Table I, shear moduli obtained from the wave speed in the

x-t domain severely underestimate the input value of

G¼ 3 kPa for both ARF (G¼ 2 kPa) and natural waves

(G¼ 1.7 kPa and G¼ 1.0 kPa for left and right wave, respec-

tively) simulations. For comparison, the values of G
extracted from x-t data in the simulated flat plate are

G¼ 2.1 kPa for the ARF wave and GNAT¼ 1.8 kPa for the

natural wave. From these results, we conclude that thickness

variations exacerbate the error that is already introduced by

analysing waves in the IVS in the x-t domain, with an addi-

tional decrease in stiffness estimation of 3% for ARF waves

and even 27% for natural waves.

Interestingly, as we mentioned in the introduction,

Keijzer et al.8 have recently reported that by using x-t
domain analysis, a variability of up to approximately 40% in

the speed of naturally induced aortic valve closure (AVC)

waves can be found between different studies, with varia-

tions on the order of 20% between measurements within

each study. As shown in Fig. 8, even the same measurement

of natural wave propagation in a tapered plate could yield

speeds that vary by 30% from each other using the time

domain analysis. It is also reasonable to assume that differ-

ent hearts would present slightly different shapes, even

among healthy volunteers, potentially increasing further the
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difference between measurements, as suggested by Tables I

and II. Based on our results, therefore, we suggest that

geometry of the IVS plays a role in the variability of the

speeds being reported.

In principle, analysing the propagation data in the f-k
domain should provide a more robust method of deriving G,

since fitting the dispersion curves allows one to determine

the value of the bulk shear speed, which is directly related to

the shear modulus.4,11,19,20,26,27 However, as is apparent

from Tables I and II, knowledge on the specific shape of the

observed IVS is necessary in order to perform the fit cor-

rectly. Our results show, in fact, that neglecting the thick-

ness variations can lead to considerable overestimation and

underestimation of the shear modulus, and that a significant

role is played by the exact shape of the plate, as opposed to

the overall thickness reduction. The relevance of accounting

for the correct thickness of the plate was also observed, for

plates of constant thickness, by Maksuti et al.,44 who

showed the error introduced by inaccurate thickness

assumptions in arterial SWE.

The RMS-PD maps demonstrate a sub-region of the

parameter space corresponding to dispersion curves with

RMS-PD < 1% (see Fig. 9). Within this region, especially

for natural waves, small variations on the thickness axis can

lead to big variations of the bulk shear speed with minimum

RMS-PD, while still generating very similar dispersion

curves. When using the global minimum of the RMS-PD

map, even small errors in the reconstruction of the experi-

mental or simulated dispersion curve could then lead to the

wrong parameters. For this reason, it is our opinion that the

global minimum of the two-parameters space should be

avoided for reconstructing material properties of the IVS;

rather, a priori knowledge of one of the two parameters

(e.g., the thickness) should be used as input to identify the

other.

In terms of clinical applications, our results confirm that

determining the shear modulus from SWE measurements is

more accurately done by analysing dispersion curves in the

f-k domain, rather than employing Eq. (1) on the wave speed

directly obtained from the x-t data, as had already been sug-

gested in literature.26,44 The thickness of the IVS can be

measured for instance from B-mode images and used as

input in the fitting procedure employed for the dispersion

curves. In particular, to obtain more reliable results when

there are thickness variations over the M-line, the thickness

at each point should be measured and combined to compute

some mean value, as opposed to averaging the total thick-

ness variation. If precise information about the thickness is

not available, our results suggest that overestimating the

thickness leads to smaller errors than underestimating it,

which is due to the shape of the A0 dispersion curve and is

consistent with earlier observations.44

A major challenge to this application, however, lies in

the reconstruction of the experimental dispersion curve: res-

olution in the f-k domain depends on the size (in space and

time) of the acquisition of the x-t signal, which is typically

limited in cardiac applications to a few milliseconds over a

couple of centimetres (determined by acquired field-of-view

for the IVS).22,26 The resulting resolution in the f-k domain

is thus low and potentially compounded to imaging artefacts

and gross motion of the heart, which could lead to inaccura-

cies in the reconstruction of the dispersion curve, therefore

affecting the result of the fit. This issue can be especially

significant for natural waves, due to their longer wave-

lengths. In fact, even in the relatively simple setup consid-

ered for our phantom experiments, the resolution of the f-k
data were too low to extract the dispersion curve.

Accounting for the effects of plate geometry directly in the

analysis of data in the x-t domain may circumvent the chal-

lenging resolution of the transformed domain; further

research will be necessary to investigate and develop such

an approach.

Finally, it is worth noting that the results found for the

A0 curve are relevant for the S0 mode as well: in the fre-

quency range typical of natural waves, the S0 mode shows a

dispersion comparable to (and even slightly larger than) the

one of A0, albeit opposite in sign. A visual comparison of

A0 and S0 in a (flat) plate submerged in water, for frequen-

cies relevant to the present work, can be found in a recent

work by Keijzer et al.45

From a theoretical point of view, it is incorrect to talk

about Lamb dispersion curves in plates of varying thickness,

as these curves are defined for flat plates. Regardless, as a

practical attempt to extract the shear modulus from wave

measurements, it may still be useful to fit the known curves

of a fluid-loaded flat plate to the f-k data. Performing the fit

by using the average thickness of the plate, for example,

yielded relatively accurate results for the linearly tapered

plate; however, it did not show any advantage over using

the maximal thickness for the fit performed for the convex

plate. Moreover, while the harmonic mean could be

expected to provide a better approximation (since a wave

traveling in a flat plate of equivalent thickness propagates

with the same average speed as one traveling in a tapered

plate), it did not yield better results. This suggests that an

average thickness can be a useful first approximation that

should be improved upon.

B. Simulations versus experiments

The numerical settings of the simulations were vali-

dated by comparing the A0 curve of a simulated flat plate

with the corresponding theoretical curve, showing a good

correspondence between the two. Furthermore, the decelera-

tion introduced by tapering observed in experiments is also

present in the simulation data, confirming that our simula-

tions can reliably reproduce wave physics also in the case of

a tapered plate. To some extent, the main features of the

propagation patterns in x-t domain of the experimental data

are visible also in the simulations. However, in the simula-

tions of the flat plate the splitting of the wavefront is not as

clearly visible as in the experiments. Moreover, in the simu-

lations, a positive wavefront appears during propagation,

while this is not observed in the experimental data.
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The imperfect match between the simulated and experi-

mental patterns could have several causes: for one, the wave

source employed in our numerical study was meant to simu-

late the frequency content of the experimental wave, but the

space-time distribution of the simulated source in the plate

was kept much simpler. Additionally, the modelled plate is

perfectly elastic, homogeneous and isotropic, whereas the

plate used for the experiments could contain imperfections

due to fabrication, which could in turn affect the wave

patterns.

Finally, the deceleration observed during the experi-

ments appears to be larger in magnitude than that reported

in Table I for the simulations. One likely cause for this dis-

crepancy is that the stiffness of the phantom was higher than

the one modelled numerically, as supported by the higher

propagation speed along the flat section. As a consequence

of the higher stiffness, the overall variation in the phase

speed of the A0 mode is greater, since it plateaus at a higher

magnitude for high frequencies, while it still approaches

zero for vanishing frequency-thickness products. Moreover,

the frequency band of our experimental signal contained

lower frequencies than that of the ARF simulated signal

considered in Table I (approximately 10–250 Hz for the

experimental frequency band, 10–600 Hz for the simulations

reported in the table). Due to the lower frequency content of

the experiment, it is expected that the effects of the thick-

ness variations would be greater and closer to those of the

simulated natural wave.

C. Limitations

In order to model a realistic cardiac shape, the fabri-

cated phantom resulted in a relatively wide and thin plate

with density just slightly higher than that of water. When

submerged, the phantom tended to float around and curl at

the thin edges. To prevent these effects, 3D printed PLA

supports were fabricated and place underneath and on top of

the plate at two opposite ends. While the supports were

never included in the field of view of the probe during

experiments, their presence and contacts with the plate may

also have affected the wave propagation by changing the

actual boundary conditions of the wave guide.

To show the effects of tapering on propagation in x-t
domain, we reported two values of speeds (corresponding to

the first and second halves of the propagation). This approxi-

mation is useful to offer a clear, simple view of the effect of

tapering, especially in the experimental data, where the reso-

lution may not be high enough to discern local, small-

magnitude variations. However, the propagation speed is a

continuous function of space, since the tapering is, and the

propagation trajectory is curved. By reporting only two val-

ues of constant speed, information on the precise variation

of propagation speed over space is therefore lost.

Finally, to isolate the effects of tapering, several simpli-

fications were made in our experimental and numerical

models compared to actual cardiac settings: the IVS was

modelled as a purely elastic, isotropic plate, whereas cardiac

tissue is known to show both viscoelastic and anisotropic

behaviour, as well as inhomogeneities near the valves. In

conjunction with the three-dimensional curvature of a real

IVS, all these parameters would likely affect the trajectory,

attenuation, and dispersion of the propagating waves. Such

effects were beyond the scope of this study, but should be

included in future work to produce a more realistic model

for the interpretation of SWE measurements in terms of

medium properties.

V. CONCLUSIONS

In conclusion, this work shows experimentally and

numerically that the specific (variable) thickness of the IVS

can affect the estimation of the shear modulus obtained by

SWE, especially when low frequency waves, such as natural

waves, are tracked. Experiments show a shear wave speed

deceleration of 11% in a 4 cm long plate with thickness

tapering down from 9 to 3 mm. The numerical results show

that neglecting tapering in f-k analyses can result in errors

greater than 30% in shear modulus estimation, and that x-t
analyses based on Eq. (1) are even less accurate. Finally, the

exact tapering curve of the plate, rather than its absolute

thickness variation, determines these effects, and more accu-

rate results can be obtained when the constant thickness

value considered for the f-k analysis equals the mean thick-

ness of the plate.
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