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Abstract

Nowadays, artificial intelligence (AI) systems are embedded in many aspects of our
lives more than ever before. Autonomous AI systems (agents) are aiding people in
mundane daily tasks, even outperforming humans in several cases. However, agents
still depend on humans in unexpected circumstances. Thus, the main goal of these
agents has transformed from becoming independent to interdependent systems, collab-
orating with humans. This collaboration is far from perfect and could be improved in
several aspects. Communication is crucial for flawless collaboration and its key aspect
is explainability. This paper studies the impact of tailoring explanations according to
human performance in a well-defined collaborative human-agent teaming (HAT) urban
search-and-rescue (USAR) task environment. A controlled experiment was conducted
in a between-subject manner, with two different agent implementations, where it was
hypothesised that when an agent provides explanations tailored to human performance,
the collaborative performance, the trust towards the agent and the individual satisfac-
tion of the human would increase. Results of the experiment confirmed that this is
indeed the case for explanation satisfaction, however, not necessarily for trust and
performance metrics. The conclusions also included that the tailoring resulted in a
decreased collaborative performance. The research contributes to the bigger picture
of how tailoring explanations to various factors, would have an impact on the overall
collaborative performance and systematic actualisation of HAT.

1 Introduction
The rapid developments in artificial intelligence (AI) technology are allowing autonomous
artificially intelligent systems (agents) to become a fundamental part of our lives. From
virtual personal assistants to unmanned aerial vehicles, research and practical experiences
in the field have proven the benefits of agents in complex, quantitative and defined cir-
cumstances [1, 2]. In fact, as they improve, the general consensus has become that they
will completely overtake tasks of humans and become independent of any human aid [2].
However, this is not the case; further developments have shown that a world where agents
completely take over the tasks of a human is far in the future, and maybe not even feasi-
ble [3, 4, 5].
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Despite agents being used in many sectors, and outperforming humans in certain areas,
they have been observed struggling with tasks involving emotions, moral decisions and/or
unexpected events, even in the most developed areas of AI [6, 7]. Human support and
supervision are deemed necessary, especially in tasks with high consequences. Consider-
ing it all, the focus of the research field has shifted from creating independent agents to
adapting them to become interdependent, by collaborating in human-agent teaming
(HAT) [4, 5, 8, 9].

In order to develop an ‘artificial’ intelligence, human nature has to be examined [10].
Creating a seamless and authentic experience for humans is the biggest challenge while de-
veloping human-agent collaborative systems, and the most effective aspect of this experience
is also the most difficult for an agent, which is communication [9, 11, 12, 13, 14].

While communicating to collaborate with someone, explanations about relevant infor-
mation behind any fact or advice are one of the most influential aspects [14]. However, this
is quite a challenge for agents, “because people assign human-like traits to artificial agents,
people will expect explanations using the same conceptual framework used to explain human
behaviour” [11, p. 2]. As human communication is a complicated framework depending on
many factors including context, people involved, emotions etc, these dependencies should
also be represented in artificial explanations. Thus, the shift has caused an expansion in the
research field of AI. At the intersection of Social Science, Human-Computer Interaction and
AI itself, a new field has emerged, called eXplainable AI (XAI)1 [11].

The broad and complex nature of explainability in human sociology also comes into
sight in the domain of AI. Its main goal is to make AI systems more understandable to
humans, making them personalised and user-aware [15, 16]. There are endless factors
that influence the adaptation of the communicated explanations of a human being that needs
to be identified and artificially replicated. To understand their impact on collaboration, they
need to be studied individually.

Currently, the research on XAI includes several studies about user-aware and context-
aware solutions. However, there is a clear research gap in tailoring explanations according
to specific human (user) related factors. Of all the factors, this paper specifically focuses
on performance as it is one of the most significant. It directly gets influenced by and
has the potential to enhance individual performance, which ultimately affects collaborative
performance. Thus, it is crucial to allow the agent to consider the performance of its human
teammate while providing explanations and examining its impact on HAT. The significance
of the performance factor is further described in Section 2.

1.1 Research Question and Hypothesis
Within TU Delft2, the dedicated AI*MAN Lab3 and research group have been working
on transparent XAI systems, where, for example, explanations are classified into several
types with a two-dimensional model in the work of Verhagen [17]. The research topic of
this paper, “User-aware eXplainable AI for improving human-AI teamwork” is supervised
by PhD Candidate Ruben Verhagen and Responsible Professor Myrthe Tielman.

This research paper aims to answer; “How can an agent model and use human
performance to tailor explanations?” . This question will be analysed under several
sub-questions, in a step-by-step manner:

1ibm.com/watson/explainable-ai
2tudelft.nl
3tudelft.nl/en/ai/aiman-lab
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1. What metrics can be used to evaluate and model human performance in a given
collaborative task scenario?

2. How can explanations adapt according to a human performance model?

3. How can two models of explanations be compared in an experimental setup?

4. How can human performance and satisfaction be evaluated according to implemented
adaptive agent explanations?

5. How does collaborative performance, human trust and satisfaction towards the agent
change according to implemented tailored agent explanations?

Common sense says that collaboration generally increases efficiency in human teams, as
depicted in the famous saying; “two heads are better than one”. Thus, it is also reasonable
to assume that collaboration with AI agents could even surpass that increase, with the right
amount of aid from each team member, through efficient communication. In other words,
the hypothesis of this paper argues that an agent with tailored explanations according to
human performance could increase understanding and improve communication, which could
result in better collaborative performance, increased human satisfaction and trust towards
the agent.

In the big picture, the conclusions derived from this research topic could contribute to
a world where agents and humans communicate and collaborate efficiently in a variety of
applications. The future of XAI lies in the technique of combining all factors into a single
adaptive explanation methodology and its evaluation in a variety of settings, possibly with
more research on domain-specific improvements.

2 Background and Related Work
As with any type of collaboration, the ideal solution leverages the expertise of each team
member and yields the best performance result [18]. This is also the case in HAT. “An
effective human-AI team ultimately augments human capabilities and raises performance
beyond that of either entity” [1, p. 1]. Thus, in HAT, collaboration and coordination are
essential [19]. With many dependencies between the human and the agent, information and
thought sharing, together with a reasoning explanation would lead to the most effective
communication model, increasing collaborative performance [10, 14, 20, 21, 22].

A successful HAT communication depends on several factors, such as transparency, mu-
tual trust, understandability and explainability. Understanding any action done or decision
made by the agent is done through explanations of the reasoning. This allows the human
to understand the inner workings of the agent [10, 17, 18, 21, 23, 24].

In contemporary HAT, many of the aforementioned factors are still lacking. This can
often be seen in current AI systems with poor explainability, leading to insufficient under-
standing for humans about the inner logic of agents, resulting in decreased collaborative
performance. With insufficient transparency and explainability, all other metrics that al-
low perfect collaboration, such as trust in the agent, mutual understanding, and overall
collaborative performance, also decrease [8, 10, 11, 16, 21, 22].

Avoiding this is only possible by trying to replicate human intelligence and for that, dy-
namic explainability according to several sub-factors is required. The agent’s methodology
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must easily adapt to the intended user and use case by correctly identifying and process-
ing these factors. In terms of being user-aware, several sub-factors can be used to tailor
explanations, one of which is performance [16, 17, 25].

From common sense, it can be derived that performance is one of the most crucial
factors used in human teaming scenarios. For example, while playing basketball, one never
explains the best shooter of the team, how to shoot, or does not rely on the worst shooting
player to complete a complex move without any explanation. To be able to play as a team,
other players should be able to incorporate the worst player into the game plan. Basketball
crucially depends on one’s shooting capabilities, in addition to several sensing and reasoning
attributes. Most importantly, it is a team sport where members must communicate and
collaboratively improve on these attributes by learning from each other, which is done by
tailoring explanations according to performance.

In the paper called “Ten Challenges for Making Automation a “Team Player” in Joint
Human-Agent Activity” [26], Klein et al. implicitly state tailoring explanations to human
performance as a challenge. ‘To be an effective team player, intelligent agents must be able to
adequately model the other participants’ intentions and actions vis-à-vis the joint activity’s
state and evolution-for example, are they having trouble? Are they on a standard path
proceeding smoothly? What impasses have arisen? How have others adapted to disruptions
to the plan?” [26, p. 92]. This research will also contribute to Klein’s second challenge by
providing evidence on how performance-tailored explanations affect an agent becoming a
‘team player’.

As with many real-life attributes, human performance is also not binary, it consists of
a spectrum, and changes according to time, occurrence and severity. Specific performance
attributes all correspond to a different game mechanism, where different explanations are
communicated. Thus, correctly tailored explanations can have a positive impact on the
recipient’s individual performance and therefore on the collaborative performance [9, 21].
This research will incorporate all mentioned aspects of the human performance factor into
explanations and replicate this scenario in an urban search-and-rescue task while observing
its influence on collaboration.

3 Methodology
Incorporating all the information discussed in Section 2, two agents, demonstrating default
(baseline) and tailored explanations were implemented. These two agents were teamed-up
with human participants in a collaborative task environment, and each experiment was
evaluated over several metrics. Comparing these metrics and results provided the answer to
the research question at hand.

3.1 Design
The goal of the experiment was to investigate whether explanations tailored to human
performance affect collaborative performance, human satisfaction and trust. To achieve
this, a controlled experiment was conducted in a between-subject manner, where half of
the participants teamed up with the Baseline Agent (described in Section 3.4.2) and the
other half teamed up with the user-aware agent with tailored explanations (Tailored Agent,
described in Section 3.4.3).

The Baseline agent had a default, generic and sometimes no explanations for the messages
it sent to the human, while the other agent included explanations specifically tailored to
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human performance.

3.2 Participants
Participants were recruited through the TU Delft bachelor’s students network from different
majors. The inclusion criteria were: 18-60 years of age, at least a high school degree and
sufficient computer literacy to play a game. Exclusion criteria included colour blindness.

A total of 30 participants took part (27 male, 2 female, and 1 preferred not to say) in
the experiment. 26 participants were in the 18-24 age range while the other 4 were under 60
and close to the same range. The median score of self-scored computer gaming experience
was 4.2 for the tailored agent, and 3.9 for the baseline agent (1, meaning no experience,
and 6 meaning a lot of experience) and the median education level was 4.2 for baseline (0,
meaning no education experience at all, 4 meaning some college credit/no degree yet and
8 meaning a PhD degree). No data were excluded from the analysis since all experiments
were done as planned.

3.3 Environment
The environment used in the experiments was formulated as an urban search-and-rescue
game. The game made use of the MATRX Software. The details about the software and
specifics of the game mechanics are described below.

3.3.1 MATRX Software

With the increased interest in human-agent teaming research, the need for an easy-to-use
research tool for a modifiable HAT environment emerged. For several years, the Blocks
World for Teams (BW4T)4 [27] software for human-agent teaming studies has been used.
It is an extension to the classic AI planning problem of Block World (BW) [28], adding an
easy-to-configure teaming aspect. However, these tools are often outdated, unreliable and
simple, as they allow limited dimensionality in HAT research.

In recent years, a new tool has been developed by TNO5, named Human-Agent Teaming
Rapid Experimentation Software package (MATRX)6. This new tool offered more advanced
support on HAT scenarios with additional environmental configurations. It allowed re-
searchers to create more personalised and detailed HAT environments to test and study the
impact of many variables.

One of its capabilities is to easily create a simulated urban search-and-rescue (USAR)
human-agent teaming (HAT) scenario. The USAR-HAT scenario is now used in many HAT
studies and it is also the best fit implementation for the experiment of this paper.

3.3.2 Collaborative Urban Search-and-Rescue Task

The best way of demonstrating the effect of factors in HAT is to use a task environment
with several interdependent and independent sub-tasks, which USAR easily provides [29].

As a summary of the game mechanics, the human and the agent try to explore several
rooms (areas) in a two-dimensional game map. They are tasked to find 4 critically injured
and 4 mildly injured victims, searching through those areas and rescuing them to a dedicated

4github.com/eishub/BW4T
5tno.nl
6matrx-software.com
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‘drop-zone’ on the map. As they search for victims in different areas, they encounter some
obstacles that they must remove. Different obstacles take different times to remove and
some can only be removed together or only by the agent. A stone can be removed alone, but
it is faster together, a rock can only be removed together and a tree can only be removed by
the agent. This is also the case with the victims, where mildly injured ones could be carried
individually, but the critically injured victims need a collaborative effort to be rescued.

The game lasts 8 minutes and works on a point system. Each mildly injured victim that is
rescued is worth 3 points and each critically injured victim that is rescued is worth 6 points.
The game aims to rescue most victims and gain the most points in time by collaborating
with the agent.

The MATRX environment includes a chat feature, which allows communication between
the agents. In the USAR task, the agents can inform each other about the area they are
going to search, the victims/obstacles they found, if they are going to rescue/remove them,
etc. The collaborative tasks force the human and the agent to communicate, where the
explanations of the agent shape the response of the human. A screenshot of the game
environment together with the chat feature is attached to Appendix A.

3.4 Implementation of the Agents
The game is played in teams of two, a human participant matched with an agent teammate.
In the game, the agent leaves all the decisions about removing an obstacle or rescuing a
victim, to the human. In the meantime, the agent acts as a decision support agent. It gives
suggestions about the decision to be made and leaves the final decision to the human. While
giving these suggestions, or taking any action, the agent explains the reasoning behind them.
This explanation is the core difference between the two agent implementations.

3.4.1 Pilot Experiment for Explanations

As the agent was designed as a decision support agent, it had to give suggestions for the
next move it makes. Since some actions required collaboration, where others did not, the
decision was always left to the human, however, the agent had to give a suggested decision,
backed by an explanation.

A pilot experiment was necessary to create the explanations used in our experiment. To
achieve this, a crowd-sourced survey was used, where participants were asked to decide on
the next action of the agent in a given scenario.

The scenarios were created with differing locations, distances from teammates distances
from the ‘drop-zone’ and time left for the game. They were created based on intuition and
prior knowledge, and in the implementation, it was made sure that the question metrics
were accurate with in-game real-time metrics when the suggestion was used.

In the survey, nine participants were confronted with dilemmas about whether to remove
obstacles or save victims, based on several different features such as time left, removal time,
distance to the teammate and critical victims rescued. After submitting their decision,
participants were also asked about which feature contributed most to their decision.

This experiment allowed us to determine a default reasoning for the baseline agent ex-
planations. There are several types of explanations an agent can use. The categories of
explanations used were described in the study of Van Der Waa et al. [30]. We have made
use of four combinatory explanation types: suggestion, suggestion + confidence explanation,
suggestion + confidence explanation + feature attribution, and suggestion + confidence ex-
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planation + feature attribution + contrastive explanations. The collected data was used to
create the four types of explanations.

Out of the nine participants, the decision most participants made was transformed into
the suggestion for similar scenarios. The number of participants out of the total nine, who
agreed on that decision was transformed into the confidence explanation, where higher people
meant higher confidence. The feature selected by the most participants was transformed
into the feature attribution. Finally, the contrastive explanation was created based on what
is the main difference between another scenario where the other option was selected. All
explanations included an observation at the beginning and a call for a decision at the end.
Below is an example of a full explanation, divided into parts:

1. Observation: Found rock blocking area 4.

2. Suggestion: I suggest to remove rock instead of continue searching

3. Confidence Explanation: : 5/9 rescuers would decide the same,

4. Feature Attribution: because we have around 5 minutes left.

5. Contrastive Explanation: If we had found less than 2 critical victims, I would have
suggested to continue searching.

6. Call for Decision: Select your decision using the buttons “Remove” or “Continue”

3.4.2 Baseline Agent Implementation

The agent was programmed to try to win the game by searching all rooms (each time picking
the closest one) and rescuing all victims. It made use of the chatting functionality of the
environment to inform its teammate about where it is heading, which obstacles/victims it
found and if it is rescuing a victim or removing an obstacle.

Whenever the agent faces a decision to be made, the global problem solving team design
pattern was used [31]. The agent asked the human to decide its next action after providing
its suggestion, by randomly picking one of the four explanation types detailed above. This
was the best suitable option to be able to compare it with a tailored version of the agent.
While waiting for the decision, the agent did not take any action.

3.4.3 Tailored Agent Implementation

The tailored agent implementation was written on top of the baseline agent. It addition-
ally, kept track of the performance statistics of the human and the game, while also using
that data to tailor its explanations. The tailoring procedure was also implemented by the
modifications to the existing explanations given by the baseline agent, with one additional
message type added.

The overall performance of the team depends on many factors explained above. The
‘mission’ finishes with a higher success rate when collaboration and communication are done
efficiently. The best player in the game, cannot finish it with a high score if he or she does
not frequently update the agent and answer its questions in time. That is why messaging
was considered a crucial performance aspect of the game. Moreover, the ‘chemistry’ or
coordination between teammates was also another aspect that stood out as a performance
factor, where both agents must be efficiently trying to help and trust each other. Finally,
the real-time score of the game was the most basic performance statistic. Thus, the factors
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used to tailor explanations could be categorised into three types, messaging performance,
collaboration performance and score performance.

Messaging Performance For messaging performance, the agent tracked the messages
of the human, where two main metrics determined the messaging performance. The first
one was implicitly tracking the time it takes the human to search a room. This was the
time measured between a ‘Searching room X’ and a ‘Found victim X’ or another ‘Searching
room X’ message. This meant that during that time the human is searching the first room
he/she mentioned. The agent checked if this time exceed a maximum expected duration,
which was calculated through the game logic where in 8 minutes, 2 team members must
visit all 14 rooms. If this time has been exceeded, the agent’s upcoming explanation was
tailored accordingly with an addition of a reminder to message more frequently. The second
messaging metric was the time it took the human to rescue a found victim. This was
measured as the time between a ‘Picking-up victim X’ and the next ‘Searching room X’
message. Using the same game logic from before, a threshold was determined and after it
was exceeded the explanation was tailored accordingly. If the thresholds were not exceeded
there was a possibility of the human receiving a motivational message, together with a tip
about the game.

Collaboration Performance For collaboration performance, two metrics were stored.
The first was, again, a messaging metric which tracked the time it took the human to
answer the agent’s questions. It was crucial for the human to answer the agent’s questions
as fast as possible, to minimise the idle time of the agent. During the processing of this
metric, the agent also tracked the number of times this ‘error’ of a slow answer was made,
however, this metric was reset when the human answered a question quickly. A reminder
message got sent after a large threshold was passed, and an additional sentence was added
to the next request after a smaller threshold was exceeded. The severity of the sentences
changes according to how many times the error was done.

The second metric tracked the time it took for the human to come to the agent’s aid
when the agent needed help. However, if the human is busy with another task, but promises
to come and help the agent, this causes the team to lose significant time. Moreover, this
metric also kept track of how many times this ‘error’ was made, with the same resetting rule.
Same as the answering metric, the next time agent asked for help, an additional reminder
was sent to the human to be faster this time, again, the severity of this message changed.

Score Performance Each game tick (one-tenth of a second) the agent calculated the
difference between percentages of the expected and the real-time score. Out of 36 total
points, the team was expected to gain 4.5 points each minute, or 18 points at the 4-minute
mark. Through intuition and prior knowledge of the game mechanics, several threshold val-
ues were determined to convert this difference value into a four-point performance spectrum
(very poor, poor, good, very good). A difference larger than 20% meant that the human
was performing very poorly and a difference smaller than 6% meant that the human was
performing very good.

This value was used in two ways in the implementation of the agent. The spectrum
levels determined the type of explanation the human would receive. To improve the per-
formance of an under-performing human, the agent provided more detailed descriptions.
On the contrary, it provided concise explanations for the top-performing human. Also, the
human occasionally received a progress message, including the team’s predicted score and
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an explanation of how and why it was calculated that way together with a motivational
sentence. Under-performing humans were more likely to receive this message or one that
explains why high-confidence recommendations should not be ignored.

3.5 Measures
The dependent variables of the study include several objective and subjective measures.
Objective measures were recorded through the logging feature of MATRX (Log) and the
subjective data was collected through a questionnaire that included five different surveys.

To ensure the minimal effect of the confounding factors, some demographic data was
collected before each experiment. One of the most important confounding factors was the
gaming experience of the participants, which was thought to be able to influence the perfor-
mance difference between the two experimental groups. To create a similar division, demo-
graphic distribution was considered while directing participants to the experiment group.
All taken measurements are explained in detail in Table 1.

3.6 Procedure
The experiment underwent an extensive ethical evaluation process and took into account
the principles of responsible research described in more detail in Section 6.

It took 25 to 35 minutes for a participant to fully complete the experiment. Before the
experiment, the participants were given an introduction and briefed about the purpose and
procedure of the experiment. Afterwards, they were given an “Informed Consent Form” and
asked to read and sign the form.

Participants were then given a laptop and a mouse by the experiment leader to first
access the Qualtrics7 questionnaire. After filling in the demographics questions, they were
assigned to the tailored agent experiment group or the baseline agent experiment group.

Then, the experiment leader gave the participants a cheat sheet, including important
reminders about the game mechanics and started the tutorial, which is a practice round,
teaching the game mechanics in a hands-on manner. This allowed the participants to be
more comfortable and gain experience in the game environment.

After the tutorial game, the participants were reminded that they will have to decide
on each action of the agent (‘RescueBot’). Then, the experiment leader started the actual
game for the participant according to his/her experiment group.

All participants completed one full game of 8 minutes. After finishing the game, the game
logs were saved by the experiment leader and the participants were led to the remaining parts
of the questionnaire, where subjective questions about collaboration fluency, explanation
satisfaction, trust towards the agent and workload were answered, respectively.

4 Results and Analysis
All of the metrics discussed in Section 3.5, were statistically analysed for significant differ-
ences between the baseline and tailored agent groups. A Classical Independent Two-Samples
T-test (with significance level α = 0.05) was performed for any metric that satisfied the as-
sumptions, including independence of the observations, identification of extreme outliers,
normality of the data (checked by the Shapiro-Wilk test, significance at α = 0.05) and ho-
mogeneity of variances (checked by the Levene’s test, significance at α = 0.05). Moreover,

7qualtrics.com
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Table 1: Measurements taken during the experiment. Quant = Quantitative Data, Qual =
Qualitative Data, Obj. = Objective Metric, Subj = Subjective Metric.
Metric (Source) Data Type (Range) Description

Demographic
Information (Survey)

Subj./Obj. &
Quant./Qual.

A small survey, asking about their gender,
age range, education level and gaming
experience (ranging from 1 (none at all) to 5
(a lot)).

Ignored Suggestions
(Log)

Obj. & Quant.
(0-1)

The percentage of ignored suggestions is
calculated by dividing the number of ignored
suggestions by the total suggestions made.

Subjective Trust
(Survey)

Subj. &
Quant./Qual. (1-5)

Mean Value of the Trust Scale for XAI
Survey [32], measured by a 5-point Likert
scale (ranging from I disagree strongly to I
agree strongly).

Explanation
Satisfaction (Survey)

Subj. &
Quant./Qual. (1-5)

Mean Value of the Explanation Satisfaction
Survey [32], measured by a 5-point Likert
scale.

Completeness (Log) Obj. & Quant.
(0-1)

The completeness percentage of the game
was calculated via the number of rescued
victims divided by the total victim number.

Score (Log) Obj. & Quant.
(0-36)

The score of the game was calculated by
rescued victims, where critically injured ones
were worth 6 points and mildly injured ones
were worth 3 points.

Agent Moves (Log) Obj. & Quant. Total number of moves made by the agent.

Human Moves (Log) Obj. & Quant. Total number of moves made by the human.

Agent Idle Time (Log) Obj. & Quant. Total game ticks where the agent is idle.

Human Idle Time (Log) Obj. & Quant. Total game ticks where the human is idle.

Simultaneous Idle Time
(Log)

Obj. & Quant. Total game ticks where the human and the
agent are idle at the same time.

Subjective Workload
(Survey)

Subj. &
Quant./Qual.
(0-100)

Mean Value of the Raw NASA-TLX Survey
[33], measured by an adjustable 100-point
scale.

Collaboration Fluency
(Survey)

Subj. &
Quant./Qual. (1-7)

Mean Value of the Collaboration Fluency
Survey (20 out of 30 Questions) [34],
measured by a 7-point Likert scale. ‘Robot
Relative Contribution’ and ‘Individual
Measures’ metrics were left out since they
were not related to the research question and
‘Trust in Robot’ was left out because it was
already measured by a separate variable.
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all collected metrics were continuous. Out of all the data, only one sub-metric included an
extreme outlier, however, since its exclusion resulted similarly, the data point was kept to
preserve the true data. In metrics where normality was not found the Unpaired Two-Samples
Wilcoxon test was applied.

First of all, only the gaming experience demographic data were analysed for any sig-
nificant difference, or any correlation with several other metrics, since the rest was used
only to divide participants equally. The gaming experience metric was thought to be a con-
founding factor, and thus, was further analysed. Wilcoxon test applied to gaming experience
metric showed that the difference was insignificant with p = 0.6264 (Baseline Median = 4
(Interquartile Range = 2.5), Tailored Median = 5 (IQR = 1.5)).

Next metrics used to determine human trust were analysed. For the ignored suggestions
metric, the t-test resulted t(28) = -0.101, p= 0.921 indicating no significant difference (Base-
line M = 0.294 (SD = 0.163), Tailored M = 0.301 (SD = 0.198)), where, t(28) is shorthand
notation for a classical t-statistic that has 28 degrees of freedom, while ‘M’ and ‘SD’ are
shorthand notations for mean and standard deviation. For the subjective trust metric, the
t-test resulted t(28) = -1.04, p = 0.307, indicating no significant difference (Baseline M =
3.46 (SD = 0.416), Tailored M = 3.65 (SD = 0.577)).

Regarding satisfaction of the human, the mean explanation satisfaction in baseline group
was 3.74 (SD = 0.536), whereas the mean in tailored group was 4.23 (SD = 0.36). The t-test
showed that the difference was statistically significant, t(28) = -0.295 with p = 0.00631,
as depicted in Figure 1.

Analysis on objective performance metrics resulted as follows. The median completeness
in baseline group was 0.75 (IQR = 0.25), whereas the median in tailored group was 0.625
(IQR = 0.125). The Wilcoxon test showed that the difference was significant with p
= 0.05666. The mean score in baseline group was 25 (SD = 6.58), whereas the mean in
tailored group was 19.2 (SD = 6.88). The t-test showed that the difference was statistically
significant, t(28) = 2.36 with p = 0.0255, as depicted in Figure 2. The mean agent moves
in baseline group was 290 (SD = 84.7), whereas the mean in tailored group was 236 (SD
= 46.9). The t-test showed that the difference was statistically significant, t(28) = 2.18
with p = 0.0377. Wilcoxon test applied to human moves metric showed that the difference
was insignificant with p = 0.08139 (Baseline Median = 467 (IQR = 109), Tailored Median
= 412 (IQR = 60)). For the agent idle time metric, the t-test resulted t(28) = - 0.405, p
= 0.688, indicating no significant difference (Baseline M = 1774 (SD = 811), Tailored M
= 1878 (SD = 580)). Wilcoxon test applied to human idle time metric showed that the
difference was insignificant with p = 0.1102 (Baseline Median = 3261 (IQR = 510), Tailored
Median = 2756 (IQR = 776)). For the simultaneous idle time metric, the t-test resulted
t(28) = -0.361, p = 0.721, indicating no significant difference (Baseline M = 1368 (SD =
699), Tailored M = 1454 (SD = 591)).

Finally, subjective performance metrics were analysed. For the subjective workload met-
ric, the t-test resulted t(28) = -0.62, p = 0.54, indicating no significant difference (Baseline
M = 48.9 (SD = 13.3), Tailored M = 51.6 (SD = 10.1)). For the collaboration fluency met-
ric, the t-test resulted t(28) = -0.473, p = 0.64, indicating no significant difference (Baseline
M = 4.94 (SD = 0.738), Tailored M = 5.08(SD = 0.847)). Sub-metrics of collaboration
fluency were also analysed for spesific significance, where only one of the metrics produced
a significant difference between conditions. The median ‘improvement’ metric in baseline
group was 4.67 (IQR = 1), whereas the median in tailored group was 5.33 (IQR = 0.67).
The Wilcoxon test showed that the difference was significant with p = 0.02744.

The correlation between several metrics was also analysed, specifically to investigate
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Figure 1: Mean Explanation Satisfaction
Value by Agent Condition

Figure 2: Mean Score Value by Agent
Condition

the influence of gaming experience on the metrics. A Spearman’s rank-order correlation
(with significance at α = 0.05) was run to determine the gaming experience’s relationship to
human moves, score, subjective workload, human idle time and simultaneous idle time. Only
the subjective workload was found to correlate with gaming experience. There was a weak,
negative correlation between the metrics, which was statistically significant (correlation
coefficient = -0.3696012, p = 0.04441).

Also to overrule if high-scoring participants were more satisfied with the explanations, a
Pearson correlation test (with significance at α = 0.05) was run to determine the relationship
between explanation satisfaction and score. No significant correlation was found (correlation
coefficient = -0.2699415, p = 0.1491).

5 Discussion
This section initially reviews the results presented in Section 4 and interprets their meanings.
Next, the limitations of the project are openly discussed. Finally, future studies and results
of the research are indicated.

5.1 Interpretation of Results
The results obtained from the gaming experience analyses show that there is no significant
difference between the two experimental groups. Correlation tests only resulted in one sig-
nificant correlation between gaming experience and subjective workload. The correlation
was not strong, but this confirmed a suspicion that a participant with a low gaming expe-
rience would find the game more overwhelming. Regarding other demographic information,
the groups were well divided and had no significant difference, as said in Section 3.2.

The overall findings from the metrics show that there is no significant difference between
trust metrics and most of the performance metrics. Similar means were expected across
these metrics, as minimal changes were made to the overall game mechanics and the agent’s

13



brain. The results show that tailoring only affected a small portion of the dependent vari-
ables. Significant differences between means exist in completeness and score metrics, which
indicate that the baseline group performed better in the collaborative task, as observed in
Figure 2. This is likely due to an information overload experienced by under-performing
participants, which was caused by the performance-tailored explanations. Long messages
caused participants to waste time reading them, while the agent was sitting idle. Under-
performing participants received many tips and reminders, causing them to communicate
less with the agent. This conclusion is also supported by the significant difference found in
the agent moves metric. The tailored agent made fewer moves in general and contributed
less because the human took a long time to respond to its messages.

The attention given to the tutorial game vastly affected the game performance of the
participants. After the tutorial, each participant had a different level of understanding and
in some cases, people expressed the need to play one more time before the actual game to
fully understand the important game mechanics. Since this was not allowed, in future, a
longer tutorial game might fill the knowledge gap between participants better. This also
supports the data gathered from the subjective measures, recorded after the experiments,
where the game mechanics were fully understood.

Subjective metrics reveal new findings. The collaboration fluency metric on its own did
not show any significant difference, however, a deeper analysis of its sub-metrics revealed
a significant difference in improvement. This could be a result of the agent explanations
becoming more stable after some time in the game, especially after the first few points. The
implementation had a minor downside which caused the first 1-2 minutes of the game to be
seen as a poor performance since no points are gained yet. While the agent is learning about
its new teammate, it is not easy to create a performance model right away, which could cause
instability in explanations. Moreover, a major difference can be seen in Figure 1 between
the two groups’ results in explanation satisfaction. Interestingly, although objectively the
participants performed poorly on the task, they were satisfied with the agent’s process
and explanations. We could conclude that the explanations were satisfactory and were
appreciated, however, due to the time pressure, they created a separate challenge. This can
be attributed to the gamified nature of the environment, where time constraints play a large
role. These results can be considered unsatisfactory for USAR-HAT performance in the end
but can serve as an effective solution for other collaborative task environments.

5.2 Limitations
This research was completed as a dissertation for the Bachelor of Computer Science and
Engineering at TU Delft. While the project had its advantages of working together in a
team under a well-established research group, it also had challenging time constraints, that
limited the research output.

The two-month time constraint of the project limited the research depth of the paper at
several moments in the process. The large size and variety of the field made it clear that
more time is required to study all related research, answering the research question more
concretely by creating a better environment. In addition to the references cited at the end,
there are many more valuable studies about XAI, some of which are still being published at
the time of this paper. The time constraints especially limited the main experimentation.
While 30 participants is an adequate amount for a statistically correct conclusion to be
made, the external factors could have been more carefully avoided by using more diverse
participants. Especially the gaming experience factor of the participants could be kept under
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a strict inclusion factor, which would allow the differences in the results to be only based
on the tailoring factor.

Moreover, the topics of XAI and tailoring explanations are vague terms by their nature.
There are many approaches for implementing user-aware solutions in HAT. Tailoring human
performance was done in this research, in the way it was described in Section 3, however,
this does not necessarily define the only way of achieving a performance-aware agent. This
indeed also becomes a limitation, where this research on its own, cannot eliminate any
other conclusions made through this specific tailoring. However, the reproducibility of the
experiment, the quality of the gathered data and the depth of the tailoring, also prove
significant contributions to the topic of tailoring explanations in XAI.

5.3 Future Work
The next step for the XAI community is to conduct further research on user-aware agents,
both on the topic of this paper and also several other possible tailoring factors. After more
results prove which factors contribute most to the overall performance and satisfaction of
the user, the combination of those factors should also be researched on metrics similar to
the ones used in this paper. These metrics provide an extensive understanding of the effects
of the factors, which eventually will take human-agent teaming to a whole new level. While
agents in these use cases become better and better at explaining themselves to their human
partners, the potential for their collaboration increases.

6 Responsible Research
This research was mainly about the interaction between a human and an AI agent. The
main part of the project involved an experiment with human participants. Thus, the ethical
concern of the project becomes the reproducibility of the experiment and the procedure of
the experiment for participants.

As stated in the Netherlands Code of Conduct for Research Integrity [35] the five prin-
ciples forming the basis of integrity in research are honesty, scrupulousness, transparency,
independence and responsibility. All five principles were applied in this research process and
all precautions were taken to ensure that no unintentional mistakes were made.

This research has applied and received the approval of the TU Delft’s Human Research
Ethics Committee (HREC)8, confirming the suitability of the research in terms of ethical
implications. Before the experimentation, participants were given an ‘Informed Consent
Form’, explaining, in detail, the purpose of the research, how to opt-out of the research and
how their collected data will be stored. This allowed the participants to understand the
research and their rights during or after the experimentation. In addition, the experiments
were carried out in person at the TU Delft campus, in accordance with the coronavirus
measures of the Dutch government at the time.

The experiment leader valued giving all participants the same experimental conditions.
They were given a chance to play one round of the tutorial game and one round of the
actual game, with a cheat sheet beside the experiment laptop. If the first run of the game
failed after halftime, the experiment stopped and that participant’s data was not used,
because the participant was considered ‘experienced’ with the game environment (which did
not happen during the experiments). Previous experience with the MATRX environment

8tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
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was not considered an important confounding factor, since the task of this experiment had
a completely different goal and environment. At no time during the experiment, do the
participants know which experimental group they are in, or what are the differences between
the groups.

Statistical analysis and checks were done for all evaluation data that was gathered in
the experimentation process. All data that was gathered to conclude the experiment was
presented in the corresponding sections of the paper. Any data that was deemed not useful
or excluded from the experiment was stated in the paper clearly. In this case, no data were
excluded from the experiment.

Limitations of the experiment were clearly explained in Section 5.2, which justifies the
conclusions made in this study and points out clearly what parts could be further researched.

Over the detailed explanations made in Section 3 to ensure reproducibility of the ex-
periment, the source code and agent implementations were made public and free to use for
any further research9. The main framework, MATRX, that was used in the implementa-
tion was also available publicly as an open-source tool. Any other tool, documentation or
implementation used in this research can be made available upon request.

Aside from all the aforementioned concerns, there was nothing else identified as ethically
concerning. The contact details of the experiment leader, author of this paper and supervisor
of the research are also easily accessible to the participants and to any reader of this paper,
to resolve future conflicts.

7 Conclusion
This study aimed to find the impact of tailoring agent explanations according to human
performance on human-agent teamwork, through a game of urban search-and-rescue using
the MATRX software environment. The main findings of this experiment were that this type
of tailoring resulted in lower collaborative performance, but significantly higher explanation
satisfaction. This indicates that the tailoring factor is valuable and must be further studied
and refined to become an asset in interdependent task communication. All research questions
were answered within limits. The findings of the research contribute to the larger study area
of XAI and the effort to make artificially intelligent agents more understandable to their
human partners. Further research on the topic could discover the best factors to use for
tailoring explanations, which in the end could result in a similar conceptual framework used
to explain human behaviour. This result could pave the way to a future where agents and
humans work collaboratively on several tasks, with high trust in each other, satisfaction
from the collaboration and increased team performance. Artificially intelligent agents can
contribute a lot to a team, especially with their ability to process large amounts of data and
find out the best next action, their contribution becomes more apparent and effective if they
can explain the reasoning behind their conclusions. XAI has a long way to go to emulate
real human explainability models, however, it is close to a breakthrough in HAT systems.

9github.com/canparlar/TUD-Research-Project-2022-Human-Performance
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A MATRX Game Environment
Below, Figure 3 is an image of the MATRX game environment used in the controlled ex-
periments. This is an image of the ‘God’ view where all obstacles and victims are visible,
disregarding the view range of the human. On the left, the game map is displayed and on
the right is the chat feature, which includes the first message of the agent.

Figure 3: Screenshot of the MATRX Game Environment
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