
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Master Thesis
Inclined quadrotor landing using on-board sensors
and computing

Master Thesis Robotics
Ernst Cancrinus



Master Thesis
Inclined quadrotor landing using on-board

sensors and computing

by

Ernst Cancrinus

Student number: 4915577
Project duration: September 4, 2023 – May 30, 2024
Thesis supervisor: Prof. dr. R. Babuska
Thesis committee: Dr. L. Ferranti

Dr. G. Li
Dr. S. Sun

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Abstract

Achieving autonomous inclined landing would be an important step towards quadrotors which are able
to land anywhere and under any conditions. If a quadrotor is able to safely land anywhere, even when
a landing platform is not available, this would open up many useful applications. Firstly, the quadrotor
could safely land whenever its battery levels get low or when contact with an operator is lost. Secondly,
the quadrotor could be used for different applications, such as reconnaissance, search and rescue,
infrastructure or delivery services.

There are many challenges to the field of autonomous inclined quadrotor landing. Firstly, landing safely
on an inclined surface without the use of a perching mechanism requires that the quadrotor has a low
approach velocity. The quadrotor should also land at the same angle as the inclination of the landing
surface. To meet these constraints, the quadrotor will be required to perform an agile landing maneu-
ver. Furthermore, the quadrotor will also have to estimate its attitude, position and velocity towards the
platform during the landing maneuver. Due to the agile landing maneuver, landmark-based localization
of the quadrotor will be more difficult, since these methods require the quadrotor’s on-board camera to
be directed at a certain landmark which can be used for guidance. Current methods for autonomous
inclined landing either use external sensors or a landing mechanism to deal with the presented chal-
lenges.

During this project, an algorithm is developed which can estimate the quadrotor’s attitude, position
and velocity during the landing maneuver, while using only on-board sensors. State estimations are
generated using two sources: a landmark-based localization algorithm and a Visual-Inertial Odome-
try (VIO) algorithm. The landmark-based localization algorithm uses markers placed near the landing
surface to determine the quadrotor’s attitude and position relative to the landing platform. Estimations
from these two systems are fused by an Extended Kalman Filter (EKF). Furthermore, we train a pol-
icy network in a deep reinforcement learning approach for control of the quadrotor during the landing
maneuver. We use a field-of-view constraint during the training of this policy network to keep markers
used by the localization algorithm in sight of the quadrotor’s on-board camera sensor during the landing
maneuver.

During a series of experiments in the Gazebo simulator, we validate performance of the state esti-
mation system during the inclined landing maneuver. We show that the marker localization algorithm’s
performance is improved by implementing a field-of-view constraint during the training of the policy net-
work. We also show that state estimation by the EKF outperforms the two individual state estimation
algorithms. In the Gazebo simulator, the quadrotor is able to use the state estimation system to land
without the use of external sensors.
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1
Introduction

To achieve fully autonomous landing in a versatile range of environments, on-board state estimation is
an important step. Outside of controlled lab environments, external sensors will often not be available.
By relying solely on on-board sensors, the quadrotor will be able to land anywhere, increasing utility
and safety. Autonomous landing ensures the quadrotor can execute safe landings when battery levels
are low or when operator connection is lost. Additionally, the quadrotor could be used for a variety of
autonomous tasks, such as reconnaissance, search and rescue, infrastructure inspection or delivery
services. These areas would greatly benefit from the quadrotor being able to land autonomously on
any surface.

Using on-board state estimation during the landing maneuver means that the quadrotor will not rely
on any external sensors, such as an external motion capture system, during the landing maneuver.
The quadrotor will only use on-board sensors to find its attitude, position and velocity relative to the
landing surface. Although external sensors are often used for precise localization of the quadrotor in
controlled lab environments, their usage limits utility of the quadrotor, as the quadrotor can only be
localized whenever external sensors are available.

There are challenging aspects to autonomous inclined quadrotor landing. To land safely, the quadrotor
can only approach at slow velocity and at a landing angle similar to the inclination of the landing surface.
These constraints will require the quadrotor to perform a complicated flight maneuver. This agile flight
maneuver will increase the difficulty of on-board state estimation, since sensor measurements will be
affected by the extreme movement during flight.

For our application, the state estimation has to be accurate under extreme flight behavior. Although
some methods, such as VIO or some landmark-based localization methods, notably used in drone rac-
ing, are able to provide accurate estimations under extreme flight behavior, the application of drone
racing requires less accurate state estimation than inclined quadrotor landing. In this thesis, we de-
velop a system able to provide accurate localization during agile flight behavior.

Apart from on-board state estimation, the quadrotor will also need a control system to perform the
landing maneuver. The control method used during this thesis to control the quadrotor during the
landing maneuver is based on prior research (Kooi and Babuška 2021). A policy network is trained
to control the quadrotor during the landing maneuver using a reinforcement learning approach. The
benefit of using a policy network to control the quadrotor over other control methods such as MPC or
PID controllers is that these methods fall short when more complicated flight maneuvers are required.

1.1. Thesis objective
The objective of this thesis is thus to develop an on-board state estimation system capable of estimating
the quadrotor’s position, attitude and velocity relative to the landing surface. This system should only

1
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use sensors which are mounted on the quadrotor and be robust enough to allow for landing under
varying conditions. The information provided by the state estimation system should be usable by the
on-board control system to conduct the landing maneuver. This goal is considered achieved if the
on-board state estimation system is able to consistently and accurately measure the quadrotor’s state
during the landing maneuver, allowing the quadrotor to safely land on the landing surface.

1.2. Contributions
• Firstly, partial system identification for the Mantis quadrotor is performed. Several experiments
are conducted for which the results can be used to model the quadrotor’s behavior during the
landing maneuver in the simulated environments.

• Secondly, a state estimation system is created which can estimate the quadrotor’s position, veloc-
ity and attitude relative to the landing surface. These estimations can then be used by the trained
policy network to control the quadrotor during the landing maneuver.

• Thirdly, the existing reinforcement learning approach for training a policy network for control of
the quadrotor is adapted to work with the Mantis quadrotor and to work in combination with the
state estimation system. The largest contribution to the existing policy training framework is the
addition of a field-of-view constraint, which keeps markers near the landing surface in the field-
of-view of the quadrotor’s camera sensor for as long as possible, improving the accuracy of state
estimations.

• Furthermore, a method is developed to integrate the PX4 controller software with the policy net-
work used for control of the quadrotor. This is an important step, since the PX4 controller software
has a large effect on flight behavior.

• Finally, experiments are conducted in the Gazebo simulator to validate the state estimation sys-
tem’s performance during the landing maneuver.

1.3. Related works
This section will give an overview of research related to the autonomous inclined landing task of this
thesis.

Autonomous inclined quadrotor landing is a widely researched subject. State estimation during the
inclined landing maneuver has been performed using different on-board sensors. Kim et al. (2021) use
a depth camera to estimate the slope and position of the landing platform. To land the quadrotor on the
platform, they use extendable landing skids. This simplifies the landing task as the quadrotor does not
have to perform an agile flight maneuver and is able to keep the landing platform within the field-of-view
of the quadrotor’s depth camera at all times. Lesak et al. (2022) use multiple radar sensors mounted on
the quadrotor to estimate the landing platform’s slope and position. Extendable landing skids are also
used during this research. Dougherty, D. Lee, and T. Lee (2014) use lasers attached to the quadrotor
to find the inclination of the landing platform. The quadrotor’s CMOS camera detects the intersection of
the lasers with the landing platform. Using three different lasers, Dougherty, D. Lee, and T. Lee (2014)
are able to identify the inclination angle and direction of the landing platform.

Another subject very relevant to the research topic of this thesis is the field of autonomous drone racing.
In autonomous drone racing, the goal is to fly through a series of racing gates as fast as possible. To fly
through the racing gates safely, the quadrotor will have to detect the relative pose of the racing gates.
This is a similar task to finding the relative pose of a landing platform. Different techniques are used to
detect the pose of the racing gates. Kaufmann, Gehrig, et al. (2018) directly estimate the pose of the
racing gate using a neural network which is trained using a combination of simulated and real world
images of the racing gate. Kaufmann, Bauersfeld, et al. (2023) use an algorithm which only detects the
corner image coordinates of the racing gate. A plane fitting algorithm is then used to detect the pose of
the racing gate relative to the quadrotor. Furthermore, to improve state estimations, these estimations
are fused with state estimations from a Visual-Inertial Odometry (VIO) algorithm using an Extended
Kalman Filter (EKF).
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Drone gap traversal is the task of flying a quadrotor through a narrow gap. This maneuver often requires
agile flight behavior. To control a quadrotor during the gap traversal maneuver, Lin et al. (2019) use a
policy network trained in a dynamically simplified environment. The policy network outputs a thrust and
attitude command to the quadrotor’s PX4 control software. The policy network used during this thesis
works in the same manner. To deal with sim2real transfer, Gaussian noise is added to the quadrotor’s
state for every timestep during training. During real world flight, the quadrotor’s state is provided by
an external motion capture system. Xie et al. (2023) also perform gap traversal using partial on-board
sensing. They detect the gap’s location through depth images. During real-world experiments, the
quadrotor’s position is still given by an external motion capture system.

Autonomous drone landing is also often performed through the use of a perching mechanism. An
additional mechanism is mounted to the quadrotor which can attach itself to the landing surface. This
increases the range of final states the quadrotor can have for a successful landing, simplifying the
landing maneuver and allowing for landing in extreme environments. Mao et al. (2023) use a perching
mechanism to land a quadrotor on an inclined surface of up to 90 degrees. They use a field-of-view
constraint to keep the landing target within sight of the quadrotor’s camera. The landing is performed
using only the on-board camera and IMU for state estimation.

To conclude, a lot of research has been done on autonomous inclined quadrotor landing, on-board
state estimation and reinforcement learning for quadrotor control, although these have not been com-
bined yet to achieve the goal of this thesis. Most of the research done on autonomous inclined quadrotor
landing still uses either an external motion capture system for state estimation, or uses a landing mech-
anism to simplify the required landing maneuver. Although on-board state estimation is performed in a
similar manner in autonomous drone racing, flying through a racing gate is a less constrained maneuver
compared to inclined quadrotor landing, as the quadrotor can fly through a racing gate at high velocity
and different angles. This also holds for the research done on gap traversal. Research done on drone
gap traversal is also often done using an external motion capture system for quadrotor localization.
Although research on drone perching has achieved autonomous landing on an inclined surface using
only on-board sensors and computing, the perching mechanism allows for more extreme approach
velocities and angles since the quadrotor can attach itself to the landing surface.



2
On-board state estimation algorithm

This section will explain the on-board state estimation algorithm used to estimate the quadrotor’s posi-
tion during the landing maneuver. The state estimations which this system provides are used by the
trained policy network to control the quadrotor during landing. The control policy network is further
described in Chapter 3.

2.1. System overview
As described in Chapter 1, the state estimation algorithm provides an estimate of the quadrotor’s posi-
tion relative to the landing surface during the landing maneuver. The pitch and velocity of the quadrotor
are also estimated. To accomplish this, the state estimation system uses the quadrotor’s on-board sen-
sors, such as the camera and inertial-measurement unit (IMU). Based on the estimated position, veloc-
ity and pitch of the quadrotor, the policy network will then send a commanded thrust and a commanded
pitch value to the quadrotor’s control software. The PX4 controller software will change this thrust and
pitch command into direct actuation of the quadrotor’s motors. Figure 2.1 provides an overview of this
system.

Figure 2.1: General system overview.

The state estimation system created during this thesis consists of three main parts. Two perception
subsystems, a marker localization algorithm and a Visual-Inertial Odometry algorithm (VIO), estimate
the state of the quadrotor using the quadrotor’s on-board sensors. State estimations of these percep-
tion subsystems are then fused using an Extended Kalman Filter (EKF).

Two perception systems are used for state estimation instead of one because both systems are not
able to provide sufficiently accurate state estimation individually. The marker localization algorithm
provides accurate position and attitude measurements but at irregular intervals. The VIO algorithm
provides state measurements at high frequency but suffers from accumulating errors over time. By
fusing the estimations of the two perception systems with an EKF, we can combine their strengths for
more accurate state estimation.

4
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2.2. Marker localization algorithm
The first of the two perception-based state estimation algorithms works by detecting markers placed
at known locations. These are used to localize the quadrotor relative to the landing platform. This
provides an accurate estimate of the quadrotor’s position and orientation. As can be seen in Figure 2.2,
the marker localization algorithm uses camera images to find the transformation from the quadrotor to
the marker, QTM . The transformation from marker to landing surface, MTP , is given as ground-truth
information. With these two transformations, the transformation from platform to quadrotor PTQ is
found. Technical implementation details of the algorithm can be found in Section 6.2.1.

As the quadrotor flies towards the landing platform in an agile flight maneuver, the camera loses sight
of the marker. This was solved by implementing a field-of-view constraint as described in Section 3.3.

Figure 2.2: Overview of the marker localization algorithm.

2.3. Visual-Inertial Odometry
The second perception subsystem is a VIO algorithm, which is widely used for on-board state estima-
tion of quadrotors. VIO combines camera and IMUmeasurements to provide accurate state estimation.
By tracking image features across consecutive images, a camera can detect changes in the quadro-
tor’s position. Because the state estimation by feature tracking is dependent on the quality of images,
poor lighting conditions or motion blur will decrease performance of the algorithm. By fusing the esti-
mations from feature tracking with those of the Inertial Measurement Unit (IMU), which provides state
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estimations at a much higher frequency and does not depend on camera images, VIO algorithms can
provide accurate state estimations. Technical implementation details of the VIO algorithm can be found
in Section 6.2.2.

2.4. Extended Kalman Filter
The state estimations have to be fused in such a way that they give a continuous state estimate to the
policy network. Without accurate and continuous state estimations, the policy network will not be able
to successfully land the quadrotor.

To fuse the state estimations from the VIO and marker localization algorithms an Extended Kalman
Filter (EKF) is used. The fused state estimations from the EKF are sent to the control policy network.
As shown in Figure 2.3, the VIO algorithm provides a more detailed state estimation than the marker
localization algorithm. The VIO algorithm provides position, linear and angular velocity, and pitch esti-
mations. The marker localization algorithm only provides position and pitch estimations.

Figure 2.3: Overview of the state estimation system.

The EKF can handle varying amounts of estimated states from different input sources. We can therefore
selectively use the most reliable state estimations from each source. Because the marker localization
algorithm gives very accurate position and attitude estimations, its position and pitch estimations are
fed into the EKF. Using two different sources with direct position estimates causes the EKF to oscillate
between the positions provided by each source. Therefore, only the velocity estimates from the VIO
algorithm are used. The VIO estimations are continuous, in contrast to the marker localization algo-
rithm’s state estimations. Therefore, the EKF uses them to accurately estimate the quadrotor’s state
when there are no markers in sight of the quadrotor’s camera. The EKF uses a standard kinematic
model to estimate the quadrotor’s position using velocity data when the marker localization algorithm is
not sending estimations. Technical implementation details of the EKF can be found in Section 6.2.3.



3
Control policy network

This section will explain how a trained policy network is used to control the quadrotor during the landing
maneuver. Adaptations to the existing framework by Kooi and Babuška (2021) will also be described.

3.1. Overview of the policy network training approach
To train the quadrotor control policy network, a simplified simulation environment is used which sim-
ulates the quadrotor’s response to actions from the policy network using a model of the quadrotor’s
dynamics.

Figure 3.1: Overview of the policy network training process.

Figure 3.1 shows the reinforcement learning approach used to train the policy network. The control
policy network outputs a commanded thrust and pitch which are used to update the quadrotor’s state
through the dynamic model. A reward is provided based on the state to guide learning. Each training
episode stops when the quadrotor reaches the goal state or the maximum timesteps are reached. This
process repeats until the policy network reliably lands the quadrotor on the inclined surface.

The environment used to train the policy network was adapted from research by Kooi and Babuška
(2021). The Crazyflie nano quadrotor was used in their research. This project uses the Mantis quadro-
tor instead, as it is equipped with better sensors for on-board state estimation. Because we use the
Mantis quadrotor, a different dynamical model has to be used to train the policy network. This is further
explained in Section 3.2.1. Technical implementation details of the reinforcement learning approach
can be found in Section 6.3.1.

When flying the real Mantis quadrotor, the system works differently from Figure 3.1. Because the
control policy network does not output direct individual motor actuation commands, quadrotor con-
troller software is used to map the thrust and pitch commands to actuation of the quadrotor motors. An
overview of this is given in Figure 3.2. Although the PX4 controller software seems like an arbitrary part
of the control loop, it plays an important role when identifying a dynamic model of the quadrotor. The
PX4 controller software is very complex and cannot be modeled directly into the training environment.

7
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Figure 3.2: Real world control loop.

A more detailed explanation of how the policy network was integrated with the PX4 controller software
is given in Section 6.3.4.

3.2. Training process
This section will describe the techniques used to train the policy network.

3.2.1. Simulation model
During the research by Kooi and Babuška (2021), the dynamic model used to model the CrazyFlie was
identified in different research by Förster (2015). For the Mantis quadrotor a new dynamic model has to
be identified. Because the Mantis quadrotor works with PX4 software, the steps by Förster (2015) for
system identification cannot be repeated directly as the PX4 controller software influences the results
of these experiments. Section 6.3.4 explains how we were able to identify a dynamic model which can
be used in combination with PX4. For details on the system identification process used for the Gazebo
simulator, see Section 6.6.3.

The quadrotor state inside the training environment is defined as follows:

s =
[
x z vx vz θ

]T (3.1)

The quadrotor dynamics are modeled as follows:[
ẍ
z̈

]
= R ·

[
0
T

]
+

[
0
−g

]
(3.2)

Where R is the rotation matrix from body to world frame and T is the acceleration thrust in body frame.
The change in thrust acceleration is given by:

Ṫ = At · T +Bt · Tc (3.3)

The change in pitch is given by:
θ̇ = Aθ · θ +Bθ · θc (3.4)

Since the landing maneuver is performed in a 2D plane, we do not model yaw and roll behavior or
movement in the Y plane. The coefficients for the thrust and pitch equations are derived by simple
flight experiments as explained in Section 6.6.1.

3.2.2. Reward function
The reward function used during training is defined as follows:

rt =


0 if s ∈ Sg

−6 if s ∈ So

−2 if s ∈ Sb

−1 otherwise.

(3.5)

Where Sg is the set of goal states, So the set of obstacle states belonging to the landing platform, and
Sb is a set of boundary states.
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The set of goal states is defined as follows:

Sg = {s||si − sg,i |< δg,i, ∀i} (3.6)

Where δg,i is a set threshold distance.

A simple euclidean distance based reward function cannot be used because the quadrotor does not
follow a straight trajectory towards the landing goal due to the complicated landing maneuver.

3.2.3. Curriculum learning approach
Due to the sparse reward function, extensive exploration is required for successful training. A curricu-
lum learning approach is therefore used to improve the training process. During training, the difficulty
of the task is incrementally increased. The inclination of the landing platform and the starting distance
from the goal are increased with small increments after each episode or timestep. The range of goal
states is incrementally decreased. The field-of-view constraint discussed in Section 3.3 only actives
after a large amount of timesteps.

3.3. Adaptations to existing framework
While the existing framework remains largely unchanged, several adaptations were made. The dy-
namic model used to model the quadrotor’s behavior was changed, since a different quadrotor was
used during this research. Another addition to the existing framework is the field-of-view constraint,
which will be explained in this section.

Because the marker localization algorithm requires markers to be in the camera’s field-of-view, it is
important that the quadrotor’s camera is directed towards the markers for as long as possible. To
facilitate this, a field-of-view constraint was added to the existing reward function. This field-of-view
constraint rewards behavior where the quadrotor’s axis perpendicular to its rotors is directed towards
the marker. When the policy network is trained in this manner, during inference, the quadrotor’s cam-
era will be directed for a longer period towards the marker, allowing for improved state estimation. An
explanation for the implementation of this constraint is given below.

Figure 3.3: Field-of-view constraint.

In Figure 3.3, S is the position of the landing platform marker and x the position of the quadrotor.
nd is the vector from the quadrotor to the target. nproj is the projection of nd on the unit vector projected
from the camera’s center. The constraint is formulated as ∥nd − nproj ∥2 ≤ r

h ∥nproj ∥2, where
r
h ∥nproj ∥2

is the radius of a cone at distance nproj from the camera. During training, the policy network receives
a negative reward when the constraint is not satisfied. The field-of-view constraint is relaxed when the
quadrotor nears the target. This is done to prevent the constraint from hindering the landing maneuver.
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Figure 3.4: Rendering of the policy network being trained while the field-of-view constraint is active. As the quadrotor nears
the landing target, the field-of-view constraint is relaxed in order to not hinder the landing movement.

Figure 3.4 shows a rendering of the quadrotor in the training environment while the field-of-view con-
straint is active during training. The red quadrotor is the actual quadrotor being controlled, the black
quadrotor resembles the goal position. The field-of-view constraint is also rendered during training.
The blue line resembles nproj . The red line resembles nd. The grey line resembles the maximum pitch
the quadrotor can have before breaking the constraint. The green line resembles the distance from the
projected center of the quadrotor’s camera to the goal ||nproj − nd||2.



4
Results

This section presents the different experiments conducted to validate the performance of the state esti-
mation system. The goal of these experiments is to validate the performance of the full state estimation
algorithm described in Chapter 2.

Several flight experiments are conducted. Firstly, we show the difference in marker detection when
the policy network is trained with the field-of-view constraint and without in Figure 4.2. To show the
effect of the field-of-view constraint on the quadrotor’s flight behavior and to give a general overview
of how the quadrotor flies during the landing maneuver, we also plot the quadrotor’s pitch and velocity
during the landing in Figure 4.3. This flight is performed with ground-truth positional data. Secondly,
we show the state estimations by the VIO algorithm. The results of this experiment can be seen in
Figure 4.4. This flight is also performed with ground truth positional data. Thirdly, we show the fused
state estimations by the EKF during the landing maneuver. During this experiment, the policy network
only receives state estimations from the EKF and is not provided with ground truth positional data. The
results of this experiment can be seen in Figure 4.5.

All experiments are conducted inside the Gazebo Software-In-The-Loop (SITL) simulator for PX4. More
information on the simulation environment can be found in Section 6.5. The experiment setup can be
seen in Figure 4.1. During flight experiments where the VIO algorithm is used, a background is added
to facilitate feature detection by the VIO algorithm.

As explained in Section 3.2.2, the policy network is trained to land the quadrotor within the goal range.
During these experiments and during training of the policy network, the goal range is set to 0.1. This
means that the quadrotor will try to land the quadrotor within 0.1 meters in X and Z direction from the
landing goal. Furthermore, the pitch constraint is set to 0.05 rad from the goal inclination. The policy
network will thus try to land the quadrotor within these constraints in the Gazebo simulator. Once the
quadrotor is within the goal range, the experiment is stopped.

All flights are performed while the quadrotor is in a hovering position, 3.5 meters behind the landing
platform (X = -3.5) and 2 meters above ground level (Z = 2). For the marker localization algorithm, a
single marker is placed on the opposite side of the landing platform, at a height of 1.8 meters (Z = 1.8)
and 0.5 meters behind the platform (X = 0.5). The landing platform has a height of 1.15 meters (Z =
1.15) in the center, and is placed at X = 0. The landing platform has an inclination of 0.448 rad. The
marker is placed at an inclination as this was found to improve detection.

11
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Figure 4.1: Overview of the experiment setup. X and Z coordinates are shown for the quadrotor starting position, goal position
and marker.

(a) Ground truth position (no field-of-view constraint). (b) Ground truth position (with field-of-view constraint).

Figure 4.2: Localization by marker detection during the landing maneuver. One policy network is trained with field-of-view
constraint, the other without. Landing maneuver is performed with ground truth data.

Figure 4.2 shows the increase in the frequency of marker detections when the field of view constraint is
used during training of the policy network. The marker is now detected more often during the flight and
not only near the beginning and end of the landing maneuver. Figure 4.2 shows that the quadrotor flies
higher when controlled by the policy network which was trained with the field of view constraint. The
increased height during the flight causes the marker, which is placed relatively high as well, to be in
sight of the quadrotor’s camera sensor for longer. Furthermore, comparing Figure 4.3e and Figure 4.3f
shows that the policy network which is trained with the field of view constraint increases the quadrotor’s
pitch value slower towards the maximum pitch. This enables the marker to stay in sight of the field-of-
view of the quadrotor’s camera for longer as well.

Figure 4.2 and Figure 4.3 also clarify that the transfer of the control policy network from the training
environment to the Gazebo simulator and from the CrazyFlie to the Mantis quadrotor has not impacted
performance of the policy network negatively. As can be seen, the control policy network lands the
quadrotor within the goal range when trained with or without the field of view constraint. This also
shows that the implementation of the field-of-view constraint has no negative effect on the ability of the
policy network to land the quadrotor.
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(a) Ground truth X velocity (no field-of-view constraint). (b) Ground truth X velocity (with field-of-view constraint).

(c) Ground truth Z velocity (no field-of-view constraint). (d) Ground truth Z velocity (with field-of-view constraint).

(e) Ground truth pitch (no field-of-view constraint). (f) Ground truth pitch (with field-of-view constraint).

Figure 4.3: Velocity and pitch ground truth data during the landing maneuver of model trained with and without field-of-view
constraint. Landing maneuver is performed with ground truth data.
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(a) X Position vs Z Position). (b) Pitch vs X Position.

(c) X Velocity vs X Position. (d) Z Velocity vs X Position.

Figure 4.4: VIO state estimation during landing maneuver. Landing maneuver is performed with ground truth data.

Figure 4.4 shows the state estimations by the VIO algorithm during the landing maneuver. As seen in
Figure 4.4a, the VIO algorithm provides very accurate position estimations. A slight drift in position es-
timations of a few centimeters is seen as the landing maneuver progresses. Figure 4.4b demonstrates
that the pitch estimations are also highly accurate. The velocity estimations in Figure 4.4c and Figure
4.4d are less accurate. Although the VIO position estimates seem accurate enough for landing the
quadrotor, they often do not suffice during landing experiments. The control policy network adjust its
output actions based on the VIO state estimates. However, as these estimates become increasingly
inaccurate over time, the policy network outputs incorrect actions. These erroneous actions extend
the time required for the quadrotor to reach its goal, causing the error in the VIO estimates to accumu-
late further. The marker localization algorithm does not suffer from increasing state estimation errors
since the state estimations are not relative measurements. Furthermore, only using the VIO algorithm’s
state estimations decreases reliability, as the VIO algorithm’s performance varies over multiple flight
experiments.
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(a) Estimated Position from Marker Detection. (b) Estimated Position from EKF.

(c) Estimated Position from VIO. (d) Estimated Pitch by EKF.

(e) Estimated X Velocity by EKF (f) Estimated Z Velocity by EKF.

Figure 4.5: Localization during landing by EKF. No ground truth data is used during the landing maneuver.
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Figure 4.5 shows the estimations from the marker localization algorithm, VIO algorithm and EKF during
a flight where the policy network is not provided with ground-truth positional data but only with state es-
timations from the EKF. Comparing Figure 4.5a and Figure 4.5b shows that the position estimations by
the EKF are more numerous than those by the marker localization algorithm. The EKF can send state
estimations at a higher frequency because it also relies on measurements from the VIO algorithm. The
VIO algorithm can send estimations at a higher frequency because it also integrates measurements
from the IMU, which operates at a much higher frequency than the camera sensor. The EKF contin-
uously publishes state estimations during parts of the flight when the marker localization algorithm is
inactive, such as near the beginning and end of the landing maneuver, further demonstrating the im-
proved state estimation. Figure 4.5e and 4.5f are the output velocity estimations by the EKF, which
closely resemble Figure 4.4c and Figure 4.4d. This similarity is logical since only the VIO algorithm
sends direct velocity estimations to the EKF. When the EKF receives no direct position updates, it up-
dates the state estimations solely based on the velocity estimations through a kinematic model (Moore
and Stouch 2016). As shown in Figure 4.5b, the velocity estimations are sufficiently accurate for the
EKF to provide reliable position estimations for the policy network when direct position estimations are
not available from the marker localization algorithm. Furthermore, the intervals where the EKF is de-
pendent on only velocity estimations are relatively short.

To conclude, these experiments show that the EKF provides reliable estimations which allow the pol-
icy network to land the quadrotor on the platform. Individual perception subsystems do not provide
sufficiently accurate estimations or at a high enough frequency. The EKF especially outperforms both
individual systems near the end of the landing maneuver, which is the most critical phase.



5
Conclusions

5.1. Summary
The goal of this research was to develop a state estimation systemwhich could be used to autonomously
land a quadrotor on an inclined platform. To achieve this, we first performed partial system identifica-
tion for the Mantis quadrotor. Using the quadrotor’s CAD model, testbench experiment results, PX4
controller gains, and information from the component manufacturers, we created a dynamic model of
the quadrotor for the Gazebo simulator.

This model was used to develop a state estimation system that uses the quadrotor’s on-board sen-
sors to estimate the quadrotor’s position, attitude and velocity during the landing maneuver. By fusing
the measurements from a marker localization and VIO algorithm through an EKF, accurate state esti-
mation was possible.

Several adaptations to the existing policy network training framework were made. Firstly, because
the Mantis quadrotor utilizes different controller software compared to the CrazyFlie nano quadrotor
used during the previous research, a method was developed to integrate the control policy network
with the PX4 controller software. Secondly, to improve state estimation accuracy, a field-of-view con-
straint was implemented into the existing reinforcement learning approach.

After integrating the state estimation system and the policy network with the PX4 controller software, a
set of experiments were performed inside the Gazebo PX4 SITL simulator to validate the system’s per-
formance. These flight experiments demonstrated that the state estimation system outperforms both
single perception algorithms and enables the control policy network to succesfully land the quadrotor
without relying on external sensors.

5.2. Future work
There are several potential improvements for the current system.

Firstly, the marker localization algorithm could be replaced with an alternative landmark-based local-
ization algorithm. Although the marker localization algorithm provides accurate localization, it requires
markers to be placed near every landing surface. Using an algorithm which can identify possible land-
ing surfaces without requiring pre-placed markers would significantly increase utility. Other research
has used the depth camera sensor to detect the slope and position of a landing platform (Kim et al.
2021).

Secondly, the policy network can be improved upon. The reinforcement learning environment could be
transferred to JAX (Bradbury et al. 2018) using Gymnax (Lange 2022). This transition might increase
the training speed significantly. Additionally, the training method could be adapted to work with quadro-
tors that are less agile. This will require changes to the curriculum learning method. For example, if the

17
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quadrotor has a slower pitch response, a succesful landing maneuver would require a longer approach
distance. This would not work with the current curriculum learning approach, which gradually expands
the initial horizontal distance to the landing platform. The quadrotor would not be able to reach the goal
state if its initial state is close to the landing platform.

Thirdly, transferring the existing framework to the real world involves several steps. To complete the
system identification process, real world flight experiments will have to be conducted to determine the
coefficients for the thrust and pitch equations for the dynamic model. Additionally, to use the perception
state estimation algorithms in the real world, the quadrotor’s camera and IMU sensors will have to be
calibrated. Because the entire framework was created to work on the PX4 SITL simulator, no major
software changes are required to transfer the state estimation and control system to the real world.



6
References

6.1. Mantis quadrotor technical specifications
6.1.1. Physical attributes

Table 6.1: Physical Attributes

Attribute Value

Mass 0.580 kg

Height 0.22 m

Width 0.18 m

Motor axis to quadrotor center distance 0.085 m

6.1.2. Quadrotor components
Table 6.2: Components List

Component Description

Motors BetaFPV 1506 3000KV Brushless Motors

Flight Controller Holybro PX4 KakuteH7v2

Camera RealSense D435i

Propellers Gemfan 3052

Companion Computer Jetson Nano / Xavier NX/TX2 NX

Carrier Board Jetson A203 V2

Battery TATTU R-LINE 1300MAH 22.2V 95C 6S LIPO ACCU

6.2. State estimation Algorithms
6.2.1. Implementation of marker localization algorithm
The marker localization algorithm is implemented as a ROS node. To detect the markers, the Aruco
ROS library is used (Pal Robotics 2014). This library takes as input images from the quadrotor’s camera
and outputs marker detections in image frame. The marker localization node then uses the detected
markers’ coordinates in image frame and the known transforms from marker to platform MTP and uses
these to estimate the quadrotor’s position with regards to the landing platform QTP . Placing multiple
markers could improve state estimation as the marker localization algorithm is able to detect multiple
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markers at the same time. For this project, a single marker was sufficient due to the implementation of
the field-of-view constraint. The input image used for the Aruco ROS package is the image given by

Figure 6.1: Overview of the marker localization system.

the left imager of the RealSense D435 camera. The maximum streaming rate is 90 Hz at a resolution
of 848x480 pixels (Intel Corporation 2024). While simulating all sensors and algorithms in the Gazebo
SITL simulation, hardware limitations can cause performance to decrease. To limit the computational
power required for the marker detection algorithm, we use the same image as is already used by the
VIO algorithm, and disable the streaming of depth and RGB images by the RealSense camera. When
the software is used on the real Mantis quadrotor in the real world and computing is done on-board
the Nvidia Jetson computing device, computational power will also be limited. Streaming images at a
higher rate to the Aruco ROS package also allows for more accurate predictions. Although the RGB
camera of the Realsense D435 can stream at higher resolutions, it does so at a much lower framerate
of at most 30 Hz (Intel Corporation 2024).

6.2.2. Implementation of VIO algorithm
The OpenVINS open-source VIO algorithm (Geneva et al. 2020) is used to give state estimations
through Visual-Inertial Odometry. As explained in section 6.2.1, limited computing power requires effi-
cient use of the camera’s streamed images. The OpenVINS algorithm expects sensor measurements
from the IMU and camera images, which can be from a single camera or from multiple cameras. The
most accurate localization performance was found by using the left and right imager cameras from
the RealSense camera and giving these as stereo camera input to the OpenVINS algorithm. Although
these stream at a lower resolution than the RealSense’s RGB camera, they can be streamed at a much
higher framerate, which was found to have a larger effect on the algorithm’s performance. The images
from the RealSense camera’s left and right imager are streamed to the VIO algorithm at a frequency
of 90 Hz. The VIO algorithm receives IMU measurements at a frequency of 250 Hz.

6.2.3. Implementation of Extended Kalman Filter
To fuse the state estimations from the marker localization and VIO algorithms, the Robot Localization
package (Moore and Stouch 2016) is used. This is an existing software package often used for state
estimation of robots. The package contains an implementation of an EKF which is easily tunable for
specific applications such as quadrotor state estimation. Before measurements are sent from the per-
ception subsystems to the EKF, a ROS node transforms them into the same coordinate frame.

Tuning the EKF is important for achieving accurate final state estimations. The EKF can be tuned
by adjusting the process noise covariance matrix, initial estimate covariance matrix and the covariance
matrices of the input state estimations from the two perception subsystems. Additionaly, The EKF can
be tuned by only using a part of the state estimations provided by each perception subsystem.

The covariance matrix values from the state estimations from the marker localization algorithm are
tuned to be much lower than those from the VIO algorithm’s. This ensures that the EKF considers the
marker localization algorithm’s state estimations as more reliable.

For the process noise covariance matrix, values relating to the acceleration are set relatively low,
since those are not being measured directly. The process noise covariance matrix is further fine-tuned
through trial and error.
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As mentioned in section 2, we only use part of the estimations made from each perception subsystem.
Directly merging absolute pose measurements from both sources caused oscillations in the estimated
position. The policy network is very sensitive to these oscillations, which causes failure during the land-
ing maneuver. To prevent these oscillations, we only use the position and attitude estimations from
the marker localization algorithm. From the VIO algorithm, we only use the angular and linear velocity
components. The EKF relies on these measurements when the marker localization algorithm is not
providing estimations.

The estimations from the marker localization algorithm and VIO algorithm are streamed at frequen-
cies of around 90 Hz and 150 Hz respectively. The EKF outputs estimations at a frequency of 90 Hz.
The implementation of the EKF for our application can be found on the cor-drone-dev Github repository.

6.3. Policy network
6.3.1. Implementation of reinforcement learning approach
The simulation environment used for the training of the policy network was developed during previous
research by Kooi and Babuška (2021). The simulation environment is created in Python using the
Python Gym1 library. The original code for the simulation environment can be found on Github2. Train-
ing the policy network in the simulation environment takes around 90 minutes on a HP Zbook Studio
G5 laptop with a Intel I7-8750H CPU and Nvidia Quadro P1000 GPU.

The Reinforcement learning approach was not directly implemented into the Gazebo SITL PX4 sim-
ulator because this simulator is too complex. The computational cost for simulating a single landing is
much higher and there is no existing framework for running large amounts of training episodes. Fur-
thermore, the added complexity of fully simulating the PX4 controller software will make training of the
policy network much more difficult.

6.3.2. Implementation of field-of-view constraint
The field-of-view constraint is implemented into the existing simulation environment developed by Kooi
and Babuška (2021). Code for the field-of-view constraint can be found on Github3.

6.3.3. Implementation of the dynamic model
As explained in Section 6.6.1, we perform simple flight experiments to obtain the coefficients for the
dynamic model used during the training of the policy network. After several flight experiments in the
Gazebo simulator, the following coefficients are obtained for the dynamic model of the Mantis quadrotor:

At = −7.4639

Bt = 7.4186

Aθ = −8.3424

Bθ = 8.444

The code for the implementation of the dynamic model can be found on Github3.

6.3.4. PX4 integration of policy network
As described in Chapter 3, the PX4 controller software is used to control the quadrotor during flight
using the policy network. In the previous research on this subject by Kooi and Babuška (2021), the
commanded thrust and pitch values from the policy network were sent directly to the CrazyFlie’s on-
board controller. This approach does not work with the PX4 controller.

A commanded thrust and pitch value can be sent to the PX4 controller by publishing an AttitudeTarget4
message to MAVROS. The commanded thrust value is a value between 0 and 1. These values are

1https://github.com/openai/gym/
2https://github.com/Jacobkooi/InclinedDroneLander
3https://github.com/cor-drone-dev
4https://docs.ros.org/en/noetic/api/mavros_msgs/html/msg/AttitudeTarget.html

https://github.com/openai/gym/
https://github.com/Jacobkooi/InclinedDroneLander
https://github.com/cor-drone-dev
https://docs.ros.org/en/noetic/api/mavros_msgs/html/msg/AttitudeTarget.html
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then sent to the PX4 controller software’s Attitude Controller5. The PX4 controller software eventually
uses the commanded pitch and thrust values to send individual motor commands.

The issue with sending the AttitudeTarget message is that the PX4 software does not provide a consis-
tent thrust output for a given thrust input command. This is because the output thrust is also dependent
on the quadrotor’s battery levels. In order to succesfully land the quadrotor and create a dynamic model
which can be used to train the policy network, A mapping is required to ensure a constant thrust output
from an input thrust command.

To accomplish this, the reinforcement learning approach is changed such that the policy network out-
puts an acceleration setpoint in the body frame of the quadrotor. The PX4’s acceleration controller is
then modeled to get the normalized thrust command from the acceleration setpoint. The normalized
thrust command can then be sent through the AttitudeTarget message to MAVROS, which in turn sends
the commanded pitch and thrust to the PX4 controller. The modeled PX4’s acceleration controller uses
the ”hover thrust estimate”, an estimate of the normalized input thrust command which is required for
the quadrotor to hover. PX4 continuously calculates this value based on battery levels.

By using the ”hover thrust estimate” to map an acceleration setpoint to the normalized thrust setpoint
which can be sent to PX4, we can ensure that the PX4 controller always follows the commanded ac-
celeration setpoint.

6.4. Software setup
this section will explain the complete software setup used to control the quadrotor.

Figure 6.2: Overview of the complete software setup.

Figure 6.2 shows the complete software setup used during the landing maneuver. The state estimation
system consists of multiple ROS nodes which send state estimations in the form of ROS messages to
the control policy network.

The control policy network is also implemented as a ROS node. Because the entire code is written
in C++, we have to convert the trained policy network from the training environment to a TorchScript
model6. The TorchScript file can be used directly with C++ through LibTorch, which is a Torch distribu-
tion for C++.

5https://docs.px4.io/main/en/flight_stack/controller_diagrams.html
6https://g-airborne.com/bringing-your-deep-learning-model-to-production-with-libtorch-part-2-tracing-your-pytorch-model/

https://docs.px4.io/main/en/flight_stack/controller_diagrams.html
https://g-airborne.com/bringing-your-deep-learning-model-to-production-with-libtorch-part-2-tracing-your-pytorch-model/
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The PX4 control interface7 provides a control interface which can interface any control algorithm with
the PX4 controller software through MAVROS. The PX4 control interface is used here to provide an
interface between the control policy network and MAVROS.

MAVROS8 provides an interface between ROS and the PX4 autopilot controller software. MAVROS
converts ROS messages to MAVLink messages which can be sent to the PX4 controller software.

6.5. Gazebo SITL simulation
Gazebo is a widely used simulator for robotics, featuring a realistic physics engine. During this the-
sis Gazebo was primarily used for two reasons: the ability to simulate sensors such as the IMU and
RealSense camera on the quadrotor, and the ability to fully simulate the quadrotor’s PX4 Controller
Software using Software-In-The-Loop (SITL) for PX4. Real world flight testing is very time-consuming.
By using SITL for PX4, accurately simulating the complete software used on the real Mantis quadrotor
is possible. This allows for realistic simulations without expensive real-world testing. In the Gazebo
simulator, we use the realsense-gazebo-plugin9 to fully simulate the RealSense camera inside the
Gazebo environment. To simulate the quadrotor dynamics, we use the widely used Gazebo RotorS
model (Furrer et al. 2016). All code for the simulation is available on the cor-drone-dev repository.

6.6. System identification
6.6.1. Flight experiments
To find the coefficients of the thrust and pitch equations, we conduct simple step experiments where a
setpoint thrust or pitch is sent to the PX4 control software. We then fit the pitch and thrust equations
on the flight data using Matlab’s nlgreyest function. For the real Mantis quadrotor, the same flight
experiments can be conducted. The Matlab scripts used to analyze the flight data rosbags can be
found on Github7.

7https://github.com/cor-drone-dev
8https://github.com/mavlink/mavros
9https://github.com/pal-robotics/realsense_gazebo_plugin

https://github.com/cor-drone-dev
https://github.com/mavlink/mavros
https://github.com/pal-robotics/realsense_gazebo_plugin
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6.6.2. Testbench experiments
As part of the system identification process, two experiments were conducted where the quadrotor was
mounted on a testbench. One experiment measured the quadrotor’s thrust in Newton based on the
input AtttitudeTarget message to the PX4 controller software. The other experiment determined the
rotational velocity of the quadrotor’s motors based on the input AttitudeTarget message. Figure 6.3
and 6.4 show that for an input command of 0, the output thrust is not equal to zero. This is because
the quadrotor’s motor’s will activate to a low initial rotational velocity if the PX4 control software is
set to ”offboard control” mode. During the experiments, the normalized output thrust sent to the PX4
controller software is increased in intervals of 0.04 every seven seconds. This is done to limit the effect
of the settling time for reaching a certain rotational velocity on the measured output thrust and rotational
velocity of the motors. The thrust measured is for all four motors combined.

Figure 6.3: Thrust experiment.

Figure 6.4: Motor rotational velocity experiment.
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6.6.3. Gazebo SITL dynamic model
To simulate quadrotor dynamics inside Gazebo, the RotorS (Furrer et al. 2016) Gazebo Motor Model
is used. This allows for the accurate simulation of quadrotor dynamics inside Gazebo. The RotorS
model simulates the quadrotor dynamics by individually simulating dynamics for each rotor. The Ro-
torS model requires a set of coefficients which are used to model the quadrotor’s rotors. For the Mantis
quadrotor, the following RotorS motor model coefficients were chosen:

Table 6.3: Quadrotor Dynamic Model Coefficients

Coefficient Value
Time Constant Up 0.1
Time Constant Down 0.02
Max Rotational Velocity 4000
Motor Constant 2.5× 10−7

Moment Constant 3.18× 10−3

Rotor Drag Coefficient 4.11× 10−5

Rolling Moment Coefficient 1× 10−6

These coefficients were chosen based on available information from the propellers’ and motors’ manu-
facturer’s datasheets. Themoments of inertia which were used tomodel the quadrotor were determined
by using the quadrotor’s CAD model. To obtain an accurate estimation of the moments of inertia of the
quadrotor, individual quadrotor parts were weighted and assigned these weights in the CAD model.
Different autoCAD programs provide functionality to calculate moments of inertia from the CAD model
with assigned weights per parts. The determined moments of inertia are as follows:

Table 6.4: Quadrotor Moment of Inertia Coefficients

Coefficient Value
Ixx 0.0013218
Iyy 0.00083023
Izz 0.0013443

The tuned controller gains from the real world Mantis quadrotor were also used inside the simulator.
The PX4 controller gains for the Mantis quadrotor are as follows:

. ${R}etc/init.d/rc.mc_defaults

set MIXER quad_x
set PWM_OUT 1234

param set-default EKF2_AID_MASK 24
param set-default EKF2_MULTI_IMU 0
param set-default EKF2_HGT_MODE 3
param set-default EKF2_EV_DELAY 0

param set-default MC_ROLL_P 8
param set-default MC_ROLLRATE_P 0.08
param set-default MC_ROLLRATE_I 0.25
param set-default MC_ROLLRATE_D 0.001

param set-default MC_PITCH_P 8
param set-default MC_PITCHRATE_P 0.08
param set-default MC_PITCHRATE_I 0.25
param set-default MC_PITCHRATE_D 0.001
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param set-default MC_YAW_P 4
param set-default MC_YAWRATE_P 0.2
param set-default MC_YAWRATE_I 0.1
param set-default MC_YAWRATE_D 0

param set-default MC_ROLLRATE_MAX 1600
param set-default MC_PITCHRATE_MAX 1600
param set-default MC_YAWRATE_MAX 1000

param set-default MPC_MANTHR_MIN 0
param set-default MPC_MAN_TILT_MAX 60

param set-default THR_MDL_FAC 0.3

param set-default PWM_MAIN_MIN 1075
param set-default PWM_MAIN_RATE 0

param set-default SDLOG_PROFILE 19

param set-default IMU_DGYRO_CUTOFF 50
param set-default IMU_GYRO_CUTOFF 90

param set-default CBRK_IO_SAFETY 22027

The full SDF file used tomodel theMantis quadrotor can be found in the cor-drone-devGithub repository.
A model for a much more agile quadrotor is also created for testing purposes. This model is created
by changing the RotorS model parameters, moments of inertia and by tuning the controller gains. This
model is not used during the thesis, as it is less realistic than the model for the Mantis quadrotor.

Table 6.5: Agile Quadrotor Dynamic Model Coefficients

Coefficient Value
Time Constant Up 0.0001
Time Constant Down 0.0001
Max Rotational Velocity 4000
Motor Constant 2.5× 10−7

Moment Constant 3.18× 10−3

Rotor Drag Coefficient 4.11× 10−5

Rolling Moment Coefficient 1× 10−8

Table 6.6: Agile Quadrotor Moment of Inertia Coefficients

Coefficient Value
Ixx 0.0013218
Iyy 0.00058023
Izz 0.0013443

The controller parameters for the agile quadrotor are as follows:

. ${R}etc/init.d/rc.mc_defaults

set MIXER quad_x
set PWM_OUT 1234
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param set-default EKF2_AID_MASK 24
param set-default EKF2_MULTI_IMU 0
param set-default EKF2_HGT_MODE 3
param set-default EKF2_EV_DELAY 0

param set-default MC_ROLL_P 8
param set-default MC_ROLLRATE_P 0.08
param set-default MC_ROLLRATE_I 0.25
param set-default MC_ROLLRATE_D 0.001

param set-default MC_PITCH_P 40
param set-default MC_PITCHRATE_P 0.039
param set-default MC_PITCHRATE_I 0.0
param set-default MC_PITCHRATE_D 0.0006

param set-default MC_YAW_P 4
param set-default MC_YAWRATE_P 0.2
param set-default MC_YAWRATE_I 0.1
param set-default MC_YAWRATE_D 0

param set-default MC_ROLLRATE_MAX 1600
param set-default MC_PITCHRATE_MAX 2600
param set-default MC_YAWRATE_MAX 1000

param set-default MPC_MANTHR_MIN 0
param set-default MPC_MAN_TILT_MAX 60

# use thrust curve factor (instead of TPA)
param set-default THR_MDL_FAC 0.3

param set-default PWM_MAIN_MIN 1075
# enable one-shot
param set-default PWM_MAIN_RATE 0
param set-default PWM_RATE 0

# enable high-rate logging profile (helps with tuning)
param set-default SDLOG_PROFILE 19

param set-default IMU_DGYRO_CUTOFF 50
param set-default IMU_GYRO_CUTOFF 90

param set-default CBRK_IO_SAFETY 22027
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