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Abstract

At the moment of writing, the future evolution of the COVID-19 epidemic is unclear.
Predictions of the further course of the epidemic are decisive to deploy targeted
disease control measures. We consider a network-based model to describe the
COVID-19 epidemic in the Hubei province. The network is composed of the cities in
Hubei and their interactions (e.g., traffic flow). However, the precise interactions
between cities is unknown and must be inferred from observing the epidemic. We
propose the Network-Inference-Based Prediction Algorithm (NIPA) to forecast the
future prevalence of the COVID-19 epidemic in every city. Our results indicate that NIPA
is beneficial for an accurate forecast of the epidemic outbreak.
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Introduction
In December 2019, the novel coronavirus SARS-CoV-2 emerged in the Chinese city
Wuhan (Munster et al. 2020). The SARS-CoV-2 virus causes the COVID-19 disease. Con-
trary to initial observations (Cheng and Shan 2020), the COVID-19 virus does spread
from person to person, as confirmed in Chan et al. (2020). OnMarch 19, 2020, there were
more than 215,000 confirmed infections, and more than 8500 people died (World Health
Organization 2020; ‘Situation UpdateWorldwide, as of 18March 2020’, www.ecdc.europa.
eu/en/geographical-distribution-2019-nCoV-cases, unpublished; ‘Coronavirus (COVID-
19)’, www.cdc.gov/coronavirus/2019-nCoV/index.html, unpublished). Assessing the fur-
ther spread of the COVID-19 epidemic poses a major public health concern.
Many studies aim to estimate the basic reproduction number R0 of the COVID-19 epi-

demic (Zhao et al. 2020;Majumder andMandl 2020; Li et al. 2020; Yang et al. 2020; Imai et
al. 2019; Liu et al. 2020; Riou and Althaus 2020; Read et al. 2020;Wu et al. 2020). The basic
reproduction number R0 is a crucial quantity to evaluate the hostility of a virus (Hethcote
2000; Heesterbeek 2002). The basic reproduction number R0 is defined (Diekmann et al.
1990) as “The expected number of secondary cases produced, in a completely suscepti-
ble population, by a typical infective individual during its entire period of infectiousness”.
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The greater the basic reproduction R0, the more individuals are infected in the long-term
endemic state of the virus. If R0 < 1, then the virus dies out. The estimates for the basic
reproduction number R0 of the COVID-19 epidemic range from R0 = 2.0 to R0 = 3.77.
The basic reproduction number R0 only coarsely assesses the quantitative behaviour

of the epidemic. To obtain a more detailed picture of the epidemic, the development of
epidemic outbreak prediction methods is focal. A diverse body of research considers the
prediction of general epidemics. For instance, prediction methods are based on Kalman
filtering (Yang et al. 2014), Bayesian model averaging (Yamana et al. 2017), basic regres-
sion (Brooks et al. 2015) and kernel density estimation (Ray and Reich 2018). Recent work
focussed on the dependency of population flow and the viral spread (Colizza et al. 2006;
Balcan et al. 2009; Belik et al. 2011; Brockmann and Helbing 2013). As shown by (Pei et al.
2018), the spread of influenza can be more accurately predicted by taking the population
flow between cities into account. Read et al. (2020) predicted the COVID-19 epidemic
by using the Official Aviation Guide (OAG) Traffic Analyser dataset. Additionally to the
OAG dataset, (Wu et al. 2020) used the Tencent database to predict the COVID-19 viral
spread.
The population flow clearly has an impact on the evolution of an epidemic. However,

the exact population flow is unknown, and epidemic prediction methods must account
for inaccuracies of population flow data. In this work, we consider the most extreme
case by assuming no prior knowledge of the population flow. To forecast the COVID-19
epidemic, we design the network-based prediction method NIPA that estimates the inter-
actions between cities as an intermediate step. On February 14th, 2020, approximately
75% of the global COVID-19 infections are located in the Chinese province Hubei. Thus,
we focus on the COVID-19 epidemic in Hubei. More precisely, our goal is to predict the
COVID-19 outbreak for every city in Hubei.

Materials andmethods
Data on the COVID-19 epidemic outbreak in Hubei

The time series of reported infections in Hubei forms the basis for the epidemic
outbreak prediction. Hubei is divided into 17 cities (more precisely, prefecture-level
divisions) and contains the city Wuhan, as illustrated by Fig. 1. We do not con-
sider the city Shennongjia, since the number of infections in Shennongjia is small.
We denote the number of considered cities by N = 16. The number of newly
reported infections for each city in Hubei is openly accessible via the website of the
Hubei Province Health Committee (http://www.hubei.gov.cn/, unpublished). The data is
updated daily and follows the standard time offset of UTC+08:00. Except for Wuhan,
the total number of reported infections is small before January 21, 2020. Hence, we
consider the COVID-19 epidemic outbreak starting from January 21. From Febru-
ary 13 on, a new diagnosing method on the basis of chest scans has been used for
reporting the infections in Hubei (‘Coronavirus Latest: China’s Epicentre Records No N
ew Cases’, www.nature.com/articles/d41586-020-00154-w, unpublished). The new diag-
nosing method resulted in an erratic spike in the number of reported infections. We
focus on predicting the number of infections of the initial diagnosing method, which
is based on genetic tests. The number of reported infections of the initial diagnos-
ing method is accessible from (http://www.hubei.gov.cn/, unpublished) until February

http://www.hubei.gov.cn/
www.nature.com/articles/d41586-020-00154-w
http://www.hubei.gov.cn/
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Fig. 1 Map of cities in Hubei. The 17 cities (prefecture-level divisions) of the Chinese province Hubei. The
names of the cities are stated in Supplementary Table S2. The greater the fraction of people that have been
infected by COVID-19 on February 14, the darker the city. We do not consider the city Shennongjia in this
work, which is marked with a star (*) and a light colour

14, 2020. Thus, we focus on the COVID-19 epidemic in Hubei from January 21 until
February 14, 2020.
We denote the discrete time by k ∈ N. The difference of time k to k + 1 equals one

day, and the initial time k = 1 corresponds to January 21, 2020. The website (http://www.
hubei.gov.cn/, unpublished) states the number of reported infections Nrep,i[ k] at every
time k in every city i = 1, ...,N . We obtain the population size pi of each city i from the
Hubei Statistical Yearbook (Li and Xu 2016). The reported fraction of infected individuals
in city i at time k follows as

Irep,i[ k]= Nrep,i[ k] /pi. (1)

Supplementary Table S2 states the population size pi and the complete time series of the
number of infections Nrep,i[ k] for each city in Hubei.

Modelling the COVID-19 epidemic between cities

We model the spread of the COVID-19 virus by the SIR-model: At any discrete time k,
every individual is in either one of the compartments susceptible (healthy), infectious or
removed. Susceptible individuals can get infectious due to contact with infectious individ-
uals. Due to curing, hospitalisation, quarantine measures or death, infectious individuals
become removed individuals, which cannot infect susceptible individuals any longer. For
every city i, we denote the 3 × 1 viral state vector at time k by

vi[ k]=
⎛
⎜⎝

Si[ k]
Ii[ k]
Ri[ k]

⎞
⎟⎠ . (2)

The components Si[ k], Ii[ k], and Ri[ k] denote the fraction of susceptible, infectious,
and removed individuals, respectively. Thus, it holds that Si[ k]+Ii[ k]+Ri[ k]= 1 for

http://www.hubei.gov.cn/
http://www.hubei.gov.cn/
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every city i at every time k. The discrete-time SIR model follows from applying Euler’s
method to the continuous-time mean-field SIR model of (Youssef and Scoglio 2011):

Definition 1 (SIR EpidemicModel (Youssef and Scoglio 2011; Prasse and VanMieghem
2020)) For every city i, the viral state vi[ k]= (Si[ k] ,Ii[ k] ,Ri[ k] )T evolves in discrete
time k = 1, 2, ... according to

Ii[ k + 1] = (1 − δi)Ii[ k]+ (1 − Ii[ k]−Ri[ k] )
N∑
j=1

βijIj[ k] , (3)

Ri[ k + 1] = Ri[ k]+δiIi[ k] ,

and the fraction of susceptible individuals follows as

Si[ k]= 1 − Ii[ k]−Ri[ k] .

Here, βij denotes the infection probability from city j to city i, and δi denotes the curing
probability of city i.

The SIRmodel (3) assumes that the spreading parameters δi, βij do not change over time
k. The curing probability δi quantifies the capacity of individuals in city i to cure from the
virus. The infection probability βij specifies the number of contacts of individuals in city
j with individuals in city i. We emphasise that βii �= 0 since individuals within one city i
do interact with each other. The contact network between cities in Hubei is given by the
N × N matrix

B =

⎛
⎜⎜⎝

β11 β12 ... β1N
...

...
. . .

...
βN1 βN2 ... βNN

⎞
⎟⎟⎠ ,

whose elements are probabilities 0 ≤ βij ≤ 1. Neither the curing probabilities δi nor the
infection probabilities βij are known for the COVID-19 epidemic. Potentially, it is possible
to state bounds or estimates for the spreading parameters δi and βij by making use of the
people flow or geographical distances between the respective cities. Nevertheless, there
would remain an uncertainty regarding the precise value of the spreading parameters δi
and βij. In this work, we consider the most extreme case: there is no a priori knowledge
on the curing probabilities δi nor the infection probabilities βij.

Network-inference-based prediction algorithm (NIPA)

We propose the NIPA method to predict the outbreak of COVID-19 virus, which con-
sists of three steps. First, we preprocess the raw data of the confirmed number of infected
individuals to obtain an SIR time series vi[ 1] , ..., vi[ n] of the viral state for every city
i. Here, the number of observations is denoted by n. Second, based on the time series
vi[ 1] , vi[ 2] , ..., we obtain estimates δ̂i and β̂ij of the unknown spreading parameters δi and
βij. Third, the estimates δ̂i and β̂ij result in an SIR model (3), which we iterate for future
times k to predict the evolution of the 2019-Cov virus. In the following, we give an out-
line of the first two steps of the prediction method. We refer the reader to Supplementary
Information S1 for further details on NIPA.
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Data preprocessing

We denote the number of observations by n, which equals the number of days since
January 21, 2020. Based on the reported number of infections Nrep,i[ k], our goal is to
obtain an SIR viral state vector vi[ k]= (Si[ k] ,Ii[ k] ,Ri[ k] )T for every city i at any time
k = 1, ..., n. The fraction of susceptible individuals follows as Si[ k]= 1− Ii[ k]−Ri[ k] at
any time k ≥ 1. Thus, it suffices to determine the fraction of infectious individuals Ii[ k]
and recovered individualsRi[ k].
The fraction of infectious individuals Ii[ k] follows from the reported fraction of infec-

tions Irep,i[ k]. To be precise, the reported data is the number Nrep,i[ k] of individuals that
are detected to be infected by COVID-19. Upon detection of the infection, the respective
individuals are hospitalised and, hence, not infectious any more to individuals outside
of the hospital. We consider the reported fraction of infections Irep,i[ k] as an approxi-
mation for the number of infectious individuals Ii[ k]. In fact, the reported fraction of
infections Irep,i[ k] lower-bounds the true fraction of infected individuals Ii[ k] for two
reasons. First, not all infectious individuals are aware that they are infected. Second, the
diagnosing capacities in the hospitals are limited, particularly when the number of infec-
tions increases rapidly. Hence, not all infectious individuals that arrive at a hospital can
be reported timely.
We do not know the fraction of removed individualsRi[ k]. At the initial time k = 1, it

is realistic to assume thatRi[ 1]= 0 holds for every city i. At any time k ≥ 2, the removed
individuals Ri[ k] could be obtained from (3), if the curing probability δi were known.
However, we do not know the curing probability δi. Hence, we consider 50 equidistant
candidate values for the curing probability δi, ranging from δmin = 0.01 to δmax = 1.
We define the set of candidate values as � = {δmin, ..., δmax}. For every candidate value
δi ∈ �, the fraction of removed individuals Ri[ k] follows from (3) at all times k ≥ 2.
Thus, we obtain 50 potential sequencesRi[ 1] , ...,Ri[ n], each of which corresponding to
one candidate value δi ∈ �. We estimate the curing probability δi, and hence implicitly
the sequence Ri[ 1] , ...,Ri[ n], as the element in � that resulted in the best fit of the SIR
model (3) to the reported number of infections.
The raw time series Irep,i[ 1] , ...,Irep,i[ n] exhibits erratic fluctuations. There is a sin-

gle outlier in city i = 1 (Wuhan) at time k = 8 (January 28, 2020), which we replace
by Irep,1[ 8]= (Irep,1[ 7]+Irep,1[ 9] )/2. (Potentially, the outlier is due to the increase
in the maximum number of individuals that can be diagnosed in Wuhan, from 200
to 2000 individuals per day as of January 27th (https://m.chinanews.com/wap/detail/
zw/sh/2020/01-28/9071697.shtml, unpublished). To reduce the fluctuations, we apply a
moving average, provided by the Matlab command smoothdata, to the time series
Irep,i[ 1] , ...,Irep,i[ n] of every city i. The preprocessed time series Ii[ 1] , ...,Ii[ n] equals
the output of smoothdata.

Network inference

For every city i, the curing probability δi is estimated as one of the candidate values
in the set �, as outlined above. The remaining task is to estimate the infection prob-
abilities βij. The goal of network inference (Peixoto 2019; Ma et al. 2019; Di Lauro et
al. 2019; Timme and Casadiego 2014; Wang et al. 2016) is to estimate the matrix B of
infection probabilities from the SIR viral state observations vi[ 1] , ..., vi[ n]. The matrix
B can be interpreted as a weighted adjacency matrix. We adapt a network inference

https://m.chinanews.com/wap/detail/zw/sh/2020/01-28/9071697.shtml
https://m.chinanews.com/wap/detail/zw/sh/2020/01-28/9071697.shtml
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approach (Prasse and Van Mieghem 2018; 2020), which is based on formulating a set
of linear equations and the least absolute shrinkage and selection operator (LASSO)
(Tibshirani 1996; Hastie et al. 2015). We remark that the network inference approach
(Prasse and Van Mieghem 2020) is also applicable to general compartmental epidemic
models (Sahneh et al. 2013), such as the Susceptible-Exposed-Infected-Removed (SEIR)
epidemic model. The crucial observation from the SIR governing equations (3) is that βij
appears linearly, whereas the state variables Si, Ii and Ri do not. From (3), the infection
probabilities βij satisfy

Vi = Fi

⎛
⎜⎜⎝

βi1
...

βiN

⎞
⎟⎟⎠ (4)

for all cities i = 1, ...,N . Here, the (n− 1) × 1 vector Vi and the (n− 1) ×N matrix Fi are
given by

Vi =

⎛
⎜⎜⎝

Ii[ 2]−(1 − δi)Ii[ 1]
...

Ii[ n]−(1 − δi)Ii[ n − 1]

⎞
⎟⎟⎠ (5)

and

Fi =

⎛
⎜⎜⎝

Si[ 1] I1[ 1] ... Si[ 1] IN [ 1]
...

. . .
...

Si[ n − 1] I1[ n − 1] ... Si[ n − 1] IN [ n − 1]

⎞
⎟⎟⎠ . (6)

If the SIR model (3) were an exact description of the evolution of the coronavirus, then
the linear system (4) would hold with equality. However, the viral state vector vi[ k] in city
i does not exactly follow the SIR model (3). Instead, the evolution of the viral state vector
vi[ k] is described by

vi[ k + 1] = fSIR(v1[ k] , ..., vN [ k] ) + wi[ k] ,

where the 3×1 vector fSIR(v1[ k] , ..., vN [ k] ) denotes the right-hand sides of the SIRmodel
(3), and the 3×1 vector wi[ k] denotes the unknownmodel error of city i at time k. Due to
the model errors wi[ k], the linear system (4) only holds approximately. Thus, we resort to
estimating the infection probabilities βij by minimising the deviation of the left side and
the right side of (4). We infer the network by the LASSO (Tibshirani 1996; Hastie et al.
2015) as follows:

min
βi1,...,βiN

∥∥∥∥∥∥∥∥
Vi − Fi

⎛
⎜⎜⎝

βi1
...

βiN

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥

2

2

+ ρi

N∑
j=1,j �=i

βij

s.t. 0 ≤ βij ≤ 1, j = 1, ...,N .

(7)

The first term in the objective function of (7) measures the deviation of the left side and
the right side of (4). The sum in the objective of (7) is an �1–norm regularisation term
which avoids overfitting. We choose to not penalise the probabilities βii, since we expect
the infections among individuals within the same city i to be dominant. The regularisa-
tion parameter ρi > 0 is set by cross–validation. The LASSO network inference (7) allows
for the incorporation of a priori knowledge of the contact network B by adding further
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constraints to the infection probabilities βij. We emphasise that an accurate prediction
of an SIR epidemic outbreak does not require an accurate network inference (Prasse and
Van Mieghem 2020), see also Supplementary Information S1. If the observed viral state
sequence vi[ 1], ..., vi[ n] is generated by the SIR model (3), then NIPA accurately predicts
the infection state Ii[ k]. Furthermore, NIPA provides accurate short-term predictions,
also when the viral state vi[ k] does not exactly follow the SIR model (3), i.e., in the pres-
ence of model errors wi[ k]. We refer the reader to Supplementary Information S1 for
further details on NIPA.

Logistic regression

The accuracy of NIPA is evaluated by comparison to a simple prediction method. Quali-
tatively, the virus spread in many epidemiological models follows a sigmoid function, see
also (VanMieghem 2016). A particular sigmoid function is obtained by logistic regression.
As a comparison to NIPA, we apply logistic regression on the reported fractions Irep,i[ 1],
..., Irep,i[ n] of infection individuals, independently for each city i in Hubei. Logistic regres-
sion is advantageous because a logistic function is a closed-form expression. Moreover,
the logistic function is an approximation to the exact solution of some epidemiological
models and population growth models (Verhulst 1838; Van Mieghem 2016; Prasse and
Van Mieghem 2019).
A logistic curve is given by the following equation

y(t) = y∞
1 + e−K(t−t0)

. (8)

In our formulation, y(t) is the time-dependent fraction of infectious individuals, t is the
time in days, where January 21 serves as initial condition (t = 0), y∞ is the fraction of
infected individuals when time approaches infinity, K is the logistic growth rate and t0

Fig. 2 Prediction of the COVID-19 outbreak in Hubei. The prediction of the COVID-19 outbreak in Hubei
by NIPA and by simple logistic regression. For clarity, only five of the N = 16 cities are depicted. Each
subfigure is obtained by omitting a numberm = 1, 2, 3, 4 of days prior to February 14, 2020, and
subsequently predicting the same number of days ahead in time. The omitted number of data points is equal
to: am = 1 day, bm = 2 days, cm = 3 days and dm = 4 days. The first prediction data point, for instance
February 13 in subfigure a), coincides with the last day that has been observed
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indicates the inflection point of the logistic equation. For each city in Hubei, we have
applied the Matlab command lsqcurvefit to fit the reported cumulative fraction

Irep,cs,i[ k]=
k∑

τ=1
Irep,i[ τ ]

of infected individuals to Eq (8).

Results and discussion
To evaluate the prediction accuracy, we remove the data for a fixed number of days, say
m, prior to February 14. The prediction model is determined by the observation from 21
January up to 14 − m February, 2020. Then, we predict the course of the disease up to
February 14. The course of the disease is shown in Fig. 2 for the removal of m = 1, 2, 3, 4
days. For most predictions shown in Fig. 2, the logistic curve appears to underestimate the
true fraction of infected individuals, whereas NIPA seems to overestimate the true value.
We quantify the prediction accuracy by the Mean Absolute Percentage Error (MAPE)

e[ k]= 1
N

N∑
i=1

∣∣∣Îcs,i[ k]−Ics,i[ k]
∣∣∣

Ics,i[ k]
,

Fig. 3 Prediction error versus prediction time. The prediction accuracy of NIPA and logistic regression to
forecast the COVID-19 outbreak in Hubei. Each subfigure is obtained by omitting a number of days prior to
February r and subsequently predicting the same number of days ahead in time. The subfigures of the three
rows (a, d), (b, e) and (c, f) correspond to February r = 10, r = 12 and r = 14, respectively. The subfigures of
the two columns (a, b, c) and (d, e, f) correspond tom = 3 andm = 4 omitted days before February r,
respectively
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at any prediction time k ≥ n + 1. Here, the predicted cumulative fraction of individuals
of city i at time k equals

Îcs,i[ k]=
k∑

τ=1
Îi[ τ ] . (9)

Figure 3 depicts theMAPE prediction error for the data shown in Fig. 2. Two observations
are worth mentioning. First, as expected, the prediction error increases when predicting
more days ahead. Second, the prediction accuracy of NIPA is almost always better than
the logistic regression. In particular, NIPA providesmore accurate short-term predictions.
Lastly, Fig. 4 illustrates the prediction accuracy versus the time that the epidemic

outbreak has been observed. As the epidemic evolves over time, the prediction accu-
racy of both methods increases. For nearly all forecasts, the NIPA method outperforms
logistic regression. Also, as expected, forecasting more days ahead always decreases the
prediction accuracy for both prediction methods.

Conclusion
We applied a network-based SIR epidemic model to predict the outbreak of the COVID-
19 virus for each city in the Chinese province Hubei. The epidemic model allows
to explicitly specify the interactions of individuals of different cities, for instance by
using traffic patterns between cities. However, the precise interactions between cities is
unknown and must be inferred from observing the evolution of the epidemic.
We proposed the NIPA prediction method, which estimates the interactions between

cities as an intermediate step. We did not assume any prior knowledge on the interac-
tions between cities. The prediction method is evaluated on past data of the COVID-19
outbreak in Hubei. Our results indicate that a network-based modelling approach may
yield more accurate predictions than modelling the epidemic for each city independently.
We believe that the prediction accuracy of NIPA could be further improved, e.g., by using
traffic flow patterns as prior knowledge.

Fig. 4 Prediction error versus number of observed days. The accuracy of both prediction methods for
the COVID-19 outbreak versus the date until the data is available. The subfigures correspond to a prediction
of : (a) 1-day ahead, (b) 2-days ahead, (c) 3-days ahead, (d) 4-days ahead



Prasse et al. Applied Network Science            (2020) 5:35 Page 10 of 11

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1007/s41109-020-00274-2.

Additional file 1: Appendix S1 – Details of NIPA. The details and pseudocode of the Network-Inference-based
Prediction Algorithm (NIPA). Furthermore, the prediction accuracy of NIPA is evaluated on the SIR epidemic model.

Additional file 2: Table S2 – Data of the COVID-19 epidemic outbreak in Hubei. The time series of the reported
number of infections and the population size for every city in Hubei.
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