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Predicting Passenger Flow Using Graph Neural Networks with
Scheduled Sampling on Bus Networks

Asiye Baghbani1, Saeed Rahmani 2, Nizar Bouguila1, and Zachary Patterson1

Abstract— Predicting short-term passenger flows in bus net-
works is crucial to improving the overall performance of
such systems and increasing their attractiveness. This study
develops a graph neural network-based framework for multi-
step passenger flow prediction specifically designed for bus
networks to capture their unique characteristics. We propose
the Multi-step Multi-component Graph Convolutional Long
Short-Term Memory (Multi-GCN-LSTM) model, which uses
1) a proximity matrix in addition to an adjacency matrix to
consider the effects of vehicular traffic and link-level distances;
2) Scheduled Sampling for multi-step prediction, which prevents
error propagation across prediction steps; and 3) a novel fusion
mechanism for considering time-varying spatial and temporal
correlations among passenger flow data based on recent, daily,
and weekly travel patterns. This model is validated using
real-world data collected from the Laval bus network. Also,
benchmarking the established model against state-of-the-art
baselines indicated its competency.

I. INTRODUCTION
Bus transportation systems are essential parts of urban

transportation networks. They can reduce the share of private
cars and thus reduce traffic congestion, air pollution, and
fuel consumption. The relative crowdedness of buses in the
network plays a significant role in the optimal operation and
increasing the attractiveness of these systems. Knowing about
passenger flows, which in this study means the number of
people in the bus, on a specific bus or route at a short-
term horizon can help decision-makers and transit operators
to control the passenger outflows and inflows at bus stops.
Moreover, informing passengers about the crowdedness of
arriving buses in the network will help them decide when
and what services or modes of transport to use.

Accordingly, short-term passenger flow prediction has
drawn the attention of researchers [1], [2]. Initial attempts
mainly tried to model passenger flows using linear models
[3]. However, linear methods showed to be insufficient
for capturing complex relationships among such data. Ac-
cordingly, nonlinear methods, and especially deep learning
techniques, became dominant for short-term passenger flow
prediction by utilizing fully connected deep neural networks
[2], [4], convolutional neural networks (CNN) [5], LSTM-
based models [6], [7], and hybrid frameworks [8], [1].
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Nevertheless, general deep learning models tend to over-
look important characteristics of transportation networks. For
example, CNNs, which are widely used for capturing spatial
correlations, assume Euclidean spatial relationships among
data points. This assumption may not hold in transporta-
tion networks, where spatial correlations are usually better
represented as graphs rather than Euclidean space [9]. For
instance, passenger flows between nearby stops may not
exhibit strong correlations if they are not connected by the
same route or are serving different areas of the city.

In recent years, a new class of machine learning methods
has emerged that enables the translation of deep learning
tasks on graph-structured data, which have been also widely
applied to passenger flow prediction. The promising results
of Li et al. [10] and Han et al. [11] encouraged many
researchers to develop graph-based frameworks for passenger
flow prediction utilizing multi-graphs [12], [13], utilizing
hypergraph concept [14], introducing dynamic graph struc-
tures [15], integrating LSTM into GCN [16], [17], applying
attention mechanism [18], and using encoder-decoders [19].

However, these studies are also faced with some limita-
tions. Firstly, they have been focused on metro and train
systems, neglecting bus networks. Nevertheless, bus systems
have unique operational and design characteristics, which
require a separate line of research [2], [7]. For instance,
they usually share their routes with vehicular traffic, which
causes significant uncertainties with regard to their stickiness
to pre-defined timetables, and therefore, passenger flows.
Moreover, unlike rail-based systems, bus systems are signif-
icantly prone to environmental disruptions. In addition, bus
networks are often designed at lower operational levels and
thus are usually highly interconnected with more stops, mul-
tiple connections, and frequent transfer points. This makes
bus networks more complex and intricate for analysis and
prediction, especially using graph-based methods.

Besides, most GNN studies on bus passenger flow pre-
diction have focused on single-step prediction, which may
not be practical for users or operators. A very short-term
horizon (e.g., 10 minutes) does not supply the operators with
sufficient time for modifying the system, and a longer hori-
zon (e.g., 60 minutes) might be useless for users considering
the short time intervals between bus services. Accordingly,
an accurate multi-step prediction can supply multiple time
resolutions, which is desirable for both end-users and oper-
ators. On the other hand, few studies that have investigated
multi-step bus passenger flow prediction [20] suffer from a
known problem in sequence-to-sequence prediction, which
is called exposure bias [21]. This issue is because, in the
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training phase, the ground truth data is used as the input
for all steps ahead. However, when forecasting, the model
only uses the predicted values from the previous steps.
Therefore, there is an inconsistency between the training
and testing phases, which leads to the propagation of errors
throughout the prediction steps [22]. To solve this issue, we
apply a scheduled sampling technique [22], to bridge the
gap between the training and testing phases and force the
model to learn how to correct its mistakes during the training
process. To the best of our knowledge, this is the first time
that such a mechanism is applied to a short-term passenger
flow prediction.

Last but not least, studies have shown that there usually
are multiple temporal and spatial correlations among data
points [2], [13], which means there might be short-term,
mid-term, and long-term patterns in passenger flow data.
Accordingly, we have designed a novel fusion mechanism for
incorporating the most recent (for instance, hourly) patterns
into the prediction task, while considering the daily and
weekly variations as well. The idea behind including daily
and weekly patterns is that people usually show similar
behaviors at specific hours of the day, and specific days of
the week.

To summarize the above discussions, the main contribu-
tions of this study are:

1) We have developed a novel graph-based deep learning
framework for passenger flow prediction, specifically
designed for bus systems. In this framework, unique
characteristics of bus networks are considered by defin-
ing two types of spatial correlations: 1) the connectivity
of the stops based on bus lines and routes, 2) and the
road network proximity for considering the structure
of the road network and the effects of vehicular traffic
(accounting for travel time between stops). This struc-
ture enables going beyond the simplified assumptions
made for metro and rail transit systems.

2) We have designed a specific multi-step prediction
mechanism by using scheduled sampling, which pre-
vents the propagation of errors during the multi-step
prediction process.

3) We have designed a fusion mechanism for considering
the short-, mid-, and long-term temporal patterns in
our prediction frameworks.

4) Finally, we have evaluated the performance of the
proposed framework by conducting a real-world exper-
iment using the passenger flow data for 467 stops in
Laval, Canada, and comparing its outputs with popular
baseline models. It is the first time that the performance
of a GNN-based model is evaluated on such a high
number of stations based on a real dataset.

The remainder of the paper is organized as follows. In
the next section, we detail the structure of the proposed
framework. In the Experiment section, we introduce the
dataset we have used and then apply the proposed framework
on this dataset consisting of 467 stops and evaluate its
performance compared to some popular baselines. Finally,
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Fig. 1. The Structure of the Multi-GCN-LSTM Model

in the Conclusion, we summarize the findings of the study
and suggest recommendations for future studies.

II. METHODOLOGY

The proposed framework is illustrated in Figure 1. In
this framework, the most recent historical data are first fed
into the Graph Convolutional LSTM (GCN-LSTM) modules.
Simultaneously, the sequences of weekly and daily inputs
are fed into similar but separate GCN-LSTM modules.
The outputs from these modules are then fused to make
a prediction for the next step. This prediction is modified
according to a Scheduled Sampling mechanism based on the
observed (true) value from the next step. Finally, to make
the new prediction, the output from the Scheduled Sampling
is combined with a hidden state variable of the most recent
sequence, which is the information from previous time steps
cells for maintaining long-term dependencies in the input
sequence. The whole procedure is repeated to achieve a
multi-step prediction. The following section discusses these
components in more detail.

A. Graph Definition and Notations

In this study, we have defined a unique graph structure
considering the connection between stops, as well as the
proximity of the stops based on the travel times of the road
network. This enables the model to take into account the
effects of vehicular traffic. It is further explained in the
following sections.

1) Bus Network Adjacency Matrix: Bus Network Adja-
cency matrix is defined based on whether two stops are
connected by a bus route. Typically, a graph G = (N,E)
comprises two sets: a set N with elements called nodes ni ∈
N , and a set E with elements called edges (ni, nj) ∈ E. This
study considers bus stops as nodes, and bus routes as edges
in a network to represent the connections between the nodes.
It considers the bus network as a directed graph since travel
along a given route in one direction could be different from
the other one, and besides, some stops are active in only one
direction. The adjacency matrix describes the connections
between nodes in graphs. Considering A ∈ R(N×N) as an
adjacency matrix, A(i,j) equals one when node i is connected
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to node j and equals zero otherwise. Moreover, this study
considers each node to be connected to itself, so A(i,i) = 1.

2) Bus Network Proximity Matrix: In real bus networks,
closer stops usually have a greater impact on each other
(given that they are connected). This proximity is influenced
by the road network structure and vehicular traffic. Accord-
ingly, the Bus Network Proximity Matrix (BNP) is defined
to identify close stops for each target stop. This matrix
represents the possibility of reaching a particular destination
stop from a given origin stop in a certain amount of time.
To this end, a distance matrix Dist ∈ RN×N is defined, in
which each element Disti,j represents the distance between
stops i and j on the real road network. Following this,
we will calculate the BNP matrix by using the distance
matrix and average bus speed within each edge (1). By using
the average speed in the links, our framework accounts for
vehicular traffic where buses share their routes with vehicles.

BNPi,j =

{
1, if Si,j∆t−Disti,j ≥ 0

0, otherwise
(1)

In this formula, Si,j represents the average speed of the
bus between stops i and j, and ∆t stands for the desired
time interval between stops. According to the matrix, each
element BNPi,j equals one if the passenger can travel from
stop i to stop j in ∆t and zero otherwise.

B. Short-term Multi-step Passenger Flow Prediction

The purpose is to predict the passenger flows at the stop
level for the whole network. Xt ∈ RN is defined as a vector
of the passenger flows at all nodes in the graph at time t;
accordingly, The purpose is to predict the passenger flows at
the stop level for the whole network. Xt ∈ RN is defined
as a vector of the passenger flows at all nodes in the graph
at time t; accordingly, the function F(.) is defined that maps
the time steps of the historical graph of passenger flows to
the graph of passenger flows in the next multiple time steps
TP . Equation (2) defines F (·):

F ([Temporal − Features];G(N,E,A,BNP )) =

[Xt+1, Xt+2, ..., Xt+TP
]

(2)

In this formula, N , E, A, and BNP respectively represent
the set of nodes, edges, the adjacency matrix, and the
proximity matrix, and G represents the bus network graph.

C. Graph Convolutional LSTM Cell

The GCN-LSTM cell includes two main parts: a Graph
Convolutional operator and a Long-Short-Term-Memory
(LSTM) cell [9]. Graph convolution layers are used to extract
spatial information from graph input data. In this model,
the Bus Network Graph Convolution (BNGC) operation is
defined as the product of the input data, the adjacency matrix,
the bus network proximity matrix, and a trainable weight
matrix as shown in (3):

BNGCt = (TWbngc ⊙A⊙BNP )Xt (3)

where, BNGCt ∈ RN is the extracted bus network graph
convolution features at time t, TWbngc ∈ RN×N is a train-
able weight matrix, and Xt ∈ RN is the vector of passenger
flows for all stops in the network at time t. In addition,
⊙ represents the Hadamard product operator. According to
the definitions, both adjacency (A) and proximity matrices
(BNP ) are sparse matrices. Therefore TWbngc⊙A⊙BNP
is also sparse and contains just 0 and 1. As a result, the
trained weight TWbngc can be used to analyze interactive
influences among bus network graph stops, which improves
model interpretability [9]. The output of the BNGC layer is
used as input for the LSTM cell. LSTM cells have four gates:
an input gate igt, an output gate ogt, a forget gate fgt, and
an input cell state C̃t in terms of time step t. Equations (4)
to (7) show how to calculate these gates.

igt = σg (TWig·BNGCt + Uig·ht−1 + big) (4)

ogt = σg (TWog·BNGCt + Uog·ht−1 + bog) (5)

fgt = σg (TWfg·BNGCt + Ufg·ht−1 + bfg) (6)

C̃t = tanh (TWc·BNGCt + Uc·ht−1 + bc) (7)

Here, weight matrices are split into two groups. The first
set of weight matrices, consisting of TWig , TWog , TWfg ,
and TWC ∈ RN×N , map BNGC outputs to the gates and the
input cell state, and the second set, consisting of Uig , Uog ,
Ufg , and UC ∈ RN×N , are used in the preceding hidden
state. Additionally, big , bog , bfg , and bc ∈ RN are used as
bias vectors. Finally, σg is the gate activation function (sig-
moid function), tanh is the hyperbolic tangent function, and
”·” represents the matrix multiplication operation. Moreover,
to incorporate the neighboring states of each node in the
graph, we need to define a cell state gate, which incorporates
the previous states of each node and its neighbors. An LSTM
cell state gate is thus defined as (8):

C∗
t−1 = TWN ⊙ (A⊙BNP ) ·Ct−1 (8)

The value of TWN measures the impact of neighboring
cell states by multiplying the product of the adjacency and
bus network proximity matrices. The cell state is repeatedly
inserted into a subsequent time step in order to consider
its impact on neighboring cells. The final cell state Ct and
hidden state ht are thus defined as (9) and (10) respectively:

Ct = fgt ⊙ C∗
t−1 + igt ⊙ C̃t (9)

ht = ogt ⊙ tanh(Ct) (10)

A GCN-LSTM cell’s output will ultimately be the hidden
state hT at the last time step T (ŷ = hT ).
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D. Temporal Dependencies and Multi-Component Fusion
In order to capture the varying temporal correlations based

on recent, daily, and weekly patterns, the model combines the
outputs from the corresponding components using a fusion
mechanism (as shown in Figure 1). Here, we consider t0
as the index of current time in the input dataset, and p the
length of the prediction sequence. There are three different
input data lengths denoted by r, d, and w; Each represents an
integer multiple of p, and respectively is showing the input
data length for recent data, daily data, and weekly data. Here,
we suppose that the sampling frequency per day is nd times.
Figure 2 is an example of how we build weekly, daily, and
recent input data.

- Recent Data: This time series data is a segment of
historical data just before the period for which the pre-
diction is made. This data is represented as Trecent =
{X(t0−r), X(t0−r+1), ..., X(t0)}.

- Daily Periodic Data: In the daily periodical in-
put data, segments from the past few days were taken
into account from the same time slot as the predic-
tion time slot. This data is represented as Tdaily =
{X(t0+p−d∗nd), X(t0+p−(d−1)∗nd), ..., X(t0+p−nd)}.

- Weekly Periodic Data: Segments in the last
few weeks at the same time intervals as the
prediction period are also included in the proposed
framework. This data is represented as Tweekly =
{X(t0+p−w∗7nd), X(t0+p−(w−1)∗7nd), ..., X(t0+p−7nd)}.

2021-09-24 Fri 
7:00 - 8:50 am

………

2021-09-22 Wed 
9:00 – 9:10 am

2021-09-21 Tue 
9:00 – 9:10 am

2021-09-23 Thurs 
9:00 – 9:10 am

𝑇!"#$%

………

𝑇&''($%
𝑇)'*'+,

𝑇!"#$%&'%()

𝑡!

2021-09-24 Fri 
9:00 – 9:10 am

2021-09-17 Fri 
9:00 – 9:10 am

2021-09-10 Fri 
9:00 -9:10 am

2021-09-03 Fri 
9:00 – 9:10 am

Fig. 2. An example of constructing segments of time series dataset for
weekly, daily, and recent input data

Each of the three components comprises several GCN-
LSTM cells, with similar network structures. ŷr, ŷd, and
ŷw, respectively, are the outputs of recent, daily, and weekly
components. The impacting weights of the three components
are different for each of the nodes when the outputs of the
different components are fused, and these weights should be
determined from the historical data. To learn these weights,
we use two convolution layers with Relu activation function.
Those outputs are then fused as (11):

Ŷt0+1 = W2 ∗RELU(W1 ∗ [ŷr(t0+1)|ŷd(t0+1)|ŷw(t0+1)])
(11)

where, * means the convolution operation and | means the
concatenation operation.

E. Scheduled Sampling and Training Algorithm
Throughout this section, we explain how the prediction

time horizon is extended into multiple time steps in the

future. We also utilize scheduled sampling [22]to mitigate
the error propagation through prediction steps by bridging the
gap between training and inference in sequence prediction.
Again, assume t0 is an index of current time in the dataset,
and we intend to predict the passenger flow over the next
p > 1 timestamps. In each prediction step, if we can build
the three time-series segments we introduced in section D
(recent, daily, and weekly), we can make the prediction
for the next step. These three time-series segments for the
first timestamp were introduced in Section D, so the first
prediction (Ŷt0+1) would be feasibly estimated.

In the second step, we can still build the daily-
and weekly time series segments based on the
historical data. Daily-periodic segment would be
Tdaily = {X(t0+2−d∗nd), X(t0+2−(d−1)∗nd), ..., X(t0+2−nd)}
and weekly-periodic segment would be Tweekly =
{X(t0+2−w∗7nd), X(t0+2−(w−1)∗7nd), ..., X(t0+2−7nd)}.
However, for the recent data, since we are using the data of
the period directly adjacent to which predictions are made,
we need to use the data from t0 + 1 (X(t0+1)). However,
the ground truth values for this time slot are not available
in the inference (test) phase, and thus, the first predicted
value Ŷt0+1 is used. This results in a mismatch between the
training and testing processes. Alternatively, if we pretend
we are testing in the training process (to use Ŷt0+1 instead
of X(t0+1)), the first weights update generates some noise,
and these errors are propagated throughout time, leading
to more errors at subsequent time steps. Thus, the training
process can be very unstable.

To solve this issue, we propose the scheduled sampling
strategy trying to utilize the best of both approaches pre-
sented in the previous paragraph. It means the ground truth
data are used in the initial epochs of training, and will
gradually be replaced with the predicted values over time.
Accordingly, in this study, if we consider i as the number
of epochs, for predicting Ŷ(t0+2), we use the ground truth
(X(t0+1)) with the probability of ϵi, and an estimation
coming from the model for previous time step (Ŷ(t0+1))
with the probability of (1 − ϵi)

2. Equation 13 shows how
we calculate Trecent for the second time step. As it has
been shown, in this way, we consider both the training and
interface phases, which means if ϵi = 1, the model will be
trained only based on its true values (training phase), whereas
in the case of ϵi = 0, it will be trained in the same way that
the inference is performed (only using the prediction from
last time step).

Trecent = {X(t0−r+1), X(t0−r+2), ..., X(t0),

(ϵi ∗X(t0+1) + (1− ϵi)
2 ∗ Ŷt0+1)}

(12)

Different functions are available for scheduling how Ep-
silon changes over time as training progresses [22]. In this
study, we use exponential decay, which is ϵi = ki, and k < 1
which is a constant for the expected speed of convergence.

After modeling each of the recent, daily, and weekly
components for the second step of the prediction period,
similar to (11), we will have Ŷt0+2 = W2 ∗ RELU(W1 ∗
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[ŷr(t0+2)|ŷd(t0+2)|ŷw(t0+2)]). This process will be repeated
for the next step of prediction. The parameters for all fusion
parts and the main three components of the model (recent,
daily-periodic, and weekly-periodic time series) are shared
to avoid the over-smoothing of the model.

The loss, after predicting the values for all future steps,
will be defined as:

Loss =

p∑
n=1

L(Y(t0+n), Ŷ(t0+n)) (13)

where, L(.) is a function to calculate the residual between
the predicted values ŶT and the actual values YT . The loss
function here is the Mean Squared Error (MSE).

III. EXPERIMENTS

In this section, we describe a real-world experiment by
implementing the proposed framework.

A. Datasets

The dataset used is a subset of the bus network in Laval,
Canada from mid-September to mid-October 2021. The type
of data is APC and this subnetwork includes one of the
busiest routes - route 26 - and all its feeders in Laval. In
total, this dataset includes 467 stops and 11 routes. Fig. 3
shows this network. The data covers from 5 AM to 11 PM,
aggregated into 10-minutes time intervals and nd = 28, and
is divided into 70% training, 20% validation, and 10% testing
sets. Also, model parameters that have been used are r = 12,
d = 3, and w = 3. Also, stops that are reachable in 15
minutes have been considered close in the BNP matrix.

Fig. 3. The modeled network of bus stations and routes – Laval, Canada

B. Experimental Setting

In the proposed model, the dimension of the hidden states
in the LSTM cells is considered to be equal to the number of
nodes of the graph. The model is trained by minimizing its
mean square error where the batch size and initial learning
rate are equal to 16 and 10(−5), respectively. Besides, since
RMSProp overcomes gradient erosions and vanishing, it is
considered gradient descent optimization. Evaluation of the
model is done by comparing the predicted values with real
observations; and comparing the model’s performance to
that of six other methodologies, including Historical Average
(HA), Multi-layer Perceptron model (MLP), the Long Short-
Term Memory Model (LSTM), Graph Wavenet [23], STGCN

[24], and GMAN [25]. Additionally, we implemented the
model without using the Scheduled Sampling method to
explore the impact of using this technique.

C. Evaluation Metrics

The Mean Absolute Error -MAE (14) and Root Mean
Squared Error - RMSE (15) have been used as the perfor-
mance metrics in this study.

MAE =
1

n

n∑
T=1

|yT − ŷT | (14)

RMSE =

√√√√ 1

n

n∑
T=1

(yT − ŷT )
2 (15)

where, ŷT , yT , and n represent the predicted value, the
actual value, and the number of observations for each stop.

D. Experimental Results

The average MAE and RMSE values for both the proposed
model and the baselines are presented in Table I. As can be
seen, the proposed model has outperformed all baselines in
both metrics. Also, it can be inferred that scheduled sampling
has significantly improved the performance of the model.
Furthermore, based on MAE and RMSE values, the STGCN
and Graph Wavenet models have the weakest performance
results as compared to all other models.

TABLE I
PERFORMANCE COMPARISON BETWEEN DIFFERENT MODELS

Model MAE RMSE
Graph Wavenet 3.208 4.464
STGCN 2.298 4.209
HA 1.716 3.021
LSTM 1.824 2.995
GMAN 1.577 3.304
MLP 1.723 3.511
Multi-GCN-LSTM without Sechedule Sampling 1.697 2.914
Multi-GCN-LSTM 1.465 2.688

Figure 4 and Figure 5, respectively, present the values of
MAE and RMSE for each timestamp of the prediction period.
As can be seen, as we move along in the prediction period,
the MAE and RMSE values increase for most of the models.
This indicates that each model performs better in closer time
windows. Moreover, as can be seen in both figures, the MAE
and RMSE values of the Multi-GCN-LSTM model in all time
periods are lower than the other models, which indicates
it has a better performance in individual prediction steps
as well. Moreover, it is apparent that the model without
scheduled sampling is performing significantly worse than
the model with scheduled sampling.

IV. CONCLUSION

This study develops a novel graph-based deep learning
model for the multi-step prediction of passenger flows in bus
networks. It combines the adjacency and proximity matrices
of the network graph to extract more meaningful spatial
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Fig. 4. Comparison of multi-step Prediction - MAE

Fig. 5. Comparison of multi-step Prediction - RMSE

features of the network. With the graph convolution operator
and the LSTM, not only the spatial but also the temporal
aspects of passenger flow are considered. As an additional
consideration, we use multicomponent fusion to examine the
effects of temporal dependencies on daily and weekly trends
in historical data. Moreover, we use a scheduled sampling
method to prevent error propagation in multistep predictions.
The proposed model is validated against real-world data by
comparison with the popular baselines. Future research can
include other elements such as weather conditions, events,
and constructions. In addition, the origin destinations matrix
for different historical periods can also be used to examine
how the spatial correlation between stops varies between
different periods of time to have a dynamic adjacency matrix.
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