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The extraordinary sensitivity of the output field of an optical cavity to small quantum-scale displace-
ments has led to breakthroughs such as the first detection of gravitational waves and of the motions of
quantum ground-state cooled mechanical oscillators. While heterodyne detection of the output optical field
of an optomechanical system exhibits asymmetries which provide a key signature that the mechanical
oscillator has attained the quantum regime, important quantum correlations are lost. In turn, homodyning
can detect quantum squeezing in an optical quadrature but loses the important sideband asymmetries. Here
we introduce and experimentally demonstrate a new technique, subjecting the autocorrelators of the output
current to filter functions, which restores the lost heterodyne correlations (whether classical or quantum),
drastically augmenting the useful information accessible. The filtering even adjusts for moderate errors in
the locking phase of the local oscillator. Hence we demonstrate the single-shot measurement of hundreds of
different field quadratures allowing the rapid imaging of detailed features from a simple heterodyne trace.
We also obtain a spectrum of hybrid homodyne-heterodyne character, with motional sidebands of combined
amplitudes comparable to homodyne. Although investigated here in a thermal regime, the method’s
robustness and generality represents a promising new approach to sensing of quantum-scale displacements.

DOI: 10.1103/PhysRevLett.120.020503

Homodyne and heterodyne detection represent “twin
pillars” of quantum displacement sensing using the output
field of an optical cavity, having permitted major break-
throughs including the detection of gravitational waves
[1,2]. Earlier versions of LIGO employed a radio-frequency
(rf) heterodyne detection system, but this was later replaced
by a homodyne scheme [2]. The broader field of quantum
cavity optomechanics has also exposed a rich seam of
interesting phenomena arising from the coupling between
the mode of a cavity and a small mechanical oscillator
[3–5] and of the motion of quantum ground-state cooled
mechanical oscillators. Several groups have successfully
cooled a mechanical oscillator [6–8] down to mean phonon
occupancy n̄ ∼ 1 or under, close to its quantum ground
state. A readout of the temperature was achieved by the
detection of motional sidebands in the cavity output by
homodyne or heterodyne methods.
Heterodyne (but not homodyne) detection exposes

mechanical sideband asymmetries [9–11] which are the
hallmark of the quantum regime [10,11]: The observations

mirror an underlying asymmetry in the motional spectrum,
since an oscillator in its ground state n̄ ¼ 0 can absorb a
phonon and down-convert the photon frequency (Stokes
process); but it can no longer emit any energy and up-
convert a photon (anti-Stokes process). It has also been
used to establish cooling limited by only quantum back-
action [12]. Homodyne detection, on the other hand, allows
the detection of ponderomotive squeezing, whereby nar-
row-band cavity output field fluctuations fall below the
optical shot noise level [13–15], enhancing the quantum
measurement sensitivity relative to heterodyne.
Here we introduce a method, using filter functions in the

usual construction of power spectral densities (PSDs) which
fully restores the lost quantum correlations to a simple
heterodyne measurement, offering a “best of both worlds”
scenario in some contexts or at least providing hybrid
heterodyne-homodyne spectra retaining some advantages
of both methods. We demonstrate experimentally that one
can detect the correlations either in isolation (hence without
imprecision noise floor in the frequency spectra) or in
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interference with the primary peaks; the method is robust to
moderate variations in the local oscillator phase. We term the
broad approach to retrospective recovery of lost heterodyne
correlations “r-heterodyning.”
In Fig. 1(a), we present schematically the experimental

scheme. The data time series required for our analysis were
obtained by operating a cavity optomechanics setup based
on the membrane in the middle configuration. The circular,
high-stress SiNx membrane [shown as a photographic inset
in Fig. 1(a)] is integrated in an on-chip “loss shield”
structure [16] and placed in a Fabry-Pérot cavity of a
length of 4.38 mm and a cavity finesse of F ≈ 13 000 (half-
linewidth κ ¼ 1.3 MHz × 2π). The membrane was placed
at a fixed position, 2 mm, from the cavity output mirror.
The driving beam entering the cavity, from a Nd:YAG laser
at 1064 nm, was locked to the cavity by means of the
Pound-Drever-Hall (PDH) technique but was kept detuned
from the optical resonance. The input power was
Pin ¼ 70 μW, half of which lies in the carrier. The reflected
field was divided into two beams; ∼30% is used in PDH

detection, while the remaining ∼70% was superimposed
on a 500 μW local oscillator (LO) field, shifted in fre-
quency by ðΩ=2πÞ ¼ 10 kHz with respect to the driving
beam.
The ensuing balanced detection provided the photo-

current time traces that we employed here. The resulting
photocurrent time series takes the (appropriately normal-
ized) form ihðtÞ ¼ â†eiðΩtþθÞ þ âe−iðΩtþθÞ. Although the
measured current is real, for generality we allow the
underlying fields to correspond to quantum fluctuations.
In optomechanics experiments, the interesting dynamical

features appear in frequency space as peaks (sidebands) of
width ∼Γ, where Γ is the total damping, near ω≃�ωM,
where ωM is the mechanical frequency. An analysis of such
narrow-band data features typically proceeds via the PSD
of the measured current, SihihðωÞ≡ hjîhðωÞj2i.
Homodyne detection corresponds to Ω ¼ 0 and so leads

to the detection of a single quadrature Ŷθ ¼ â†eiθ þ âe−iθ

and the corresponding symmetrized [17] PSD of the
current. The homodyne PSD may be written

FIG. 1. (a) Experimental scheme: a membrane-in-the-middle setup within a cavity with a single optical mode coupled to multiple
mechanical modes of the membrane, simultaneously cooling and detecting them. The cavity output signal is beat with a reference
oscillator aLO ∝ eiðΩtþθÞ of beat frequency Ω and phase θ. Balanced detection produces an output current ihðtÞ; then Ω ¼ 0 corresponds
to homodyne detection, while Ω ≠ 0 corresponds to heterodyne. The output field from an optical cavity provides exquisitely sensitive
detection of even quantum-scale displacements via the power spectral density (PSD) of ihðtÞ. (b) Schematic illustration of homodyne vs
heterodyne features: While heterodyning detects quantum regimes via the dependence of the motional sidebands on phonon occupancy
n̄, their combined height is only half of the homodyne amplitude. For homodyne detection, the presence of field noise correlations yields
squeezing, evidenced by PSD values below the quantum imprecision noise floor (the region between white lines of the map). In contrast,
the PSD of the heterodyne spectra shows neither squeezing nor any θ dependence. (c) Outline of the r-heterodyne method relative to the
standard heterodyne PSD. (d) Example spectra using F−1 (upper panel) and F 0 (lower panel). Spectra are shown normalized to the
heterodyne peak amplitudes (orange peaks). For the upper panel, the correlations are isolated from the main peaks; for the lower panel,
the restored correlations interfere with the heterodyne PSDs, doubling the sideband height for θ ¼ π=2.
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SYθYθ
ðωÞ¼Sââ†ðωÞþSâ†âðωÞþSâ†â†ðωÞe2iθþSââðωÞe−2iθ:

ð1Þ

All the θ dependence is in the Sâ â and Sâ†â† terms. These
terms embody the spectral correlations between the ampli-
tude Ŷ0 and phase Ŷπ=2 of the cavity field, and, where they
arise from backaction from the laser shot noise, their
presence is taken as an important quantumsignature [18–20].
In contrast, for Ω > 0, heterodyne detection yields the

PSD:

SΩhetðωÞ ¼ Sââ†ðωþ ΩÞ þ Sâ†âðω −ΩÞ; ð2Þ

since for a time trace of reasonable duration T, where
T ≫ 2π=Ω, the temporal rotation of the measured quad-
rature ≡âe−iðθþΩtÞ þ â†eiðθþΩtÞ leads to averaging out and
a loss of the Sâ â and Sâ†â† components.
Figure 1(b) illustrates the fact that the combined ampli-

tudes of the mechanical sidebands are only one-half of the
homodyne case. The homodyne PSDs have a strong
dependence on θ and can drop below the shot noise level
[the region between the white lines in the Fig. 1(b) map],
indicating (ponderomotive) squeezing of the optical quad-
ratures. Heterodyne PSDs are θ independent but yield
two, rather than one, sidebands near ω≃þωM. Although
SΩhetðωÞ ¼ SΩhetð−ωÞ, the sidebands are not symmetric
about ω ¼ Ω in quantum regimes, where such Stokes or
anti-Stokes sideband asymmetry also represents a valuable
quantum signature [12,18].
The transition between homodyne and heterodyne is too

abrupt to easily probe. Since T ≫ Γ−1 ≫ 2π=Ω, the
heterodyne sidebands of Fig. 1(b) become unresolvable
asΩ → 0 before any correlations of the trueΩ ¼ 0 limit are
manifest in the spectrum. Hence, one cannot normally
measure PSDs “intermediate” between heterodyne and
homodyne.
However, we show that there is a straightforward but

robust procedure to recover the lost correlations. This is
illustrated in Fig. 1(c). Our departure point is to approach
the PSD via the autocorrelator (rather than from the
FT of the time trace). Then there are two choices for
the construction of the autocorrelator: either (i) At0ðtÞ ¼
ð1=TÞ R T

0 dt0hiðt0Þiðt0 þ tÞi or (ii) At̄ðtÞ ¼ ð1=TÞ×R
T
0 dt̄hiðt̄ − t=2Þiðt̄þ t=2Þi. For an ordinary PSD, the
above two choices are quite equivalent, amounting only
to a trivial change in coordinates so

SihihðωÞ ¼ FT½At0ðtÞ�≡ FT½At̄ðtÞ�; ð3Þ

making use of the well-known Wiener-Kinchin theorem.
We use the convenient shorthand Aðt0Þ≡At0ðtÞ in figure
labels to label the corresponding time series; hence,
SihihðωÞ≡ FT½Aðt0Þ�, for example.

Our method is outlined in Fig. 1(c). Spectra are
instead obtained from a (nonstandard) convolution involv-
ing the autocorrelator and a filter function. We assume
long T and modest Ω ∼ ωM=10 − ωM=100 ≫ Γ. Defining
F ⊗ At0ðtÞ ≡ ð1=TÞ R T

0 dt0F ðt0Þhihðt0Þihðt0 þ tÞi, we
then write St0ihihðωÞ≡ FT½F ⊗ Aðt0Þ� or the alternative
form St̄ihihðωÞ≡ FT½F ⊗ Aðt̄Þ�. Above, F is a filter func-
tion which is resonant with 2Ω but otherwise is chosen for
convenience. We define its Fourier transform FT½F ðtÞ�≡
~F ðωÞ (see [21] for a discussion of FT limits) and restrict
ourselves to the case ~F ðωÞ ¼ ~F ð−ωÞ. Here we take
F ϵðtÞ ¼ þ1 for 2Ωt ¼ 2πN þ ϕ for N ¼ 0; 1; 2;… and
with ϕ ∈ ½−π=2∶π=2� and F ϵ ¼ ϵ elsewhere. We then
obtain (see [21])

TSt̄ihihðωÞ≃ ~F ϵðω ¼ 0ÞSΩhetðωÞ þ ~F ϵðω ¼ 2ΩÞScorrðωÞ;
ð4Þ

where SΩhetðωÞ is given by Eq. (2) and the second term
ScorrðωÞ ¼ Sâ†â†ðωÞe2iθ þ Sâ âðωÞe−2iθ represents the cor-
relations, but at the homodyne position, hence shifted away
from the usual heterodyne PSD components at Ω� ω.
In contrast, for the t0 case where we obtain spectra using

FT½F ⊗ Aðt0Þ�, we have TSt0ihihðωÞ≃ ~F ϵð0ÞSΩhetðωÞ þ
~F ϵð2ΩÞScorrðωÞ, but now

ScorrðωÞ ¼ Sâ âðω −ΩÞe−2iθ þ Sâ†â†ðωþΩÞe2iθ ð5Þ

and the frequencies of the correlation spectra now coincide
with that of the usual heterodyne sidebands.
From the above, we have enormous flexibility in tuning

the relative amplitudes (as well as relative positions) of the
correlations vs the heterodyne PSD by choosing ϵ. Clearly,
for ϵ ¼ þ1, an ordinary heterodyne PSD is recovered; for
ϵ ¼ −1, the stationary heterodyne PSD components are
completely eliminated. For intermediate values, a tunable
mixture is obtained.
In this approach, the rotating quadrature heterodyne

current is turned to advantage, as θ values can be rapidly
adjusted by shifting the filter, allowing a single-shot
mapping of correlations. The only restriction is that
the heterodyne beat frequency note must be modest
Ω ∼ ωM=10 − ωM=100, but this does not present extra
experimental challenges. Figure 2(a) shows the cases
ϵ ¼ −1 and ϵ ¼ 0 where maps are generated for 800
spectra at different θ and are compared with standard
analytical expressions for the quantum noise spectra [3,4],
showing excellent agreement.
Experimental data were obtained and analyzed for

two different membrane modes: the (1,1) mode with an
effective resonance, linewidth, and mass of, respectively,
378.16 kHz, 4.56 kHz, and 300 ng and the (0,2) mode with
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a 544.78 kHz effective resonance, a 8.44 kHz linewidth,
and an effective mass of 180 ng. As shown in Fig. 2(b), the
behavior for the different modes is very similar.
The LO phase θ in our experiment was not actively

stabilized. However, the LO phase time series θðtÞ was
recovered in postprocessing by implementing a numerical
lock-in amplifier to demodulate the 10 kHz beat note. In
particular, a slow (relative to Ω−1) modulation at ∼25 Hz,
which we attribute to environmental mechanical noise, was
present. This is compensated by using the temporally
fluctuating θðtÞ ¼ θðt ¼ 0Þ þ δθðtÞ to displace the filter
functions used in the data analysis. For jδθðtÞj ≪ π, the
correction was effective. In the experiment, although
jδθðtÞj≲ π=4 was significant, the correction systematically
improved the strength of the sidebands by about 20%.
Agreement with the theory remained excellent. Case
(iii) shows some distortion relative to the theory. We
attribute this to frequency noise which distorted sideband
profiles. The effect on peak amplitudes (at θ ¼ 0 and
θ ¼ π=2) is small, as they still have amplitudes close to
values predicted from Eqs. (4) and (5). Finally, although the
experimental data were in thermal regimes, Fig. 2(c)
illustrates potential new signatures of quantum regimes
which are possible in the presence of fast and accurate
correlation mapping with future experiments with

cryogenically cooled setups and stronger optomechanical
sideband cooling.
Filtering, applied directly to optical signals, is effective in

mitigating the deleterious effects of technical noise [22];
here we show that a type of filtering of the autocorrelation
can distill correlations which are otherwise entirely absent in
the heterodyne PSD, even if it were noise-free. Interest in the
detection of these correlations and related effects is growing
and motivating sophisticated experiments [19,23] which use
multiple heterodyne fields [20,24] or demodulation of the
signal and cross-correlation spectra. In fact, the spectra in
Fig. 2(i) correspond to the cross-correlation between red and
blue sidebands hi�hðωþΩÞihðω−ΩÞiþc:c: (see [25] for a
derivation).
Figure 3 illustrates a r-heterodyne spectrum that most

closely approximates homodyne behavior by combining
the correlations with the main heterodyne peaks at the same
frequency yet retaining the split-peak heterodyne character
which allows Stokes or anti-Stokes sideband asymmetry to
be measured. We show also that, with fast 2D imaging
(even in real time), new types of quantum signatures are
accessible that are not evident in a single PSD; this is
exemplified by Fig. 2(a), panel (i). These particular side-
bands are still stronger than heterodyne for θ≃ π=2 and
have the advantage that the pure correlation spectral

FIG. 2. (a) Mapping correlations: In contrast to the usual featureless (θ-independent) heterodyne spectra, the correlations are extracted
efficiently, even in an experiment where θ is not actively stabilized. The figure compares r-heterodyne experimental spectra, subjected to
different filters, with analytically calculated spectra. (i) distills isolated correlations near ω ¼ ωM. (ii) obtains correlations plus
heterodyne peaks. (iii) distills correlations only, but displaced to the position of the heterodyne peaks. Agreement between the
experiment and theory is excellent, even if some distortion is evident in (iii), which we attribute to experimental noises (frequency noise,
the drift in θ). Data are in the thermal regime, and all spectra are normalized to the heterodyne peak amplitude of the 0.38 MHz mode.
Maps are on a linear color scale where white ¼ 1 and dark blue ¼ −1. (b) Two spectra, i.e., “cuts” from (iii), and compared with
heterodyne (orange) showing that, despite distortion, the strongest θ ¼ π=2 peak amplitudes remain close to the expected amplitude
(2=π of the heterodyne amplitude). (c) Inset of (i) thermal vs pure quantum backaction spectra (analytical) illustrating future possible
signatures of quantum regimes facilitated by a high-resolution mapping of correlations: The zero contour (white) rotates away from the
vertical as the quantum backaction contribution becomes dominant.
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sidebands exhibit no imprecision noise floor, mitigating
another cause of experimental uncertainty.
In conclusion, our work opens up the possibility of

sensing using spectra which are of hybrid homodyne-
heterodyne character, that can simultaneously display
(i) sideband asymmetries (a signature that mechanical
motions are in the quantum regime) and (ii) squeezing
and quantum signatures of correlations between optical
quadratures, and yet permit ultrasensitive displacement
detection with sidebands with combined amplitudes com-
parable to homodyne. The r-heterodyne technique may
also have further practical applications for optomechanical
systems with nonstationary cavity dynamics [26–28].
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