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Abstract 
Introduction 
Intracranial hypertension (IH) is a harbinger of secondary brain injury in patients suffering 
from traumatic brain injury (TBI), can be mitigated at the Intensive Care Unit (ICU) and is 
associated with a poor prognosis. Current clinical practice consists of treating IH once it has 
occurred, by medical or surgical interventions. This is later than desired, as secondary injury 
has already been initiated. A pre-emptive approach may be preferable, and seems possible 
since many physiological variables that may aggravate IH are known and can be managed 
clinically. The aim of this research is to develop a machine learning method that is able to 
predict whether or not a patient will develop IH in the near future during ICU stay. 
 

Methods 
A cohort of 114 patients with TBI admitted to the ICU of Erasmus MC was selected. Long 
Short Term Memory (LSTM) models were trained and evaluated with 26 clinical variables to 
predict IH. The effect of the length of the minimal IH period, the length of the prediction 
window and the number of included variables was evaluated. Primary outcome measures 
were the model loss, accuracy, and Area Under the receiver operating characteristic Curve 
(AUC). 
 

Results 
We achieved a mean AUC of 0,83 [95% CI: 0,68-0,98] with a model predicting periods of 
ICP≥20mmHg lasting at least 15 minutes, using a prediction window of 30 minutes and using 
only the ICP and mean arterial blood pressure (MAP). All models showed decreasing training 
and validation loss values during the first few epochs of model training. Thereafter, the 
training loss continued to decrease while the validation loss started to increase. 
 

Conclusion 
We developed a LSTM model that was able to predict, with a mean AUC of 0.83 [95% CI: 
0,68-0,98], the occurrence of IH after half an hour based on the ICP and MAP. Adding more 
clinical variables resulted in overtrained models.  



 

 

Introduction 
Physiological situation 
Intracranial hypertension (IH) is an augury of secondary brain injury in patients suffering from 
traumatic brain injury (TBI), and is associated with a poor prognosis1. The initial trauma 
causes hematomas or contusions, often accompanied by tissue edema. These are all space-
occupying lesions. The Monro-Kellie doctrine states that the sum of the volumes of the brain 
tissue, cerebrospinal fluid (CSF), and intracranial blood, is constant2. If another volume, such 
as a hematoma, is introduced in the cranium, the contents of the cranium are compliant to a 
certain extent, because the amount of intracranial CSF may be reduced. However, 
increasing occupation of space eventually leads to an increase in intracranial pressure (ICP). 
IH is present if the ICP exceeds a certain threshold (generally 20-25 mmHg3). This hampers 
the cerebral perfusion, leading to brain ischemia, which is secondary harm on top of the 
initial impact of TBI. 
 

Clinical situation 
Patients suffering from severe TBI, often with reduced levels of consciousness, are admitted 
to the Intensive Care Unit (ICU), where they are carefully monitored. Among many other 
parameters, the ICP is continuously measured. Current clinical practice consists of treating 
IH once it has occurred, by medical or surgical interventions4. This is later than desired, as 
secondary injury has already been initiated. A pre-emptive approach may be preferable, and 
seems possible since many physiological variables that may aggravate IH are known and 
can be managed clinically. If healthcare professionals would be able to foresee an imminent 
IH event, preventive measures may be taken such as mitigation of factors that are known to 
contribute to increases in ICP. 
 

Proposed improvement 
Some established clinical variables that are known to contribute to an increased ICP include 
fever, hypo-osmolality of serum (inducing cerebral edema), hyperglycemia, prolonged 
hyperventilation or hypoventilation, venous congestion caused by high PEEP levels of the 
ventilator, and fluid overload5. These factors are represented by variables that are 
continuously measured at the intensive care unit (e.g. temperature, glucose, sodium, partial 
pressure of carbon dioxide, partial pressure of oxygen, and blood pressure) and are highly 
amenable to treatment. Furthermore, all TBI patients receive at least one CT-scan of the 
brain in order to evaluate the intracranial damage. These measured variables and CT-
scan(s) may contain valuable information that might enable the prediction of an IH event6. 
Utilizing machine learning, we may be able to harness this information to predict IH in real-
time. 
 

Aim of this research 
This pilot study is part of a master’s thesis for the MSc Technical Medicine. The aim of this 
research is to train a machine learning model that is able to predict whether or not a patient 
is going to develop IH in the near future during ICU stay.  



 

 

Methods 
Literature study 
We performed a systematic review on the prediction of IH in patients with TBI using artificial 
intelligence. This literature study is enclosed in Appendix 1. Based on the outcome of our 
literature review and existing knowledge of physiological variables that are associated with 
IH5, we created a list of 21 variables that we suspected to be interesting to use for the 
development of a machine learning model. A list of these variables is available in Appendix 
2. 
 

Data collection 
We asked the Erasmus MC department of Data & Analytics for all recorded measurements of 
the clinically measured variables we deemed of interest, of 30 patients that had been 
admitted to the ICU of the Erasmus MC in 2018, and had also been enrolled in an earlier 
study. This process required the development of a research protocol, a Data Protection 
Impact Assessment, and a Standard Operating Procedure regarding the safeguarding of 
patient data. These documents are available as supplementary material. We received data of 
30 patients, consisting of 12 variables. A full list containing these variables is provided in 
Appendix 3. 
 

During this project, a PhD candidate at the Erasmus MC ICU was working on the 
development of a patient dashboard, for which he developed a method to extract data from 
the electronic health records. We asked him for all recorded measurements of the clinically 
measured variables we deemed of interest, of 100 patients that had been admitted to the 
ICU of the Erasmus MC in 2019-2021. We received data of 114 patients, consisting of 28 
variables. A full list containing these variables is provided in Appendix 3. 
 

We asked the Erasmus MC Imaging Trial Bureau for the CT-scans of the head, 
corresponding to the patients in the data query for the Erasmus MC department of Data & 
Analytics. Besides a research protocol, this process required a statement by a Medical 
Research Ethics Committee that this research is not subject to the Medical Research 
Involving Human Subjects Act. We submitted our research protocol to the Medical Research 
Ethics Committee, but we have not yet received a response. Thus, we have not been able to 
include CT-scans in this research. 
 

All used data for this project has been anonymized, and was analyzed as such. The key file 
representing the link between the anonymized data and the identity of the patients is stored 
at a secured Erasmus MC computer and can only be accessed by one of the researchers, 
who is an intensivist and has legal access to the patient data because of the professional 
standards (“beroepsgeheim”). 
 

Data processing 
We used Anaconda (version 4.9.2) to develop a custom Python (version 3.7.6.final.0) script, 
utilizing Keras (version 2.4.3) running on TensorFlow (version 2.3.1) for the development of a 
machine learning model. The goal of this script was automatic processing of patient data, 
drawing samples, and training a machine learning model to predict whether or not a data 
sample precedes IH. We used the dataset of 30 patients for development of the script. A 
summary of the capabilities of this script may be found in Appendix 4. The script, including 
extensive explanatory comments, and a list of all used packages, are available as 
supplementary material. 
 

After construction of the Python script, we used the dataset of 114 patients, as this dataset 
contained the most patients and variables. Due to time restrictions we were unable to include 
the fluid input and output data, hence in total, the data of 26 variables was used. The median 
age of the patients in this dataset was 47,5 (Interquartile range: 31-64), with 71% being male. 
 



 

 

For every variable, we took the mean value every five minutes. This was done to reduce the 
dimensionality of the data and to reduce the impact of missing values and outliers. 
Remaining missing values were replaced using linear interpolation. Starting from the first 
measurement, the first three hours of data were discarded, as during these first hours, a 
patient is undergoing several diagnostic and sometimes acute therapeutic procedures which 
may yield unstable ICP values. Therefore, we focused on the period beyond the first three 
hours when most patients have entered a more stable phase. We scaled the data per 
variable such that the median equals zero, and that the first quartile and third quartile of the 
interquartile range equal minus one and one, respectively. We did this to standardize the 
values that will eventually be analyzed by the machine learning model. We performed 
automatic detection of periods of IH using a prespecified ICP threshold and prespecified 
minimum time above the threshold. 
 

A data sample length of one hour was chosen, based on the findings in the literature review. 
This sample length does not change throughout this research. Two types of samples were 
collected: data samples preceding IH and data samples not preceding IH. Data samples 
preceding IH were collected a prespecified amount of time in advance of the IH period. This 
prespecified amount of time is called the “prediction window”. The minimal IH period length 
was also prespecified. At most, three data samples preceding IH were collected per patient. 
In figure 1, a visual representation of a theoretical sample preceding IH is provided. Note that 
a data sample consists of an hour of ICP data that does not meet the prespecified properties 
of intracranial hypertension, along with the data of other variables during that time. 
 

 
Figure 1. Visual representation of a data sample preceding a period of intracranial hypertension. We automatically detect 
periods of intracranial hypertension, and sample an hour of patient data that is located a “prediction window” away. In this 
case, the threshold for intracranial hypertension equals ICP≥30mmHg,  and the prediction window equals 30 minutes. 
Adapted from Czosnyka M et al7. 

Data samples not preceding IH were randomly collected from all patients. Such a data 
sample was only collected if no IH period was present in both the theoretical prediction 
window and the minimum IH period length following the sample. At most, three data samples 
not preceding IH were collected per patient. 
 

The data samples were randomly split in a training set (60%), validation set (20%) and test 
set (20%). Samples of one type (preceding IH or not preceding IH), originating from a single 
patient remained together in one of the three sets. For patients that experienced IH, it was 



 

 

possible that samples preceding IH could be placed in one of the three data sets, while the 
samples not preceding IH could be located in another one of the three data sets. 
 

The type of patient data that was used in this research was time series data, which implies a 
series of chronologically ordered data points. We decided to create a Long Short Term 
Memory (LSTM) machine learning model for data analysis, because this type of model is 
especially suitable for classifying time series data8. We chose to make a model consisting of 
two layers, with eight neurons per layer. Each model was trained 10 times, in order to obtain 
the average performance. A model was always trained for 50 epochs with a batch size of 
eight.  
 

Experiments 
During training the LSTM model aims to learn certain patterns in the data that allows it to 
create decision rules, which eventually enables the model to decide whether or not a sample 
is likely to precede IH, or not. During the learning process, the model takes a “batch” of 
random samples from the training set. We prespecified the size of this batch to be eight 
samples. The model then tries to create decision rules based on the samples in the batch. 
Subsequently, the model tries these rules on all samples in the validation set; acting as a 
binary classifier that calculates the likelihood of a sample belonging to one of two classes. 
The amount of incorrect predictions is represented by the “loss” value. We prespecified the 
loss value to be calculated using binary cross-entropy, which is a popular loss function for 
binary classifiers9. In essence, this function introduces a penalty score for bad predictions, 
which is called the “loss”. The function calculates the mean of all losses that are obtained by 
trying the decision rules on the samples in the validation. Thus, if many samples in the 
validation set are predicted correctly, the mean loss will be low, whereas a lot of wrong 
predictions result in a higher mean loss. The LSTM model tries to optimize its decision rules 
by minimizing the loss. After processing a batch, the decision rules of the model are updated 
based on the loss. Once the model has processed all batches in the training set, an “epoch” 
has passed. The model may then be improved further by going through this process again, 
with the samples in the training set being shuffled across the batches. We prespecified the 
amount of epochs to be 50. 
 

We performed three experiments. First, we trained models using similar IH definitions and 
identical prediction windows as found in our systematic review, and using the data of 26 
variables. Thus, we trained a model to predict periods of ICP≥30mmHg lasting at least 10 
minutes, with a prediction window of 30, and a model to predict periods of ICP ≥20mmHg 
lasting at least 15 minutes, with a prediction window of 30. 
 

Second, we investigated 30-minute, one-hour, three-hour, and six-hour prediction windows, 
in combination with two IH definitions: ICP≥20mmHg lasting at least 15 minutes, and 
ICP≥20mmHg lasting at least 30 minutes. We used the data of 26 variables for these models. 
We chose a threshold of 20 mmHg for these models, as the Erasmus MC protocol regarding 
ICP management after neurotrauma strives to keep the ICP below 20mmHg10. 
 

Third, we trained a model using a similar IH definition, an identical prediction window and the 
same variables as the best performing model in our systematic review. Thus we trained a 
model to predict periods of ICP ≥20mmHg lasting at least 15 minutes, with a prediction 
window of 30 minutes, using only the ICP and mean arterial blood pressure (MAP). 
 

The primary outcome measures of this research were the model loss, accuracy, which 
represents the number of correct predictions divided by the total number of predictions11, and 
de Area Under the receiver operating characteristic Curve (AUC), which may be interpreted 
as the chance that the model, when given a random sample preceding IH and a random 
sample not preceding IH, ranks the former sample higher (in terms of “possibly preceding 
IH”) than the latter12. The AUC was obtained by using a model on the test data. 



 

 

Results 

We were unable to calculate sensitivity and specificity values. For every experiment, we 
visualized the loss values per epoch of all models, for all 10 times each model was trained. 
We did the same for the accuracy values per epoch, and the eventual receiver operating 
characteristic (ROC) curve. These figures are provided in Appendix 5. 
 

In Appendix 5, figure 1, an interpretational example is provided on how to read and 
understand a figure containing the loss values obtained during training. 
 

During experiment 1, we achieved a mean AUC of 0,72 and a mean accuracy of 0,87 with 
the model prediction periods of ICP≥30mmHg lasting at least 10 minutes, using a prediction 
window of 30 minutes. We obtained a mean AUC of 0,85 and a mean accuracy of 0,86 with 
the model predicting periods of ICP≥20mmHg lasting at least 15 minutes, using a prediction 
window of 30 minutes. Table 1 provides an overview of these results The figures containing 
the loss and accuracy values during training, and the ROC curves obtained by testing the 
models on test samples, are provided in Appendix 5, figures 2-4. 
 

The mean AUC and mean accuracy values of the models trained during experiment 2 are 
provided in Table 2. The best mean AUC was achieved by the model predicting periods of 
ICP≥20mmHg lasting at least 15 minutes, using a prediction window of 3 hours. The figures 
containing the loss and accuracy values during training, and the ROC curves obtained by 
testing the models of experiment 2 on test samples, are provided in Appendix 5, figures 5-7. 
 

The model trained during experiment 3, predicting periods of ICP≥20mmHg lasting at least 
15 minutes, using a prediction window of 30 minutes and using only the ICP and MAP, 
achieved a mean AUC of 0,83 and a mean accuracy of 0,91. The figures containing the loss 
and accuracy values during training, and the ROC curves obtained by testing the model on 
test samples, are provided in Appendix 5, figures 8-10. 
 

For all experiments, the figures containing the loss values obtained during training of the 
models showed decreasing training and validation loss values during the first few epochs. 
Thereafter, the training loss continued to decrease while the validation loss started to 
increase. This phenomenon is called “overfitting”, and is explained in Appendix 5, figure 2. 
 
Table 1. Model information and performance from experiment 1. Two models were trained using similar IH definitions and 
identical prediction windows as found in our systematic review, and using the data of 26 variables. An “event” is a sample 
preceding IH. 

Prediction 
window 

IH 
definition 

Training 
samples 
(events) 

Validation  
samples 
(events) 

Test 
samples 
(events) 

Mean 
AUC 
[95% CI] 

Mean 
Accuracy 
[95% CI] 

30 minutes ICP≥30m
mHg for at 
least 10 
minutes 

228 (27) 77 (8) 80 (8) 0,72 
[0,62-0,82] 

0,87 
[0,85-0,89] 

30 minutes ICP≥20m
mHg for at 
least 15 
minutes 

235 (31) 80 (11) 83 (12) 0,85 
[0,81-0,89] 

0,86 
[0,84-0,88] 

 
  



 

 

Table 2. Model information and performance from experiment 2. Models were trained using 30-minute, one-hour, three-
hour, and six-hour prediction windows, in combination with two IH definitions: ICP≥20mmHg lasting at least 15 minutes, and 
ICP≥20mmHg lasting at least 30 minutes. The data of 26 variables was used. An “event” is a sample preceding IH. 

Prediction 
window 

IH 
definition 

Training 
samples 
(events) 

Validation  
samples 
(events) 

Test 
samples 
(events) 

Mean 
AUC 
[95% CI] 

Mean 
Accuracy 
[95% CI] 

30 minutes ICP≥20m
mHg for at 
least 15 
minutes 

235 (31) 80 (11) 83 (12) 0,85 
[0,81-0,89] 

0,86  
[0,84-0,88] 

30 minutes ICP≥20m
mHg for at 
least 30 
minutes 

232 (28) 76 (7) 73 (4) 0,84  
[0,76-0,92] 

0,93  
[0,92-0,94] 

1 hour ICP≥20m
mHg for at 
least 15 
minutes 

233 (29) 81 (12) 83 (14) 0,79  
[0,72-0,86] 

0,84  
[0,83-0,85] 

1 hour ICP≥20m
mHg for at 
least 30 
minutes 

228 (24) 76 (7) 76 (7) 0,74  
[0,66-0,82] 

0,88  
[0,86-0,90] 

3 hours ICP≥20m
mHg for at 
least 15 
minutes 

228 (24) 83 (14) 80 (11) 0,88  
[0,85-0,91] 

0,87  
[0,86-0,88] 

3 hours ICP≥20m
mHg for at 
least 30 
minutes 

228 (24) 74 (5) 76 (7) 0,75  
[0,70-0,80] 

0,91  
[0,90-0,92] 

6 hours ICP≥20m
mHg for at 
least 15 
minutes 

222 (18) 81 (12) 79 (11) 0,70  
[0,63-0,77] 

0,85  
[0,83-0,87] 

6 hours ICP≥20m
mHg for at 
least 30 
minutes 

225 (21) 73 (4) 74 (5) 0,75  
[0,70-0,80] 

0,92  
[0,90-0,94] 

 
Table 2. Model information and performance from experiment 3. A model was trained using a similar IH definition, an 
identical prediction window and the same variables (the intracranial pressure and mean arterial blood pressure) as the best 
performing model in our systematic review. An “event” is a sample preceding IH. 

Prediction 
window 

IH 
definition 

Training 
samples 
(events) 

Validation  
samples 
(events) 

Test 
samples 
(events) 

Mean 
AUC 
[95% CI] 

Mean 
Accuracy 
[95% CI] 

30 minutes ICP≥20m
mHg for at 
least 15 
minutes 

238 (34) 81 (12) 81 (12) 0,83  
[0,68-0,98] 

0,91  
[0,88-0,94] 

 
  



 

 

Discussion 

Main findings 
We were able to train a LSTM model predicting periods of ICP≥20mmHg lasting at least 15 
minutes, using a prediction window of 30 minutes and using only the ICP and MAP, that 
achieved a mean AUC of 0,83 and a mean accuracy of 0,91. This is in concordance with the 
literature we found in the systematic review13-15. 
Using 26 variables to train models resulted in overtraining. The amount of positive cases was 
small: for every model, about 5-15% of all samples preceded IH. In order to train models 
using more variables than the ICP and MAP effectively, more positive samples are needed. 
The average AUC appears to decrease as the prediction window length increases. However, 
this should be investigated using a larger dataset. 
 

Limitations 
The Python script may still be improved. We propose the following considerations. 
 

After calculation of the mean value for every variable every 5 minutes, remaining missing 
values are filled using linear interpolation. Missing values after the last known measurement 
of a variable are interpolated as well using forward filling, while missing values before the first 
measurement of a variable remain unaffected. This may possibly be solved with backward 
filling using the value of the first known measurement. 
 

Samples not preceding IH that were collected from a patient that experienced IH, may end 
up in a different set (i.e. training set, validation set or test set) than samples preceding IH, 
collected from the same patient. We do not suspect that this influences the model, although 
this may be changed so that both types of sample are placed in the same set. This ensures 
that the model is not able to train an validate using samples originating from the same 
patient. 
 

The data concerning daily fluid input and output was not used in this research due to time 
limitations. Implementing the use of this additional data in training a LSTM model may 
improve its results. 
 

The script is not yet able to read CT scans and utilize features from those. This ability should 
be added as soon as CT scans are available, so that LSTM models may be trained with 
imaging features. 
 

The script is able to detect periods of ICP above a certain threshold lasting a certain amount 
of time. Sometimes, short periods of ICP above the threshold follow shortly after one 
another; perhaps these multiple short periods should be treated as one, if the time between 
them is short enough. 
 

The impact of outliers is reduced by taking the mean value of a variable every 5 minutes. An 
additional way of mitigating outlier influence could be the implementation of a minimum and 
maximum threshold level for each variable, and ignoring any values that exceed those 
thresholds. 
 

The mean value of a variable is calculated every 5 minutes, followed by linear interpolation to 
fill any remaining missing values. For variables that are not measured frequently, this means 
that at many time points, an interpolated value is used. This could result in cases where a 
data sample only contains interpolated values for a certain variable. Such a situation cannot 
occur in clinical practice, because if the most recent data of a patient would be analyzed, it is 
impossible to perform linear interpolation using future measurements. A possible solution 
would be increasing the measurements frequency, but since that is not always achievable in 
practice, forward filling using the last measured values may be an option. 
 



 

 

Samples not preceding IH seem over-represented, as the part of samples preceding IH was 
only 5-15% in the data sets of every experiment. This is not surprising because samples not 
preceding are collected from every patient, while samples preceding IH may only be obtained 
from the patients that experienced IH at least once. In addition, the maximum amount of 
samples preceding IH could not always be collected due to unavailability. It may be 
interesting to investigate the performance of a model that was trained on data that contained 
roughly equal amounts of both sample types. This may be achieved by taking a small portion 
(“subsampling”) of the negative samples. 
 

The scaling of the data per variable is currently performed before splitting the data into the 
training, validation and test sets. However, the scaling should actually happen after the data 
has been split. Not doing so has likely biased the model evaluation, as information may have 
leaked from the test set to the training set16. 
 

The scaling of the data has also led to skewed values, as some columns contain many 
zeros. This is probably caused by wrong measurements followed by linear interpolation 
between zeros or, if the last measured value was a zero, by forward filling by the 
interpolation function. These zeros are still taken into account when determining the median 
and interquartile range, leading to a distorted scaling process. This may be solved by 
implementing a lower and upper threshold for variable values, as mentioned earlier in this 
section. 
 

It would be interesting to see which variables are most important for the model. If we can 
figure out what variables possess the most predictive values, we could try to train a model 
using only those variables, leaving out any redundant variables that may make the model 
unnecessarily complicated. 
 

We used automatically detected periods of IH. In practice, a high ICP may have various 
causes, such as transportation of the patient. In order to be sure that automatically predicted 
samples precede clinically relevant IH, the medical records of a small group of patients could 
be searched for periods of IH for which treatment was given. The information from the 
records could be checked against the automatically detected periods, to investigate whether 
or not automatic detection of IH captures all or most of the clinically relevant IH periods, 
without detecting too much periods that are not clinically relevant. 
 

Future research 
It is evident that models trained using 26 variables, suffer from overtraining. There are 
several possibilities to solve overtraining, such as by decreasing the amount of layers in the 
model, decreasing the amount of neurons, or by scaling the data17. Future research could 
focus on this. Furthermore, we discuss the limitations of this research and provide possible 
solutions in the previous section, which could be taken into account in future research. 
 

Implementation 
Implementation of a machine learning model in clinical practice comes with various practical 
challenges and ethical considerations. 
 

One of the first challenges finds its origin in patient data. The model needs quick access to 
the latest relevant patient data, in order to make real-time predictions. This may require 
integration of the model in the current hospital systems. Furthermore, when the machine 
learning model has processed data of a patient, it may be possible to add this data to a 
database that may be used to periodically update the prediction model. This should be done 
in accordance with the General Data Protection Regulation (GDPR). Patients should provide 
informed consent before any of their data is saved in such a database, after discharge. 
Should the patient pass away during their admission, relatives of the patient may provide 
informed consent. 



 

 

 

Furthermore, implementation may require the medical staff to have some basic 
understanding of machine learning models and how to interpret their results. Especially 
nurses should receive some training, as they are most likely to notice periods of IH. 
However, this does not guarantee a problem-free implementation and use. Currently, 
decisions of a machine learning model may never be fully understood, due to the intrinsic 
mathematical complexity behind such a decision18. Also, the model provides a decision along 
with a confidence score, usually ranging from zero (no confidence) to one (absolutely sure). 
This confidence score differs from the confidence score a human may give its own 
decision19. This complicates situations where the output of a model differs from a clinician’s 
opinion: comparing both confidence levels is nearly impossible, and the reason behind the 
decision of the model cannot be deciphered. Since a machine learning model is usually 
trained using data of hundreds of patients, which includes the medical expertise of a similar 
amount of clinicians, a model will never be 100% accurate20. It may be regarded as a new 
source of information, but also as a source of uncertainty for clinicians. Adequate training of 
healthcare professionals in the use of these prediction tools and protocol development is of 
key importance. 
 

Another ethical question arises when a healthcare professionals thinks that a patient is 
stable, while the model warns that the patient is probably developing intracranial 
hypertension. Should immediate action be undertaken, such as administering medication to 
the patient, or would it be better to exert a wait-and-see policy? A follow-up question could 
be: what are the consequences when the medical professionals choose to do nothing, and 
the patient indeed develops IH, eventually leading to permanent disability? These questions 
should not lead to fear among clinicians to chose to ignore a model’s outcome. Furthermore, 
clinicians should be wary of possible overtreatment when a model’s outcome is different from 
their own views. Following the computer could lead to unnecessary administration of 
medication or interventions, resulting in preventable harm for the patient, and the wasting of 
resources such as materials, time, and money. Adequate training and protocol development 
is needed before such tools can be put into practice. 
 

Should clinicians choose to adhere to the computer’s prediction, it may very well be 
impossible to check if the right choice has been made. That is: if medication that lowers the 
ICP is given pre-emptively to a patient, the patient may not develop intracranial hypertension. 
How do we know whether or not the patient would have developed IH if no action was 
undertaken? It may very well never be possible to determine if a patient was overtreated. 
Studying these situations would be arguably impossible, as it would be unethical to withhold 
therapy for one patient, while a similar patient does receive treatment. 
 

Conclusion 

We trained a LSTM model based on the ICP and MAP that was able to predict the 
occurrence of periods of ICP≥20mmHg lasting at least 15 minutes, using a prediction window 
of 30 minutes. This model achieved a mean AUC of 0,83. Adding more physiological 
variables resulted in overtrained models. To solve this, future research could focus on 
improvements in the data processing, simplifying the model, finding out which variables are 
most important. Furthermore, longer prediction windows could be investigated. 
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ABSTRACT 
Introduction: Intracranial hypertension (IH) may lead to secondary injuries in patients 
suffering from traumatic brain injury (TBI). Current clinical practice consists of monitoring the 
intracranial pressure (ICP) and starting treatment once IH has been diagnosed. A pre-
emptive approach may be more beneficial for patients. Previous studies have shown that 
predicting future IH events is possible. In this systematic review, we assess the available 
literature covering the prediction of ICP/IH using machine learning (ML). We aim to identify 
the used models and variables, and the resulting performance. 
 
Methods: We searched the Embase and Ovid electronic databases for studies using ML to 
predict ICP/IH in TBI patients. We only included studies that performed internal or external 
validation. Article quality was determined using a custom quality assessment. We 
summarized the patient demographics, data characteristics, used models and variables, and 
performance measures. 
 
Results: We retrieved 1934 non-duplicate publications, of which five were eligible for 
inclusion in this systematic review. In total, we identified five variables used for model 
development: ICP, mean arterial pressure (MAP), brain tissue oxygenation, pressure 
reactivity index, and time since last crisis. We found that the most commonly used predicting 
method consisted of a Gaussian Processes model utilizing the ICP and MAP. This appeared 
to be the best-performing prediction model to date, with a maximum reported area under the 
receiver operating characteristic curve of 0,93 when evaluated in an external dataset. Only 
two studies carried out external validation. All studies were retrospective; no studies 
described prospective, clinical use of ICP/IH prediction. 
 
Conclusion: Research regarding ICP/IH prediction using ML is sparse. Some well-
performing models have already been developed, but there is potential for improvement. 
Current literature reports the ability to predict an increase in ICP 60 minutes in advance, or 
an IH event 30 minutes in advance. In order to be more clinically relevant, earlier predictions 
are needed. ML-based ICP/IH predicting remains a promising concept to prevent secondary 
injury in TBI patients. 
 



 

 

INTRODUCTION 
Intracranial hypertension (IH) portends a worse prognosis in patients with traumatic brain 
injury (TBI) and should be treated expediently1. The primary brain injury, consisting of 
hematomas or contusions, is often accompanied by tissue edema resulting in IH. IH can be 
considered a harbinger of secondary injury, as it hampers cerebral perfusion and thus 
induces brain ischaemia1. Current practice has focused mainly on mitigating intracranial 
pressure (ICP) once it has occurred, by medical or surgical interventions2. However, current 
practice consists of applying countermeasures once the ICP has become too high (generally 
defined as exceeding 20-25 mmHg3). A pre-emptive approach that may contribute to 
prevention of ICP surges, by mitigation of contributing factors known to be able to induce 
secondary brain injury in patients at high risk for IH, may be preferable. Indeed, once the ICP 
rises, this is a clear sign of exhausted compensatory intracranial reserve (compliance) 
contributing to secondary injuries that would better be prevented instead of treated. 
 
Established clinical variables contributing to secondary brain injury and IH include fever, 
hypo-osmolality of serum (inducing cerebral edema), hyperglycemia, prolonged 
hyperventilation or hypoventilation and venous congestion caused by high PEEP levels of 
the ventilator and fluid overload4. These factors are represented by variables that are 
continuously measured at the intensive care unit (e.g. temperature, glucose, sodium, pCO2, 
pO2, and blood pressure) and are highly amenable to treatment. Early identification of the 
risk of impending IH can enable clinicians or nurses at the bedside to correct derangement of 
these variables, alone or in combination, and thereby theoretically initiate countermeasures 
and decrease the risk of IH. 
 
To date, prediction of IH with such physiological variables remains understudied. 
Furthermore, imaging results (e.g. Computed Tomography (CT) scans) may also harbor 
predictive features for IH, but studies are virtually absent5. Combining both the physiological 
and imaging features may result in an even higher potential to predict IH. Contemporary 
machine learning (ML) algorithms parallel or even outperform humans when, for example, 
predicting certain medical conditions6 or analyzing images7. Hence, ML may be a valuable 
tool to help the identification of patients at risk of developing IH and guide preventive 
measures, such as strict avoidance of fever, or avoiding fluid overload4. 
 
The aim of this systematic review was to assess the available literature regarding the 
prediction of ICP/IH in TBI patients using ML, and subsequently answer the following 
questions: 1) What kind of ML methods and variables are being used to predict IH?; 2) What 
ML method yields the best results?; 3) Has prediction of IH with ML been validated 
externally, and is it already being used prospectively in clinical practice? 



 

 

METHODS 

The protocol for this systematic review has been registered in PROSPERO (registration 
number: CRD42020214744). This research was conducted and reported using the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 8. 
 

Search strategy 
We searched both the Embase and Ovid electronic databases on 27-10-2020, for 
publications describing studies that involved intracranial pressure or intracranial 
hypertension, traumatic brain injury, and machine learning. The full queries can be found in 
table 1. 
 

Study selection 
The titles and abstracts of the retrieved studies were assessed by two authors (SvH, JV). 
Articles were included if they used machine learning with the aim to predict ICP/IH (and/or 
decreased cerebral perfusion pressure) in patients suffering from TBI, and reported 
performance measures on an internal or external validation set. We excluded articles not in 
English, articles without available full text, and duplicate articles. Based on the full text of the 
remaining articles, we identified and included all studies that met the inclusion criteria. 
 

Data extraction 
Data was extracted from the selected studies by one of the authors (SvH), using the 
following predefined list of items: population description, data specifics of training set, data 
specifics of validation set, variables used in model, sample frequency, prediction window 
length, IH definition, data cleaning process, type of validation, type of ML method used, Area 
Under the receiver operating characteristic Curve (AUC), accuracy (i.e. the number of correct 
predictions divided by the total number of predictions), sensitivity, and specificity. Among the 
aforementioned data specifics, the data instance length was collected. The term ”instance” is 
used to indicate a collection of data acquired during a certain time period (e.g. one hour), and 
has a label that show whether an IH event occurs during this period. These instances are 
subsequently used to teach a ML algorithm to recognize differences between data without 
any IH events, and data containing an IH event. When in doubt, authors discussed until 
consensus was reached. 
As there are currently no reporting guidelines for ML prediction models available, we 
assessed the quality of each article using a custom quality assessment. This quality 
assessment can be found in table 2 and is based on literature regarding the Transparent 
Reporting of a multivariate prediction model for Individual Prognosis Or Diagnosis (TRIPOD)9 
and reporting guidelines of machine learning articles10-12. 
 

Main outcome 
The main outcomes of this systematic review were the types of ML methods and variables 
used, prediction window length, and their resulting performance measures. 
 



 

 

RESULTS 

Study selection 
We searched the Embase and Ovid electronic databases on 27-10-2020. In total, our search 
provided 1934 unique records, of which five13-17 (four articles and one letter) were eligible for 
inclusion in this systematic review. A flowchart visualizing the article selection process is 
provided in figure 1. 
 

Study characteristics 
Four13, 15-17 out of five studies mentioned the demographics of their cohort. Güiza F et al. 
(2017)16 studied an adult and a pediatric cohort, and supplied demographics for both. The 
demographic features that were reported are summarized in table 3. The lowest and highest 
age in the reported interquartile ranges were 7,516 and 6516, respectively. The median total 
Glasgow Coma Score (GCS) was six or seven for every study population, excluding the 
study by Myers RB et al. (2016)17 that only reported the eye and motor GCS. 
 
Table 4 summarizes the main study characteristics.  
 
Data instance length ranged from 30 minutes17 to four hours15, 16.  
 
To predict ICP/IH, all articles used preceding ICP, and four13-16 out of five studies also used 
the mean arterial pressure (MAP). In addition to these two variables, one study14 also used 
the brain tissue oxygenation and pressure reactivity index. One study17 used only the ICP 
and the time since last crisis. 
 
Data samples were taken every five seconds14 up to every 72 seconds17. 
 
Data cleaning was described by three studies and consisted of removing values registered 
during an intervention14; removing obvious artifacts16; excluding physiologically impossible 
values17; interpolating missing data points17; and using a smoothing filter17. 
 
Nine different models were used. Güiza F et al. (2013)15, Güiza F et al. (2017)16 and Carra G 
et al. (2020)13 used the same Gaussian Processes (GP) model, on different datasets. 
The models were able to predict the occurrence of IH 30 minutes in advance, and an 
elevation of the ICP 60 minutes in advance. 
 
Table 5 shows the AUC, accuracy, sensitivity and specificity for each study where this was 
described. All publications provided at least the AUC. The article by Güiza F et al. (2017)16 
mentioned performance measures of the model for both the adult cohort and the pediatric 
cohort. This was also the only publication that provided 95% confidence intervals. Thus, in 
total, there were six AUC values, of which the average was 0,83. The best performance (an 
AUC of 0,93) was achieved by by Carra G et al. (2020)13. There were four13-16 articles that 
mentioned an accuracy value, ranging from 61,5%14 to 88%13.Three13, 15, 16 articles also 
reported the sensitivity and specificity values, ranging from 70%16 to9116 and from 48%16 to 
91%13, respectively. 
 
Four13, 15-17 out of five studies investigated the prediction of IH specifically, while one14 study 
only looked at the ICP course independent of a specific threshold. We found two different 
definitions of IH: ICP>30mmHg for 10 minutes13, 15, 16, and ICP>20mmHg for 15 minutes17. 
The prediction windows varied from 30 minutes13, 15-17 to one hour14. 
 
Three14, 15, 17 studies performed internal validation and two13, 16 performed external validation. 
All studies were retrospective; we did not find research that used ML in a prospective, clinical 
setting. 
 



 

 

None of the included studies reported to have made their data or models publicly available. 
 

Quality analysis 
The quality scores for each publication is can be found in table 6. The average score was 
50%, ranging from 33%14 to 67%16. 
  



 

 

DISCUSSION 
Main findings 
In this systematic review on the utility of ML algorithms to predict ICP/IH in patients suffering 
from TBI, we found that only limited variables were consequently used (mainly ICP and MAP) 
and that prediction was limited to only 30 minutes in advance of the occurrence of IH, and 60 
minutes in advance of a higher ICP. Gaussian Processes (GP) was most commonly used, 
followed by Logistic Regression. 
 
The GP model by Güiza F et al. (2013)15, based on the ICP and MAP, achieved the best 
AUC (0,93) when used on an external validation data set13. All studies were retrospective; we 
did not find literature describing prospective, clinical use of ML-based ICP/IH prediction. 
 
Although the best performing model was developed on patient data from 2003-2005 (AUC: 
0,872)15 and was initially only internally validated, it still accomplished good results when 
validated externally on data from 2009-2013 (AUC: 0,90 (adult cohort) and 0,79 (pediatric 
cohort))16 and 2015-2017 (AUC: 0,93)13, indicating the robustness of the model.  
Notably, the ML algorithms used mainly used pressure-related variables, with one study also 
using brain tissue oxygenation14 and another study also using the time since last crisis17.  
 
The results we found raise the question whether or not ML will improve clinical practice as 
current models are focused on predictions 30 to 60 minutes in advance. It is arguable that 
this might offer enough advantage compared to clinical observation of an ICP trend directly 
preceding IH.  
 

Limitations 
This systematic review has several limitations. ICP/IH prediction with ML in patients with TBI 
is a niche topic; the available literature regarding this subject was scarce, with only four 
articles and one letter being eligible for inclusion. Two13, 14 publications were of variable 
(<50%) quality. However, this quality assessment was custom-made, based on literature and 
what the authors deemed important in this type of studies. This makes the quality scores 
subjective. There are various articles concerning possible reporting guidelines for research 
involving a ML model, but there is a need for universal and widely acknowledged quality 
criteria. 
 
Four13, 15-17 out of five included studies described their population demographics. No study 
explicitly stated that all patient data from a specific time period were used, so we are unable 
to rule out cherry picking of patient data. Selection bias could therefore be a concern in 
selected studies for this review, since selecting only patients without missing data or artifacts 
and with very evident trends in the data may lead to a well-performing models, whereas 
using real-world data, might yield different prediction properties. Furthermore, no articles 
stated exactly how many data instances were sampled per patient, which hampers 
comparability of studies and insight into data collections underlying the machine learning 
algorithms. 
 
 
Further, the included studies differed regarding the definition of IH, the used sample 
frequency and the used data instance length. 
 
Furthermore, the lack of external validation of two models12, 15 reduces the credibility of their 
reported results. 
 

Future research 
For future research, we can deduct several suggestions. 



 

 

First, although a GP method produced the best results of all included studies, we cannot 
exclude that new types of ML methods, such as support vector machines and random forest, 
may have good or better performance when applied to variables that are used much earlier 
than the maximum of 60 minutes preceding IH. These methods are currently commonly used 
and should be considered for further research18. 
Second, mainly the ICP and MAP are utilized as variables in the included studies. It may be 
useful to take also homeostasis-related variables into account, although it is unknown 
whether these may further improve prediction. The ICP rise may be preceded by changes in 
homeostasis-related variables which can mostly be mitigated by clinical treatment, making 
them interesting from a clinical perspective. 
Third, the use of imaging (especially CT-scan) features in the prediction of ICP/IH in patients 
with TBI holds promise in relation to ML. Future studies should explore the use of imaging 
features as (part of the) variables used to train a predicting method, since ML may especially 
be able to outperform human interpretation as it has been used before to automatically 
extract imaging features from CT-scans19. 
Fourth, we estimate the optimal required sample frequency for ML to be approximately a 
value per minute. The best performing model, by Güiza F et al. (2013)15, also used this 
sample frequency. Utilizing a higher sample frequency results in many data points which may 
be challenging to analyze. On the other hand, lower sample frequencies may fail to capture 
changes early and may lead to skewed data, as one artifact could have drastic impact on a 
perceived trend.  
Fifth, the training data instances varied from 30 minutes17 to four hours15, 16. The necessary 
data instance length likely depends on the type of model, since the model by Myers RB et al. 
(2016)17 used 30-minute instances and yielded an AUC of 0,86, whereas the best model by 
Feng M et al. (2012)14, that also used this instance length, only achieved an AUC of 0,66. We 
suspect that an instance length of at least one hour should be used, to ensure that early 
warning signs can be picked up timely by a predicting model. 
Sixth, the prediction window lengths varied from 30 minutes13, 15-17 to one hour14. We suspect 
that a warning for imminent IH should be given at least 30 minutes prior to the projected 
event, to allow preventive measures to be taken. Güiza F et al. (2013)15 affirmed the 
sufficiency of this prediction horizon. It may be even more clinically relevant if ML is able to 
identify patients, with high risk of developing IH during their entire stay, shortly after 
admission. 
Seventh, In order to prevent selection bias as much as possible, an equal number of 
instances should be drawn from every patient, or at least a maximum amount of instances 
per patient. 
 
 
 
  



 

 

CONCLUSION 
There is a dearth of studies on ML-based prediction of IH in patients with TBI. Currently, the 
best performing method appears to be a GP model that utilizes the ICP and mean arterial 
pressure to predict IH within 30 minutes. New studies should consider using homeostasis-
related variables and imaging features, possibly in combination with pressure-related 
variables.  
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Appendix 2: List of requested variables 
We requested  

- Intracranial pressure 
- Mean arterial blood pressure 
- Systolic blood pressure 
- Brain tissue oxygenation 
- Pressure reactivity index 
- Shock index 
- Pulse pressure 
- Heart rate 
- End tidal carbon dioxide 
- Cerebral perfusion pressure 
- Temperature 
- Glucose 
- Sodium 
- Partial pressure of carbon dioxide 
- Partial pressure of oxygen 
- C-reactive protein 
- Fluid balance per 24 hours 
- Fluid intake per 24 hours 
- Positive end expiratory pressure per 24 hours 
- Ventilation tidal volume per 24 hours 
- Ventilation peak pressure per 24 hours 

 
  



 

 

Appendix 3: List of obtained variables 
For 30 patients, we obtained data for the following variables: 

- Intracranial pressure 
- Heart rate 
- End tidal carbon dioxide 
- Temperature 
- Glucose 
- Sodium 
- Partial pressure of carbon dioxide 
- Partial pressure of oxygen 
- C-reactive protein 
- Positive end expiratory pressure 
- Ventilation mean pressure 
- Ventilation peak pressure 

 
For 114 patients, we obtained data for the following variables: 

- Intracranial pressure 
- Non-invasive systolic blood pressure 
- Non-invasive diastolic blood pressure 
- Non-invasive mean blood pressure 
- Systolic arterial blood pressure 
- Diastolic arterial blood pressure 
- Mean arterial blood pressure 
- Pulse pressure variation 
- Brain tissue oxygenation 
- Heart rate 
- End tidal carbon dioxide 
- Cerebral perfusion pressure 
- Temperature 
- Glucose 
- Sodium 
- Partial pressure of carbon dioxide 
- Partial pressure of oxygen 
- C-reactive protein 
- Fluid input 
- Fluid output 
- Positive end expiratory pressure 
- Ventilation tidal volume 
- Ventilation inspiratory tidal volume 
- Ventilation expiratory tidal volume 
- Ventilation tidal volume per body weight 
- Ventilation peak pressure 
- Ventilation plateau pressure 
- Fraction of inspired oxygen 

 
  



 

 

Appendix 4: Summary of the custom Python script 
- Loading patient data provided in a Microsoft Excel file. 
- Sorting the data per unique patient. 
- Organizing the data in a structured format, while being able to detect measurements 

of multiple variables at a single point in time, creating a chronological collection of 
data with measurements or multiple variables per point in time. 

- Calculate and present how much data has been collected per variable per patient. 
- Calculating the means of all variables every prespecified time period and organizing 

these means in a structured format. 
- Interpolating any missing mean values. 
- Automatic detection of intracranial hypertension, based on a prespecified intracranial 

pressure threshold and prespecified time this threshold should be exceeded. 
- Scaling of the means according to the interquartile range, making the values robust to 

outliers. 
- Automatic random sampling of prespecified data periods preceding intracranial 

hypertension by a prespecified time. 
- Automatic random sampling of prespecified data periods not preceding intracranial 

hypertension by a prespecified time, both in patients that did not experience IH and 
patients that did experience IH. 

- Organizing the samples in a format that is suitable for training a machine learning 
model 

- Training a machine learning model recognize periods of data preceding IH. 
- Writing all output, including a logfile, in timestamped folder. 

  



 

 

Appendix 5: Loss plots, accuracy plots and ROC curve plots 
 
 

Figure 1. Interpretational examples of the model loss values during training. This figure on the left illustrates an 
ideal example, the figure on the right illustrates an example of overfitting. The loss values obtained by using the 
model on the training data and validation data, both decrease as the epochs pass. Eventually both lines should 
approximately overlap, indicating the ability of the model to predict classes in the training set with the same 
performance as in the validation set, as van be seen in the left figure. In case of “overfitting”, the loss values 
obtained by using the model on the validation data, will increase while the loss values obtained by using the 
model on the training data remain low or decrease, as can be seen in the right figure. This means that the 
model learns to perfectly distinguish classes in the training data, while creating decision rules that are 
increasingly less general. This means the model may still perform well on the data in the validation and test set, 
as can be seen in the figures containing the accuracy values obtained by using the model on the validation data, 
or in the figures containing the Receiver Operator Characteristics curve obtained by using the model on the test 
data. However, a model that suffers from overfitting, is very likely to not perform well on a new dataset. Figures 
adapted from Brownlee J21.



 

 

 
Figure 2A. Loss values per epoch during training of the 10 
models aiming to predict periods of ICP≥30mmHg lasting 
at least 10 minutes, using a prediction window of 30 
minutes. 

 
Figure 3A. Accuracy values per epoch during training of 
the 10 models aiming to predict periods of ICP≥30mmHg 
lasting at least 10 minutes, using a prediction window of 
30 minutes. 

 

Figure 4A. Receiver Operator Characteristics curve of the 
10 models aiming to predict periods of ICP≥30mmHg 
lasting at least 10 minutes, using a prediction window of 
30 minutes, on test data. 

 
Figure 2B. Loss values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting 
at least 15 minutes, using a prediction window of 30 
minutes. 

 
Figure 3B. Accuracy values per epoch during training of 
the 10 models aiming to predict periods of ICP≥20mmHg 
lasting at least 15 minutes, using a prediction window of 
30 minutes. 

 

Figure 4B. Receiver Operator Characteristics curve of the 
10 models aiming to predict periods of ICP≥20mmHg 
lasting at least 15 minutes, using a prediction window of 
30 minutes, on test data. 

  



 

 

 
Figure 5A. Loss values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 15 minutes, using a prediction window of 30 minutes. 

 
Figure 5C. Loss values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 15 minutes, using a prediction window of 1 hour. 

 
Figure 5E. Loss values per epoch during training set of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 15 minutes, using a prediction window of 3 hours. 

 
Figure 5G. Loss values per epoch during training set of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 15 minutes, using a prediction window of 6 hours. 

 
Figure 5B. Loss values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 30 minutes, using a prediction window of 30 minutes. 

 
Figure 5D. Loss values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 30 minutes, using a prediction window of 1 hour. 

 
Figure 5F. Loss values per epoch during training set of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 30 minutes, using a prediction window of 3 hours. 

 
Figure 5H. Loss values per epoch during training set of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 30 minutes, using a prediction window of 6 hours. 



 

 

 
Figure 6A. Accuracy values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 15 minutes, using a prediction window of 30 minutes. 

 
Figure 6C. Accuracy values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 15 minutes, using a prediction window of 1 hour. 

 
Figure 6E. Accuracy values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 15 minutes, using a prediction window of 3 hours. 

 
Figure 6G. Accuracy values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 15 minutes, using a prediction window of 6 hours. 

 
Figure 6B. Accuracy values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 30 minutes, using a prediction window of 30 minutes. 

 
Figure 6D. Accuracy values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 30 minutes, using a prediction window of 1 hour. 

 
Figure 6F. Accuracy values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 30 minutes, using a prediction window of 3 hours. 

 
Figure 6H. Accuracy values per epoch during training of the 10 
models aiming to predict periods of ICP≥20mmHg lasting at 
least 30 minutes, using a prediction window of 6 hours. 



 

 

 
Figure 7A. Receiver Operator Characteristics curve of the 10 models 
aiming to predict periods of ICP≥20mmHg lasting at least 15 
minutes, using a prediction window of 30 minutes, on test data. 

 
Figure 7C. Receiver Operator Characteristics curve of the 10 models 
aiming to predict periods of ICP≥20mmHg lasting at least 15 
minutes, using a prediction window of 1 hour, on test data. 

 
Figure 7E. Receiver Operator Characteristics curve of the 10 models 
aiming to predict periods of ICP≥20mmHg lasting at least 15 
minutes, using a prediction window of 3 hours, on test data. 

 
Figure 7G. Receiver Operator Characteristics curve of the 10 models 
aiming to predict periods of ICP≥20mmHg lasting at least 15 
minutes, using a prediction window of 6 hours, on test data. 

 
Figure 7B. Receiver Operator Characteristics curve of the 10 models 
aiming to predict periods of ICP≥20mmHg lasting at least 30 
minutes, using a prediction window of 30 minutes, on test data. 

 
Figure 7D. Receiver Operator Characteristics curve of the 10 models 
aiming to predict periods of ICP≥20mmHg lasting at least 30 
minutes, using a prediction window of 1 hour, on test data. 

 
Figure 7F. Receiver Operator Characteristics curve of the 10 models 
aiming to predict periods of ICP≥20mmHg lasting at least 30 
minutes, using a prediction window of 3 hours, on test data. 

 
Figure 7H. Receiver Operator Characteristics curve of the 10 models 
aiming to predict periods of ICP≥20mmHg lasting at least 30 
minutes, using a prediction window of 6 hours, on test data. 



 

 

 
Figure 8. Loss values per epoch during training of the 10 models using only the ICP and MAP, aiming to predict periods of 
ICP≥20mmHg lasting at least 15 minutes, using a prediction window of 30 minutes. 

 
Figure 9. Accuracy values per epoch during training of the 10 models using only the ICP and MAP, aiming to predict periods 
of ICP≥20mmHg lasting at least 15 minutes, using a prediction window of 30 minutes. 

 

Figure 10. Receiver Operator Characteristics curve of the 10 models using only the ICP and MAP,  aiming to predict periods of 
ICP≥20mmHg lasting at least 15 minutes, using a prediction window of 30 minutes, on test data. 


