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A B S T R A C T

The Delft real-time GNSS single-frequency precise point positioning
(RT-SF-PPP) algorithm is extended to include velocity and receiver
clock drift as unknown states to be estimated from Global Naviga-
tion Satellite Systems (GNSS) measurements. Carrier-phase ambigu-
ities are assumed constant over time. Two different variance models
are used, one obtains variance as a function of satellite elevation, and
the other obtains variance as a function of carrier-to-noise density ra-
tio as estimated by the receiver. The elevation based variance model
was used in the original RT-SF-PPP algorithm, and adapted to include
Doppler measurements. The carrier-to-noise density ratio based vari-
ance model components are estimated from double difference (DD)
observation combinations using measurements obtained from a short-
baseline experiment with two receivers setup over multiple days. Two
velocity observables are used and related to velocity and clock drift
through the extended functional model of the original algorithm: the
receiver generated Doppler and a time-derivative of the carrier-phase
observable: the time-differenced carrier-phase (TDCP). Algorithmic
performance is evaluated by the horizontal RMSE, which represents
accuracy as the variance plus bias squared, precision and reliability.
This was validated using three different experiments: a stationary re-
ceiver on top of a roof, a buoy freely adrift in the North Sea, and
a receiver mounted on a car driving a regional road. It was found
that in terms of position in the static experiment and under calm
water conditions during the drifting buoy experiment the horizontal
RMSE was between 0.429 and 0.530 [m], and under rough water con-
ditions and a road partly flanked by fences and trees between 0.682

and 0.812 [m]. Furthermore in terms of velocity it was found that
the TDCP observable in combination with the carrier-to-noise den-
sity based variance model has a horizontal RMSE between 0.014 and
0.068 [m/s] over all experiments, and using the Doppler observable
with either variance model a RMSE between 0.033 and 0.122 [m/s].
The algorithm was even found by means of external reliability to be
capable of detecting faults at the boundary of 0.5 [m] for position and
0.1 [m/s] for velocity in the TDCP observable case.
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1
I N T R O D U C T I O N

Coastal engineers predict the impact of ocean dynamics on shore sys-
tems, anticipating dangerous currents within the surf zone is key for
a lifeguard, an Olympic sailor dealing with open water wants to know
the state of this field before the race.

Figure 1: Schematic representation of an ocean-shore system. [Online, 01-10-
2019]

Acquiring information on the state of the ocean surface in a reliable
way is often non-trivial, for a system involving fluids there are many
factors that influence the state. Major contributors for ocean currents
are wind, density, the Coriolis effect and tides, especially at small
scales this combination of contributing factors leads to uncertain pre-
dictions. [Laxague et al., 2018] Shore topography adds another layer
of complexity as shallower water leads to shorter crest to crest dis-
tances, as Fig. 1 shows.

1.1 algorithm requirements

In this work we attempt to measure and estimate the state of horizon-
tal currents in the upper part of the ocean, which is defined to be at
most 1 meter deep, which affects both swimmers and sailboats that
reach no deeper.

Together with the Sailing Innovation Centre and the department
of Hydraulic Engineering at Delft University of Technology we de-
velop a horizontal currents state estimation algorithm. Where mea-
surements related to the state of currents are obtained from a freely
drifting buoy system, that is equipped with a receiver and antenna
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2 introduction

tuned to Global Navigation Satellite Systems (GNSS). We assume that
these GNSS measurements are representative for the horizontal cur-
rents of the upper layer of the water body. The performance of the
algorithm is aimed to meet the following requirements:

• Be operated in real-time

• Have horizontal velocity RMSE 6 0.1 [m/s]

• Have horizontal position RMSE 6 0.5 [m]

Where operation in real-time allows for flexible, on-the-fly insights
into the state of the water surface. The horizontal velocity error is a
hard requirement set by the Sailing Innovation Centre. The position
requirement may be strict in open water conditions as water is incom-
pressible and does not take sharp turns, but in case coastguards want
to find dangerous currents in the surfzone and determine where to
place their flags to signal where swimmers can safely swim, a 0.5 [m]
RMSE should be sufficiently accurate and is on the safe side. Given
the algorithm requirements the following questions are investigated
in this work:

• What is the best approach to estimate velocity?

• What is the formal position and velocity precision?

• What is the empirical position and velocity accuracy?

• What are the internal- and external reliability?

1.2 satellite navigation positioning approaches

Position, velocity and time can be estimated using GNSS measure-
ments. There is no "one size fits all" approach, but rather an ap-
proach fine-tuned to the requirements. Positioning based on GNSS
can roughly be categorized into the following four classes where we
list the approximate root-mean-squared error (RMSE) between braces:
1) standalone receiver solutions (5 to 10[m]). 2) regional satellite-based
augmented systems and precise point positioning (PPP) type solu-
tions (1 to 0.1[m]). 3) local relative baseline (RTK) or network solu-
tions (0.01[m]). And 4) the long distance, long time relative solutions
(0.01 to 0.001[m]).

Both PPP and RTK type approaches can estimate states in real-time;
we adapt the PPP type approach based on the following consider-
ations. First of all PPP is baseline independent, which means that
corrections do not rely on a nearby base station. This is important
because in surf-zone or open water settings we are not guaranteed to
have a suitable location for a base station. Deploying a base station
requires understanding of geodetic surveying and is prone to human
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error. Secondly, in addition to the simplicity argument, it is also more
cost efficient, there is no need for a base station.

There is also no single best PPP approach. The Mathematical Geodesy
and Positioning (MGP) group, part of the Department of Geosciences
& Remote Sensing (GRS) at Delft University of Technology have de-
veloped and tested a special ppp branch. Known as real time sin-
gle frequency PPP (RT-SF-PPP). It uses a single GNSS frequency and
can use more than one constellation. [Le and Tiberius, 2007, Le et al.,
2009, van Bree and Tiberius, 2012, de Bakker and Tiberius, 2017] In
this work we adapt this Delft RT-SF-PPP approach and expand it to
estimate velocity and clock drift as states.

1.3 context of buoys for wave monitoring

We are not the first and probably not the last to combine buoys
and GNSS measurements. Drifting buoys fall within the category of
Lagrangian methods, they move with the flow of water and wind.
Valk et al. [2014] used a moored buoy equipped with GPS to de-
tect slack tides. Slack tides are the tipping point from high to low
tides or the other way around. They mapped three dimensional cur-
rents to a one dimensional space using principle component analysis.
This dominant current direction is then used to geometrically deter-
mine whether the slack tide moment has past or not. [Herbers et al.,
2012] have explored several commercial available buoys equipped
with GPS, one of their findings is that buoys can have a limited po-
sition accuracy, but still resolve velocity even when significant wave
height is less than 1[m]. They also find that velocity estimates agree
between GPS and inertial measurement units (imu), providing foun-
dation that low-cost GNSS solutions are a worthy candidate to mea-
sure currents.

Buoys are not the only method to estimate horizontal currents. Kle-
mas [2012] lists alternative methods, we can group these alternatives
into three categories. Eularian, shore based Radar and satellite sys-
tems.

Eularian techniques focus on a specific location of a water body,
these can be in-situ systems like stationary rotors or propellers, but
most of the time involve some type of acoustic Doppler current pro-
filer (ADCP). These ADCP systems emit a sound wave at both fixed
frequency and time interval. As the wave travels trough a water col-
umn it interacts with particles in the water, causing the wave to be
in part reflected, if the particle is in motion the return signal seems
to shift in frequency when observed, known as the Doppler effect.
Which occurs for both light and sound waves. This effect is related
to the line of sight (LOS) velocity vector, given several incidence an-
gles of the wave we can estimate the horizontal velocity of currents.
[Oberg and Mueller, 2007, Brumley et al., 1991]
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Shore-based Radar systems (SBRS) are another way to estimate sur-
face currents. Like ADCP Oceanographers estimate current proper-
ties using the Doppler shifted signal reflection. Just like ADCP a
single Radar cannot split LOS velocity into different velocity com-
ponents, to overcome this Paduan and Rosenfeld [1996] use an array
of at least two Radars to make the distinction. Ohlmann et al. [2007]
deploy a batch of buoys to compare the accuracy, they use the buoys
as reference. They found that the difference between both methods
varies with time, there is both a discrepancy in RMSE differences and
bias. With average RMSE difference of 0.07 to 0.14 [m/s] and bias
of 0.07 to 0.11 [m/s]. They link the RMSE discrepancy to difference
in spatial resolution compared to buoys and antenna pattern. Radars
can be characterized by their range resolution, this is the ability to
distinguish between targets in the range direction, range resolution
depends on transmitted pulse width, beamwidth, type of target, size
of target and radar receiver efficiency. Range resolution determines
for a major part the spatial resolution of currents sampling, buoys
equipped with GNSS measurement system do not have this draw-
back. They furthermore expect the antenna pattern to change with
time resulting in 0.05[m/s] difference, antenna pattern distortions are
also likely to cause the observed biases.

Satellite remote sensing is another way to observe surface currents.
Compared to buoys the field of view is usually much larger, even
more as is the case with SBRS. Because of the large distance between
sensor and target the spatial resolution is poor compared to what a
buoy equipped with GNSS is capable of. Most satellites are also not
capable of continuous real time measurements, exception would be a
satellite in geostationary orbit, this type of orbit is not easily maintain-
able for most inclinations. Satellite based techniques are usually used
to measure over large spatial distances. Klemas [2012] distinguishes
three satellite based methods:

1) Thermal-infrared or visible pattern recognition where images
are scanned for patterns. It usually requires two or more images
taken over time, coherence of these patterns is necessary, where a
mapping is estimated to translate between spatial patterns in both
images. Based on this mapping a rough estimate of current velocity
is obtained. [Liu et al., 2017]

2) Oceanographers use Synthetic Aperture Radar (SAR) based tech-
niques in two ways. The back scatter of the Radar beam is linked to
various ocean surface states. These states consist of winds, waves, and
currents on the ocean surface. Additionally like SBRS Doppler shift is
obtained and can be used in a similar manner.[Romeiser et al., 2005,
Romeiser, 2007]

3) Radar or Lidar based altimetry provides a direct measurement
of sea surface heights. Differences in height link to pressure gra-
dients. When the pressure gradient is in balance with the Coriolis
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effect predictable currents arise. Better known as geostrophic cur-
rents. For large spatial scales it is sufficient to assume geostrophic
currents.[Robinson, 2004, Vigo et al., 2018]

Additionally GNSS reflectometry (GNSS-R) is another satellite based
method were signal reflections on the water surface are measured, si
multipath is the measurement. The mathematical model links these
measurements geometrically to the location of the satellite, the point
of reflection on the water and the position of the receiver antenna.
Several surface water parameters can be estimated such as significant
wave heights or roughness. [Caparrini et al., 2007, Alonso-Arroyo
et al., 2015]

Given the requirements only drifting buoys equipped with a GNSS
system, Eularian, SBRS and GNSS-R methods are capable of real time
measuring. Of these four the Eularian methods have the smallest spa-
tial resolution. SBRS and GNSS-R span a much larger area. Compared
to buoys, they both need a stable platform to operate from. This is not
a guarantee at sea.

Buoys have proven to be reliable, accurate and low cost. Even though
they do not cover as large of an area compared to SBRS or GNSS-R,
we are not looking to cover the scale of the Volvo Ocean Race, but
rather to acquire information on difficult to predict areas before a
race or at the Dutch coast to anticipate dangerous currents.

1.4 research motivation

The majority of research on GNSS focuses on position estimation. Be
it single or multi frequency and/or constellation. Integrity monitor-
ing and ambiguity resolution are two examples of the effort; where
ambiguity resolution is about estimation of carrier-phase measure-
ment ambiguity in an efficient way and integrity monitoring refers
to how reliable the state estimate is, including checking for outliers,
faults and other anomalies in the measurement system in order to
make the system fault tolerant. [Borre and Tiberius, 2000, Teunissen
et al., 2003, Teunissen, 2001b, Teunissen and Verhagen, 2009]

Velocity estimation through GNSS has had a strong emphasis on
the functional model and what observable to use. [Freda et al., 2015,
Bevly et al., 2000, Wieser, 2007] In this thesis we propose a single
model for both position and velocity and elaborate on the stochastic
model for single frequency GNSS receivers. The goal is to gain more
insight in the quality of the measurements, which allows for better
weighting in the estimation process.

1.5 outline

Chapters two and three give a concise overview of how position and
velocity are estimated, this includes the functional model, its correc-
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tions and the stochastic model. It further describes parameter esti-
mation and online integrity monitoring. Chapter four describes the
experiments conducted throughout this work. Chapter five describes
how we estimate the carrier-to-noise density based variance model
and other stochastic components of interest such as correlation. Chap-
ter six describes the obtained results and insights of both the static
and kinematic experiments. Chapter seven discusses the methodol-
ogy and hands over possible improvements and research opportuni-
ties. Chapter eight concludes the work mostly following the questions
posed in the introduction.



2
S I N G L E F R E Q U E N C Y P P P : P O S I T I O N

2.1 functional and stochastic model

Humans, animals and plants use their senses to perceive the world. If
you take a series of images of a plant over the day you notice it follows
the light source. Usually the Sun. Rays that reach the photo-receptors
trigger a hormone called auxin. This hormone causes shaded cells to
elongate. Causing a bend towards the light. Optimal in the sense of
leaf surface area aimed at the Sun. [Kong and Okajima, 2016, Peer
et al., 2011]

In geodetic state estimation problems we are in some sense also
searching for the optimal bend. A mathematical model is formulated,
consisting of a functional and stochastic model. We use a functional
model to link measurements to state variables. Eq. 1 describes the
functional model in a formal way. It also describes the stochastic
model. The stochastic model captures uncertainty which we cannot
account for in the functional model. Measurements can be ranges
from satellites to the receiver on a floating buoy, and state variables
are geometric position and velocity coordinates, next to (nuisance)
parameters accounting for instance for systematic effects in the mea-
surements, as the bias caused by the receiver clock error.

E
{
y
}
= Ax; D

{
y
}
= Qy (1)

With measurement vector y. x the deterministic state vector. E{·}
and D{·} the expectation and dispersion operators. Matrix A the lin-
ear model that maps x to y. And variance matrix Qy. Syntax-wise un-
derlining means the term is stochastic. Matrices are written in upper-
case.

2.1.1 Observation Equations

Vector y contains code and phase observables to all satellites in view
in the rtsfppp positioning case. Given two satellites we get,

y =


P1r

Φ1r

P2r

Φ1r

 (2)

7



8 single frequency ppp : position

With Psr andΦsr the code and phase observables measured by receiver
r from satellite s. Following De Bakker [2016] pp.14 we can formulate
the observation equations of Eq. 2 as,

Psr(tr) = ‖rs(tr − τsr) − rr(tr)‖+ c0δtr(tr) − c0δts(tr − τsr)+
Tsr (tr) + I

s
r(tr) + c0d

s
r(tr) + ε

s
r

(3)

And,

Φsr(tr) = ‖rs(tr − τsr) − rr(tr)‖+ c0δtr(tr) − c0δts(tr − τsr)+
Tsr (tr) − I

s
r(tr) + λa

s
r + c0δ

s
r(tr) + ε

s
r

(4)

The first term in Eqs. 3 and 4 is the geometric range between satel-
lite and receiver antennae at time of transmission tr. With rs(tr − τsr)
and rr(tr) satellite and receiver position vectors at time of transmis-
sion (tr − τ

s
r) and reception (tr). Expandable as rr = (xr yr zr)

ᵀ

and rs = (xs ys zs)ᵀ. c0 the speed of light in a vacuum. Receiver
and satellite clock biases δtr(tr) and δts(tr − τsr). Troposphere delay
Tsr (tr). Ionospheric delay or phase advance Isr(tr). Constant phase
ambiguity asr in cycles with λ the carrier wavelength. And any other
systematic delays specified as dsr and δsr. And ε and ε the random
code and phase measurement errors.

2.1.2 Corrections

Corrections are generally applied before least squares adjustment. To
diminish terms atleast partially through modeling. Following De Bakker
[2016] we distinguish between the error terms in table 1.

The first column states the term. The second column specifies if we
take the term into account for the rtsfppp algorithm. This can hold
three different values: ‘yes’, ‘no’ or ‘estimated’. If ‘yes ’then we correct
for it to the best of our knowledge or information present. If ‘no’ then
the term is either so small that it falls well below the noise levels
expected using low cost hardware. Or we do not have a sufficient ac-
curate model to even consider correcting for it. If ‘estimated’ then the
term is of importance. There is however no way to accurately model
it. This is the case for the receiver clock bias which is expected to be-
have chaotic. The receiver instrumental delays are lumped with the
receiver clock bias. In the single frequency case we cannot distinguish
between the two. Therefore our estimate of the receiver clock bias also
contain the receiver hardware delays.

For a more in depth discussion the reader is referred to De Bakker
[2016] pp.13-29 and Kleijer [2004] for troposphere delay in particular.
Correction does not imply we fully remove the term. Rather to the
best of our knowledge or to the information that is present. The tro-
posphere delay is divided into a wet and dry component. The dry
component behaves rather predicable. The wet component does not.
[Kleijer, 2004]
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Term Corrected

Troposphere delay yes

Ionosphere delay/advance yes

Satellite orbit and clock bias yes

Receiver clock bias estimated

Differential code biases yes

Differential code-phase biases yes

Phase-windup yes

Satellite antenna PCO indirect

Solid Earth tides yes

Polar tides no

Antenna PCV no

Receiver instrumental delays estimated

Multipath code no

Multipath phase no

Ocean loading no

Relativity yes

Table 1: Signal delay terms and whether they are corrected for under the
real-time single frequency precise point positioning algorithm be-
fore adjustment.

As De Bakker [2016] mentions it is possible to estimate the resid-
ual wet troposphere delay. This however will weaken our estimation
procedure because it lowers the models redundancy. Leading to less
reliable estimates of state x̂.

2.2 nonlinear position estimation

2.2.1 Best Linear Unbiased Estimator (BLUE)

Eq. 1 can be solved for x using least-squares parameter estimation.
For this we formulate a least-squares estimator x̂. The form of x̂ is
constrained. Our constraints aim for an unbiased estimator: E{x̂} = x
and have σ2x̂ minimized. Better known as the Best Linear Unbiased
Estimator (BLUE). Eq. 5 and Eq. 6 formulate the BLUE estimator x̂ its
uncertainty. [Teunissen, 2000]

x̂ = (AᵀQ-1
yA)

-1AᵀQ-1
yy (5)

with

Qx̂ = (AᵀQ-1
yA)

-1 (6)
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The position model is nonlinear because we expand line of sight
distance into a satellite and receiver position coordinates. We use a
linear approximation around a local point through Tailor expansion.
Eqs.5 and 6 change accordingly. Estimation becomes an iterative pro-
cess. Stopping when a certain criteria is met. In our case this when
the norm of x̂− x0 is smaller than 0.001[m],

x̂ = x0 + [∂xA(x0)
ᵀQ-1

y∂xA(x0)]
-1∂xA(x0)

ᵀQ-1
y [y−A(x0)] (7)

With x0 the current best estimate of x. ∂xA(x0) the Jacobian of non-
linear mapping A(x) with respect to x. The Jacobian contains partial
differentials to the elements of state vector x. And y−A(x0) are the
observed minus computed (OMC) observations. With variance matrix
Qx̂,

Qx̂ = [∂xA(x0)
ᵀQ-1

y∂xA(x0)]
-1 (8)

For the linearized approximation in Eqs. 7 and 8 to work we need
a first approximation that leads to convergence of the state variables
x̂ to x. With rtsfppp at epoch 0 we use the code-only adjustment. This
model is less precise compared to also using the phase observations.
However the state space is smaller, which makes it less likely to not
converge properly.

2.2.2 Code-Only Adjustment

As a first approximation of x0 at epoch 0we solely rely on code obser-
vations. As the code only adjustment needs an x0 approximation as
well we use the center of Earth as x0 = [0 0 0]ᵀ. Following De Bakker
[2016] pp.53 the linearized code observation at epoch k is,

E{∆ρmr,k} =
[
−Amr,k c0um

] [∆rr,k

δtr,k

]
(9)

With ∆ρSr,k the observed minus computed code observations. Amr,k the
unit direction vectors from receiver to satellites with dimensions mx3.
And speed of light in vacuum c0 times vector with ones c0um.

2.2.3 Code+Phase Adjustment

Similar to Eq. 9 the linearized observation equations of the phase are,
[De Bakker, 2016]

E{∆Φmr,k} =
[
−Amr,k c0um λI

]∆rr,k

δtr,k

amr

 (10)
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We can formulate the RTSFPPP solution for a single epoch. Here
we estimate the state vector with only the information present at
the given epoch. For the multi-GNSS case we follow de Bakker and
Tiberius [2017]. They mention that according to Montenbruck et al.
[2014] biases exist between satellite systems. These biases are added
to the state x and estimated accordingly. Given we have S satellites
we formulate the system of linearized observation equations as,

E

[
∆ρmr,k

∆Φmr,k

]
=

[
−Amr,k c0um δ

−Amr,k c0um δ λI

]
∆rr,k

δtr,k

b

amr

 (11)

Where in Eq. 11 δ is 0 for GPS and 1 for the other constellations.
And unknown bias vector b is introduced. Where we reference all
constellations with respect to one. In our case this is GPS. Therefore if
we use n constellations, b has shape [n-1, 1]. We can extend the single
epoch solution to the multi epoch case. The most relaxed constraints
lead to a partially constant state space. de Bakker and Tiberius [2017]
assume constant ambiguities amr and thus no cycle slips. Previous
estimates of aSr are used in the current epoch,

E

∆ρ
m
r,k

∆Φmr,k

â−

 =

−Amr,k c0um δ

−Amr,k c0um δ λI

λI



∆rr,k

δtr,k

b

amr

 (12)

Using a partially constant state space in Eq. 12 implies little con-
straints on receiver dynamics. We may extend this model and add
a dynamic model. One example is the constant velocity dynamical
model as discussed in Teunissen [2001a] pp.202 and 216.

Following de Bakker and Tiberius [2017] and De Bakker [2016] the
stochastic model for the rtsfppp algorithm is specified as,

D

∆ρ
m
r,k

∆Φmr,k

â−

 =

Qρρ QρΦ

QΦρ QΦΦ

Q−
ââ

 (13)

With Qρρ and QΦΦ the variance of code and phase observables. QρΦ
the covariance between code and phase observables. We assume no
correlation between observations from different epochs. Thus â− is
uncorrelated with the current epoch observations. Observations to
different satellites are also assumed to be uncorrelated. This means
that Qρρ, QΦΦ and QΦρ are diagonal matrices.

The cross-correlation between observables is introduced through
the corrections. For more discussion on this topic the reader is re-
ferred to De Bakker [2016] and de Bakker and Tiberius [2017] pp.3.
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2.3 integrity monitoring

We use the BLUE estimator in Eqs. 5 and 6 to ‘invert’ Eq. 1. Both
our functional- and stochastic models are tailored to fit measurement
vector y. We call the model specification under Eq. 1 our null hy-
pothesis H0. The validity of H0 is not guaranteed. As Zaminpardaz
and Teunissen [2018] state H0 can be violated. We may have wrongly
specified the functional- or stochastic model. Or a combination of
both. We assume the cause of this misspecification to be an under-
parametrization of the mean of y. Which according to Zaminpardaz
and Teunissen [2018] is the most common error when formulating A
and Qy.

So if we have misspecified our model, there exists an alternative
model specification that does justice to the true mean of y. The set
of alternative model specifications are our alternative hypotheses Hi.
We specify the alternative models in this set according to common
occurring model biases. De Bakker [2016] pp.173 for instance specifies
Hi for the geometry-free GNSS model. And distinguishes between
outliers in code data, cycle slips and losses of lock in the phase data.

Given redundancy under H0 we can test it against alternative hy-
potheses Hi. Redundancy under H0 is defined as r = m− rank(A) =

m−n. With r the redundancy, m size of y and n the size of x. Proba-
bility of correctly rejecting H0 is known as the power of a test γ. The
power is intimately linked to the non centrality parameter λ [Teunis-
sen, 2006] pp.96. And as Teunissen [2006] pp.101 states: "One is much
more interested in the model error that can be detected with a certain
probability γ". With non-centrality parameter given as,

λ0 = ∇ᵀC
ᵀ
iQ

-1
yQêQ

-1
yCi∇ (14)

The power of our test is determined by A, Qy and our alternative
hypotheses Cy∇. [Teunissen, 2006] pp.98 The components of Qy are
determined and described in ch. 6. Under Hi our new model is spec-
ified as,

Hi : E{y} = Ax+Cibi; D{y} = Qy (15)

With Ci specifying the type of model error. bi the vector with un-
known model biases with dimension equal to rank(Ci). The form
of Cibi is thus constrained by the formulation of Hi. Lets say our
alternative hypothesis Hj is such that one observation is affected by
an outlier. Then Cj takes form of a canonical unit vector cj. And bj
is a scalar. [Zaminpardaz and Teunissen, 2018] Note that subscript
[·]i denotes the set of alternative hypotheses. Where [·]j concerns an
individual hypothesis.
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Given Hj in Eq. 15 we can specify its BLUE,

x̂j = (ĀᵀQ-1
y Ā)

-1ĀᵀQ-1
yy (16)

With

Ā = P⊥CiA; P⊥Cj = Im −Cj(C
ᵀ
jQ

-1
yCj)

-1C
ᵀ
jQ

-1
y (17)

2.3.1 Detection Identification and Adaptation (DIA)

Given H0, Hi and r > 0 we can validate the model under H0 through
statistical testing. We apply a three step procedure as developed by
Baarda [1968] and Teunissen [1990]. Steps consist of detection, iden-
tification and adaptation (DIA). Detection determines the fit of the
model H0 to the data. If H0 contains a misspecification we go through
identification to identify the most likely location of misspecification.
Finally adaptation deals with the found errors and a new H0 hypothe-
sis is formulated. Testing is based on the least-squares residual vector
ê defined as ê = y−Ax̂.

Imparato et al. [2018] pp.4 mention that in geodesy detector is gen-
erally a choice between two. One based on the overall model test
(OMT). The other based on multiple w-tests. This distinction is im-
portant because the H0 acceptance regions differ. The OMT has an
ellipsoidal acceptance region while that of the w-test detector is a
m-dimensional polygonal region. Each dimension bounded by the
univariate w-test given the H0 and individual alternative hypothesis
Hj. In this work we use the detector based on multiple w-test.

As mentioned we solely consider alternative hypotheses where Ci
takes form of canonical unit vector ci. Thus a model misspecification
in one observation. Given the set Hi we formulate the w-test statistics
as,

wi =
C
ᵀ
iQ

-1
y ê√

CiQ-1
yQêQ

-1
yCj

(18)

Eq. 18 is performed for the full set of alternative hypotheses Hi.
The w-test statistic for a single alternative hypothesis H0 is rejected if
any of the w-test statistics is greater than some critical region k. With
k determined given the univariate type 1 error α1: k =

√
X2(1, 0). If

H0 is rejected the accepted hypothesis Hj is the largest w-test statistic:
|wj| = max|w| > k

Finally given we have accepted Hj we adapt to the new situation.
The first step is to accept Hj as our new null hypothesis. Then x̂j
becomes the accepted estimate of x. In this work we adapt by ignor-
ing the observation completely. As Teunissen [2018] notes it is also
possible that there is no redundancy left for statistical testing. In that
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case we state that tests have been indecisive in proposing a suitable al-
ternative hypothesis. The solution is either remeasuring or accepting
that there is no solution available.

The DIA procedure is iterative. Identifying one bias in the mea-
surements does not mean the other measurements are without. DIA
iterations are performed up to the moment there is no redundancy
left or H0 is accepted.

Detection and identification are central to the integrity of our solu-
tion. For both DIA phases we can obtain an idea how sensitive our
detector and identifier are. The detector its sensitivity is given by the
minimal detectable bias (MDB). That of the identifier by the minimal
identifiable bias (MIB). [Imparato et al., 2018]

2.3.2 Minimal Detectable Bias (mdb)

Sensitivity of the detection step is captured by the minimal detectable
bias (MDB). Imparato et al. [2018] distinguish between the univariate
and multivariate case MDB1 and MDBm. The univariate case only
looks at H0 versus Hj. Where test statistic wj and critical region k are
calculated assuming Hj is the only alternative hypothesis. In contrast
to the multivariate case. Here critical region k and wj are determined
taking into account the whole set Hi. We focus solely on the univari-
ate case.

MDB1 is relatively easy to compute. It is the magnitude of the
model error that can be detected using probability γ through test-
ing given H0 and Hj. As mentioned we constrain the set of Hi to a
bias in a single observation. Then matrix Ci reduces to canonical unit
vector ci. The MDB1 |∇y| is then formulated as,

|∇y| =
(

λ0
c
ᵀ
iQ

-1
yQêQ

-1
yci

)1/2
(19)

Aydin and Demirel [2004] show how λ0 can be determined. And
also note that λ0 can be approximated as λ0 = f(α0,γ0,q, inf) =

(u1−α0/2 − u1−γ0). With u1−α0/2 and u1−γ0 the upper percentage
points of the standard normal distribution.

We can take the result of 19 and propagate these minimal detectable
biases into the state vector estimate space. This gives us insight in
what catastrophe we may expect in case estimation procedure misses
a fault in the data. Teunissen [2006]

|∇x| = (ATQ-
yA)

-ATQ-
y|∇y| (20)

With external reliability vector |∇x|.
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3.1 doppler shift for light

Doppler shift occurs when range between source (s) and observer (r)
changes. As result both wavelength and frequency of light are altered.
According to special relativity we can make no distinction between
movement of source or observer. We have to take a time dilation term
into account.[Giancoli, 2008](pp.979) Received wavelength λr and fre-
quency fr are described as:

λr = λ
s

√
c0 + vsr
c0 − vsr

; fr = f
s

√
c0 − vsr
c0 + vsr

(21)

With λs the transmit wavelength, c0 the speed of light in vacuum,
vsr the relative motion along a the line of sight between source and
observer and fs the transmit frequency. When source and observer
move toward each other the relative motion is smaller than zero: vsr <
0. Resulting in smaller λr and larger fr. And the other way around.
See appendix B for a more complete derivation. The Doppler shift is
the change in frequency because vsr 6= 0. And can further be written
as:

fD = fr − f
s (22)

Which tells us that also the Doppler shift fD is larger than 0 when
the source approaches the observer. And is smaller than 0 when they
move away from one another.

3.2 doppler shift for gnss

We can make assumptions on the dynamics of vsr. Where now r de-
notes receiver and s satellite. In particular when the relative velocity
is much smaller than the speed of light: vsr << c0. This is the case
for GNSS current velocity state estimation. In appendix B it is shown
through Taylor series that second order and higher terms can be ne-
glected. This simplifies Eq.21 to:

fr ≈ fs(1−
vsr
c0

) (23)

Using Eq. 22, scaling by wavelength λs, splitting vsr into receiver and
satellite velocity components. And assuming that Doppler shift is

15
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solely caused by satellite receiver geometry changes we get the ge-
ometric range rate between satellite and receiver:

Dsr = λ
sfD = −

fsλs

c0
vsr = −vsr = −(ṙs − ṙr)

ᵀasr (24)

asr =
rs − rr
‖rs − rr‖

(25)

With Dsr the geometric range rate in [m/s], asr a unit vector pointing
from receiver to satellite. And ṙs and ṙr satellite and receiver veloc-
ities in some common frame of reference. Fig. 2 shows a geometric
representation of this situation. The sign of Doppler shift is subject to

Figure 2: Satellite-receiver geometry for range-rate observables. Satelite and
receiver move in opposite directions. Resulting in a relative ve-
locity larger than their individual components. And by definition
that Doppler-shift is positive for approaching satellites resulting in
a negative range-rate.

definition. As can be seen we uniformly define it as: Doppler shift is
positive for approaching satellites. Which is in line with the RINEX
convention. [Gurtner and Estey, 2007] And likewise with the defini-
tion found in Teunissen and Montenbruck [2017] (ch.19 Eq. 19.11).

3.3 aspects of gnss velocity estimation

Navigation satellite signals contain Doppler shift as satellite and re-
ceiver generally move with respect to each other. As shown, Doppler
shift can be linked to receiver and satellite velocities. From analog
signal to velocity state estimate various aspects have been investi-
gated over the last three decades. These aspects can be subdivided
into three:

• Receiver Architecture Implementation and Noise

• Range-Rate Observables

• Range-Rate Modeling and Processing

The first evaluates receiver architectures. How they propagate noise
from analog signal to observables. And how to model this. The sec-
ond takes the receiver output as baseline. And formulate observables
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that contain range-rate information. And the third formulates mod-
els and processing routines that estimate velocity states from observ-
ables.

3.3.1 Receiver Architecture Implementation and Noise

GNSS receivers architectures are designed within a set of constraints.
There is not one architecture best, it depends on application. We can
make an abstract representation of these different architectures be-
cause they share building blocks. One such abstraction is shown in
Fig. 3. Which is a synthesis of representations found in Borio et al.
[2009], Teunissen and Montenbruck [2017], Aumayer and Petovello
[2015]. With input the received satellite signal (RF Signal). And out-

Figure 3

put four observables. Pseudorange, Doppler shift, carrier phase and
carrier-to-noise density ratio. The RF signal is first downconverted to
an intermediate frequency. It is then converted to a digital signal us-
ing an analog to digital converter (ADC). The digital signal is then
correlated to a local carrier replica at the integrate and dump block
(ID). The route above ID is a delay locked loop (DLL). Which keeps
a current estimate of delay between received signal and its replica.
And below the ID we find a phase locked loop (PLL). Where in the
PLL case the discriminator extracts the phase error. And the loop fil-
ter filters the phase error and estimates the Doppler shift. The output
of the carrier loop filter steers the numerically controlled oscillator
(NCO). And the Doppler shift is integrated to estimate the carrier
phase observable.

Borio et al. [2009] derive a theoretical model that describes Doppler
noise as consequence of signal tracking. It is assumed that code wipe-
off is performed perfectly and input signal is a code-free version of
the signal provided by the receiver front-end. And the Doppler state
is extracted from the PLL. The PLL is approximated as linear filter.
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Using this simplification it is shown that the tracking noise that prop-
agates into the Doppler obervable is a function of C/N0, coherent
integration time and Doppler bandwidth BD. Where the Doppler
bandwidth is a newly introduced term. It determines the ability of
a tracking loop to produce smooth frequency estimates:

σ2fD =
BD

4π2T2cC/N0
(1+

1

2TcC/N0
) (26)

With Doppler bandwidth BD in [Hz]. See Borio et al. [2009] for a
complete explanation of Doppler bandwidth BD. σ2fD the Doppler
shift variance [(Hz)2]. Coherent integration time Tc. And carrier-to-
noise density ratio C/N0. The variance is inversely proportional to
C/N0. Which leads to the obvious conclusion that satellites at low
elevation and low C/N0 contain more noise in their observations.

Teunissen and Montenbruck [2017] (pp.433) also specify a tracking
noise model for Doppler observables. In their model the Doppler is es-
timated from a frequency locked loop (FFL) instead of a PLL. Which
is governed by different mechanisms.:

σ2fD =
4BFLL

4π2T2cC/N0
(1+

1

TcC/N0
) (27)

With BFLL the frequency locked loop bandwidth. Although underly-
ing mechanisms may differ under both variance models. There is a
fair bit of overlap between the two.

Borio et al. [2009] put Eq. 26 to the test using both a GNSS soft-
ware defined receiver and clear-sky data. It is shown that for the two
test scenarios the Doppler noise model follows the observed measure-
ment noise closely.

They also mention that a temporary bias is introduced when dy-
namics change. The loop filter has to adjust to the new situation. For
a pedestrian walking at 1.5[m/s] and taking a sharp ninety-degree
turn a maximum bias of 0.65[Hz] or 0.12[m/s] at L1 frequency is
introduced. This is of course a trade-off within the architecture. A
larger loop bandwidth gives less precise observations but makes the
tracking more robust to sudden changes in dynamics and the other
way around. In open water environments currents do not take sharp
turns. Rough surface waves at high frequency may however be able
to introduce noticeable biases.

Aumayer and Petovello [2015] present that for receiver-generated
Doppler observable a scaling occurs. An error in the oscillator in Fig. 3

is propagated. Quantization effects of ADC are ignored. The scaling
is derived as:

fD =
fD,geom

(1+β)
−
βfc

1+β
(28)

Based on these findings Aumayer and Petovello [2015] proposes that
for the final Doppler observable (fD) both the geometric (fD,geom)
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and clock drift (βfc) part of the receiver-generated Doppler observable
is scaled by the receiver clock drift. For lesser quality oscillators this
means that at L1 satellites close to the horizon would experience a
0.046[m/s] range-rate error.

We tested for this proposed effect according to Aumayer and Petovello
[2015] for our own u-blox neo m8t receiver. A receiver clock drift of
60 ppm leads to [cm/s] short-term velocity estimate biases. It can be
shown that both residuals and velocity state components are influ-
enced. Where the velocity state components show a short-term non-
zero mean. We empirically test our hardware for this effect. By com-
paring the zero-mean assumption against an alternative hypothesis
that the mean is not zero:

H0 : µ = µ0, Ha : µ 6= µ0 (29)

Since we know the receiver is static, the true velocity is known to
be zero. Assuming the variance estimate to be properly computed
we convert the individual velocity component estimates to follow the
standard normal distribution using:

|ˆ̇ri/σi| (30)

With velocity component estimate ˆ̇ri. With subscript i denoting the x,
y or z component. Which we substitute with our BLUE velocity com-
ponent estimates. Formal velocity component standard deviation σi.
Now choosing level of significance α at 0.1, 0.05 and 0.01we can check
each individual velocity component estimate. Counting the number
of occurrences that our null-hypothesis is rejected. Done using the
inverse standard normal distribution ξ1−α0/2. If the total amount of
rejected samples are larger than α, we have reason to assume that we
are not dealing with zero mean velocity components.

Static data is collected for two stationary and independent GNSS
receivers with open-sky conditions. Setup for a measurement rate of
10[Hz]. For a total of 25e3 epochs. But processed at 1[Hz] interval.
Fig. 4 shows the resulting velocity component estimates.

Now lets focus on table 2. We see that under all chosen α the sam-
ples stay well within area 1 − α. Based on these results we assume
that the effect investigated by Aumayer and Petovello [2015] does not
play a significant role for our receiver. And therefore neglect imple-
mentation of their proposed correction.

3.3.2 Range-rate Observables

In general there are two different range-rate observables used. 1) The
already discussed receiver-generated Doppler observable scaled by the
carrier wavelength. And 2) since the carrier-phase observable is an in-
tegration of the Doppler shift we can differentiate its time-series. This
gives the reconstructed time-differenced carrier phase observable. They
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Figure 4: Static u-blox neo m8t GNSS receiver experiment. Situated at Delft
Observatorium. Velocity states estimated through Delft single fre-
quency PPP algorithm. In GPS only mode. Sampling was setup at
10[Hz], but data is processed at 1[Hz]. In total 25e3 epochs are
used.

α P(
ˆ̇rx
σx

6 ξ1−α0/2) P(
ˆ̇ry
σy

6 ξ1−α0/2) P(
ˆ̇rz
σz

6 ξ1−α0/2)

0.1 0.0446 0.03656 0.0456

0.05 0.01252 0.00908 0.01272

0.01 0.00068 0.00048 0.00116

Table 2: Static u-blox neo m8t GNSS receiver experiment. Used to test if
velocity component estimates have zero mean. Or fall under alter-
native hypothesis that mean is non-zero. Three α levels are used:
0.1, 0.05 and 0.01.

are from hereon expressed in equations as Dsr and Φ̇
s
r. The latter

is generally assumed to be more precise. [Freda et al., 2015, Salazar
et al., 2011] Due to properties of an integrator working on a Gaus-
sian random process.[Lyons, 2004] Producing smooth carrier-phase
observables. Whereas the receiver generated Doppler is in principle in-
stantaneous. Borio et al. [2009] note that by opportunely filtering time-
series of the latter the precision will become similar. This is intuitively
true for an object moving at constant velocity but when dynamics are
introduced, this assumption does not hold.
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Converting carrier phase time-series to time-differenced carrier phase
observables requires a differentiator. Bruton [2000] shows that these
differentiators can be written as finite-impulse response (FIR) filters:

Φ̇
k
r (t) =

M∑
j=−M

hM[j]Φkr [t− j] (31)

With Φ̇
k
r (t) the time-differenced carrier phase observable. Filter coeffi-

cients hM. Filter length of 2M + 1 carrier phase observations. And
carrier phase observable Φkr . The ideal differentiator is formulated as
[Lyons, 2004]:

H(jω) = jω for 0 6 ‖ω‖ < ωs

2
(32)

With frequency response H(jω), spectrum frequency ω [rad/s]. And
angular sampling frequencyωs [rad/s]. The goal is to formulate filter
coefficients hM in a way that its frequency response resembles Eq. 32.
Bruton [2000] gives several considerations. The frequency response
should be close to a linear function within the frequency band of
interest. The filter should be of odd length. Or else severe position er-
rors will propagate into the velocity estimate. And the absolute length
of impulse response is a compromise: larger gives more accurate mag-
nitude response. On the other hand edge effects such as cycle slips
will influence the observable longer with larger M.

Bruton [2000] evaluates several differentiators: 1) first-order Taylor,
2) third-order Taylor, 3) high-order Taylor differentiator of order 48

and 4) remez-exchange optimized FIR of order 48, window size 97.
The optimal filter is designed to have a transition band from ω =

0.4 to 0.5[rad/s], with ωs being 0.5[rad/s]. He proposes that Taylor
differentiators perform well under static to low dynamics. While the
optimal filter performs best under more dynamic situations.

The first-order Taylor differentiator is widely used. [Freda et al.,
2015, Salazar et al., 2011, Wieser, 2007, Ding and Wang, 2011, Ser-
rano et al., 2004, Andrew and Boon, 2003, Kennedy, 2003, Hohensinn
et al., 2019] It is important to mention that fields of research that use
the first-order Taylor differentiator can almost always safely make as-
sumptions on application dynamics. The field of gravimetry is one
such application that has open sky and stable trajectory.

One has to take care in open water however. Imagine a drifting
buoy in two dimensions, East and Up. And assume that its velocity
can be attributed to two factors: currents and waves. Waves are su-
perimposed on the current, which creates a bobbing motion of the
buoy. If this bobbing motion has a constant period and we sample
our GNSS measurements only when the buoy moves backwards due
to the wave, the velocity estimate will become biased.

Luckily open water does not behave in such idealized way. Waves
do not have perfectly constant period. However a short-term bias may
still be introduced. Therefore higher sampling rates are preferred.
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3.3.3 Range-rate Observation Modeling and Processing

Range-rate observables are consistently expressed using observation
equation [Misra and Enge, 2006, Salazar et al., 2011]:

Dsr = ρ̇
s
r + c0(δ̇tr − δ̇t

s
) + Ṫsr −αfİ

s
r + ε̇

s
r (33)

With Dsr the range-rate expressed in [m/s]. Geometric range-rate ρ̇sr.
Which can be written as function of satellite and receiver velocity:
ρ̇sr = −(ṙs − ṙr)ᵀasr. With asr the receiver-satellite line of sight vector:

asr(tr) =
rs(ts) − rr(tr
‖rs(ts) − rr(tr)‖

(34)

Satellite and receiver clock drift δ̇tr and δ̇ts. Troposphere and iono-
sphere rates Ṫsr and αfİsr. And noise terms ε̇sr.

Wieser [2007] extends this model for phase-range rate observable.
Using:

Φ̇
s
r(t) =

Φsr(t) −Φ
s
r(t−∆t)

∆t
(35)

But the derivative of Φsr observables is negative when approaching.
In order to align this differentiator with the Doppler definition used
here Wieser [2007] defines the Doppler shift as:

Dsr = −
Φsr
dt

(36)

With which we take the derivative of the carrier-phase observation
equation to time, and leads to:

Φ̇
s
r(tr) = −[(I3 −∆tsrΩE)ṙ

s(ts) − ṙr(tr)]ᵀasr(tr)(1− δṫr)−

c0(1− δṫr)δṫr + c0δṫ
s(ts) − Ṫsr (tr) +αfİ

s
r(tr) − ṁ

s
r(tr)−

ϑ̇sr(tr) − ψ̇
s
r(tr) + ε̇

s
r(tr)

(37)

With

asr(tr) =
[I3 −ΩE∆tsr]rs(ts) − rr(tr)
‖[I3 −ΩE∆tsr]rs(ts) − rr(tr)‖

(38)

ΩE =

 0 −ωE 0

ωE 0 0

0 0 0

 (39)

With phase-range rate Φ̇sr(tr) at receiver time tr. 3-by-3 identity ma-
trix I3. Signal travel time ∆tsr.ΩE the rotation matrix that accounts for
Earth’s rotation. Satellite and receiver ECEF position and velocity rs,
rr, ṙs, ṙr in [m] and [m/s]. Time of signal transmission ts. Directional
unit vector asr(tr). Speed of light in a vacuum c0. Satellite and receiver
clock drift δṫs and δṫr. Tropo- and Ionosphere change with time Ṫsr
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and αfİ
s
r. Multipath change rate ṁsr. Combined receiver and satel-

lite phase-wind-up rates ϑ̇sr(tr). Relativistic rate term ψ̇sr(tr). And
random noise plus geometric effects not accounted for ε̇sr(tr). And
finally the IERS earth rotation rate ωE, 7.292115090 ∗ 10−5 [rad/s].

Assuming that clock drift δṫr < 100[ppm]. And derivative of sig-
nal propagation time with respect to time can be neglected in phase
wrap-up and clock drift terms. Given the maximum range-rate of
±800[m/s] for GPS. From phase-range-rate contributors in Eq. 37

Wieser [2007] shows that phase-windup rates can be neglected. And
multipath is too complex to properly take into account. Below are the
most important considerations for the other terms.

3.3.3.1 Time Considerations

GNSS receivers have imperfect oscillators. Manifesting in a frequency
offset over short time periods. For the time-differenced phase methods
this frequency offset has two effects. 1) the oscillator frequency offset
propagates directly into the perceived signal frequency. The Doppler
measurement is therefore incorrect. And 2) the moment of the mea-
surements is also incorrect due to the oscillator frequency offset. And
are taken with respect to receiver time. The obtained range-rate ob-
servable when differentiating the phase observable with respect to
time is therefore:

−
dΦsr
dtr

= −
dΦsr
dt

dt

dtr
(40)

Ignoring term dt/dtr results in two contributions. First we take the
derivative with respect to tr and not t. This means that our solution
epoch contains an offset. We will simply list the epoch of solution as
corrected by the estimated clock bias. The second contribution is in-
troduced when evaluating right-hand terms in Eq. 37. Of these terms,
those with receiver position/velocity and clock unknowns are found
to significantly influence the states. Both contributions account for
about 1[mm/s] error for a low-cost receiver clock. [Hohensinn et al.,
2019]
dt/dtr can be derived as [Wieser, 2007, Hohensinn et al., 2019]:

dt

dtr
=

1

1+ δṫr
≈ (1− δṫr). (41)

With approximation (1 − δṫr) accurate up to [mm/s] velocity esti-
mates.

A similar addition to the observation equation is proposed for the
receiver-generated Doppler observable through Eq. 28.

3.3.3.2 Geometric Range Rate

The first term of Eq. 37 is the geometric part of the range rate ob-
servable. As shown in Eqs. 33,34,37 and 39 we can expand ρ̇ into re-
ceiver and satellite velocity and position components. Wieser [2007]
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Figure 5: Adapted from Wieser. Apparent signal propagation in inertial and
ECEF frame of references. The ECEF-frame rotates with Earths ro-
tation rate. This causes the apparent signal propagation speed to
change with time.

chooses to account for Earth’s rotation rate here. Since it is conve-
nient to express velocity in an Earth-centered, Earth-fixed frame of
reference. Earth’s rotation changes the apparent velocity of the signal
with time. Fig. 5 shows two situations. a) Inertial frame of reference.
Satellite transmits at ts. Receiver has position rr(ts) at time of signal
transmission. As the signal propagates towards Earth, receiver moves
along with Earth. The signal is received at tr. b) shows the same sig-
nal propagation but here in an ECEF frame of reference. The frame
rotates with Earth. Three satellite positions are shown. The middle
satellite position denotes the actual position from where the signal is
transmitted at ts. Since the frame moves along with Earth the appar-
ent position from which the satellite transmits its signal is influenced
by Earths rotation between ts and tr, where the satellite position in
ECEF becomes dependent on the Earth rotation, as this effect does
not disappear: rs(ts,R(Ω,∆tsr)), shown by the bottom satellite. The
top satellite expresses the apparent satellite position at time of recep-
tion tr. For the inertial frame of reference the geometric range-rate
can be expressed as:

ρ̇sr(tr) = −[ṙs(ts) − ṙr(tr)]ᵀasr (42)

With satellite and receiver velocity and position expressed in iner-
tial coordinates. Wieser [2007] expresses the geometric Doppler shift
in an ECEF reference frame. With accuracy bound to be better than
10−3[m/s]. The derivation shows that polar motion, precession and
nutation rates can be neglected in the transformation. And that only
Earth rotation rate has to be accounted for. Due to the situation ex-
pressed in Fig. 5. Also known as the Sagnac effect. Which if taken
into account compensates for the excess path length due to receiver
motion during signal propagation as consequence of expressing posi-
tions in an ECEF frame of reference. The Sagnac effect rate contributes
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up to 4[mm/s] to the range-rate error budget. By compensating the
inertial geometric range-rate for Earth’s rotation rate we account for
this effect in Eq. 42.

3.3.3.3 Satellite Position and Velocity

Wieser [2007] shows that range-rate error due to satellite position and
velocity errors can be approximated using satellite centered frame of
reference. In terms of radial, along and across track components:

δDsr ≈ −[1 0 0]δṙs − [0 2 · 10−4 0]δrs (43)

With Doppler error δDsr. And satellite position and velocity errors δrs,
δṙs expressed in a satellite centered frame of reference. The radial
satellite velocity error of 1[mm/s] contributes 1[mm/s]. And 5[m]
along-track satellite position error results in 1[mm/s] Doppler error.
For real-time orbit products used in our work accuracy of 1[mm/s]
or better can be assumed.

Satellite velocity can be obtained in various ways. Kennedy [2003]
obtain them by fitting a Lagrange polynomial to satellite positions.
This polynomial can be analytically differentiated. However Salazar
et al. [2011] concludes through a static experiment that this is actu-
ally a weak model for physical satellite orbits. And may yield oscilla-
tions known as Runge-phenomenon. Which will bias receiver veloc-
ity estimates. They employ a FIR filter differentiator. We will use the
approach of Serrano et al. [2004] and take the derivative of satellite
position equations. Even though computationally it will be a bit more
intensive, it is closer to the actual satellite orbit dynamics.

3.3.3.4 Troposphere and Ionosphere

Wieser [2007] underlines that both Ṫsr and İsr are relatively stable over
time. The largest change occurs due to the changing satellite-receiver
geometry. Ṫsr contributes in the order of 13[mm/s] for satellite eleva-
tions above 10[◦]. İsr rarely exceeds 1.5[mm/s] (exception being iono-
spheric storms). Geometry changes are again the most dominant con-
tributor. A simple broadcast ionosphere model suffices. These find-
ings are independently underlined by Zhang [2007].

3.3.3.5 Relativistic Corrections

If satellite orbits would be circular and assuming Earth is a point mass
the satellite internal clock would run at constant rate. Satellite orbits
are elliptical in reality. This causes the satellites minimum distance
to the Earth’s surface to vary, known as orbit eccentricity. This varia-
tion in distance changes the gravitational potential with time. Which
in turn due to relativistic effects causes the clock to run slower and
faster at times. Its first derivative, the eccentricity rate contributes
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a maximum of 2[mm/s] to the Doppler-shift error budget. [Wieser,
2007]

3.3.3.6 Baseline and Network Observation Equations

Stand-alone receiver approaches in Serrano et al. [2004], Freda et al.
[2015] have resulted in several [mm/s] level accuracy, the Ionosphere
and Troposphere rates leave room for baseline solutions. These terms
are spatially correlated, and thus overlap between receivers that are
situated near each other. Kennedy [2003], Salazar et al. [2011] formu-
late the double differenced time differenced phase observation equation
as:

∆∇Φ̇q,p
r,k +∇ρ̇q,p

k + epr ṙ
p − eqr ṙ

q = (epr − e
q
r )ṙr +∆∇ε̇pr (44)

With satellites p and q. Salazar et al. [2011] extends this model to a
network solution. It is assumed that receiver clock adjustments are
removed a-priori. Either by preprocessing the measurements or us-
ing a receiver with clock-steering. A master station 0 is introduced.
All measurements will be relative to the master station. A common
master clock allows us to estimate satellite clock drifts. Leading to
relative clock drifts:

τ̇r = ṫr − ṫ0 (45)

τ̇q = ṫq − ṫ0 (46)

τ̇k = ṫk − ṫ0 (47)

With receiver r, satellite q and reference station k. Using master sta-
tion 0 and reference station k we can formulate the following system
of equations:

Φ̇
q
0,r − e

q
r ṙ
q = −eqr ṙr + c0δτ̇r − c0δτ̇

q (48)

Φ̇
q
0,0 − e

q
0 ṙ
q = −c0δτ̇

q (49)

Φ̇
q
0,k − e

q
k ṙ
q = c0δτ̇k − c0δτ̇

q (50)

Where the 0 in the first subscript in Φ̇q0,r means observation-minus-
modelable-effects. The third equation is used to improve the satellite
clock drift estimate.

A-priori receiver positions are required at every epoch. As long as
the position error does not exceed 10[m] root-mean-squared error it
is deemed sufficiently accurate. Both a static and kinematic test are
performed. Under the static test it is shown that the network method
outperforms both the improved baseline and RTKLIB methods. Un-
der kinematic test conditions the network method outperforms the
improved baseline method. The network method accuracy can be im-
proved by increasing the network. Resulting in lower standard devia-
tions for North, East and Up components.
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Figure 6: Overview of obtained velocity accuracies through GNSS. In hori-
zontal directions North and East. Overview is split into observable
type: receiver generated Doppler (blue), time-differenced phase
(green) and network time differenced phase (red). The figure on
the left is the result of static experiments. The right kinematic. Usu-
ally the receiver is mounted on a plane flying a stable trajectory.

The estimation of the satellite clock drift was necessary at time of
research due to correction update rates once every 10 minutes. Nowa-
days we have final clock and orbit estimates available once every 1[s].
Which improves the accuracy of the interpolation to epoch of mea-
surement.

Fig. 6 shows a synthesis of obtained standard deviations and root-
mean-squared errors for various research experiments in literature
with velocity estimation through GNSS. The time-differenced carrier
phase approach is at least a factor ten more precise compared to
receiver generated Doppler measurements. Under dynamic experi-
ments, the difference becomes smaller. It is also worth to mention
that most of the experiments conducted involve a plane flying in a
low-dynamics trajectory. Although it cannot be said that the influence
of waves on a buoy are of high dynamics. The North Sea experiment
may require assumptions in form of a dynamical model.

3.3.3.7 Variance Models

Variance models are almost always assumed diagonal. Wieser [2007],
Kennedy [2003], Salazar et al. [2011]. Most approaches employ some
form of post processing. Where only cycle-slip free observations are
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Figure 7: 2D position compared to known reference. Code and phase observ-
ables simulated with cross-correlation. Green: cross-correlation
taken into account. Blue: cross-correlation not accounted for.

used and positions are estimated before velocity. This inherently as-
sumes there is no correlation between carrier phase and the differ-
entiated carrier phase. Which in itself is rather strict. Teunissen et al.
[1998] show that not accounting for cross-correlation leads to less
precise state estimates. This is shown in the following case. A two-
dimensional world with eight satellites orbiting Earth equidistantly
in a circular orbit. Receiver is positioned at the North-pole. Observa-
tions are Code and Phase. Using single point positioning. Standard
deviations are σP = 0.5 and σΦ = 0.005. And correlation matrix:

RP,Φ =

[
1 0.6

0.6 1

]
(51)

Fig. 7 shows that after 20000 epochs taking the correlation between
observables into account can be shown to lead to more precise esti-
mates.

Wieser [2007] investigates Doppler error using a fixed GPS station.
Position and velocity are accurately known. Residuals errors are used
to compare performance of three variance models. All three are diag-
onal:

D{Φ̇sr} = σ
2
Φ̇

(52)

D{Φ̇sr} =
α1

sin2 E
(53)

D{Φ̇sr} = α210
−
C/N0
10 (54)

The first gives equal variance for all Doppler measurements. The sec-
ond is elevation dependent. And third is the sigma-ε variance model.
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With scale factors α1 and α2. Both are fitted to the median absolute
deviation. Which is more robust to outliers. Evaluation is performed
assuming N ∼ (0,σ2

φ̇
). This assumption holds for 80 - 90% for the

equal variance model. 80% for the elevation dependent model. And
90 - 95% for the carrier-to-density ratio based model. The results
are mostly consistent with literature on GNSS variance models for
phase and code observables. With the exception that equal variance
outperforms the elevation based model. This hints to variance being
uncorrelated to elevation. But rather to site-specific factors such as
diffraction and multipath. Another difference between code/carrier
and Doppler models is caused by the slow rate of change for Iono-
sphere and Troposphere delays. Which is of the same order of magni-
tude as tracking-loop noise. For real-world data, the sigma-ε variance
model is preferable.

3.4 mathematical model for velocities

3.4.1 Observation Equation

We follow observation Eq. 37 as formulated by Wieser [2007]. Which
given the Doppler scaling of the receiver generated Doppler observable
proposed by Aumayer and Petovello [2015] holds for the receiver gen-
erated Doppler and time-differenced carrier phase observables.

3.4.1.1 Corrections

Following Wieser [2007] we solely apply corrections that can reach
millimeter to centimeter per second levels. These include the special
and general relativity terms, the Troposphere and Ionosphere delay
rates. The latter two are only varying significantly due to the change
in satellite elevation angle. Creating a different angle at which the
GNSS signal passes through both layers. The temporal variation of
both layers can be neglected.[Wieser, 2007] (pp.34 and 50) This is not
always the case. An ionospheric storm for instance may cause the
whole model to be misspecified.

Only taking these terms into account Eq.37 simplifies to:

Φ̇
s
r(tr) = −[(I3 −∆tsrΩE)ṙ

s(ts) − ṙr(tr)]ᵀasr(tr)(1− δṫr)−

c0(1− δṫr)δṫr + c0δṫ
s(ts) − Ṫsr (tr) +αfİ

s
r(tr) −��

��XXXXṁsr(tr)−

�
��
�HH
HHϑ̇sr(tr) −��

��XXXXψ̇sr(tr) + ε̇
s
r(tr)

(55)
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3.4.2 Matrix Representation

3.4.2.1 Code+Phase+Receiver-generated Doppler

Given observation equation formulated by Wieser [2007] Eq. 55 the
single epoch model is given as:

E


∆ρmr,k

∆Φmr,k

∆Dmr,k

âm−

 =


−Amr,k c0um δ

−Amr,k c0um δ λI

−Amr,k c0um
λI





∆rr,k

δtr,k

b

amr
∆ṙr,k

δṫr,k


(56)

Where A is a matrix with directional vectors to individual satellites:
(a1r)ᵀ

...

(amr )ᵀ

 (57)

um is a unit vector of length m satellites. Matrix δ, which is 0 for GPS
and 1 for every other system. For each GNSS a new column. Between-
system bias vector b. Ambiguity vector amr . Note that ambiguity esti-
mates using information up to the current epoch are included as mea-
surement. This means that we assume that ambiguities are constant.
And updated through recursive estimation. A single-epoch solution
would exclude ambiguity state estimates.

With partial derivatives to observation Eq. 56 given as:

∂DSr,k

∂rr,k
≈ [ṙs − ˆ̇rr(tr)]ᵀ

‖ṙs − ˆ̇rr(tr)‖
(I3 − âsr(tr)(â

s
r(tr))

ᵀ) (58)

∂DSr,k

∂ṙr,k
= (âsr(tr))

ᵀ(1− δ ˜̇tr(tr)) ≈ (âsr(tr))
ᵀ (59)

∂DSr,k

∂δṫr,k
= Dsr,geom − c0(1− 2δ

˜̇tr) ≈ −c0 (60)

With ˜[·] denoting approximate values, reiterated until the state vari-
ables have converged. Partial derivative to position Eq. 58 is intro-
duced through the LOS unit vector. Wieser [2007] shows that the con-
tribution of this term to ∂Dsr is small. It mostly depends on the satel-
lite elevation and azimuth angles. If the position offset is 10 [m] in the
North direction, it corresponds to 1.5[mm/s] offset in the Doppler es-
timate.
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This is confirmed by following Wieser [2007] method for estimat-
ing the influence of offsets in position on the partial derivatives of
Doppler shift. Specifying the receiver position error in North, East
and Down coordinates the change in δDsr is given by:

δDsr
δrr

=
[
(ṙs−ṙr)ᵀ
‖rs−rr‖ (I3 − asra

sᵀ
r )Cen

]
(61)

With Doppler and position errors δDsr, δrsr. And rotation matrix
Cen from NED to ECEF is given by Jekeli [2012] pp.25 as a function of
receiver longitude φ and latitude λ:

Cen =

− sin(φ) cos(λ) − sin(λ) − cos(φ) cos(λ)

− sin(φ) sin(λ) − cos(λ) − cos(φ) sin(λ)

cos(φ) 0 − sin(φ)

 (62)

Figure 8: Partial derivatives of Doppler shift with respect to receiver posi-
tion for a receiver at equator.

Fig. 8 shows Eq. 61 for the full day of 2019-02-18. Note that for
this simulation two-line orbit elements were used opposed to precise
orbits. The difference between the two are assumed negligible for
their insight in this matter. Fig. 9 shows how the introduced error
on the partial derivative ∂Dsr

∂rr
propagates into the velocity estimate.

Here a simple single epoch solution is used with equal variance for
all Doppler observations.

The sudden fluctuations are caused by satellites orbiting in and out
of view.
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Figure 9: 10[m] error in receiver position in North direction propagated into
the velocity estimate using single epoch solution. A cutoff angle of
10 [degrees] is used.

3.4.2.2 Code+Phase+Time-differenced Phase

The Code-plus-Phase-plus-Differenced-Phase is shown as:

E


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b
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(63)

3.4.2.3 Stochastic Model

The stochastic model for the constant ambiguity code-plus-phase so-
lution was given in Eq.13. We can extend this model to incorporate
Doppler observable:

D


∆ρmr,k

∆Φmr,k

∆Dmr,k

â−

 =


Qρρ QρΦ QρD

QΦρ QΦΦ QΦD

QDρ QDΦ QDD

Q−
ââ

 (64)

All terms apart from the ambiguities in Eq. 64 are further investigated
in section 4 and 5.



4
E X P E R I M E N T S

Three main experiments were conducted in this work. Experiments
are categorized by their platform, which implies a static or kinematic
nature and type of dynamics that we can expect during the experi-
ment. 1) A concrete pillar located on top of the roof of a building.
2) a freely drifting buoy in coastal area. 3) a car driving on a re-
gional road. Experiment receiver, antenna and logging computer are
detailed in App. B. General experiment processing settings are de-
tailed in App. F.

4.1 ground-truth for state estimates

All experiments require a ground-truth for evaluation measures to be
computed such as the root-mean-squared-error. In case of a rover of
static nature we either have a reference position readily available, or
it can be obtained from a long-time average position solution; and
velocity can be assumed to be zero assuming the object the antenna
is attached to does not move and ignoring solid Earth tides.

In the kinematic case we can no longer rely on the methods above.
In this case we follow de Bakker and Tiberius [2017] and use the RTK-
type position and velocity solution as reference. With the assumptions
that the RTK position solution has an accuracy better by one order
of magnitude compared to the PPP solution; and assuming that the
RTK solution once the ambiguities are fixed it almost solely relies
on carrier-phase measurements, whereas the PPP solution is more
strongly dependent on the code observable in comparison.

The final assumption with respect to the RTK processing is that
we prefer epochs with fixed carrier-phase ambiguities in order to
attain the most accurate reference, resulting in better evaluation of
state estimates. RTK processing strategies most useful for this goal
are: Forward- and backward processing of the timeseries of collected
measurements and an elevation mask of 10 degrees. Since in all ex-
periments the baseline between rover and basestation was sufficiently
small precise orbits and ionosphere products were not used, and we
solely relied on broadcast information.

After applying the above processing strategies we further select
the RTK solution epochs to be used, based on several additional cri-
teria. This selection is founded upon our own field experience and
is meant to minimize large faults in the RTK-positioning. In total we
formulated three criteria: 1) only use epochs with fixed ambiguities.
2) only use epochs with minimum of 6 satellites, regardless of constel-

33
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lations used. Which guarantees sufficient degrees of freedom for the
DIA procedure. 3) For static experiments the sum of formal position
error components North, East and Up should be smaller than 0.05[m],
and for kinematic experiments smaller than 0.1[m]

From the obtained position state estimates we obtain our velocity
reference by taking the time-difference of the position state estimates.

4.2 short-baseline experiment

The short-baseline experiment consists of a stationary installment of
two antennas on the roof of a tall building, offering a virtually un-
restricted view of the sky. Distanced apart with small baseline, no
longer than 3[m]. The experiment objectives are twofold. First we
want to retrieve and model stochastic properties of GNSS measure-
ments and estimate variance model parameters as function of carrier-
to-noise density ratio, see Ch. 5. where we follow and expand upon

Figure 10: GPS, Galileo and GLONASS repeat tracks for one satellite each.
They have ground repeat tracks in roughly 1, 10 and 8 days re-
spectively. Image taken from work of Beer et al. [2020].

the methodology in de Bakker et al. [2012]. The second objective is to
evaluate the performance of position and in particular velocity state
estimates in the static receiver scenario.

Both receivers are of type µ-blox neo m8t single frequency receiver.
Setup to collect code, carrier-phase, Doppler and carrier-to-noise den-
sity ratio observations. At a rate of 10[Hz]. Measurements were taken
from 1 to 11 May 2017. We aimed for at least 24 hours of uninter-
rupted measurements. In case we suspected multipath inference we
would at least be able to estimate its contribution for GPS code ob-
servations. As these groundtracks roughly repeat after a sidereal day,
also shown in Fig. 10. For an overview image of the site and pillar
setup see App. E.

4.3 north sea drifting buoy experiment

Two buoys which consist of simple 10[L] water-tight containers filled
with a small layer of concrete at the bottom to keep them upright.
They are released at several locations near the shore and allowed to
drift. Both GNSS receivers are setup similarly to the short-baseline ex-
periment scenario. The experiment was split into two sessions, each
spanning about thirty minutes. A basestation was setup on top of



4.4 regional road experiment 35

the Sailing Innovation Center located at the coast in the harbor of
Scheveningen. An overview of the experiment is shown in Fig. 11,
where all four tracks of both the morning and afternoon sessions are
shown. It can be seen that the baseline length between the basesta-

Figure 11: Overview map of North Sea drifting buoy experiments. The trian-
gle represents the base station at roof of Sailing Innovation Centre
at approximate latitude and longitude: [52.09793, 4.26493]. Four
different color tracks are shown. The morning buoys are repre-
sented by the red and green lines, the afternoon experiments are
represented by the orange and blue lines.

tion and the freely drifting buoys is at all times smaller than 3 kilo-
meters. For images of the experiment see E. From which we assume
that atmosphere and ionosphere delay is sufficiently similar for rover
and basestation to fix ambiguities on single-frequency using RTK-
positioning.

Fig. 12 shows the azimuth and elevation during both the morning
and afternoon session.

The objective of the North-Sea drifting buoy experiment is singular.
Determine the velocity and position state estimate performance. And
determine if and under what circumstances we meet the required hor-
izontal position RMSE of smaller or equal than 0.5 [m] and horizontal
velocity RMSE of smaller or qual than 0.1 [m/s]. For an overview im-
age of the drifting buoys and basestation see App. E.

4.4 regional road experiment

The regional road experiment consisted of two GNSS µ-blox m8t neo
receivers mounted on top of a car via a magnetic Taoglass Magma
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Figure 12: Skyplot for North-Sea drifting buoy experiment. Left image
shows the morning session, the right image shows the afternoon
session. Only GPS and Galileo satellites are shown.

antenna. The car was driving mostly straight, passing a handful of
bridges overhead and turning two round-a-bouts. The goals were de-
termining the velocity algorithm performance as speedometer and
compare horizontal RMSE components with respect to the other ex-
periments. Both receivers were setup at 10[Hz] receiving GPS, Galileo
and Glonass. International EUREF station DLF100NLD was used as
basestation. From overview Fig. 13 it can be shown that the maximum
distance from this basestation is around 7.5 kilometers. Which we as-
sume is sufficiently small for ordinary short baseline modeling given
the Ionosphere and Troposphere spatial correlation.

4.5 evaluation of experiments

The evaluation experiments with respect to algorithm requirements
as stated in Ch. 1 is subdivided into accuracy, precision and reliability.

4.5.1 Accuracy

Given the empirical mean of horizontal state estimate for an unbiased
estimator we assume that:

E(x̂− x) = 0 for all x (65)

In other words our estimator is unbiased if the mean of its distri-
bution equals x.[Teunissen et al., 2006](pp.106) But accuracy is more
than only a bias. Mean Squared Error (MSE) the root of it (RMSE) are
both measures to evaluate accuracy. The MSE is given by:

MSE =
1

N

N∑
i=1

(yi − x)
2 (66)
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Figure 13: Overview map of regional road experiment on the N470 from
Delft to Zoetermeer. The triangle represents the base station DLF1

at approximate latitude and longitude: [51.98602, 4.38746]. The
purple line represents the ground track of receiver 1 which is
mounted on the car roof using a magnetic Taoglas Magma 1 an-
tenna.

With yi measurement i, x the a perfect measurement. Now if we sub-
tract and add state estimate x̂ we transform the MSE to the standard-
deviation plus bias:

MSE =
1

N

N∑
i=1

(yi − x̂)
2 +

1

N

N∑
i=1

(x̂− x)2 (67)

Where the first term is the sample variance, the second term is the
bias squared.

4.5.2 Precision

For precision we use the horizontal state estimate components to
compute the 99- and 95-percent confidence region. Following Teu-
nissen et al. [2006] pp.285 we determine the confidence region for the
case of known variance. And visualize precision, for various experi-
ments and respective stochastic models. In case the variance matrix
is known we get the 1− α confidence region as a subset of all state
estimates through:

Sα(x̂) = ‖x̂− x‖2Q-1
xx

6 χ2α(k, 0) (68)

Where ‖x̂−x‖2
Q-1
xx

is the norm of the state estimate vector error. Where
x is not the real ground truth but rather an RTK-based position or ve-
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Figure 14: Skyplot for regional road experiment. Only GPS satellites are
shown.

locity state estimate vector in this work. Which means our confidence
region is centered on the mean difference between the RTK and PPP
state estimates. Normalization by variance matrix Q-1

xx. Degrees of
freedom k, which is one in our case as we use individual components.
And χ2α(k, 0) is the ordinate-value of the χ2(k, 0) distribution. The re-
sulting confidence region can be interpreted as the region where we
expect 95 or 99 percent of state estimates to be in, irrespective of the
true state.

4.5.3 Reliability

Reliability is split into internal- and external reliability. Internal reli-
ability evaluated in terms of the MDB and propagated to state esti-
mates to evaluate external reliability. More thoroughly explained at
the last section of Ch. 2. This is not part of the requirements but may
be insightful next to accuracy and precision evaluation.
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VA R I A N C E M AT R I X C O M P O N E N T S

This chapter explains how variance matrix components are obtained.
Using data from a short-baseline two-receiver experiment. Formulat-
ing linear observation combinations. Correcting for effects that still
persist by either subtracting a mean or low-order polynomial. And
determining components of interest over 120 second-long bins from
these combinations. In this Chapter we solely elaborate on the out-
come of these short-baseline static experiments. And the respective
variance matrix components.

Code, carrier-phase, Doppler, time-differenced carrier-phase and
carrier-to-noise density ratio are all observables of interest. Compo-
nents of interest for individual observables are variance and time-
correlation up to lag of 100 seconds. And between observables the
covariance and cross-correlation.

In the first place we are interested in the performance of u-blox neo
m8t single-frequency GNSS receiver. And compare results to high-
end Septentrio AsteRx1 single-frequency GNSS receiver.

5.1 variance component determination

Let variance matrix Eq.64 of Chapter 3 be our starting point:

D


∆PSr,k

∆ΦSr,k

∆DSr,k

â−

 = Qyy =


QPP QPΦ QPD

QΦP QΦΦ QΦD

QDP QDΦ QDD

Q−
ââ

 (69)

For the used hardware the reader is referred to Appendix A. We will
estimate all terms in Eq. 69 but Q−

ââ. Because the ambiguity variance
follows from error propagation of observations to the state space. All
terms are modeled as function of the receiver carrier-to-noise density
ratio estimates. The method is receiver independent. And retrieves
first and higher moments of GNSS observables through linear obser-
vation combinations (LC).

5.1.1 Short Baseline Combinations

We build upon the variance component estimation procedure described
in de Bakker et al. [2009] and de Bakker et al. [2012]. We formulate
time-series of linear combinations of GNSS observables. The result-
ing time-series are then divided into equal sized bins. And corrected

39
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for any systematic effect still present in their respective observation
equations. Using a low-order polynomial or mean.

One receiver allows for combinations between observations to a sin-
gle satellite. Take differences between observations to different satel-
lites. And take time-differences for a single observable. Using a sec-
ond receiver adds the between-receiver-difference to the list of possi-
bilities.

On top of that we can also combine combinations. Using double-
differenced (DD) carrier-phase observable as an example. We first dif-
ference carrier-phase observation between satellites for both receivers
individually. Then these newly obtained single differences are differ-
enced between receivers.

As shown by de Bakker et al. [2012], between observation and
short-baseline(SB) combinations can be formed such that major error
sources cancel out. For instance the common mode error for the re-
ceiver, which includes the clock-bias and hardware delays, is similar
for all satellites in view. The between observation and SB combina-
tions do however not cancel out all geometric effects.

Effects that remain are, as mentioned, corrected for by subtracting
the mean or a low-order polynomial estimated using ordinary least-
squares:

E


y
1
...

y
n

 =


t21 t1 1

...

t2n tn 1


ab
c

 (70)

With y
1

to y
n

an instance of a time-series from some combina-
tion of length n. The GPS time of week t normalized for the respec-
tive series between -1 and 1. And polynomial coefficients a, b and
c. We assume the remaining time-series to be randomly distributed.
The time-series are of course noisy, this noise will propagate into the
polynomial coefficients. But since time-series length n is made sure
to be large, we assume that polynomial coefficients model standard
deviations σa, σb and σc are small and can be neglected.

The length of all series is kept constant. Length n is a hyper-parameter
that can be tuned. This tuning depends on three semantic considera-
tions:

• Small time-series length results in a less precise polynomial es-
timate. This may introduce an artificial distortion. Furthermore,
estimate σ̂y will also be less precise. This latter consideration
will however be less of an issue, because with smaller time-
series length the amount of available series increases. We there-
fore have more, but less precise estimates of σ̂y, that can in
term be resampled and averaged to end up with the same re-
sult given larger n.
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• Unwanted effects are accounted for by a second order polyno-
mial. Such quadratic functions will fit the data only for a limited
timespan due its characteristics. Take for instance a given GNSS
broadcast ephemeris frame for a satellite, it is only valid for a
few hours a day. Time-series should therefore not be too large
to avoid introducing artificial distortions.

• Noise-level on observables varies gradually due to satellite-orbit
stability. Satellite carrier to noise density ratio, C/N0 changes
with a rate of up to 0, 0083[deg/s]Kaplan and Hegarty [2017].
If segments are too large, we average the gradually changing
signal quality of interest.

5.1.2 Variance Estimator

In order to formulate a mapping from time-series to second order mo-
ments consider two time-series of random variables, y

1
and y

2
, with

length n. Both are normally distributed with zero mean and have un-
known variance σ2y1 and σ2y2 and unknown covariance σy1y2 . Given
a single random variable time-series we can represent the formal and
empirical sample variance for discrete random variable y, σ̂2y as:

σ2y = D(y) = E((y− µ)2), σ̂2y =
1

n− 1

n∑
i=1

(yi − µ)
2 (71)

5.1.3 (Auto)covariance Estimator

And using both time-series we estimate the covariance and auto-
covariance on non-diagonal entries for discrete random variables. The
auto-covariance can be estimated using the covariance function, with
the latter series being a shifted version of the former with shift of τ
epochs and y1 = y2, Otherwise τ = 0:

σy1 y2 = E((y1−µ1)(y2−µ2)), σ̂y1 y2(τ) =
1

n− 1− τ

n−τ∑
i=1

((y1,i−µ1)(y2,i+τ−µ2))

(72)

5.1.4 Variance Components Expectation and Dispersion

Table 3 gives an overview of the expectations of the linear combi-
nations. With OD two different observations substracted from one
another and DD the double difference observation combination. Im-
portant are the expectation and dispersion, where the former may
give insight into the interpretation of the results, for example in the
DD case it is mostly multipath that remains as signal. The dispersion
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is necessary in order to correct to single observation case variance
from the DD case in the final variance estimates.

Linear Combination Expectation Correction Dispersion

OD P−Φ 2I− λa+ d− ζ Polynomial σ2ρ

OD D− Φ̇ (δṫr − δ ˙̄tr) + (δṫ− δ ˙̄ts) Polynomial σ2D

DD P mPDD Mean 4σ2P

DD Φ mΦDD Mean 4σ2Φ

DD D 0 Mean 4σ2D

DD Φ̇ 0 Mean 4σ2
Φ̇

DD S mSDD Mean 4σ2S

Table 3: Expectation and dispersion of linear combinations of GNSS observ-
ables. Used to compute variance matrix components from static
baseline observations.

5.2 variance model overview at 45[db-hz]

An overview of variance components obtained through modeling are
shown in table 4. We show standard deviation at carrier-to-noise
density ratio of 45[dB-Hz] for ease of interpretation. At 45 [dB-Hz]

u-blox m8t Septentrio AsteRx1

G R E G R E Unit

σP OD 0.2445 0.2256 0.2125 0.2654 - 0.1332 m

σP DD 0.1974 0.2021 0.2328 0.1560 - 0.1225 m

σΦ DD 0.0043 0.0044 0.0035 0.0047 - 0.0034 m

σD DD 0.0885 0.0937 0.0630 0.0461 - 0.0397 m/s

σD OD 0.0151 0.0157 0.0092 - - - m/s

σΦ̇ DD 0.0060 0.0050 0.0053 0.0046 - 0.0004 m/s

σS DD 0.1227 0.0627 0.0620 0.2801 - 0.1335 dB-Hz

Table 4: Modeled standard deviations at 45[dB-Hz]. Model obtained from
two separate short-baseline experiments. With two different single-
frequency GNSS receivers: u-blox m8t and Septentrio AsteRx1.
Observables are code, carrier-phase, Doppler, time-differenced
carrier-phase and carrier-to-noise density ratio. (OD=observation
difference). (DD=double difference). For constellations: GPS (G),
GLONASS (R) and GALILEO (E).

the AsteRx1 receiver has lower standard deviation for code, Doppler
and time-differenced carrier-phase. Whereas the u-blox neo m8t has
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a slightly better performance for carrier-phase observable. Which is
at sub-millimeter level. Overall Galileo performs best, Glonass worst.
Compared to the other constellations, Galileo transmits on a wider
bandwidth. Which leads to better correlator performance. And there-
fore better observable estimates.

u-blox m8t Septentrio AsteRx1

ρ(P,Φ) 0.00 0.00

ρ(P,D) 0.00 0.00

ρ(P, Φ̇) 0.00 0.00

ρ(P,S) 0.00 0.00

ρ(Φ,D) -0.75 -0.50

ρ(Φ, Φ̇) 0.00 0.00

ρ(Φ,S) 0.00 0.00

ρ(Φ̇,D) 0.25 0.00

ρ(Φ̇,S) 0.00 0.00

Table 5: Modeled cross-correlation at 45[dB-Hz]. Model obtained from two
separate short-baseline experiments. With two different single-
frequency GNSS receivers: u-blox neo m8t and Septentrio AsteRx1.
Observables are code, carrier-phase, Doppler, time-differenced
carrier-phase and carrier-to-noise density ratio.

Table 5 shows the correlation components. Both receivers rely on
negative feedback between carrier-phase and Doppler. The u-blox neo
m8t has tighter coupling between both. Because Doppler is more in-
stantaneous in comparison this may be by design; to achieve good
performance under broad range of user dynamics.

u-blox m8t Septentrio AsteRx1

P 0.50 0.20

Φ 0.06 0.20

D 0.00 0.00

Φ̇ -0.03 -0.10

S 0.50 0.20

Table 6: Modeled time-correlation of observables after 1 second. Model ob-
tained from two separate short-baseline experiments. With two dif-
ferent single-frequency GNSS receivers: u-blox neo m8t and Septen-
trio AsteRx1. Observables are code, carrier-phase, Doppler, time-
differenced carrier-phase and carrier-to-noise density ratio.

Table 6 shows time-correlation of observables after one second.
AsteRx1 has lower code time-correlation. Whereas the u-blox neo
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m8t has lower time-correlation for carrier-phase and time-differenced
carrier-phase.

5.3 code

Fig. 15 shows the results of the code standard deviation estimates for
both receivers. The dots represent the data used for these estimates.
Each dot represents a double-differenced time-series segment of 120
seconds. The colors represent three different constellations GPS in
blue, Galileo in orange and Glonass in green. The lines represent the
modeled standard deviations as function of carrier-to-noise density
ratio using simple functional model used in de Bakker et al. [2012]:

σ̂P = a10−
C/N0−45

20 (73)

With C/N0 in [dB-Hz] and a in [mHz]. For u-blox neo m8t as the
carrier-to-noise density ratio becomes lower, the standard deviation
sharply increases. Whereas the model fits the AsteRx1 measurements
much better over the complete range of carrier-to-density ratios. One
possible explanation is that u-blox uses certain assumptions within
the receiver model that only work for satellites at higher elevation.
For instance assumptions on their velocity.

Figure 15: Computed standard deviation of code observable. For two single-
frequency GNSS receivers: u-blox m8t (left) and Septentrio (right).
Obtained from two short baseline experiments. Using double-
difference linear observation combinations.

Fig. 16 shows the observation difference combination. Where carrier-
phase is subtracted from code observations. Using polynomial fit to
solve for ambiguity and other effects that remain. The dots again
represent 120 second long segments of observation differenced time-
series. The lines are realizations of functional model in Eq. 73. Note
that for u-blox m8t both the OD and DD figures show a sharp in-
crease of noise at around 33[dB-Hz]. But the DD-combination has a
smudge-effect. Caused by mixing different levels of carrier-to-noise
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density ratios together. We explicitly chose not to apply any criteria
for mixing. As this would most likely lower the amount of usable
segments.

Figure 16: Computed standard deviation of code observable. For u-blox m8t
single-frequency GNSS receiver (left) and Septentrio AsteRX 1 re-
ceiver (right). Obtained from short baseline experiment. Using
observation-difference linear observation combination between
code and carrier-phase observables.

A simplified expression of DLL variance is given by Teunissen and
Montenbruck [2017] as:

σ2P = T2C
BDLLd

2C/N0
[1+

2

(2− d)TC/N0
] [m2] (74)

With TC the chip duration [m]. Early-late correlator spacing d [chips].
BDLL the loop bandwidth. Coherent integration time T . And C/N0 in
[ratio-Hz]. The term in brackets represents the squaring loss. Mostly
relevant at lower elevations. [Teunissen and Montenbruck, 2017] (pp.431)
Two ways to decrease the noise at lower elevations are increasing the
coherent integration time T or reduction of the correlation spacing d.
We can rewrite Eq. 73 and link it to Eq. 74 by changing the carrier-to-
noise density ratio from [dB-Hz] to [ratio-Hz]. Full rewriting can be
found in Appendix D:

σ2Φ = a2b
1

C/N0
(75)

5.4 carrier-phase

The computed standard deviation of carrier-phase observations for
both receivers is shown in Fig. 17. Both profiles show a rather simi-
lar curve. The variance of both receivers is inversely proportional to
carrier-to-noise density ratio. Following de Bakker et al. [2009] we can
indeed see that all constellations show similar noise profiles for both
receivers. Which is in line with theory because the carrier-phase vari-
ance only depends on C/N0 and not on signal modulation. de Bakker
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Figure 17: Computed standard deviation of carrier-phase observable. For
two single-frequency GNSS receivers: u-blox m8t (left) and
Septentrio (right). Obtained from two short baseline experiments.
Using double-difference linear observation combinations.

et al. [2009] further note that the receiver clock is not fully removed
by means of polynomal correction. Therefore a small effect remains
on the DD carrier-phase observations. Which is proportional to the
Doppler effect.

A representation of the formal variance of Φ is given by Teunissen
and Montenbruck [2017] as:

σ2Φ =
λ2

4π2
BPLL
C/N0

(1+
1

TC/N0
) [m2] (76)

Note the similarity between the formal variance and again the used
carrier-to-noise desity ratio model in Eq. 75.

5.5 doppler

The standard deviation estimates of receiver generated Doppler are
shown in fig. 18. With u-blox m8t (left) and Septentrio AsteRx1 (right)
GNSS receivers. For all C/N0 the Septentrio AsteRx1 outperforms the
u-blox m8t receiver.

Similar to code we utilize the Doppler minus time-differenced carrier-
phase. Shown in fig. 19. The standard deviation of this combination
may be biased for u-blox m8t specifically. Because as we will see
both observables have positive cross-correlation. Which means that
the variance estimate is actually lower than it in reality is. It does
however show a similar behavior as observed for code in Fig. 16. PLL
or FLL parameters are changed to maintain an acceptable noise pro-
file for Doppler observables. Just as with code DD observations it
does not become apparent from the double-difference combination,
again due to pairing satellites with varying carrier-to-noise density
ratio.
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Figure 18: Computed standard deviation of Doppler observable. For two
single-frequency GNSS receivers: u-blox m8t (left) and Septen-
trio (right). Obtained from two short baseline experiments. Using
double-difference linear observation combinations.

Figure 19: Computed standard deviation of Doppler observable. For two
single-frequency GNSS receivers: u-blox m8t (left) and Septen-
trio (right). Obtained from two short baseline experiments. Using
observation difference linear combination: Doppler-minus-time-
differenced-carrier-phase.

Lets look at the representation of variance for the Doppler thermal
noise given in Teunissen and Montenbruck [2017]:

σ2D =
λ2

4π2T2
4BFLL
C/N0

(1+
1

TC/N0
) [(m/s)2] (77)

There are two possible parameters to tune assuming we cannot
change the physical components of our measurement system and ob-
viously have no influence over the signal transmission power. Which
would change the C/N0. These are either the frequency locked loop
bandwidth BFLL or the coherent integration time T . Longer T and
lower BFLL lead to more precise Doppler measurements. However
higher bandwidth leads to faster response to changes in dynamics. Be-
cause the u-blox m8t receiver is expected to cope with a large amount
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of different dynamics, a higher bandwidth could be used. Exchanging
accuracy for better robustness to changing dynamics.

5.6 time-differenced carrier-phase

From fig. 20 the time-differenced carrier-phase shows an order of
magnitude difference between both receivers. This is however in line

Figure 20: Computed standard deviation of time-differenced carrier-phase
observable. For two single-frequency GNSS receivers: u-blox m8t
(left) and Septentrio (right). Obtained from two short baseline
experiments. Using double-difference linear observation combi-
nations.

with what we expect. The expectation of variance is: σ2Φ − b/2∆t2.
With σ2Φ the carrier-phase variance. And b the covariance between
Φi and Φi+2. This leads to a difference in magnitude for two reasons.
First the carrier-phase variance of the Septentrio AsteRx1 is lower on
average compared to u-blox m8t GNSS receiver. And second, look-
ing at the time-correlation coefficients for both receivers it becomes
apparent that for AsteRx1 b has higher magnitude. Even though time-
correlation fades faster for the Septentrio AsteRx1 receiver.

5.7 carrier-to-noise density ratio

Fig. 21 shows the carrier-to-noise density ratio standard deviation
estimates. Lets first establish, to avoid confusion, that carrier-to-noise
density ratio and signal-to-noise ratio are related through the receiver
code bandwidth BP:

10 log(
S

N
) =

1

BP

C

N0
(78)

And that we use the carrier-to-noise density ratio, as this enables
us to compare between receivers independently of their architecture.
Fig. 21 shows the normalized standard deviation of carrier-to-noise
density ratio for both receivers. Notice that similar to the other ob-
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servables, noise increases exponentially as carrier-to-noise density ra-
tio becomes lower. This is probably due to lower elevation of satellites.
Antennas are designed to behave best for satellites at zenith. A logical
consequence of the signal having a non-zenith angle of incidence is
lower signal magnitude.

Figure 21: Computed standard deviation of time-differenced carrier-phase
observable. For two single-frequency GNSS receivers: u-blox m8t
(left) and Septentrio (right). Obtained from two short baseline
experiments. Using double-difference linear observation combi-
nations.

For both receivers the variation of standard deviation does not ex-
ceed 1[dB-Hz]. With added note that the u-blox neo m8t receiver has
a resoluation of 1 [dB-Hz] and the AsteRX1 receiver 14 [dB-Hz].

5.8 time-correlation

Fig. 22 shows time-correlation of observables. For both u-blox m8t
(left) and Septentrio AsteRx1 (right) GNSS receivers. Both code, carrier-
phase and carrier-to-noise density ratio observables start positively
time-correlated. And oscillate towards zero.

The u-blox neo m8t receiver shows stronger and longer time-correlation
of code observable. Possibly using longer coherent integration time
or a more narrow DLL tracking loop bandwidth. The carrier-phase
time-correlation is weaker for u-blox but persists longer in compari-
son. The longer persistence of time-correlation is a general difference
between both receivers. Using more observations in the current obser-
vation state estimate results in dampened noise due to averaging.

Receiver processing design choices could be at the root of this be-
havior. Users of low-cost receivers such as the u-blox m8t are gen-
erally more interested in ready-to-use position, velocity and time so-
lutions. On the downside using more observations generally means
slower response to changing user dynamics. When you hit the breaks
of your car for instance if may appear as if you where still driving at
higher speed. For the high-end AsteRx1 receiver on the other hand,
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Figure 22: Computed time-correlation of code, carrier-phase, Doppler, time-
differenced carrier-phase and carrier-to-noise density ratio ob-
servables. For two single-frequency GNSS receivers. Left for u-
blox m8t data taken at 10[Hz]. And Septentrio AsteRx1 on the
right, data taken at 1[Hz]. Computed from two short baseline
experiments. Using double-difference linear observation combi-
nations.

users are likely more interested in a raw observation state. Leaving
room to apply their own filters to dampen noise if one wishes to do
so.

As example consider measurement vector y, with variance matrix
Qy. And see how time-correlation propagates into state estimates:

y =
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y
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...
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y
t
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(79)

Vector y represents some time-series of measurements of the range
between a stationary target and observer. Measurements are time-
correlated up to one epoch, denoted by term a. Now say we want
to take the moving average of measurements y. Which in recursive-
matrix form gives:

µ̂
t
=Mp =

(
t−1
t

1
t

)(ût−1
y
t

)
(80)

Where µ̂
t

is the average estimate at epoch t. Propagation matrix M
and p a vector with average estimate up to epoch t-1 and the mea-
surement at epoch t. Vector p has dispersion:

D

(
ut−1

yt

)
= Qp =

(
σ2µt−1

1
t−1a

1
t−1a σ2yt
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(81)
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Where 1
t−1a gets smaller as the time-series y gets larger. Because

µ̂
t−1

will depend on a larger amount of measurements that have no
time-correlation with y

t
. Propagating variance matrix Qp to variance

of µ̂
t

we get:

D
(
ut

)
=MQpM

T =
(t− 1)2

t2
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1
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σ2yt +(
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t3 − t2
+
1

t2
)a (82)

Where 1) the overall variance of µ̂
t

drops as time-series get longer. 2)
with increasing t the estimate relies less on the current measurement
y
t

and more on the previous measurements. And 3) the influence of
time-correlation on the estimate reduces exponentially with time. In
this scenario we assumed that time-correlation will only be present
between measurements of consecutive epochs. If time-correlation per-
sists however, the propagated variance of the estimator will be higher
compared to no time-correlation. As can be seen by term a in Eq. 82.

5.9 covariance

Fig. 23 shows the cross-correlation coefficients for the Septentrio AsteRx1

GNSS receiver. We see that for all combinations the correlation coef-
ficients appear to be constant with respect to carrier-to-noise density
ratio. Appearing randomly distributed, with the spread likely ran-
dom measurement noise propagating into the coefficient estimates.

No correlation between observables would imply that we expect
ρ to be zero and follow the Student’s t distribution. Therefore our
null hypothesis is given by H0 : ρ = 0. And under the alternative
hypothesis unequalHa : ρ! = 0. With level of significance of a1 = 0.01
and a2 = 0.05. We see that the null-hypothesis is not rejected for all
observation pairs, with exception of (Φ,D) under a1. And that pairs
(P,φ) and (Φ,D) correlation is more likely under a2. Under a2 for
pair (P,Φ) H0 is rejected. This could imply carrier aiding of DLL.

The absence of correlation between carrier-phase and time-differenced
carrier-phase follows from two premises. 1) the differenced carrier-
phase is obtained as function of the previous and next carrier-phase
epochs. Which means that there is no direct correlation in terms of
epochs between the pair. And 2) there is minimal time-correlation
present on the carrier-phase observable.

Based on the findings above we assume no cross-correlation be-
tween pairs: (P,Φ), (P,D), (P, Φ̇), (Φ, Φ̇), (D, Φ̇), (P,S), (Φ,S), (D,S),
(Φ̇,S). And a significant correlation coefficient of -0.5 between Doppler
and carrier-phase: (D,Φ).

No correlation between pair (Φ,S) can be understood by looking
at the transformation from Cartesian to polar coordinates. And the
joint and marginal distributions that follow from the transformation.
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Figure 23: Computed cross-correlation of code, carrier-phase, Doppler and
time-differenced carrier-phase observables. For Septentrio single-
frequency GNSS receiver. Computed from a short baseline exper-
iment. Using double-difference linear observation combinations.

Given two independent and identically distributed zero-mean normal
random variables x1 and x2. And transformation:

y
1
=
√
x21 + x

2
2, y

2
= ∠(x1, x2) (83)

It can be shown that y
1

and y
2

are independent by virtue of their
marginal distributions Teunissen et al. [2006](pp.75):

fy
1
(y1) =

y1
σ2

exp(
y21
2σ2

), y1 > 0, and fy
2
(y2) =

1

2π
, y2 ∈ [0, 2π)

(84)

A receiver model can be interpreted in the same simplified way. Cor-
relating the incoming signal with a sine and cosine function enables
for estimating magnitude and phase of the signal. Applying the trans-
formation above results in independent variables.

The correlation coefficient estimates of the u-blox NEO m8t GNSS
receiver are shown in Fig. 24. Again the correlation coefficients appear
stationary with respect to carrier-to-noise density ratio. We again test
for significant non-zero correlations. Following the same approach as
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for the AsteRx1 receiver. For both chosen levels of significance H0
is rejected for pairs: (P,Φ), (Φ,D), and (D, Φ̇). The correlation be-
tween code and carrier-phase, upper-left figure, is centered around
zero, randomly spreading in both directions. This could again imply
carrier-aiding of the DLL. But on average we assume that the correla-
tion between these two observations is averaged out over time. And
therefore neglected. The upper-right figure shows the correlation co-

Figure 24: Computed crosscorrelation of code, carrier-phase, Doppler and
time-differenced carrier-phase observables. For u-blox m8t single-
frequency GNSS receiver. Computed from a short baseline exper-
iment. Using double-difference linear observation combinations.

efficient as computed between code and Doppler. There is no visible
correlation. The code state is therefore likely not steered by the state
of Doppler in any way.

Now lets focus on the correlation between pair carrier-phase and
Doppler. Depending on receiver architecture we expect no or very
small correlation for first-order phase-lock loop. And either positive
or negative correlation for second or higher order type loops. With
the sign depending on the type of feedback used in the system. In
the figure we see two distinct signals. No correlation and a negative
correlation with mean around -0.8 [-]. The segments that show no
correlation need some further explanation.

To remove any trend still present after double-differencing a low-
order polynomial is used. These trends can for instance be caused
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by low frequency multipath. If we do not detect a cycle slip within
a segment, the estimated polynomial will attempt to mold itself af-
ter these jumps in the data. By their very nature polynomials do not
cope well with jumps, but rather smooth patterns. Such as satellite
orbital motion for instance. So if we miss a cycle slip we bias our seg-
ment by means of a polynomial. Cycle slips do not occur in Doppler
observations. This means that if a cycle slip occurs the polynomial
has potential to change the correlation between both observables. We
can put this hypothesis to the test by making our cycle slip detection
more strict. We therefore change the detectors treshold from the orig-
inal 1λ to 0.5λ and 0.4λ[m]. With λ being the carrier wavelength, at L1

this is 0.1905 [m]. It turns out that if we look at the fractions between
both pointclouds we see that almost all zero-correlations are removed.
Making it likely that there exist a negative feedback look in the PLL
between carrier-phase and Doppler observables.

The pair carrier-phase and time-differenced carrier-phase are nega-
tively correlated. When propagating a small example of four epochs
of carrier-phase observables we see that in theory there is no correla-
tion between Φn, Φ̇n and Dn. If we have expectation of observations:

E
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With dispersion excluding time-differenced carrier-phase:
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Propagating variance gives the following full variance matrix where
we have included Φ̇.
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As we can see there is covariance betweenΦn and Φ̇n±1: b-σ2Φ and
σ2Φ + b. So by virtue of time-correlation we expect small correlation
both positive and negative. The majority of samples fall in line with
this expectation.

Figure 25: Azimuth-elevation plot of those DD segments that show negative
correlation between Φ and Φ̇.

However, a small number of samples show a negative correlation.
Two candidates causing this behavior were investigated.

1) High-frequency multipath could cause a strong time-dependent
correlation on phase observables. With a repeating pattern as orbits
repeat. Leading to a higher impact of time-correlation and thereby to
a higher negative correlation between phase and differenced phase.
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This implies that a receiver-site-satellite specific geometry causes cor-
relation. Fig. 25 shows an azimuth-elevation plot of just the samples
that show negative correlation. No apparent trend is visible. 2) An-
other possibility would be that the variance or time-correlation is sig-
nificantly higher for these samples. Looking at both quantities for
these samples shows that this is not the case.

Finally lets focus on pair Doppler and time-differenced carrier-
phase. From the propagated variance matrix in Eq. 87 we see that
the covariance between pair (Dn-1, Φ̇n) is: f-d2∆t . With d the covariance
between pairs (DnΦn) and f between pairs: (Dn-1Φn). Remember
that we did not see any correlation between this observation pair for
the Septentrio AsteRx1 receiver. This difference could be explained
by the fact that there is stronger correlation between (D,Φ) for the
u-blox m8t GNSS receiver. But this correlation fades faster with time
compared to the AsteRx1 receiver.
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R E S U LT S

6.1 introduction to state estimation

In this chapter we detail and interpret state estimation results from
the conducted experiments. There are three experiments: 1) A short-
baseline installment consisting of two receivers on the roof of the
TU Delft GNSS Observatory, The Netherlands. 2) Two buoys freely
drifting in the North-Sea near the shore of Scheveningen, The Nether-
lands. And 3) two receivers mounted on a car driving a regional road
East of Delft, The Netherlands. For an in depth description of these
experiments the reader is referred to Ch. 4.

All experiments use identical hardware, on which a brief discus-
sion is provided in appendix A. All receivers have been configured
to measure available GPS, Galileo and GLONASS satellite signals
at 10[Hz]. Measurement vector y consists for each satellite of code,
carrier-phase and Doppler or time-differenced carrier phase measure-
ments. Code and carrier-phase measurements and their respective ob-
servation equations are detailed in Ch. 2. Doppler and time-differenced
carrier-phase measurements are described in Ch. 3. We estimated
the variance model for individual observables and the correlation be-
tween them; all based on the short-baseline experiment. The resulting
variance model is detailed in Ch. 5.

Position and velocity state estimates were obtained from processing
the measurements from the above mentioned experiments. Multiple
processing strategies were used. Commonalities between these strate-
gies are described in appendix F. Differences arise by choosing what
constellations to use (GPS, Galileo and/or GLONASS), by choosing
the type of stochastic model, either: the one used by de Bakker and
Tiberius [2017] or the one developed in this work. And finally by
what velocity observable to use, either Doppler or time-differenced
carrier-phase.

All Doppler based experiments are processed with both stochastic
models mentioned above. The time-differenced carrier-phase models
are only processed using the stochastic model developed in this work.
Both the short-baseline static and drifting buoy experiments are pro-
cessed using GPS, GPS+Galileo and GPS+Galileo+GLONASS. Which
leads to nine different sets of state estimation results. The regional
road experiment is processed using GPS only, totaling three different
state estimate results.

For a thorough discussion on evaluation measures on accuracy, pre-
cision and reliability the reader is referred to Ch.4. Next we will first
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make a note on the interpretation of the a-priori and empirical con-
fidence region. Thereafter an overview of estimation results is dis-
cussed using two tables: position and velocity. Where we will discuss
general trends in terms of precision and accuracy. We conclude by
detailing interesting aspects of the individual experiments; where we
show these through horizontal scatter plots of North and East com-
ponent state estimates-minus-ground-truth.

6.2 a-priori and empirical confidence regions

The a-priori confidence region follows from the A and Qy matrices as
shown in Eq. 6. For each experiment set A and Qy are taken from the
middle epoch of an experiment. Where we chose to take both A and
Qy after the DIA procedure in order to be as comparable as possible
to the empirical estimate of Qx. The empirical confidence region is
computed from position and velocity state estimates using estimates
for the variance and covariance from Ch. 5 and Eq. 68.

The formal- and empirical confidence regions may not fully match.
This can be a direct result of the geometry in A for the center epoch
differing somewhat from the geometry at another epoch in the exper-
iment. Furthermore Qy can for each individual satellite be optimistic
or pessimistic; which is in large part depending on the stochastic
model. Then when propagating Qy to Qx the dimensions go from m

measurements to n unknown variables, where often m > n. Depend-
ing on the ensemble of individual mismatches it leads to Qx being
also either pessimistic or optimistic. Which will result in a scaling of
a-priori with respect to the empirical confidence region.

We expect satellite geometry to play a central role in the behavior of
horizontal error components. As becomes apparent the confidence re-
gions are mostly elongated in the North direction. Meaning the North
component is less precise than the East component. This is a direct
consequence of GNSS satellite groundtracks and the experiment lat-
itude of 52 degrees. Analogous would be the following. Imagine an
empty a small room with no lights and a vase in the middle. You
are asked to install lights such that shadows are minimized. And
no lights is no option. It will take at least a few lights at different
positions to get rid of all the shadows perceived by the human eye.
Satellites are no different in that it also results in a play of angles and
illumination.

6.3 experiment precision and accuracy overview

Here we give an overview of horizontal RMSE, horizontal bias and
horizontal standard deviations for all different processing settings.
The first column denotes aspects of the experiment configuration,
namely: platform, velocity observable, stochastic model. The velocity
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observable is as discussed either Doppler (D) or time-differenced car-
rier phase (Φ̇). And stochastic model either elevation (ele) or C/N0
(cnr) based. For the buoy experiments the subscripts denote: :2,1

(buoy 2, morning experiment) and :1,2 (buoy 1, afternoon experi-
ment).

6.3.1 Experiment Position State Estimate Accuracy and Precision

Tab. 7 shows the mentioned experiment results for horizontal po-
sition state estimates for all experiments. In terms of accuracy the
second column shows the horizontal RMSE. Where the horizontal
RMSE stays within the 0.5[m] threshold for the full static experiment.
With elevation based model performing best. For the kinematic ex-
periments only the afternoon drifting buoy experiments, denoted by
subscript 2, are over the 0.5[m] threshold by a small margin. The
morning experiment, second subscript 1, shows worse results and
has lower accuracy because the state of the sea was rougher.

6.3.2 Experiment Velocity State Estimate Accuracy and Precision

Tab. 8 shows the mentioned experiment results for horizontal velocity
state estimates for all experiments. In terms of accuracy the horizontal
RMSE stays within the threshold of 0.1[m/s] for all experiment con-
figurations with the static receiver on rooftop and car on a regional
road experiments. With the use of the time-differenced carrier phase
observable the accuracy is almost twice as good compared to using
the Doppler observable. For the drifting buoy experiment only the
time-differenced carrier phase observable stays within the threshold
of 0.1[m/s].

6.4 static receiver on roof tu delft gnss observatory

State estimation results are represented through nine subfigures. Each
subfigure represents one set of state estimates according to the set-
tings described in the introduction to this chapter. The columns de-
note the used variance model, either elevation or C/N0-based, and
velocity observable, either Doppler or time-differenced carrier phase.
And rows refer to the used constellations (GPS, GPS and Galileo, and
GPS, Galileo and Glonass). The blue dots represent horizontal po-
sition estimates relative to a known reference. The a-priori (95=red)
and empirical (95=solid-black, 99=striped-black) percent confidence
regions are also visualized.
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Experiment Horizontal RMSE bn be σ̂n σ̂e ρ̂ne

site | vobs | Qy [m] [m] [m] [m] [m] [-]

� |D|ele 0.429 -0.392 0.164 0.043 0.023 -0.015

� |D|cnr 0.483 -0.451 0.090 0.104 0.061 0.007

� |Φ̇|cnr 0.484 -0.452 0.090 0.104 0.061 0.007

:1,1|D|ele 0.771 -0.268 -0.325 0.457 0.267 0.441

:1,1|D|cnr 0.792 -0.295 -0.320 0.468 0.289 0.329

:1,1|Φ̇|cnr 0.812 -0.313 -0.305 0.484 0.292 0.336

:2,1|D|ele 0.725 -0.173 -0.144 0.487 0.268 0.355

:2,1|D|cnr 0.772 -0.224 -0.150 0.512 0.326 0.357

:2,1|Φ̇|cnr 0.781 -0.218 -0.134 0.522 0.326 0.337

:1,2|D|ele 0.507 0.259 -0.212 0.269 0.189 0.179

:1,2|D|cnr 0.504 0.120 -0.201 0.316 0.224 0.110

:1,2|Φ̇|cnr 0.529 0.156 -0.210 0.325 0.228 0.009

:2,2|D|ele 0.530 0.232 -0.164 0.316 0.204 -0.185

:2,2|D|cnr 0.507 0.090 -0.160 0.334 0.204 -0.000

:2,2|Φ̇|cnr 0.507 0.088 -0.163 0.334 0.213 0.045

) |D|ele 0.717 0.632 -0.066 0.235 0.177 -0.283

) |D|cnr 0.684 0.595 -0.051 0.236 0.176 -0.204

) |Φ̇|cnr 0.682 0.592 -0.053 0.237 0.176 -0.222

Table 7: Horizontal position accuracy overview, GPS only. First col-
umn denotes the experiment. Given three variables. 1) the site:
�=roof,:=buoy(number,morning/afternoon),)=car,Ø=uav. 2) the
velocity observable used, either Doppler (D) or time-differenced car-
rier phase (Φ̇). 3) and finally the variance model used, either eleva-
tion (ele)- or C/N0 (cnr) based. The second column denotes the
horizontal RMSE. Two following columns the horizontal East and
North bias components (bn, be). The final three columns denote
the North and East component standard deviation (σ̂n), σ̂e) and
the correlation between the two (ρ̂ne).

6.4.1 Position in the Static Rover Case

Horizontal position components are shown in Fig. 26. The GPS-only
elevation based processing of Doppler measurement performs best.
With a bias of around -0.4[m] and 0.16[m] in North and East direc-
tions. Standard deviation of 0.04[m] and 0.02[m] in North and East di-
rection. And a correlation coefficient of -0.015. The bias for the C/N0
based model is slightly worse in North component: 5.9[cm], but better
in East component by 7.4[cm]. As are the horizontal sample standard
deviations North an East by 0.1[m] and 0.06[m] respectively.
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Experiment Horizontal RMSE bdn bde σ̂dn σ̂de ρ̂dne

site | vobs | Qy [m/s] [m/s] [m/s] [m/s] [m/s] [-]

� |D|ele 0.033 0.001 0.002 0.023 0.016 -0.073

� |D|cnr 0.030 -0.002 0.002 0.022 0.016 -0.068

� |Φ̇|cnr 0.014 0.001 0.001 0.010 0.007 -0.041

:1,1|D|ele 0.122 -0.002 -0.000 0.086 0.077 -0.124

:1,1|D|cnr 0.111 -0.001 -0.001 0.079 0.075 -0.137

:1,1|Φ̇|cnr 0.068 -0.002 0.002 0.048 0.035 0.159

:2,1|D|ele 0.122 -0.005 0.002 0.086 0.078 0.004

:2,1|D|cnr 0.116 -0.002 0.002 0.082 0.074 -0.037

:2,1|Φ̇|cnr 0.064 -0.004 0.003 0.045 0.036 0.114

:1,2|D|ele 0.113 0.000 0.001 0.080 0.077 -0.021

:1,2|D|cnr 0.110 -0.001 0.002 0.078 0.076 -0.047

:1,2|Φ̇|cnr 0.067 -0.002 0.001 0.047 0.032 -0.016

:2,2|D|ele 0.110 0.001 0.002 0.078 0.078 -0.034

:2,2|D|cnr 0.107 -0.000 0.002 0.076 0.077 -0.081

:2,2|Φ̇|cnr 0.059 -0.000 0.001 0.042 0.030 -0.058

) |D|ele 0.061 0.001 0.001 0.043 0.030 -0.001

) |D|cnr 0.064 -0.001 0.001 0.045 0.030 0.062

) |Φ̇|cnr 0.044 0.000 0.001 0.031 0.021 -0.099

Table 8: Horizontal velocity accuracy overview, GPS only. See Fig. 7. With
the addition that d in the subscripts indicates that we are talking
about horizontal velocities and not positions.

6.4.1.1 Precision of BLUE Estimator for Added Satellite Measurements

The BLUE estimator becomes more precise by using more measure-
ments. This line of reasoning holds when unknown parameter vector
x remains the same, more measurements become available in vector y
and with that A andQy in Eq. 7 change. In the GPS-only case, adding
another satellite adds an unknown carrier-phase (float) ambiguity pa-
rameter plus two range and one range-rate related measurements:
code, carrier-phase and Doppler. Where the carrier-phase ambiguity
parameter is assumed constant and therefore its estimator becomes
more precise over time. Adding a satellite of another constellation
also adds one inter-system bias parameter for the whole constella-
tion, see Eq. 56. So here not only our model gets compromised by
another carrier-phase ambiguity. The inter-system bias weakens the
solution, unless this can be overcome by adding enough satellites of
the other constellations.
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Figure 26: Horizontal position component estimates North and East, with
respect to the ground truth. Data obtained using a static single
frequency ublox neo m8t receiver. Setup on rooftop of TU Delft
GNSS Observatorium. The nine sub-figures represent a combi-
nation of different constellations as rows. With either GPS only,
GPS+GALILEO and GPS+GALILEO+GLONASS. And columns
represent three different combinations. Doppler with elevation-
based variance, Doppler with C/N0-based variance, and TDCP
with C/N0-based variance

6.4.1.2 Variance Models and Low Elevation Satellites

The elevation based variance model outperforms the carrier-to-noise
density based variance model in terms of precision as represented
through the empirical confidence region. This can be explained by
the nature of both models. The elevation based model is very pes-
simistic about satellites at low elevation. Whereas the carrier-to-noise
density based models assigns more merit to these measurements. The
low elevation satellites are prone to not take into account effects such
as multipath. We have also shown from the short-baseline experi-
ments that the receiver adjusts its signal processing parameters for
both Code and Doppler observations when the satellite gets a lower
C/N0, and corresponding elevation (see Ch. 5 for in depth discus-
sion of this effect). Possibly to aid with tracking the carrier-phase.
Both variance models are incapable in a mathematical sense of taking
this effect properly into account. Therefore the difference between the
95-percent a-priori and empirical confidence ellipses in especially the
first two columns of Fig. 26 could originate from how low-elevation
satellites are weighed in Qy.
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6.4.2 Velocity in the Static Rover Case

Figure 27: Horizontal velocity component estimates in local North and East.
See caption Fig. 26

Fig. 27 shows the velocity results for the short-baseline experiment.
As expected and shown in column 3 of this figure and in overview
tab. 8 the time-differenced carrier phase results in more accurate hor-
izontal velocity error components compared to using Doppler mea-
surements. Where the Doppler+elevation and Doppler+C/N0 based
processing have RMSE of 0.033[m/s] and 0.03[m/s] respectively. And
the time-differenced carrier-phase + C/N0 based processing has RMSE
of 0.014[m/s]. All well within margins of required horizontal accu-
racy of 0.1[m/s].

In the static rover case there is no added benefit using multi-constellation
measurements. Nor is there any noticeable downside either other
than a small difference in bias in the order of 0.01 [m/s].

6.5 buoy drifting in coastal area scheveningen

The drifting buoy experiment is explained in Ch. 4. The experiment
was divided into a morning- and afternoon session. There was a defi-
nite difference in significant wave height and surface current velocity.
With rougher state of the sea surface in the morning.

6.5.1 Position in the Drifting Buoy Case

The morning horizontal positioning results for the drifting buoy ex-
periments are shown by Figs. 28 and 29 for buoy 1 and 2 respectively.
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Figure 28: Horizontal position component estimates in local North and East
for buoy 1, morning experiment. Referenced to real-time kine-
matic estimates using a high-end basestation on shore. Data ob-
tained using a single frequency ublox neo m8t receiver. Mounted
on a freely drifting buoy at Scheveningen coastal area. See Fig. 26

The bias in North component is better compared to the static experi-
ment, the East component is worse.

The North and East horizontal standard deviations in the GPS-only
case are comparable for all models, with the elevation based variance
model slightly outperforming the rest. The North position component
standard deviation was 0.457[m] and East 0.267[m] for buoy 1. And
the North and East standard deviation for buoy 2 were 0.487[m] and
East 0.268[m] respectively for buoy 2.

The horizontal position components for the afternoon experiments
are shown in Figs. 30 and 31 for buoy 1 and 2. Here the The North and
East horizontal standard deviations in the GPS-only case are again
better for the elevation based variance model, slightly outperforming
the rest. North position component standard deviation was 0.269[m]
and East 0.189[m] for buoy 1. The North and East standard deviation
for buoy 2 are 0.316[m] and East 0.204[m] respectively for buoy 2.
Well within the 0.5[m] horizontal position margins of error.

The differences between morning and afternoon session horizon-
tal position components are remarkable. This most likely is caused
by the calmer state of the North-sea. Fewer waves washing over the
buoy, that would lead to disturbances in signal tracking. And and
less bobbing, that leads to more fluctuating antenna orientations, for
which our stochastic models are not accounting for. It is of interest
to see that it seems there is a slight benefit using Galileo alongside
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Figure 29: Horizontal position component estimates in local North and East
for buoy 2, morning experiment. See caption Fig. 28

Figure 30: Horizontal position component estimates in local North and East
for buoy 1, afternoon experiment. See caption Fig. 28

GPS measurements when in rougher waters. Especially when using
the carrier-to-noise density variance based model. This latter can be
attributed by the fact that as mentioned earlier this model has more
confidence in lower elevation satellites, which may benefit state esti-
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Figure 31: Horizontal position component estimates in local North and East
for buoy 2, afternoon experiment. See caption Fig. 28

mates. It can be expected that multipath plays at least some role in
degrading the signal quality. Adding more satellites may reduce its
influence by ’averaging’ with non- or less effected satellites.

6.5.2 Velocity in the Drifting Buoy Case

Velocity results for the morning drifting buoy session are shown in
Figs. 32 and 33. Similar to the rooftop experiment, results based on
Doppler are less precise compared to those based on the time-differenced
carrier phase. This follows from the receiver signal processing de-
scribed in the velocity literature review in Ch. 3, which showed that
the time-differenced carrier phase is computed over a longer time
period compared to that of the Doppler observable.

The bias for both horizontal velocity error components is in the
order millimeter per second. The time-differenced carrier phase based
velocity estimates outperform the Doppler based velocity estimates
by a factor of 2.0 in terms of precision, also shown in tab. 8 which
is in line with the static experiment. With North and East standard
deviation components of 0.048 and 0.035 [m/s], and 0.045 and 0.036

[m/s] for buoy 1 and 2 respectively. Here the Doppler based velocity
components with the carrier-to-noise density variance model slightly
outperform the elevation based model at 0.079, 0.075 and 0.082, 0.074

[m/s] for buoy 1 and 2. Which for the rough sea state means that only
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Figure 32: Horizontal velocity component estimates in local North and East
for buoy 1, morning experiment. See caption Fig. 28

the time-differenced carrier phase velocity estimate meets the aimed
at 0.1[m/s] horizontal velocity error margin.

Figure 33: Horizontal velocity component estimates in local North and East
for buoy 2, morning experiment. See caption Fig. 28

Velocity results for afternoon drifting buoy session are shown in
Figs. 34 and 35. The calmer sea state leads to better velocity results
for all models. Albeit smaller compared to the position improvements.
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Which may reinforce our preceding observation from literature that
multipath is not as much a factor for velocity based measurements.

The North and East component standard deviations are 0.047 and
0.032 [m/s] and 0.042 and 0.030 [m/s] for buoy 1 and 2 respectively.
Again the Doppler based velocity components under the carrier-to-
noise density variance model slightly outperform the elevation based
model at 0.078, 0.076, and 0.076, 0.077 [m/s] for buoy 1 and 2. Which
also for the calm sea state means that only the time-differenced car-
rier phase velocity estimate meets the aimed at 0.1[m/s] horizontal
velocity error margin.

Figure 34: Horizontal velocity component estimates in local North and East
for buoy 1, afternoon experiment. See caption Fig. 28

6.5.3 Internal and External Reliability in the Drifting Buoy Case

The reliability of our estimates is captured by the internal- and exter-
nal reliability, where we set a0 = 0.01 and γ0 = 0.8. As described in
the last section of Ch. 2.

6.5.3.1 Internal Reliability: Code, Carrier-phase, Doppler (and Ambiguity)
Measurements

Fig. 36 shows the internal reliability of our measurements as a his-
togram in the GPS-only case. For each individual observation per
epoch the largest bias is taken as we are interested in the worse-case
scenario. The x-axis denotes the MDB1, the y-axis the count. In total
the MDB1 of four measurements are shown by the four subfigures.
The ambiguity estimate up to this epoch, Code, carrier phase and
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Figure 35: Horizontal velocity component estimates in local North and East
for buoy 2, afternoon experiment. See caption Fig. 28

velocity observable: either time-differenced carrier phase or Doppler.
Here ambiguities of previous epochs are taken into account for it in-
cludes effects like cycle slips.

Figure 36: Internal reliability (MDB1) for ambiguities, code, carrier-phase
and Doppler or time-differenced carrier phase observable shown
in the four panels respectively. For buoy experiments with
three different processing settings: Blue: [variance: elev, Veloc-
ity: Doppler], Orange: [variance: C/N0, velocity: Doppler], and
Green: [C/N0, velocity: Time-differenced carrier-phase].

The major difference in terms of the first three subfigures is found
in code and carrier-phase observables. In both cases the elevation
based variance model results in higher MDB1. This is a direct result
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from again the mathematical difference between both models. As the
elevation based variance model is more pessimistic about low eleva-
tion satellites. This leads to smaller wiggle room for measurements
from these satellites to help identify anomalies in measurements of
other satellites.

The fourth row shows primarily that the internal reliability for
processing settings using the time-differenced carrier-phase Green:
[C/N0, velocity: Time-differenced carrier-phase] is more reliable com-
pared to the other two processing settings: Blue: [variance: ele, veloc-
ity: Doppler] and Orange: [variance: C/N0, velocity: Doppler]. Com-
parison between these two shows that the elevation based model is
more reliable. This may be caused again by difference in weights for
low-elevation satellites.

6.5.3.2 External Reliability: Position and Velocity State Estimates

Fig. 37 and Fig. 38 show the external reliability of horizontal position
and velocity components. The MDB of each individual observation
were propagated as a separate hypothesis. reliability. The largest re-

Figure 37: External reliability for North and East position components. For
buoy experiments for three different processing settings: Blue:
[variance: elev, Velocity: Doppler], Orange: [variance: C/N0, ve-
locity: Doppler], and Green: [C/N0, velocity: Time-differenced
carrier-phase]

sulting biases on the position and velocity state estimates were taken
and shown as a histogram. For the horizontal position components
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both North and East the carrier-to-noise density ratio model outper-
forms the elevation model. The bias undetected by a probability γ0
that may propagate into the final estimates is in the order of decime-
ter to one meter. This can be explained from the internal reliability,
that of course propagates into the external

A similar consequence is manifested in Fig. 38. Where the carrier-to-
noise density based variance model for Doppler has a much wider tail
compared the other two models. Where the external reliability bias
peaks are found at 0.05, 0.25 and 0.35 [m/s] approximately for both
horizontal velocity components, for the three respective models: time-
differenced carrier phase carrier-to-noise density ratio, elevation and
Doppler carrier-to-noise density ratio based models. We can conclude

Figure 38: External reliability for North and East velocity components. GPS-
only. For buoy experiments for three different processing settings:
Blue: [variance: elev, Velocity: Doppler], Orange: [variance: C/N0,
velocity: Doppler], and Green: [C/N0, velocity: Time-differenced
carrier-phase]

based on the external reliability that for at least the time-differenced
carrier phase case the model is robust against outliers by means of
DIA procedure.

6.6 mounted on car roof , driving a regional road

The regional road experiment is described in Ch. 4.
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6.6.1 Position in the Moving Car Case

Horizontal position error components for both rovers are shown for
GPS-only in Fig. 39 and Fig. 40. The GPS-only carrier-to-noise vari-

Figure 39: Horizontal position component estimates in local North and
East for car experiment receiver 1. The columns represent three
different combinations. Doppler with elevation-based variance,
Doppler with C/N0-based variance, and TDCP with C/N0-based
variance. All states are processed with GPS-only.

ance model performs slightly better. With a bias of around 0.595[m]
and -0.051[m] in North and East directions. Standard deviation of
0.236[m] and 0.176[m] in both directions. The bias for the elevation
based variance model is worse better at 0.623[m] and -0.066[m]. With
similar horizontal position error component for North an East: 0.235[m]
and 0.177[m] respectively.

Figure 40: Horizontal position component estimates in local North and East
for car experiment receiver 2. See caption Fig. 39

6.6.2 Velocity in the Moving Car Case

Fig. 41 and 42 show the horizontal velocity error components for both
rovers of the car experiment. Biases for all three models are about
0.001[m/s]. Standard deviations of both Doppler based models are
rather similar at 0.045[m/s] and 0.03[m/s] in North and East direc-
tions.

From Tab. 8 and Figs. 41 and 42 we can further see that the preci-
sion of the TDCP based velocity state estimates remain more precise
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Figure 41: Horizontal velocity component estimates in local North and East
for car experiment receiver 1. See caption Fig. 39

Figure 42: Horizontal velocity component estimates in local North and East
for car experiment receiver 2. See caption Fig. 39

compared to the Doppler observable state estimates. However this
difference is smaller in this case compared to the static rooftop and
drifting buoy experiments. This could follow from the mathematical
nature of the TDCP differentiator that has trouble keeping up if the
platform moves more erratic, as described in Ch. 3.

Finally the set threshold for position of 0.5[m] is not met. This is
mainly caused by a large bias for the North component. This could
have been caused by the loss of satellites South and North of the rover.
As shown in overview Fig. 13 possibly caused by trees or other fence
like objects next to the road. In terms of velocity the Threshold of
0.1[m/s] RMSE is met by both Doppler and TDCP based processing
settings.





7
D I S C U S S I O N

7.1 kinematic experiment reference

Central to evaluation of horizontal position- and velocity state esti-
mates is the ground truth or reference used. In contrast to the static
rooftop experiment there was no reference available for kinematic
experiments. Therefore we followed the method by de Bakker and
Tiberius [2017] and employed a real-time kinematic (RTK) based so-
lution. With a high-end base station setup on shore for the drifting
buoy experiments and using available reference station DLF1 at the
TU Delft campus for the regional road experiment.

In the RTK-based computed reference case we introduce a weak-
ness. It uses the same measurements of the moving target receiver as
the experiment itself. The RTK-based solution has a one order of mag-
nitude better position accuracy than the to-be evaluated PPP-solution,
but it is unavoidable that errors that occur in one solution likely corre-
spond to errors in the other solution. One of the major upsides of this
technique is the minimal amount of extra hardware required, which
means less prone to human error.

Furthermore the PPP-solution primarily relies on the pseudorange
measurements, whereas the RTK-solution, once the carrier phase am-
biguities are fixed, relies solely on the carrier phase measurements. So
the emphasis for both PPP and RTK is placed on different measure-
ments, leading to smaller effect errors that are occur in both solutions
have.

7.2 multipath considerations

In general multipath effects on GNSS measurements are very hard to
model. Observation combinations using measurements from on site
experiments may be the most realistic method, where one can lever-
age the difference in magnitude of multipath between pseudorange
and carrier-phase observations. [de Bakker et al., 2012]

It is possible to simulate these signals in a controlled environment
by simplification; for instance capping the amount of signal bounces.
Wieser [2007] applies a simple geometric relation using a single satel-
lite a receiver and a planar reflector for multipath delay:

m = 2dcos(Ψ) (88)

With m the multipath delay in meters, d the height of the receiver
above the planar reflector and Ψ angle of incidence between reflec-
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tor and receiver. Obviously the height of receiver above the reflector
is important, since it determines directly the maximum distance the
signal can travel in addition to the direct line of sight.

This multipath signal delay then has to be transformed through a
receiver simulation to get insight how much influence the multipath
delay has on the mutlipath delay in the measurements.

This type of simulation was proven to be capable to work reason-
ably well for very simple geometry cases in real world applications
for GNSS by Smyrnaios et al. [2013]. Adding complexity means that
this model will likely fail on several grounds to represent the real
world adequately. Which leads to the conclusion that it almost al-
ways more fruitful to design an experiment to retrieve multipath on
at least the pseudorange measurements.

7.3 further directions in velocity estimation

We have explored a small subset of the solution space, spanning min-
imal assumptions on rover dynamics. This leaves us with minimal to
no tuning. There are however various directions left unexplored.

As shown by the short-baseline experiment, both code and Doppler
observables for the ublox neo m8t receiver show on-the-fly signal
tracking parameter tuning. This effect was too pronounced for our
two simple models to be captured. It could be fruitful to employ a
n-degree polynomial model that operates well between the available
carrier-to-noise density ratios (between 20 and 55 [dB-Hz]). This has
the downside that one should be careful to carry over such a model
from one receiver to the other. But the upside is that when a receiver
uses parameter tuning, these signals will be better represented by the
variance model. Thereby improving state estimates.

Another route would be the use of a dynamic model, which will
work in concert with the measurement model. Explained for instance
in Teunissen [2001a]. One dynamic model that can be used is the con-
stant velocity model. This would make assumptions on the dynamics
of the application. In case of a buoy, the main direction of current
would be emphasized as being the constant velocity. Whereas the
short-term motion superimposed on current due to the waves would
be filtered out. When the assumptions on the dynamics hold true for
the application at hand, employing them in the estimation process
leads to improved precision for the (unbiased) state estimators.

Finally it may be fruitful to add additional means of measuring
velocity to the platform. Inertial measurement units consisting of a 3-
axis accelerometer, -magnetometer and -gyroscope come in compact
low-cost modules. And have proven as a possibility to improve posi-
tioning, so why not velocity. Henkel and Iafrancesco [2014] Falco et al.
[2014]



8
C O N C L U S I O N

8.1 approach to estimate velocity

The Delft GNSS real-time single-frequency precise point positioning
algorithm is extended to include velocity and clock drift as states,
which allows to take redundancy into account to perform DIA on the
full state vector and incorporates covariance between position- and
velocity based observables; where for instance a fault identified in a
Doppler observation may help identify a cycle slip on a carrier-phase
observable. Furthermore, the algorithm is applicable anywhere on
the surface of the Earth without needing a basestation, which makes
it user friendly besides being operational in real-time.

8.1.1 Observation Standard deviation and Correlation

The u-blox neo m8t GNSS receiver is shown to apply on-the-fly tun-
ing of signal processing parameters for satellite signals below 32[dB-
Hz] carrier-to-noise density ratio. Through a short baseline experi-
ment at carrier-to-noise density ratio reference value of 45[dB-Hz] it
was found that the u-blox has a standard deviation for GPS L1 mea-
surements of: 0.1974[m] (code), 0.0043[m] (carrier-phase), 0.0885[m/s]
(Doppler), 0.006[m/s] (time-differenced carrier-phase) and 0.1227[dB-
Hz] (carrier-to-noise density ratio) and it was shown that the Doppler
and carrier-phase observable have negative correlation of ρ equals -
0.75. Glonass measurements are found to be less precise, where carrier-
phase may be influenced by frequency modulation. And Galileo Code
observations are more precise, assumed due to the wider signal band-
width and being at same frequency as GPS.

8.2 two different variance models

Both variance models used: variance as function of satellite elevation
and variance as function of carrier-to-noise density ratio have elon-
gated North components of their respective confidence ellipses, this
is expected from the satellite geometry with respect to the location
of the Netherlands, at 52 degrees North. Of the two used variance
models, the elevation based variance model outperformed the carrier-
to-noise density ratio based variance model in terms of horizontal
position component accuracy in most experiments. This can be ex-
plained by the differences in weights applied to measurements of
low-elevation satellites by the two variance models, where the ele-
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vation based model incorporates these satellites more loosely in the
model compared to the carrier-to-noise density ratio model, and mea-
surements from low-elevation satellites suffer more often from un-
modelled effects like multipath plus these effects are larger in mag-
nitude. By weighting these satellites more opportunely (in the C/N0-
based model) these unmodeled effects propagate more strongly into
the state estimate resulting in worse state estimate accuracy.

8.3 empirical position and velocity accuracy

It was found that in terms of position in the static experiment and
under calm water conditions during the drifting buoy experiment
the horizontal RMSE was between 0.429 and 0.530 [m], and under
rough water conditions in the drifting buoy experiment and during
the regional road experiment between 0.682 and 0.812 [m]. During
the rough water conditions waves washed over the buoy, which likely
distorted the quality of the satellite signal and the road was partly
flanked by fences and trees which probably caused the large North
component bias.

For velocity it was found that the TDCP observable in combination
with the carrier-to-noise density based variance model has a horizon-
tal RMSE between 0.014 and 0.068 [m/s] over all experiments, and
using the Doppler observable with either variance model a RMSE be-
tween 0.033 and 0.122 [m/s]. The Doppler observable does not meet
the requirement of 0.1 [m/s] horizontal RMSE in the drifting buoy
case, which does not mean it is without a use case as it is expected
that under extreme conditions the Doppler will outperform the TDCP
as it can better keep up with platform dynamics.

8.4 internal- and external reliability

Baarda’s internal reliability, MDB1, were evaluated for the drifting
buoy experiment. The MDB1 shows differences mostly dictated by
the variance model used. The elevation based variance model has a
MDB1 for Code observations concentrated at 2.8[m] versus 1.2[m] for
carrier-to-noise density ratio model, for the carrier-phase observable
the difference is smaller: MDB1 of 1.4[m] versus 1.1[m] and in terms
of velocity observables using the TDCP the MDB1 is about 0.1[m/s]
versus the Doppler observable at 0.35 and 0.5 [m/s] for both variance
models respectively.

The external reliability was acquired by propagating the largest
MDB1 found at each epoch. It is shown that for horizontal position
components by means of DIA the algorithm can remain under 0.5[m]
for all processing settings where variance is C/N0 based. Again ex-
plained by the C/N0 variance model that applies more weight, com-
pared to the elevation based variance model, to low elevation satel-
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lites. Which means that these satellites can in theory be leveraged
more easily to detect faults. For horizontal velocity components the
TDCP based processing is capable of detecting faults at the boundary
of the 0.1 [m/s] velocity requirement.

Concluding that in the drifting buoy case the TDCP based func-
tional model and carrier-to-noise based variance model is a good
match for the dynamics expected for a coastal drifter. Not only does
the algorithm meet the requirements in terms of accuracy but also
in terms of reliability for the developed position and velocity state
estimation system.





A
G N S S S Y S T E M

a.1 receiver

The u-blox m8t neo GNSS receiver is used for experiments in this
work. It has 72-channels, and is capable of concurrently receive three
systems: GPS L1C/A, Galileo E1B/C, SBAS L1C/A, QZSS L1C/A,
SAIF and GLONASS L1OF or BeiDou B1. Various single-frequency
experiments found in de Bakker and Tiberius [2017] have been con-
ducted using either this or a predecessors like the u-blox NEO 7 re-
ceiver.

a.2 antenna

The Taoglas Magma AA 170 GNSS antenna is tuned for GPS+Galileo
frequencies (1575.42 [Mhz]) and GLONASS frequency (1598.0625 −
1609.3125 [Mhz]). It is a car-type antenna with a strong magnet. It is
recommended to use a groundplate to minimize the magnetic field
from interacting with the electronics, which may have severe effects
on the quality of measurements.

a.3 logging and receiver setup

The field experiments were logged using a custom c-plus-plus pro-
gram that configures and logs the data to SD-card. For this purpose
any general linux-based microprocessor is capable as long as it has a
compiler, but we went for the commonly available Raspberry Pi 3.
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A P P R O X I M AT I O N O F D O P P L E R S H I F T F O R L I G H T

Let s be the source of light and o its observer. The relative velocity
between both given by v, λ0 and f0 the wavelength and frequency
when v = 0. Now imagine two consecutive crests of the signal. The
received wavelength by observer o is given by:

λ = c0∆t− v∆t (89)

With c0 the speed of light in a vacuum, v the relative velocity between
source and observer and ∆t the time crest 1 has moved since trans-
mission. Since light is subjected to special relativity, the time between
emission of wavecrests undergoes time dilation. [Giancoli, 2008](pp.
979):

∆t = ∆t0/
√
1− v2/c2 (90)

With ∆t0 the time between emissions of wavecrests in reference frame
of the source:

∆t0 =
1

f0
=
λ0
c0

(91)

Using Eqs. 89, 90 and 91 we can write the received wavelength λ and
frequency f as:

λ = λ0

√
c0 + v

c0 − v
; f =

c0
λ

= f0

√
c0 − v

c0 + v
(92)

As the relative velocity v is negative, s and o are moving towards
each other. Hence the received frequency increases. And the other
way around.

Wieser [2007] points out, most GNSS textbooks and papers use
an approximated form for the received frequency f in Eq. 92. First
rewrite f in Eq. 92 as:

f = f0

√
c0 + v

c0 − v
= f0

√
1+ v/c0
1− v/c0

= f0

√
1+ x

1− x
; x = v/c0 (93)

We know that for GNSS relative velocity v << c0, thus x goes to 0.
With this insight and f solely a function of xwe approximate function
f(x) through Taylor series:

f(x) ≈ f(0) + f ′(0)x+ 1
2
f
′′
(0)x2 + ... (94)
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84 approximation of doppler shift for light

With:

f
′
=

f0

2
√
1+x
1−x

2

(1− x)2
=

f0√
1+ x(1− x)3/2

(95)

From Eq.95 we see that f
′
(0) = 0. Using Eq. 95 in 94 and if the

range rate between satellite and receiver is very small compared to
the speed of light c0 we get:

f(x) ≈ f0 + f0x = f0(1+ x) = f0(1+
v

c0
) (96)

The Doppler shift is the received minus transmitted frequency fD =

f− f0 = f0
v
c0

. Multiply by wavelength λ to get the relative velocity in
[m/s]:

Dso = λfD =
λf0
c0
v = v (97)

With Dso the Doppler shift in [m/s] between observer and source.
Where for GNSS we split relative velocity v into satellite s and re-
ceiver r components:

Dsr = a
s
r(ṡ− ṙr) (98)
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T W O D I M E N S I O N A L O R B I T S I M U L AT I O N

Let the Earth be two dimensional and perfectly circular. With radius
Re = 6371000[m]. There are N satellites. All in a circular orbit. With
orbit radius Rs = Re + 25000[m]. Distributed equally over the circle.
The receiver is located on the surface at the North pole: rr = (x,y) =
(0,Re). Tthe polar coordinates of satellite n as function of time t[s] be:

rs(t) = (Rs, θ(t) +∆θ); θ(t) = wt w = 2π/T (99)

With satellite position rs(t) at time t. Time dependent angle on the
unit circle θ(t)[rad]. Static angle increment based on equally dis-
tributed satellites ∆θ. Orbital velocity w[rad/s]. And orbit period T [s].

Let Earth be represented by a circle with radius R1. Let r be the
line of sight vector between center of Earth [0, 0] and satellite. The
satellite’s orbit is circular. The length of vector ‖r‖ gives the distance
between Earth and satellite Vector r can therefore be represented by:

r = R(cos(θ); sin(θ)) (100)

Where R is length of vector r and θ the angle between satellite with
respect to Earth, where 0 degrees is East. We assume that the satellite
travels its orbit at constant velocity. Angle θ as function of time t can
be represented as:

θ(t) = at (101)

The function is known when the satellite makes a complete revolu-
tion, specifically at t = T . Where θ(t) = 2π. This gives an expression
for a:

a =
2π

T
(102)

The total distance the satellite will travel in period T is equal to the
circumference of this circular Earth. With constant velocity V this is:

VT = 2πR (103)

T =
2πR

V
, f =

1

T
(104)

Combining Eq. 101, 102, 103 and 104 gives an expression for θ(t):

θ(t) = 2πft =
Vt

R
(105)
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86 two dimensional orbit simulation

We can plug this result into Eq. 100 to get an expression for r(t):

r(t) = R(cos(
Vt

R
); sin(

Vt

R
)) (106)

Now lets add toe receivers, r1 and r2. One exactly at the surface.
The other h meter below. With positions r1 = (0;R1) and r2 = (0;R2).
With R2 = R1 − h and h = 3(m).

The distance between receiver and satellite is described by:

s = ‖r− r1‖ =
√
R2 cos2(

Vt

R
) + (R sin(

Vt

R
) − R1 + h)2 (107)

Where h = 0 for receiver r1. We can differentiate this function with
respect to time which gives an expression for line of sight velocity:

ṡ = −
(R1 − h)V cos(θ)

s1
(108)

Where ṡ is the line of sight velocity between receiver and satellite.
Using the following values and plugging them in:

variable value units

R 26500000 m

θ 0 degree

V 4x10^{3} m/s

h 3 m

R1 6378000 m

This gives the following results. In case of the DD combination the
geometric order of magnitude that remains and if we should correct
for this effect. The component itself is in the order of 10−4 [m/s]. This
means it is indeed not fruitful to correct for leftover geometric effects
in the DD combination for velocity observables.

variable value unit

s1 27256721.8132 m

s2 27256721.1112 m

ṡ1 -935.9893 m/s

ṡ2 -935.9889 m/s

ṡ1− ṡ2 -0.0004 m/s



D
D B - H Z T O R AT I O - H Z

Starting with standard deviation model used in de Bakker et al. [2009]
as:

σΦ = a10−(C/N0−45)/20 (109)

With C/N0 in units of [dB-Hz]. Now lets write factor 45 in units
of ratio-Hz as b. The original ratio-Hz quantities C/N0 and b are
converted to dB-Hz units through: 10 log10(C/N0) and 10 log10(b).
The equation becomes:

σΦ = a10−(10 log10(C/N0)−10 log10(b))/20 (110)

Figure 43: Representation of empirical and formal variance models for code
observables. Van Dierendonck et al. [1992].

Convert standard deviation to variance:

σ2Φ = (a10−(10 log10(C/N0)−10 log10(b))/20)2 (111)

Reformulating the term in brackets partially using power- and loga-
rithmic rules, (bn)m = bnm and aloga(b) = b:

(10−(10 log10(C/N0)−10 log10(b))/20)2 =
b

C/N0
(112)
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88 db-hz to ratio-hz

And getting rid of the brackets by squaring we get a final expression:

σ2Φ = a2b
1

C/N0
(113)

A representation of the formal variance ofΦ is given by Van Dieren-
donck et al. [1992] as:

σ2Φ =
λ2

4π2
BPLL
C/N0

(1+
1

TC/N0
) [m2] (114)

Where the ratio-Hz C/N0 quantity also appears at the denominator
side of the equation. Underlining the similarity between both. Also
shown in Fig. 43. Both models are put on display. With a = 0.5.
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e.1 short-baseline experiment

Figure 44

e.2 north sea drifting buoy experiment
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90 overview images of experiments

Figure 45: Delft GNSS Observatorium Overview Image, taken from http:

//gnss1.tudelft.nl/dpga/station/Delft.html from the site pic-
tures section, 03/01/2021

http://gnss1.tudelft.nl/dpga/station/Delft.html
http://gnss1.tudelft.nl/dpga/station/Delft.html
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Figure 46: Two of our buoys (orange flags) drifting freely near Schevenin-
gen harbor in the Netherlands. The larger buoy, de Kardinaal, is
chained to the ocean floor. The smaller buoys are equipped with
ublox-neo m8t single frequency GNSS receivers. The antenna is
from Taoglass of type Magma X AA.170.



92 overview images of experiments

Figure 47: Left: Basestation set up on the roof of Sailing Innovation Cen-
tre, Scheveningen harbor at longitude and latitude: (52.097922,
4.264947). Right: Both buoys opened up. The lit contains a metal
baseplate with the antenna mounted on top of it. The duct tape
is made sure not to interfere with the satellite signal. The box
further contains a small power supply, a Raspberry Pi 3 micro
processor and GNSS receiver ublox-neo m8t.
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Parameter Value Units

Ionosphere height 400 km

Sat elevation cutoff 10 deg

lom α 0.001 -

w-test α 0.001 -

w-test β 0.2 -

Measurement frequency 10 Hz

Constellations GPS, Galileo, GLONASS

Table 9: List of common processing options used throughout the experi-
ments.
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