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A B S T R A C T

Thanks to Industry 4.0 technologies, predictive algorithms can provide advance demand information on spare
parts demand. Understanding how the goodness of predictions affects on-hand inventory and costs is important
for decision makers before integrating these models into existing systems. We consider a spare parts inventory
problem for multiple technical systems that are supported by one local stockpoint. Each system has a single
critical component that is subject to random failures. Signals are generated to predict component failures.
The signal that corresponds to a failure is generated a certain amount of time before the failure, referred to
as the demand lead time. However, not every signal results in a failure and some failures are undetected. A
component is replaced from the stock when a failure occurs. In case of stock-outs, an emergency shipment takes
place. We formulate a discrete-time Markov decision process model to optimize the replenishment decisions
with the objective of minimizing the long-run average cost per period. We investigate the effect of precision
(i.e., the fraction of true signals among all signals) and sensitivity (i.e., the fraction of detected failures among
all failures) of the predictions and the demand lead time on the costs, order-up-to levels, average on-hand
inventory and emergency shipments under the optimal policy. In the worst case, the precision, sensitivity or
demand lead time is zero. We show analytically that the optimal policy and optimal costs only depend on the
sensitivity and the demand lead time through their product. In numerical experiments, we observe a Pareto
principle for the reduction of costs in precision (e.g., a 30% perfectness in precision brings a 70% reduction
in optimal cost compared to the worst case) and an inverse Pareto principle in the product of sensitivity and
demand lead time (e.g., 70% perfectness in the sensitivity or demand lead time only brings 30% reduction in
optimal cost compared to the worst case). Finally, we observe that the local spare parts stock only becomes
superfluous when the signals are really close to perfect.
1. Introduction

Spare parts management is important for the timely maintenance
and repair of technical systems. When a maintenance activity requires
a spare part and it is not available, a part can be delivered via an
emergency shipment. However, the technical system is then down for a
longer time, which is costly, and the emergency shipment itself is gen-
erally also expensive. However, keeping stock for spare parts results in
inventory holding costs, which involves opportunity costs, warehousing
costs and/or costs of spare parts becoming obsolete. Prediction of de-
mand for spare parts becomes crucial to balance the trade-off between
inventory holding costs and costs of emergency shipments. Industry 4.0
provides many opportunities in terms of information technologies to
the decision makers (Tortorella et al., 2021). It is possible to generate
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signals (by predictive algorithms) that say that certain components are
having problems and may fail soon. These signals constitute so-called
advance demand information (ADI) for the spare parts stock.

The ideal situation for maintenance of technical systems is that
all failures are predicted, no false predictions are generated, and the
predictions are made sufficiently far in advance. In that case, for all
upcoming failures, a spare part can be sent to the system from a central
location and the failing component can be replaced from the stock
immediately. There would be no expensive local stocks of spare parts
and no emergency shipments. However, ADI is not always perfect in
practice. We refer to ADI as perfect if the actual demand is equal to
the number of signals that indicate upcoming failures and the ADI is
available far enough in advance. In all other cases, the ADI is imperfect.
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The Internet of Things and Artificial Intelligence (AI) can bring us
closer to the ideal situation of having perfect ADI. But how close do
we need to be to that ideal situation in order to have sufficiently low
spare parts stocks and total costs? It is important to understand how
the closeness to the ideal situation affects the inventory levels and costs
before integrating ADI into decision-making.

We investigate the reduction in spare parts stock and total costs
for a setting with multiple technical systems that are supported by a
local stockpoint with spare parts. We consider a setting with a single
critical component in an infinite time horizon with periodic reviews.
A signal can be generated in advance of a failure, and we refer to the
time between the generation of the signal and the actual failure as the
demand lead time. Based on the total number of signals, a replenishment
akes place at the beginning of a period. When a component fails,
t must be replaced. Signals are imperfect. That means false positive
ignals (i.e., a signal not leading to a failure) and false negative signals
i.e., unpredicted failures) are possible. The fraction of signals that
esult in an actual failure is called precision, and the fraction of failures

for which a signal is generated is called sensitivity. In the worst case,
all generated signals are false(zero precision), none of the failures is
predicted by signals (zero sensitivity), or each failure happens at the
same moment as when the signal is generated (zero demand lead time).

We formulate a Markov decision process model with precision,
sensitivity, and demand lead time as input parameters. We derive an
optimal policy for the spare parts inventory that minimizes the long-
run average cost per period. Next, we compare the optimal costs for a
given precision, sensitivity, delay time against the optimal costs in the
worst case situation. Subsequently, we analyze how the optimal costs
and the optimal spare parts stock reduce as precision, sensitivity and
demand lead time go from the worst case to the ideal case.

We summarize the main contributions of this study as follows: (1)
For a given precision level, the optimal costs depend on the sensitivity
and the demand lead time only through the product of these two terms
(see Theorem 1). To the best of our knowledge, such a theoretical result
has not been found before in the existing literature. (2) The Pareto
principle holds for precision, e.g., under a perfect sensitivity and a per-
fect demand lead time, 30% perfectness in precision (i.e., precision is
equal to 30% of the perfect precision) brings 70% reduction in optimal
costs compared to the worst case optimal costs. (3) The opposite of the
Pareto principle holds for the product of sensitivity and demand lead
time, e.g., under perfect precision, 70% perfectness in the product of
sensitivity and demand lead time (i.e., the product is equal to 70%
of the product of perfect sensitivity and perfect demand lead time)
brings only 30% reduction in optimal costs compared to the worst case
optimal costs. (4) We analyze the combined effect of precision and
the product of sensitivity and demand lead time on optimal costs and
inventory levels. To obtain a significant cost reduction, you need to
have a high sensitivity and a high demand lead time while the precision
can be moderate. (5) Local spare parts stocks only become superfluous
when the signals are really close to perfect.

Adoption of new technologies comes with large investment costs
(Tortorella et al., 2021; Barraza-Barraza et al., 2014). Examining the
effect of Industry 4.0 implementations is crucial when adopting new
technologies into business operations (Tortorella et al., 2023). Our
findings provide managerial insights to decision-makers about the cost
reduction for integrating predictive algorithms for different levels of
precision, sensitivity and demand lead time. They also show that it is
more important to have a high sensitivity and demand lead time than
a high precision when designing predictive algorithms.

We organize the rest of the paper as follows. In Section 2, we pro-
vide the literature review on the related work. In Section 3, we present
the model description. In Section 4, we show our main theoretical
result (see Theorem 1), which implies a reduction of the main problem.
In Section 5, we formulate an MDP model for this reduced problem.
In Section 6, we analyze two special cases of the reduced problem.
This section is followed by computational experiments and a sensitivity
2

analysis in Section 7. Finally, in Section 8, we conclude the paper.
2. Literature review

There are two streams of literature on inventory control problems
related to our work with imperfect ADI. The first stream concerns
single-item, infinite-horizon inventory control problems with imper-
fect ADI. In this stream, the imperfect ADI usually is in the form of
imperfect information provided directly by customers on their orders
or estimations/signals generated for the future demands. The second
stream focuses on spare parts inventory control problems with ADI that
is obtained from condition-based monitoring of the machines installed
in the field.

Different inventory control problems are studied under the first
literature stream. There are also different types of information provided
on future orders/sales. In this stream, van Donselaar et al. (2001) study
the effect of imperfect ADI for inventory systems in a project-based
supply chain. Thonemann (2002) investigates the effect of sharing
imperfect ADI within a multi-echelon supply chain on average costs,
mean basestock levels and variations of the production quantities.
Results are shown for the value of ADI as a function of the order
probability and information quality. Tan et al. (2007) consider an
inventory control problem under imperfect ADI. They show that the
optimal policy is of the order-up-to type and the order level is a function
of the number of imperfect ADI signals. Benjaafar et al. (2011) consider
a production–inventory system under imperfect ADI. In this problem,
customers provide updates on their orders but the times between the
consecutive updates are random. Song and Zipkin (2012) analyze a
capacity/inventory planning problem under imperfect ADI for a single
product with seasonal demand. Bernstein and DeCroix (2015) consider
a multi-product system where the decision maker receives imperfect
signals for the demand volume (i.e., signals for the total aggregate
demand) or mixed demand (i.e., signals revealing information about
the market shares for each product).

Some papers in this stream assume multiple customer classes.
Liberopoulos and Koukoumialos (2008) investigate how the uncertainty
in ADI affects the performance of a make-to-stock supplier. They
investigate the uncertainty in ADI by assuming two customer classes,
where one class does not provide any ADI and one class provides
reservations on a requested due date. Tan (2008) considers a demand
forecasting problem in a make-to-stock system. Tan et al. (2009)
consider an inventory problem with two customer classes having dif-
ferent priorities. Available stock is reserved for the future demand of
preferred customers at the expense of losing the current orders of other
customers. Gayon et al. (2009) study an inventory–production system
with multiple customer classes where customers provide imperfect ADI
on the due date of their orders.

Among the papers in the first literature stream, only Topan et al.
(2018) and Zhu et al. (2020) specifically focus on spare parts inventory,
like we do in our paper. Topan et al. (2018) focus on a spare parts
management problem with imperfect ADI and the option of returning
inventory. Zhu et al. (2020) assume a single-item, periodic-review
setting for a spare parts management problem under imperfect ADI. The
source of ADI is the spare part demand forecast based on the planned
maintenance tasks. In our study, we consider the failure signals as the
source of imperfect ADI.

Among all studies in the first literature stream, only Song and Zipkin
(2012), Gayon et al. (2009), Benjaafar et al. (2011), Topan et al. (2018),
and Zhu et al. (2020) assume that demands are lost or satisfied via
emergency shipments in stockout situations similar to our paper, while
others assume unmet demand is backlogged. Among the studies in this
smaller group, our paper comes closest to Topan et al. (2018), be-
cause they also consider a single-item, single-location, periodic-review,
infinite-horizon inventory control problem with an imperfect signal
generation mechanism for future demands similar to our problem. To
be specific, Topan et al. (2018) assume signals are generated for a
fraction of all demands, signals can be false, and the actual demand

occurs a stochastic time after the signal was generated. They derive the
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structure of the optimal ordering and return policy, and they show the
value of the imperfect ADI in a computational experiment. In our paper,
we assume a simpler model, but explicitly characterize how the optimal
costs behave as a function of the precision, sensitivity and the demand
lead time of the imperfect demand signals. This leads to new, crisp
insights. In particular, none of the studies in the first literature stream
has found the theoretical result that the optimal costs only depend on
the sensitivity and the lead time demand through their product.

The second stream of literature is about condition monitoring in
spare parts management. The condition of a component can be used to
predict when the component fails. In that way, also advance demand
information is obtained.

Within this second stream, Deshpande et al. (2006) use the part-age
information to model the degradation of aircraft spare parts at the U.S.
Coast Guard. Elwany and Gebraeel (2008) develop a sensor-driven de-
cision model for making joint component replacement and spare parts
inventory decisions. Similarly, Li and Ryan (2011) exploit the real-time
condition monitoring information for the inventory control of spare
parts. They assume a Wiener process as the degradation model. Lin
et al. (2017) consider a single critical component of multiple installed
machines in the field. The installed components follow a Markov degra-
dation process and that information is used for optimizing the spare
parts inventory. Eruguz et al. (2018) study an integrated maintenance
and spare part optimization problem for moving assets where the
degradation level of a single critical component is observable. They
model the degradation of the component by a continuous-time Markov
chain. Basten and Ryan (2019) consider two classes of spare parts
demand (i.e., one for planned maintenance and the other for corrective
maintenance) and investigate the benefit of delaying planned mainte-
nance when there is perfect ADI for the number of spare parts needed
for planned maintenance. These studies all assume that the condition
of the components can be observed perfectly in a regular manner over
time, while we consider signals that randomly arrive over time and are
imperfectly generated about the condition of the components. Hence,
different from our paper, the papers above implicitly assume that both
precision and sensitivity are perfect but only the moments that the
failures occur are uncertain.

Within the second literature stream, there are also studies where
the information collected on the component condition can be im-
perfect. Karabağ et al. (2020) study an integrated maintenance and
spare parts selection decision for a multi-component system, where
a single sensor gives imperfect information about the condition of
the system. Yan et al. (2022) introduce a remaining-useful life pre-
diction method, and use it for making joint replacement and spare
parts ordering decisions with a fixed lead time. Different from our
paper, at most one spare part can be stored. More recently, Shi et al.
(2023) consider imperfect IoT-enabled condition predictions to jointly
optimize condition-based maintenance and spare parts inventory de-
cisions. Rippe and Kiesmüller (2023) consider failure codes provided
by customers as the source of imperfect ADI in a repair kit problem
setting with multiple components. The problem in our paper is simpler
because it does not include maintenance decisions and it only includes
a single spare part. As a result, also in comparison to the literature in
the second stream, we have more crisp results on how the optimal costs
behave as a function of the precision, sensitivity and demand lead time
of the imperfect demand signals.

3. Model description

In this section, we provide the detailed description of the model
to address the problem introduced in Section 1. We consider a setting
where a significant number of technical systems is supported by a
local warehouse that keeps spare parts on stock. These spare parts
are needed to execute maintenance actions. The technical systems are
3

operated during a time horizon that is assumed to be infinite. The
local warehouse is part of a service network consisting of a central
warehouse and multiple local warehouses.

We focus on a single critical component that is part of all techni-
cal systems. All components are identical and have the same failure
behavior. We assume that this component has a generally distributed
lifetime. A certain amount of time before a failure (i.e., the end of
component lifetime), a signal is generated by a predictive model. After
this signal generation, the component still functions, but it is known
that the component may fail soon. The time from the signal generation
until the end of lifetime is referred to as demand lead time and denoted
by 𝐷. The demand lead time is relatively short compared to the lifetime
of the component (Fig. 1). For ease of exposition, we assume that the
demand lead time is deterministic. However, all results in this paper
can be generalized to a setting with a stochastic demand lead time; see
Remark 1.

We assume that the technical systems operate continuously. There-
fore, interrupting their operation for a preventive replacement is
equally expensive as a corrective replacement. Hence, we assume that
replacements are only executed when a component fails. The technical
systems are at close distance from the local warehouse and we assume
that a spare part is provided to a technical system within such a short
time that it does not cause extra downtime of the technical system.

Spare parts of the critical component are kept on stock at the local
warehouse. The local warehouse is replenished periodically (e.g., every
week). Hence, we divide the time horizon in periods of length one,
and the periods are numbered as 0, 1,…. The beginning of a period 𝑡
is called time 𝑡. The local service point is replenished by the central
warehouse, which is assumed to have ample stock. The corresponding
replenishment lead time is short and is assumed to be 0. Hence, ready-
or-use parts are ordered at the beginning of each period 𝑡, and they
rrive immediately.

The generated signals for upcoming failures are subject to false
ositives and false negatives. The predictive model that generates the
ignals is based on sensor data and data that is collected via the control
ystem software, and possibly other sources. Such a predictive model
an be tuned to be more sensitive to certain data patterns, making
t more likely to trigger signals with more false positives (i.e., low
recision). On the other hand, making the sensor less sensitive to such
atterns leads to more false negatives (i.e., low sensitivity). Precision
nd sensitivity are two related but different metrics. To be specific,
uppose that the prediction model is run for a long time, and let TP
enote the number of correctly signaled failures, FP the number of
ncorrect failure signals (i.e., a signal is generated, but no failure is
bserved at the end of the demand lead time), and FN the number
f cases where no signal is generated for a failure. The precision is
iven by TP/(TP+FP), while sensitivity is given by TP/(TP+FN). In
ords, precision captures the correctness of the generated signals,
hile sensitivity captures the ability to detect upcoming failures. Let
∈ [0, 1] denote the precision, and let 𝑞 ∈ [0, 1] denote the sensitivity.

If 𝑝 = 1 and 𝑞 = 1, we have perfect signals. If 𝑝 = 0 or 𝑞 = 0, the
signals are useless. A binary classifier with false negatives and false
positives is a common signal-generation mechanism in the maintenance
literature; see e.g., Berrade et al. (2013), MacPherson and Glazebrook
(2014), Zhang et al. (2021), and Akcay (2022).

If the demand lead time 𝐷 is at least one period, there is at
least one replenishment moment during the demand lead time and at
the last replenishment moment a part can be ordered via a regular
replenishment (and that part can be used for a corrective replacement
as soon as the failure occurs). This implies that having a value of 𝐷
that is larger than 1 is equally good as having 𝐷 equal to 1. Therefore,
without loss of generality, we limit ourselves to values of 𝐷 ∈ [0, 1].
If 𝐷 = 1, there is always precisely one replenishment moment during
the demand lead time of a failing component and that moment is used
to order a spare part in order to replace the component as soon as the

failure occurs. If 𝐷 = 0, the signal and the corresponding failure of a



International Journal of Production Economics 267 (2024) 109060İ. Dursun et al.
Fig. 1. Generation of predictions.
Fig. 2. Order of events in period 𝑡.

component occur at the same time, and hence the generated signals are
useless.

In each period 𝑡, we have the following order of events. First, at
the beginning of the period, based on the active number of signals
(collected during the time interval (𝑡−𝐷, 𝑡)) and the on-hand spare parts
stock, a replenishment order for ready-for-use spare parts is placed and
delivered. Next, during the whole period, replacements of failed parts
are executed. Replacements are also executed for failures of systems for
which no signals were generated. The replacements can be executed
without any delay as long as spare parts are on stock. When the on-
hand stock is 0 and a failure occurs, a spare part is delivered from the
central warehouse via an emergency shipment, and the failed part is
replaced immediately when the emergency shipment has arrived. This
leads to a short delay for the execution of the replacement and hence
to a downtime cost for the involved system. In addition, we have an
extra cost for the emergency shipment. We refer to this procedure as
the emergency procedure and we denote the corresponding costs by 𝑐em.
Because this cost factor 𝑐em includes the cost of a downtime, it has
a large value in many applications in practice. For every failure, a
spare part is sent to the local warehouse via a regular replenishment
or via an emergency shipment. Hence, the unit costs for the delivered
parts are constant under any reasonable policy and therefore these
costs are excluded in our model (they are also excluded in the cost
factor 𝑐em). For parts that are on stock at the end of a period, we have
inventory holding costs 𝑐h per part. The order of events in each period
𝑡 is summarized in Fig. 2.

The moments at which failures of technical systems occur are
independent of each other and the spare parts provisioning. Hence,
the process of the failures per technical system is a renewal process
with renewal intervals that follows the general lifetime distribution.
The overall failure process, i.e., the process that describes the failures
for all technical systems together, is the merger of all these renewal
processes. We assume that the number of technical systems is such
that the overall failure process behaves as a Poisson process with a
constant rate (this will hold when the number of technical systems is
sufficiently large; how large that number has to be depends on the
lifetime distribution, e.g., it holds for any number when we have an
exponential lifetime distribution). Notice that this assumption is often
made for spare parts inventory models. Further, we would like to note
that the age per component can be included in the data used by the
prediction model.

Let 𝜆 (> 0) be the constant rate of the overall failure process. Correct
signals will be generated for a fraction 𝑞 of these failures. That means
that correct signals (true positives) occur according to a Poisson process
4

Fig. 3. Fraction of failures for which usable signals are generated.

with rate 𝑞𝜆. Let �̂� be the rate of the Poisson process with which signals
arrive; i.e., �̂� is the rate with which true positives and false positives
arrive. The rate with which true positives arrive is 𝑝�̂�. Since we already
know the true positives arrive at rate 𝑞𝜆, it follows that �̂� = 𝑞𝜆

𝑝 (we take
this rate equal to ∞ when 𝑝 = 0).

At the beginning of each period, we have to decide how much
parts must be replenished. The objective is to minimize the long-run
average costs per period, which consist of inventory holding costs
and emergency procedure costs. The minimal costs are denoted by
�̃�(𝑝, 𝑞,𝐷). We include the precision 𝑝, sensitivity 𝑞, and demand lead
time 𝐷 as parameters, because later we are interested in how these
minimal costs behave as a function of 𝑝, 𝑞, and 𝐷.

4. Reduction of the main problem

In this section, we reduce the main problem with a cost function
having three parameters (i.e. 𝑝, 𝑞 and 𝐷) into a problem with a cost
function that has two parameters (i.e. 𝑝 and 𝑟, where 𝑟 = 𝑞𝐷). During a
period 𝑡, a signal that occurs in the first 1 −𝐷 time units will result in
a failure before the end of the period (in case of a true positive) or it
vanishes before the end of the period (in case of a false positive). For the
signals that occur in the last 𝐷 time units, the failure occurs in period
𝑡+1. For a fraction 𝑞 of all upcoming failures a signal is generated, and
the required spare parts can be ordered at the beginning of period 𝑡+1.
Overall, for all failures occurring in period 𝑡 + 1, 𝑞𝐷 is the fraction for
which signals are generated in period 𝑡 and 1 − 𝑞𝐷 is the fraction for
which no signals are generated (see Fig. 3).

The above reasoning shows that the number of predicted failures in
a given period 𝑡+1 is Poisson distributed with rate 𝑞𝐷𝜆, and the number
of unpredicted failures in that period 𝑡 + 1 is Poisson distributed with
rate (1 − 𝑞𝐷)𝜆. This latter amount is denoted by 𝑋u. For the predicted
failures, the corresponding number of signals in the preceding period
𝑡 is Poisson distributed with rate 𝑞𝐷𝜆∕𝑝. These signals are all active at
the beginning of period 𝑡+1. We denote this Poisson distributed amount
by 𝑋s.

Let us now consider the dynamics in period 𝑡 + 1 and how the
demand behaves in that period. At the beginning of that period, we
have a number of active signals that is a realization of 𝑋s. Let us denote
this amount by 𝑎. For a given 𝑎, the number of predicted failures in
period 𝑡+1 is Binomially distributed with 𝑎 trials and success probability
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𝑝. This Binomially distributed amount is denoted by 𝑋p(𝑎). The number
of unpredicted failures in period 𝑡 + 1 is given by 𝑋u. Hence, the total
demand in period 𝑡 + 1 equals 𝑋p(𝑎) + 𝑋u. The parameters of the
distributions of 𝑋p(𝑎) and 𝑋u only depend on 𝑞 and 𝐷 via their product
𝐷. Because 𝑞 and 𝐷 play no role in other aspects of our inventory
odel, this leads to the following theorem.

heorem 1. For a given 𝑝 ∈ [0, 1], the optimal policy and optimal costs
̃(𝑝, 𝑞,𝐷) only depend on the sensitivity 𝑞 and demand lead time 𝐷 through
their product.

This theorem implies that a sensitivity 𝑞 = 𝛼 ∈ [0, 1] and demand
lead time 𝐷 = 𝛽 ∈ [0, 1] lead to the same optimal policy and optimal
osts as a sensitivity 𝑞 = 𝛽 and demand lead time 𝐷 = 𝛼 for a given
∈ [0, 1]. That is, it is equally important to have a high value for the

ensitivity 𝑞 as having a high value for the demand lead time 𝐷. Based
n Theorem 1, the optimal costs function �̃�(𝑝, 𝑞,𝐷) is simplified to the
unction 𝐶(𝑝, 𝑟) with 𝑟 = 𝑞𝐷 (notice that 𝑟 represents the fraction of
ailures for which usable signals are generated).

emark 1. As stated in Section 3, we have assumed a deterministic
emand lead time 𝐷, but all results in this paper can be generalized to
setting with a stochastic lead time. That is what we explain in this

emark.
Consider a stochastic delay time 𝐷st ∈ [0, 1] with mean 𝐸{𝐷st} = 𝐷.

onsider an arbitrary failure in period 𝑡 + 1. Given that failures arrive
ccording to a Poisson process, this failure occurs at time 𝑡 + 1 + 𝑈 ,
here 𝑈 is uniformly distributed on [0, 1]. A corresponding signal is
enerated at time 𝑡+ 1 +𝑈 −𝐷st with probability 𝑞. This signal arrives
n period 𝑡 and can be incorporated for the replenishment decision at
ime 𝑡 + 1 if and only if 𝑡 + 1 + 𝑈 −𝐷st ≤ 𝑡 + 1. The latter inequality is
atisfied with probability

{𝐷st ≥ 𝑈} = ∫

1

0
(1 − 𝐹𝐷st (𝑢))𝑑𝑢 = 𝐸{𝐷st} = 𝐷.

where 𝐹𝐷st is the distribution function of 𝐷st . Hence, for each failure in
period 𝑡 + 1, we have a usable signal at time 𝑡 + 1 with probability 𝑞𝐷,
and no usable signal is generated with probability 1 − 𝑞𝐷. This implies
that we get exactly the same dynamics as under a deterministic demand
lead time 𝐷. And thus the reduction as described in this section and all
results in the rest of the paper also hold under the stochastic demand
lead time 𝐷st .

5. MDP formulation

In this section, we provide the MDP formulation for the reduced
problem presented in Section 4. We need this MDP formulation because
decisions in subsequent periods depend on each other. This can be seen
as follows. At the beginning of a period, the stock will be increased to a
certain amount, and with that amount the demands 𝑋u and 𝑋p(𝑎) have
to be covered. The larger the number of signals, the larger the level
to which the inventory position will be increased, but if this level is
chosen relatively high and the number of realized demands from the
active signals is low, then a relatively large stock is left at the end of
the period, and that may lead to a larger stock than desired in the next
period. That means that a simple myopic policy that minimizes the costs
in the current period will not be optimal.

For the MDP, the state at the beginning of a period is described by
(𝑦, 𝑎), where 𝑦 is the on-hand stock and 𝑎 is the number of active signals.
The state space is given by  = {(𝑦, 𝑎)|𝑦, 𝑎 ∈ N0}. At the beginning of
a period, based on the state (𝑦, 𝑎), the on-hand stock is increased by a
replenishment order. We describe the action by the level 𝑧 ≥ 𝑦 to which
the inventory position is increased. The replenishment order arrives
immediately, and thus the on-hand stock becomes also immediately
equal to 𝑧. Given action 𝑧, the direct expected costs are

𝑑(𝑧, 𝑎) =
𝑧
∑

(𝑧−𝑥)𝑃 {𝑋u+𝑋p(𝑎) = 𝑥}𝑐h+
∞
∑

(𝑥−𝑧)𝑃 {𝑋u+𝑋p(𝑎) = 𝑥}𝑐em.
5

𝑥=0 𝑥=𝑧+1
If the total demand is 𝑥, then the on-hand stock at the beginning of the
next period is (𝑧− 𝑥)+. The number of active signals �̂� at the beginning
of the next period is a realization of 𝑋s. This results in the following
formulas for the 𝑛-period costs 𝑉𝑛(𝑦, 𝑎):

𝑉𝑛+1(𝑦, 𝑎) = min
𝑧≥𝑦

𝑉𝑛+1(𝑧, 𝑎), (𝑦, 𝑎) ∈  , (1)

where

𝑉𝑛+1(𝑧, 𝑎) = 𝑑(𝑧, 𝑎) +
∞
∑

�̂�=0
𝑃 {𝑋s = �̂�}

(

𝑃 {𝑋u +𝑋p(𝑎) ≥ 𝑧}𝑉𝑛(0, �̂�)

+
𝑧−1
∑

𝑥=0
𝑃 {𝑋u +𝑋p(𝑎) = 𝑥}𝑉𝑛(𝑧 − 𝑥, �̂�)

)

nd 𝑉0(𝑦, 𝑎) = 0 for all (𝑦, 𝑎) ∈ . Appendix B presents how the
ontributions of the inventory holding costs and emergency procedure
osts to 𝑉𝑛(𝑦, 𝑎) are calculated by using the MDP formulation. The
ptimal costs 𝐶(𝑝, 𝑟) are obtained by 𝐶(𝑝, 𝑟) = lim𝑛→∞

𝑉𝑛(0,0)
𝑛 . In order

to see the effect of 𝑝 and 𝑟 on the optimal costs, we compare 𝐶(𝑝, 𝑟)
with respect to the worst case situation where 𝑝 = 0 and 𝑟 = 0. For this
purpose, we define �̂�(𝑝, 𝑟) = 𝐶(𝑝,𝑟)

𝐶(0,0) . Then, �̂�(0, 0) = 1 and �̂�(𝑝, 𝑟) denotes
ow close we are to the worst case situation at each point (𝑝, 𝑟). For
xample, �̂�(𝑝, 𝑟) = 0.8 means that we have 80% of the costs associated
ith the worst case situation.

. Special cases

In this section, we study two special cases of our model and provide
nalytical and numerical results. For this purpose, we first define a
ase instance with parameters 𝜆 = 0.2 (failures/demands per week),
h = 1 (Euro per part per week), and 𝑐em = 104 (Euro per application
f the emergency procedure). The value for 𝜆 is a common value for
he demand rate at a local stockpoint for one component. The value
or 𝑐h can be chosen w.l.o.g.; a value of 1 Euro per part per week
hence, 50 Euro per part per year) corresponds to a part with a price
f 250–500 Euro. The value of 𝑐em includes the costs for executing an

emergency shipment and the costs for extra downtime of the involved
system while it is waiting for the delivery of the part. Normally an
emergency shipment takes multiple hours and then the downtime costs
can be significant. Hence, 10,000 Euro as costs for the application of
an emergency procedure is a quite common number in practice.

6.1. Special case 1: Perfect precision (𝑝 = 1)

Consider the special case with precision 𝑝 = 1. Then every active
ignal at the beginning of a period results in an actual failure and it
s optimal to take one part on stock per active signal. The number of
npredicted demands 𝑋u is Poisson distributed with rate (1 − 𝑟)𝜆. The

optimal amount of stock for the unpredicted failures is like the optimal
base stock level in a basic model with only unpredicted failures. This
basic model is described in Appendix A. In this case, we have a basic
model instance with a Poisson demand process with rate (1 − 𝑟)𝜆, and
with cost parameters 𝑐h and 𝑐em for inventory holding and the emer-
gency procedure. The optimal base stock level is denoted by 𝑆∗((1−𝑟)𝜆),
and this denotes the optimal stock for the unpredicted failures. For the
predicted and unpredicted failures together, it is optimal to increase
the on-hand stock to 𝑧∗(𝑦, 𝑎) = 𝑎+𝑆∗((1−𝑟)𝜆), when being in state (𝑦, 𝑎)
at the beginning of a period. If this rule is followed in every period,
then the on-hand stock 𝑦 at the beginning of a period will never exceed
𝑆∗((1− 𝑟)𝜆) and hence is never larger than 𝑎+𝑆∗((1− 𝑟)𝜆). This leads to
part (a) of the following lemma. Parts (b) and (c) of this lemma follow
directly from Lemma A1.

Lemma 1. For precision 𝑝 = 1, it holds that:

(1) It is optimal to increase the on-hand stock to 𝑧∗(𝑦, 𝑎) = 𝑎+𝑆∗((1−𝑟)𝜆)
at the beginning of each period when being in state (𝑦, 𝑎). The base

∗
stock level 𝑆 ((1 − 𝑟)𝜆) is non-increasing as a function of 𝑟;
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Fig. 4. Change in costs and inventory levels for the base instance with 𝑝 = 1.
(2) The base stock level 𝑆∗((1 − 𝑟)𝜆) equals 0 if and only if (1 − 𝑟)𝜆 ≤
𝑙𝑛(1 + (𝑐h∕𝑐em));

(3) If (1 − 𝑟)𝜆 ≤ 𝑙𝑛(1 + (𝑐h∕𝑐em)), then the optimal costs are equal to
(1 − 𝑟)𝜆𝑐em.

In the best case, 𝑟 = 1. Then all failures are predicted and for each
failure a part can be ordered at the first order moment after a signal
occurs. In that case, the optimal costs are equal to zero and no parts
have to be kept on stock for unpredicted failures. These observations
lead to the following corollary.

Corollary 1. For precision 𝑝 = 1, it holds that: If in addition 𝑟 = 1, then
the optimal costs are equal to 0 and 𝑆∗((1 − 𝑟)𝜆) = 0.

Next, we investigate the behavior of the optimal costs and the aver-
age on-hand inventory (at the end of a period) for the base instance. In
Fig. 4(a-b), we show how �̂�(1, 𝑟) and 𝐶(1, 𝑟) change as a function of 𝑟.
We see that costs are non-increasing and piecewise convex functions as
a function of 𝑟. We also see an inverse Pareto principle: 70% perfectness
for 𝑟 leads to only a 35% reduction in optimal costs. In Fig. 4(c), we
illustrate the share of emergency procedure costs and inventory holding
costs in 𝐶(1, 𝑟) as a function of 𝑟. We see that the emergency procedure
costs decrease as 𝑟 increases until a certain point. This can be explained
by the average on-hand inventory which is depicted in Fig. 4(d). For
low values of 𝑟, the emergency procedure costs are relatively high. As
𝑟 increases, the emergency procedure costs decrease until the point
where the base stock level 𝑆∗((1 − 𝑟)𝜆) is decreased from 3 to 2. At
that point, the average on-hand inventory decreases with a large jump,
and the emergency procedure costs increase. After that point, a similar
behavior is obtained until a second jump point, and that behavior is also
obtained in the interval between that second jump point and 𝑟 = 1.
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In Fig. 5, we provide the optimal order-up-to levels 𝑧∗(𝑦, 𝑎) for the
base instance with two different values of 𝑟. The optimal order-up-to
level 𝑧∗(𝑦, 𝑎) is increasing as a function of 𝑎 for a given 𝑦, and the other
way around. We also see that, in all states, 𝑧∗(𝑦, 𝑎) is smaller for 𝑟 = 0.6
than for 𝑟 = 0.5 (which is in line with Lemma 1(a)).

6.2. Special case 2: Perfect sensitivity and perfect timing of predictions
(𝑟 = 1)

In this special case, we assume both a perfect sensitivity and a
perfect demand lead time (i.e. 𝑟 = 1). We again investigate the
behavior of the optimal costs and the average on-hand inventory for
the base instance. In Fig. 6(a-b), we observe that �̂�(𝑝, 1) and 𝐶(𝑝, 1) are
non-increasing in 𝑝.

We further note that the decreasing behavior of the cost functions is
different than what we observed in Fig. 4(a-b). Specifically, the optimal
costs decrease fastly for low values of 𝑝, while they decrease slowly
for large values of 𝑝. Further, we now observe a Pareto principle: 30%
perfectness for the precision 𝑝 brings 70% reduction for the optimal
costs.

We illustrate the share of emergency procedure costs and inventory
holding costs in 𝐶(𝑝, 1) as a function of 𝑝 in Fig. 6(c) and the average
on-hand inventory in Fig. 6(d). For very low values of 𝑝, the emergency
procedure costs are relatively high. After that, they quickly decrease to
zero. The inventory holding costs and the average on-hand inventory
are first non-decreasing for very low values of 𝑝 and they decrease on
the rest of the interval [0,1].

In Fig. 7, we provide the optimal order-up-to levels 𝑧∗(𝑦, 𝑎) with
respect to on-hand inventory levels 𝑦 and the number of active signals
𝑎. We see that even though we have a relatively low level of 𝑝 (i.e. 𝑝 =
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Fig. 5. Optimal actions 𝑧∗(𝑦, 𝑎) for the base instance.

Fig. 6. Change in costs and inventory levels for the base instance with 𝑟 = 1.
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Table 1
�̂�(𝑝, 𝑟)(%) for the base instance.
𝑟\𝑝 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.1 100.0 97.7 96.1 95.6 95.3 95.1 95.0 94.9 94.8 94.8 94.7
0.2 100.0 96.2 94.3 93.1 92.4 91.9 91.7 91.4 91.3 91.2 91.1
0.3 100.0 94.3 93.5 91.9 90.8 90.2 89.7 89.3 89.1 88.8 88.7
0.4 100.0 93.3 91.1 90.8 90.2 89.3 88.7 88.2 87.8 87.5 87.3
0.5 100.0 92.2 89.4 88.6 88.3 88.2 88.1 87.8 87.4 87.0 86.7
0.6 100.0 89.0 85.4 83.3 82.2 81.7 81.4 81.2 81.1 81.0 80.9
0.7 100.0 85.2 78.1 74.2 71.9 70.5 69.6 68.9 68.4 68.1 67.8
0.8 100.0 82.1 74.1 70.0 67.4 65.4 64.0 63.0 62.3 61.7 61.3
0.9 100.0 75.8 67.0 64.3 63.6 63.4 62.3 61.3 60.5 59.8 59.2
1 100.0 56.3 34.9 26.9 21.6 17.4 13.6 10.0 6.6 3.2 0.0
Fig. 7. Optimal actions 𝑧∗(𝑦, 𝑎) for the base instance with 𝑝 = 0.5 and 𝑟 = 1.

0.5), it holds that 𝑧∗(𝑦, 𝑎) = min{𝑎, 𝑦} at all points in this figure. That
means that for all active signals at the beginning of a period a spare
part is taken on stock, which explains that we have zero emergency
procedure costs in this case (see Fig. 6(c)).

7. Computational experiments

In this section, we provide the results of our computational exper-
iments for varying values of 𝑝 and 𝑟. We also perform a sensitivity
analysis on the parameters of the base instance.

7.1. Computational experiments for the base instance for a general 𝑝 and 𝑟

The goal of this section is to generate further insights on the effect
of 𝑝 and 𝑟 on �̂�(𝑝, 𝑟), the average on-hand inventory, and the average
number of emergency procedure applications (per week) for the base
instance. In Table 1, we observe how �̂�(𝑝, 𝑟) changes with respect to 𝑝
and 𝑟 for the base instance. For a constant 𝑟 > 0, �̂�(𝑝, 𝑟) decreases in 𝑝.
We observe the Pareto principle in each row of Table 1. For example,
for 𝑟 = 1, �̂�(𝑝, 𝑟) decreases 65% when 𝑝 is only 20% of the perfect
level. This effect can be seen more clearly in Fig. 8(a). We also see that
the larger 𝑟, the stronger �̂�(𝑝, 𝑟) decreases as a function of 𝑝. On the
other hand, for a constant 𝑝 > 0, we see the inverse Pareto principle.
For example, for 𝑝 = 1, in order to achieve an about 40% decrease
in �̂�(𝑝, 𝑟) (i.e., �̂�(𝑝, 𝑟) equal to 59.2%), the value of 𝑟 should be 90%
of the perfect level. This behavior can also be observed in Fig. 8(b).
Table 1 and Fig. 8 also show that a large value for 𝑟 is needed to obtain
a significant reduction in optimal costs, while for 𝑝 a moderate value
suffices.

In Table 2, we show how the average on-hand inventory behaves as
a function of 𝑝 and 𝑟. In the worst case scenario, the average on-hand
inventory is 2.80 units. It is a non-monotonic function of 𝑝 for a fixed 𝑟
8

and a non-monotonic function of 𝑟 for a fixed 𝑝. In general, the average
on-hand inventory is non-increasing as a function of 𝑝 and 𝑟. Notice that
very low values for the average on-hand inventory (≤ 0.5, say) are only
obtained for 𝑟 = 1 and 𝑝 ≥ 0.6.

In Table 3, we show how the average number of emergency pro-
cedure applications behaves as a function of 𝑝 and 𝑟. In the worst
case, the average number of emergency procedure applications is 0.59×
10−4. Due to the relatively high cost of an emergency procedure, the
average number of emergency procedure applications is in general low
under the optimal policy. Similar to the average on-hand inventory,
the average number of emergency procedure applications is a non-
monotonic function of 𝑝 and 𝑟. We see that the average number of
emergency procedure applications can be less than or equal to 0.1×10−4

for 𝑝 ≥ 0.1 with 𝑟 = 1 and for 𝑝 ≥ 0.6 with 𝑟 ≥ 0.8. Again, in
Table 3, we see that focusing on having large values of 𝑟 is more crucial
than focusing on having large values of 𝑝 for a low average number of
emergency procedure applications.

Finally, in Fig. 9, we show the values of the optimal order-up-to
level 𝑧∗(𝑦, 𝑎) as a function of the state variables 𝑎 and 𝑦 for 𝑝 = 0.8 and
𝑟 = 0.8. The value of 𝑧∗(𝑦, 𝑎) is at least 2 in all states (𝑦, 𝑎). In fact, we
observe that 𝑧∗(𝑦, 𝑎) = min{2 + 𝑎, 𝑦} at all points in this figure. That
means that in all states one spare part is taken on stock for each active
signal and that a stock of (at least) 2 is kept for the unpredicted failures.

7.2. Sensitivity analysis

In this section, we perform a sensitivity analysis for the parameters
𝜆 and 𝑐em by considering 𝜆 ∈ {0.1, 0.2, 0.5} (in demands per week) and
𝑐em ∈ {102, 104, 106} (in Euro per emergency procedure application).
Because 𝑐em consists of a downtime cost and the cost of an emergency
shipment, 𝑐em = 102 is a low value. Some of the insights that we obtain
below become different when you have lower values for 𝑐em, which
may occur for another application than spare parts for technical systems
with high system availability requirements; see Remark 2.

In Table 4, we show how �̂�(𝑝, 𝑟) changes for varying values of 𝜆 and
𝑐em as a function of 𝑟 and 𝑝. Similar to our earlier observations for the
base instance, for all considered values of 𝜆 and 𝑐em, we see that the
Pareto principle holds for an optimal costs reduction in terms of 𝑝 and
an inverse Pareto principle holds in terms of 𝑟. Observations regarding
the Pareto and inverse Pareto principles are insensitive to the failure
rate and the cost of an emergency procedure.

In Table 5, we do a sensitivity analysis for 𝐶(𝑝, 𝑟) for varying values
of 𝜆 and 𝑐em. We see that 𝐶(𝑝, 𝑟) is non-decreasing both in the failure
rate and in the emergency procedure costs for any (𝑝, 𝑟) pair. Similarly,
for any (𝑝, 𝑟) pair, the average on-hand inventory is non-decreasing both
in 𝜆 and in 𝑐em (see Table 6). The average on-hand inventory levels are
very low (≤ 0.5, say) for only a few cases: 𝑟 = 1 and 𝑝 is moderate
to large. The average number of emergency procedure applications
in the worst-case scenario is non-monotonic in 𝜆 and 𝑐em. However,
we cannot directly observe a monotonic behavior for the average on-
hand inventory (see Table 6) and the average number of emergency
procedure applications (see Table 7) for varying values of 𝜆 and 𝑐 .
em
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Fig. 8. Combined effect of 𝑝 and 𝑟 on �̂�(𝑝, 𝑟).
Table 2
Average on-hand inventory for the base instance.
𝑟\𝑝 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80
0.1 2.80 2.98 2.89 2.86 2.85 2.84 2.83 2.83 2.83 2.82 2.82
0.2 2.80 2.86 2.98 2.92 2.90 2.88 2.87 2.86 2.85 2.84 2.84
0.3 2.80 2.92 2.84 2.98 2.94 2.92 2.90 2.89 2.88 2.87 2.86
0.4 2.80 2.99 2.86 2.83 2.98 2.95 2.93 2.91 2.90 2.89 2.88
0.5 2.80 2.88 2.89 2.85 2.83 2.82 2.82 2.93 2.92 2.91 2.90
0.6 2.80 2.61 2.38 2.20 2.11 2.05 2.01 1.98 1.96 1.95 1.93
0.7 2.80 2.72 2.35 2.26 2.16 2.09 2.04 2.01 1.99 1.97 1.95
0.8 2.80 2.36 2.40 2.24 2.20 2.13 2.08 2.04 2.01 1.99 1.97
0.9 2.80 2.45 2.10 1.96 1.90 1.87 2.07 2.04 2.04 2.01 2.00
1 2.80 1.81 1.18 0.91 0.73 0.59 0.46 0.34 0.22 0.11 0.00
Table 3
Average number of emergency shipments (×10−4) for the base instance.
𝑟\𝑝 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59
0.1 0.59 0.33 0.37 0.38 0.38 0.39 0.39 0.39 0.39 0.39 0.39
0.2 0.59 0.40 0.22 0.23 0.23 0.24 0.24 0.24 0.25 0.25 0.25
0.3 0.59 0.28 0.33 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.15
0.4 0.59 0.17 0.23 0.24 0.08 0.08 0.08 0.08 0.08 0.08 0.08
0.5 0.59 0.24 0.14 0.15 0.16 0.17 0.17 0.04 0.05 0.04 0.04
0.6 0.59 0.40 0.52 0.63 0.68 0.72 0.75 0.77 0.79 0.80 0.81
0.7 0.59 0.18 0.30 0.26 0.28 0.30 0.31 0.33 0.33 0.34 0.34
0.8 0.59 0.42 0.11 0.14 0.09 0.09 0.09 0.10 0.10 0.10 0.10
0.9 0.59 0.12 0.17 0.22 0.25 0.28 0.04 0.04 0.01 0.01 0.01
1 0.59 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Remark 2. We provide additional computational results in Appendix C
for 𝜆 = 0.2 and 𝑐em ∈ {1, 10}. For 𝑐em = 10, we still observe a reverse
Pareto principle for the product of sensitivity and demand lead time
under a perfect precision but it is weaker than for higher 𝑐em values.
A 75% increase in the perfectness of sensitivity and demand lead time
brings a 50% decrease in costs under perfect precision. For 𝑐em = 1,
we see a linear behavior. We no longer observe the Pareto principle
for the precision under a perfect sensitivity and a perfect demand lead
time when 𝑐em = {1, 10} and 𝜆 = 0.2. A 75% increase in the perfectness
of 𝑝 brings 15% and 72% reduction in costs under a perfect sensitivity
and a perfect demand lead time for 𝑐em = 1 and 𝑐em = 10, respectively.

The different insights are obtained because of a different balance
between the inventory holding costs and the emergence procedure costs
that is obtained under an optimal policy for low values of 𝑐em. For high
values of 𝑐em, the optimal inventory levels are such that the application
of the emergency procedure is avoided for sufficiently high values of 𝑟
and 𝑝. For low values of 𝑐em, the optimal inventory levels are much
lower, and hence the emergency procedure is much less avoided for
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many values of 𝑝 and 𝑟. This leads to a larger share of the emergency
procedure costs in the total costs and to a different behavior of the total
costs as a function of 𝑝 and 𝑟, respectively.

8. Conclusion

We have studied the spare parts inventory problem of a single
critical component that is kept on stock in a single local stockpoint. For
upcoming failures of the component in the supported technical systems,
signals are generated. For these signals, we distinguish the factors
precision, sensitivity, and demand lead time, and we investigated how
the average inventory and costs for inventory holding and emergency
procedure applications depend on these three factors under optimal in-
ventory control of the spare parts stock. This optimal control is obtained
via a Markov decision process. Our investigation gives directions for
the trade-off between precision, sensitivity, and demand lead time for
developers of these signals. Even when the predictive models perform
close to the ideal case, decision-makers should keep inventory on-hand.
We found that for a given precision level the optimal inventory control

and optimal costs only depend on the sensitivity and the demand lead
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Table 4
�̂�(𝑝, 𝑟) (%) for varying values of 𝜆 and 𝑐em as a function of 𝑟 and 𝑝.
𝑟\𝑝 𝜆 = 0.1 and 𝑐em = 102 𝜆 = 0.2 and 𝑐em = 102 𝜆 = 0.5 and 𝑐em = 102

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.25 100.0 91.7 89.2 88.3 87.8 100.0 99.6 99.2 99.1 99.1 100.0 92.5 89.8 88.7 88.1
0.5 100.0 88.7 83.3 81.3 80.3 100.0 82.4 77.5 75.6 74.7 100.0 86.3 81.2 77.5 75.2
0.75 100.0 81.1 80.0 78.6 77.1 100.0 76.0 67.6 63.7 61.6 100.0 79.4 69.1 65.5 64.1
1 100.0 58.8 35.9 17.1 0.0 100.0 53.0 30.7 14.6 0.0 100.0 61.5 33.7 15.8 0.0

𝑟\𝑝 𝜆 = 0.1 and 𝑐em = 104 𝜆 = 0.2 and 𝑐em = 104 𝜆 = 0.5 and 𝑐em = 104

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.25 100.0 89.5 88.8 88.7 88.6 100.0 93.0 90.9 90.1 89.7 100.0 92.2 89.8 88.8 88.3
0.5 100.0 77.3 74.7 73.8 73.3 100.0 88.9 88.2 87.6 86.7 100.0 86.3 83.9 83.5 82.1
0.75 100.0 72.9 70.6 69.0 68.2 100.0 73.6 67.3 65.0 63.8 100.0 76.1 70.2 66.4 64.0
1 100.0 27.8 17.0 8.1 0.0 100.0 30.3 17.4 8.3 0.0 100.0 38.3 19.5 9.1 0.0

𝑟\𝑝 𝜆 = 0.1 and 𝑐em = 106 𝜆 = 0.2 and 𝑐em = 106 𝜆 = 0.5 and 𝑐em = 106

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.25 100.0 99.3 99.3 99.3 99.1 100.0 92.1 91.1 90.8 90.7 100.0 91.0 89.6 88.6 88.1
0.5 100.0 83.3 81.4 80.8 80.5 100.0 86.3 83.4 82.2 81.6 100.0 83.3 79.5 77.6 76.7
0.75 100.0 78.0 76.9 75.8 75.2 100.0 72.6 68.0 66.4 65.7 100.0 73.2 67.1 64.1 62.6
1 100.0 20.6 12.5 6.0 0.0 100.0 21.0 12.1 5.7 0.0 100.0 27.2 13.8 6.5 0.0
Table 5
𝐶(𝑝, 𝑟) for varying values of 𝜆 and 𝑐em as a function of 𝑟 and 𝑝.

𝜆 = 0.1 and 𝑐em = 102 𝜆 = 0.2 and 𝑐em = 102 𝜆 = 0.5 and 𝑐em = 102

𝑟\𝑝 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 1.39 1.39 1.39 1.39 1.39 1.92 1.92 1.92 1.92 1.92 2.70 2.70 2.70 2.70 2.70
0.25 1.39 1.27 1.24 1.23 1.22 1.92 1.91 1.91 1.91 1.91 2.70 2.49 2.42 2.39 2.38
0.5 1.39 1.23 1.16 1.13 1.11 1.92 1.58 1.49 1.45 1.44 2.70 2.33 2.19 2.09 2.03
0.75 1.39 1.13 1.11 1.09 1.07 1.92 1.46 1.30 1.23 1.18 2.70 2.14 1.86 1.77 1.73
1 1.39 0.82 0.50 0.24 0.00 1.92 1.02 0.59 0.28 0.00 2.70 1.66 0.91 0.42 0.00

𝑟\𝑝 𝜆 = 0.1 and 𝑐em = 104 𝜆 = 0.2 and 𝑐em = 104 𝜆 = 0.5 and 𝑐em = 104

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 2.94 2.94 2.94 2.94 2.94 3.39 3.39 3.39 3.39 3.39 4.65 4.65 4.65 4.65 4.65
0.25 2.94 2.63 2.61 2.61 2.60 3.39 3.15 3.08 3.06 3.04 4.65 4.29 4.18 4.13 4.11
0.5 2.94 2.27 2.20 2.17 2.16 3.39 3.02 2.99 2.97 2.94 4.65 4.02 3.90 3.89 3.82
0.75 2.94 2.14 2.07 2.03 2.00 3.39 2.50 2.28 2.20 2.17 4.65 3.54 3.26 3.09 2.98
1 2.94 0.82 0.50 0.24 0.00 3.39 1.03 0.59 0.28 0.00 4.65 1.78 0.91 0.42 0.00

𝑟\𝑝 𝜆 = 0.1 and 𝑐em = 106 𝜆 = 0.2 and 𝑐em = 106 𝜆 = 0.5 and 𝑐em = 106

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 3.98 3.98 3.98 3.98 3.98 4.88 4.88 4.88 4.88 4.88 6.57 6.57 6.57 6.57 6.57
0.25 3.98 3.95 3.95 3.95 3.94 4.88 4.49 4.45 4.43 4.42 6.57 5.98 5.88 5.82 5.78
0.5 3.98 3.32 3.24 3.22 3.20 4.88 4.21 4.07 4.01 3.98 6.57 5.47 5.22 5.09 5.03
0.75 3.98 3.10 3.06 3.02 2.99 4.88 3.54 3.32 3.24 3.20 6.57 4.80 4.40 4.21 4.11
1 3.98 0.82 0.50 0.24 0.00 4.88 1.03 0.59 0.28 0.00 6.57 1.78 0.91 0.42 0.00
time via their product. This implies that, when developing signals,
getting a high value for sensitivity is equally important as getting a high
value for the demand lead time. Furthermore, a low value in sensitivity
(demand lead time) will decrease the effectiveness of a high value in
demand lead time (sensitivity) on cost reduction. Further, we found
that both factors need to have a high value in order to get a significant
reduction in optimal costs and average inventory in comparison to the
situation without signals. For the precision, a significant cost reduction
is obtained for high values but also for moderate values. So, it is much
better to develop signals with a moderate value for the precision and
high values for the sensitivity and demand lead time than the other way
around.

For future research, it would be interesting to investigate whether
the main insights also hold in settings with relaxed assumptions. It
would be relevant to study a setting with a stochastic demand lead
time that can be larger than one period. It would also be interesting
10
to investigate how much the results change under continuous review
and/or a positive replenishment lead time.
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Appendix A. Basic model for unpredicted demand (𝒒 = 𝟎)

In this appendix, we describe a basic model for unpredicted demand
that is used as a building block for the analysis of the general model of
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Table 6
Average on-hand inventory for varying values of 𝜆 and 𝑐em as a function of 𝑟 and 𝑝.
𝑟 \𝑝 𝜆 = 0.1 and 𝑐em = 102 𝜆 = 0.2 and 𝑐em = 102 𝜆 = 0.5 and 𝑐em = 102

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 0.90 0.90 0.90 0.90 0.90 1.80 1.80 1.80 1.80 1.80 2.50 2.50 2.50 2.50 2.50
0.25 0.90 1.02 0.98 0.96 0.95 1.80 1.82 1.81 1.81 1.80 2.50 1.94 1.79 1.71 1.67
0.5 0.90 1.12 1.04 1.01 1.00 1.80 1.21 1.09 1.02 0.99 2.50 1.82 1.95 1.88 1.81
0.75 0.90 0.96 0.92 1.06 1.04 1.80 1.35 1.16 1.12 1.08 2.50 1.65 1.45 1.24 1.13
1 0.90 0.81 0.50 0.24 0.00 1.80 1.02 0.59 0.28 0.00 2.50 1.61 0.91 0.42 0.00

𝑟\𝑝 𝜆 = 0.1 and 𝑐em = 104 𝜆 = 0.2 and 𝑐em = 104 𝜆 = 0.5 and 𝑐em = 104

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 2.90 2.90 2.90 2.90 2.90 2.80 2.80 2.80 2.80 2.80 4.50 4.50 4.50 4.50 4.50
0.25 2.90 2.00 1.95 1.94 1.93 2.80 2.98 2.90 2.87 2.85 4.50 3.90 3.75 3.67 3.63
0.5 2.90 2.08 2.00 1.97 1.95 2.80 2.86 2.82 2.93 2.90 4.50 3.78 3.61 3.79 3.75
0.75 2.90 1.94 2.04 2.00 1.98 2.80 2.28 2.11 2.01 1.96 4.50 3.16 3.08 3.01 2.89
1 2.90 0.82 0.50 0.24 0.00 2.80 1.03 0.59 0.28 0.00 4.50 1.78 0.91 0.42 0.00

𝑟\𝑝 𝜆 = 0.1 and 𝑐em = 106 𝜆 = 0.2 and 𝑐em = 106 𝜆 = 0.5 and 𝑐em = 106

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 3.90 3.90 3.90 3.90 3.90 4.80 4.80 4.80 4.80 4.80 6.50 6.50 6.50 6.50 6.50
0.25 3.90 3.91 3.90 3.90 3.93 4.80 4.00 3.90 3.87 3.85 6.50 5.61 5.72 5.67 5.63
0.5 3.90 3.10 3.00 2.97 2.95 4.80 4.13 4.00 3.93 3.90 6.50 5.21 4.98 4.83 4.75
0.75 3.90 2.94 3.04 3.00 2.98 4.80 3.37 3.10 3.00 2.95 6.50 4.53 4.24 4.00 3.88
1 3.90 0.82 0.50 0.24 0.00 4.80 1.03 0.59 0.28 0.00 6.50 1.78 0.91 0.42 0.00
Table 7
Average number of emergency procedure applications for varying values of 𝜆 and 𝑐em as a function of 𝑟 and 𝑝.
𝑟\𝑝 𝜆 = 0.1 and 𝑐em = 102 (×10−2) 𝜆 = 0.2 and 𝑐em = 102 (×10−2) 𝜆 = 0.5 and 𝑐em = 102 (×10−2)

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 0.48 0.48 0.48 0.48 0.48 0.12 0.12 0.12 0.12 0.12 0.19 0.19 0.19 0.19 0.19
0.25 0.48 0.25 0.26 0.27 0.27 0.12 0.09 0.10 0.10 0.10 0.19 0.55 0.63 0.68 0.71
0.5 0.48 0.11 0.12 0.12 0.12 0.12 0.37 0.40 0.43 0.45 0.19 0.50 0.24 0.21 0.22
0.75 0.48 0.17 0.19 0.03 0.04 0.12 0.11 0.14 0.11 0.11 0.19 0.49 0.42 0.53 0.60
1 0.48 0.01 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.19 0.04 0.00 0.00 0.00

𝑟\𝑝 𝜆 = 0.1 and 𝑐em = 104 (×10−4) 𝜆 = 0.2 and 𝑐em = 104 (×10−4) 𝜆 = 0.5 and 𝑐em = 104 (×10−4)

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 0.04 0.04 0.04 0.04 0.04 0.59 0.59 0.59 0.59 0.59 0.15 0.15 0.15 0.15 0.15
0.25 0.04 0.63 0.66 0.67 0.68 0.59 0.17 0.18 0.19 0.19 0.15 0.39 0.43 0.46 0.48
0.5 0.04 0.19 0.19 0.20 0.20 0.59 0.15 0.17 0.04 0.04 0.15 0.23 0.29 0.10 0.07
0.75 0.04 0.20 0.03 0.03 0.03 0.59 0.22 0.17 0.19 0.20 0.15 0.38 0.18 0.08 0.09
1 0.04 0.00 0.00 0.00 0.00 0.59 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00

𝑟\𝑝 𝜆 = 0.1 and 𝑐em = 106 (×10−6) 𝜆 = 0.2 and 𝑐em = 106 (×10−6) 𝜆 = 0.5 and 𝑐em = 106 (×10−6)

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07
0.25 0.08 0.05 0.05 0.05 0.02 0.08 0.50 0.55 0.56 0.57 0.07 0.37 0.16 0.15 0.16
0.5 0.08 0.22 0.24 0.25 0.25 0.08 0.07 0.07 0.08 0.08 0.07 0.26 0.24 0.26 0.28
0.75 0.08 0.16 0.02 0.02 0.02 0.08 0.17 0.22 0.24 0.25 0.07 0.28 0.17 0.21 0.23
1 0.08 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00
T
p
𝑆

𝑃

Section 3. For this basic model, everything is the same as for the model
of Section 3, but we assume that no signals are generated (i.e., 𝑞 = 0)
nd that failures occur according to a Poisson process with rate 𝜇. We
ntroduce a new parameter for this rate because we will use this basic
odel for different demand rates. For the emergency procedure costs

nd the inventory holding costs, we still use the cost parameters 𝑐em
nd 𝑐h.

For this basic model, the demand per period is denoted by 𝑋, which
s Poisson distributed with rate 𝜇. Hence,

{𝑋 = 𝑥} =
𝜇𝑥

𝑥!
𝑒−𝜇 , 𝑥 ∈ N0.

onsider the replenishment decision at the beginning of period 0. The
nitial inventory level is 0. Suppose that the on-hand inventory is
11

ncreased to 𝑆 (by ordering 𝑆 units), then the expected costs in period
0 are equal to

�̃�(𝜇, 𝑆) =
𝑆
∑

𝑥=0
(𝑆 − 𝑥)𝑃 {𝑋 = 𝑥}𝑐h +

∞
∑

𝑥=𝑆+1
(𝑥 − 𝑆)𝑃 {𝑋 = 𝑥}𝑐em.

his function �̃�(𝜇, 𝑆) is similar to the cost function for a newsvendor
roblem. It is convex as a function of 𝑆, and is minimized at the lowest
for which

{𝑋 ≤ 𝑆} ≥
𝑐em

𝑐em + 𝑐h
.

This optimal 𝑆 is denoted by 𝑆∗(𝜇). Let the corresponding minimal
costs for period 0 be denoted by 𝐺(𝜇) = �̃�(𝜇, 𝑆∗(𝜇)).

Let us now look at the whole time horizon. It is not possible to get
strictly lower expected costs per period than �̃�(𝜇, 𝑆∗(𝜇)). By following
a base stock policy with base stock level 𝑆∗(𝜇) (i.e., by increasing
the on-hand inventory at the beginning of each period to 𝑆∗(𝜇)), we
get expected costs �̃�(𝜇, 𝑆∗(𝜇)) in each period, and thus the resulting
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Fig. 9. Optimal action 𝑧∗(𝑦, 𝑎) for the base instance, where 𝑝 = 0.8 and 𝑟 = 0.8.

average costs per period are also equal to �̃�(𝜇, 𝑆∗(𝜇)). Therefore, this
base stock policy is optimal, and the corresponding minimal costs are
equal to 𝐺(𝜇) = �̃�(𝜇, 𝑆∗(𝜇)). The following results hold for 𝑆∗(𝜇) and
𝐺(𝜇).

Lemma A1.

(a) 𝑆∗(𝜇) is non-decreasing as a function of 𝜇.
(b) 𝑆∗(𝜇) = 0 if and only if 𝜇 ≤ 𝑙𝑛(1 + (𝑐h∕𝑐em)).
(c) If 𝜇 ≤ 𝑙𝑛(1 + (𝑐h∕𝑐em)), then 𝐺(𝜇) = 𝜇𝑐em.

Proof. First, we prove Lemma A1(a). A rate 𝜇 leads to the optimal
inventory level 𝑆∗(𝜇). Let us assume another rate 𝜇 + 𝛿, where 𝛿 > 0 is
a small increment. Then 𝑋𝜇+𝛿 stochastically dominates 𝑋𝜇 , where they
respectively represent the random variables of a Poisson distribution
with rate 𝜇+ 𝛿 and 𝜇. This results in 𝑆∗(𝜇) being the smallest value for
which 𝑃 {𝑋𝜇 ≤ 𝑆∗(𝜇)} ≥ 𝑐em

𝑐em+𝑐h
and 𝑆∗(𝜇 + 𝛿) being the smallest value

for which 𝑃 {𝑋𝜇+𝛿 ≤ 𝑆∗(𝜇 + 𝛿)} ≥ 𝑐em
𝑐em+𝑐h

. Because 𝑋𝜇+𝛿 stochastically
dominates 𝑋𝜇 , it holds that 𝑃 {𝑋𝜇 ≤ 𝑆} ≥ 𝑃 {𝑋𝜇+𝛿 ≤ 𝑆} for all 𝑆.
Therefore 𝑃 {𝑋𝜇 ≤ 𝑆∗(𝜇 + 𝛿)} ≥ 𝑃 {𝑋𝜇+𝛿 ≤ 𝑆∗(𝜇 + 𝛿)} ≥ 𝑐em

𝑐em+𝑐h
and

hence 𝑆∗(𝜇) ≤ 𝑆∗(𝜇 + 𝛿). This proves that 𝑆∗(𝜇) is non-decreasing as a
function of 𝜇.

Next we prove Lemma A1(b). It holds that 𝑆∗(𝜇) = 0 if and only if

𝑃 {𝑋 ≤ 0} ≥
𝑐em

𝑐em + 𝑐h
⇔ 𝑒−𝜇 ≥

𝑐em
𝑐em + 𝑐h

⇔ −𝜇 ≤ 𝑙𝑛
(

𝑐em
𝑐em + 𝑐h

)

⇔ 𝜇 ≤ 𝑙𝑛
(

1 +
𝑐h
𝑐em

)

.

Lemma A1(c) follows directly from the observation that all failures
are solved by applying the emergency procedure if no parts are kept on
stock. □

Appendix B. Value iteration algorithm

In this section, we show how the inventory holding and emergency
procedure costs under the optimal policy can be calculated when
solving the MDP formulation. Algorithm 1 provides a pseudocode of
our algorithm. We let 𝑑h(𝑧, 𝑎) =

∑𝑧
𝑥=0(𝑧 − 𝑥)𝑃 (𝑋𝑢 + 𝑋p(𝑎) = 𝑥)𝑐h

denotes the direct expected costs of inventory holding and 𝑑em(𝑧, 𝑎) =
∑∞

𝑥=𝑧+1(𝑧 − 𝑥)𝑃 (𝑋𝑢 + 𝑋p(𝑎) = 𝑥)𝑐em denotes the direct expected costs
for emergency procedure applications. The direct expected costs 𝑑(𝑧, 𝑎)
are equal to the sum of the direct expected costs of inventory holding
and the direct expected costs for emergency procedure applications,
i.e., 𝑑(𝑧, 𝑎) = 𝑑h(𝑧, 𝑎) + 𝑑em(𝑧, 𝑎). By splitting direct expected costs into
two, we can calculate the costs contribution of each into the total
costs separately. For this purpose, we introduce 𝑉 h (𝑧, 𝑎) and 𝑉 em (𝑧, 𝑎)
12

𝑛+1 𝑛+1
Algorithm 1 Value Iteration Algorithm
Initialize 𝑉0(𝑦, 𝑎) ← 0, 𝑉 h

0 (𝑦, 𝑎) ← 0, 𝑉 em
0 (𝑦, 𝑎) ← 0 ∀(𝑦, 𝑎) ∈ 𝑆, 𝑛 = 0,

Stop=False

while Stop=False do

for ∀(𝑦, 𝑎) ∈ 𝑆 do

for ∀𝑧 ≥ 𝑦 do

𝑉 h
𝑛+1(𝑧, 𝑎) = 𝑑h(𝑧, 𝑎) +

∞
∑

�̂�=0
𝑃 {𝑋s = �̂�}

(

𝑃 {𝑋u +𝑋p(𝑎) ≥ 𝑧}𝑉 h
𝑛 (0, �̂�)

+
𝑧−1
∑

𝑥=0
𝑃 {𝑋u +𝑋p(𝑎) = 𝑥}𝑉 h

𝑛 (𝑧 − 𝑥, �̂�)

)

𝑉 em
𝑛+1(𝑧, 𝑎) = 𝑑em(𝑧, 𝑎) +

∞
∑

�̂�=0
𝑃 {𝑋s = �̂�}

(

𝑃 {𝑋u +𝑋p(𝑎) ≥ 𝑧}𝑉 em
𝑛 (0, �̂�)

+
𝑧−1
∑

𝑥=0
𝑃 {𝑋u +𝑋p(𝑎) = 𝑥}𝑉 em

𝑛 (𝑧 − 𝑥, �̂�)

)

𝑉𝑛+1(𝑧, 𝑎) = 𝑉 h
𝑛+1(𝑧, 𝑎) + 𝑉 em

𝑛+1(𝑧, 𝑎)

end for

𝑉𝑛+1(𝑦, 𝑎) ← min𝑧≥𝑦{𝑉 (𝑧, 𝑎)}

𝑧∗(𝑦, 𝑎) ← argmin𝑧≥𝑦{𝑉 (𝑧, 𝑎)}

𝑉 h
𝑛+1(𝑦, 𝑎) = 𝑉 h

𝑛+1(𝑧
∗(𝑦, 𝑎), 𝑎)

𝑉 em
𝑛+1(𝑦, 𝑎) = 𝑉 em

𝑛+1(𝑧
∗(𝑦, 𝑎), 𝑎)

end for

if 𝑛 > 0 and max∀(𝑦,𝑎)∈𝑆{|
𝑉𝑛+1(𝑦,𝑎)

𝑛+1 − 𝑉𝑛(𝑦,𝑎)
𝑛 |} ≤ 𝜖 then

Stop=True

𝑛 = 𝑛 + 1

end while

denoting the so-called value functions for inventory holding and emer-
gency procedure costs, respectively. We calculate these functions by
a value iteration algorithm. At each iteration, we calculate 𝑉 h

𝑛+1(𝑧, 𝑎)
and 𝑉 em

𝑛+1(𝑧, 𝑎) independently, then we sum them up to update the value
of 𝑉𝑛+1(𝑧, 𝑎) for all (𝑧, 𝑎), and then we calculate the optimal value of
𝑉𝑛+1(𝑦, 𝑎) for all (𝑦, 𝑎). The value iteration algorithm stops when the
long-run average cost per period (i.e., value of 𝑉𝑛(𝑦, 𝑎)∕𝑛) converges
to a constant at some sufficiently large value of 𝑛. The convergence is
checked by comparing the deviation of the average cost per-period in
two subsequent steps of the algorithm to a small number 𝜖 (=0.01).

Finally, we define the costs of inventory holding and the emergency
procedure costs as

𝐶h(𝑝, 𝑟) = lim
𝑛→∞

𝑉 h
𝑛 (0, 0)
𝑛

, 𝐶em(𝑝, 𝑟) = lim
𝑛→∞

𝑉 𝑒𝑚
𝑛 (0, 0)

𝑛
.

Dividing 𝐶h(𝑝, 𝑟) by 𝑐h gives the average on-hand inventory level for a
given (𝑝, 𝑟), and dividing 𝐶em(𝑝, 𝑟) by 𝑐em results in the average number
of emergency procedure applications per week.

Appendix C. Computational experiment referred to in Remark 2

In this appendix, we provide computational results for problem
instances with low ratios for 𝑐 ∕𝑐 (i.e., we take 𝑐 = 1 and 𝑐 ∈
em h h em
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Table C.8
�̂�(𝑝, 𝑟) (%) for 𝜆 = 0.2 and 𝑐em ∈ {1, 10} as a function of 𝑟 and 𝑝.
𝑟\𝑝 𝑐em = 1 𝑐em = 10

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.25 100.0 100.0 100.0 100.0 75.0 100.0 99.0 99.0 98.0 98.0
0.5 100.0 100.0 100.0 95.0 50.0 100.0 99.0 96.0 95.0 95.0
0.75 100.0 100.0 100.0 90.0 25.0 100.0 88.1 73.3 60.4 49.5
1 100.0 100.0 95.0 85.0 0.0 100.0 81.2 57.4 27.7 0.0

Table C.9
Average on-hand inventory for 𝜆 = 0.2 and 𝑐em ∈ {1, 10} as a function of 𝑟 and 𝑝.
𝑟\𝑝 𝑐em = 1 𝑐em = 10

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 0.00 0.00 0.00 0.00 0.00 0.82 0.82 0.82 0.82 0.82
0.25 0.00 0.00 0.00 0.00 0.00 0.82 0.82 0.83 0.82 0.82
0.5 0.00 0.00 0.00 0.01 0.00 0.82 0.83 0.84 0.83 0.82
0.75 0.00 0.00 0.01 0.01 0.00 0.82 0.64 0.46 0.21 0.00
1 0.00 0.00 0.01 0.02 0.00 0.82 0.67 0.57 0.28 0.00

Table C.10
Average number of emergency procedure applications per period for 𝜆 = 0.2 and
𝑐em ∈ {1, 10} as a function of 𝑟 and 𝑝.
𝑟\𝑝 𝑐em = 1 𝑐em = 10 (×10−1)

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 0.20 0.20 0.20 0.20 0.20 0.19 0.19 0.19 0.19 0.19
0.25 0.20 0.20 0.20 0.19 0.15 0.19 0.18 0.17 0.17 0.17
0.5 0.20 0.20 0.19 0.18 0.10 0.19 0.17 0.13 0.13 0.14
0.75 0.20 0.20 0.19 0.17 0.05 0.19 0.25 0.28 0.40 0.50
1 0.20 0.20 0.19 0.16 0.00 0.19 0.16 0.01 0.00 0.00

{1, 10}). For these problem instances, we fix the arrival rate of failures
er period at 𝜆 = 0.2. In Tables C.8–C.10, we provide the values for
̂ (𝑝, 𝑟) (%), the average on-hand inventory and the average number of
mergency procedure applications per period as a function of 𝑟 and 𝑝.
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