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For free-space optical communication or ground-based optical astronomy, ample data of optical turbulence
strength (C2

n) are imperative but typically scarce. Turbulence conditions are strongly site dependent, so their accu-
rate quantification requires in situ measurements or numerical weather simulations. If C2

n is not measured directly
(e.g., with a scintillometer), C2

n parameterizations must be utilized to estimate it from meteorological observa-
tions or model output. Even though various parameterizations exist in the literature, their relative performance is
unknown. We fill this knowledge gap by performing a systematic three-way comparison of a flux-, gradient-, and
variance-based parameterization. Each parameterization is applied to both observed and simulated meteorological
variables, and the resulting C2

n estimates are compared against observed C2
n from two scintillometers. The variance-

based parameterization yields the overall best performance, and unlike other approaches, its application is not
limited to the lowest part of the atmospheric boundary layer (i.e. the surface layer). We also show that C2

n estimated
from the output of the Weather Research and Forecasting model aligns well with observations, highlighting the
value of mesoscale models for optical turbulence modeling. ©2024Optica PublishingGroup

https://doi.org/10.1364/AO.519942

1. INTRODUCTION

Free-space optical communication (FSOC) is a key technology
for supporting the increasing needs of our densely connected,
data-heavy world by providing energy-efficient, secure links
with high-data transmission capacity at potentially low cost. In
contrast to traditional radio frequency communication, FSOC
transmits data with an optical beam that propagates through
the atmosphere. This propagating beam is disturbed by various
atmospheric phenomena, such as clouds, molecular and aerosol
scattering, and fluctuations of the atmospheric refractive index,
the so-called optical turbulence (OT) [1]. Data of these OT con-
ditions are highly relevant for designing and deploying reliable,
high-performance FSOC links, but their availability is typically
scarce. Therefore, there is an urgent need to quantify the OT
conditions well [2].

Since turbulence strongly depends on the local topography
and the ever-changing meteorological conditions, site-specific
estimations of the turbulence conditions are complex. As a
result, the performance quantification of an FSOC link requires
either measuring or modeling the OT strength (C 2

n ) for the

time of day and the site of (envisioned) operation. Such C 2
n

measurements are performed directly using scintillometers
or indirectly through standard meteorological instruments in
conjunction with a C 2

n parameterization. While scintillometers
directly measure the intensity fluctuations of light propagating
through the turbulent atmosphere [3], the parameterizations
of the indirect approach link C 2

n to variables of the processes
causing the OT—wind shear and buoyancy [4]. Similarly, these
parameterizations also allow the estimation of C 2

n from atmos-
pheric mesoscale simulations in a post-processing step [5,6]. In
practice, direct scintillometer measurements are often not avail-
able, so the parameterizations are commonly used on observed
(see, e.g., [4,7–9]) and simulated meteorological data (see,
e.g., [6,10–14]), and a multitude of such C 2

n parameterizations
exists (see [15,16] for an extensive overview). However, their
accuracy compared to scintillometer observations is unclear
a priori, and studies in literature often do not motivate their
choice of one parameterization over another.

In the present work, we aim to address this issue by intercom-
paring the performance of C 2

n parameterizations from three
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main classes. Multiple test cases representing different seasonal
conditions are selected for which scintillometer-based C 2

n time
series are available. These observations serve as the best possible
ground truth. The scintillometers are deployed at the Cabauw
Experimental Site of Atmospheric Research (CESAR) site [17]
in the Netherlands, where a recent FSOC test campaign [18]
was conducted. That site is also equipped with reliable and
well-maintained instruments from which we obtain standard
meteorological measurements, collocated and concurrent with
the scintillometer data. Additionally, we run a mesoscale simula-
tion for each test case to reproduce the meteorology at the time
and location of the scintillometer observations. These observed
and simulated meteorological variables are inputs to the differ-
ent C 2

n parameterizations, and the resulting C 2
n estimates are

compared to the scintillometer measurements for performance
assessment. Having two sources of meteorological data can help
us to differentiate errors coming from the parameterizations
themselves from errors due to limitations of instrumentation
or simulation. It also enables us to systematically evaluate the
feasibility of mesoscale simulations for C 2

n estimation in an
FSOC context.

2. METHODOLOGY

We need diverse and reliable underlying datasets to conduct a
comprehensive intercomparison of C 2

n parameterizations. As
a baseline, we utilize C 2

n observations from two scintillome-
ters mounted at two different heights (cf. Section 2.B), which
enable us to assess height dependencies in the performance of
the C 2

n parameterizations. Two high-quality meteorological
datasets—concurrent and collocated with the scintillometer
measurements—serve as parameterization inputs. One dataset
is obtained experimentally at the CESAR site (cf. Section 2.C),
while the other one is a mesoscale hindcast of the same time and
location produced by the Weather Research and Forecasting
(WRF) [19] model (cf. Section 2.D). Three C 2

n parameteri-
zations from different classes are applied to the input data for
an intercomparison between estimated and observed C 2

n as
visualized in Fig. 1. The specific parameterizations representing
these three classes—flux-, gradient-, and variance-based—are
presented in Section 2.A.

Our methodology is applied to three test cases covering
spring (April 18–22, 2022; 4 days), summer (July 27–29,
2022; 2 days), and autumn (October 8–10, 2022; 2 days). By

spreading the test cases throughout the year, we aim to assess
whether seasonal dependencies exist in the performance of
the different C 2

n parameterizations. All test cases are subject to
calm synoptic conditions and a mostly clear sky at the CESAR
site. Selecting such favorable meteorological conditions is
essential because the present study aims to assess the perform-
ance of the C 2

n parameterizations, not the performance of the
deployed instruments or the mesoscale models for various
impactful weather events. Precipitating events, for example,
are challenging to simulate, and scintillometers cannot con-
duct measurements when visibility is low, for instance, during
heavy rain or fog. Since the Dutch weather during winter is
cloudy, rainy, and/or foggy, no suitable winter test case could be
identified for the CESAR site.

A. C2
n Estimation from Observed and Simulated

Meteorology

The strength of OT is quantified through C 2
n , the refractive

index structure function parameter. C 2
n describes the refractive

index variations caused by density fluctuations due to tempera-
ture and humidity fluctuations. If the parameter is not measured
directly with a scintillometer, it can, therefore, be derived from
C 2

T , the temperature structure function parameter, utilizing the
Gladstone relationship [20]:

C 2
n =

(
A

P
T2

)2(
1+

0.03

β

)2

C 2
T . (1)

Here, A≈ 7.9× 10−5 K hPa−1 is almost constant for opti-
cal wavelengths [21], P is the station pressure in hPa, T is the
air temperature in K , and β = QH/QL is the Bowen ratio. By
balancing the dynamic sensible heat flux QH with the latent
heat flux QL , the Bowen ratio term accounts for the influence
of moisture on C 2

n [22]. During neutral atmospheric conditions
(sunrise/sunset), QH and β change signs twice a day, leading
to unrealistically dominant moisture correction factors. This
mathematical singularity is avoided by truncating β to ±0.1
for |β|< 0.1. We also note that the (1+ 0.03/β)2 moisture
correction can introduce an overcorrection by a factor of ∼4
around these neutral conditions due to the assumed correlation
of moisture flux and heat flux (|RTq| = 1) in the derivation of
the correction. The interested reader is referred to [23] for a
detailed discussion, but for FSOC applications, the correction

Scintillometers:
Observed 

CESAR observations (MET):

Observed , , ,
, , ...

WRF mesoscale simulation:

Simulated , , ,
, , ...

Flux-based 
parameterization

Gradient-based 
parameterization

Variance-based 
parameterization

MET+Flux 

WRF+Flux 

MET+Grad 

WRF+Grad 

WRF+Var 

Performance comparison and quantification

Fig. 1. Schematic of the three-way performance comparison and quantification applied in this study. For each test case, C 2
n is estimated with differ-

ent parameterizations (round boxes) from observed (MET) and simulated (WRF) meteorology and compared to scintillometer observations.
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Variance-based parametrizationGradient-based*�parametrization
Flux-based* 
parametrization

(*) Only valid in surface layer

Measured/modeled 
variances�(here only modeled)

Measured/modeled 
mean variables

Measured/modeled 
turbulent fluxes

Wind shear parameter

Buoyancy parameter

Fig. 2. Dependency of C 2
T on measured or modeled input parameters for the three types of C 2

T parameterizations.

presented in Eq. (1) is considered adequate. That is because neu-
tral conditions do not prevail long and are subject to very weak
turbulence, so correction errors have low practical relevance.
In addition, a more accurate correction requires additional
atmospheric water vapor measurements, which is impractical in
an FSOC context.

Due to the discussed relation between C 2
n and C 2

T , the meth-
ods presented in the following only parameterize C 2

T , which is
defined as the coefficient of the second-order structure function
of temperature T in the inertial range as

C 2
T =

〈
[T(x )− T(x + r )]2〉 /r 2/3, (2)

Where 〈�〉 denotes the ensemble average. The structure-
function approach requires a high-frequency temperature signal
(>10 Hz) to capture the fast-evolving turbulence, which is
often infeasible to obtain through measurements or simula-
tions. Therefore, various parameterizations were developed to
estimate C 2

T from more routinely available data. These param-
eterizations can be broadly classified by the type of information
they use—flux-, gradient-, or variance-based methods, as shown
in Fig. 2.

All parameterizations aim at capturing the two processes
modulating turbulence—wind shear and buoyancy [24]—but
utilize different types of physical variables (cf. dashed and dotted
boxes in Fig. 2). The difference between the variables is whether
they represent the slowly varying mean or the fast-changing
fluctuations of a turbulent flow field. For example, the space
and time-dependent potential temperature field θ(t, x , y , z)
can be decomposed into mean potential temperature θ̄ and
turbulent fluctuations θ ′ so that θ(t, x , y , z)= θ̄ (x , y , z)+
θ ′(t, x , y , z) [24]. Similarly, the wind components u, v,
and w can be decomposed into the mean field (ū, v̄, w̄) and
fluctuations (u ′, v′, w′). While gradient-based C 2

n methods
only use vertical gradients of the mean quantities, the flux and
variance-based approaches require knowledge about turbulent
fluxes (e.g., a momentum flux u ′w′) or turbulent variances
(e.g., potential temperature variance θ ′θ ′ = σ 2

θ ) formed from
the fluctuation components of the fields. These mean quan-
tities, fluxes, and variances can be observed experimentally or
simulated using mesoscale models, such as the WRF model.

1. Flux-basedMethod

One approach of linking buoyancy and wind shear to the tem-
perature fluctuations (i.e., C 2

T ) is by utilizing the sensible heat
flux w′θ ′ and the friction velocity u∗, respectively. The latter
has the unit m s−1 and is called a velocity but is a function of
two components of the turbulent vertical momentum flux:

u∗ = (u ′w′
2
+ v′w′

2
)1/4. Wyngaard et al. [4] proposed a flux-

based parameterization (W71-flux) based on these quantities
and Monin–Obukhov similarity theory (MOST) given as

C 2
T = T2

∗
z−2/3g (ζ ), (3)

where T∗ =−w′θ ′/u∗ is the temperature scale. The similarity
function g

g (ζ )= 4.9(1− 6.1ζ )−
2
3 , ζ < 0,

g (ζ )= 4.9
(

1+ 2.2ζ
2
3

)
, ζ ≥ 0, (4)

depends on the stability parameter ζ = z/L with Obukhov
length L =−u3

∗
T̄/(κgw′θ ′) and height above ground z. In

L , g = 9.81 m s−2 is the gravitational acceleration of Earth,
κ = 0.4 is the Von Kármán constant, T̄ is the mean air tem-
perature in K , and w′θ ′ is the kinematic sensible heat flux in
m K s−1. The coefficients of Eq. (4) are empirically determined
and vary in literature [16]. We use the coefficients presented by
Andreas [7], who adjusted the original W71-flux coefficients for
κ = 0.4. Friction velocity and sensible heat flux are surface vari-
ables available from the WRF model and a sonic anemometer at
the CESAR site [17].

2. Gradient-basedMethod

Measuring fluxes require sonic anemometers that record high-
frequency temperature and velocity signals. If such instruments
are unavailable, a set of vertically separated standard ther-
mometers and anemometers can be used for C 2

T estimation
in conjunction with a gradient-based method. These slow-
response instruments yield the temporal evolution of the mean
temperature and mean wind profiles. The vertical gradients
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of (potential) temperature and horizontal wind represent
the buoyancy and shear contributions to turbulence, respec-
tively. Wyngaard et al. [4] also presented a gradient-based C 2

T
parameterization:

C 2
T = z4/302 f

(
Rig
)

. (5)

Here, f is a similarity function depending on the gradient
Richardson number Rig = (g /θ̄)(0/S2), and the mean poten-
tial temperature gradient 0 = ∂θ̄/∂z. The stability parameter
Rig is a ratio balancing buoyancy, captured through 0, and the

mean wind shear S =
√
(∂ ū/∂z)2 + (∂v̄/∂z)2. Thus, 0 and S

fulfill the same role of including buoyancy and shear modula-
tion of the turbulence into the gradient-based formulation like
u∗ andw′θ ′ do for W71-flux. The empirical similarity function
f (Rig ) in Eq. (5) is tabulated by Wyngaard et al., but He and
Basu [25] presented an improvement of f for stably stratified
conditions (Rig > 0) based on direct numerical simulations
given as

f (Rig )= 0.05+ 1.02 exp(−14.49Rig ), Rig > 0. (6)

We use this improved formulation for stable conditions and a
spline interpolation of the original W71 values only for unstable
atmospheric conditions (Rig ≤ 0). This combined approach is
abbreviated as W71/HB16-grad for this work.

All required mean variables (cf. Fig. 2) are routinely available
both as time-varying 3D fields from the WRF model and as time
series observed at multiple heights at the CESAR site. The gradi-
ents are typically strongest close to the ground [24], so we aim to
accurately compute the lowest gradients numerically by adding
the following information: For S, we assume a logarithmic
wind profile close to the surface so that u(z0)= v(z0)= 0 with
surface roughness length z0 (known from WRF or experiments
[26]). For 0, we employ the 2 m potential temperature θ̄2 pro-
vided by WRF’s surface layer scheme or the 2 m thermometer
deployed at CESAR. Section 1 of Supplement 1 explains these
technicalities in more detail.

3. Surface Layer Assumption

Like the W71-flux parameterization, the gradient-based
W71/HB16-grad approach is based on MOST. As a result, both
approaches inherit the MOST limitation that they are only
applicable within the atmospheric surface layer (SL), which is
defined as 10% of the atmospheric planetary boundary layer
(PBL) height [24]. MOST assumes that fluxes within the SL
are invariant with height, which is not valid anymore for the
upper part of the boundary layer. The height of the PBL and,
consequently, the SL changes throughout the day. Typically, the
SL is shallow during the night (∼10 m) and deep during the day
(∼100 m) [24], so the height until which the gradient and the
flux-based methods can be applied also changes.

4. Variance-basedMethod

A physics-based parameterization that is valid beyond the SL fol-
lows from dimensional analysis using Corrsin’s [27] expression
and Kolmogorov’s [28] universal spectrum hypothesis as

C 2
T = 3.2χε−1/3, (7)

where ε is the turbulent energy dissipation rate and χ the
destruction rate of potential temperature variance σ 2

θ .
Bougeault et al. [5] and Masciadri et al. [6] utilized mesoscale
models with a turbulence closure scheme [29] that has a prog-
nostic equation for the turbulent kinetic energy (TKE) e , which
allowed the parameterization of ε and χ to ultimately obtain
C 2

T according to Eq. (7). He and Basu [30] utilized a different
parameterization [31,32] based on e andσ 2

θ in conjunction with
Eq. (7):

ε =
(2e )3/2

B1L M
, χ =

(2e )1/2

B2L M
σ 2
θ . (8)

Here, L M is the master length scale combining the charac-
teristic scales of the surface, turbulence, and buoyancy, and
the coefficients B1 and B2 were found to be equal to 24 and
15, respectively, from numerical simulations. He and Basu
used the high-order MYNN 2.5 turbulence closure scheme
[33,34] with a prognostic output of e and diagnosed σ 2

θ and
L M . Physically, the TKE per unit mass is half the sum of the
velocity field variances: e = (σ 2

u + σ
2
v + σ

2
w)/2. This variance-

based approach based on He and Basu (HB15-var), combined
with the MYNN 2.5 turbulence closure scheme in WRF, is
also used in the present work. While the variances e and σ 2

θ

and the length scale L M are available from the WRF model
output, they are not contained in the CESAR data product
available for this study. Additionally, L M as used in MYNN-2.5
requires evaluating a vertical integral of TKE from the surface
until the boundary layer height [35], which is difficult to obtain
experimentally. Consequently, we apply HB15-var only to the
simulated meteorology.

B. Scintillometer Observations of C2
n at the CESAR

Site

The accuracy of the estimated C 2
n values is assessed by compar-

ing them against C 2
n measurements from two scintillometers

deployed at the CESAR site. The instruments are mounted at
two heights: ∼10 m and ∼80 m. Therefore, the lower instru-
ment is almost always situated in the SL so that it serves as a
reference for all three parameterizations. That is not the case
for the higher instrument because the SL height regularly falls
below the mounting height, for example, during the night (all
seasons) and partially during the day (non-summer seasons).
Consequently, we only utilize that higher scintillometer as a
reference for the variance-based method.

A scintillometer consists of a transmitter and receiver dis-
placed over a horizontal path between 0.1 km and 10 km. The
transmitter emits a beam of light at one end of a horizontal path,
and the receiver receives it at the other. C 2

n is then derived from
measured fluctuations of received optical power caused by the
OT along the path [36]:

C 2
n = 1.12D7/33−3σ 2

ln(I ), (9)

where D is the scintillometer aperture size,3 is the path length
between transmitter and receiver, and σ 2

ln(I ) is the log-variance
statistic of the intensity fluctuations, I . The two scintillometers
are part of the Dutch Ruisdael observatory infrastructure and
measure along two almost perpendicular paths as indicated by
the solid and dashed lines in Fig. 3. In particular, there are

https://doi.org/10.6084/m9.figshare.25686102
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Fig. 3. Vertical placement and approximate measurement paths of the two scintillometers—LAS (dashed line) and XLAS (solid line)—at the
CESAR site as seen (a) from the Cabauw field and (b) on an aerial photograph.

1. A Kipp&Zonen MKII Large Aperture Scintillometer
(LAS, D= 0.147 m), measuring along a 3= 859 m path
(dashed line) at 10.1 m height above ground, and

2. A Kipp&Zonen MKI eXtra Large Aperture Scintillometer
(XLAS, D= 0.32 m), which has been upgraded to MKII
specifications, measuring along a 3= 10 km path (solid
line) at∼80 m height.

The panels in Fig. 3 show the approximate (a) vertical and (b)
horizontal scintillometer measurement paths. Both scintillom-
eters operate at a wavelength of λ= 850 nm and have a finite
aperture to ensure they are saturation resistant over longer path
lengths [36]. In calculating σ 2

ln(I ) from the raw 1 kHz recorded
data series of I , a high pass filter of 30 s was applied to filter out
absorption fluctuations, and intervals with less than 20% of
available data were set to a dummy value. The intensity data are
aggregated into 30 min bins from which C 2

n is computed. In a
quality control step, C 2

n measurements are classified as unre-
liable and discarded if the received mean carrier power drops
below a setup-dependent threshold. This happens, for example,
during heavy rainfall or fog at the CESAR site, resulting in severe
attenuation or loss of the scintillometer signal.

C. Meteorological Observations within the Surface
Layer

Several meteorological variables serve as input for the different
parameterizations to estimate C 2

n at the 10 m level (surface
layer) and compare it to the corresponding scintillometer
observations. These measurements are extracted as 10 min
averages from the instruments mounted on and around the
200 m high Cabauw tower of the CESAR site [cf. Fig. 3(a)]. In
particular, we utilize the profiles of air temperature T̄(z) and
horizontal wind measured at 2 m (T only), 10 m, and 20 m,
above ground, respectively, to estimate 0(z) and S(z) at the
10 m level. The horizontal wind at CESAR is measured with
cup anemometers and wind vanes [17] from which we obtain
the horizontal components ū(z) and v̄(z) for the computation
of S(z). Details about the gradient computation are presented
in Supplement 1. From those gradients, C 2

T at 10 m height is
estimated following W71/HB16-grad. The turbulent fluxes
u∗ and w′θ ′ for the corresponding W71-flux C 2

T estimates
are obtained from an eddy covariance system consisting of

an open-path H2O/CO2 sensor (LICOR-7500) and a sonic
anemometer (Gill-R50) mounted at 3 m height [17]. Following
the surface layer assumption, the fluxes are considered to be
height invariant and also valid at 10 m height. As mentioned
before, the variances required for HB15-var are not routinely
available from CESAR, and the experimental determination
of the length scale L M is challenging. Consequently, only the
gradient- and the flux-based methods are utilized in conjunction
with the observed meteorology.

Converting C 2
T to C 2

n following Eq. (1) is the same for all
three parameterizations and requires the Bowen ratio β and the
10 m atmospheric pressure. The latter, P10, is computed from
the reference sea-level pressure P0, utilizing the hypsometric
equation and the 10 m temperature. The β-based C 2

n humidity
correction is based on the dynamic sensible heat flux QH and
the latent heat flux QL . QH (in W/m−2) is converted from the
measured kinematic sensible heat flux w′θ ′ (in m K s−1) to its
dynamic form as QH = ρc pw′θ ′ with the density ρ and the
specific heat capacity c p of air [24]. The corresponding latent
heat QL is also measured by the eddy covariance system at 3 m
above ground [17]. We refer to all these observed meteorological
variables for C 2

n estimation as MET data for the rest of the study.

D. Mesoscale Simulation Setup

The same variables observed at the CESAR site are numerically
obtained by running one WRF simulation per test case. All sim-
ulations are forced with the ERA5 reanalysis data [37] provided
by the European Centre for Medium-Range Weather Forecasts
(ECMWF). The horizontal grid size of ERA5 is ∼30 km, and
three nested WRF domains are used to bring the horizontal
grid size down to 1 km in the finest domain (cf. Table 1). WRF
produces instantaneous snapshots of all variables every 10 min,
matching the temporal sampling rate of the CESAR observa-
tions. Panels (a) and (b) of Fig. 4 depict how the CESAR site is
represented as a gridded WRF domain. A vertical cross-section
(cf. panel (a)) is extracted using bilinear interpolation along the
path shown in panel (b). This plane (approximately) contains
the Cabauw tower at the very left and the path of the XLAS (red
solid line) in the horizontal direction. The average heights of the
model pressure levels plotted as gray lines show that the WRF
model has a vertical resolution close to the surface of ∼25 m
with the first level at ∼9 m. The bell-shaped function plotted

https://doi.org/10.6084/m9.figshare.25686102
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(a) (b)

(c) (d)

Fig. 4. Representation of the CESAR site in WRF. (a) Domain cross-section containing 10 km XLAS path with model levels in gray and
LAS/XLAS weighing function in blue; (b) MODIS land use classes of CESAR site (cross) and its surroundings; effect of different land use classes
on (c) sensible heat flux and (d) friction velocity.

Table 1. Nested Domain Configuration Used for All
Test Cases in WRF

Domain
Horizontal
Resolution

# Grid
Points

# Vertical
Levels

D01 9 km× 9 km 128× 100 101
D02 3 km× 3 km 124× 127 101
D03 1 km× 1 km 130× 127 101

as solid blue line is the LAS/XLAS weighing function related to
the scintillometers’ path-averaging effect. The function’s peak at
half the path length means that turbulence in the path’s center
contributes strongest to the measured C 2

n [3].
The aerial pictures in Fig. 3(b) show that land use around the

CESAR site is diverse. This heterogeneity of the surroundings—
crop fields, grassland, urban areas—is represented in WRF
through the 21-category IGBP-MODIS land-use dataset
[38,39]. Based on that dataset, one land-use class is auto-
matically assigned to each surface grid point during WRF
preprocessing, as shown in Fig. 4(b). Here, only the seven classes
relevant to the selected area are shown. Depending on the
assigned land-use class, the WRF model uses different values for,
e.g., surface roughness (cities cause more drag than grassland)
or heat capacity (water bodies have larger heat capacity than
croplands), while solving for the various simulated variables.
These surface-specific parameters are, for example, used by the
surface layer scheme that solves for the surface fluxes based on
Monin Obukhov similarity theory [40,41]. The fluxes are then
used in the flux-based C 2

n parameterization, so an incorrectly
assigned land-use class can cause systematic deviations between
simulated values at one grid point and collocated observations.
Such a land-use misclassification happens at grid point (80,

46), closest to the Cabauw tower. This grid point is classified
as “evergreen broadleaf forest” although the aerial photos in
Fig. 3 indicate croplands or grasslands for the CESAR site. Only
the neighboring grid point (80, 47) is classified as “croplands,”
which seems more realistic. The effect of this misclassification
on sensible heat flux w′θ and friction velocity u∗ is visible in
panels (c) and (d) of Fig. 4. The forest-type land-use class (green
curve) leads to significantly larger values for both variables than
the “croplands” class (black curve). More importantly, the lower
values of the “croplands” time series agree better with observa-
tions from Cabauw (blue curve). The notably lower observed u∗
in Fig. 4(d) is likely due to the local smoothness of the CESAR
site [26], which WRF misses due to its coarse resolution. Still,
u∗ associated with the “croplands” class is assumed more realistic
than the “forest” one. Since the W71-flux approach takes w′θ ′

and u∗ as inputs, these variables must be simulated realistically
by WRF. We, therefore, select grid point (80, 47) as representa-
tive of the CESAR site and as the starting point of the extracted
cross-section.

The selected physics schemes utilized by WRF to represent
various processes in the atmosphere are listed in Table 2, and the
corresponding WRF configuration files ( namelist.input
files) are provided on Github [46]. Most relevant for this study is
the selection of the planetary boundary layer (PBL) scheme. The
PBL scheme parameterizes the sub-grid turbulence, i.e., the tur-
bulent processes within the boundary layer (first few kilometers
of the atmosphere) and clean air turbulence in the free atmos-
phere (above the PBL). Such parameterizations are required
because the grid size of mesoscale models is too coarse to explic-
itly resolve turbulence (to explicitly resolve turbulence, one can
run large-eddy simulations withO(10 m) resolution can be run
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Table 2. Physics Schemes Used in WRF for All Test
Cases to Parameterize Atmospheric Processes

Physical Process Scheme

Surface layer Mellor–Yamada–Nakanishi–Niino (MYNN)
[40]

Boundary layer MYNN 2.5 [33,34] with
eddy-diffusivity/mass-flux [35] (EDMF)

Microphysics WSM-5 [42]
Radiation (long and
short-wave)

Rapid radiative transfer model for GCMs
(RRTMG) [43]

Land surface model Noah LSM [44] with IGMP-MODIS
21-category land use data [38,39]

Cumulus
parameterization

Modified Kain–Fritsch scheme [45]
(D01 only)

to explicitly resolve turbulence. The WRF model outputs differ-
ent variables depending on the selected PBL scheme, so the PBL
scheme selection can constrain the C 2

n parameterizations that
can be applied. We utilize the higher-order Mellor–Yamada–
Nakanishi–Niino (MYNN) turbulence scheme in its 2.5-order
closure version with eddy-diffusivity/mass-flux [35] (EDMF)
option enabled. MYNN-2.5 is a high-order PBL scheme that
solves for TKE e and variance of potential temperature σ 2

θ ,
which are required for variance-based C 2

n parameterizations.
Not all PBL schemes available in WRF provide TKE, and only
MYNN 2.5 and MYNN 3 yield σθ . Since we found MYNN 3
to be numerically unstable in some cases, MYNN 2.5 is the only
PBL scheme suitable for this comparison. Outside this study, if
only gradient- or flux-based techniques are of interest, all other
WRF PBL schemes are applicable. To determine the domain
of applicability for the MOST-based C 2

n parameterizations, we
utilize the PBL height from the MYNN scheme and compute
the SL height as 10% of that variable. The same estimated SL
height is utilized for WRF- and MET-based C 2

n estimates to
ensure comparability between the parameterizations.

Post-processing the WRF model outputs with the C 2
n param-

eterizations yields estimates of C 2
n at each model grid point

with 1 km horizontal spacing. Scintillometers, however, yield
integrated C 2

n values caused by the turbulence along the mea-
surement path. In cases where this path crosses multiple WRF
grid cells, the simulated C 2

n estimates need to be aggregated to
align them with the observations. This consideration is essential
for the 10 km XLAS. As mentioned, we horizontally interpolate
the WRF grid to extract a vertical cross-section containing
the scintillometer path. Next, we vertically interpolate the
cross-section levels to the path height (here 80 m AGL). Finally,
a path-averaged C 2

n estimate is computed using the scintil-
lometer path weighting function [36] [see also Fig. 4(a)]. The
bell-shaped weighing function of an LAS/XLAS puts the most
weight on the center of the path. In the case of the LAS, where
the path length of 859 m is comparable to the grid resolution,
we compare the observations against values from the grid point
closest to the link’s center, i.e., the starting point of the extracted
cross section.

E. Performance Metrics

The agreement between any pair of observed log10C 2
n time series

of length n, {o1, . . . , o i , . . . on}, and its estimated counter-
part, { f1, . . . , fi , . . . fn}, is quantified in log10-space through
three metrics: the constant bias between the two time series,
the centered root-mean-squared error (cRMSE), and Pearson’s
correlation coefficient r . The bias is computed as the difference
between the mean values of both signals, f̄ and ō , as

Bias= f̄ − ō , (10)

and it quantifies the constant shift between the two. The
cRMSE is defined as

cRMSE=
1

n

n∑
i=1

[
( fi − f̄ )− (o i − ō)

]2
, (11)

and it quantifies the average error throughout the signal after
removing the bias. Additionally, the Pearson correlation
coefficient r , defined as

r =

n∑
i=1

(
fi − f̄

)
(o i − ō)

nσ f σo
, (12)

reflects how well the estimate matches the observation’s pattern
(e.g., diurnal cycle). Here, σ f and σo are the standard deviations
of the simulated and observed time series, respectively. For all
metrics, the estimated C 2

n time series are clipped to a minimum
value of C 2

n ≈ 10−16 m−2/3 before computing the scores. That is
done to avoid an unreasonably large contribution of estimation
errors in the weak turbulence regime, which are exaggerated
by the log10 scaling. The 10−16 m−2/3 threshold is commonly
used in FSOC and optical astronomy literature to separate out
weak and almost negligible OT strength [47–50]. To match the
different temporal sampling rates of the scintillometer obser-
vations (30 min) and the WRF/MET estimates (10 min) for
the score computation, we downsample the 10 min data. More
specifically, each 30 min scintillometer sample is matched by
selecting the 10 min sample of the WRF/MET data that falls
into the middle of the 30 min interval. We prefer this approach
over, e.g., averaging three 10 min samples into one 30 min sam-
ple because we would like to retain the larger variability typically
exhibited by flux measurements compared to, e.g., mean wind
measurements.

3. RESULTS

In the following, the performance of each C 2
n parameterization,

with WRF and MET inputs, is compared against the scintillom-
eter observations at 10 m and 80 m height (cf. Table 3 for a result
overview). We begin in Section 3.A with a surface layer-bound
comparison. The MOST-based parameterizations—W71-flux
and W71/HB16-grad—are compared to observations from
the 10 m high LAS. The 80 m high XLAS is not considered for
this part of the analysis because the number of valid C 2

n esti-
mates is low due to the SL assumption. In other words, for long
periods of time (especially in spring and autumn), the SL is too
shallow to contain the high scintillometer, rendering the flux
and gradient-based methods inapplicable. Consequently, the
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Table 3. Overview of Evaluated Combinations of Input Data—Observed (MET) or Simulated (WRF)
Meteorology—and C2

n Parameterizations for the Two Scintillometers Mounted at Height z and Measuring along
Path of Length 3

MET Input WRF Input

Scintillometer W71-flux W71/HB16-grad HB15-var W71-flux W71/HB16-grad HB15-var

z= 10 m,3= 859 m yes yes no obs. data yes yes yes
z= 80 m,3= 10 km no, beyond SL no, beyond SL no obs. data no, beyond SL no, beyond SL yes

statistical significance of such a comparison is low, and it would
not be insightful. In contrast, the variance-based C 2

n estimates
are valid everywhere in the boundary layer, so we go beyond the
SL in Section 3.B and assess the accuracy of the variance-based
C 2

n at both scintillometer levels. Here, only WRF data are used
as inputs to HB15-var due to the unavailability of turbulent
variances within the CESAR data product.

A. Three-way Comparison of C2
n Parameterizations

in the Surface Layer

Figure 5(a) presents the estimated and the observed 10 m level
C 2

n time series for all three test cases. The figure serves as a three-
way comparison between observed SL C 2

n and the effect of
different input data (WRF or MET) when using the same C 2

n
parameterization or the impact of using the same data but dif-
ferent C 2

n approaches (flux- or gradient-based). The shading of
the background indicates static atmospheric stability based on
the simulated sensible heat flux: stable conditions (w′θ ′ < 0),
typically present during the night, are shaded in gray, and unsta-
ble conditions (w′θ ′ > 0), generally present during the day,
are shaded in white. Most estimated curves show substantial
dips to low C 2

n values at the time of transition between stability
(i.e., during neutral conditions). That is where the time series
clipping to a minimum of C 2

n = 10−16 m−2/3 (dotted lines)
takes effect to avoid the unfair contribution of these negligibly
low turbulence conditions. The gaps in the estimated time series
stem from the SL being too shallow even for the 10 m LAS, while
gaps in the observed scintillometer time series are due to low
received power likely related to fog.

Bias, cRMSE, and correlation r for each pair of observed and
estimated C 2

n time series are displayed in Fig. 6. The table fol-
lows the same structure as the time series plots, with flux-based
results in columns (a) and (b) and the gradient-based results in
columns (c) and (d). For ease of comparison, columns (e) and
(f ) contain the variance-based results for C 2

n estimation beyond
the surface layer, which are discussed in the following section.
The rows break the scores down by test case and stability, and the
cell colors allow for visual interpretation of the score values with
respect to the color bars.

Overarching comparison of the W71-flux and W71/HB16-
grad in Fig. 5(a) reveals that both approaches, regardless of input
data, generally match the pattern of the observations. For exam-
ple, low-turbulence dips during neutral conditions or strong
turbulence peaks during the day are timed mostly well, result-
ing in mostly high-correlation coefficients in Fig. 6. Only the
MET + Flux (stable) comparison hints toward a seasonal per-
formance dependency with lower r and higher cRMSE in spring
and autumn compared to summer. The remaining cases show
comparable performance throughout all seasons. Comparing

the scores of the variance-based estimates (WRF+ Var, (e) and
(f )) against the flux and gradient-based approaches indicates
an overall more balanced error behavior of WRF + Var with
less variation of all metrics between day and night, which is
discussed in detail in Section 3.B.

Despite the good overall performance, the W71-flux and
W71/HB16-grad show significant biases during stable condi-
tions upon detailed inspection. The nighttime bias is especially
large for W71/HB16-grad, regardless of season. With WRF
inputs, the nighttime 10 m signal is overestimated by about
one order of magnitude, whereas the estimates from MET
input show a consistent underestimation of almost one order
of magnitude. During unstable conditions, both WRF+Grad
and MET + Grad slightly overestimate the C 2

n values. These
deviations could be related to too-strong (C 2

n overestimation)
or too-weak (C 2

n underestimation) gradient estimates due to the
coarse spacing of the sensors and model levels. For both input
data, the gradients have to be computed numerically from levels
separated by multiple meters, which is known to lead to devia-
tions [51]. Also, the similarity relationship between C 2

T and the
gradients might be erroneous. In the case of the flux-based C 2

n ,
WRF and MET inputs both lead to overestimating the night-
time values. The underlying observed and simulated nighttime
fluxes show realistic values and orders of magnitude, which does
not allow us to explain this behavior. The deviation seems sys-
tematic and could point to a weakness of W71-flux during the
night, but a final conclusion would require an extensive analysis
beyond the scope of this work.

Another difference between the C 2
n estimates is the smooth-

ness of the estimated signals. The gradient-based estimates
are smoother (i.e., show fewer fluctuations) than the flux-
based estimates, also visible in the lower cRMSE values for
W71/HB16-grad. Again, the effect is more pronounced at
night than during the day for all cases. Strong fluctuations of
multiple orders of magnitude are observed during the 2nd night
in autumn for the MET + Flux estimate. Here, the observed
sensible heat flux is very close to zero, where the W71-flux
parameterization is very sensitive, resulting in the depicted large
jumps. Smoothness also differs between the two WRF-based
estimates and their MET-based counterparts: the WRF-
based results are smoother than the MET-based ones, which is
expected since WRF’s 1 km grid resolution is not fine enough
to capture very local or short-lasting phenomena. For example,
the large drop of C 2

n during the first day of the summer case at ca.
12:00Z is entirely missed by WRF+Flux and WRF+Grad but
captured well by the MET-based estimates.

Despite the discussed errors, both approaches yield consis-
tently good estimates of daytime C 2

n , regardless of the utilized
input data. Additionally, the generally good agreement between
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Fig. 5. Comparison of observed C 2
n from scintillometers (black markers) against C 2

n values estimated with three different parameterizations from
simulated (orange) or observed (blue) meteorology. The rows in panels (a) and (b) correspond to the three test cases: spring (April 18–22, 2022), sum-
mer (July 27–29, 2022), and autumn (October 8–10, 2022).

WRF-based and MET-based C 2
n estimates (leaving the biases

aside) is promising because it indicates that our WRF con-
figuration reproduced the observed meteorology reasonably
well.

B. Beyond the Surface Layer: Performance of the
Variance-based C2

n Parameterization

So far, the discussion has focused on the SL, applying gradi-
ent and flux-based methods to 10 m observed or simulated
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(a) (b) (c) (d) (e) (f)

Fig. 6. Bias, centered RMSE, and correlation coefficient r , quantifying the agreement between the observed and estimated log10C 2
n time series (cf.

Fig. 5). Columns (a)–(f ) present the performance of the different combinations of input data (MET or WRF) and C 2
n parameterizations with respect

to scintillometer observations. The low values of all estimated time series are clipped to C 2
n = 10−16 m−2/3 before computing the scores to avoid unfair

dominance of negligibly weak turbulence in log10-space.

meteorological variables. We now employ the variance-based
method to estimate C 2

n at higher altitudes and compare the
results to scintillometer measurements from two heights: 10 m
and 80 m above ground. Due to the difficulty to experimen-
tally determine L M and because of the limited availability of
TKE and σ 2

θ in the CESAR data product, we only utilize data
from the WRF model for this comparison. The estimated C 2

n
time series derived from WRF (WRF+ Var) for both altitudes
are shown in Fig. 5(b). The 10 mC 2

n values (within the SL)
are depicted in the left column and the 80 mC 2

n curves (often
beyond the SL) in the right column. The previously discussed
Fig. 6 also includes the performance scores that assess agreement
between the WRF + Var estimates and the observed data for
easy comparison with the other approaches.

Similar to the SL results, the overall agreement of WRF+Var
with observations is good. During most nights, C 2

n matches the
scintillometer data at both heights well in terms of magnitude
and correlation. The daytime C 2

n estimates also reflect the trends
well by means of correlation, but WRF + Var consistently
underestimates the daytime magnitude at the 10 m level. This
behavior cannot be observed at the 80 m level where daytime C 2

n
is captured with high accuracy as quantified by the low biases.
Interestingly, the trend reverses for stable conditions with larger
biases at the 80 m level and lower biases at the 10 m level. The
reason could be that WRF misses SL contributions to the turbu-
lence during the day and some higher altitude effects during the
night. Such systematic discrepancies are common in numerical
weather modeling because the complex physical processes of our
atmosphere have to be simplified or approximated, e.g., to keep
the models’ computational complexity reasonable [52].

Along those lines, we attribute the three notable trend devi-
ations at night between WRF + Var and the scintillometers
[cf. Fig. 5(b)] to complex and/or local weather phenomenona.
Such weather patterns are difficult to capture in WRF due to its
coarse resolution. One deviation occurs in spring at the 10 m
level (18/19 April, 0:00Z–6:00Z) and two others at the 80 m
level in summer (27/28 July, 18:00Z–00:00Z) and autumn (8/9
October, 18:00Z–6:00Z). The signal degradation experienced
by both scintillometers during the autumn deviation supports
the assumption that a complex weather pattern is present. The

observed 80 mC 2
n drops to very low values and exhibits increased

scattering, while the corresponding 10 mC 2
n observations fail

quality control and are discarded. It seems that WRF captured
the weather event leading to the signal degradation but with a
different timing.

Despite the discussed periods of temporarily low perform-
ance, the results are overall satisfying. There is no clear seasonal
trend of the performance (visually and quantitatively), and the
correlation between estimated and observed C 2

n is high for both
heights as reflected by the scores in Figs. 6(e) and 6(f ). When
directly compared to the flux and gradient-based alternatives,
the variance-based C 2

n correlation values are lower in some cases
at 10 m height but show less variation between stability condi-
tions. We note that the scores of the MOST-based approaches
are based on fewer samples for atmospheric stable conditions
due to the SL constraint, so the statistical uncertainty is expected
to be higher. The biases of the variance-based C 2

n estimates
are mostly negative, indicating a consistent underestimation
of turbulence strength up to half an order of magnitude. This
underestimation trend of WRF + Var contrasts the more vari-
able performance of W71-flux and W71/HB16-grad, which
show lower (absolute) biases during the day but significantly
higher (absolute) biases during the night. In general, the error
behavior of WRF+Var seems more balanced with similar r and
cRMSE values throughout seasons and atmospheric stability
conditions compared to the other methods. This observa-
tion is confirmed visually by comparing the WRF + Var time
series [Fig. 5(b)] with those of WRF+ Grad and WRF+ Flux
[Fig. 5(a)]: the WRF+Var curves track the scintillometer obser-
vations more consistently for all test cases, day and night, and
for both heights. Consequently, HB15-var seems to be the more
reliable choice for C 2

n estimation from WRF than the other two
methods, and it has the additional advantage of being applicable
anywhere in the boundary layer.

4. CONCLUSION

We applied three distinct C 2
n parameterizations to observed

and simulated meteorological variables and compared the
resulting C 2

n estimates to measured C 2
n evolutions from two
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scintillometers mounted at different heights and measuring at
paths of different lengths. The parameterizations utilized either
(a) vertical gradients of the mean wind and temperature fields,
(b) turbulent fluxes, or (c) turbulent variances to estimate C 2

n .
The meteorological inputs were either experimentally obtained
(MET) at the Cabauw Experimental Site for Atmospheric
Research (CESAR) in the Netherlands or produced as
mesoscale hindcast of the same site by the Weather Research
and Forecasting (WRF) model. The variance-based method was
only applied to WRF model data because observed MET vari-
ances are not routinely available and because the experimental
estimation of the associated length scale is challenging. Three
multi-day test cases from spring (4 days), summer (2 days),
and autumn (2 days) were selected to investigate the seasonal
variability of the parameterizations’ performance. While our
study is focused on CESAR due to its extensive instrumentation,
we anticipate our results to be valid also for comparable sites.

Overall, all three parameterizations performed well during
stable (nighttime) and unstable (daytime) conditions and did
not show a significant seasonal accuracy dependency. Detailed
analysis revealed that the flux and gradient-based methods
yield large constant biases up to one order of magnitude for sta-
ble/nighttime estimates compared to measured C 2

n . In contrast,
the unstable/daytime values are close to observations. Because
both parameterizations are more sensitive to their inputs during
stable than unstable conditions, this finding stresses the need
to accurately model or measure the parameterization inputs,
especially at night. The variance-based approach tends to under-
estimate the night and day values but shows high correlation.
Since we do not have access to the measured turbulent variances,
we cannot investigate whether the underestimation results
from the variance-based formulation or the simulated data.
Nevertheless, the overall error behavior was more balanced
compared to the other two methods, with less variation in the
performance metrics for different seasons and atmospheric
stabilities. Concerning the input data, the WRF-based estimates
were found to be as realistic as the MET-based ones compared
to the scintillometers. The cases where WRF deviates from
observed trends can typically be attributed to local or complex
short-duration weather events. Such patterns are known to
be challenging to model in mesoscale simulations. Due to the
statistically high accuracy of the WRF-based results, we still
consider them reliable and valuable for quantifying important
trends.

For FSOC purposes, the selection of a C 2
n parameterization is

highly use case dependent. The typical goal is to quantify optical
turbulence (OT) strength at or around a site of interest by deter-
mining C 2

n experimentally or numerically to feed it to FSOC
downstream tasks. Such tasks can be the design of adaptive
optics systems at a laser terminal [18] or the quantification of
the effect that OT has on a propagating beam [53]. The details
of the respective use cases guide the selection of an appropriate
parameterization. It matters, for example, whether a simulation
or a field campaign is carried out and how the FSOC link under
consideration is set up (e.g., vertical or horizontal). In the case of
field campaigns, the flux and gradient-based methods are most
relevant due to the challenging length scale estimation required
for the variance-based parameterization. The gradient-based
approach only requires simple routinely available mean values

of meteorological variables but from multiple instruments at
different heights. The flux-based method, however, utilizes tur-
bulent fluxes from more expensive instruments but only needs
observations close to the surface. Consequently, the instru-
ments available for a field campaign can constrain the choice of
parameterization. In WRF, fluxes and the underlying fields for
the gradients are routinely available. However, the numerical
computation of gradients can introduce additional errors [51],
and the fluxes strongly depend on the selected land use dataset,
which needs to be representative of the site being simulated.
Also, the theoretical foundation of both parameterizations—
Monin Obukhov similarity theory (MOST)—only allows their
application inside the constant-flux surface layer (SL), which
varies in depth throughout the day. Therefore, for example,
MOST-based C 2

n estimates for FSOC terminals or terrestrial
links are only valid when they are fully contained in the SL.

The SL restriction does not apply to the variance-based
method. This approach can be utilized for the entire atmos-
phere but requires outputs from a mesoscale model (e.g., WRF)
configured with a high-order turbulence closure scheme. We
envision that such variance-based C 2

n estimates based on WRF
(WRF + Var) can be utilized to assess the behavior of various
FSOC links. For example, the long 10 km path of the 80 m
high scintillometer used in this study could be viewed as an
intra-city link with terminals mounted on high-rise buildings.
Similarly, the lower scintillometer with 859 m path length
indicates the applicability of WRF + Var also for shorter links
where the length is similar to the horizontal resolution of the
mesoscale model. Resolving even shorter links of O(100m)
requires to run gray-zone or large eddy simulations [54]. WRF
supports both, and we do not see a fundamental limitation of
the variance-based parameterization, which should hinder its
successful application. Nevertheless, the accuracy of the C 2

n
estimates in these cases must be assessed in future work. We also
see the potential to analyze OT along links between space and
ground using WRF + Var. While our study did not focus on
such high-altitude applications, Basu et al. [12] demonstrated
good agreement between variance-based C 2

n and observed C 2
n

from thermosondes up to ∼25 km height. Combined with
the balanced error behavior and the overall good performance
demonstrated in our work, we believe that the mesoscale simula-
tions and variance-based C 2

n estimates can be very useful for the
optics community.

In conclusion, our study presents the differences between
three main classes of C 2

n parameterizations concerning stability-
dependent performance, theoretical limitations, and relevance
for FSOC applications. The selection is highly use case depen-
dent, but it generally seems that the gradient and flux-based
approaches are better suited for near-surface field campaigns,
while the variance-based method, in combination with a
mesoscale model, has advantages for numerical studies across
the entire atmosphere.
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