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Comparative cellular analysis of motor 
cortex in human, marmoset and mouse

        

The primary motor cortex (M1) is essential for voluntary fine-motor control and is 
functionally conserved across mammals1. Here, using high-throughput 
transcriptomic and epigenomic profiling of more than 450,000 single nuclei in 
humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular 
makeup of this region, with similarities that mirror evolutionary distance and are 
consistent between the transcriptome and epigenome. The core conserved molecular 
identities of neuronal and non-neuronal cell types allow us to generate a cross-species 
consensus classification of cell types, and to infer conserved properties of cell types 
across species. Despite the overall conservation, however, many species-dependent 
specializations are apparent, including differences in cell-type proportions, gene 
expression, DNA methylation and chromatin state. Few cell-type marker genes are 
conserved across species, revealing a short list of candidate genes and regulatory 
mechanisms that are responsible for conserved features of homologous cell types, 
such as the GABAergic chandelier cells. This consensus transcriptomic classification 
allows us to use patch–seq (a combination of whole-cell patch-clamp recordings, RNA 
sequencing and morphological characterization) to identify corticospinal Betz cells 
from layer 5 in non-human primates and humans, and to characterize their highly 
specialized physiology and anatomy. These findings highlight the robust molecular 
underpinnings of cell-type diversity in M1 across mammals, and point to the genes 
and regulatory pathways responsible for the functional identity of cell types and their 
species-specific adaptations.

Single-cell transcriptomic and epigenomic methods have been effective 
in elucidating the cellular makeup of complex brain tissues from pat-
terns of gene expression and underlying regulatory mechanisms2–6. In 
the mouse and human neocortex, diverse neuronal and non-neuronal 
cell types can be defined2,3,5,7 by their distinct transcriptional profiles 
and regions of accessible chromatin or of DNA methylation (DNAm)4,8, 
and can be aligned between species3,9–11 on the basis of these profiles. 
Studies such as these have shown the feasibility of quantitatively study-
ing the evolution of cell types, but have limitations: different cortical 
regions have been profiled in humans and mice; different sets of tran-
scripts have been captured with single-cell and single-nucleus assays; 
and transcriptomic and epigenomic studies have mostly been carried 
out independently.

The primary motor cortex (M1, also known as MOp in mice) is an 
ideal region with which to address questions about cellular evolution in 
rodents and primates. M1 is essential for fine-motor control and is func-
tionally conserved across mammals1. The layer 5 (L5) region of carnivore 
and primate M1 contains specialized ‘giganto-cellular’ corticospinal 
neurons (Betz cells in primates12–16) with distinctive action-potential 
properties that support a high conduction velocity17–19. Some Betz cells 
synapse directly onto spinal motor neurons, unlike rodent corticospi-
nal neurons, which synapse indirectly via spinal interneurons20. These 
observations suggest that Betz cells possess species-adapted intrinsic 
mechanisms to support rapid communication that should be reflected 
in their molecular signatures. To explore the evolutionary conserva-
tion and divergence of M1 cell types and their underlying molecular 

regulatory mechanisms, we analysed single-nucleus transcriptomic 
and epigenomic data from mouse, marmoset, macaque and human M1.

Multi-omic taxonomies of cell types
To characterize the molecular diversity of M1 neurons and non-neuronal 
cells, we applied single-nucleus transcriptomic assays (plate-based 
SMART-seq v4 (SSv4) and droplet-based Chromium v3 (Cv3) RNA 
sequencing) and epigenomic assays (single-nucleus methylcytosine 
sequencing 2 (snmC-seq2) and single-nucleus chromatin accessibility 
and messenger RNA expression sequencing (SNARE–seq2)) to isolated 
M1 samples from human, marmoset and mouse brains (Extended Data 
Fig. 1a–d); we also applied Cv3 to M1 L5 from macaque brains. Single 
nuclei were dissociated from all layers combined or from individual 
layers (in the case of human SSv4 assays), and sorted using the neuronal 
marker NeuN to enrich cellular input to roughly 90% neurons and 10% 
non-neuronal cells (Extended Data Fig. 1e). Datasets from mice are 
reported in a companion paper5. The median detection of neuronal 
genes in humans was higher when we used SSv4 (7,296 genes) as com-
pared with Cv3 (5,657 genes), partially because of the 20-fold greater 
read depth, and detection was lower in marmosets (4,211) and mice 
(5,046) when using Cv3 (Extended Data Fig. 1f–m).

For each species, we defined a diverse set of neuronal and 
non-neuronal clusters of cell types on the basis of unsupervised clus-
tering of snRNA-seq datasets (Extended Data Fig. 1n–r and Supplemen-
tary Tables 1, 2). We organized cell types into hierarchical taxonomies 
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on the basis of transcriptomic similarities (Fig. 1a–c, Extended Data 
Fig. 2 and Supplementary Table 3). As previously described for tempo-
ral cortex (middle temporal gyrus, MTG)3, taxonomies were broadly 
conserved across species, and neuronal subclasses reflected devel-
opmental origins and targets of long-range neuronal projections. 
Cell-type labels include the dissected layer (if available), major class, 
subclass marker gene and most-specific marker gene (Supplementary 
Tables 4–6). GABAergic (γ-aminobutyric acid-producing) types were 
uniformly rare (fewer than 4.5% of neurons), whereas glutamatergic 
and non-neuronal types were more variable in number (0.01–18.4% of 
neurons and 0.15–56.2% of non-neuronal cells, respectively). Finally, 
independent clustering of epigenomic data resulted in diverse clus-
ters that were associated one-to-one with RNA clusters or at a slightly 
higher level in the hierarchy on the basis of shared marker expression.

Single-nucleus sampling provides a relatively unbiased survey of 
cellular diversity3,21 and enables an estimation of cell-type frequencies. 
Consistent with histological measurements (reviewed in ref. 22), we 

identified twice as many GABAergic neurons in human M1 (33%) as in 
mouse M1 (16%), and an intermediate proportion (23%) in marmosets 
(Fig. 1d). L2 and L3 intratelencephalic neurons were significantly more 
common in humans than in marmosets and mice (Fig. 1d)23, while L6 
corticothalamic and L5 extratelencephalic neurons, including corti-
cospinal neurons and Betz cells in primate M1, were significantly rarer 
in primates than in mice.

Consensus M1 taxonomy across species
We integrated Cv3 datasets across species on the basis of shared pat-
terns of coexpression for GABAergic neurons (Fig. 2 and Extended Data 
Fig. 3), glutamatergic neurons (Extended Data Fig. 4) and non-neuronal 
cells (Extended Data Fig. 5). GABAergic nuclei were well mixed across 
species and segregated into six subclasses (Fig. 2a); 17 to 54 subclass 
markers were conserved across species (Fig. 2b, c, Extended Data Fig. 3a 
and Supplementary Tables 7, 8), while most markers had enriched 
expression in only one species. To establish a consensus taxonomy of 
cross-species clusters, we over-split the integrated space (Extended 
Data Fig. 3b) and merged clusters until they included nuclei from all 
species. We defined 24 GABAergic cell types on the basis of consist-
ent overlap of clusters across species (Fig. 2d–f); these cell types had 
conserved marker genes (Extended Data Fig. 3c) and high classification 
accuracy (Extended Data Fig. 3d, e and Supplementary Table 9). Distinct 
consensus types such as ChC and Sst-Chodl were more robust (mean 
area under the receiving operating characteristic (AUROC) curve = 0.99 
within species, 0.88 across species) than were closely related types 
such as Sncg and Sst subtypes (mean AUROC = 0.84 within species, 0.50 
across species). Most types were enriched in the same layers in humans 
and mice (Fig. 2g), with notable differences. ChCs were enriched in 
L2/3 in mice and in all layers in humans, as was seen in MTG3. Sst-Chodl 
was restricted to L6 in mice and was also found in L1 and L2 in humans, 
consistent with the reported sparse expression of SST in L1 in human 
but not mouse cortex24.

More consensus clusters could be resolved by pairwise alignment 
between humans and marmosets than between either of these primates 
and mice, particularly for Vip subtypes (Fig. 2h and Extended Data 
Fig. 3f, g). Genes related to neuronal connectivity and signalling were 
most informative of cell-type identity (Fig. 2i), and showed similar 
classification performance when trained and tested in the same species  
(r values of greater than 0.95) but reduced performance when trained 
and tested in different species (62% as high in humans and marmosets, 
and 40% in primates and mice). Therefore, similar genes show selectiv-
ity for subsets of cell types across species, yet individual genes often 
change the specific cell types in which they are expressed.

Glutamatergic neuron subclasses also aligned well across species, 
with 6–66 conserved markers and many more species-enriched markers 
(Extended Data Fig. 4a–c and Supplementary Tables 10, 11). We defined 
a consensus taxonomy of 13 types as above, which was similarly robust 
to the GABAergic taxonomy (GABAergic AUROC = 0.86; glutamatergic, 
0.85; Extended Data Fig. 4i, j and Supplementary Table 9) but had fewer 
conserved markers (Extended Data Fig. 4h). Human and marmoset 
consensus types shared more markers (25%) with each other than with 
mice (16%) for 13 of 14 neuronal subclasses (Fig. 2b and Extended Data 
Fig. 4b). Moreover, humans and marmosets could be aligned at some-
what higher resolution (Extended Data Fig. 4k), particularly for L5/6 
near-projecting and L5 intratelencephalic subclasses.

Non-neuronal consensus types were clearly defined by conserved 
marker genes, except for rare or immature types that were undersam-
pled in humans and marmosets (Extended Data Fig. 5a–d). The human 
cortex contains several morphologically distinct astrocyte types25. We 
reported two transcriptomic clusters in human MTG that corresponded 
to protoplasmic and interlaminar (ILA) astrocytes3, and we validated 
these types in M1 by in situ hybridization (ISH; Extended Data Fig. 5f, g).  
We identified a third type, Astro L1-6 FGFR3 AQP1, that expresses 

0.28
0.560.18

0.09

Neuronal
proportion

Non-
neuronal
proportion

0.28
0.56

Non-
neuronal
proportion

0.28
0.56

Non-
neuronal
proportion

Lamp5 Sncg Vip Sst Pvalb IT ET

N
P

M
ei

s2CT

L6
b

Mouse

Lamp5 Sncg Vip Sst

M
ei

s2

Sst 
Chodl

Sst 
Chodl

Sst 
Chodl

Pvalb IT E
T

N
P

C
T

L6
b

Marmoset

CGE-derived MGE-derived
GABAergic Glutamatergic

Neuronal Non-neuronal

CGE-derived MGE-derived
GABAergic

Glutamatergic

Neuronal Non-neuronal

CGE-derived MGE-derived
GABAergic

Glutamatergic

Neuronal
Non-neuronal

DNAm
cluster

Dissected
layer

Human

AC
cluster

0.18
0.09

Neuronal
proportion

DNAm
cluster

AC
cluster

0.18
0.09

Neuronal
proportion

DNAm
cluster

AC
cluster

Lamp5 / Sncg Vip Sst Pvalb IT ETNPCT L6b

0

0.2

0.4

0.6

L2
/3

 IT
L5

 IT
L6

 IT

L6
 IT

 C
ar

3
L5

 E
T

L5
/6

 N
P

L6
 C

T
L6

b

S
ub

cl
as

s 
p

ro
p

or
tio

n

*

*
*

*

0

0.1

0.2

0.3

0.4

La
m

p5
Snc

g
Vip

Sst 
Cho

dl
Sst

Pva
lb

M
eis

2

S
ub

cl
as

s 
p

ro
p

or
tio

n

*

*

*

0

0.25

0.50

0.75

GABA

Glut
am

at
er

gic

C
la

ss
 p

ro
p

or
tio

n

Human
Marmoset
Mouse

*

* Glutamatergic neuronsGABAergic neuronsNeurons

b

a

d

c

Fig. 1 | Molecular taxonomy of cell types in the primary motor cortex (M1) of 
humans, marmosets and mice. a–c, Dendrograms showing cell-type clusters 
defined by RNA sequencing (RNA-seq; using Cv3) for humans (a), marmosets (b) 
and mice (c), annotated with the cluster proportions of total neuronal or 
non-neuronal cells and (for humans) with dissected layers (L1–L6). RNA-seq 
clusters mapped to clusters of accessible chromatin (AC) and DNAm. d, Relative 
proportions of some neuronal cell types were significantly different between 
species, based on analysis of variance (ANOVA) followed by Tukey’s HSD 
two-sided tests (degrees of freedom = 13; *P < 0.05 (Bonferonni-corrected)). 
Data in d are means ± s.d., and points represent individual donor specimens for 
humans (n = 2), marmosets (n = 2), and mice (n = 12). Marmoset silhouettes are 
from www.phylopic.org (public domain).

http://www.phylopic.org


Nature | Vol 598 | 7 October 2021 | 113

APQ4 and TNC and corresponds to fibrous astrocytes in white matter. 
Non-neuronal gene expression diverged with evolutionary distance: 
ILAs (Astro_1) had 560 differentially expressed genes (DEGs) (Wilcox 
test; false discovery rate (FDR) less than 0.01; log-transformed fold 
change greater than 2) between humans and mice, and only 221 DEGs 
between humans and marmosets (Extended Data Fig. 5e).

Primates had a unique oligodendrocyte population (Oligo SLC1A3 
LOC103793418 in marmosets and Oligo L2-6 OPALIN MAP6D1 in humans) 
that was not a distinct cluster in mice (Extended Data Fig. 5c). Surpris-
ingly, this oligodendrocyte population clustered with glutamatergic 
neurons (Extended Data Fig. 1a, b) and was associated with neuronal 
transcripts such as NPTX1, OLFM3 and GRIA1 (Extended Data Fig. 5h). 
This was not an artefact, as fluorescent in situ hybridization (FISH) 
for markers of this type (SOX10 and ST18) co-localized with neuronal 
markers in the nuclei of cells that were sparsely distributed across many 
layers of human and marmoset M1 (Extended Data Fig. 5i). This type 
may represent an oligodendrocyte population that has phagocytosed 
parts of neurons and accompanying transcripts, similar to the reported 
phagocytic function of some oligodendrocyte precursor cells26.

To assess the usage of differential isoforms between humans and 
mice, we used SSv4 data with full transcript coverage and estimated 
isoform abundance in cell subclasses. Remarkably, 25% of moder-
ately expressed isoforms showed a more than ninefold change in 
usage between species, and isoform switching was more common in 
non-neuronal than in neuronal subclasses (Fig. 2j, Extended Data Fig. 3h 
and Supplementary Table 12). For example, β2-chimaerin (CHN2) was 
highly expressed in L5/6 near-projecting cells, and the short isoform 
was dominant in mice, while longer isoforms were also expressed in 
humans (Extended Data Fig. 3i).

Cell-type-specific epigenetic regulation
Epigenomic profiling of M1 cell types can reveal regulatory mecha-
nisms of transcriptomic identity. To profile the accessible chromatin 
of RNA-defined cell populations from humans and marmosets, we 
used SNARE–seq2 (refs. 6,27,28; Extended Data Fig. 6a, b and Supple-
mentary Table 13). We defined ‘RNA-level’ clusters by mapping single 
nuclei to human and marmoset taxonomies (Fig. 1a, b) on the basis of 
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expression similarity; predicted cell-type identities were consistent 
with independent clustering (Extended Data Fig. 6c–f). Some RNA-level 
clusters could not be predicted robustly from profiles of accessible 
chromatin and were iteratively merged (Fig. 3a and Extended Data 
Fig. 6g–k). Clusters at the level of accessible chromatin had similar 
coverage across donors, and inferred gene activity was highly cor-
related with RNA expression (Extended Data Fig. 7a–f). To identify 
cell-type-specific candidate cis-regulatory elements, we determined 
differentially accessible regions (DARs) in clusters identified from 
accessible chromatin (Fig. 3b) and RNA information (Extended Data 
Fig. 7g, h and Supplementary Table 14). These results highlight the 
ability of SNARE–seq2 to characterize accessible chromatin at higher 
cell-type resolution than available from accessible chromatin alone. 
Distal regulatory elements were linked to marker genes by predict-
ing marker expression on the basis of features of DARs located within 
500 kilobases of transcriptional start sites (Fig. 3b, Extended Data 
Fig. 7i and Supplementary Table 14).

To further characterize the epigenomic landscape of M1 cell types, we 
profiled DNAm from humans, marmosets and mice29 using snmC-seq2 

(ref. 30) (Extended Data Fig. 8, Supplementary Table 15). On the basis 
of DNAm profiles in CpG (CG methylation, or mCG) and non-CpG (CH 
methylation, or mCH) sites, we grouped single nuclei into 31 DNAm clus-
ters in humans, 36 in marmosets and 42 in mice (Fig. 3c and Extended 
Data Fig. 8a, b) that correspond to transcriptomic cell types (Extended 
Data Fig. 8e–g). Notably, we identified more Vip neuron types in human 
M1 by using DNAm rather than accessible chromatin, despite profil-
ing only 5% as many nuclei with snmC-seq2. DNAm clusters could be 
robustly discriminated and had distinct marker genes based on DNAm 
signatures for neurons (mCH) or non-neuronal cells (mCG) (Extended 
Data Fig. 8d and Supplementary Table 16). Differentially methylated 
regions (DMRs) were determined for each cell type versus all other types, 
and overlapped only partially with DARs (Extended Data Fig. 8c, i, j)5.  
The intersection of these genomic regions may guide the identification 
of regulatory elements of marker genes such as KIT, which is expressed 
in the consensus type Lamp5_2 (Fig. 3d) and corresponds to ‘rosehip’ 
GABAergic neurons in humans24.

To gain insight into the evolutionary conservation of regulatory 
processes that define M1 cell types, we focused on neuronal subclasses 
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neighbour embedding (t-SNE) plot showing enrichment of TFBSs in DMRs.



Nature | Vol 598 | 7 October 2021 | 115

(Fig. 3e). Subclass DARs (Fig. 3f) and DMRs (Fig. 3g and Extended Data 
Fig. 8h) had conserved proportions, although fewer DARs and DMRs 
were detected for rare subclasses owing to reduced statistical power5. 
DMRs and DARs showed low and variable overlap (median 11%; range 
0–32%) across subclasses (Extended Data Fig. 8i, j). Only 5% of human 
and marmoset subclass DARs were shared between species, compared 
with 25% of RNA marker genes. To identify transcription factors that 
may mediate cell subclass identity, we tested for differential activities 
of transcription-factor-binding sites (TFBSs) in accessible chromatin 
(Supplementary Table 17) and for significant TFBS enrichments in 
DMRs (Extended Data Fig. 9 and Supplementary Tables 18, 19). Although 
many DARs and DMRs were species specific, TFBS enrichments and 
transcription-factor marker expression were remarkably conserved 
and distinct between subclasses (Fig. 3h–j and Extended Data Fig. 9). 
Therefore, evolutionary divergence of expression may be driven partly 
by genomic relocation of TFBS motifs that are bound by a conserved 
transcription-factor regulatory network31.

L4-like neurons in human M1
M1 lacks L4 as defined by a thin band of densely packed ‘granular’ 
neurons that is present in other cortical areas, such as MTG (Fig. 4a). 
However, prior studies have identified L4-like neurons in M1 on the 
basis of synaptic properties in mice32 and cell morphology and lack 
of SMI-32 labelling33 and expression of RORB34 (an L4 marker) in pri-
mates. To address the potential existence of L4-like neurons in human 
M1 from a transcriptomic perspective, we integrated snRNA-seq data 
from agranular M1 and granular MTG, where we previously described 
multiple L4 glutamatergic neuron types3. This alignment revealed a 
broadly conserved cellular architecture between M1 and MTG (Fig. 4b, 
c and Extended Data Fig. 10), including M1 neuron types Exc L3 RORB 
OTOGL and Exc L3-5 RORB LINC01202 that map closely to MTG neurons 
in deep L3 and L4 (Fig. 4c).

We found transcriptomically similar cell types in similar layers in M1 
and MTG across the full cortical depth (Fig. 4d). OTOGL and LINC01202 
matched MTG types COL22A1 and ESR1, respectively, whereas there 

were no matches for MTG L4 types FILIP1L and TWIST2 (Fig. 4e, f). FISH 
analysis validated that the M1 LINC01202 type was sparser and more 
widely distributed across L3 and L5 than the MTG ESR1 type, which 
was restricted to L4 (Fig. 4g, h). By contrast, the M1 OTOGL and MTG 
COL22A1 types were located in deep L3 and superficial L5 or L4, respec-
tively. Thus, M1 contains cells with L4-like properties, but with less 
diversity and much sparser representation.

Core molecular identity of chandelier cells
Canonical features of cell types are likely to be the consequence of 
conserved transcriptomic and epigenomic features. Focused analysis of 
Pvalb-expressing GABAergic neurons illustrates the power of these data 
to predict such gene–function relationships. Cortical Pvalb-expressing 
neurons—comprising basket cells and ChCs—share fast-spiking electri-
cal properties but have distinctive morphologies (Fig. 5a), including 
ChCs that target axon initial segments (AISs). To reveal conserved tran-
scriptomic hallmarks of ChCs, we identified 357 DEGs in ChCs versus 
basket cells in at least one species. Humans and marmosets shared a 
significantly (P = 0.009; chi-squared test) higher percentage of DEGs 
(23%) than either species did with mice (average 15%) (Fig. 5b and Sup-
plementary Table 20). Remarkably, only 25 DEGs were conserved across 
all three species, including UNC5B (which encodes a netrin receptor 
that may contribute to AIS targeting) and three transcription-factor 
genes (RORA, TRPS1 and NFIB) (which were among the top 1% of the 
most highly expressed transcription-factor genes in ChCs) (Fig. 5c).

To determine whether ChCs had enriched epigenomic signatures 
for RORA and NFIB (TRPS1 lacked motif data), we compared DMRs 
between ChCs and basket cells. In all species, RORA and NFIB showed 
gene-body hypomethylation (mCH) in ChCs but not in basket cells 
(Fig. 5d), consistent with differential expression. To discern whether 
these transcription factors may preferentially bind to DNA in ChCs, 
we tested for the enrichment of transcription-factor motifs in hypo-
methylated (mCG) DMRs and for transcription-factor activity in sites 
of accessible chromatin genome-wide. We found that the RORA motif 
was significantly enriched in DMRs in primates (Fig. 5d) and showed 
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high activity in accessible-chromatin sites of ChCs in all species (Fig. 5e 
and Supplementary Table 14). Moreover, 60 of 357 DEGs contained an 
ROR-binding motif in DMRs and in regions of accessible chromatin in 
at least one species, further implicating RORA in contributing to gene 
regulatory networks that determine the unique attributes of ChCs.

Specialization of L5 extratelencephalic neurons
Using snRNA–seq, we found that L5 extratelencephalic and intratelen-
cephalic subclasses of neurons could be aligned across humans, 
macaques, marmosets and mice in M1 (Extended Data Fig. 11a–d), 
as previously reported for humans and mice in temporal3 and 
fronto-insular cortex10. L5 extratelencephalic neurons had more than 
250 DEGs distinguishing them from L5 intratelencephalic neurons in 
each species, and fewer DEGs were shared with greater evolutionary 
distance (Fig. 6a, b and Supplementary Table 21). Interestingly, many 
primate-specific extratelencephalic-enriched genes (Fig. 6c) showed 
gradually increasing extratelencephalic specificity in species that are 
more closely related to humans. To explore this idea of gradual evo-
lutionary change further, we identified 131 genes with increasing L5 
extratelencephalic versus intratelencephalic specificity as a function of 
evolutionary distance from humans (Fig. 6d, Supplementary Table 22). 
These genes include canonical axon-guidance genes, which may con-
tribute to maintaining connections between spinal motor neurons 
that are associated with high dexterity in primates20. To investigate 
whether transcriptomically defined L5 extratelencephalic types include 
anatomically defined Betz cells, we combined FISH for markers of L5 
extratelencephalic subtypes with immunolabelling against SMI-32, a 

protein enriched in Betz cells and other long-range-projecting neurons 
in macaques35 (Fig. 6e and Extended Data Fig. 11f, g). Cells consistent 
with the size and shape of Betz cells were identified in two L5 extratelen-
cephalic clusters (Exc L3-5 FEZF2 ASGR2 and Exc L5 FEZF2 CSN1S1), but 
they also included neurons with pyramidal morphologies.

Conserved and primate-enriched DEGs included ion-channel subu-
nits (Fig. 6b and Extended Data Fig. 11e). Prior studies have established 
that membrane properties that depend on HCN channels (low input 
resistance, RN, and a peak resonance, fR, of around 3–9 Hz) distin-
guish extratelencephalic from intratelencephalic neurons in mice36. 
We found that extratelencephalic neurons expressed high levels of 
genes encoding proteins related to the HCN channel in all species 
(HCN1 and PEX5L; Fig. 6b), suggesting conserved HCN-related physi-
ological properties. To facilitate cross-species comparisons of primate 
extratelencephalic/Betz and mouse extratelencephalic neurons, we 
made patch-clamp recordings from L5 neurons in acute and cultured 
slice preparations of mouse (using extratelencephalic-specific Thy1–
YFP and intratelencephalic-specific Etv1–EGFP lines) and macaque M1 
and an area of human premotor cortex containing Betz cells (Fig. 6f, g  
and Extended Data Fig. 12a). For a subset of recordings, we applied 
patch–seq analysis to identify transcriptomic cell types (Extended 
Data Fig. 12b). For mouse M1, 91.4% of neurons in the Thy1–YFP line 
had extratelencephalic-like physiology, and 99.2% of neurons in the 
Etv1–EGFP line had non-extratelencephalic-like physiology (Fig. 6h,i). 
For primate M1, all transcriptomically defined Betz cells (humans, n = 4; 
macaques, n = 3) had extratelencephalic-like physiology, whereas all 
transcriptomically defined non-extratelencephalic neurons (humans, 
n = 2; macaques, n = 3) had non-extratelencephalic-like physiology 
(Fig. 6h, j). The presence of neurons in human premotor cortex with 
Betz-like morphology and gene expression is consistent with observa-
tions that Betz cells may be distributed across motor-related areas that 
contribute to the corticospinal tract14.

There were substantial physiological differences between mouse 
and primate extratelencephalic neurons (Extended Data Fig. 12c–l). 
The firing rate of primate and mouse non-extratelencephalic neurons 
decreased to a steady state within the first second of a ten-second 
depolarizing current injection, whereas the firing rate of mouse 
extratelencephalic neurons increased moderately over the same time 
period (Fig. 6k, l and Extended Data Fig. 12d). In primate extratelence-
phalic/Betz neurons, a distinctive biphasic pattern was characterized 
by an early cessation of firing followed by a sustained and dramatic 
increase in firing later in the current injection. Thus, although the 
acceleration in spike frequency of extratelencephalic neurons was 
conserved across species, the temporal dynamics and magnitude 
of the acceleration were distinct in primate extratelencephalic/Betz 
neurons. Ion-channel-related genes that are differentially expressed 
between primates and mice are candidates to drive these physiological  
specializations.

Discussion
Comparative analysis is a powerful strategy with which to understand 
brain structure and function. Conservation across species is strong 
evidence for functional relevance under evolutionary constraints that 
can help to identify essential molecular and regulatory mechanisms37,38. 
Conversely, divergence indicates adaption or drift, and may be essential 
to understand the mechanistic underpinnings of human brain func-
tion and susceptibility to human-specific diseases. Our integrated 
transcriptomic and epigenomic analysis of more than 450,000 nuclei 
in humans, non-human primates and mice has yielded a multimodal, 
hierarchical classification of approximately 100 cell types in each 
species, with distinct expression of marker genes and sites of acces-
sible chromatin. This hierarchical organization is highly conserved, 
although species variation has limited the resolution of alignment 
to 45 consensus cell types. These types share a core set of molecular 
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features, including expression of transcription factors and enrichment 
of TFBSs at epigenomic sites. For example, ChCs express a conserved 
transcription-factor marker, RORA, which has binding sites that are 
enriched in regions of accessible chromatin and in hypomethylated 
regions around other ChC markers.

Some characteristics of consensus types also diverge with evolution-
ary distance between species. On average, 39% of neuronal subclass 
markers are shared between humans and marmosets, and 27% of mark-
ers between humans or marmosets and mice. The composition of M1 
circuits shifts dramatically across species. For example, the ratio of 
glutamatergic to GABAergic neurons varies from 2:1 in humans to 3:1 

in marmosets and 5:1 in mice. The relative proportions of GABAergic 
subclasses and types are similar across species, suggesting a global 
increase in GABAergic types. As described previously39, we observed 
proportionally more L2 and L3 intratelencephalic neurons in humans, 
representing a selective increase in the number of neurons projecting 
to other parts of the cortex, presumably to facilitate greater cortico-
cortical communication. Humans and marmosets have proportion-
ally fewer L6 corticothalamic and L5 extratelencephalic neurons (also 
observed in MTG3), which may reflect dilution of these cells owing to 
allometric scaling of the neocortex relative to the subcortical targets 
of these cells in primates. These results suggest evolutionary changes 
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 g, Magnetic resonance images of sagittal and coronal planes, showing the 
approximate location of excised premotor cortex tissue (yellow lines) and 
adjacent M1. h, Voltage responses to a chirp stimulus for the neurons shown in 
f, g (left neuron in g). i, j, Neurons were grouped into putative ET (humans, n = 6; 
macaques, n = 14; mice, n = 136) versus non-ET (humans, n = 2; macaques, n = 28; 
mice, n = 175) neurons on the basis of resonant frequency (RN) and input 
resistance ( fR). k, Example voltage responses to current injections (10-s step) 
for ET and non-ET neurons. The amplitude was adjusted to produce roughly 
five spikes during the first second. l, Firing rate (mean ± s.e.m.) for 1-s epochs 
during the current injection. The firing rates of primate ET neurons (pooled 
data from humans and macaques, n = 20) decreased and then increased, 
whereas the firing rates of other neurons (primate IT neurons, n = 30; mouse ET 
neurons, n = 8; mouse IT neurons, n = 12) increased or remained constant.
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in local and long-range cortical circuit function, and are consistent with 
developmental shifts in neuronal progenitor pools and changes in the 
timing of neurogenesis and migration.

We can leverage similarities between cell types across brain regions 
or species to make inferences about other cellular properties. We iden-
tified sparse L4-like cells in M1 that are not aggregated into a distinct 
layer and are predicted to receive input from thalamic axons. We iden-
tified two L5 extratelencephalic clusters that include neurons with 
Betz morphologies in humans and macaques. Similarly, in a recent 
study of fronto-insular cortex10, we identified an extratelencephalic 
type of neuron that included cells with spindle shapes (von Economo 
neurons). Surprisingly, these two extratelencephalic types include 
neurons with non-Betz and non-spindle morphologies, suggesting that 
there may be graded expression differences associated with these diver-
gent morphologies. Alternatively, distinct markers of Betz neurons 
may be transiently expressed during the development of long-range 
connectivity and not maintained in adulthood, as observed for some 
neurons in flies40.

A comparative approach can help to elucidate what is different in 
humans or can be well modelled in closer, non-human primate rela-
tives. In mice and primates, extratelencephalic neurons have a low 
input resistance and a characteristic peak resonance that reflect their 
large size and high expression of genes related to the HCN channel, 
respectively. However, primate Betz/extratelencephalic neurons have 
distinctive gene-expression and electrophysiological features—includ-
ing pauses, bursting and spike-frequency acceleration, which have been 
seen in cats but not in rodents17,18,41. The selection of an appropriate 
model organism is particularly relevant when studying Betz cells and 
other extratelencephalic neuronal types that are selectively vulner-
able in amyotrophic lateral sclerosis, some forms of frontotemporal 
dementia and other neurodegenerative conditions42,43.
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Methods

Statistics and reproducibility
For multiplex fluorescent in situ hybridization (FISH) and immuno-
fluorescence staining experiments, each ISH probe combination was 
repeated with similar results on at least two separate individuals per 
species, and on at least two sections per individual. The experiments 
were not randomized and the investigators were not blinded to allo-
cation during experiments and outcome assessment. No statistical 
methods were used to predetermine sample size.

Ethical compliance
Postmortem adult human brain tissue was collected after obtaining 
permission from the decedent’s next-of-kin. Postmortem tissue col-
lection was performed in accordance with the provisions of the United 
States Uniform Anatomical Gift Act of 2006 described in the California 
Health and Safety Code section 7150 (effective 1 January 2008) and 
other applicable state and federal laws and regulations. The Western 
Institutional Review Board reviewed tissue-collection processes and 
determined that they did not constitute research on human partici-
pants that requires assessment by an institutional review board (IRB).

Tissue procurement from a neurosurgical donor was performed 
outside of the supervision of the Allen Institute at a local hospital, 
and tissue was provided to the Allen Institute under the authority 
of the IRB of the participating hospital. A hospital-appointed case 
coordinator obtained informed consent from the donor before sur-
gery. Tissue specimens were de-identified before receipt by Allen 
Institute personnel. The specimens collected for this study were 
apparently non-pathological tissues removed during the normal 
course of surgery to access underlying pathological tissues. Tis-
sue specimens collected were determined to be non-essential for 
diagnostic purposes by medical staff, and would have otherwise 
been discarded.

Mouse experiments were conducted in accordance with the US 
National Institutes of Health (NIH) Guide for the Care and Use of Labo-
ratory Animals under protocol numbers 0120-09-16, 1115-111-18 or 
18-00006, and were approved by the Institutional Animal Care and 
Use Committee (IACUC) at the University of Washington, the Allen 
Institute for Brain Science, the Salk Institute, or the Massachusetts 
Institute of Technology. Marmoset experiments were approved by 
and in accordance with the Massachusetts Institute of Technology 
IACUC, protocol number 051705020. Macaque tissue used in this 
research was obtained from the University of Washington National 
Primate Resource Center, under a protocol approved by the University 
of Washington IACUC.

Postmortem human tissue specimens
Male and female donors 18–68 years of age with no known history of 
neuropsychiatric or neurological conditions (‘control’ cases) were 
considered for inclusion in this study (Extended Data Table 1). Rou-
tine serological screening for infectious disease (HIV, hepatitis B and 
hepatitis C) was conducted using donor blood samples, and only those 
donors who were negative for all three tests were considered for inclu-
sion. Only those specimens with RNA integrity (RIN) values of 7.0 or 
more were considered for inclusion. Postmortem brain specimens 
were processed as described3. Briefly, coronal brain slabs were cut 
at 1 cm intervals and frozen for storage at −80 °C until further use. 
Putative hand and trunk-lower limb regions of the primary motor 
cortex were identified, removed from slabs of interest, and subdivided 
into smaller blocks. One block from each donor was processed for 
cryosectioning and fluorescent Nissl staining (Neurotrace 500/525, 
ThermoFisher Scientific). Stained sections were screened for histo-
logical hallmarks of primary motor cortex. After verifying that regions 
of interest contained M1, blocks were processed for nucleus isolation 
as described below.

Human RNA-seq, quality control and clustering
SMART-seq v4. Nucleus isolation and sorting. Vibratome sections were 
stained with fluorescent Nissl, allowing microdissection of individual 
cortical layers (https://doi.org/10.17504/protocols.io.7aehibe). Nucleus  
isolation was performed as described (https://doi.org/10.17504/protocols. 
io.ztqf6mw). NeuN staining was carried out using mouse anti-NeuN 
antibody conjugated to phycoerythrin (PE; EMD Millipore, catalogue 
number FCMAB317PE) at a dilution of 1:500. Control samples were in-
cubated with mouse IgG1k–PE isotype control (BD Biosciences, 555749; 
1:250 dilution). DAPI (4′,6-diamidino-2-phenylindole dihydrochloride; 
ThermoFisher Scientific, D1306) was applied to nucleus samples at a 
concentration of 0.1 μg ml−1. Single-nucleus sorting was carried out 
on either a BD FACSAria II SORP or a BD FACSAria Fusion instrument 
(BD Biosciences) using a 130 μm nozzle and BD Diva software v8.0. A 
standard gating strategy based on DAPI and NeuN staining was applied 
to all samples as described3. Doublet discrimination gates were used 
to exclude nucleus aggregates.

RNA sequencing. The SMART-Seq v4 ultra low input RNA kit for 
sequencing (Takara, catalogue number 634894) was used as per the man-
ufacturer’s instructions. Standard controls were processed with each 
batch of experimental samples as described (https://www.protocols.
io/view/smarterv4-0-5x-amplification-for-single-cell-or-si-7d5hi86). 
After reverse transcription, complementary DNA was amplified with 
21 polymerase chain reaction (PCR) cycles. The NexteraXT DNA library 
preparation kit (Illumina, FC-131-1096) with NexteraXT index kit V2 
sets A–D (FC-131-2001, 2002, 2003 or 2004) was used for preparation 
of sequencing libraries. Libraries were sequenced on an Illumina HiSeq 
2500 instrument (Illumina HiSeq 2500 System, Research Resource 
Identifier (RRID) SCR_016383) using Illumina high output V4 chem-
istry. The following instrumentation software was used during the 
data-generation workflow: SoftMax Pro v6.5, VWorks v11.3.0.1195 and 
v13.1.0.1366, Hamilton Run Time Control v4.4.0.7740, Fragment Ana-
lyzer v1.2.0.11, and Mantis Control Software v3.9.7.19.

Quantification of gene expression. Raw read (fastq) files were aligned 
to the GRCh38 human genome sequence (Genome Reference Consor-
tium, 2011) with the RefSeq transcriptome version GRCh38.p2 (RefSeq, 
RRID SCR_003496, current as of 13 April 2015) and updated by removing 
duplicate Entrez gene entries from the gtf reference file for STAR pro-
cessing. For alignment, Illumina sequencing adapters were clipped from 
the reads using the fastqMCF program (from ea-utils). After clipping, 
the paired-end reads were mapped using spliced transcripts alignment 
to a reference (STAR v2.7.3a, RRID SCR_015899) with default settings. 
Reads that did not map to the genome were then aligned to synthetic 
construct (that is, External RNA Controls Consortium, ERCC) sequences 
and the Escherichia coli genome (version ASM584v2). Quantification 
was performed using summerizeOverlaps from the R package Genomi-
cAlignments v1.18.0. Expression levels were calculated as counts per 
million (CPM) of exonic plus intronic reads.

10× Chromium RNA sequencing. Nucleus isolation and sorting.  
Nucleus isolation for 10× Chromium RNA sequencing was conducted 
as described (https://doi.org/10.17504/protocols.io.y6rfzd6). After 
sorting, single-nucleus suspensions were frozen in a solution of 1× 
phosphate-buffered saline (PBS), 1% bovine serum albumin (BSA), 
10% dimethylsulfoxide (DMSO) and 0.5% RNAsin Plus RNase inhibi-
tor (Promega, N2611), and stored at −80 °C. At the time of use, fro-
zen nuclei were thawed at 37 °C and processed for loading on the 10× 
Chromium instrument as described (https://doi.org/10.17504/proto-
cols.io.nx3dfqn). Samples were processed using the 10× Chromium 
single-cell 3′ reagent kit v3. 10× chip loading and sample processing 
were carried out according to the manufacturer’s protocol. Gene ex-
pression was quantified using the default 10× Cell Ranger v3 (Cell 
Ranger, RRID SCR_017344) pipeline, except for substituting of the 
curated genome annotation used for SMART-seq v4 quantification. 
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Introns were annotated as ‘mRNA’, and intronic reads were included 
to quantify expression.

Quality control of RNA-seq data. Nuclei were included for analysis 
if they passed all quality-control criteria. For SMART-seq v4, criteria 
were: more than 30% of cDNA was longer than 400 base pairs; more than 
500,000 reads were aligned to exonic or intronic sequences; more than 
40% of total reads were aligned; more than 50% of reads were unique; 
the T/A nucleotide ratio was greater than 0.7. For Cv3, criteria were: 
more than 500 (non-neuronal nuclei) or more than 1,000 (neuronal 
nuclei) genes were detected; doublet score was less than 0.3.

Clustering of RNA-seq data. Nuclei passing quality-control criteria 
were grouped into transcriptomic cell types using a reported iterative 
clustering procedure2,3. Briefly, intronic and exonic read counts were 
summed, and log2-transformed expression was centred and scaled 
across nuclei. X and Y chromosomes and mitochondrial genes were 
excluded to avoid nucleus clustering on the basis of sex or nucleus 
quality. DEGs were selected; principal components analysis (PCA) re-
duced dimensionality; and a nearest neighbour graph was built using 
up to 20 principal components. Clusters were identified with Louvain 
community detection (or Ward’s hierarchical clustering if there were 
fewer than 3,000 nuclei), and pairs of clusters were merged if either 
cluster lacked marker genes. Clustering was applied iteratively to each 
subcluster until clusters could not be further split.

Cluster robustness was assessed by repeating iterative clustering 100 
times for random subsets of 80% of nuclei. A co-clustering matrix was 
generated that represented the proportion of clustering iterations in 
which each pair of nuclei was assigned to the same cluster. We defined 
consensus clusters by iteratively splitting the co-clustering matrix as 
described2,3. The clustering pipeline is implemented in the R package 
scrattch.hicat v0.0.22 (RRID SCR_018099), with marker genes defined 
using the limma v3.38.3 package; the clustering method is provided by 
the ‘run_consensus_clust’ function (https://github.com/AllenInstitute/
scrattch.hicat).

Clusters were curated on the basis of quality-control criteria or the 
expression of markers of cell classes (GAD1, SLC17A7, SNAP25). Clusters 
were identified as donor specific if they included fewer nuclei sampled 
from donors than expected by chance. To confirm exclusion, clusters 
automatically flagged as outliers or donor specific were manually 
inspected for expression of broad cell-class marker genes, mitochon-
drial genes related to quality, and known activity-dependent genes.

Marmoset sample processing and nuclei isolation
Marmoset experiments were approved by, and in accordance with, 
the Massachusetts Institute of Technology IACUC, protocol number 
051705020. Two adult marmosets (2.3 and 3.1 years old; one male, one 
female; Extended Data Table 2) were deeply sedated by intramuscular 
injection of ketamine (20–40 mg kg−1) or alfaxalone (5–10 mg kg−1), 
followed by intravenous injection of sodium pentobarbital (10–30  
mg kg−1). When the pedal withdrawal reflex was eliminated and/or 
the respiratory rate was diminished, animals were transcardially per-
fused with ice-cold sucrose–HEPES buffer. Whole brains were rapidly 
extracted into fresh buffer on ice. Sixteen 2-mm coronal blocking cuts 
were rapidly made using a custom-designed marmoset brain matrix. 
Coronal slabs were snap-frozen in liquid nitrogen and stored at −80 °C 
until use.

As for human samples, marmoset M1 was isolated from thawed 
slabs using fluorescent Nissl staining (Neurotrace 500/525, Ther-
moFisher Scientific). Stained sections were screened for histologi-
cal hallmarks of primary motor cortex. Nuclei were isolated from 
the dissected regions as described (https://www.protocols.io/view/
extraction-of-nuclei-from-brain-tissue-2srged6), and were processed 
using the 10× Chromium single-cell 3′ reagent kit v3. 10× chip loading and 
sample processing was done according to the manufacturer’s protocol.

Marmoset RNA-seq, quality control and clustering
RNA-sequencing. Libraries were sequenced on NovaSeq S2 instru-
ments (Illumina). Raw sequencing reads were aligned to calJac3.  
Mitochondrial sequence was added into the published reference as-
sembly. Human sequences of RNR1 and RNR2 (mitochondrial) and 
RNA5S (ribosomal) were aligned using gmap to the marmoset genome 
and added to the calJac3 annotation. Reads that mapped to exons or 
introns of each assembly were assigned to annotated genes. Libraries 
were sequenced to a median read depth of 5.95 reads per unique mo-
lecular index (UMI). The alignment pipeline can be found at https://
github.com/broadinstitute/Drop-seq.

Cell filtering. Cell barcodes were filtered to distinguish true nuclei 
barcodes from empty beads and PCR artefacts by assessing propor-
tions of ribosomal and mitochondrial reads, ratio of intronic/exonic 
reads (greater than 50% of intronic reads), library size (more than 1,000 
UMIs) and sequencing efficiency (true cell barcodes have higher reads 
per UMI). The resulting digital gene-expression matrix (DGE) from each 
library was carried forward for clustering.

Clustering. Clustering analysis proceeded as in ref. 9. Briefly, independ-
ent component analysis (ICA, using the fastICA v1.2-1 package in R; 
RRID SCR_013110) was performed jointly on all marmoset DGEs after 
normalization and variable gene selection, as in ref. 44. The first-round 
clustering resulted in 15 clusters, corresponding to major cell classes 
(neurons, glia and endothelial cells). Each cluster was curated as in ref. 44  
to remove doublets and outliers. Independent components were par-
titioned to remove those reflecting artefactual signals (for example, 
those for which cell loading indicated replicate or batch effects). The 
remaining independent components were used to determine clustering 
(Louvain community detection algorithm igraph v1.2.6 package in R); 
for each cluster, nearest neighbour and resolution parameters were 
set to optimize 1:1 mapping between each independent component 
and a cluster.

Mouse snRNA-seq and snATAC-seq
Single nuclei were isolated from mouse primary motor cortex; gene 
expression and accessible chromatin were quantified using RNA-seq 
(Cv3 and SSv4) and snATAC-seq; and transcriptomic cell types, dendro-
grams and accessible-chromatin profiles were defined as described5.

Integrating and clustering human Cv3 and SSv4 snRNA-seq 
datasets
To establish a set of human consensus cell types, we performed a sepa-
rate integration of snRNA-seq technologies on the major cell classes 
(glutamatergic, GABAergic, and non-neuronal). Broadly, this integra-
tion is comprised of 6 steps: (1) subsetting the major cell class from 
each technology (for example, Cv3 GABAergic and SSv4 GABAergic); 
(2) finding marker genes for all clusters within each technology; (3) 
integrating both datasets with Seurat’s standard workflow using marker 
genes to guide integration (Seurat v3.1.1)45; (4) overclustering the data 
to a greater number of clusters than were originally identified within 
a given individual dataset; (5) finding marker genes for all integrated 
clusters; and (6) merging similar integrated clusters together based 
on marker genes until all merging criteria were sufficed, resulting in 
the final human consensus taxonomy.

More specifically, each expression matrix was log2(CPM + 1) trans-
formed then placed into a Seurat object with accompanying metadata. 
Variable genes were determined by downsampling each expression 
matrix to a maximum of 300 nuclei per scrattch.hicat-defined clus-
ter (from a previous step; see scrattch.hicat clustering) and running 
select_markers (scrattch.io v0.1.0) with n set to 20, to generate a list 
of up to 20 marker genes per cluster. The union of the Cv3 and SSv4 
gene lists were then used as input for anchor finding, dimensionality 
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reduction, and Louvain clustering of the full expression matrices. We 
used 100 dimensions for steps in the workflow, and 100 random starts 
during clustering. Louvain clustering was performed to overcluster 
the dataset to identify more integrated clusters than the number of 
scrattch.hicat-defined clusters. For example, GABAergic neurons had 
79 and 37 scrattch.hicat-defined clusters, 225 overclustered integrated 
clusters, and 72 final human consensus clusters after merging for Cv3 
and SSv4 datasets, respectively. To merge the overclustered integrated 
clusters, up to 20 marker genes were found for each cluster to estab-
lish the neighbourhoods of the integrated dataset. Clusters were then 
merged with their nearest neighbour if there were not a minimum of 
ten Cv3 and two SSv4 nuclei in a cluster, and a minimum of 4 DEGs that 
distinguished the query cluster from the nearest neighbour (note: 
these were the same parameters used to perform the initial scrattch.
hicat clustering of each dataset).

Integrating and clustering
Human MTG and M1 SSv4 snRNA-seq datasets. To compare cell 
types between our M1 human cell type taxonomy and our previously 
described human MTG taxonomy3, we used Seurat’s standard integra-
tion workflow to perform a supervised integration of the M1 and MTG 
SSv4 datasets. Intronic and exonic reads were summed into a single 
expression matrix for each dataset, with CPM normalized, and placed 
into a Seurat object with accompanying metadata. All nuclei from each 
major cell class were integrated and clustered separately. Up to 100 
marker genes for each cluster within each dataset were identified, and 
the union of these two gene lists was used as input to guide alignment 
of the two datasets during integration, dimensionality reduction and 
clustering steps. We used 100 dimensions for all steps in the workflow. 
To compare laminar positioning in M1 and MTG, we estimated the rela-
tive cortical depth from pia for each neuron on the basis of layer dis-
section and average layer thickness46.

Integrating Cv3 snRNA-seq datasets across species. To identify 
homologous cell types across species, we used Seurat’s SCTransform 
workflow to perform a separate supervised integration on each cell class 
across species. Raw expression matrices were reduced to include only 
those genes with one-to-one orthologues defined in the three species 
(14,870 genes; downloaded from NCBI Homologene (https://www.
ncbi.nlm.nih.gov/homologene) in November 2019; RRID SCR_002924) 
and placed into Seurat objects with accompanying metadata. To avoid 
having one species dominate the integrated space and to account for 
potential differences in each species’ clustering resolution, we down-
sampled the number of nuclei to have similar numbers across species 
at the subclass level (for example, Lamp5, Sst, L2/3 IT, L6b, and so on). 
The species with the largest number of clusters under a given subclass 
was allowed a maximum of 200 nuclei per cluster. The remaining spe-
cies then split this theoretical maximum (200 nuclei multiplied by the 
maximum number of clusters under the subclass) evenly across their 
clusters. For example, the L2/3 intratelencephalic subclass had eight, 
four and three clusters for humans, marmosets and mice, respectively. 
All species were allowed a maximum of 1,600 L2/3 intratelencephalic 
nuclei in total; or a maximum of 200 human, 400 marmoset and 533 
mouse nuclei per cluster. To integrate across species, all Seurat objects 
were merged and normalized using Seurat’s SCTransform function. To 
better guide the alignment of cell types from each species, we found up 
to 100 marker genes for each cluster within a given species. We used the 
union of these gene lists as input for the integration and dimensionality 
reduction steps, with 30 dimensions used for integration and 100 for 
dimensionality reduction and clustering. Clustering the human–mar-
moset–mouse integrated space provided an additional quality-control 
mechanism, revealing numerous small, species-specific integrated 
clusters that contained only low-quality nuclei (low UMIs and genes 
detected). We excluded 4,836 nuclei from the marmoset dataset that 
constituted low-quality integrated neuronal c lu st ers.

Estimation of cell-type homology
To identify homologous groups from different species, we applied a 
tree-based method (https://github.com/AllenInstitute/BICCN_M1_Evo) 
and package (https://github.com/huqiwen0313/speciesTree). In brief, 
the approach consists of four steps: first, metacell clustering; second, 
hierarchical reconstruction of a metacell tree; third, measurements of 
species mixing and stability of splits; and fourth, dynamic pruning of 
the hierarchical tree.

First, to reduce noise in single-cell datasets and to remove 
species-specific batch effects, we clustered cells into small highly 
similar groups on the basis of the integrated matrix generated by Seu-
rat, as described in the previous section. These cells were further aggre-
gated into metacells, and the expression values of the metacells were 
calculated by averaging the gene expression of individual cells that 
belong to each metacell. Correlation was calculated on the basis of the 
metacell gene-expression matrix to infer the similarity of each metacell 
cluster. Then hierarchical clustering was performed on the basis of the 
metacell gene-expression matrix using Ward’s method. For each node 
or corresponding branch in the hierarchical tree, we calculated three 
measurements, and the hierarchical tree was visualized on the basis 
of these measurements: first, cluster size was visualized as the thick-
ness of branches in the tree; second, species mixing was calculated on 
the basis of the entropy of the normalized cell distribution and visual-
ized as the colour of each node and branch; third, the stability of each 
node. The entropy of cells was calculated as: H p p= − ∑ logi i i, where pi 
is the probability of cells from one species appearing among all the 
cells in a node. We assessed the node stability by evaluating the agree-
ment between the original hierarchical tree, and a result on a subsam-
pled dataset was calculated on the basis of the optimal subtree in the 
subsampled hierarchical trees, derived from subsampling 95% of cells 
in the original dataset. The entire subsampling process was repeated 
100 times and the mean stability score for every node in the original 
tree was calculated. Finally, we recursively searched each node in the 
tree. If the heuristic criteria (see below) were not met for any node 
below the upper node, the entire subtree below the upper node was 
pruned, and all of the cells belonging to this subtree were merged into 
one homologous group.

To identify robust homologous groups, we applied criteria in two 
steps to dynamically search the cross-species tree. First, for each node 
in the tree, we computed the mixing of cells from three species on the 
basis of the entropy and set it as a tuning parameter. For each integrated 
tree, we tuned the entropy parameter to make sure that the tree method 
generated the highest resolution of homologous clusters without losing 
the ability to identify potential species-specific clusters. Nodes with 
entropy larger than 2.9 (for inhibitory neurons) or 2.75 (for excitatory 
neurons) were considered as well mixed nodes. For example, an entropy 
of 2.9 corresponded to a mixture of humans, marmosets and mice equal 
to (0.43, 0.37, 0.2) or (0.38, 0.30, 0.32). We recursively searched all of 
the nodes in the tree until we found the node nearest the leaves of the 
tree that was well mixed among species, and this node was defined as a 
well mixed upper node. Second, we further checked the within-species 
cell composition for the subtrees below the well mixed upper node 
to determine whether further splits were needed. For the cells on the 
subtrees below the well mixed upper node, we measured the purity of 
within-species cell composition by calculating the percentage of cells 
that fall into a specific subgroup in each individual species. If the purity 
for any species was larger than 0.8, we went one step further below the 
well mixed upper node so that its children were selected. Any branches 
below these nodes (or well mixed upper node if the within-species cell 
composition criteria were not met) were pruned, and cells from these 
nodes were merged into the same homologous groups, and the final 
integrated tree was generated.

As a final curation step, the homologous groups generated by the tree 
method were merged to be consistent with within-species clusters. We 
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defined consensus types by comparing the overlap of within-species 
clusters between humans and marmosets, and humans and mice, as 
described3. For each pair of human and mouse clusters and human and 
marmoset clusters, the overlap was defined as the sum of the minimum 
proportion of nuclei in each cluster that overlapped within each leaf of 
the pruned tree. This approach identified pairs of clusters that consist-
ently co-clustered within one or more leaves. Cluster overlaps varied 
from 0 to 1, and were visualized as a heat map with human M1 clusters in 
rows and mouse or marmoset M1 clusters in columns. Cell-type homolo-
gies were identified as one-to-one, one-to-many, or many-to many so 
that they were consistent in all three species. For example, the Vip_2 
consensus type could be resolved into multiple homologous types 
between humans and marmosets but not humans and mice, and the 
coarser homology was retained. Consensus type names were assigned 
on the basis of the annotations of member clusters from humans and 
mice, and avoided specific marker gene names owing to the variability 
of marker expression across species.

To quantify cell-type alignment between pairs of species, we pruned 
the hierarchical tree described above on the basis of the stability and 
mixing of two species. We performed this analysis for human–marmo-
set, human–mouse and marmoset–mouse, and compared the align-
ment resolution of each subclass. The pruning criteria were tuned to 
fit the two-species comparison and to remove bias, and we set the same 
criteria for all comparisons (entropy cutoff 3.0). Specifically, for each 
subclass and pairwise species comparison, we calculated the number 
of leaves in the pruned tree. We repeated this analysis on the 100 sub-
sampled datasets, and calculated the mean and standard deviation of 
the number of leaves in the pruned trees. For each subclass, we tested 
for significant differences in the average number of leaves across pairs 
of species using an ANOVA test followed by post hoc Tukey HSD tests.

Marker determination for cell-type clusters
NS-Forest v2.1 (RRID SCR_018348) was used to determine the minimum 
set of marker genes whose combined expression identified cells of a 
given type with maximum classification accuracy47,48 (https://github.
com/JCVenterInstitute/NSForest/releases). Briefly, for each cluster, 
NS-Forest produces a random-forest model using a one versus all binary 
classification approach. The top ranked genes from the random forest 
are then filtered by expression level to retain genes that are expressed 
in at least 50% of the cells within the target cluster. The selected genes 
are then reranked by binary score, calculated by first finding median 
cluster expression values for a given gene and then dividing by the 
target median cluster expression value. Next, one minus this scaled 
value is calculated, resulting in 0 for the target cluster and 1 for clus-
ters that have no expression, while negative scaled values are set to 0. 
These values are then summed and normalized by dividing by the total 
number of clusters. In the ideal case, where all off-target clusters have 
no expression, the binary score is 1. Finally, for the top six binary genes, 
optimal expression level cutoffs are determined and all permutations 
of genes are evaluated by f-beta score, where the beta is weighted to 
favour precision. This f-beta score indicates the power of discrimina-
tion for a cluster and a given set of marker genes. The gene combina-
tion giving the highest f-beta score is selected as the optimal marker 
gene combination. Marker gene sets for human, mouse and marmoset 
primary motor cortex are listed in Supplementary Tables 4–6, and 
were used to construct the semantic cell-type definitions provided in 
Supplementary Table 1.

Calculating DEGs
To identify subclass level DEGs that are conserved and divergent across 
species, we used the integrated Seurat objects from the species integra-
tion step. Seurat objects for each major cell class were downsampled to 
have up to 200 cells per species cell type. Positive DEGs were then found 
using Seurat’s FindAllMarkers function, using the ROC test with default 
parameters (min.pct = 0.1, AUROC threshold = 0.7). We compared each 

subclass within species to all remaining nuclei in that class, and used 
the SCT normalized counts to test for differential expression. For exam-
ple, human Sst nuclei were compared with all other GABAergic human 
neurons using the ROC test. Venn diagrams were generated using the 
eulerr package v6.0.0 to visualize the relationships of DEGs across spe-
cies for a given subclass. Heat maps of DEGs for all subclasses under 
a given class were generated by downsampling each subclass to 50 
random nuclei per species. SCT normalized counts were then scaled 
and visualized with Seurat’s DoHeatmap function.

To identify ChC DEGs that are enriched over basket cells, we used 
the integrated Seurat objects from the species integration step. The 
Pvalb subclass was subset, and species cell types were then designated 
as either ChCs or basket cells. Positive DEGs were then found using 
Seurat’s FindAllMarkers function using the ROC test to compare ChCs 
and basket cells for each species. Venn diagrams were generated using 
the eulerr package to visualize the relationship of ChC-enriched DEGs 
across species. Heat maps of conserved DEGs were generated by down-
sampling the dataset to have 100 randomly selected basket cells and 
ChCs from each species. SCT normalized counts were then scaled and 
visualized with Seurat’s DoHeatmap function.

We used the four-species (humans, macaques, marmosets and mice) 
integrated glutamatergic Seurat object from the species integration 
step for all L5 extratelencephalic DEG figures. L5 extratelencephalic 
and L5 intratelencephalic subclasses were downsampled to 200 ran-
domly selected nuclei per species. A ROC test was then performed using 
Seurat’s FindAllMarkers function between the two subclasses for each 
species to identify L5 extratelencephalic-specific marker genes. We 
then used the UpSetR v1.4.0 package to visualize the intersections of 
the marker genes across all four species as an upset plot. To determine 
genes that decrease in expression across evolutionary distance in L5 
extratelencephalic neurons, we found the log-transformed fold change 
between L5 extratelencephalic and L5 intratelencephalic for each spe-
cies across all genes. We then filtered the gene lists to include only those 
genes that had a trend of decreasing log-transformed fold change (from 
humans to macaques to marmosets to mice). Lastly, we excluded any 
gene that did not have a log-transformed fold change of 0.5 or greater 
in the human comparison. These 131 genes were then used as input for 
Gene Ontology (GO) analysis with the PANTHER classification system49 
for the biological process category, with the organism set to Homo 
sapiens. All significant GO terms for this gene list were associated with 
cell–cell adhesion and axon guidance, and are coloured blue in the line 
graph of their expression enrichment.

Differential isoform usage in humans and mice
To assess changes of isoform usage between mice and humans, we 
used SSv4 data with full transcript coverage and estimated isoform 
abundance in each cell subclasses. To mitigate low read depth in each 
cell, we aggregated reads from all cells in each subclass. We estimated 
the relative isoform usage in each subclass by calculating its genic pro-
portion (P), defined as the ratio (R) of isoform expression to the gene 
expression, where R = (Phuman − Pmouse)/(Phuman + Pmouse). For a common 
set of transcripts for mice and humans, we used the University of Cali-
fornia San Diego (UCSC) browser (RRID SCR_005780) TransMapV5 set 
of human transcripts (hg38 assembly, Gencode v31 annotations, RRID 
SCR_014966) mapped to the mouse genome (mm10 assembly) (http://
hgdownload.soe.ucsc.edu/gbdb/mm10/transMap/V5/mm10.ensembl.
transMapV5.bigPsl). We considered only medium to highly expressed 
isoforms, which have abundances of greater than 10 transcripts per 
million (TPM) and P values of greater than 0.2 in either mice or humans, 
and abundances of greater than 10 TPM in both mice and humans.

To calculate isoform abundance in each cell subclass, we aggregated 
reads from each subclass; mapped reads to the mouse or human ref-
erence genome with STAR 2.7.3a using default parameters; trans-
formed genomic coordinates into transcriptomic coordinates using 
the STAR parameter –quantMode TranscriptomeSAM; and quantified 
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isoform and gene expression using the RSEM v1.3.3 parameters (RSEM, 
RRID:SCR_013027) –bam–seed 12345–paired-end–forward-prob 0.5–
single-cell-prior–calc-ci.

To estimate statistical significance, we calculated the standard devia-
tion of isoform genic proportion (Phuman and Pmouse) from the RSEM’s 
95% confidence intervals of isoform expression; calculated the P-value 
using the normal distribution for the (Phuman − Pmouse) and the summed 
(mouse + human) variance; and Bonferroni-adjusted P-values by multi-
plying nominal P-values by the number of medium to highly expressed 
isoforms in each subclass.

Species cluster dendrograms
DEGs for a given species were identified by using Seurat’s FindAllMark-
ers function with a Wilcox test and comparing each cluster with every 
other cluster under the same subclass, with logfc.threshold set to 0.7 
and min.pct set to 0.5. The union of up to 100 genes per cluster with the 
highest avg_logFC was used. The average log2 expression of the DEGs 
was then used as input for the build_dend function from scrattch.hicat 
to create the dendrograms. This was carried out with both human and 
marmoset datasets. For mouse dendrogram methods, see ref. 5.

Multiplex FISH and immunofluorescence
Fresh-frozen human postmortem brain tissues were sectioned at 
14–16 μm onto Superfrost Plus glass slides (Fisher Scientific). Sections 
were dried for 20 min at −20 °C and then vacuum sealed and stored at 
−80 °C until use. The RNAscope multiplex fluorescent v1 kit was used 
per the manufacturer’s instructions for fresh-frozen tissue sections 
(ACD Bio), except that fixation was performed for 60 min in 4% para-
formaldehyde in 1× PBS at 4 °C and protease treatment was shortened 
to 5 min. For combined RNAscope and immunofluorescence, primary 
antibodies were applied to tissues after completion of FISH staining. 
Primary antibodies used were mouse anti-GFAP (EMD Millipore, cata-
logue number MAB360, RRID AB_11212597, 1:500 dilution) and mouse 
anti-Neurofilament H (SMI-32, BioLegend, catalogue number 801701, 
RRID AB_2564642, 1:250 dilution). Secondary antibodies were goat 
anti-mouse IgG (H+L) Alexa Fluor 568 conjugate (ThermoFisher Sci-
entific, catalogue number A-11004, 1:500 dilution), goat anti-mouse 
IgG (H+L) Alexa Fluor 594 conjugate (ThermoFisher Scientific, cata-
logue number A-11005, 1:500 dilution) and goat anti-mouse IgG (H+L) 
Alexa Fluor 647 conjugate (ThermoFisher Scientific, catalogue number 
A-21235, 1:500 dilution) conjugates (594, 647). Sections were imaged 
using a 60× oil immersion lens on a Nikon TiE fluorescence microscope 
equipped with NIS-Elements Advanced Research imaging software 
(v4.20, RRID SCR_014329). For all RNAscope FISH experiments, positive 
cells were called by manually counting RNA spots for each gene. Cells 
were called positive for a gene if they contained three or more RNA 
spots for that gene. Lipofuscin autofluorescence was distinguished 
from RNA spot signals on the basis of the larger size of lipofuscin 
granules and broad fluorescence spectrum of lipofuscin. Staining for 
each probe combination was repeated with similar results on at least 
two separate individuals per species and on at least two sections per 
individual. Experiments examining L5 extratelencephalic neurons in 
humans were conducted on tissues taken from the dome of the gyrus 
corresponding to the presumptive trunk-lower limb portion of M1. 
Images were assessed with FIJI distribution of ImageJ v1.52p and Graph-
Pad Prism v7.04.

Conservation of gene families
To investigate the conservation and divergence of the coexpression 
of gene families between primates and mice, we carried out Meta-
Neighbour analysis50 using gene groups curated by the HUGO Gene 
Nomenclature Committee (HGNC, RRID SCR_002827) at the Euro-
pean Bioinformatics Institute (https://www.genenames.org; down-
loaded January 2020) and by the Synaptic Gene Ontology (SynGO, 
RRID SCR_017330)51 (downloaded February 2020). HGNC annotations 

were propagated via the provided group hierarchy to ensure the com-
prehensiveness of parent annotations. Only groups containing five or 
more genes were included in the analysis.

After splitting data by class, we used MetaNeighbour to compare 
data at the cluster level using labels from cross-species integration with 
Seurat. Cross-species comparisons were performed at two levels of the 
phylogeny: first, between the two primate species, marmosets and 
humans; and second, between mice and primates. In the first case, the 
data from the two species were each used as the testing and training sets 
across two folds of cross-validation, reporting the average performance 
(AUROC) across folds. In the second case, the primate data were used 
as an aggregate training set, and performance in mice was reported. 
Results were compared to average within-species performance.

Replicability of clusters
MetaNeighbour v1.9.1 (RRID SCR_016727) was used to provide a measure 
of neuronal subclass and cluster replicability within and across species. 
For this application, we tested all pairs of species (human–marmoset, 
marmoset–mouse, human–mouse) as well as testing within each spe-
cies. After splitting the data by class, we identified highly variable genes 
using the get_variable_genes function from MetaNeighbour, yield-
ing 928 genes for GABAergic and 763 genes for glutamatergic neuron 
classes, respectively. These were used as input for the MetaNeighbou-
rUS function, which was run using the fast_version and one_vs_best 
parameters set to TRUE. Using the one_vs_best parameter means that 
only the two closest neighbouring clusters are tested for their similarity 
to the training cluster, with results reported as the AUROC for the clos-
est neighbour over the second closest. AUROCs are plotted in heat maps 
in Extended Data Figs. 2, 3. Data to reproduce these figures can be found 
in Supplementary Table 9, and scripts are on GitHub (http://github.
com/gillislab/MetaNeighbor).

SNARE–seq2
Sample preparation. Human and marmoset primary motor cor-
tex nuclei were isolated for SNARE–seq2 according to the following 
protocol: https://doi.org/10.17504/protocols.io.8tvhwn6 (ref. 6). 
Fluorescence-activated nuclei sorting (FANS) was then performed on 
a FACSAria Fusion (BD Biosciences, Franklin Lakes, NJ), gating out debris 
from forward scatter (FSC) and side scatter (SSC) plots and selecting 
DAPI+ singlets (Extended Data Fig. 6a). Samples were kept on ice until 
sorting was complete and were used immediately for SNARE–seq2.

Library preparation and sequencing. A detailed step-by-step protocol 
for SNARE–seq2 has been outlined in a companion paper28 and is avail-
able at https://doi.org/10.17504/protocols.io.be5gjg3w. The resulting 
libraries of accessible chromatin were sequenced on an MiSeq (Illumina, 
RRID SCR_016379) (read 1, 75 read cycles for the first end of accessible 
chromatin DNA; read 2, 94 read cycles for cell barcodes and UMIs; read 
3, 8 read cycles for i5; read 4, 75 cycles for the second end of accessible 
chromatin DNA read) for library validation, then on a NovaSeq6000 
(Illumina, RRID SCR_016387) using a 300-cycles reagent kit for data 
generation. RNA libraries were combined at equimolar ratios and  
sequenced on an MiSeq (Illumina) (read 1, 70 read cycles for cDNA; 
index 1, 6 read cycles for i7; read 2, 94 cycles for cell barcodes and UMI) 
for library validation, then on a NovaSeq6000 (Illumina) using a 200- 
cycles reagent kit for data generation.

Data processing. A detailed step-by-step pipeline for processing 
SNARE–seq2 data is provided elsewhere28. For RNA data, this involved 
the use of dropEst to extract cell barcodes and STAR (v2.5.2b) to align 
tagged reads to the genome (GRCh38 version 3.0.0 for humans; GCF 
000004665.1 Callithrix jacchus-3.2 for marmosets). For data on ac-
cessible chromatin, this involved Snaptools v1.4.7 for alignment to the 
genome (cellranger-atac-GRCh38-1.1.0 for humans, GCF 000004665.1 
Callithrix jacchus-3.2 for marmosets) and to generate snap objects for 
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processing using the R package SnapATAC v2. We generated 84,178 and 
9,946 dual-omic single-nucleus RNA and accessible chromatin datasets 
from human (n = 2) and marmoset (n = 2) M1, respectively.

Data analysis. Filtering for RNA quality. For SNARE–seq2 data, quality 
filtering of cell barcodes and clustering analysis were first performed 
on transcriptomic (RNA) counts and used to inform subsequent quality 
filtering and analysis of accessible chromatin. Each cell barcode was 
tagged by an associated library batch identification code (for exam-
ple MOP1, MOP2, and so on); RNA read counts associated with dT and 
n6 adaptor primers were merged; libraries were combined for each 
sample within each experiment and empty barcodes were removed 
using the emptyDrops() function of DropletUtils v1.6.1 (ref. 52); mi-
tochondrial transcripts were removed; and doublets were identified 
using the DoubletDetection v2.5 software53 and removed. All samples 
were combined across experiments within species, and cell barcodes 
having greater than 200 and fewer than 7,500 genes detected were 
kept for downstream analyses. To further remove low-quality datasets, 
we applied a gene UMI ratio filter (gene.vs.molecule.cell.filter) using 
Pagoda2 v0.1.0 (https://github.com/hms-dbmi/pagoda2).
Clustering of RNA data. For human SNARE–seq2 RNA data, clustering 
analysis was first performed using Pagoda2, where counts were nor-
malized to the total number per nucleus and batch variations were 
corrected by scaling expression of each gene to the dataset-wide 
average. After variance normalization, the top 6,000 overdispersed 
genes were used for principal component analysis. Clustering was 
performed using an approximate k-nearest neighbour graph (with  
k values between 50 and 500) based on the top 75 principal components, 
and cluster identities were determined using the infomap community 
detection algorithm. Major cell types were identified using a common 
set of broad cell-type marker genes: GAD1/GAD2 (GABAergic neurons), 
SLC17A7/SATB2 (glutamatergic neurons), PDGFRA (oligodendrocyte 
progenitor cells), AQP4 (astrocytes), PLP1/MOBP (oligodendrocytes), 
MRC1 (perivascular macrophages), PTPRC (T cells), PDGFRB (vascu-
lar smooth muscle cells), FLT1 (vascular endothelial cells), DCN (vas-
cular fibroblasts) and APBB1IP (microglia) (Extended Data Fig. 6c). 
Low-quality clusters that showed very low gene/UMI detection rates, 
low marker gene detection and/or mixed cell-type marker profiles were 
removed. Oligodendrocytes were overrepresented (54,080 in total), 
possibly reflecting a deeper subcortical sampling than intended; there-
fore, to ensure a more balanced distribution of cell types, we capped 
the number of oligodendrocytes at 5,000 and repeated the PAGODA2 
clustering as above. To achieve optimal clustering of the different 
cell types, we used different k values to identify cluster subpopula-
tions for different cell types (L2/3 glutamatergic neurons, k = 500; all 
other glutamatergic neurons, astrocytes, oligodendrocytes and OPCs, 
k = 100; GABAergic neurons, vascular cells and microglia/perivascular 
macrophages, k = 50). To assess the appropriateness of the chosen k 
values, clusters were compared against SMARTer clustering of data 
generated on human M1 through correlation of cluster-averaged scaled 
gene-expression values using the corrplot v0.84 package (https://
github.com/taiyun/corrplot) (Extended Data Fig. 6d). For cluster visu-
alization, UMAP dimensional reduction was performed in Seurat (v3.1.0, 
RRID SCR_007322) using the top 75 principal components identified 
using Pagoda2 (RRID SCR_017094). For marmosets, clustering was 
initially performed using Seurat, where the top 2,000 variable features 
were selected from the mean variance plot using the ‘vst’ method and 
used for principal component analysis. UMAP embeddings were gen-
erated using the top 75 principal components. To harmonize cellular 
populations across platforms and modalities, snRNA-seq within-species 
cluster identities were predicted from both human and marmoset data. 
We used an iterative nearest-centroid classifier algorithm (see Methods 
subsection ‘Mapping of samples to reference taxonomies’) to gener-
ate probability scores for each SNARE–seq2 nucleus mapping to their 
respective species’ snRNA-seq reference cluster (Cv3 for marmoset 

and SMART-Seqv4 for human). Comparing the predicted RNA cluster 
assignment of each nucleus with Pagoda2-identified clusters showed 
highly consistent cluster membership using a Jaccard similarity index 
(Extended Data Fig. 6e), confirming the robustness of these cell identi-
ties discovered using different analysis platforms.
Filtering for quality of accessible chromatin data, and peak calling. Initial 
analysis of corresponding SNARE–seq2 data on chromatin accessibil-
ity was performed using SnapATAC v2 software (https://github.com/
r3fang/SnapATAC) (https://doi.org/10.1101/615179). Snap objects were 
generated by combining individual snap files across libraries within 
each species. Cell barcodes were included for downstream analyses only 
if cell barcodes passed RNA quality filtering (see above) and showed 
more than 1,000 read fragments and 500 UMIs. Read fragments were 
then binned to 5,000-bp windows of the genome, and only those cell 
barcodes that showed a fraction of binned reads within promoters of 
greater than 10% (15% for marmosets) and less than 80% were kept for 
downstream analysis. For peak calling, pseudo bulk aggregates of reads 
were generated for each of the consensus RNA taxonomies, subclasses 
and classes using Snaptools. Given that comparable sequencing and 
sampling depths were achieved (Supplementary Table 14), pseudo bulk 
aggregates for peak calling included all within-species samples. Peaks 
were called using MACS2 v2.1.2 software (https://github.com/taoliu/
MACS) using the runMACS function in SnapATAC and with the follow-
ing options ‘–nomodel–shift 100–ext 200–qval 5e-2 –B–SPMR’. Peak 
counts by cell barcodes were then computed using the ‘createPmat’ 
function of SnapATAC.
Clustering of accessible chromatin data. The matrices for peak counts 
were filtered to keep only locations from chromosomes 1–22, X or Y, and 
processed using Seurat (v3.1.0) and Signac (v0.1.4) software45 (https://
satijalab.org). All peaks having at least 100 counts (20 for marmosets) 
across cells were used for dimensionality reduction using latent seman-
tic indexing (‘RunLSI’ function) and visualized by UMAP using the first 
50 dimensions (40 for marmosets).
Calculating gene-activity scores. For a gene-activity matrix from acces-
sibility data, cis co-accessible sites and gene-activity scores were calcu-
lated using Cicero software (v1.2.0)54 (https://cole-trapnell-lab.github.
io/cicero-release/). The binary peak matrix was used as input, with the 
expression-family variable set to ‘binomialff’ to make the aggregated 
input Cicero CDS object using the UMAP coordinates derived from 
accessible chromatin peaks, and setting 50 cells to aggregate per bin. 
Co-accessible sites were then identified using the ‘run_cicero’ func-
tion using default settings, and modules of cis co-accessible sites were 
identified using the ‘generate_ccans’ function. Co-accessible sites were 
annotated to a gene if they fell within a region spanning 10,000 bp 
upstream and downstream of the gene’s transcription start site (human) 
or within 5,000 bp of the gene body (marmoset). The Cicero gene activ-
ity matrix was then calculated using the ‘build_gene_activity_matrix’ 
function using a co-accessibility cutoff of 0.25 and added to a separate 
assay of the Seurat object.
Integrating data on RNA and accessible chromatin. To reconcile the 
differing resolutions achievable from RNA and accessible chromatin 
(Extended Data Fig. 6f–k), we carried out an integrative analysis using 
Seurat. Transfer anchors were identified between the activity and RNA 
matrices using the ‘FindTransferAnchors’ function. For human data, 
transfer anchors were generated using an intersected list of variable 
genes identified from Pagoda2 analysis of RNA clusters (top 2,000 
genes) and marker genes for clusters identified from SSv4 data (2,492 
genes having β-scores greater than 0.4), together with canonical cor-
relation analysis (CCA) for dimension reduction. For marmoset data, 
transfer anchors were generated using an intersected list of variable 
genes identified using Seurat (top 2,000 genes) and DEGs identified 
between marmoset RNA clusters (Cv3 snRNA-seq data, P < 0.05, top 
100 markers per cluster). Imputed RNA expression values were then 
calculated using the ‘TransferData’ function from the Cicero gene activ-
ity matrix using normalized RNA expression values for reference and 
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LSI for dimension reduction. RNA and imputed expression data were 
merged, and a UMAP co-embedding and shared nearest neighbour 
(SNN) graph was generated using the top 50 principal components (40 
for marmoset) and clusters identified (‘FindClusters’) using a resolution 
of 4. The resulting integrated clusters were compared with RNA clusters 
by calculating jaccard similarity scores using scratch.hicat software. 
Cell populations identified as T cells from Pagoda2 analysis (humans 
only) and those representing low-quality integrated clusters, showing 
a mixture of disparate cell types, were removed from these analyses. 
RNA clusters were assigned to co-embedded clusters on the basis of 
the highest jaccard similarity score and frequency, and then merged to 
generate the best matched co-embedded clusters, taking into account 
cell type and subclass to ensure more accurate merging of ambiguous 
populations. This produced clusters based on accessible chromatin that 
directly match the RNA-defined populations (Extended Data Fig. 6k). 
For RNA cluster and subclass level predictions (Extended Data Fig. 6g), 
we used the Seurat ‘TransferData’ function to transfer RNA cluster or 
subclass labels to accessible-chromatin data using the precomputed 
transfer anchors and LSI dimensionality reduction.
Final peaks of accessible chromatin and gene-activity matrices. A final 
combined list of peak regions was generated using MACS2, as detailed 
above, for all cell populations corresponding to RNA consensus taxono-
mies (more than 100 nuclei), accessibility level, subclass level (more 
than 50 nuclei) and class level barcode groupings. The final peak by cell 
barcode count matrix was generated by SnapATAC and used to estab-
lish a Seurat object as outlined above, with peak counts, Cicero gene 
activity scores and RNA expression values for matched cell barcodes 
contained within different assay slots. To confirm the appropriateness 
of calling peaks on cell barcode groupings that included both samples, 
we found that 93% of peak regions called by MACS2 on clusters at the 
accessible-chromatin level for the H18.30.001 sample overlapped 
with peak regions called independently for H18.30.002. Clusters at 
the accessible-chromatin level also showed similar coverage across 
individual samples (Extended Data Fig. 7a–d), and peak counts were 
highly correlated across experiments (mean Pearson’s correlation 
coefficient (r) of 0.99 for humans and 0.98 for marmosets). Further-
more, gene activity estimates based on cis-regulatory interactions 
predicted from co-accessible promoter and distal peak regions using 
Cicero54 were highly correlated with RNA expression values (Extended 
Data Fig. 7e, f). Dimensionality reduction using LSI on peak counts for 
final visualization (Extended Data Fig. 7a–c) was performed as above.
Dual-omic data. Following quality-control filtering for RNA and acces-
sible chromatin (including limiting the representation of oligodendro-
cytes for humans) and modality integration, we obtained 84,178 and 
9,946 dual-omic single-nucleus RNA and accessible-chromatin datasets 
from human (n = 2) and marmoset (n = 2) M1, respectively (Extended 
Data Fig. 6a, b and Supplementary Table 13). On average, 2,242 genes 
were detected per nucleus for humans and 3,858 genes per nucleus 
for marmosets, owing to the more than fourfold greater sequencing 
depth for marmosets (average 17,576 reads per nucleus for humans 
and 77,816 reads per nucleus for marmosets). In human and marmoset 
cells, we identified a total of 273,103 and 134,769 regions of accessible 
chromatin, and an average of 1,527 or 1,322 unique peaks of accessible 
chromatin per nucleus, respectively.
Analysis of transcription-factor motifs. Jaspar motifs ( JASPAR2020, 
all vertebrate) were used to generate a motif matrix and motif object 
that was added to the Seurat object using Signac (‘CreateMotifMa-
trix’, ‘CreateMotifObject’, ‘AddMotifObject’); and GC content, region 
lengths and dinucleotide base frequencies were calculated using the 
‘RegionStats’ function. For motif activity scores, chromVAR v1.8.0 
(https://greenleaflab.github.io/chromVAR)55 was carried out according 
to default parameters (marmosets) or using the Signac ‘RunChrom-
VAR’” function on the peak count matrix (humans). The chromVAR 
deviation score matrix was then added to a separate assay slot of the 
Seurat object, and differential activities (or deviation scores) of TFBSs 

between different populations were assessed using the ‘Find[All]Mark-
ers’ function through logistic regression and using the number of peak 
counts as a latent variable.

To examine non-redundant TFBS families, we downloaded motif 
collections generated by matrix clustering56 from the JASPAR database 
(http://jaspar.genereg.net/matrix-clusters/), and used them to generate 
averaged chromVAR TFBS activities by subclass. Select motif clusters 
were visualized using ggHeat plotting function (SWNE package v0.5.7, 
https://github.com/yanwu2014/swne).
Identification of DARs. To compare DARs between cell populations 
(Fig. 3b and Extended Data Fig. 7g, h), we identified DARs that are sig-
nificantly enriched within each cell grouping against a selection of 
background cells having best matched total peak counts. In this way, we 
identified DARs for each cell population, while taking into account any 
technical artefacts associated with the total accessibility for each cell. 
This involved calculating the total peaks in each cell on the basis of the 
accessibility matrix, estimating the distribution of total peaks (depth 
distribution) for the cells belonging to the test cluster, and randomly 
sampling cells (10,000 for humans and 2,000 for marmosets) from the 
rest of the clusters in a weighted way to select cells that have similar 
depth distribution to the test cluster. DARs were then identified as sig-
nificantly enriched in the positive cells over selected background cells 
using the ‘CalcDiffAccess’ function, chromfunks v0.3.0 (https://github.
com/yanwu2014/chromfunks), where P-values were calculated using 
a Fisher’s exact test on a hypergeometric distribution6, and adjusted 
P values (or q values) were calculated using the Benjamini–Hochberg 
method. To compare DAR proportions across subclasses and species, 
we subsampled subclasses (maximum of 500 for humans and 200 for 
marmosets) and identified DARs using the ‘CalcDiffAccess’ function 
as above. AUC values, testing the separation power of a specific DAR 
among different major clusters, were then calculated from the term fre-
quency–inverse document frequency (TF–IDF) normalized peak by cell 
matrix using getDifferentialGenes and auc functions from the pagoda2 
and pROC v1.16.2 packages. To visualize subsampled subclass DARs, 
we selected significant human (q < 0.005 and log-transformed fold 
change > 1) and marmoset (q < 0.05 and log-transformed fold change > 1) 
DARs passing an upper quantile AUC cutoff. For clusters of accessible 
chromatin and RNA in humans, we selected up to the top 100 DARs on 
the basis of log-transformed fold change values (accessible chroma-
tin, q < 0.01 and log-transformed fold change > 1; RNA, q < 0.05 and 
log-transformed fold change > 1). Averaged accessibility values by cell 
grouping were then calculated, scaled (trimming values to a minimum 
of 0 and a maximum of 5), and visualized using the ggHeat plotting 
function (SWNE package).

To identify conservation of DARs between humans and marmosets, 
we found that 97% of marmoset DARs could be aligned to the human 
genome on the basis of at least 10% of matched bases using the LiftO-
ver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). DARs in each 
subclass were considered conserved if they were located within 1 kb of 
the aligned genomic location based on the overlap of genomic loca-
tions between species using the ‘findOverlaps’ function in the Genomi-
cRanges v1.38.0 package.
Linking DARs to marker genes. We identified marker genes for the clus-
ters of accessible chromatin by comparing the gene expression from 
cells in each cluster with a weighted sampling of background cells 
from the remaining clusters. Wilcoxon tests were used to calculate 
the z-scores and adjusted P values for individual genes using ‘getDif-
ferentialGenes’ function from the pagoda2 package. Genes were ranked 
by calculating AUC values, and DARs for the corresponding clusters 
were identified using the method described above. For each identified 
DAR, we assigned it to the nearest gene. The top expressed genes and 
associated DARs that were located within 500 kb of the gene region in 
each cluster of accessible chromatin were considered as associated 
targets. To further identify targets that have a direct link between DARs 
and gene expression, we trained a random forest regression model to 
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predict changes in gene expression in each cluster of accessible chro-
matin on the basis of the features extracted from its assigned DARs. The 
significant targets were then identified by comparing the regression 
model and a background model generated by random permutation. 
The union of the top predictive targets and identified marker genes 
and their associated DARs was selected and visualized.
Correlation analyses. To correlate RNA expression and associated 
accessible-chromatin activities for clusters at the levels of RNA and 
accessible chromatin (Extended Data Fig. 7e, f), we generated aver-
age scaled expression values and carried out pairwise correlations for 
marker genes identified from an intersected list of variable genes from 
Pagoda2 analysis of RNA clusters (top 2,000 genes) and marker genes 
for clusters identified from SSv4 data (2,492 genes having β-scores 
of greater than 0.4). For correlation of TFBS activities across species 
(Fig. 3), chromVAR TFBS activity scores for all Jaspar motifs found to be 
differentially active across marmoset or human subclasses (P < 0.05) 
were averaged, scaled for each species separately, and then correlated. 
Averaged scaled gene-expression values for the corresponding tran-
scription factor were also correlated. Variable genes identified from 
both human and marmoset SNARE–seq2 RNA data using Seurat Find-
VariableFeatures function (selection.method = ‘vst’, nfeatures = 3,000) 
were used to generate averaged scaled expression values and corre-
lated. Correlations between human and marmoset cell subclasses were 
visualized as boxplots for TFBS activities, expression of transcription 
factors, and variable genes using the R package ggplot2 v3.3.2 (ref. 57).
Plots and figures. All UMAP, feature, dot, and violin plots were gener-
ated using Seurat. Correlation plots were generated using the corrplot 
package. Connection plots were generated using Cicero and visualized 
using Gviz v1.30.3 (ref. 58). To generate BigWig files for genome browser 
tracks, we compiled bam files for each cluster and normalized frag-
ments using trimmed mean of M-values (TMM) to better account for 
differences in size (total fragments) and signal-to-noise ratios between 
clusters. For this, inverse scale factors were calculated using EdgeR 
v3.28.1 (ref. 59) for each cluster on the basis of a subset of fragments 
that overlap chromosome 22. BigWig files were then generated using 
deepTools v3.4.2 bamCoverage60 with the following options: (–ignore-
Duplicates–minFragmentLength 0–maxFragmentLength 1000–bin-
Size 50–scaleFactor). Genome browser tracks were generated using 
the Integrative Genomics Viewer (IGV v2.7.0).

Single-cell methylome data (snmC-seq2)
Sequencing and quantification. Library preparation and Illumina 
sequencing. Single nuclei were isolated from human and marmoset 
M1 tissue as described above for RNA-seq profiling, and for mouse tis-
sue as detailed in ref. 5. Single nuclei were labelled with an anti-NeuN 
antibody and isolated by fluorescence-activated cell sorting (FACS), 
and neurons were enriched (90% NeuN+ nuclei) to increase detection of 
rare types. Mouse experiments were approved by the Salk IACUC under 
protocol number 18-00006. Detailed methods for bisulfite conver-
sion and library preparation were previously described for snmC-seq2 
(refs. 4,30). The snmC-seq2 libraries generated from mouse brain tissues 
were sequenced using an Illumina Novaseq 6000 instrument with S4 
flowcells and 150 bp paired-end mode. We generated 6,095, 6,090 
and 9,876 single-nucleus methylcytosine datasets from M1 of humans 
(n = 2), marmosets (n = 2), and mice, respectively.
Mapping and feature-count pipeline. We implemented a versatile 
mapping pipeline (http://cemba-data.rtfd.io) for all the single-cell 
methylome-based technologies developed by our group4,30,61. The main 
steps of this pipeline included: first, demultiplexing FASTQ files into 
single cells; second read-level quality control; third, mapping; fourth 
BAM file processing and quality control; and fifth, final generation of 
molecular profiles. The details of the five steps for snmC-seq2 were 
described previously30. We mapped all of the reads from the three 
corresponding species onto the human hg19 genome, the marmoset 
ASM275486v1 genome, and the mouse mm10 genome. After mapping, 

we calculated the methyl-cytosine counts and total cytosine counts for 
two sets of genome regions in each cell: the non-overlapping chromo-
some 100-kb bins of each genome (the methylation levels of which were 
used for clustering analysis) and the gene-body regions (the methyla-
tion levels of which were used for cluster annotation and integration 
with RNA expression data). On average, 5.5% of human, 5.6% of marmo-
set and 6.2% of mouse genomes were covered by stringently filtered 
reads per cell, with 3.4 × 104, 1.8 × 104 and 4.5 × 104 genes detected per 
cell in the three species.

Quality control and preprocessing. Cell filtering. We filtered the cells 
on the basis of the following main mapping metrics: first, an mCCC rate 
of less than 0.03 (the mCCC rate reliably estimates the upper bound 
of the bisulfite non-conversion rate4); second, an overall mCG rate of 
0.5; third, an overall mCH rate of less than 0.2; fourth, total final reads 
of more than 500,000; and fifth, a bismark mapping rate of more than 
0.5. Other metrics such as genome coverage, rate of PCR duplicates, 
and index ratio were also generated and evaluated during filtering. 
However, after removing outliers with the main metrics 1–5, few ad-
ditional outliers could be found.
Feature filtering. We filtered 100-kb genomic bin features by remov-
ing bins with mean total cytosine base calls of less than 250 or more 
than 3,000. We also excluded regions that overlap with the ENCODE 
blacklist62 from further analysis.
Computation and normalization of the methylation rate. For CG 
and CH methylation, the computation of methylation rate from the 
methyl-cytosine and total cytosine matrices contains two steps: first, 
prior estimation for the beta-binomial distribution; and second, pos-
terior rate calculation and normalization per cell.

In step 1, for each cell we calculated the sample mean, m, and vari-
ance, v, of the raw methylcytosine rate for each sequence context (CG, 
CH). The shape parameters (α, β) of the beta distribution were then 
estimated using the method of moments:

a m m m v= ( (1 – )/ – 1)

β m m m v= (1 – )( (1 – )/ – 1)

This approach used different priors for different methylation types 
for each cell and used weaker priors for cells with more information 
(higher raw variance).

In step 2, we calculated the posterior mĉ = α + mc/α + β + cov, where 
cov is the total read number and mc is the number of reads supporting 
methylation. We normalized this rate by the cell’s global mean meth-
ylation, m = α/(α + β). Thus, all the posterior mĉ with 0 cov will be a 
constant 1 after normalization. The resulting normalized mc rate matrix 
contains no ‘not available’ (NA) values, and features with less cov tend 
to have a mean value close to 1.
Selection of highly variable features. Highly variable methylation 
features were selected on the basis of a modified approach using the 
scanpy v1.4.4 package scanpy.pp.highly_variable_genes function63. In 
brief, the scanpy.pp.highly_variable_genes function normalized the 
dispersion of a gene by scaling with the mean and standard deviation 
of the dispersions for genes falling into a given bin for mean expression 
of genes. In our modified approach, we reasoned that both the mean 
methylation level and the mean cov of a feature (100-kb bin or gene) 
could impact the dispersion of the mc rate. We grouped features that 
fall into a combined bin of mean and cov, and then normalized the dis-
persion within each mean–cov group. After dispersion normalization, 
we selected the top 3,000 features based on normalized dispersion 
for clustering analysis.
Dimension reduction and combination of different mC types. For each 
selected feature, mc rates were scaled to unit variance, and zero mean. 
Principal component analysis (PCA) was then performed on the scaled 
mc rate matrix. The number of important principal components was 
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selected by inspecting the variance ratio of each principal compo-
nent using the elbow method. The CH and CG principal components 
were then concatenated together for further analysis in clustering and 
manifold learning.

Data analysis. Consensus clustering on concatenated principal com-
ponents. We used a consensus clustering approach based on multiple 
Leiden-clustering64 over a k-nearest neighbour (KNN) graph to account 
for the randomness of the Leiden clustering algorithms. After selecting 
dominant principal components from PCA in both mCH and mCG matri-
ces, we concatenated the principal components together to construct a 
KNN graph using scanpy.pp.neighbours with Euclidean distance. Given 
fixed resolution parameters, we repeated the Leiden clustering 300 
times on the KNN graph with different random starts, and combined 
these cluster assignments as a new feature matrix, where each single 
Leiden result is a feature. We then used the outlier-aware DBSCAN al-
gorithm from the scikit-learn v0.21.3 package (RRID SCR_002577) to 
perform consensus clustering over the Leiden feature matrix using 
the hamming distance. Different epsilon parameters of DBSCAN are 
traversed to generate consensus cluster versions with the number 
of clusters that range from the minimum to the maximum number of 
clusters observed in the multiple Leiden runs. Each version contained 
a few outliers that usually fall into three categories: first, cells located 
between two clusters that had gradient differences instead of clear 
borders; second, cells with a low number of reads that potentially lack 
information in essential features to determine the specific cluster; and 
third, cells with a high number of reads that were potential doublets. 
The amount of the first and second types of outliers depends on the 
resolution parameter and is discussed in the ‘Choice of resolution pa-
rameter’ section below. The third type of outliers were very rare after 
cell filtering. The supervised model evaluation then determined the 
final consensus cluster version.
Supervised model evaluation of the clustering assignment. For each 
consensus clustering version, we performed a recursive feature elimi-
nation with cross-validation (RFECV)65 process from the scikit-learn 
package to evaluate clustering reproducibility. We first removed the 
outliers from this process, and then we held out 10% of the cells as the 
final testing dataset. For the remaining 90% of the cells, we used tenfold 
cross-validation to train a multiclass prediction model using the input 
principal components as features and sklearn.metrics.balanced_accu-
racy_score66 as an evaluation score. The multiclass prediction model 
is based on BalancedRandomForestClassifier from the imblearn v0.0 
package that accounts for imbalanced classification problems67. After 
training, we used the 10% testing dataset to test the model performance 
using the balanced_accuracy_score score. We kept the best model and 
corresponding clustering assignments as the final clustering version. 
Finally, we used this prediction model to predict outliers’ cluster assign-
ments, and rescued those with a prediction probability of more than 
0.3, otherwise labelling them as outliers.
Choice of resolution parameter. Choosing the resolution parameter 
of the Leiden algorithm is essential for determining the final num-
ber of clusters. We selected the resolution parameter according to 
three criteria: first, the portion of outliers is less than 0.05 in the final 
consensus clustering version; second, the ultimate accuracy of the 
model’s prediction is more than 0.95; and third, the average number 
of cells per cluster is 30 or more, thereby controlling the cluster size to 
reach the minimum coverage required for further epigenome analysis 
such as DMR calls. All three criteria prevented the oversplitting of the 
clusters; thus, we selected the maximum resolution parameter to meet 
the criteria using a grid search.
Three levels of iterative clustering analysis. We used an iterative 
approach to cluster the data into three levels of categories with the 
consensus clustering procedure described above. In the first level, 
termed CellClass, clustering analysis is done on all cells. The result-
ing clusters are then manually merged into three canonical classes, 

glutamatergic neurons, GABAergic neurons and non-neurons, based on 
marker genes. The same clustering procedure is then conducted within 
each CellClass to obtain clusters as the MajorType level. Within each 
MajorType, we obtain the final clusters as the SubTypes in the same way.
Integrating cell clusters identified from snmC-seq2 and from Cv3. We 
identified gene markers on the basis of gene-body hypomethylation for 
each level of clustering of snmC-seq2 data using our in-house analysis 
utilities (https://github.com/lhqing/cemba_data), and identified gene 
markers for cell classes and subclasses from Cv3 analysis using scanpy63. 
We then used Scanorama v1.0 (ref. 68) to integrate the two modalities 
with the markers identified (Supplementary Table 23). Methylome 
tracks at the subclass level can be found at http://neomorph.salk.edu/
aj2/pages/cross-species-M1/.
Calling CG DMRs. We identified CG DMRs using methylpy v1.4.0 
(https://github.com/yupenghe/methylpy) as described69. Briefly, we 
first called CG differentially methylated sites and then merged them 
into blocks if they both showed similar sample-specific methylation 
patterns and were within 250 bp. Normalized relative lengths of DMRs 
(Fig. 4d) were calculated by summing the lengths of DMRs and the sur-
rounding 250 bp, and dividing by the numbers of cytosines covered 
in sequencing.
Analysis of enriched TFBS motifs. For each cell subclass (cluster), we 
analysed enriched TFBS motifs for hypomethylated DMRs compared 
with the hypomethylated DMRs from other cell subclasses (clusters) 
using software AME70. DMRs and surrounding 250-bp regions were 
used in the analysis. Enrichment results are reported as significance  
(P values) and effect sizes (log2(true positives/false positives).

Characterization of chandelier cells
Morphology. Morphological reconstructions of Pvalb-expressing ChC 
and basket cells were obtained from human donors using the patch–seq 
protocol described below for L5 extratelencephalic neurons. Macaque 
reconstructions were from source data available in Neuromorpho71,72. 
Mouse cells also appear in ref. 73.

Mouse ATAC-seq: data acquisition and analysis. Chandelier cells 
are rare in mouse cortex and were enriched by isolating individual 
neurons from transgenically labelled mouse primary visual cortex 
(VISp). Many of the transgenic mouse lines have previously been char-
acterized by single-cell RNA-seq2. Single-cell suspensions of cortical 
neurons were generated as described2 and subjected to tagmentation 
(ATAC-seq)74,75. Mixed libraries containing 60–96 samples were se-
quenced on an Illumina MiSeq. In total, 4,275 single cells were collected 
from 36 driver-reporter combinations in 67 mice. After sequencing, 
raw FASTQ files were aligned to the GRCm38 (mm10) mouse genome 
using Bowtie v1.1.0 (RRID SCR_005476) as described76. Following align-
ment, duplicate reads were removed using samtools v1.9 rmdup, which 
yielded only single copies of uniquely mapped paired reads in BAM 
format. Quality-control filtering was applied to select samples with 
more than 10,000 uniquely mapped paired-end fragments, more than 
10% of which were longer than 250 base pairs and with more than 25% of 
their fragments overlapping high-depth cortical DNase-seq peaks from 
ENCODE77. The resulting dataset contained a total of 2,799 samples.

To increase the cell-type resolution of chromatin-accessibility pro-
files beyond that provided by driver lines, we used a feature-free method 
for computation of pairwise distances ( Jaccard). Using Jaccard dis-
tances, we carried out PCA and t-SNE, followed by Phenograph v1.5.2 
(RRID SCR_016919) clustering78. This clustering method grouped cells 
from class-specific driver lines together, but also segregated them 
into multiple clusters. Phenograph-defined neighbourhoods were 
assigned to cell subclasses and clusters by comparing accessibility 
near transcription start sites (TSS ± 20 kb) to median expression values 
of scRNA-seq clusters at the cell-type and subclass levels from mouse 
primary visual cortex79. From this analysis, we assigned a total of 226 
samples to Pvalb and 124 samples to Pvalb Vipr2 (ChC) clusters. The 
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sequence data for these samples were grouped together and further 
processed through the Snap-ATAC pipeline.

Mouse scATAC-seq peak counts for Pvalb and ChC were used to gener-
ate a Seurat object as outlined above for human and marmoset SNARE–
seq2 data on accessible chromatin. Cicero cis co-accessible sites were 
identified, gene-activity scores calculated, and motif-enrichment 
analyses performed as above. Genes used for motif enrichment were 
ChC markers identified from differential expression analysis between 
PVALB-positive clusters in mouse Cv3 scRNA-seq data (with an adjusted 
P value of less than 0.05).

Patch–seq
Participants. The human neurosurgical specimen was obtained from 
a 61-year-old female patient who underwent deep tumour resection 
(glioblastoma) from the frontal lobe at a local hospital. The patient 
provided informed consent and experimental procedures were ap-
proved by the hospital institute review board before commencing the 
study. Post hoc analysis revealed that the neocortical tissue obtained 
from this patient was from a premotor region near the confluence of 
the superior frontal gyrus and the precentral gyrus (Fig. 6g). Betz cells 
are enriched in the primary motor cortex, but they are also present 
in premotor cortex (area 6; refs. 14,80,81; Allen Institute Human Brain 
Reference Atlas). These neurons have several histological hallmarks 
of Betz cells (including gigantocellular somata, horizontally ema-
nating dendrites and abundant rough endoplasmic reticulum14). In 
addition, as can be seen in the biocytin images in Fig. 6, the recorded 
neurons possessed large somata with many perisomatic dendrites. 
Additional histological hallmarks of Betz cells cannot be assessed in 
biocytin-filled neurons.

All procedures involving macaques and mice were approved by the 
IACUC at either the University of Washington or the Allen Institute 
for Brain Science. Macaque M1 tissue was obtained from male (n = 4) 
and female (n = 5) animals (mean age = 10 ± 2.21 years) designated 
for euthanasia from the University of Washington National Primate 
Resource Center, under a protocol approved by the University of Wash-
ington UACUC. Mouse M1 tissue was obtained from 4–12-week-old 
male and female mice from the following transgenic lines: Thy1h–
eyfp (B6.Cg-Tg(Thy1–YFP)-HJrs/J; RRID IMSR_JAX:003782); Etv1–
egfp (Tg(Etv1–EGFP)BZ192Gsat/Mmucd; RRID MMRRC_011152-UCD) 
(animals maintained on an outbred Charles River Swiss Webster 
background (Crl:CFW(SW; RRID IMSR_CRL:024)); and C57BL/6-Tg 
(Pvalb–tdTomato)15Gfng/J; RRID IMSR_JAX:027395). Mice were pro-
vided food and water ad libitum and were maintained on a regular 12-h 
day/night cycle with no more than five adult animals per cage.

Preparation of brain slices. Brain slices were prepared in a similar 
way for Pvalb–TdTomato mice and macaque and human samples. 
Upon resection, human neurosurgical tissue was immediately placed 
in a chilled and oxygenated solution formulated to prevent excito-
toxicity and preserve neural function82. This artificial cerebrospinal 
fluid (NMDG aCSF) consisted of (in mM): 92 N-methyl-d-glucamine 
(NMDG), 2.5 KCl, 1.25 NaH2PO4, 30 NaHCO3, 20 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES), 25 glucose, 2 thiourea, 5 so-
dium ascorbate, 3 sodium pyruvate, 0.5 CaCl2·4H2O and 10 MgSO4·7H2O. 
The pH of the NMDG aCSF was titrated to 7.3–7.4 with concentrated 
hydrochloric acid, and the osmolality was 300–305 mOsmoles per 
kilogram. The solution was prechilled to 2–4 °C and thoroughly bubbled 
with carbogen (95% O2/5% CO2) before collection. Macaques were anaes-
thetized with sevoflurane gas, during which the entire cerebrum was 
extracted and placed in the protective solution described above. After 
extraction, macaques were euthanized with sodium-pentobarbital. We 
dissected the trunk/limb area of the primary motor cortex to prepare 
brain slices. Pvalb–TdTomato mice were deeply anaesthetized by intra-
peritoneal administration of Avertin (20 mg kg−1) and were perfused 
through the heart with NMDG aCSF (bubbled with carbogen).

Brains were sliced at 300-μm thickness on a vibratome using the 
NMDG protective recovery method and a zirconium ceramic blade83,84. 
Mouse brains were sectioned coronally, and human and macaque brains 
were sectioned such that the angle of slicing was perpendicular to the 
pial surface. After sections were obtained, slices were transferred to 
a warmed (32–34 °C) initial recovery chamber filled with NMDG aCSF 
under constant carbogenation. After 12 min, slices were transferred to 
a chamber containing an aCSF solution consisting of (in mM): 92 NaCl, 
2.5 KCl, 1.25 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose, 2 thiourea, 5 
sodium ascorbate, 3 sodium pyruvate, 2 CaCl2·4H2O and 2 MgSO4·7H2O, 
continuously bubbled with 95% O2/5% CO2. Slices were held in this cham-
ber for use in acute recordings or transferred to a six-well plate for 
long-term culture and viral transduction. Cultured slices were placed 
on membrane inserts and wells were filled with culture medium consist-
ing of 8.4 g l−1 MEM Eagle medium, 20% heat-inactivated horse serum, 
30 mM HEPES, 13 mM d-glucose, 15 mM NaHCO3, 1 mM ascorbic acid, 
2 mM MgSO4·7H2O, 1 mM CaCl2.4H2O, 0.5 mM GlutaMAX-I and 1 mg l−1 
insulin83. The slice culture medium was carefully adjusted to pH 7.2–7.3, 
an osmolality of 300–310 mOsmoles per kilogram by addition of pure 
H2O, sterile-filtered and stored at 4 °C for up to 2 weeks. Culture plates 
were placed in a humidified 5% CO2 incubator at 35 °C, and the slice 
culture medium was replaced every two to three days until endpoint 
analysis. One to three hours after brain slices were plated on cell culture 
inserts, brain slices were infected by direct application of concentrated 
AAV viral particles over the slice surface80.

For mouse M1, the extratelencephalic-specific Thy1–YFP-H41,84 and 
intratelencephalic-specific Etv1–EGFP85 lines preferentially labelled 
physiologically defined extratelencephalic and non-extratelencephalic 
neurons, respectively (Fig. 6h, i). Thy1 and Etv1 mice were deeply anaes-
thetized by intraperitoneal administration of a ketamine (130 mg kg−1) 
and xylazine (8.8 mg kg−1) mix and were perfused through the heart with 
chilled (2–4 °C) sodium-free aCSF consisting of (in mM): 210 sucrose, 
7 d-glucose, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 7 MgCl2, 0.5 CaCl2,1.3 
sodium ascorbate and 3 sodium pyruvate, bubbled with carbogen 
(95% O2/5% CO2). Near-coronal slices, 300-μm thick, were generated 
using a Leica vibratome (VT1200) in the same sodium-free aCSF, and 
were transferred to warmed (35 °C) holding solution (in mM): 125 NaCl, 
2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 2 CaCl2, 2 MgCl2, 17 dextrose and 
1.3 sodium pyruvate, bubbled with carbogen (95% O2/5% CO2). After 
30 min of recovery, the chamber holding the slices was allowed to cool 
to room temperature.

Patch-clamp electrophysiology. Macaque, human and Pvalb–Td-
Tomato mouse brain slices were placed in a submerged, heated  
(32–34 °C) recording chamber that was continually perfused (at a rate 
of 3–4 ml min−1) with aCSF under constant carbogenation and contain-
ing (in mM) 1): 119 NaCl, 2.5 KCl, 1.25 NaH2PO4, 24 NaHCO3, 12.5 glucose,  
2 CaCl2·4H2O and 2 MgSO4·7H2O (pH 7.3–7.4). Slices were viewed with 
an Olympus BX51WI microscope using infrared differential interfer-
ence contrast (IR-DIC) optics and a 40× water-immersion objective. 
The infragranular layers of macaque primary motor cortex and human 
premotor cortex are heavily myelinated, which makes visualization of 
neurons under IR-DIC almost impossible. To overcome this challenge, 
we labelled neurons using various viral constructs in organotypic slice 
cultures (Extended Data Fig. 12a). We were unable to use some clas-
sic histological markers of Betz cells (prominent rough endoplasmic 
reticulum, conspicuous nucleolus, intensity of anti-Nissl staining) for 
selection of neurons during patch-clamp experiments. Thus, we used 
the size of soma (greater than 40 μm in height or width) as the primary 
criterion, because somatic volume and/or height/width reasonably 
separates Betz cells from other pyramidal neurons14,86,87. Occasionally 
in the fluorescent image we observed additional hallmarks of Betz 
cells, namely large tap-root dendrites88,89 and horizontal dendrites 
emanating directly from the somatic compartment. In many of these 
neurons, substantial lipofuscin could be observed. Finally, the size of 
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the biocytin-filled neuron in the example (Fig. 6) is at the upper end of 
the range in corticospinal neurons in macaque area 4 (20–60 μm)90. The 
conservative size criterion resulted in soma sizes that are consistent 
with the more than threefold enhancement of the volume in Betz cells 
compared with other pyramidal neurons, and match the size range of 
these neurons in adult macaques86,87.

Patch pipettes (2–6 MΩ) were filled with an internal solution con-
taining (in mM): 110.0 potassium gluconate, 10.0 HEPES, 0.2 EGTA, 
4 KCl, 0.3 sodium GTP, 10 phosphocreatine disodium salt hydrate, 
1 Mg-ATP, 20 μg ml−1 glycogen, 0.5 U μl−1 RNase inhibitor (Takara, 
catalogue number 2313A) and 0.5% biocytin (Sigma, B4261), pH 7.3. 
Fluorescently labelled neurons from Thy1 or Etv1 mice were visualized 
through a 40× objective using either Dodt contrast with a CCD camera 
(Hamamatsu) and/or a two-photon imaging/uncaging system from 
Prairie (Bruker) Technologies. Recordings were made in aCSF con-
taining (in mM): 125 NaCl, 3.0 KCl, 1.25 NaH2PO4, 26 NaHCO3, 2 CaCl2, 
1 MgCl2, 17 dextrose and 1.3 sodium pyruvate bubbled with carbogen 
(95% O2/5% CO2) at 32–35 °C, with synaptic inhibition blocked using 
100 μM picrotoxin. Sylgard-coated patch pipettes (3–6 MΩ) were filled 
with an internal solution containing (in mM): 135 potassium gluconate, 
12 KCl, 11 HEPES, 4 MgATP, 0.3 NaGTP, 7 potassium phosphocreatine 
and 4 sodium phophocreatine (pH 7.42 with KOH) with neurobiotin 
(0.1–0.2%), Alexa 594 (40 μM) and Oregon Green BAPTA 6F (100 μM).

Whole-cell somatic recordings were acquired using either a Mul-
ticlamp 700B amplifier or an AxoClamp 2B amplifier (Molecular 
Devices), and were digitized using an ITC-18 (HEKA). Data-acquisition 
software was either MIES (https://github.com/AllenInstitute/MIES/; 
RRID SCR_016443) or custom software written in Igor Pro. Electrical 
signals were digitized at 20–50 kHz and filtered at 2–10 kHz. Upon 
attaining whole-cell current-clamp mode, the pipette capacitance 
was compensated and the bridge was balanced. Access resistance was 
monitored throughout the recording and was 8–25 MΩ.

Data analysis. Data were analysed using custom analysis software 
written in Igor Pro (RRID SCR_000325). All measurements were made 
at resting membrane potential. The input resistance (RN) was measured 
from a series of 1-s hyperpolarizing steps from −150 pA to +50 pA in 
+20 pA increments. For neurons with low input resistance (for example, 
the Betz cells), this current-injection series was scaled by four times or 
more. The input resistance was calculated from the linear portion of 
the current/steady-state-voltage relationship generated in response 
to these current injections. The resonance (fR) was determined from 
the voltage response to a constant-amplitude sinusoidal current injec-
tion (Chirp stimulus). The chirp stimulus increased in frequency either 
linearly from 1–20 Hz over 20 s, or logarithmically from 0.2–40 Hz over 
20 s. The amplitude of the chirp stimulus was adjusted in each cell to 
produce a peak-to-peak voltage deflection of roughly 10 mV. The imped-
ance amplitude profile (ZAP) was constructed from the ratio of the fast 
Fourier transform of the voltage response to the fast Fourier transform 
of the current injection. ZAPs were produced by averaging at least 
three presentations of the chirp stimulus, and were smoothed using a 
running median smoothing function. The frequency corresponding 
to the peak impedance (Zmax) was defined as the resonant frequency. 
Spike input/output curves were constructed in response to 1-s current 
injections (50–500 pA in 50-pA steps). For a subset of experiments, this 
current-injection series was extended to 3 nA in 600-pA steps to probe 
the full dynamic range of low-RN neurons. Analysis of the acceleration 
of spike frequency was performed for current injections that produced 
roughly ten spikes during the 1-s step. The acceleration ratio was de-
fined as the ratio of the second to the last interspike interval. To examine 
the dynamics of spike timing over longer periods, we also measured 
spiking in response to current injections with 10-s steps, in which the 
amplitude of the current was adjusted to produce roughly five spikes 
in the first second. Properties of action potentials were measured for 
currents near rheobase. The threshold of action potentials was defined 

as the voltage at which the first derivative of the voltage response  
exceeded 20 V s−1. The width of action potentials was measured at half 
the amplitude between threshold and the peak voltage. The faster 
after-hyperpolarization was defined relative to threshold. We clustered 
mouse, macaque and human pyramidal neurons into two broad groups 
on the basis of their RN and fR values using Ward’s algorithm. Macaque 
and human extratelencephalilc neurons were grouped for physiologi-
cal analysis because their intrinsic properties were not substantially 
different, and because there is evidence that Betz cells can be found 
in premotor cortex as well as in M180,81.

Biocytin histology. We used a horseradish peroxidase (HRP)-based 
reaction—with diaminobenzidine (DAB) as the chromogen—to visual-
ize filled cells after electrophysiological recording, and DAPI staining 
to identify cortical layers as described91.

Microscopy. Mounted sections were imaged as described91. Briefly, 
operators captured images on an upright AxioImager Z2 microscope 
(Zeiss, Germany) equipped with an Axiocam 506 monochrome cam-
era and 0.63× optivar. Two-dimensional tiled overview images were 
captured with a 20× objective lens (Zeiss Plan NEOFLUAR 20×/0.5) 
in brightfield transmission and fluorescence channels. Tiled image 
stacks of individual cells were acquired at higher resolution in the 
transmission channel only for the purpose of automated and manual 
reconstruction. Light was transmitted using an oil-immersion con-
denser (numerical aperture 1.4). High-resolution stacks were captured 
with a 63× objective lens (Zeiss Plan-Apochromat 63×/1.4 oil or Zeiss 
LD LCI Plan-Apochromat 63×/1.2 imm corr) at an interval of 0.28 μm 
(numerical aperture 1.4 NA; mouse specimens) or 0.44 μm (numeri-
cal aperture 1.2; human and non-human primate specimens) along 
the z-axis. Tiled images were stitched in ZEN 2012 SP2 software and 
exported as single-plane TIFF files.

Morphological reconstruction. Reconstructions of the dendrites 
and the full axon were generated based on a three-dimensional image 
stack that was run through a Vaa3D-based (v3.475) image processing 
and reconstruction pipeline as described91.

Production and transduction of viral vectors. Recombinant AAV vec-
tors were produced by triple transfection of enhancer plasmids contain-
ing inverted terminal repeats (ITRs) along with AAV helper and rep/cap 
plasmids using the HEK 293T/17 cell line (ATCC, CRL-11268), followed 
by harvest, purification and concentration of the viral particles. The 
plasmid supplying the helper function is available from a commercial 
source (Cell Biolabs). The PHP.eB capsid variant was generated by V. Gra-
dinaru at the California Institute of Technology92, and the DNA plasmid 
for AAV packaging is available from Addgene (RRID Addgene_103005). 
Quality control of the packaged AAV was determined by viral titring to 
determine that an adequate concentration was achieved (more than 
5 × 1012 viral genomes per millilitre), and by sequencing the AAV genome 
to confirm the identity of the viral vector that was packaged. Human and 
NHP L5 extratelencephalic neurons, including Betz cells, were targeted 
to cultured slices by transducing the slices with viral vectors that either 
generically label neurons (AAV–hSyn1–tdTomato), or that enrich for 
L5 extratelencephalic neurons by expressing reporter transgene under 
the control of the msCRE4 enhancer79.

Processing of patch–seq samples. For a subset of experiments, the 
nucleus was extracted at the end of the recording and processed for 
RNA-seq. Before collecting data for these experiments, we thoroughly 
cleaned all surfaces with RNase Zap. The contents of the pipette were 
expelled into a PCR tube containing lysis buffer (Takara, 634894). cDNA 
libraries were produced using the SMART-Seq v4 ultra low input RNA 
kit for sequencing according to the manufacturer’s instructions. We 
performed reverse transcription and cDNA amplification for 20 PCR 
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cycles. Sample proceeded through Nextera NT DNA library preparation 
using Nextera XT Index Kit V2 Set A (FC-131-2001).

Isolating of macaque nuclei, RNA-seq and clustering. Tissue was 
obtained from three macaque animals (aged 3–17 years, male and 
female; Extended Data Table 2) as above. As described for humans, 
M1 was isolated from thawed slabs using fluorescent Nissl staining 
(Neurotrace 500/525, ThermoFisher Scientific). Stained sections were 
screened for histological hallmarks of primary motor cortex, and L5 was 
dissected. Nuclei were isolated from the dissected layer; gene expres-
sion was quantified with 10× Chromium v3 using the Mmul_10 genome 
annotation; nuclei that passed quality-control criteria were clustered; 
and a taxonomy of glutamatergic types was defined. To identify which 
clusters in our three-species taxonomy aligned with macaque clus-
ters from our L5 dissected Cv3 dataset, we carried out an identical 
integration workflow on glutamatergic neurons to that used for the 
three-species integration. Macaque clusters were assigned subclass 
labels on the basis of their corresponding alignment with subclasses 
from the other species.

Mapping of samples to reference taxonomies. To identify which 
cell type a given patch–seq nuclei mapped to, we used our previously 
described nearest-centroid classifier2. Briefly, a centroid classifier was 
constructed for glutamatergic reference data (human SSv4 or macaque 
Cv3) using marker genes for each cluster. Patch–seq nuclei were then 
mapped to the appropriate species reference 100 times, using 80% of 
randomly sampled marker genes during each iteration. Probabilities 
for each nucleus mapping to each cluster were computed over the 100 
iterations, resulting in a confidence score ranging from 0 to 100. We 
identified four human patch–seq nuclei that mapped with greater than 
85% confidence, and four macaque nuclei that mapped with greater 
than 93% confidence, to a cluster in the L5 extratelencephalic subclass.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw sequence data produced as part of the BRAIN Initiative Cell 
Census Network (BICCN; RRID SCR_015820) are available for down-
load from the Neuroscience Multi-omics Archive (RRID SCR_016152; 
https://assets.nemoarchive.org/dat-ek5dbmu) and the Brain Cell Data 
Center (RRID SCR_017266; https://biccn.org/data). Visualization and 
analysis tools are available at NeMO Analytics (RRID SCR_018164; 
individual species, https://nemoanalytics.org//index.html?layout_
id=ac9863bf; integrated species, https://nemoanalytics.org//index.
html?layout_id=34603c2b) and Cytosplore Viewer (RRID SCR_018330; 
https://viewer.cytosplore.org/). These tools allow users to compare 
cross-species datasets and consensus clusters via genome and cell 
browsers and to calculate differential expression within and among spe-
cies. Subclass-level methylome tracks are available at http://neomorph.
salk.edu/aj2/pages/cross-species-M1/. A semantic representation of the 
cell types defined through these studies is available in the provisional 
Cell Ontology (RRID SCR_018332; https://bioportal.bioontology.org/
ontologies/PCL; Supplementary Table 1).
The following publicly available datasets were used for analysis: 
Jaspar motifs database ( JASPAR2020, all vertebrate, http://jaspar.
genereg.net/matrix-clusters/), HUGO Gene Nomenclature Commit-
tee (HGNC) at the European Bioinformatics Institute (https://www.
genenames.org; downloaded January 2020), Synaptic Gene Ontol-
ogy (SynGO; downloaded February 2020), and orthologous genes 
across species from NCBI Homologene (downloaded November 2019). 
Macaque reconstructions were from source data available in Neuro-
morpho (chandelier cells, NeuroMorpho.org, NMO_01873; basket 

cells, NeuroMorpho.org, NMO_01851). Mouse ATAC-seq data are avail-
able from https://assets.nemoarchive.org/dat-7qjdj84; MTG human 
SMARTseq v4 data from https://portal.brain-map.org/atlases-and-data/
rnaseq/human-mtg-smart-seq and https://assets.nemoarchive.org/
dat-swzf4kc); and ENCODE blacklist regions from http://mitra.stan-
ford.edu/kundaje/akundaje/release/blacklists/hg38-human/hg38.
blacklist.bed.gz.

Code availability
Code to reproduce figures is available for download from https://
github.com/AllenInstitute/BICCN_M1_Evo.
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Extended Data Fig. 1 | Metrics of RNA-seq quality and integration of human 
datasets. a, Nissl-stained sections of M1, annotated with layers and showing 
the relative expansion of cortical thickness (particularly of L2 and L3 in 
primates) and large pyramidal neurons or ‘Betz’ cells in human L5 (black dotted 
outline, with high-magnification adjacent panel). Scale bars, 100 μm (low 
magnification), 20 μm (high magnification). M1 was identified in each species 
from its cortical location and histological features. b, Phylogeny of species; 
mya, millions of years ago. c, Number of nuclei included for analysis in each 
molecular assay. Numbers of donors are in parentheses; ‘p’ indicates pooled 
biological replicates. All assays used nuclei isolated from the same donors in 
humans and marmosets. 15,842 nuclei were also profiled from L5 in macaques 
(n = 3) using Cv3. d, Workflow showing the isolation of single nuclei from M1 of 
post-mortem human brain and profiling with RNA-seq. The black outline in the 
Nissl image highlights a cluster of Betz cells in L5. e, FACS gating scheme for 
sorting nuclei. f, Using SSv4, we sequenced more than one million total reads 
across all subclasses in humans. g–i, Cv3 analysis shows that total unique 
molecular identifiers (UMIs) vary between subclasses, and that these 

differences are shared across species. For each subclass, single nuclei are 
plotted together with median values and interquartile intervals. j–m, Gene 
detection (expression level greater than 0) is highest in human when using SSv4 
( j) and lowest for marmosets when using Cv3 (l). Note that the average read 
depth used for SSv4 was approximately 20-fold greater than that for Cv3 (target 
60,000 reads per nucleus). For each subclass, single nuclei plus medians and 
interquartile intervals are plotted. n–p, Integration of SSv4 and Cv3 RNA-seq 
datasets from human single nuclei isolated from GABAergic (n) and 
glutamatergic (o) neurons and non-neuronal cells (p). Left three panels, UMAP 
visualizations, coloured by RNA-seq technology, cell subclass, and 
unsupervised consensus clusters. Right two panels, confusion matrices show 
membership of SSv4 and Cv3 nuclei within 127 integrated consensus clusters. 
q, r, t-SNE projections of single nuclei, based on expression of several thousand 
genes with variable gene expression and coloured by cluster label (q) or donor 
(r). Clusters are well separated in all species, and nuclei from different donors 
are well mixed within clusters, with some donor-specific technical effects in 
marmosets.



Extended Data Fig. 2 | Taxonomies of M1 cell types in humans, marmosets 
and mice. a–c, Taxonomies are reproduced from Fig. 1. Leaves are labelled with 
species-specific clusters, and branches are labelled with major subclasses of 
neuronal types. We defined 127 human clusters on the basis of Cv3 and SSv4 
data, 94 marmoset clusters from Cv3 data, and 116 mouse clusters in a 

companion paper5 by integrating 7 RNA datasets. These apparent differences 
in cellular diversity are likely to be driven by sampling depth, data quality and 
statistical criteria. For example, more non-neuronal nuclei were sampled in 
mice (58,098) and marmosets (21,189) than in humans (4,005), and more 
non-neuronal types were identified in those species.
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Extended Data Fig. 3 | RNA-seq integration of GABAergic neurons across 
species. a, Dot plot showing the proportion of species-enriched subclass 
marker genes (from Fig. 2c, d) that show log-transformed fold change (logFC) 
enrichment over the same subclass from the other two species. b, Dendrogram 
showing clusters of GABAergic (inhibitory) neurons from unsupervised 
clustering of integrated RNA-seq data from humans, marmosets and mice. The 
branch thickness indicates the relative number of nuclei, and the branch colour 
indicates species mixing (grey is well mixed). Major branches are labelled by 
subclass. The dendrogram in Fig. 2f was derived from this tree by pruning 
species-specific branches. c, Heat maps showing scaled expression of the top 
five marker genes for each GABAergic cross-species cluster, and five marker 
genes for Lamp5 and Sst clusters. Initial genes were identified by performing a 
Wilcox test of every integrated cluster against all other GABAergic nuclei. 
Additional DEGs were identified for Lamp5 and Sst cross-species clusters, by 
comparing one of the cross-species clusters with all other related nuclei (for 
example, Sst_1 against all other Sst clusters). d, e, Heat map showing ‘one versus 
best MetaNeighbour’ scores for GABAergic subclasses (d) and clusters (e). Each 
column shows the performance of a single training group across the three test 
datasets. AUROCs are computed between the two closest neighbours in the 
test dataset, where the closer neighbour will have the higher score, and all 
others are shown in grey (NA). For example, in d the first column contains 
results of training on human Lamp5, labelled with numbers to indicate test 

datasets, where 1 is human, 2 is marmoset and 3 is mouse, and letters to indicate 
closest (a) and second-closest (b) neighbouring groups. Dark red three-by-
three blocks along the diagonal indicate high transcriptomic similarity across 
all three species. f, Heat map showing cluster overlaps obtained from pairwise 
human–marmoset Seurat integration, indicating the proportion of within-
species clusters that coalesce within integrated clusters. Columns and rows are 
ordered as in Fig. 2e, with cross-species consensus clusters indicated by blue 
boxes. The top and left colour bars indicate subclasses of within-species 
clusters. g, Bar plots quantifying the number of well mixed leaf nodes 
(mean ± s.d.; n = 100 subsamples) in dendrograms of pairwise species 
integrations from Fig. 2h. ANOVA tests for each subclass were followed by two-
sided Tukey’s HSD tests with Bonferroni correction for multiple comparisons; 
degrees of freedom = 297; *P < 0.0001. h, Histogram showing the relative 
difference in isoform genic proportion (P) between humans and mice for all 
subclass comparisons. All moderately to highly expressed isoforms were 
included (gene TPM greater than 10 in both species; isoform TPM greater than 
10 and proportion greater than 0.2 in either species). Vertical lines indicate a 
more than ninefold change in mice or humans. i, Genome-browser tracks of 
RNA-seq (SSv4) reads in human and mouse L5/6 NP neurons at the CHN2 locus 
for the three most common isoforms. The short isoform of CHN2 is 
predominantly expressed in mouse neurons; longer isoforms are also 
expressed in human neurons.
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Extended Data Fig. 4 | Homology of glutamatergic neurons across species. 
a, UMAP visualization of integrated snRNA-seq data from human, marmoset 
and mouse glutamatergic neurons. The highlighted colours indicate 
subclasses. b, Venn diagrams indicating the number of DEGs shared across 
species by subclass. DEGs were determined by ROC tests of a subclass against 
all other glutamatergic subclasses within a species. c, Heat map of conserved 
and species-enriched DEGs from b, ordered by subclass and species 
enrichment. The heat map shows expression, scaled by column, for up to 50 
randomly sampled nuclei from each subclass for each species. d, UMAP 
visualization of integrated snRNA-seq data, with projected nuclei split by 
species. Colours indicate different within-species clusters. e, Cluster overlap 
heat map showing the proportion of nuclei in each pair of species clusters that 
are mixed in the cross-species integrated space. Cross-species consensus 
clusters are indicated by labelled blue boxes. The top and left axes indicate the 
subclass of a given within-species cluster by colour. The bottom axis indicates 
marmoset (left) and mouse (right) within-species clusters. The right axis shows 
the glutamatergic branch of the human dendrogram from Fig. 1a.  
f, Dendrogram showing cross-species clusters of glutamatergic neurons, with 
branches coloured by species mixture (grey, well mixed). g, Unpruned 

dendrogram of clusters of glutamatergic neurons, from unsupervised 
clustering of integrated RNA-seq data. The branch thickness indicates the 
relative number of nuclei, and the branch colour indicates species mixing. 
Major branches are labelled by subclass. h, Heat maps showing scaled 
expression of marker genes for each glutamatergic cross-species cluster. The 
top five marker genes for each cross-species cluster are shown, with an 
additional five genes for L5 extratelencephalic, L5 intratelencephalic and L6 
intratelencephalic neurons. Initial genes were identified by performing a 
Wilcox test of every integrated cluster against all other glutamatergic nuclei. 
Additional DEGs were identified for L5 extratelencephalic, L5 
intratelencephalic and L6 intratelencephalic cross-species clusters, by 
comparing one of the cross-species clusters with all other related nuclei (for 
example, L5 IT_1 against all other L5 IT neurons). i, j, Heat map of ‘one versus 
best MetaNeighbour’ scores for glutamatergic subclasses (i) and clusters ( j).  
k, Bar plots quantifying the number of well mixed leaf nodes (mean ± s.d.; 
n = 100 subsamples) from unsupervised clustering of pairwise species 
integrations. ANOVA tests for each subclass were followed by two-sided 
Tukey’s HSD tests with Bonferroni correction for multiple comparisons; 
*P < 0.005.
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Extended Data Fig. 5 | Homology of non-neuronal cell types across species. 
a, UMAP plots of integrated RNA-seq data for non-neuronal nuclei, coloured by 
species and within-species clusters. Note that some cell types are present in 
only one or two species. b, UMAP plot showing maturation lineage between 
oligodendrocyte precursor cells (OPCs) and oligodendrocytes on the basis of 
reported marker genes93; this lineage was present in mice but not primates, 
probably reflecting the younger age of mouse tissues used. c, Heat maps 
showing the proportion of nuclei in each species-specific cluster that overlap 
in the integrated clusters. Blue boxes define homologous cell types that can be 
resolved across all three species. Arrows highlight clusters that overlap 
between two species and are not detected in the third species, owing to 
differences in the sampling depth of non-neuronal cells, the relative 
abundances of cell types between species, or evolutionary divergence. 
Pericytes, smooth muscle cells (SMCs) and some subtypes of vascular and 
leptomeningeal cells (VLMCs) were present in marmoset and mouse and not 
human datasets, although these cells are present in human cortex94. Mitotic 
astrocytes (Astro_Top2a) were present in mice only, and represented 0.1% of 
non-neuronal cells. d, Conserved marker genes from homologous cell types 
across species. e, Pairwise comparisons between species of log-transformed 
gene expression (counts per 100,000 transcripts) of the Astro_1 type. Coloured 
points correspond to significantly differentially expressed genes (FDR less 
than 0.01; log-transformed fold change greater than 2). r, Spearman 
correlation. f, Validation of fibrous astrocytes in situ. Violin plots show marker 
genes from clusters of human astrocytes that correspond to fibrous, 
interlaminar and protoplasmic types on the basis of in situ labelling of types. 
Left ISH images show fibrous astrocytes located in the white matter (WM, top), 
and a subset of L1 astrocytes (bottom) that express the Astro L1-6 FGFR3 AQP1 
marker gene TNC. The centre ISH image shows a putative varicose projection 
astrocyte located in cortical L5 adjacent to a blood vessel (bv) and extending 
long processes labelled with glial fibrillary acidic protein (GFAP; white arrows); 
this astrocyte does not express the marker gene TNC. The white dashed box 

indicates the area shown at higher magnification in the top right panel. 
Likewise, the L3 protoplasmic astrocyte shown in the bottom right panel does 
not express TNC. Scale bars, 15 μm. g, Combined GFAP immunohistochemistry 
and RNAscope FISH for markers of L1 astrocytes in humans, mice and 
marmosets. In humans (top panels), pial and subpial interlaminar astrocytes 
are labelled with AQP4 and ID3 and extend long processes from L1 down to L3. 
In marmosets (centre panels), both pial and subpial L1 astrocytes express AQP4 
and GRIK2 and extend GFAP-labelled processes through L1 that terminate 
before reaching L2. An image of a marmoset protoplasmic astrocyte located in 
L3 (top right) shows that this astrocyte type does not express the marker gene 
GRIK2. A subset of marmoset fibrous astrocytes located in the white matter 
(bottom right) express GRIK2, suggesting that fibrous and L1 astrocytes have a 
shared gene-expression signature, as also seen in humans3. L1 astrocytes in 
mice (bottom panels) consist of pial and subpial types that differ 
morphologically but are characterized by their expression of the genes Aqp4 
and Id3. Pial astrocytes in mice extend short GFAP-labelled processes that 
terminate within L1, whereas subpial astrocytes appear to extend processes 
predominantly towards the pial surface. Protoplasmic astrocytes (an example 
is shown in L5) do not express Id3, whereas fibrous astrocytes share expression 
of Id3 with L1 astrocyte types. In each image, a higher magnification of the cell 
is shown in white dashed boxes to demonstrate RNAscope spots for each gene 
labelled. Scale bars, 20 μm. h, Violin plots showing marker genes from clusters 
of oligodendrocyte lineages in humans. Transcripts detected in the Oligo L2−6 
OPALIN MAP6D1 cluster include genes that are expressed almost exclusively in 
neuronal cells. i, Left, Inverted DAPI image showing a column of cortex labelled 
with markers of the human Oligo L2-6 OPALIN MAP6D1 type. Red dots show cells 
triple labelled for SOX10, NPTX1 and ST18. Top right, examples of cells labelled 
with combinations of marker genes specific for the human Oligo L2-6 OPALIN 
MAP6D1 type. Bottom right, example of a marmoset cell labelled with the 
marker genes OLIG2 and NRXN3. Scale bars, 20 μm.



Article

Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | SNARE–seq2 transcriptomic profiling resolves M1 
cell types. a, b, FACS gating parameters used for sorting human and marmoset 
single nuclei (a) and for SNARE–seq2 (b), to generate libraries of RNA and 
accessible chromatin (AC) that have the same cell barcodes (BC). gDNA, guide 
DNA. c, Dot plot showing averaged values for the expression of marker genes 
(blue shading; log scale) and the proportion of nuclei with expression (black 
circles) for clusters identified from analysis of SNARE–seq2 RNA using 
Pagoda2. d, Correlation heat map of averaged scaled gene-expression values 
for Pagoda2 clusters against SSv4 clusters from the same M1 region. e, Jaccard 
similarity plot for cell barcodes grouped according to Pagoda2 clustering and 
compared against the predicted SSv4 clustering. f–k, Overview of cluster 
assignments at the level of accessible chromatin using RNA-defined clusters, 
indicating the five main steps of the process. f, RNA clusters visualized by 
UMAP on RNA expression data, which were used to independently call peaks 
from data on accessible chromatin. g, Histograms showing maximum 

prediction scores for RNA cluster (top) and subclass (bottom) labels from RNA 
data to corresponding accessibility data (Cicero gene activities). h, Peak 
regions called from barcode groupings at the level of RNA cluster, subclass and 
class were combined, and the corresponding peak by cell barcode matrix was 
used to predict gene-activity scores by using Cicero for integrative analyses of 
RNA and accessible chromatin. The UMAP shows joint embedding of RNA and 
imputed AC expression values using Seurat/Signac. i, UMAP showing clusters 
identified from the joint embedding (h). j, Jaccard similarity plot comparing 
cell barcodes grouped either according to RNA clustering or by joint clustering 
of RNA and accessible chromatin (i). RNA clusters were merged to best match 
the cluster resolution achieved from co-embedded clusters. Chromatin peak 
counts generated from peak calling on barcode groupings from RNA, 
accessible chromatin, subclass and class were used to generate a final peak by 
cell barcode matrix. k, Final clusters at the level of accessible chromatin 
visualized using UMAP.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | SNARE–seq2 quality statistics. a, UMAP plots showing 
human clusters at the level of accessible chromatin and corresponding 
participant identities for both RNA and chromatin embeddings. b, Bar, violin 
and box plots for human AC-level clusters, showing the proportion contributed 
by each experiment or patient, mean UMI and genes detected from the RNA 
data, the mean peaks and Cicero active genes detected from AC data, the 
fraction of reads found in promoters for AC data, and the number of nuclei 
making up each of the clusters. Box plots extend from 25th to 75th percentiles; 
central lines represent medians; and whiskers extend up to 1.5 times the 
interquartile interval. c, UMAP plots showing marmoset AC-level clusters and 
corresponding subject identities for both RNA and chromatin embeddings.  
d, Bar, violin and box plots for marmoset AC-level clusters, showing the 

proportion contributed by each library or subject, mean UMI and genes 
detected from the RNA data, the mean peaks and cicero active genes detected 
from AC data, the fraction of reads found in promoters for AC data, and the 
number of nuclei making up each of the clusters. Box plots extend from 25th to 
75th percentiles; central lines represent medians; and whiskers extend up to 1.5 
times the interquartile interval. e, f, Correlation heat maps of average scaled 
gene-expression values against average scaled Cicero gene activity values for 
RNA clusters (e) and AC-level clusters (f). g, h, Heat maps showing top averaged 
scaled chromatin accessibility values for DARs (Supplementary Table 14) 
identified for clusters at the level of RNA (g) and accessible chromatin (f).  
i, Heat maps showing the expression of marmoset AC-cluster markers and 
associated DARs, as shown for humans in Fig. 3b.
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Extended Data Fig. 8 | Cell types identified by DNA methylation and 
integration with RNA-seq data. a, b, UMAP visualizations of marmoset (a) and 
mouse (b) data on DNA methylation (snmC-seq2) and cell clusters. c, Cell-type 
DMRs (mCG) across human neuronal clusters. Only those DMRs with at least 20 
differentially methylated cytosine sites are shown. d, Hypomethylation of CG 
(left) and CH (right) in the gene bodies of cluster markers in humans.  
e–g, Mapping between DNAm-seq and RNA-seq clusters from humans (e), 
marmosets (f) and mice (g). The numbers of nuclei in each cluster are listed in 

parentheses. h, Barplots showing the relative lengths of hypomethylated and 
hypermethylated DMRs among cell subclasses across three species, 
normalized by genome-wide cytosine coverage (see Methods). The total 
numbers of DMRs for each subclass are listed (k, thousands). i, Numbers of 
hypomethylated and hypermethylated DMRs and overlap with chromatin 
accessible peaks in each subclass of human. j, Numbers of AC peaks and overlap 
with DMRs in each subclass in humans.



Extended Data Fig. 9 | Analysis of TFBS enrichment on hypomethylated 
DMRs shows that gene regulation is distinct across subclasses and 
conserved across species. Analyses of the enrichment of TFBS motifs were 
conducted using JASPAR’s non-redundant core vertebrate transcription-factor 
motifs for neuronal subclasses in each species. Each subclass tri-column shows, 
from left to right, the results from humans, marmosets and mice. The size of a 

dot denotes the P value of the corresponding motif, while the colour denotes 
the fold change. The rightmost two columns show clusters of transcription 
factors (cl) identified from motif profiles and families of transcription factors 
(fam) identified from the structures of transcription factors as defined in the 
JASPAR database.
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Extended Data Fig. 10 | Homologies of cell types in human cortical areas 
based on RNA-seq integration. a, Heat map showing the overlap of clusters of 
glutamatergic neurons between M1 and MTG. Interestingly, four MTG L2/3 
intratelencephalic types (LTK, GLP2R, FREM3 and CARM1P1) with distinct 
physiology and morphology23 had less clear homology in M1, indicating more 
areal variation in supragranular neurons. b, Heat maps showing the overlap of 
clusters of glutamatergic neurons for M1 and MTG test datasets. Clusters were 

split in half, and the two datasets were integrated using the same analysis 
pipeline as for the M1 and MTG integration. Most clusters mapped correctly 
(along the diagonal) with some loss in resolution between closely related 
clusters (red blocks). c, t-SNE plots of integrated glutamatergic neurons 
labelled with M1 and MTG clusters. d–g, Heat maps of cluster overlaps and 
t-SNE plots of integrations for GABAergic neurons (d, e) and non-neuronal cells 
(f, g), as described in a–c for glutamatergic neurons.



Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | Cross-species alignment of L5 glutamatergic 
neurons, and conservation and divergence of transcriptomic properties. 
a, b, UMAP visualizations of cross-species integration of snRNA-seq data for 
glutamatergic neurons isolated from humans, macaques (L5 dissection only), 
marmosets and mice. Colours indicate species (a) or cell subclass (b).  
c, Heat map of cluster overlaps, showing the proportion of nuclei from within-
species clusters that are mixed within the same integrated clusters. Human 
clusters (rows) are ordered according to the dendrogram reproduced from 
Fig. 1a. Macaque clusters (columns) are ordered to align with human clusters. 
Colour bars at the top and left indicate subclasses of within-species clusters. 
The blue outline denotes the L5 extratelencephalic subclass. d, UMAP 
visualizations of cross-species integration of L5 extratelencephalic neurons. 
There is good correspondence across species to the mouse L5 ET_1 subtype 
that projects to medulla5. e, Examples of cells labelled by ISH and stained with 

anti-SMI-32 immunofluorescence in L5 of human and mouse M1. Cells are 
labelled with the extratelencephalic marker POU3F1/Pou3f1 and the ion-
channel genes CACNA1C/Cacna1c or KCNC2/Kcnc2. Consistent with snRNA-seq 
data, human L5 extratelencephalic M1 neurons appear to express higher levels 
of CACNA1C and KCNC2 than do mouse L5 extratelencephalic M1 neurons. Scale 
bars, main images, 25 μm (humans), 15 μm (mice); insets, 10 μm (humans), 5 μm 
(mice). f, Violin plot showing the expression of marker genes for subtypes of 
human L5 extratelencephalic neurons. g, Two examples of cells with Betz 
morphology, labelled by ISH and stained with anti-SMI-32 
immunofluorescence, in L5 of human M1 that correspond to the L5 
extratelencephalic clusters Exc L3-5 FEZF2 ASGR2 and EXC L5 CSN1S1. Insets 
show higher magnification of ISH-labelled transcripts in corresponding cells. 
Scale bars, 25 μm, insets 10 μm. Asterisks mark lipofuscin.



Extended Data Fig. 12 | See next page for caption.
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Extended Data Fig. 12 | Differences in spike trains produced by L5 
glutamatergic neurons and single spike properties across species.  
a, Example IR-DIC (left) and fluorescence (right) images obtained from a 
macaque organotypic slice culture. Note the inability to visualize the 
fluorescently labelled neurons in IR-DIC because of dense myelination. All 
human and macaque recordings were from labelled neurons. Scale bar, 50 μm. 
b, Patch–seq involves the collection of morphological, physiological and 
transcriptomic data from the same neuron. Following electrophysiological 
recording and cell filling with biocytin via whole-cell patch clamp, the contents 
of the cell are aspirated and processed for RNA sequencing. This permits a 
transcriptomic cell type to be pinned to the physiologically probed neuron.  
c, Top, example ZAP profiles for the neurons shown in Fig. 6f–h. Bottom, 
cumulative probability distribution showing input resistance for 
physiologically defined L5 neuron types from primates versus mice. 
*P = 0.0064, Kolmogorov–Smirnov test between mouse and primate 
extratelencephalic neurons. d, Raster plot of spike times during 1-s epochs of a 
10-s injection of DC current, with colour coding as in c. Primate 
extratelencephalic neurons (pooled data from humans and macaques, n = 20) 
displayed a distinctive decrease followed by a pronounced increase in firing 
rate over the course of the current injection, whereas other neuron types did 
not (primate intratelencephalic neurons, n = 30; mouse extratelencephalic 
neurons, n = 8; mouse intratelencephalic neurons, n = 12). Notably, a similar 
biphasic-firing pattern is observed in macaque corticospinal neurons in vivo 
during prolonged motor movements95,96, suggesting that the firing pattern of 
these neurons during behaviour is intimately tied to their intrinsic membrane 
properties. The acceleration in spike times of rodent extratelencephalic 
neurons has been attributed to the expression of Kv1-containing voltage-gated 
K+ channels, encoded by genes such as the conserved extratelencephalic gene 
KCNA1 (ref.41). e, Example voltage responses to a 1-s, 500-pA current injection.  
f, Action potentials (mean ± s.e.m.) as a function of the amplitude of injected 
current. Primate extratelencephalic neurons display the shallowest 

relationship between action potential and injected current, perhaps partially 
because of their exceptionally low input resistance (primate 
extratelencephalic neurons, n = 20; primate intratelencephalic neurons, n = 30; 
mouse extratelencephalic neurons, n = 9; mouse intratelencephalic neurons, 
n = 12). g, Voltage responses to a current injection with a 1-s, 3-nA step. h, Action 
potentials (mean ± s.e.m.) as a function of injected current for a subset of 
experiments in which the amplitude of injected current was increased 
incrementally to 3 nA. Although both mouse (n = 9) and primate (n = 10) 
extratelencephalic neurons could sustain high firing rates, primate neurons 
required 3 nA of current over 1 s to reach similar average firing rates as mouse 
extratelencephalic neurons. i, Example voltage responses to current injections 
with 1-s depolarizing steps. The amplitude of the current injection was adjusted 
to produce roughly ten spikes. Also shown are voltage responses to a 
hyperpolarizing current injection. j, The firing rate (mean ± s.e.m.) of primate 
extratelencephalic (n = 18), primate intratelencephalic (n = 30) and mouse 
intratelencephalic (n = 86) neurons decreased during the 1-s step current 
injection, whereas the firing rate of mouse extratelencephalic neurons 
increased (n = 110). The acceleration ratio is the ratio of the second to the last 
interspike interval. *P < 0.05, Bonferroni-corrected two-sided t-test. k, Example 
single action potentials (above) and phase plane plots (below). l, Various 
features of action potentials (mean ± s.e.m.) are plotted as a function of cell 
type (primate extratelencphalic, n = 20; primate intratelencephalic, n = 30; 
mouse extratelencephalic, n = 9; mouse intratelencephalic, n = 12). Notably, 
action potentials in primate extratelencephalic neurons were reminiscent of 
fast spiking interneurons, in that they were shorter and more symmetrical 
compared with action potentials in other neuron types/species. Intriguingly, 
the K+-channel subunits Kv3.1 and Kv3.2, which are implicated in fast-spiking 
physiology97, are encoded by highly expressed genes (KCNC1 and KCNC2) in 
primate extratelencephalic neurons (Fig. 6c). *P < 0.05, Bonferroni-corrected 
two-sided t-test.



Extended Data Table 1 | Summary of human donors of postmortem tissue

PMI, postmorten interval; RIN, RNA integrity number. Data types: SSv4, SMART-Seqv4; Cv3, 10× Genomics Chromium single-cell 3′ kit v3; SNARE–seq2, single-nucleus chromatin accessibility 
and mRNA expression sequencing; snmC-seq2, single-nucleus methyl cytosine sequencing.
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Extended Data Table 2 | Summary of tissue specimens obtained from postmortem of non-human primates

Data types: Cv3, 10× Genomics Chromium single-cell 3′ kit v3; FISH, ACD Bio multiplex fluorescent in situ hybridization.
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